diff options
author | Li Jin <dragon-fly@qq.com> | 2021-04-21 09:36:25 +0800 |
---|---|---|
committer | Li Jin <dragon-fly@qq.com> | 2021-04-21 09:36:25 +0800 |
commit | b7bdf7d5d36825a1a750a74641f6d374dec5d67a (patch) | |
tree | 6b27eb6590e07c07f378305c51d0f5e0779faa83 /src/3rdParty/lua/ltable.c | |
parent | b86e5af605a170a3559df0165eac3cb6b665dc49 (diff) | |
download | yuescript-b7bdf7d5d36825a1a750a74641f6d374dec5d67a.tar.gz yuescript-b7bdf7d5d36825a1a750a74641f6d374dec5d67a.tar.bz2 yuescript-b7bdf7d5d36825a1a750a74641f6d374dec5d67a.zip |
adjust some folder levels.
Diffstat (limited to 'src/3rdParty/lua/ltable.c')
-rw-r--r-- | src/3rdParty/lua/ltable.c | 971 |
1 files changed, 971 insertions, 0 deletions
diff --git a/src/3rdParty/lua/ltable.c b/src/3rdParty/lua/ltable.c new file mode 100644 index 0000000..33c1ab3 --- /dev/null +++ b/src/3rdParty/lua/ltable.c | |||
@@ -0,0 +1,971 @@ | |||
1 | /* | ||
2 | ** $Id: ltable.c $ | ||
3 | ** Lua tables (hash) | ||
4 | ** See Copyright Notice in lua.h | ||
5 | */ | ||
6 | |||
7 | #define ltable_c | ||
8 | #define LUA_CORE | ||
9 | |||
10 | #include "lprefix.h" | ||
11 | |||
12 | |||
13 | /* | ||
14 | ** Implementation of tables (aka arrays, objects, or hash tables). | ||
15 | ** Tables keep its elements in two parts: an array part and a hash part. | ||
16 | ** Non-negative integer keys are all candidates to be kept in the array | ||
17 | ** part. The actual size of the array is the largest 'n' such that | ||
18 | ** more than half the slots between 1 and n are in use. | ||
19 | ** Hash uses a mix of chained scatter table with Brent's variation. | ||
20 | ** A main invariant of these tables is that, if an element is not | ||
21 | ** in its main position (i.e. the 'original' position that its hash gives | ||
22 | ** to it), then the colliding element is in its own main position. | ||
23 | ** Hence even when the load factor reaches 100%, performance remains good. | ||
24 | */ | ||
25 | |||
26 | #include <math.h> | ||
27 | #include <limits.h> | ||
28 | |||
29 | #include "lua.h" | ||
30 | |||
31 | #include "ldebug.h" | ||
32 | #include "ldo.h" | ||
33 | #include "lgc.h" | ||
34 | #include "lmem.h" | ||
35 | #include "lobject.h" | ||
36 | #include "lstate.h" | ||
37 | #include "lstring.h" | ||
38 | #include "ltable.h" | ||
39 | #include "lvm.h" | ||
40 | |||
41 | |||
42 | /* | ||
43 | ** MAXABITS is the largest integer such that MAXASIZE fits in an | ||
44 | ** unsigned int. | ||
45 | */ | ||
46 | #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1) | ||
47 | |||
48 | |||
49 | /* | ||
50 | ** MAXASIZE is the maximum size of the array part. It is the minimum | ||
51 | ** between 2^MAXABITS and the maximum size that, measured in bytes, | ||
52 | ** fits in a 'size_t'. | ||
53 | */ | ||
54 | #define MAXASIZE luaM_limitN(1u << MAXABITS, TValue) | ||
55 | |||
56 | /* | ||
57 | ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a | ||
58 | ** signed int. | ||
59 | */ | ||
60 | #define MAXHBITS (MAXABITS - 1) | ||
61 | |||
62 | |||
63 | /* | ||
64 | ** MAXHSIZE is the maximum size of the hash part. It is the minimum | ||
65 | ** between 2^MAXHBITS and the maximum size such that, measured in bytes, | ||
66 | ** it fits in a 'size_t'. | ||
67 | */ | ||
68 | #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node) | ||
69 | |||
70 | |||
71 | /* | ||
72 | ** When the original hash value is good, hashing by a power of 2 | ||
73 | ** avoids the cost of '%'. | ||
74 | */ | ||
75 | #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) | ||
76 | |||
77 | /* | ||
78 | ** for other types, it is better to avoid modulo by power of 2, as | ||
79 | ** they can have many 2 factors. | ||
80 | */ | ||
81 | #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) | ||
82 | |||
83 | |||
84 | #define hashstr(t,str) hashpow2(t, (str)->hash) | ||
85 | #define hashboolean(t,p) hashpow2(t, p) | ||
86 | |||
87 | #define hashint(t,i) hashpow2(t, i) | ||
88 | |||
89 | |||
90 | #define hashpointer(t,p) hashmod(t, point2uint(p)) | ||
91 | |||
92 | |||
93 | #define dummynode (&dummynode_) | ||
94 | |||
95 | static const Node dummynode_ = { | ||
96 | {{NULL}, LUA_VEMPTY, /* value's value and type */ | ||
97 | LUA_VNIL, 0, {NULL}} /* key type, next, and key value */ | ||
98 | }; | ||
99 | |||
100 | |||
101 | static const TValue absentkey = {ABSTKEYCONSTANT}; | ||
102 | |||
103 | |||
104 | |||
105 | /* | ||
106 | ** Hash for floating-point numbers. | ||
107 | ** The main computation should be just | ||
108 | ** n = frexp(n, &i); return (n * INT_MAX) + i | ||
109 | ** but there are some numerical subtleties. | ||
110 | ** In a two-complement representation, INT_MAX does not has an exact | ||
111 | ** representation as a float, but INT_MIN does; because the absolute | ||
112 | ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the | ||
113 | ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal | ||
114 | ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when | ||
115 | ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with | ||
116 | ** INT_MIN. | ||
117 | */ | ||
118 | #if !defined(l_hashfloat) | ||
119 | static int l_hashfloat (lua_Number n) { | ||
120 | int i; | ||
121 | lua_Integer ni; | ||
122 | n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); | ||
123 | if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */ | ||
124 | lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); | ||
125 | return 0; | ||
126 | } | ||
127 | else { /* normal case */ | ||
128 | unsigned int u = cast_uint(i) + cast_uint(ni); | ||
129 | return cast_int(u <= cast_uint(INT_MAX) ? u : ~u); | ||
130 | } | ||
131 | } | ||
132 | #endif | ||
133 | |||
134 | |||
135 | /* | ||
136 | ** returns the 'main' position of an element in a table (that is, | ||
137 | ** the index of its hash value). The key comes broken (tag in 'ktt' | ||
138 | ** and value in 'vkl') so that we can call it on keys inserted into | ||
139 | ** nodes. | ||
140 | */ | ||
141 | static Node *mainposition (const Table *t, int ktt, const Value *kvl) { | ||
142 | switch (withvariant(ktt)) { | ||
143 | case LUA_VNUMINT: { | ||
144 | lua_Integer key = ivalueraw(*kvl); | ||
145 | return hashint(t, key); | ||
146 | } | ||
147 | case LUA_VNUMFLT: { | ||
148 | lua_Number n = fltvalueraw(*kvl); | ||
149 | return hashmod(t, l_hashfloat(n)); | ||
150 | } | ||
151 | case LUA_VSHRSTR: { | ||
152 | TString *ts = tsvalueraw(*kvl); | ||
153 | return hashstr(t, ts); | ||
154 | } | ||
155 | case LUA_VLNGSTR: { | ||
156 | TString *ts = tsvalueraw(*kvl); | ||
157 | return hashpow2(t, luaS_hashlongstr(ts)); | ||
158 | } | ||
159 | case LUA_VFALSE: | ||
160 | return hashboolean(t, 0); | ||
161 | case LUA_VTRUE: | ||
162 | return hashboolean(t, 1); | ||
163 | case LUA_VLIGHTUSERDATA: { | ||
164 | void *p = pvalueraw(*kvl); | ||
165 | return hashpointer(t, p); | ||
166 | } | ||
167 | case LUA_VLCF: { | ||
168 | lua_CFunction f = fvalueraw(*kvl); | ||
169 | return hashpointer(t, f); | ||
170 | } | ||
171 | default: { | ||
172 | GCObject *o = gcvalueraw(*kvl); | ||
173 | return hashpointer(t, o); | ||
174 | } | ||
175 | } | ||
176 | } | ||
177 | |||
178 | |||
179 | /* | ||
180 | ** Returns the main position of an element given as a 'TValue' | ||
181 | */ | ||
182 | static Node *mainpositionTV (const Table *t, const TValue *key) { | ||
183 | return mainposition(t, rawtt(key), valraw(key)); | ||
184 | } | ||
185 | |||
186 | |||
187 | /* | ||
188 | ** Check whether key 'k1' is equal to the key in node 'n2'. This | ||
189 | ** equality is raw, so there are no metamethods. Floats with integer | ||
190 | ** values have been normalized, so integers cannot be equal to | ||
191 | ** floats. It is assumed that 'eqshrstr' is simply pointer equality, so | ||
192 | ** that short strings are handled in the default case. | ||
193 | ** A true 'deadok' means to accept dead keys as equal to their original | ||
194 | ** values. All dead keys are compared in the default case, by pointer | ||
195 | ** identity. (Only collectable objects can produce dead keys.) Note that | ||
196 | ** dead long strings are also compared by identity. | ||
197 | ** Once a key is dead, its corresponding value may be collected, and | ||
198 | ** then another value can be created with the same address. If this | ||
199 | ** other value is given to 'next', 'equalkey' will signal a false | ||
200 | ** positive. In a regular traversal, this situation should never happen, | ||
201 | ** as all keys given to 'next' came from the table itself, and therefore | ||
202 | ** could not have been collected. Outside a regular traversal, we | ||
203 | ** have garbage in, garbage out. What is relevant is that this false | ||
204 | ** positive does not break anything. (In particular, 'next' will return | ||
205 | ** some other valid item on the table or nil.) | ||
206 | */ | ||
207 | static int equalkey (const TValue *k1, const Node *n2, int deadok) { | ||
208 | if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */ | ||
209 | !(deadok && keyisdead(n2) && iscollectable(k1))) | ||
210 | return 0; /* cannot be same key */ | ||
211 | switch (keytt(n2)) { | ||
212 | case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: | ||
213 | return 1; | ||
214 | case LUA_VNUMINT: | ||
215 | return (ivalue(k1) == keyival(n2)); | ||
216 | case LUA_VNUMFLT: | ||
217 | return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2))); | ||
218 | case LUA_VLIGHTUSERDATA: | ||
219 | return pvalue(k1) == pvalueraw(keyval(n2)); | ||
220 | case LUA_VLCF: | ||
221 | return fvalue(k1) == fvalueraw(keyval(n2)); | ||
222 | case ctb(LUA_VLNGSTR): | ||
223 | return luaS_eqlngstr(tsvalue(k1), keystrval(n2)); | ||
224 | default: | ||
225 | return gcvalue(k1) == gcvalueraw(keyval(n2)); | ||
226 | } | ||
227 | } | ||
228 | |||
229 | |||
230 | /* | ||
231 | ** True if value of 'alimit' is equal to the real size of the array | ||
232 | ** part of table 't'. (Otherwise, the array part must be larger than | ||
233 | ** 'alimit'.) | ||
234 | */ | ||
235 | #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit)) | ||
236 | |||
237 | |||
238 | /* | ||
239 | ** Returns the real size of the 'array' array | ||
240 | */ | ||
241 | LUAI_FUNC unsigned int luaH_realasize (const Table *t) { | ||
242 | if (limitequalsasize(t)) | ||
243 | return t->alimit; /* this is the size */ | ||
244 | else { | ||
245 | unsigned int size = t->alimit; | ||
246 | /* compute the smallest power of 2 not smaller than 'n' */ | ||
247 | size |= (size >> 1); | ||
248 | size |= (size >> 2); | ||
249 | size |= (size >> 4); | ||
250 | size |= (size >> 8); | ||
251 | size |= (size >> 16); | ||
252 | #if (UINT_MAX >> 30) > 3 | ||
253 | size |= (size >> 32); /* unsigned int has more than 32 bits */ | ||
254 | #endif | ||
255 | size++; | ||
256 | lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size); | ||
257 | return size; | ||
258 | } | ||
259 | } | ||
260 | |||
261 | |||
262 | /* | ||
263 | ** Check whether real size of the array is a power of 2. | ||
264 | ** (If it is not, 'alimit' cannot be changed to any other value | ||
265 | ** without changing the real size.) | ||
266 | */ | ||
267 | static int ispow2realasize (const Table *t) { | ||
268 | return (!isrealasize(t) || ispow2(t->alimit)); | ||
269 | } | ||
270 | |||
271 | |||
272 | static unsigned int setlimittosize (Table *t) { | ||
273 | t->alimit = luaH_realasize(t); | ||
274 | setrealasize(t); | ||
275 | return t->alimit; | ||
276 | } | ||
277 | |||
278 | |||
279 | #define limitasasize(t) check_exp(isrealasize(t), t->alimit) | ||
280 | |||
281 | |||
282 | |||
283 | /* | ||
284 | ** "Generic" get version. (Not that generic: not valid for integers, | ||
285 | ** which may be in array part, nor for floats with integral values.) | ||
286 | ** See explanation about 'deadok' in function 'equalkey'. | ||
287 | */ | ||
288 | static const TValue *getgeneric (Table *t, const TValue *key, int deadok) { | ||
289 | Node *n = mainpositionTV(t, key); | ||
290 | for (;;) { /* check whether 'key' is somewhere in the chain */ | ||
291 | if (equalkey(key, n, deadok)) | ||
292 | return gval(n); /* that's it */ | ||
293 | else { | ||
294 | int nx = gnext(n); | ||
295 | if (nx == 0) | ||
296 | return &absentkey; /* not found */ | ||
297 | n += nx; | ||
298 | } | ||
299 | } | ||
300 | } | ||
301 | |||
302 | |||
303 | /* | ||
304 | ** returns the index for 'k' if 'k' is an appropriate key to live in | ||
305 | ** the array part of a table, 0 otherwise. | ||
306 | */ | ||
307 | static unsigned int arrayindex (lua_Integer k) { | ||
308 | if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */ | ||
309 | return cast_uint(k); /* 'key' is an appropriate array index */ | ||
310 | else | ||
311 | return 0; | ||
312 | } | ||
313 | |||
314 | |||
315 | /* | ||
316 | ** returns the index of a 'key' for table traversals. First goes all | ||
317 | ** elements in the array part, then elements in the hash part. The | ||
318 | ** beginning of a traversal is signaled by 0. | ||
319 | */ | ||
320 | static unsigned int findindex (lua_State *L, Table *t, TValue *key, | ||
321 | unsigned int asize) { | ||
322 | unsigned int i; | ||
323 | if (ttisnil(key)) return 0; /* first iteration */ | ||
324 | i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0; | ||
325 | if (i - 1u < asize) /* is 'key' inside array part? */ | ||
326 | return i; /* yes; that's the index */ | ||
327 | else { | ||
328 | const TValue *n = getgeneric(t, key, 1); | ||
329 | if (l_unlikely(isabstkey(n))) | ||
330 | luaG_runerror(L, "invalid key to 'next'"); /* key not found */ | ||
331 | i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */ | ||
332 | /* hash elements are numbered after array ones */ | ||
333 | return (i + 1) + asize; | ||
334 | } | ||
335 | } | ||
336 | |||
337 | |||
338 | int luaH_next (lua_State *L, Table *t, StkId key) { | ||
339 | unsigned int asize = luaH_realasize(t); | ||
340 | unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */ | ||
341 | for (; i < asize; i++) { /* try first array part */ | ||
342 | if (!isempty(&t->array[i])) { /* a non-empty entry? */ | ||
343 | setivalue(s2v(key), i + 1); | ||
344 | setobj2s(L, key + 1, &t->array[i]); | ||
345 | return 1; | ||
346 | } | ||
347 | } | ||
348 | for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */ | ||
349 | if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */ | ||
350 | Node *n = gnode(t, i); | ||
351 | getnodekey(L, s2v(key), n); | ||
352 | setobj2s(L, key + 1, gval(n)); | ||
353 | return 1; | ||
354 | } | ||
355 | } | ||
356 | return 0; /* no more elements */ | ||
357 | } | ||
358 | |||
359 | |||
360 | static void freehash (lua_State *L, Table *t) { | ||
361 | if (!isdummy(t)) | ||
362 | luaM_freearray(L, t->node, cast_sizet(sizenode(t))); | ||
363 | } | ||
364 | |||
365 | |||
366 | /* | ||
367 | ** {============================================================= | ||
368 | ** Rehash | ||
369 | ** ============================================================== | ||
370 | */ | ||
371 | |||
372 | /* | ||
373 | ** Compute the optimal size for the array part of table 't'. 'nums' is a | ||
374 | ** "count array" where 'nums[i]' is the number of integers in the table | ||
375 | ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of | ||
376 | ** integer keys in the table and leaves with the number of keys that | ||
377 | ** will go to the array part; return the optimal size. (The condition | ||
378 | ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.) | ||
379 | */ | ||
380 | static unsigned int computesizes (unsigned int nums[], unsigned int *pna) { | ||
381 | int i; | ||
382 | unsigned int twotoi; /* 2^i (candidate for optimal size) */ | ||
383 | unsigned int a = 0; /* number of elements smaller than 2^i */ | ||
384 | unsigned int na = 0; /* number of elements to go to array part */ | ||
385 | unsigned int optimal = 0; /* optimal size for array part */ | ||
386 | /* loop while keys can fill more than half of total size */ | ||
387 | for (i = 0, twotoi = 1; | ||
388 | twotoi > 0 && *pna > twotoi / 2; | ||
389 | i++, twotoi *= 2) { | ||
390 | a += nums[i]; | ||
391 | if (a > twotoi/2) { /* more than half elements present? */ | ||
392 | optimal = twotoi; /* optimal size (till now) */ | ||
393 | na = a; /* all elements up to 'optimal' will go to array part */ | ||
394 | } | ||
395 | } | ||
396 | lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); | ||
397 | *pna = na; | ||
398 | return optimal; | ||
399 | } | ||
400 | |||
401 | |||
402 | static int countint (lua_Integer key, unsigned int *nums) { | ||
403 | unsigned int k = arrayindex(key); | ||
404 | if (k != 0) { /* is 'key' an appropriate array index? */ | ||
405 | nums[luaO_ceillog2(k)]++; /* count as such */ | ||
406 | return 1; | ||
407 | } | ||
408 | else | ||
409 | return 0; | ||
410 | } | ||
411 | |||
412 | |||
413 | /* | ||
414 | ** Count keys in array part of table 't': Fill 'nums[i]' with | ||
415 | ** number of keys that will go into corresponding slice and return | ||
416 | ** total number of non-nil keys. | ||
417 | */ | ||
418 | static unsigned int numusearray (const Table *t, unsigned int *nums) { | ||
419 | int lg; | ||
420 | unsigned int ttlg; /* 2^lg */ | ||
421 | unsigned int ause = 0; /* summation of 'nums' */ | ||
422 | unsigned int i = 1; /* count to traverse all array keys */ | ||
423 | unsigned int asize = limitasasize(t); /* real array size */ | ||
424 | /* traverse each slice */ | ||
425 | for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { | ||
426 | unsigned int lc = 0; /* counter */ | ||
427 | unsigned int lim = ttlg; | ||
428 | if (lim > asize) { | ||
429 | lim = asize; /* adjust upper limit */ | ||
430 | if (i > lim) | ||
431 | break; /* no more elements to count */ | ||
432 | } | ||
433 | /* count elements in range (2^(lg - 1), 2^lg] */ | ||
434 | for (; i <= lim; i++) { | ||
435 | if (!isempty(&t->array[i-1])) | ||
436 | lc++; | ||
437 | } | ||
438 | nums[lg] += lc; | ||
439 | ause += lc; | ||
440 | } | ||
441 | return ause; | ||
442 | } | ||
443 | |||
444 | |||
445 | static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) { | ||
446 | int totaluse = 0; /* total number of elements */ | ||
447 | int ause = 0; /* elements added to 'nums' (can go to array part) */ | ||
448 | int i = sizenode(t); | ||
449 | while (i--) { | ||
450 | Node *n = &t->node[i]; | ||
451 | if (!isempty(gval(n))) { | ||
452 | if (keyisinteger(n)) | ||
453 | ause += countint(keyival(n), nums); | ||
454 | totaluse++; | ||
455 | } | ||
456 | } | ||
457 | *pna += ause; | ||
458 | return totaluse; | ||
459 | } | ||
460 | |||
461 | |||
462 | /* | ||
463 | ** Creates an array for the hash part of a table with the given | ||
464 | ** size, or reuses the dummy node if size is zero. | ||
465 | ** The computation for size overflow is in two steps: the first | ||
466 | ** comparison ensures that the shift in the second one does not | ||
467 | ** overflow. | ||
468 | */ | ||
469 | static void setnodevector (lua_State *L, Table *t, unsigned int size) { | ||
470 | if (size == 0) { /* no elements to hash part? */ | ||
471 | t->node = cast(Node *, dummynode); /* use common 'dummynode' */ | ||
472 | t->lsizenode = 0; | ||
473 | t->lastfree = NULL; /* signal that it is using dummy node */ | ||
474 | } | ||
475 | else { | ||
476 | int i; | ||
477 | int lsize = luaO_ceillog2(size); | ||
478 | if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE) | ||
479 | luaG_runerror(L, "table overflow"); | ||
480 | size = twoto(lsize); | ||
481 | t->node = luaM_newvector(L, size, Node); | ||
482 | for (i = 0; i < (int)size; i++) { | ||
483 | Node *n = gnode(t, i); | ||
484 | gnext(n) = 0; | ||
485 | setnilkey(n); | ||
486 | setempty(gval(n)); | ||
487 | } | ||
488 | t->lsizenode = cast_byte(lsize); | ||
489 | t->lastfree = gnode(t, size); /* all positions are free */ | ||
490 | } | ||
491 | } | ||
492 | |||
493 | |||
494 | /* | ||
495 | ** (Re)insert all elements from the hash part of 'ot' into table 't'. | ||
496 | */ | ||
497 | static void reinsert (lua_State *L, Table *ot, Table *t) { | ||
498 | int j; | ||
499 | int size = sizenode(ot); | ||
500 | for (j = 0; j < size; j++) { | ||
501 | Node *old = gnode(ot, j); | ||
502 | if (!isempty(gval(old))) { | ||
503 | /* doesn't need barrier/invalidate cache, as entry was | ||
504 | already present in the table */ | ||
505 | TValue k; | ||
506 | getnodekey(L, &k, old); | ||
507 | luaH_set(L, t, &k, gval(old)); | ||
508 | } | ||
509 | } | ||
510 | } | ||
511 | |||
512 | |||
513 | /* | ||
514 | ** Exchange the hash part of 't1' and 't2'. | ||
515 | */ | ||
516 | static void exchangehashpart (Table *t1, Table *t2) { | ||
517 | lu_byte lsizenode = t1->lsizenode; | ||
518 | Node *node = t1->node; | ||
519 | Node *lastfree = t1->lastfree; | ||
520 | t1->lsizenode = t2->lsizenode; | ||
521 | t1->node = t2->node; | ||
522 | t1->lastfree = t2->lastfree; | ||
523 | t2->lsizenode = lsizenode; | ||
524 | t2->node = node; | ||
525 | t2->lastfree = lastfree; | ||
526 | } | ||
527 | |||
528 | |||
529 | /* | ||
530 | ** Resize table 't' for the new given sizes. Both allocations (for | ||
531 | ** the hash part and for the array part) can fail, which creates some | ||
532 | ** subtleties. If the first allocation, for the hash part, fails, an | ||
533 | ** error is raised and that is it. Otherwise, it copies the elements from | ||
534 | ** the shrinking part of the array (if it is shrinking) into the new | ||
535 | ** hash. Then it reallocates the array part. If that fails, the table | ||
536 | ** is in its original state; the function frees the new hash part and then | ||
537 | ** raises the allocation error. Otherwise, it sets the new hash part | ||
538 | ** into the table, initializes the new part of the array (if any) with | ||
539 | ** nils and reinserts the elements of the old hash back into the new | ||
540 | ** parts of the table. | ||
541 | */ | ||
542 | void luaH_resize (lua_State *L, Table *t, unsigned int newasize, | ||
543 | unsigned int nhsize) { | ||
544 | unsigned int i; | ||
545 | Table newt; /* to keep the new hash part */ | ||
546 | unsigned int oldasize = setlimittosize(t); | ||
547 | TValue *newarray; | ||
548 | /* create new hash part with appropriate size into 'newt' */ | ||
549 | setnodevector(L, &newt, nhsize); | ||
550 | if (newasize < oldasize) { /* will array shrink? */ | ||
551 | t->alimit = newasize; /* pretend array has new size... */ | ||
552 | exchangehashpart(t, &newt); /* and new hash */ | ||
553 | /* re-insert into the new hash the elements from vanishing slice */ | ||
554 | for (i = newasize; i < oldasize; i++) { | ||
555 | if (!isempty(&t->array[i])) | ||
556 | luaH_setint(L, t, i + 1, &t->array[i]); | ||
557 | } | ||
558 | t->alimit = oldasize; /* restore current size... */ | ||
559 | exchangehashpart(t, &newt); /* and hash (in case of errors) */ | ||
560 | } | ||
561 | /* allocate new array */ | ||
562 | newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue); | ||
563 | if (l_unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */ | ||
564 | freehash(L, &newt); /* release new hash part */ | ||
565 | luaM_error(L); /* raise error (with array unchanged) */ | ||
566 | } | ||
567 | /* allocation ok; initialize new part of the array */ | ||
568 | exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */ | ||
569 | t->array = newarray; /* set new array part */ | ||
570 | t->alimit = newasize; | ||
571 | for (i = oldasize; i < newasize; i++) /* clear new slice of the array */ | ||
572 | setempty(&t->array[i]); | ||
573 | /* re-insert elements from old hash part into new parts */ | ||
574 | reinsert(L, &newt, t); /* 'newt' now has the old hash */ | ||
575 | freehash(L, &newt); /* free old hash part */ | ||
576 | } | ||
577 | |||
578 | |||
579 | void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { | ||
580 | int nsize = allocsizenode(t); | ||
581 | luaH_resize(L, t, nasize, nsize); | ||
582 | } | ||
583 | |||
584 | /* | ||
585 | ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i | ||
586 | */ | ||
587 | static void rehash (lua_State *L, Table *t, const TValue *ek) { | ||
588 | unsigned int asize; /* optimal size for array part */ | ||
589 | unsigned int na; /* number of keys in the array part */ | ||
590 | unsigned int nums[MAXABITS + 1]; | ||
591 | int i; | ||
592 | int totaluse; | ||
593 | for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */ | ||
594 | setlimittosize(t); | ||
595 | na = numusearray(t, nums); /* count keys in array part */ | ||
596 | totaluse = na; /* all those keys are integer keys */ | ||
597 | totaluse += numusehash(t, nums, &na); /* count keys in hash part */ | ||
598 | /* count extra key */ | ||
599 | if (ttisinteger(ek)) | ||
600 | na += countint(ivalue(ek), nums); | ||
601 | totaluse++; | ||
602 | /* compute new size for array part */ | ||
603 | asize = computesizes(nums, &na); | ||
604 | /* resize the table to new computed sizes */ | ||
605 | luaH_resize(L, t, asize, totaluse - na); | ||
606 | } | ||
607 | |||
608 | |||
609 | |||
610 | /* | ||
611 | ** }============================================================= | ||
612 | */ | ||
613 | |||
614 | |||
615 | Table *luaH_new (lua_State *L) { | ||
616 | GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table)); | ||
617 | Table *t = gco2t(o); | ||
618 | t->metatable = NULL; | ||
619 | t->flags = cast_byte(maskflags); /* table has no metamethod fields */ | ||
620 | t->array = NULL; | ||
621 | t->alimit = 0; | ||
622 | setnodevector(L, t, 0); | ||
623 | return t; | ||
624 | } | ||
625 | |||
626 | |||
627 | void luaH_free (lua_State *L, Table *t) { | ||
628 | freehash(L, t); | ||
629 | luaM_freearray(L, t->array, luaH_realasize(t)); | ||
630 | luaM_free(L, t); | ||
631 | } | ||
632 | |||
633 | |||
634 | static Node *getfreepos (Table *t) { | ||
635 | if (!isdummy(t)) { | ||
636 | while (t->lastfree > t->node) { | ||
637 | t->lastfree--; | ||
638 | if (keyisnil(t->lastfree)) | ||
639 | return t->lastfree; | ||
640 | } | ||
641 | } | ||
642 | return NULL; /* could not find a free place */ | ||
643 | } | ||
644 | |||
645 | |||
646 | |||
647 | /* | ||
648 | ** inserts a new key into a hash table; first, check whether key's main | ||
649 | ** position is free. If not, check whether colliding node is in its main | ||
650 | ** position or not: if it is not, move colliding node to an empty place and | ||
651 | ** put new key in its main position; otherwise (colliding node is in its main | ||
652 | ** position), new key goes to an empty position. | ||
653 | */ | ||
654 | void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value) { | ||
655 | Node *mp; | ||
656 | TValue aux; | ||
657 | if (l_unlikely(ttisnil(key))) | ||
658 | luaG_runerror(L, "table index is nil"); | ||
659 | else if (ttisfloat(key)) { | ||
660 | lua_Number f = fltvalue(key); | ||
661 | lua_Integer k; | ||
662 | if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */ | ||
663 | setivalue(&aux, k); | ||
664 | key = &aux; /* insert it as an integer */ | ||
665 | } | ||
666 | else if (l_unlikely(luai_numisnan(f))) | ||
667 | luaG_runerror(L, "table index is NaN"); | ||
668 | } | ||
669 | if (ttisnil(value)) | ||
670 | return; /* do not insert nil values */ | ||
671 | mp = mainpositionTV(t, key); | ||
672 | if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */ | ||
673 | Node *othern; | ||
674 | Node *f = getfreepos(t); /* get a free place */ | ||
675 | if (f == NULL) { /* cannot find a free place? */ | ||
676 | rehash(L, t, key); /* grow table */ | ||
677 | /* whatever called 'newkey' takes care of TM cache */ | ||
678 | luaH_set(L, t, key, value); /* insert key into grown table */ | ||
679 | return; | ||
680 | } | ||
681 | lua_assert(!isdummy(t)); | ||
682 | othern = mainposition(t, keytt(mp), &keyval(mp)); | ||
683 | if (othern != mp) { /* is colliding node out of its main position? */ | ||
684 | /* yes; move colliding node into free position */ | ||
685 | while (othern + gnext(othern) != mp) /* find previous */ | ||
686 | othern += gnext(othern); | ||
687 | gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */ | ||
688 | *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */ | ||
689 | if (gnext(mp) != 0) { | ||
690 | gnext(f) += cast_int(mp - f); /* correct 'next' */ | ||
691 | gnext(mp) = 0; /* now 'mp' is free */ | ||
692 | } | ||
693 | setempty(gval(mp)); | ||
694 | } | ||
695 | else { /* colliding node is in its own main position */ | ||
696 | /* new node will go into free position */ | ||
697 | if (gnext(mp) != 0) | ||
698 | gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */ | ||
699 | else lua_assert(gnext(f) == 0); | ||
700 | gnext(mp) = cast_int(f - mp); | ||
701 | mp = f; | ||
702 | } | ||
703 | } | ||
704 | setnodekey(L, mp, key); | ||
705 | luaC_barrierback(L, obj2gco(t), key); | ||
706 | lua_assert(isempty(gval(mp))); | ||
707 | setobj2t(L, gval(mp), value); | ||
708 | } | ||
709 | |||
710 | |||
711 | /* | ||
712 | ** Search function for integers. If integer is inside 'alimit', get it | ||
713 | ** directly from the array part. Otherwise, if 'alimit' is not equal to | ||
714 | ** the real size of the array, key still can be in the array part. In | ||
715 | ** this case, try to avoid a call to 'luaH_realasize' when key is just | ||
716 | ** one more than the limit (so that it can be incremented without | ||
717 | ** changing the real size of the array). | ||
718 | */ | ||
719 | const TValue *luaH_getint (Table *t, lua_Integer key) { | ||
720 | if (l_castS2U(key) - 1u < t->alimit) /* 'key' in [1, t->alimit]? */ | ||
721 | return &t->array[key - 1]; | ||
722 | else if (!limitequalsasize(t) && /* key still may be in the array part? */ | ||
723 | (l_castS2U(key) == t->alimit + 1 || | ||
724 | l_castS2U(key) - 1u < luaH_realasize(t))) { | ||
725 | t->alimit = cast_uint(key); /* probably '#t' is here now */ | ||
726 | return &t->array[key - 1]; | ||
727 | } | ||
728 | else { | ||
729 | Node *n = hashint(t, key); | ||
730 | for (;;) { /* check whether 'key' is somewhere in the chain */ | ||
731 | if (keyisinteger(n) && keyival(n) == key) | ||
732 | return gval(n); /* that's it */ | ||
733 | else { | ||
734 | int nx = gnext(n); | ||
735 | if (nx == 0) break; | ||
736 | n += nx; | ||
737 | } | ||
738 | } | ||
739 | return &absentkey; | ||
740 | } | ||
741 | } | ||
742 | |||
743 | |||
744 | /* | ||
745 | ** search function for short strings | ||
746 | */ | ||
747 | const TValue *luaH_getshortstr (Table *t, TString *key) { | ||
748 | Node *n = hashstr(t, key); | ||
749 | lua_assert(key->tt == LUA_VSHRSTR); | ||
750 | for (;;) { /* check whether 'key' is somewhere in the chain */ | ||
751 | if (keyisshrstr(n) && eqshrstr(keystrval(n), key)) | ||
752 | return gval(n); /* that's it */ | ||
753 | else { | ||
754 | int nx = gnext(n); | ||
755 | if (nx == 0) | ||
756 | return &absentkey; /* not found */ | ||
757 | n += nx; | ||
758 | } | ||
759 | } | ||
760 | } | ||
761 | |||
762 | |||
763 | const TValue *luaH_getstr (Table *t, TString *key) { | ||
764 | if (key->tt == LUA_VSHRSTR) | ||
765 | return luaH_getshortstr(t, key); | ||
766 | else { /* for long strings, use generic case */ | ||
767 | TValue ko; | ||
768 | setsvalue(cast(lua_State *, NULL), &ko, key); | ||
769 | return getgeneric(t, &ko, 0); | ||
770 | } | ||
771 | } | ||
772 | |||
773 | |||
774 | /* | ||
775 | ** main search function | ||
776 | */ | ||
777 | const TValue *luaH_get (Table *t, const TValue *key) { | ||
778 | switch (ttypetag(key)) { | ||
779 | case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key)); | ||
780 | case LUA_VNUMINT: return luaH_getint(t, ivalue(key)); | ||
781 | case LUA_VNIL: return &absentkey; | ||
782 | case LUA_VNUMFLT: { | ||
783 | lua_Integer k; | ||
784 | if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ | ||
785 | return luaH_getint(t, k); /* use specialized version */ | ||
786 | /* else... */ | ||
787 | } /* FALLTHROUGH */ | ||
788 | default: | ||
789 | return getgeneric(t, key, 0); | ||
790 | } | ||
791 | } | ||
792 | |||
793 | |||
794 | /* | ||
795 | ** Finish a raw "set table" operation, where 'slot' is where the value | ||
796 | ** should have been (the result of a previous "get table"). | ||
797 | ** Beware: when using this function you probably need to check a GC | ||
798 | ** barrier and invalidate the TM cache. | ||
799 | */ | ||
800 | void luaH_finishset (lua_State *L, Table *t, const TValue *key, | ||
801 | const TValue *slot, TValue *value) { | ||
802 | if (isabstkey(slot)) | ||
803 | luaH_newkey(L, t, key, value); | ||
804 | else | ||
805 | setobj2t(L, cast(TValue *, slot), value); | ||
806 | } | ||
807 | |||
808 | |||
809 | /* | ||
810 | ** beware: when using this function you probably need to check a GC | ||
811 | ** barrier and invalidate the TM cache. | ||
812 | */ | ||
813 | void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) { | ||
814 | const TValue *slot = luaH_get(t, key); | ||
815 | luaH_finishset(L, t, key, slot, value); | ||
816 | } | ||
817 | |||
818 | |||
819 | void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { | ||
820 | const TValue *p = luaH_getint(t, key); | ||
821 | if (isabstkey(p)) { | ||
822 | TValue k; | ||
823 | setivalue(&k, key); | ||
824 | luaH_newkey(L, t, &k, value); | ||
825 | } | ||
826 | else | ||
827 | setobj2t(L, cast(TValue *, p), value); | ||
828 | } | ||
829 | |||
830 | |||
831 | /* | ||
832 | ** Try to find a boundary in the hash part of table 't'. From the | ||
833 | ** caller, we know that 'j' is zero or present and that 'j + 1' is | ||
834 | ** present. We want to find a larger key that is absent from the | ||
835 | ** table, so that we can do a binary search between the two keys to | ||
836 | ** find a boundary. We keep doubling 'j' until we get an absent index. | ||
837 | ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is | ||
838 | ** absent, we are ready for the binary search. ('j', being max integer, | ||
839 | ** is larger or equal to 'i', but it cannot be equal because it is | ||
840 | ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a | ||
841 | ** boundary. ('j + 1' cannot be a present integer key because it is | ||
842 | ** not a valid integer in Lua.) | ||
843 | */ | ||
844 | static lua_Unsigned hash_search (Table *t, lua_Unsigned j) { | ||
845 | lua_Unsigned i; | ||
846 | if (j == 0) j++; /* the caller ensures 'j + 1' is present */ | ||
847 | do { | ||
848 | i = j; /* 'i' is a present index */ | ||
849 | if (j <= l_castS2U(LUA_MAXINTEGER) / 2) | ||
850 | j *= 2; | ||
851 | else { | ||
852 | j = LUA_MAXINTEGER; | ||
853 | if (isempty(luaH_getint(t, j))) /* t[j] not present? */ | ||
854 | break; /* 'j' now is an absent index */ | ||
855 | else /* weird case */ | ||
856 | return j; /* well, max integer is a boundary... */ | ||
857 | } | ||
858 | } while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */ | ||
859 | /* i < j && t[i] present && t[j] absent */ | ||
860 | while (j - i > 1u) { /* do a binary search between them */ | ||
861 | lua_Unsigned m = (i + j) / 2; | ||
862 | if (isempty(luaH_getint(t, m))) j = m; | ||
863 | else i = m; | ||
864 | } | ||
865 | return i; | ||
866 | } | ||
867 | |||
868 | |||
869 | static unsigned int binsearch (const TValue *array, unsigned int i, | ||
870 | unsigned int j) { | ||
871 | while (j - i > 1u) { /* binary search */ | ||
872 | unsigned int m = (i + j) / 2; | ||
873 | if (isempty(&array[m - 1])) j = m; | ||
874 | else i = m; | ||
875 | } | ||
876 | return i; | ||
877 | } | ||
878 | |||
879 | |||
880 | /* | ||
881 | ** Try to find a boundary in table 't'. (A 'boundary' is an integer index | ||
882 | ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent | ||
883 | ** and 'maxinteger' if t[maxinteger] is present.) | ||
884 | ** (In the next explanation, we use Lua indices, that is, with base 1. | ||
885 | ** The code itself uses base 0 when indexing the array part of the table.) | ||
886 | ** The code starts with 'limit = t->alimit', a position in the array | ||
887 | ** part that may be a boundary. | ||
888 | ** | ||
889 | ** (1) If 't[limit]' is empty, there must be a boundary before it. | ||
890 | ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1' | ||
891 | ** is present. If so, it is a boundary. Otherwise, do a binary search | ||
892 | ** between 0 and limit to find a boundary. In both cases, try to | ||
893 | ** use this boundary as the new 'alimit', as a hint for the next call. | ||
894 | ** | ||
895 | ** (2) If 't[limit]' is not empty and the array has more elements | ||
896 | ** after 'limit', try to find a boundary there. Again, try first | ||
897 | ** the special case (which should be quite frequent) where 'limit+1' | ||
898 | ** is empty, so that 'limit' is a boundary. Otherwise, check the | ||
899 | ** last element of the array part. If it is empty, there must be a | ||
900 | ** boundary between the old limit (present) and the last element | ||
901 | ** (absent), which is found with a binary search. (This boundary always | ||
902 | ** can be a new limit.) | ||
903 | ** | ||
904 | ** (3) The last case is when there are no elements in the array part | ||
905 | ** (limit == 0) or its last element (the new limit) is present. | ||
906 | ** In this case, must check the hash part. If there is no hash part | ||
907 | ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call | ||
908 | ** 'hash_search' to find a boundary in the hash part of the table. | ||
909 | ** (In those cases, the boundary is not inside the array part, and | ||
910 | ** therefore cannot be used as a new limit.) | ||
911 | */ | ||
912 | lua_Unsigned luaH_getn (Table *t) { | ||
913 | unsigned int limit = t->alimit; | ||
914 | if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */ | ||
915 | /* there must be a boundary before 'limit' */ | ||
916 | if (limit >= 2 && !isempty(&t->array[limit - 2])) { | ||
917 | /* 'limit - 1' is a boundary; can it be a new limit? */ | ||
918 | if (ispow2realasize(t) && !ispow2(limit - 1)) { | ||
919 | t->alimit = limit - 1; | ||
920 | setnorealasize(t); /* now 'alimit' is not the real size */ | ||
921 | } | ||
922 | return limit - 1; | ||
923 | } | ||
924 | else { /* must search for a boundary in [0, limit] */ | ||
925 | unsigned int boundary = binsearch(t->array, 0, limit); | ||
926 | /* can this boundary represent the real size of the array? */ | ||
927 | if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) { | ||
928 | t->alimit = boundary; /* use it as the new limit */ | ||
929 | setnorealasize(t); | ||
930 | } | ||
931 | return boundary; | ||
932 | } | ||
933 | } | ||
934 | /* 'limit' is zero or present in table */ | ||
935 | if (!limitequalsasize(t)) { /* (2)? */ | ||
936 | /* 'limit' > 0 and array has more elements after 'limit' */ | ||
937 | if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */ | ||
938 | return limit; /* this is the boundary */ | ||
939 | /* else, try last element in the array */ | ||
940 | limit = luaH_realasize(t); | ||
941 | if (isempty(&t->array[limit - 1])) { /* empty? */ | ||
942 | /* there must be a boundary in the array after old limit, | ||
943 | and it must be a valid new limit */ | ||
944 | unsigned int boundary = binsearch(t->array, t->alimit, limit); | ||
945 | t->alimit = boundary; | ||
946 | return boundary; | ||
947 | } | ||
948 | /* else, new limit is present in the table; check the hash part */ | ||
949 | } | ||
950 | /* (3) 'limit' is the last element and either is zero or present in table */ | ||
951 | lua_assert(limit == luaH_realasize(t) && | ||
952 | (limit == 0 || !isempty(&t->array[limit - 1]))); | ||
953 | if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1)))) | ||
954 | return limit; /* 'limit + 1' is absent */ | ||
955 | else /* 'limit + 1' is also present */ | ||
956 | return hash_search(t, limit); | ||
957 | } | ||
958 | |||
959 | |||
960 | |||
961 | #if defined(LUA_DEBUG) | ||
962 | |||
963 | /* export these functions for the test library */ | ||
964 | |||
965 | Node *luaH_mainposition (const Table *t, const TValue *key) { | ||
966 | return mainpositionTV(t, key); | ||
967 | } | ||
968 | |||
969 | int luaH_isdummy (const Table *t) { return isdummy(t); } | ||
970 | |||
971 | #endif | ||