diff options
author | Li Jin <dragon-fly@qq.com> | 2021-04-21 09:36:25 +0800 |
---|---|---|
committer | Li Jin <dragon-fly@qq.com> | 2021-04-21 09:36:25 +0800 |
commit | b7bdf7d5d36825a1a750a74641f6d374dec5d67a (patch) | |
tree | 6b27eb6590e07c07f378305c51d0f5e0779faa83 /src/3rdParty/lua/lgc.c | |
parent | b86e5af605a170a3559df0165eac3cb6b665dc49 (diff) | |
download | yuescript-b7bdf7d5d36825a1a750a74641f6d374dec5d67a.tar.gz yuescript-b7bdf7d5d36825a1a750a74641f6d374dec5d67a.tar.bz2 yuescript-b7bdf7d5d36825a1a750a74641f6d374dec5d67a.zip |
adjust some folder levels.
Diffstat (limited to 'src/3rdParty/lua/lgc.c')
-rw-r--r-- | src/3rdParty/lua/lgc.c | 1728 |
1 files changed, 1728 insertions, 0 deletions
diff --git a/src/3rdParty/lua/lgc.c b/src/3rdParty/lua/lgc.c new file mode 100644 index 0000000..b360eed --- /dev/null +++ b/src/3rdParty/lua/lgc.c | |||
@@ -0,0 +1,1728 @@ | |||
1 | /* | ||
2 | ** $Id: lgc.c $ | ||
3 | ** Garbage Collector | ||
4 | ** See Copyright Notice in lua.h | ||
5 | */ | ||
6 | |||
7 | #define lgc_c | ||
8 | #define LUA_CORE | ||
9 | |||
10 | #include "lprefix.h" | ||
11 | |||
12 | #include <stdio.h> | ||
13 | #include <string.h> | ||
14 | |||
15 | |||
16 | #include "lua.h" | ||
17 | |||
18 | #include "ldebug.h" | ||
19 | #include "ldo.h" | ||
20 | #include "lfunc.h" | ||
21 | #include "lgc.h" | ||
22 | #include "lmem.h" | ||
23 | #include "lobject.h" | ||
24 | #include "lstate.h" | ||
25 | #include "lstring.h" | ||
26 | #include "ltable.h" | ||
27 | #include "ltm.h" | ||
28 | |||
29 | |||
30 | /* | ||
31 | ** Maximum number of elements to sweep in each single step. | ||
32 | ** (Large enough to dissipate fixed overheads but small enough | ||
33 | ** to allow small steps for the collector.) | ||
34 | */ | ||
35 | #define GCSWEEPMAX 100 | ||
36 | |||
37 | /* | ||
38 | ** Maximum number of finalizers to call in each single step. | ||
39 | */ | ||
40 | #define GCFINMAX 10 | ||
41 | |||
42 | |||
43 | /* | ||
44 | ** Cost of calling one finalizer. | ||
45 | */ | ||
46 | #define GCFINALIZECOST 50 | ||
47 | |||
48 | |||
49 | /* | ||
50 | ** The equivalent, in bytes, of one unit of "work" (visiting a slot, | ||
51 | ** sweeping an object, etc.) | ||
52 | */ | ||
53 | #define WORK2MEM sizeof(TValue) | ||
54 | |||
55 | |||
56 | /* | ||
57 | ** macro to adjust 'pause': 'pause' is actually used like | ||
58 | ** 'pause / PAUSEADJ' (value chosen by tests) | ||
59 | */ | ||
60 | #define PAUSEADJ 100 | ||
61 | |||
62 | |||
63 | /* mask with all color bits */ | ||
64 | #define maskcolors (bitmask(BLACKBIT) | WHITEBITS) | ||
65 | |||
66 | /* mask with all GC bits */ | ||
67 | #define maskgcbits (maskcolors | AGEBITS) | ||
68 | |||
69 | |||
70 | /* macro to erase all color bits then set only the current white bit */ | ||
71 | #define makewhite(g,x) \ | ||
72 | (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g))) | ||
73 | |||
74 | /* make an object gray (neither white nor black) */ | ||
75 | #define set2gray(x) resetbits(x->marked, maskcolors) | ||
76 | |||
77 | |||
78 | /* make an object black (coming from any color) */ | ||
79 | #define set2black(x) \ | ||
80 | (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT))) | ||
81 | |||
82 | |||
83 | #define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x))) | ||
84 | |||
85 | #define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n))) | ||
86 | |||
87 | |||
88 | /* | ||
89 | ** Protected access to objects in values | ||
90 | */ | ||
91 | #define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL) | ||
92 | |||
93 | |||
94 | #define markvalue(g,o) { checkliveness(g->mainthread,o); \ | ||
95 | if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); } | ||
96 | |||
97 | #define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); } | ||
98 | |||
99 | #define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); } | ||
100 | |||
101 | /* | ||
102 | ** mark an object that can be NULL (either because it is really optional, | ||
103 | ** or it was stripped as debug info, or inside an uncompleted structure) | ||
104 | */ | ||
105 | #define markobjectN(g,t) { if (t) markobject(g,t); } | ||
106 | |||
107 | static void reallymarkobject (global_State *g, GCObject *o); | ||
108 | static lu_mem atomic (lua_State *L); | ||
109 | static void entersweep (lua_State *L); | ||
110 | |||
111 | |||
112 | /* | ||
113 | ** {====================================================== | ||
114 | ** Generic functions | ||
115 | ** ======================================================= | ||
116 | */ | ||
117 | |||
118 | |||
119 | /* | ||
120 | ** one after last element in a hash array | ||
121 | */ | ||
122 | #define gnodelast(h) gnode(h, cast_sizet(sizenode(h))) | ||
123 | |||
124 | |||
125 | static GCObject **getgclist (GCObject *o) { | ||
126 | switch (o->tt) { | ||
127 | case LUA_VTABLE: return &gco2t(o)->gclist; | ||
128 | case LUA_VLCL: return &gco2lcl(o)->gclist; | ||
129 | case LUA_VCCL: return &gco2ccl(o)->gclist; | ||
130 | case LUA_VTHREAD: return &gco2th(o)->gclist; | ||
131 | case LUA_VPROTO: return &gco2p(o)->gclist; | ||
132 | case LUA_VUSERDATA: { | ||
133 | Udata *u = gco2u(o); | ||
134 | lua_assert(u->nuvalue > 0); | ||
135 | return &u->gclist; | ||
136 | } | ||
137 | default: lua_assert(0); return 0; | ||
138 | } | ||
139 | } | ||
140 | |||
141 | |||
142 | /* | ||
143 | ** Link a collectable object 'o' with a known type into the list 'p'. | ||
144 | ** (Must be a macro to access the 'gclist' field in different types.) | ||
145 | */ | ||
146 | #define linkgclist(o,p) linkgclist_(obj2gco(o), &(o)->gclist, &(p)) | ||
147 | |||
148 | static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) { | ||
149 | lua_assert(!isgray(o)); /* cannot be in a gray list */ | ||
150 | *pnext = *list; | ||
151 | *list = o; | ||
152 | set2gray(o); /* now it is */ | ||
153 | } | ||
154 | |||
155 | |||
156 | /* | ||
157 | ** Link a generic collectable object 'o' into the list 'p'. | ||
158 | */ | ||
159 | #define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p)) | ||
160 | |||
161 | |||
162 | |||
163 | /* | ||
164 | ** Clear keys for empty entries in tables. If entry is empty, mark its | ||
165 | ** entry as dead. This allows the collection of the key, but keeps its | ||
166 | ** entry in the table: its removal could break a chain and could break | ||
167 | ** a table traversal. Other places never manipulate dead keys, because | ||
168 | ** its associated empty value is enough to signal that the entry is | ||
169 | ** logically empty. | ||
170 | */ | ||
171 | static void clearkey (Node *n) { | ||
172 | lua_assert(isempty(gval(n))); | ||
173 | if (keyiscollectable(n)) | ||
174 | setdeadkey(n); /* unused key; remove it */ | ||
175 | } | ||
176 | |||
177 | |||
178 | /* | ||
179 | ** tells whether a key or value can be cleared from a weak | ||
180 | ** table. Non-collectable objects are never removed from weak | ||
181 | ** tables. Strings behave as 'values', so are never removed too. for | ||
182 | ** other objects: if really collected, cannot keep them; for objects | ||
183 | ** being finalized, keep them in keys, but not in values | ||
184 | */ | ||
185 | static int iscleared (global_State *g, const GCObject *o) { | ||
186 | if (o == NULL) return 0; /* non-collectable value */ | ||
187 | else if (novariant(o->tt) == LUA_TSTRING) { | ||
188 | markobject(g, o); /* strings are 'values', so are never weak */ | ||
189 | return 0; | ||
190 | } | ||
191 | else return iswhite(o); | ||
192 | } | ||
193 | |||
194 | |||
195 | /* | ||
196 | ** Barrier that moves collector forward, that is, marks the white object | ||
197 | ** 'v' being pointed by the black object 'o'. In the generational | ||
198 | ** mode, 'v' must also become old, if 'o' is old; however, it cannot | ||
199 | ** be changed directly to OLD, because it may still point to non-old | ||
200 | ** objects. So, it is marked as OLD0. In the next cycle it will become | ||
201 | ** OLD1, and in the next it will finally become OLD (regular old). By | ||
202 | ** then, any object it points to will also be old. If called in the | ||
203 | ** incremental sweep phase, it clears the black object to white (sweep | ||
204 | ** it) to avoid other barrier calls for this same object. (That cannot | ||
205 | ** be done is generational mode, as its sweep does not distinguish | ||
206 | ** whites from deads.) | ||
207 | */ | ||
208 | void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) { | ||
209 | global_State *g = G(L); | ||
210 | lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o)); | ||
211 | if (keepinvariant(g)) { /* must keep invariant? */ | ||
212 | reallymarkobject(g, v); /* restore invariant */ | ||
213 | if (isold(o)) { | ||
214 | lua_assert(!isold(v)); /* white object could not be old */ | ||
215 | setage(v, G_OLD0); /* restore generational invariant */ | ||
216 | } | ||
217 | } | ||
218 | else { /* sweep phase */ | ||
219 | lua_assert(issweepphase(g)); | ||
220 | if (g->gckind == KGC_INC) /* incremental mode? */ | ||
221 | makewhite(g, o); /* mark 'o' as white to avoid other barriers */ | ||
222 | } | ||
223 | } | ||
224 | |||
225 | |||
226 | /* | ||
227 | ** barrier that moves collector backward, that is, mark the black object | ||
228 | ** pointing to a white object as gray again. | ||
229 | */ | ||
230 | void luaC_barrierback_ (lua_State *L, GCObject *o) { | ||
231 | global_State *g = G(L); | ||
232 | lua_assert(isblack(o) && !isdead(g, o)); | ||
233 | lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1)); | ||
234 | if (getage(o) == G_TOUCHED2) /* already in gray list? */ | ||
235 | set2gray(o); /* make it gray to become touched1 */ | ||
236 | else /* link it in 'grayagain' and paint it gray */ | ||
237 | linkobjgclist(o, g->grayagain); | ||
238 | if (isold(o)) /* generational mode? */ | ||
239 | setage(o, G_TOUCHED1); /* touched in current cycle */ | ||
240 | } | ||
241 | |||
242 | |||
243 | void luaC_fix (lua_State *L, GCObject *o) { | ||
244 | global_State *g = G(L); | ||
245 | lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */ | ||
246 | set2gray(o); /* they will be gray forever */ | ||
247 | setage(o, G_OLD); /* and old forever */ | ||
248 | g->allgc = o->next; /* remove object from 'allgc' list */ | ||
249 | o->next = g->fixedgc; /* link it to 'fixedgc' list */ | ||
250 | g->fixedgc = o; | ||
251 | } | ||
252 | |||
253 | |||
254 | /* | ||
255 | ** create a new collectable object (with given type and size) and link | ||
256 | ** it to 'allgc' list. | ||
257 | */ | ||
258 | GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) { | ||
259 | global_State *g = G(L); | ||
260 | GCObject *o = cast(GCObject *, luaM_newobject(L, novariant(tt), sz)); | ||
261 | o->marked = luaC_white(g); | ||
262 | o->tt = tt; | ||
263 | o->next = g->allgc; | ||
264 | g->allgc = o; | ||
265 | return o; | ||
266 | } | ||
267 | |||
268 | /* }====================================================== */ | ||
269 | |||
270 | |||
271 | |||
272 | /* | ||
273 | ** {====================================================== | ||
274 | ** Mark functions | ||
275 | ** ======================================================= | ||
276 | */ | ||
277 | |||
278 | |||
279 | /* | ||
280 | ** Mark an object. Userdata with no user values, strings, and closed | ||
281 | ** upvalues are visited and turned black here. Open upvalues are | ||
282 | ** already indirectly linked through their respective threads in the | ||
283 | ** 'twups' list, so they don't go to the gray list; nevertheless, they | ||
284 | ** are kept gray to avoid barriers, as their values will be revisited | ||
285 | ** by the thread or by 'remarkupvals'. Other objects are added to the | ||
286 | ** gray list to be visited (and turned black) later. Both userdata and | ||
287 | ** upvalues can call this function recursively, but this recursion goes | ||
288 | ** for at most two levels: An upvalue cannot refer to another upvalue | ||
289 | ** (only closures can), and a userdata's metatable must be a table. | ||
290 | */ | ||
291 | static void reallymarkobject (global_State *g, GCObject *o) { | ||
292 | switch (o->tt) { | ||
293 | case LUA_VSHRSTR: | ||
294 | case LUA_VLNGSTR: { | ||
295 | set2black(o); /* nothing to visit */ | ||
296 | break; | ||
297 | } | ||
298 | case LUA_VUPVAL: { | ||
299 | UpVal *uv = gco2upv(o); | ||
300 | if (upisopen(uv)) | ||
301 | set2gray(uv); /* open upvalues are kept gray */ | ||
302 | else | ||
303 | set2black(uv); /* closed upvalues are visited here */ | ||
304 | markvalue(g, uv->v); /* mark its content */ | ||
305 | break; | ||
306 | } | ||
307 | case LUA_VUSERDATA: { | ||
308 | Udata *u = gco2u(o); | ||
309 | if (u->nuvalue == 0) { /* no user values? */ | ||
310 | markobjectN(g, u->metatable); /* mark its metatable */ | ||
311 | set2black(u); /* nothing else to mark */ | ||
312 | break; | ||
313 | } | ||
314 | /* else... */ | ||
315 | } /* FALLTHROUGH */ | ||
316 | case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE: | ||
317 | case LUA_VTHREAD: case LUA_VPROTO: { | ||
318 | linkobjgclist(o, g->gray); /* to be visited later */ | ||
319 | break; | ||
320 | } | ||
321 | default: lua_assert(0); break; | ||
322 | } | ||
323 | } | ||
324 | |||
325 | |||
326 | /* | ||
327 | ** mark metamethods for basic types | ||
328 | */ | ||
329 | static void markmt (global_State *g) { | ||
330 | int i; | ||
331 | for (i=0; i < LUA_NUMTAGS; i++) | ||
332 | markobjectN(g, g->mt[i]); | ||
333 | } | ||
334 | |||
335 | |||
336 | /* | ||
337 | ** mark all objects in list of being-finalized | ||
338 | */ | ||
339 | static lu_mem markbeingfnz (global_State *g) { | ||
340 | GCObject *o; | ||
341 | lu_mem count = 0; | ||
342 | for (o = g->tobefnz; o != NULL; o = o->next) { | ||
343 | count++; | ||
344 | markobject(g, o); | ||
345 | } | ||
346 | return count; | ||
347 | } | ||
348 | |||
349 | |||
350 | /* | ||
351 | ** For each non-marked thread, simulates a barrier between each open | ||
352 | ** upvalue and its value. (If the thread is collected, the value will be | ||
353 | ** assigned to the upvalue, but then it can be too late for the barrier | ||
354 | ** to act. The "barrier" does not need to check colors: A non-marked | ||
355 | ** thread must be young; upvalues cannot be older than their threads; so | ||
356 | ** any visited upvalue must be young too.) Also removes the thread from | ||
357 | ** the list, as it was already visited. Removes also threads with no | ||
358 | ** upvalues, as they have nothing to be checked. (If the thread gets an | ||
359 | ** upvalue later, it will be linked in the list again.) | ||
360 | */ | ||
361 | static int remarkupvals (global_State *g) { | ||
362 | lua_State *thread; | ||
363 | lua_State **p = &g->twups; | ||
364 | int work = 0; /* estimate of how much work was done here */ | ||
365 | while ((thread = *p) != NULL) { | ||
366 | work++; | ||
367 | if (!iswhite(thread) && thread->openupval != NULL) | ||
368 | p = &thread->twups; /* keep marked thread with upvalues in the list */ | ||
369 | else { /* thread is not marked or without upvalues */ | ||
370 | UpVal *uv; | ||
371 | lua_assert(!isold(thread) || thread->openupval == NULL); | ||
372 | *p = thread->twups; /* remove thread from the list */ | ||
373 | thread->twups = thread; /* mark that it is out of list */ | ||
374 | for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) { | ||
375 | lua_assert(getage(uv) <= getage(thread)); | ||
376 | work++; | ||
377 | if (!iswhite(uv)) { /* upvalue already visited? */ | ||
378 | lua_assert(upisopen(uv) && isgray(uv)); | ||
379 | markvalue(g, uv->v); /* mark its value */ | ||
380 | } | ||
381 | } | ||
382 | } | ||
383 | } | ||
384 | return work; | ||
385 | } | ||
386 | |||
387 | |||
388 | static void cleargraylists (global_State *g) { | ||
389 | g->gray = g->grayagain = NULL; | ||
390 | g->weak = g->allweak = g->ephemeron = NULL; | ||
391 | } | ||
392 | |||
393 | |||
394 | /* | ||
395 | ** mark root set and reset all gray lists, to start a new collection | ||
396 | */ | ||
397 | static void restartcollection (global_State *g) { | ||
398 | cleargraylists(g); | ||
399 | markobject(g, g->mainthread); | ||
400 | markvalue(g, &g->l_registry); | ||
401 | markmt(g); | ||
402 | markbeingfnz(g); /* mark any finalizing object left from previous cycle */ | ||
403 | } | ||
404 | |||
405 | /* }====================================================== */ | ||
406 | |||
407 | |||
408 | /* | ||
409 | ** {====================================================== | ||
410 | ** Traverse functions | ||
411 | ** ======================================================= | ||
412 | */ | ||
413 | |||
414 | |||
415 | /* | ||
416 | ** Check whether object 'o' should be kept in the 'grayagain' list for | ||
417 | ** post-processing by 'correctgraylist'. (It could put all old objects | ||
418 | ** in the list and leave all the work to 'correctgraylist', but it is | ||
419 | ** more efficient to avoid adding elements that will be removed.) Only | ||
420 | ** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go | ||
421 | ** back to a gray list, but then it must become OLD. (That is what | ||
422 | ** 'correctgraylist' does when it finds a TOUCHED2 object.) | ||
423 | */ | ||
424 | static void genlink (global_State *g, GCObject *o) { | ||
425 | lua_assert(isblack(o)); | ||
426 | if (getage(o) == G_TOUCHED1) { /* touched in this cycle? */ | ||
427 | linkobjgclist(o, g->grayagain); /* link it back in 'grayagain' */ | ||
428 | } /* everything else do not need to be linked back */ | ||
429 | else if (getage(o) == G_TOUCHED2) | ||
430 | changeage(o, G_TOUCHED2, G_OLD); /* advance age */ | ||
431 | } | ||
432 | |||
433 | |||
434 | /* | ||
435 | ** Traverse a table with weak values and link it to proper list. During | ||
436 | ** propagate phase, keep it in 'grayagain' list, to be revisited in the | ||
437 | ** atomic phase. In the atomic phase, if table has any white value, | ||
438 | ** put it in 'weak' list, to be cleared. | ||
439 | */ | ||
440 | static void traverseweakvalue (global_State *g, Table *h) { | ||
441 | Node *n, *limit = gnodelast(h); | ||
442 | /* if there is array part, assume it may have white values (it is not | ||
443 | worth traversing it now just to check) */ | ||
444 | int hasclears = (h->alimit > 0); | ||
445 | for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ | ||
446 | if (isempty(gval(n))) /* entry is empty? */ | ||
447 | clearkey(n); /* clear its key */ | ||
448 | else { | ||
449 | lua_assert(!keyisnil(n)); | ||
450 | markkey(g, n); | ||
451 | if (!hasclears && iscleared(g, gcvalueN(gval(n)))) /* a white value? */ | ||
452 | hasclears = 1; /* table will have to be cleared */ | ||
453 | } | ||
454 | } | ||
455 | if (g->gcstate == GCSatomic && hasclears) | ||
456 | linkgclist(h, g->weak); /* has to be cleared later */ | ||
457 | else | ||
458 | linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ | ||
459 | } | ||
460 | |||
461 | |||
462 | /* | ||
463 | ** Traverse an ephemeron table and link it to proper list. Returns true | ||
464 | ** iff any object was marked during this traversal (which implies that | ||
465 | ** convergence has to continue). During propagation phase, keep table | ||
466 | ** in 'grayagain' list, to be visited again in the atomic phase. In | ||
467 | ** the atomic phase, if table has any white->white entry, it has to | ||
468 | ** be revisited during ephemeron convergence (as that key may turn | ||
469 | ** black). Otherwise, if it has any white key, table has to be cleared | ||
470 | ** (in the atomic phase). In generational mode, some tables | ||
471 | ** must be kept in some gray list for post-processing; this is done | ||
472 | ** by 'genlink'. | ||
473 | */ | ||
474 | static int traverseephemeron (global_State *g, Table *h, int inv) { | ||
475 | int marked = 0; /* true if an object is marked in this traversal */ | ||
476 | int hasclears = 0; /* true if table has white keys */ | ||
477 | int hasww = 0; /* true if table has entry "white-key -> white-value" */ | ||
478 | unsigned int i; | ||
479 | unsigned int asize = luaH_realasize(h); | ||
480 | unsigned int nsize = sizenode(h); | ||
481 | /* traverse array part */ | ||
482 | for (i = 0; i < asize; i++) { | ||
483 | if (valiswhite(&h->array[i])) { | ||
484 | marked = 1; | ||
485 | reallymarkobject(g, gcvalue(&h->array[i])); | ||
486 | } | ||
487 | } | ||
488 | /* traverse hash part; if 'inv', traverse descending | ||
489 | (see 'convergeephemerons') */ | ||
490 | for (i = 0; i < nsize; i++) { | ||
491 | Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i); | ||
492 | if (isempty(gval(n))) /* entry is empty? */ | ||
493 | clearkey(n); /* clear its key */ | ||
494 | else if (iscleared(g, gckeyN(n))) { /* key is not marked (yet)? */ | ||
495 | hasclears = 1; /* table must be cleared */ | ||
496 | if (valiswhite(gval(n))) /* value not marked yet? */ | ||
497 | hasww = 1; /* white-white entry */ | ||
498 | } | ||
499 | else if (valiswhite(gval(n))) { /* value not marked yet? */ | ||
500 | marked = 1; | ||
501 | reallymarkobject(g, gcvalue(gval(n))); /* mark it now */ | ||
502 | } | ||
503 | } | ||
504 | /* link table into proper list */ | ||
505 | if (g->gcstate == GCSpropagate) | ||
506 | linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ | ||
507 | else if (hasww) /* table has white->white entries? */ | ||
508 | linkgclist(h, g->ephemeron); /* have to propagate again */ | ||
509 | else if (hasclears) /* table has white keys? */ | ||
510 | linkgclist(h, g->allweak); /* may have to clean white keys */ | ||
511 | else | ||
512 | genlink(g, obj2gco(h)); /* check whether collector still needs to see it */ | ||
513 | return marked; | ||
514 | } | ||
515 | |||
516 | |||
517 | static void traversestrongtable (global_State *g, Table *h) { | ||
518 | Node *n, *limit = gnodelast(h); | ||
519 | unsigned int i; | ||
520 | unsigned int asize = luaH_realasize(h); | ||
521 | for (i = 0; i < asize; i++) /* traverse array part */ | ||
522 | markvalue(g, &h->array[i]); | ||
523 | for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ | ||
524 | if (isempty(gval(n))) /* entry is empty? */ | ||
525 | clearkey(n); /* clear its key */ | ||
526 | else { | ||
527 | lua_assert(!keyisnil(n)); | ||
528 | markkey(g, n); | ||
529 | markvalue(g, gval(n)); | ||
530 | } | ||
531 | } | ||
532 | genlink(g, obj2gco(h)); | ||
533 | } | ||
534 | |||
535 | |||
536 | static lu_mem traversetable (global_State *g, Table *h) { | ||
537 | const char *weakkey, *weakvalue; | ||
538 | const TValue *mode = gfasttm(g, h->metatable, TM_MODE); | ||
539 | markobjectN(g, h->metatable); | ||
540 | if (mode && ttisstring(mode) && /* is there a weak mode? */ | ||
541 | (cast_void(weakkey = strchr(svalue(mode), 'k')), | ||
542 | cast_void(weakvalue = strchr(svalue(mode), 'v')), | ||
543 | (weakkey || weakvalue))) { /* is really weak? */ | ||
544 | if (!weakkey) /* strong keys? */ | ||
545 | traverseweakvalue(g, h); | ||
546 | else if (!weakvalue) /* strong values? */ | ||
547 | traverseephemeron(g, h, 0); | ||
548 | else /* all weak */ | ||
549 | linkgclist(h, g->allweak); /* nothing to traverse now */ | ||
550 | } | ||
551 | else /* not weak */ | ||
552 | traversestrongtable(g, h); | ||
553 | return 1 + h->alimit + 2 * allocsizenode(h); | ||
554 | } | ||
555 | |||
556 | |||
557 | static int traverseudata (global_State *g, Udata *u) { | ||
558 | int i; | ||
559 | markobjectN(g, u->metatable); /* mark its metatable */ | ||
560 | for (i = 0; i < u->nuvalue; i++) | ||
561 | markvalue(g, &u->uv[i].uv); | ||
562 | genlink(g, obj2gco(u)); | ||
563 | return 1 + u->nuvalue; | ||
564 | } | ||
565 | |||
566 | |||
567 | /* | ||
568 | ** Traverse a prototype. (While a prototype is being build, its | ||
569 | ** arrays can be larger than needed; the extra slots are filled with | ||
570 | ** NULL, so the use of 'markobjectN') | ||
571 | */ | ||
572 | static int traverseproto (global_State *g, Proto *f) { | ||
573 | int i; | ||
574 | markobjectN(g, f->source); | ||
575 | for (i = 0; i < f->sizek; i++) /* mark literals */ | ||
576 | markvalue(g, &f->k[i]); | ||
577 | for (i = 0; i < f->sizeupvalues; i++) /* mark upvalue names */ | ||
578 | markobjectN(g, f->upvalues[i].name); | ||
579 | for (i = 0; i < f->sizep; i++) /* mark nested protos */ | ||
580 | markobjectN(g, f->p[i]); | ||
581 | for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */ | ||
582 | markobjectN(g, f->locvars[i].varname); | ||
583 | return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars; | ||
584 | } | ||
585 | |||
586 | |||
587 | static int traverseCclosure (global_State *g, CClosure *cl) { | ||
588 | int i; | ||
589 | for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */ | ||
590 | markvalue(g, &cl->upvalue[i]); | ||
591 | return 1 + cl->nupvalues; | ||
592 | } | ||
593 | |||
594 | /* | ||
595 | ** Traverse a Lua closure, marking its prototype and its upvalues. | ||
596 | ** (Both can be NULL while closure is being created.) | ||
597 | */ | ||
598 | static int traverseLclosure (global_State *g, LClosure *cl) { | ||
599 | int i; | ||
600 | markobjectN(g, cl->p); /* mark its prototype */ | ||
601 | for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */ | ||
602 | UpVal *uv = cl->upvals[i]; | ||
603 | markobjectN(g, uv); /* mark upvalue */ | ||
604 | } | ||
605 | return 1 + cl->nupvalues; | ||
606 | } | ||
607 | |||
608 | |||
609 | /* | ||
610 | ** Traverse a thread, marking the elements in the stack up to its top | ||
611 | ** and cleaning the rest of the stack in the final traversal. That | ||
612 | ** ensures that the entire stack have valid (non-dead) objects. | ||
613 | ** Threads have no barriers. In gen. mode, old threads must be visited | ||
614 | ** at every cycle, because they might point to young objects. In inc. | ||
615 | ** mode, the thread can still be modified before the end of the cycle, | ||
616 | ** and therefore it must be visited again in the atomic phase. To ensure | ||
617 | ** these visits, threads must return to a gray list if they are not new | ||
618 | ** (which can only happen in generational mode) or if the traverse is in | ||
619 | ** the propagate phase (which can only happen in incremental mode). | ||
620 | */ | ||
621 | static int traversethread (global_State *g, lua_State *th) { | ||
622 | UpVal *uv; | ||
623 | StkId o = th->stack; | ||
624 | if (isold(th) || g->gcstate == GCSpropagate) | ||
625 | linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ | ||
626 | if (o == NULL) | ||
627 | return 1; /* stack not completely built yet */ | ||
628 | lua_assert(g->gcstate == GCSatomic || | ||
629 | th->openupval == NULL || isintwups(th)); | ||
630 | for (; o < th->top; o++) /* mark live elements in the stack */ | ||
631 | markvalue(g, s2v(o)); | ||
632 | for (uv = th->openupval; uv != NULL; uv = uv->u.open.next) | ||
633 | markobject(g, uv); /* open upvalues cannot be collected */ | ||
634 | if (g->gcstate == GCSatomic) { /* final traversal? */ | ||
635 | for (; o < th->stack_last + EXTRA_STACK; o++) | ||
636 | setnilvalue(s2v(o)); /* clear dead stack slice */ | ||
637 | /* 'remarkupvals' may have removed thread from 'twups' list */ | ||
638 | if (!isintwups(th) && th->openupval != NULL) { | ||
639 | th->twups = g->twups; /* link it back to the list */ | ||
640 | g->twups = th; | ||
641 | } | ||
642 | } | ||
643 | else if (!g->gcemergency) | ||
644 | luaD_shrinkstack(th); /* do not change stack in emergency cycle */ | ||
645 | return 1 + stacksize(th); | ||
646 | } | ||
647 | |||
648 | |||
649 | /* | ||
650 | ** traverse one gray object, turning it to black. | ||
651 | */ | ||
652 | static lu_mem propagatemark (global_State *g) { | ||
653 | GCObject *o = g->gray; | ||
654 | nw2black(o); | ||
655 | g->gray = *getgclist(o); /* remove from 'gray' list */ | ||
656 | switch (o->tt) { | ||
657 | case LUA_VTABLE: return traversetable(g, gco2t(o)); | ||
658 | case LUA_VUSERDATA: return traverseudata(g, gco2u(o)); | ||
659 | case LUA_VLCL: return traverseLclosure(g, gco2lcl(o)); | ||
660 | case LUA_VCCL: return traverseCclosure(g, gco2ccl(o)); | ||
661 | case LUA_VPROTO: return traverseproto(g, gco2p(o)); | ||
662 | case LUA_VTHREAD: return traversethread(g, gco2th(o)); | ||
663 | default: lua_assert(0); return 0; | ||
664 | } | ||
665 | } | ||
666 | |||
667 | |||
668 | static lu_mem propagateall (global_State *g) { | ||
669 | lu_mem tot = 0; | ||
670 | while (g->gray) | ||
671 | tot += propagatemark(g); | ||
672 | return tot; | ||
673 | } | ||
674 | |||
675 | |||
676 | /* | ||
677 | ** Traverse all ephemeron tables propagating marks from keys to values. | ||
678 | ** Repeat until it converges, that is, nothing new is marked. 'dir' | ||
679 | ** inverts the direction of the traversals, trying to speed up | ||
680 | ** convergence on chains in the same table. | ||
681 | ** | ||
682 | */ | ||
683 | static void convergeephemerons (global_State *g) { | ||
684 | int changed; | ||
685 | int dir = 0; | ||
686 | do { | ||
687 | GCObject *w; | ||
688 | GCObject *next = g->ephemeron; /* get ephemeron list */ | ||
689 | g->ephemeron = NULL; /* tables may return to this list when traversed */ | ||
690 | changed = 0; | ||
691 | while ((w = next) != NULL) { /* for each ephemeron table */ | ||
692 | Table *h = gco2t(w); | ||
693 | next = h->gclist; /* list is rebuilt during loop */ | ||
694 | nw2black(h); /* out of the list (for now) */ | ||
695 | if (traverseephemeron(g, h, dir)) { /* marked some value? */ | ||
696 | propagateall(g); /* propagate changes */ | ||
697 | changed = 1; /* will have to revisit all ephemeron tables */ | ||
698 | } | ||
699 | } | ||
700 | dir = !dir; /* invert direction next time */ | ||
701 | } while (changed); /* repeat until no more changes */ | ||
702 | } | ||
703 | |||
704 | /* }====================================================== */ | ||
705 | |||
706 | |||
707 | /* | ||
708 | ** {====================================================== | ||
709 | ** Sweep Functions | ||
710 | ** ======================================================= | ||
711 | */ | ||
712 | |||
713 | |||
714 | /* | ||
715 | ** clear entries with unmarked keys from all weaktables in list 'l' | ||
716 | */ | ||
717 | static void clearbykeys (global_State *g, GCObject *l) { | ||
718 | for (; l; l = gco2t(l)->gclist) { | ||
719 | Table *h = gco2t(l); | ||
720 | Node *limit = gnodelast(h); | ||
721 | Node *n; | ||
722 | for (n = gnode(h, 0); n < limit; n++) { | ||
723 | if (iscleared(g, gckeyN(n))) /* unmarked key? */ | ||
724 | setempty(gval(n)); /* remove entry */ | ||
725 | if (isempty(gval(n))) /* is entry empty? */ | ||
726 | clearkey(n); /* clear its key */ | ||
727 | } | ||
728 | } | ||
729 | } | ||
730 | |||
731 | |||
732 | /* | ||
733 | ** clear entries with unmarked values from all weaktables in list 'l' up | ||
734 | ** to element 'f' | ||
735 | */ | ||
736 | static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) { | ||
737 | for (; l != f; l = gco2t(l)->gclist) { | ||
738 | Table *h = gco2t(l); | ||
739 | Node *n, *limit = gnodelast(h); | ||
740 | unsigned int i; | ||
741 | unsigned int asize = luaH_realasize(h); | ||
742 | for (i = 0; i < asize; i++) { | ||
743 | TValue *o = &h->array[i]; | ||
744 | if (iscleared(g, gcvalueN(o))) /* value was collected? */ | ||
745 | setempty(o); /* remove entry */ | ||
746 | } | ||
747 | for (n = gnode(h, 0); n < limit; n++) { | ||
748 | if (iscleared(g, gcvalueN(gval(n)))) /* unmarked value? */ | ||
749 | setempty(gval(n)); /* remove entry */ | ||
750 | if (isempty(gval(n))) /* is entry empty? */ | ||
751 | clearkey(n); /* clear its key */ | ||
752 | } | ||
753 | } | ||
754 | } | ||
755 | |||
756 | |||
757 | static void freeupval (lua_State *L, UpVal *uv) { | ||
758 | if (upisopen(uv)) | ||
759 | luaF_unlinkupval(uv); | ||
760 | luaM_free(L, uv); | ||
761 | } | ||
762 | |||
763 | |||
764 | static void freeobj (lua_State *L, GCObject *o) { | ||
765 | switch (o->tt) { | ||
766 | case LUA_VPROTO: | ||
767 | luaF_freeproto(L, gco2p(o)); | ||
768 | break; | ||
769 | case LUA_VUPVAL: | ||
770 | freeupval(L, gco2upv(o)); | ||
771 | break; | ||
772 | case LUA_VLCL: { | ||
773 | LClosure *cl = gco2lcl(o); | ||
774 | luaM_freemem(L, cl, sizeLclosure(cl->nupvalues)); | ||
775 | break; | ||
776 | } | ||
777 | case LUA_VCCL: { | ||
778 | CClosure *cl = gco2ccl(o); | ||
779 | luaM_freemem(L, cl, sizeCclosure(cl->nupvalues)); | ||
780 | break; | ||
781 | } | ||
782 | case LUA_VTABLE: | ||
783 | luaH_free(L, gco2t(o)); | ||
784 | break; | ||
785 | case LUA_VTHREAD: | ||
786 | luaE_freethread(L, gco2th(o)); | ||
787 | break; | ||
788 | case LUA_VUSERDATA: { | ||
789 | Udata *u = gco2u(o); | ||
790 | luaM_freemem(L, o, sizeudata(u->nuvalue, u->len)); | ||
791 | break; | ||
792 | } | ||
793 | case LUA_VSHRSTR: { | ||
794 | TString *ts = gco2ts(o); | ||
795 | luaS_remove(L, ts); /* remove it from hash table */ | ||
796 | luaM_freemem(L, ts, sizelstring(ts->shrlen)); | ||
797 | break; | ||
798 | } | ||
799 | case LUA_VLNGSTR: { | ||
800 | TString *ts = gco2ts(o); | ||
801 | luaM_freemem(L, ts, sizelstring(ts->u.lnglen)); | ||
802 | break; | ||
803 | } | ||
804 | default: lua_assert(0); | ||
805 | } | ||
806 | } | ||
807 | |||
808 | |||
809 | /* | ||
810 | ** sweep at most 'countin' elements from a list of GCObjects erasing dead | ||
811 | ** objects, where a dead object is one marked with the old (non current) | ||
812 | ** white; change all non-dead objects back to white, preparing for next | ||
813 | ** collection cycle. Return where to continue the traversal or NULL if | ||
814 | ** list is finished. ('*countout' gets the number of elements traversed.) | ||
815 | */ | ||
816 | static GCObject **sweeplist (lua_State *L, GCObject **p, int countin, | ||
817 | int *countout) { | ||
818 | global_State *g = G(L); | ||
819 | int ow = otherwhite(g); | ||
820 | int i; | ||
821 | int white = luaC_white(g); /* current white */ | ||
822 | for (i = 0; *p != NULL && i < countin; i++) { | ||
823 | GCObject *curr = *p; | ||
824 | int marked = curr->marked; | ||
825 | if (isdeadm(ow, marked)) { /* is 'curr' dead? */ | ||
826 | *p = curr->next; /* remove 'curr' from list */ | ||
827 | freeobj(L, curr); /* erase 'curr' */ | ||
828 | } | ||
829 | else { /* change mark to 'white' */ | ||
830 | curr->marked = cast_byte((marked & ~maskgcbits) | white); | ||
831 | p = &curr->next; /* go to next element */ | ||
832 | } | ||
833 | } | ||
834 | if (countout) | ||
835 | *countout = i; /* number of elements traversed */ | ||
836 | return (*p == NULL) ? NULL : p; | ||
837 | } | ||
838 | |||
839 | |||
840 | /* | ||
841 | ** sweep a list until a live object (or end of list) | ||
842 | */ | ||
843 | static GCObject **sweeptolive (lua_State *L, GCObject **p) { | ||
844 | GCObject **old = p; | ||
845 | do { | ||
846 | p = sweeplist(L, p, 1, NULL); | ||
847 | } while (p == old); | ||
848 | return p; | ||
849 | } | ||
850 | |||
851 | /* }====================================================== */ | ||
852 | |||
853 | |||
854 | /* | ||
855 | ** {====================================================== | ||
856 | ** Finalization | ||
857 | ** ======================================================= | ||
858 | */ | ||
859 | |||
860 | /* | ||
861 | ** If possible, shrink string table. | ||
862 | */ | ||
863 | static void checkSizes (lua_State *L, global_State *g) { | ||
864 | if (!g->gcemergency) { | ||
865 | if (g->strt.nuse < g->strt.size / 4) { /* string table too big? */ | ||
866 | l_mem olddebt = g->GCdebt; | ||
867 | luaS_resize(L, g->strt.size / 2); | ||
868 | g->GCestimate += g->GCdebt - olddebt; /* correct estimate */ | ||
869 | } | ||
870 | } | ||
871 | } | ||
872 | |||
873 | |||
874 | /* | ||
875 | ** Get the next udata to be finalized from the 'tobefnz' list, and | ||
876 | ** link it back into the 'allgc' list. | ||
877 | */ | ||
878 | static GCObject *udata2finalize (global_State *g) { | ||
879 | GCObject *o = g->tobefnz; /* get first element */ | ||
880 | lua_assert(tofinalize(o)); | ||
881 | g->tobefnz = o->next; /* remove it from 'tobefnz' list */ | ||
882 | o->next = g->allgc; /* return it to 'allgc' list */ | ||
883 | g->allgc = o; | ||
884 | resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */ | ||
885 | if (issweepphase(g)) | ||
886 | makewhite(g, o); /* "sweep" object */ | ||
887 | else if (getage(o) == G_OLD1) | ||
888 | g->firstold1 = o; /* it is the first OLD1 object in the list */ | ||
889 | return o; | ||
890 | } | ||
891 | |||
892 | |||
893 | static void dothecall (lua_State *L, void *ud) { | ||
894 | UNUSED(ud); | ||
895 | luaD_callnoyield(L, L->top - 2, 0); | ||
896 | } | ||
897 | |||
898 | |||
899 | static void GCTM (lua_State *L) { | ||
900 | global_State *g = G(L); | ||
901 | const TValue *tm; | ||
902 | TValue v; | ||
903 | lua_assert(!g->gcemergency); | ||
904 | setgcovalue(L, &v, udata2finalize(g)); | ||
905 | tm = luaT_gettmbyobj(L, &v, TM_GC); | ||
906 | if (!notm(tm)) { /* is there a finalizer? */ | ||
907 | int status; | ||
908 | lu_byte oldah = L->allowhook; | ||
909 | int running = g->gcrunning; | ||
910 | L->allowhook = 0; /* stop debug hooks during GC metamethod */ | ||
911 | g->gcrunning = 0; /* avoid GC steps */ | ||
912 | setobj2s(L, L->top++, tm); /* push finalizer... */ | ||
913 | setobj2s(L, L->top++, &v); /* ... and its argument */ | ||
914 | L->ci->callstatus |= CIST_FIN; /* will run a finalizer */ | ||
915 | status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top - 2), 0); | ||
916 | L->ci->callstatus &= ~CIST_FIN; /* not running a finalizer anymore */ | ||
917 | L->allowhook = oldah; /* restore hooks */ | ||
918 | g->gcrunning = running; /* restore state */ | ||
919 | if (l_unlikely(status != LUA_OK)) { /* error while running __gc? */ | ||
920 | luaE_warnerror(L, "__gc metamethod"); | ||
921 | L->top--; /* pops error object */ | ||
922 | } | ||
923 | } | ||
924 | } | ||
925 | |||
926 | |||
927 | /* | ||
928 | ** Call a few finalizers | ||
929 | */ | ||
930 | static int runafewfinalizers (lua_State *L, int n) { | ||
931 | global_State *g = G(L); | ||
932 | int i; | ||
933 | for (i = 0; i < n && g->tobefnz; i++) | ||
934 | GCTM(L); /* call one finalizer */ | ||
935 | return i; | ||
936 | } | ||
937 | |||
938 | |||
939 | /* | ||
940 | ** call all pending finalizers | ||
941 | */ | ||
942 | static void callallpendingfinalizers (lua_State *L) { | ||
943 | global_State *g = G(L); | ||
944 | while (g->tobefnz) | ||
945 | GCTM(L); | ||
946 | } | ||
947 | |||
948 | |||
949 | /* | ||
950 | ** find last 'next' field in list 'p' list (to add elements in its end) | ||
951 | */ | ||
952 | static GCObject **findlast (GCObject **p) { | ||
953 | while (*p != NULL) | ||
954 | p = &(*p)->next; | ||
955 | return p; | ||
956 | } | ||
957 | |||
958 | |||
959 | /* | ||
960 | ** Move all unreachable objects (or 'all' objects) that need | ||
961 | ** finalization from list 'finobj' to list 'tobefnz' (to be finalized). | ||
962 | ** (Note that objects after 'finobjold1' cannot be white, so they | ||
963 | ** don't need to be traversed. In incremental mode, 'finobjold1' is NULL, | ||
964 | ** so the whole list is traversed.) | ||
965 | */ | ||
966 | static void separatetobefnz (global_State *g, int all) { | ||
967 | GCObject *curr; | ||
968 | GCObject **p = &g->finobj; | ||
969 | GCObject **lastnext = findlast(&g->tobefnz); | ||
970 | while ((curr = *p) != g->finobjold1) { /* traverse all finalizable objects */ | ||
971 | lua_assert(tofinalize(curr)); | ||
972 | if (!(iswhite(curr) || all)) /* not being collected? */ | ||
973 | p = &curr->next; /* don't bother with it */ | ||
974 | else { | ||
975 | if (curr == g->finobjsur) /* removing 'finobjsur'? */ | ||
976 | g->finobjsur = curr->next; /* correct it */ | ||
977 | *p = curr->next; /* remove 'curr' from 'finobj' list */ | ||
978 | curr->next = *lastnext; /* link at the end of 'tobefnz' list */ | ||
979 | *lastnext = curr; | ||
980 | lastnext = &curr->next; | ||
981 | } | ||
982 | } | ||
983 | } | ||
984 | |||
985 | |||
986 | /* | ||
987 | ** If pointer 'p' points to 'o', move it to the next element. | ||
988 | */ | ||
989 | static void checkpointer (GCObject **p, GCObject *o) { | ||
990 | if (o == *p) | ||
991 | *p = o->next; | ||
992 | } | ||
993 | |||
994 | |||
995 | /* | ||
996 | ** Correct pointers to objects inside 'allgc' list when | ||
997 | ** object 'o' is being removed from the list. | ||
998 | */ | ||
999 | static void correctpointers (global_State *g, GCObject *o) { | ||
1000 | checkpointer(&g->survival, o); | ||
1001 | checkpointer(&g->old1, o); | ||
1002 | checkpointer(&g->reallyold, o); | ||
1003 | checkpointer(&g->firstold1, o); | ||
1004 | } | ||
1005 | |||
1006 | |||
1007 | /* | ||
1008 | ** if object 'o' has a finalizer, remove it from 'allgc' list (must | ||
1009 | ** search the list to find it) and link it in 'finobj' list. | ||
1010 | */ | ||
1011 | void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) { | ||
1012 | global_State *g = G(L); | ||
1013 | if (tofinalize(o) || /* obj. is already marked... */ | ||
1014 | gfasttm(g, mt, TM_GC) == NULL) /* or has no finalizer? */ | ||
1015 | return; /* nothing to be done */ | ||
1016 | else { /* move 'o' to 'finobj' list */ | ||
1017 | GCObject **p; | ||
1018 | if (issweepphase(g)) { | ||
1019 | makewhite(g, o); /* "sweep" object 'o' */ | ||
1020 | if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */ | ||
1021 | g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */ | ||
1022 | } | ||
1023 | else | ||
1024 | correctpointers(g, o); | ||
1025 | /* search for pointer pointing to 'o' */ | ||
1026 | for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ } | ||
1027 | *p = o->next; /* remove 'o' from 'allgc' list */ | ||
1028 | o->next = g->finobj; /* link it in 'finobj' list */ | ||
1029 | g->finobj = o; | ||
1030 | l_setbit(o->marked, FINALIZEDBIT); /* mark it as such */ | ||
1031 | } | ||
1032 | } | ||
1033 | |||
1034 | /* }====================================================== */ | ||
1035 | |||
1036 | |||
1037 | /* | ||
1038 | ** {====================================================== | ||
1039 | ** Generational Collector | ||
1040 | ** ======================================================= | ||
1041 | */ | ||
1042 | |||
1043 | static void setpause (global_State *g); | ||
1044 | |||
1045 | |||
1046 | /* | ||
1047 | ** Sweep a list of objects to enter generational mode. Deletes dead | ||
1048 | ** objects and turns the non dead to old. All non-dead threads---which | ||
1049 | ** are now old---must be in a gray list. Everything else is not in a | ||
1050 | ** gray list. Open upvalues are also kept gray. | ||
1051 | */ | ||
1052 | static void sweep2old (lua_State *L, GCObject **p) { | ||
1053 | GCObject *curr; | ||
1054 | global_State *g = G(L); | ||
1055 | while ((curr = *p) != NULL) { | ||
1056 | if (iswhite(curr)) { /* is 'curr' dead? */ | ||
1057 | lua_assert(isdead(g, curr)); | ||
1058 | *p = curr->next; /* remove 'curr' from list */ | ||
1059 | freeobj(L, curr); /* erase 'curr' */ | ||
1060 | } | ||
1061 | else { /* all surviving objects become old */ | ||
1062 | setage(curr, G_OLD); | ||
1063 | if (curr->tt == LUA_VTHREAD) { /* threads must be watched */ | ||
1064 | lua_State *th = gco2th(curr); | ||
1065 | linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ | ||
1066 | } | ||
1067 | else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr))) | ||
1068 | set2gray(curr); /* open upvalues are always gray */ | ||
1069 | else /* everything else is black */ | ||
1070 | nw2black(curr); | ||
1071 | p = &curr->next; /* go to next element */ | ||
1072 | } | ||
1073 | } | ||
1074 | } | ||
1075 | |||
1076 | |||
1077 | /* | ||
1078 | ** Sweep for generational mode. Delete dead objects. (Because the | ||
1079 | ** collection is not incremental, there are no "new white" objects | ||
1080 | ** during the sweep. So, any white object must be dead.) For | ||
1081 | ** non-dead objects, advance their ages and clear the color of | ||
1082 | ** new objects. (Old objects keep their colors.) | ||
1083 | ** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced | ||
1084 | ** here, because these old-generation objects are usually not swept | ||
1085 | ** here. They will all be advanced in 'correctgraylist'. That function | ||
1086 | ** will also remove objects turned white here from any gray list. | ||
1087 | */ | ||
1088 | static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p, | ||
1089 | GCObject *limit, GCObject **pfirstold1) { | ||
1090 | static const lu_byte nextage[] = { | ||
1091 | G_SURVIVAL, /* from G_NEW */ | ||
1092 | G_OLD1, /* from G_SURVIVAL */ | ||
1093 | G_OLD1, /* from G_OLD0 */ | ||
1094 | G_OLD, /* from G_OLD1 */ | ||
1095 | G_OLD, /* from G_OLD (do not change) */ | ||
1096 | G_TOUCHED1, /* from G_TOUCHED1 (do not change) */ | ||
1097 | G_TOUCHED2 /* from G_TOUCHED2 (do not change) */ | ||
1098 | }; | ||
1099 | int white = luaC_white(g); | ||
1100 | GCObject *curr; | ||
1101 | while ((curr = *p) != limit) { | ||
1102 | if (iswhite(curr)) { /* is 'curr' dead? */ | ||
1103 | lua_assert(!isold(curr) && isdead(g, curr)); | ||
1104 | *p = curr->next; /* remove 'curr' from list */ | ||
1105 | freeobj(L, curr); /* erase 'curr' */ | ||
1106 | } | ||
1107 | else { /* correct mark and age */ | ||
1108 | if (getage(curr) == G_NEW) { /* new objects go back to white */ | ||
1109 | int marked = curr->marked & ~maskgcbits; /* erase GC bits */ | ||
1110 | curr->marked = cast_byte(marked | G_SURVIVAL | white); | ||
1111 | } | ||
1112 | else { /* all other objects will be old, and so keep their color */ | ||
1113 | setage(curr, nextage[getage(curr)]); | ||
1114 | if (getage(curr) == G_OLD1 && *pfirstold1 == NULL) | ||
1115 | *pfirstold1 = curr; /* first OLD1 object in the list */ | ||
1116 | } | ||
1117 | p = &curr->next; /* go to next element */ | ||
1118 | } | ||
1119 | } | ||
1120 | return p; | ||
1121 | } | ||
1122 | |||
1123 | |||
1124 | /* | ||
1125 | ** Traverse a list making all its elements white and clearing their | ||
1126 | ** age. In incremental mode, all objects are 'new' all the time, | ||
1127 | ** except for fixed strings (which are always old). | ||
1128 | */ | ||
1129 | static void whitelist (global_State *g, GCObject *p) { | ||
1130 | int white = luaC_white(g); | ||
1131 | for (; p != NULL; p = p->next) | ||
1132 | p->marked = cast_byte((p->marked & ~maskgcbits) | white); | ||
1133 | } | ||
1134 | |||
1135 | |||
1136 | /* | ||
1137 | ** Correct a list of gray objects. Return pointer to where rest of the | ||
1138 | ** list should be linked. | ||
1139 | ** Because this correction is done after sweeping, young objects might | ||
1140 | ** be turned white and still be in the list. They are only removed. | ||
1141 | ** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list; | ||
1142 | ** Non-white threads also remain on the list; 'TOUCHED2' objects become | ||
1143 | ** regular old; they and anything else are removed from the list. | ||
1144 | */ | ||
1145 | static GCObject **correctgraylist (GCObject **p) { | ||
1146 | GCObject *curr; | ||
1147 | while ((curr = *p) != NULL) { | ||
1148 | GCObject **next = getgclist(curr); | ||
1149 | if (iswhite(curr)) | ||
1150 | goto remove; /* remove all white objects */ | ||
1151 | else if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */ | ||
1152 | lua_assert(isgray(curr)); | ||
1153 | nw2black(curr); /* make it black, for next barrier */ | ||
1154 | changeage(curr, G_TOUCHED1, G_TOUCHED2); | ||
1155 | goto remain; /* keep it in the list and go to next element */ | ||
1156 | } | ||
1157 | else if (curr->tt == LUA_VTHREAD) { | ||
1158 | lua_assert(isgray(curr)); | ||
1159 | goto remain; /* keep non-white threads on the list */ | ||
1160 | } | ||
1161 | else { /* everything else is removed */ | ||
1162 | lua_assert(isold(curr)); /* young objects should be white here */ | ||
1163 | if (getage(curr) == G_TOUCHED2) /* advance from TOUCHED2... */ | ||
1164 | changeage(curr, G_TOUCHED2, G_OLD); /* ... to OLD */ | ||
1165 | nw2black(curr); /* make object black (to be removed) */ | ||
1166 | goto remove; | ||
1167 | } | ||
1168 | remove: *p = *next; continue; | ||
1169 | remain: p = next; continue; | ||
1170 | } | ||
1171 | return p; | ||
1172 | } | ||
1173 | |||
1174 | |||
1175 | /* | ||
1176 | ** Correct all gray lists, coalescing them into 'grayagain'. | ||
1177 | */ | ||
1178 | static void correctgraylists (global_State *g) { | ||
1179 | GCObject **list = correctgraylist(&g->grayagain); | ||
1180 | *list = g->weak; g->weak = NULL; | ||
1181 | list = correctgraylist(list); | ||
1182 | *list = g->allweak; g->allweak = NULL; | ||
1183 | list = correctgraylist(list); | ||
1184 | *list = g->ephemeron; g->ephemeron = NULL; | ||
1185 | correctgraylist(list); | ||
1186 | } | ||
1187 | |||
1188 | |||
1189 | /* | ||
1190 | ** Mark black 'OLD1' objects when starting a new young collection. | ||
1191 | ** Gray objects are already in some gray list, and so will be visited | ||
1192 | ** in the atomic step. | ||
1193 | */ | ||
1194 | static void markold (global_State *g, GCObject *from, GCObject *to) { | ||
1195 | GCObject *p; | ||
1196 | for (p = from; p != to; p = p->next) { | ||
1197 | if (getage(p) == G_OLD1) { | ||
1198 | lua_assert(!iswhite(p)); | ||
1199 | changeage(p, G_OLD1, G_OLD); /* now they are old */ | ||
1200 | if (isblack(p)) | ||
1201 | reallymarkobject(g, p); | ||
1202 | } | ||
1203 | } | ||
1204 | } | ||
1205 | |||
1206 | |||
1207 | /* | ||
1208 | ** Finish a young-generation collection. | ||
1209 | */ | ||
1210 | static void finishgencycle (lua_State *L, global_State *g) { | ||
1211 | correctgraylists(g); | ||
1212 | checkSizes(L, g); | ||
1213 | g->gcstate = GCSpropagate; /* skip restart */ | ||
1214 | if (!g->gcemergency) | ||
1215 | callallpendingfinalizers(L); | ||
1216 | } | ||
1217 | |||
1218 | |||
1219 | /* | ||
1220 | ** Does a young collection. First, mark 'OLD1' objects. Then does the | ||
1221 | ** atomic step. Then, sweep all lists and advance pointers. Finally, | ||
1222 | ** finish the collection. | ||
1223 | */ | ||
1224 | static void youngcollection (lua_State *L, global_State *g) { | ||
1225 | GCObject **psurvival; /* to point to first non-dead survival object */ | ||
1226 | GCObject *dummy; /* dummy out parameter to 'sweepgen' */ | ||
1227 | lua_assert(g->gcstate == GCSpropagate); | ||
1228 | if (g->firstold1) { /* are there regular OLD1 objects? */ | ||
1229 | markold(g, g->firstold1, g->reallyold); /* mark them */ | ||
1230 | g->firstold1 = NULL; /* no more OLD1 objects (for now) */ | ||
1231 | } | ||
1232 | markold(g, g->finobj, g->finobjrold); | ||
1233 | markold(g, g->tobefnz, NULL); | ||
1234 | atomic(L); | ||
1235 | |||
1236 | /* sweep nursery and get a pointer to its last live element */ | ||
1237 | g->gcstate = GCSswpallgc; | ||
1238 | psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1); | ||
1239 | /* sweep 'survival' */ | ||
1240 | sweepgen(L, g, psurvival, g->old1, &g->firstold1); | ||
1241 | g->reallyold = g->old1; | ||
1242 | g->old1 = *psurvival; /* 'survival' survivals are old now */ | ||
1243 | g->survival = g->allgc; /* all news are survivals */ | ||
1244 | |||
1245 | /* repeat for 'finobj' lists */ | ||
1246 | dummy = NULL; /* no 'firstold1' optimization for 'finobj' lists */ | ||
1247 | psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy); | ||
1248 | /* sweep 'survival' */ | ||
1249 | sweepgen(L, g, psurvival, g->finobjold1, &dummy); | ||
1250 | g->finobjrold = g->finobjold1; | ||
1251 | g->finobjold1 = *psurvival; /* 'survival' survivals are old now */ | ||
1252 | g->finobjsur = g->finobj; /* all news are survivals */ | ||
1253 | |||
1254 | sweepgen(L, g, &g->tobefnz, NULL, &dummy); | ||
1255 | finishgencycle(L, g); | ||
1256 | } | ||
1257 | |||
1258 | |||
1259 | /* | ||
1260 | ** Clears all gray lists, sweeps objects, and prepare sublists to enter | ||
1261 | ** generational mode. The sweeps remove dead objects and turn all | ||
1262 | ** surviving objects to old. Threads go back to 'grayagain'; everything | ||
1263 | ** else is turned black (not in any gray list). | ||
1264 | */ | ||
1265 | static void atomic2gen (lua_State *L, global_State *g) { | ||
1266 | cleargraylists(g); | ||
1267 | /* sweep all elements making them old */ | ||
1268 | g->gcstate = GCSswpallgc; | ||
1269 | sweep2old(L, &g->allgc); | ||
1270 | /* everything alive now is old */ | ||
1271 | g->reallyold = g->old1 = g->survival = g->allgc; | ||
1272 | g->firstold1 = NULL; /* there are no OLD1 objects anywhere */ | ||
1273 | |||
1274 | /* repeat for 'finobj' lists */ | ||
1275 | sweep2old(L, &g->finobj); | ||
1276 | g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj; | ||
1277 | |||
1278 | sweep2old(L, &g->tobefnz); | ||
1279 | |||
1280 | g->gckind = KGC_GEN; | ||
1281 | g->lastatomic = 0; | ||
1282 | g->GCestimate = gettotalbytes(g); /* base for memory control */ | ||
1283 | finishgencycle(L, g); | ||
1284 | } | ||
1285 | |||
1286 | |||
1287 | /* | ||
1288 | ** Enter generational mode. Must go until the end of an atomic cycle | ||
1289 | ** to ensure that all objects are correctly marked and weak tables | ||
1290 | ** are cleared. Then, turn all objects into old and finishes the | ||
1291 | ** collection. | ||
1292 | */ | ||
1293 | static lu_mem entergen (lua_State *L, global_State *g) { | ||
1294 | lu_mem numobjs; | ||
1295 | luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */ | ||
1296 | luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ | ||
1297 | numobjs = atomic(L); /* propagates all and then do the atomic stuff */ | ||
1298 | atomic2gen(L, g); | ||
1299 | return numobjs; | ||
1300 | } | ||
1301 | |||
1302 | |||
1303 | /* | ||
1304 | ** Enter incremental mode. Turn all objects white, make all | ||
1305 | ** intermediate lists point to NULL (to avoid invalid pointers), | ||
1306 | ** and go to the pause state. | ||
1307 | */ | ||
1308 | static void enterinc (global_State *g) { | ||
1309 | whitelist(g, g->allgc); | ||
1310 | g->reallyold = g->old1 = g->survival = NULL; | ||
1311 | whitelist(g, g->finobj); | ||
1312 | whitelist(g, g->tobefnz); | ||
1313 | g->finobjrold = g->finobjold1 = g->finobjsur = NULL; | ||
1314 | g->gcstate = GCSpause; | ||
1315 | g->gckind = KGC_INC; | ||
1316 | g->lastatomic = 0; | ||
1317 | } | ||
1318 | |||
1319 | |||
1320 | /* | ||
1321 | ** Change collector mode to 'newmode'. | ||
1322 | */ | ||
1323 | void luaC_changemode (lua_State *L, int newmode) { | ||
1324 | global_State *g = G(L); | ||
1325 | if (newmode != g->gckind) { | ||
1326 | if (newmode == KGC_GEN) /* entering generational mode? */ | ||
1327 | entergen(L, g); | ||
1328 | else | ||
1329 | enterinc(g); /* entering incremental mode */ | ||
1330 | } | ||
1331 | g->lastatomic = 0; | ||
1332 | } | ||
1333 | |||
1334 | |||
1335 | /* | ||
1336 | ** Does a full collection in generational mode. | ||
1337 | */ | ||
1338 | static lu_mem fullgen (lua_State *L, global_State *g) { | ||
1339 | enterinc(g); | ||
1340 | return entergen(L, g); | ||
1341 | } | ||
1342 | |||
1343 | |||
1344 | /* | ||
1345 | ** Set debt for the next minor collection, which will happen when | ||
1346 | ** memory grows 'genminormul'%. | ||
1347 | */ | ||
1348 | static void setminordebt (global_State *g) { | ||
1349 | luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul)); | ||
1350 | } | ||
1351 | |||
1352 | |||
1353 | /* | ||
1354 | ** Does a major collection after last collection was a "bad collection". | ||
1355 | ** | ||
1356 | ** When the program is building a big structure, it allocates lots of | ||
1357 | ** memory but generates very little garbage. In those scenarios, | ||
1358 | ** the generational mode just wastes time doing small collections, and | ||
1359 | ** major collections are frequently what we call a "bad collection", a | ||
1360 | ** collection that frees too few objects. To avoid the cost of switching | ||
1361 | ** between generational mode and the incremental mode needed for full | ||
1362 | ** (major) collections, the collector tries to stay in incremental mode | ||
1363 | ** after a bad collection, and to switch back to generational mode only | ||
1364 | ** after a "good" collection (one that traverses less than 9/8 objects | ||
1365 | ** of the previous one). | ||
1366 | ** The collector must choose whether to stay in incremental mode or to | ||
1367 | ** switch back to generational mode before sweeping. At this point, it | ||
1368 | ** does not know the real memory in use, so it cannot use memory to | ||
1369 | ** decide whether to return to generational mode. Instead, it uses the | ||
1370 | ** number of objects traversed (returned by 'atomic') as a proxy. The | ||
1371 | ** field 'g->lastatomic' keeps this count from the last collection. | ||
1372 | ** ('g->lastatomic != 0' also means that the last collection was bad.) | ||
1373 | */ | ||
1374 | static void stepgenfull (lua_State *L, global_State *g) { | ||
1375 | lu_mem newatomic; /* count of traversed objects */ | ||
1376 | lu_mem lastatomic = g->lastatomic; /* count from last collection */ | ||
1377 | if (g->gckind == KGC_GEN) /* still in generational mode? */ | ||
1378 | enterinc(g); /* enter incremental mode */ | ||
1379 | luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ | ||
1380 | newatomic = atomic(L); /* mark everybody */ | ||
1381 | if (newatomic < lastatomic + (lastatomic >> 3)) { /* good collection? */ | ||
1382 | atomic2gen(L, g); /* return to generational mode */ | ||
1383 | setminordebt(g); | ||
1384 | } | ||
1385 | else { /* another bad collection; stay in incremental mode */ | ||
1386 | g->GCestimate = gettotalbytes(g); /* first estimate */; | ||
1387 | entersweep(L); | ||
1388 | luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ | ||
1389 | setpause(g); | ||
1390 | g->lastatomic = newatomic; | ||
1391 | } | ||
1392 | } | ||
1393 | |||
1394 | |||
1395 | /* | ||
1396 | ** Does a generational "step". | ||
1397 | ** Usually, this means doing a minor collection and setting the debt to | ||
1398 | ** make another collection when memory grows 'genminormul'% larger. | ||
1399 | ** | ||
1400 | ** However, there are exceptions. If memory grows 'genmajormul'% | ||
1401 | ** larger than it was at the end of the last major collection (kept | ||
1402 | ** in 'g->GCestimate'), the function does a major collection. At the | ||
1403 | ** end, it checks whether the major collection was able to free a | ||
1404 | ** decent amount of memory (at least half the growth in memory since | ||
1405 | ** previous major collection). If so, the collector keeps its state, | ||
1406 | ** and the next collection will probably be minor again. Otherwise, | ||
1407 | ** we have what we call a "bad collection". In that case, set the field | ||
1408 | ** 'g->lastatomic' to signal that fact, so that the next collection will | ||
1409 | ** go to 'stepgenfull'. | ||
1410 | ** | ||
1411 | ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero; | ||
1412 | ** in that case, do a minor collection. | ||
1413 | */ | ||
1414 | static void genstep (lua_State *L, global_State *g) { | ||
1415 | if (g->lastatomic != 0) /* last collection was a bad one? */ | ||
1416 | stepgenfull(L, g); /* do a full step */ | ||
1417 | else { | ||
1418 | lu_mem majorbase = g->GCestimate; /* memory after last major collection */ | ||
1419 | lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul); | ||
1420 | if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) { | ||
1421 | lu_mem numobjs = fullgen(L, g); /* do a major collection */ | ||
1422 | if (gettotalbytes(g) < majorbase + (majorinc / 2)) { | ||
1423 | /* collected at least half of memory growth since last major | ||
1424 | collection; keep doing minor collections */ | ||
1425 | setminordebt(g); | ||
1426 | } | ||
1427 | else { /* bad collection */ | ||
1428 | g->lastatomic = numobjs; /* signal that last collection was bad */ | ||
1429 | setpause(g); /* do a long wait for next (major) collection */ | ||
1430 | } | ||
1431 | } | ||
1432 | else { /* regular case; do a minor collection */ | ||
1433 | youngcollection(L, g); | ||
1434 | setminordebt(g); | ||
1435 | g->GCestimate = majorbase; /* preserve base value */ | ||
1436 | } | ||
1437 | } | ||
1438 | lua_assert(isdecGCmodegen(g)); | ||
1439 | } | ||
1440 | |||
1441 | /* }====================================================== */ | ||
1442 | |||
1443 | |||
1444 | /* | ||
1445 | ** {====================================================== | ||
1446 | ** GC control | ||
1447 | ** ======================================================= | ||
1448 | */ | ||
1449 | |||
1450 | |||
1451 | /* | ||
1452 | ** Set the "time" to wait before starting a new GC cycle; cycle will | ||
1453 | ** start when memory use hits the threshold of ('estimate' * pause / | ||
1454 | ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero, | ||
1455 | ** because Lua cannot even start with less than PAUSEADJ bytes). | ||
1456 | */ | ||
1457 | static void setpause (global_State *g) { | ||
1458 | l_mem threshold, debt; | ||
1459 | int pause = getgcparam(g->gcpause); | ||
1460 | l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */ | ||
1461 | lua_assert(estimate > 0); | ||
1462 | threshold = (pause < MAX_LMEM / estimate) /* overflow? */ | ||
1463 | ? estimate * pause /* no overflow */ | ||
1464 | : MAX_LMEM; /* overflow; truncate to maximum */ | ||
1465 | debt = gettotalbytes(g) - threshold; | ||
1466 | if (debt > 0) debt = 0; | ||
1467 | luaE_setdebt(g, debt); | ||
1468 | } | ||
1469 | |||
1470 | |||
1471 | /* | ||
1472 | ** Enter first sweep phase. | ||
1473 | ** The call to 'sweeptolive' makes the pointer point to an object | ||
1474 | ** inside the list (instead of to the header), so that the real sweep do | ||
1475 | ** not need to skip objects created between "now" and the start of the | ||
1476 | ** real sweep. | ||
1477 | */ | ||
1478 | static void entersweep (lua_State *L) { | ||
1479 | global_State *g = G(L); | ||
1480 | g->gcstate = GCSswpallgc; | ||
1481 | lua_assert(g->sweepgc == NULL); | ||
1482 | g->sweepgc = sweeptolive(L, &g->allgc); | ||
1483 | } | ||
1484 | |||
1485 | |||
1486 | /* | ||
1487 | ** Delete all objects in list 'p' until (but not including) object | ||
1488 | ** 'limit'. | ||
1489 | */ | ||
1490 | static void deletelist (lua_State *L, GCObject *p, GCObject *limit) { | ||
1491 | while (p != limit) { | ||
1492 | GCObject *next = p->next; | ||
1493 | freeobj(L, p); | ||
1494 | p = next; | ||
1495 | } | ||
1496 | } | ||
1497 | |||
1498 | |||
1499 | /* | ||
1500 | ** Call all finalizers of the objects in the given Lua state, and | ||
1501 | ** then free all objects, except for the main thread. | ||
1502 | */ | ||
1503 | void luaC_freeallobjects (lua_State *L) { | ||
1504 | global_State *g = G(L); | ||
1505 | luaC_changemode(L, KGC_INC); | ||
1506 | separatetobefnz(g, 1); /* separate all objects with finalizers */ | ||
1507 | lua_assert(g->finobj == NULL); | ||
1508 | callallpendingfinalizers(L); | ||
1509 | deletelist(L, g->allgc, obj2gco(g->mainthread)); | ||
1510 | deletelist(L, g->finobj, NULL); | ||
1511 | deletelist(L, g->fixedgc, NULL); /* collect fixed objects */ | ||
1512 | lua_assert(g->strt.nuse == 0); | ||
1513 | } | ||
1514 | |||
1515 | |||
1516 | static lu_mem atomic (lua_State *L) { | ||
1517 | global_State *g = G(L); | ||
1518 | lu_mem work = 0; | ||
1519 | GCObject *origweak, *origall; | ||
1520 | GCObject *grayagain = g->grayagain; /* save original list */ | ||
1521 | g->grayagain = NULL; | ||
1522 | lua_assert(g->ephemeron == NULL && g->weak == NULL); | ||
1523 | lua_assert(!iswhite(g->mainthread)); | ||
1524 | g->gcstate = GCSatomic; | ||
1525 | markobject(g, L); /* mark running thread */ | ||
1526 | /* registry and global metatables may be changed by API */ | ||
1527 | markvalue(g, &g->l_registry); | ||
1528 | markmt(g); /* mark global metatables */ | ||
1529 | work += propagateall(g); /* empties 'gray' list */ | ||
1530 | /* remark occasional upvalues of (maybe) dead threads */ | ||
1531 | work += remarkupvals(g); | ||
1532 | work += propagateall(g); /* propagate changes */ | ||
1533 | g->gray = grayagain; | ||
1534 | work += propagateall(g); /* traverse 'grayagain' list */ | ||
1535 | convergeephemerons(g); | ||
1536 | /* at this point, all strongly accessible objects are marked. */ | ||
1537 | /* Clear values from weak tables, before checking finalizers */ | ||
1538 | clearbyvalues(g, g->weak, NULL); | ||
1539 | clearbyvalues(g, g->allweak, NULL); | ||
1540 | origweak = g->weak; origall = g->allweak; | ||
1541 | separatetobefnz(g, 0); /* separate objects to be finalized */ | ||
1542 | work += markbeingfnz(g); /* mark objects that will be finalized */ | ||
1543 | work += propagateall(g); /* remark, to propagate 'resurrection' */ | ||
1544 | convergeephemerons(g); | ||
1545 | /* at this point, all resurrected objects are marked. */ | ||
1546 | /* remove dead objects from weak tables */ | ||
1547 | clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */ | ||
1548 | clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */ | ||
1549 | /* clear values from resurrected weak tables */ | ||
1550 | clearbyvalues(g, g->weak, origweak); | ||
1551 | clearbyvalues(g, g->allweak, origall); | ||
1552 | luaS_clearcache(g); | ||
1553 | g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */ | ||
1554 | lua_assert(g->gray == NULL); | ||
1555 | return work; /* estimate of slots marked by 'atomic' */ | ||
1556 | } | ||
1557 | |||
1558 | |||
1559 | static int sweepstep (lua_State *L, global_State *g, | ||
1560 | int nextstate, GCObject **nextlist) { | ||
1561 | if (g->sweepgc) { | ||
1562 | l_mem olddebt = g->GCdebt; | ||
1563 | int count; | ||
1564 | g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count); | ||
1565 | g->GCestimate += g->GCdebt - olddebt; /* update estimate */ | ||
1566 | return count; | ||
1567 | } | ||
1568 | else { /* enter next state */ | ||
1569 | g->gcstate = nextstate; | ||
1570 | g->sweepgc = nextlist; | ||
1571 | return 0; /* no work done */ | ||
1572 | } | ||
1573 | } | ||
1574 | |||
1575 | |||
1576 | static lu_mem singlestep (lua_State *L) { | ||
1577 | global_State *g = G(L); | ||
1578 | lu_mem work; | ||
1579 | lua_assert(!g->gcstopem); /* collector is not reentrant */ | ||
1580 | g->gcstopem = 1; /* no emergency collections while collecting */ | ||
1581 | switch (g->gcstate) { | ||
1582 | case GCSpause: { | ||
1583 | restartcollection(g); | ||
1584 | g->gcstate = GCSpropagate; | ||
1585 | work = 1; | ||
1586 | break; | ||
1587 | } | ||
1588 | case GCSpropagate: { | ||
1589 | if (g->gray == NULL) { /* no more gray objects? */ | ||
1590 | g->gcstate = GCSenteratomic; /* finish propagate phase */ | ||
1591 | work = 0; | ||
1592 | } | ||
1593 | else | ||
1594 | work = propagatemark(g); /* traverse one gray object */ | ||
1595 | break; | ||
1596 | } | ||
1597 | case GCSenteratomic: { | ||
1598 | work = atomic(L); /* work is what was traversed by 'atomic' */ | ||
1599 | entersweep(L); | ||
1600 | g->GCestimate = gettotalbytes(g); /* first estimate */; | ||
1601 | break; | ||
1602 | } | ||
1603 | case GCSswpallgc: { /* sweep "regular" objects */ | ||
1604 | work = sweepstep(L, g, GCSswpfinobj, &g->finobj); | ||
1605 | break; | ||
1606 | } | ||
1607 | case GCSswpfinobj: { /* sweep objects with finalizers */ | ||
1608 | work = sweepstep(L, g, GCSswptobefnz, &g->tobefnz); | ||
1609 | break; | ||
1610 | } | ||
1611 | case GCSswptobefnz: { /* sweep objects to be finalized */ | ||
1612 | work = sweepstep(L, g, GCSswpend, NULL); | ||
1613 | break; | ||
1614 | } | ||
1615 | case GCSswpend: { /* finish sweeps */ | ||
1616 | checkSizes(L, g); | ||
1617 | g->gcstate = GCScallfin; | ||
1618 | work = 0; | ||
1619 | break; | ||
1620 | } | ||
1621 | case GCScallfin: { /* call remaining finalizers */ | ||
1622 | if (g->tobefnz && !g->gcemergency) { | ||
1623 | g->gcstopem = 0; /* ok collections during finalizers */ | ||
1624 | work = runafewfinalizers(L, GCFINMAX) * GCFINALIZECOST; | ||
1625 | } | ||
1626 | else { /* emergency mode or no more finalizers */ | ||
1627 | g->gcstate = GCSpause; /* finish collection */ | ||
1628 | work = 0; | ||
1629 | } | ||
1630 | break; | ||
1631 | } | ||
1632 | default: lua_assert(0); return 0; | ||
1633 | } | ||
1634 | g->gcstopem = 0; | ||
1635 | return work; | ||
1636 | } | ||
1637 | |||
1638 | |||
1639 | /* | ||
1640 | ** advances the garbage collector until it reaches a state allowed | ||
1641 | ** by 'statemask' | ||
1642 | */ | ||
1643 | void luaC_runtilstate (lua_State *L, int statesmask) { | ||
1644 | global_State *g = G(L); | ||
1645 | while (!testbit(statesmask, g->gcstate)) | ||
1646 | singlestep(L); | ||
1647 | } | ||
1648 | |||
1649 | |||
1650 | /* | ||
1651 | ** Performs a basic incremental step. The debt and step size are | ||
1652 | ** converted from bytes to "units of work"; then the function loops | ||
1653 | ** running single steps until adding that many units of work or | ||
1654 | ** finishing a cycle (pause state). Finally, it sets the debt that | ||
1655 | ** controls when next step will be performed. | ||
1656 | */ | ||
1657 | static void incstep (lua_State *L, global_State *g) { | ||
1658 | int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */ | ||
1659 | l_mem debt = (g->GCdebt / WORK2MEM) * stepmul; | ||
1660 | l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem)) | ||
1661 | ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul | ||
1662 | : MAX_LMEM; /* overflow; keep maximum value */ | ||
1663 | do { /* repeat until pause or enough "credit" (negative debt) */ | ||
1664 | lu_mem work = singlestep(L); /* perform one single step */ | ||
1665 | debt -= work; | ||
1666 | } while (debt > -stepsize && g->gcstate != GCSpause); | ||
1667 | if (g->gcstate == GCSpause) | ||
1668 | setpause(g); /* pause until next cycle */ | ||
1669 | else { | ||
1670 | debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */ | ||
1671 | luaE_setdebt(g, debt); | ||
1672 | } | ||
1673 | } | ||
1674 | |||
1675 | /* | ||
1676 | ** performs a basic GC step if collector is running | ||
1677 | */ | ||
1678 | void luaC_step (lua_State *L) { | ||
1679 | global_State *g = G(L); | ||
1680 | lua_assert(!g->gcemergency); | ||
1681 | if (g->gcrunning) { /* running? */ | ||
1682 | if(isdecGCmodegen(g)) | ||
1683 | genstep(L, g); | ||
1684 | else | ||
1685 | incstep(L, g); | ||
1686 | } | ||
1687 | } | ||
1688 | |||
1689 | |||
1690 | /* | ||
1691 | ** Perform a full collection in incremental mode. | ||
1692 | ** Before running the collection, check 'keepinvariant'; if it is true, | ||
1693 | ** there may be some objects marked as black, so the collector has | ||
1694 | ** to sweep all objects to turn them back to white (as white has not | ||
1695 | ** changed, nothing will be collected). | ||
1696 | */ | ||
1697 | static void fullinc (lua_State *L, global_State *g) { | ||
1698 | if (keepinvariant(g)) /* black objects? */ | ||
1699 | entersweep(L); /* sweep everything to turn them back to white */ | ||
1700 | /* finish any pending sweep phase to start a new cycle */ | ||
1701 | luaC_runtilstate(L, bitmask(GCSpause)); | ||
1702 | luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */ | ||
1703 | /* estimate must be correct after a full GC cycle */ | ||
1704 | lua_assert(g->GCestimate == gettotalbytes(g)); | ||
1705 | luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ | ||
1706 | setpause(g); | ||
1707 | } | ||
1708 | |||
1709 | |||
1710 | /* | ||
1711 | ** Performs a full GC cycle; if 'isemergency', set a flag to avoid | ||
1712 | ** some operations which could change the interpreter state in some | ||
1713 | ** unexpected ways (running finalizers and shrinking some structures). | ||
1714 | */ | ||
1715 | void luaC_fullgc (lua_State *L, int isemergency) { | ||
1716 | global_State *g = G(L); | ||
1717 | lua_assert(!g->gcemergency); | ||
1718 | g->gcemergency = isemergency; /* set flag */ | ||
1719 | if (g->gckind == KGC_INC) | ||
1720 | fullinc(L, g); | ||
1721 | else | ||
1722 | fullgen(L, g); | ||
1723 | g->gcemergency = 0; | ||
1724 | } | ||
1725 | |||
1726 | /* }====================================================== */ | ||
1727 | |||
1728 | |||