diff options
Diffstat (limited to 'src/3rdParty/lua/lcode.c')
-rw-r--r-- | src/3rdParty/lua/lcode.c | 1814 |
1 files changed, 1814 insertions, 0 deletions
diff --git a/src/3rdParty/lua/lcode.c b/src/3rdParty/lua/lcode.c new file mode 100644 index 0000000..80d975c --- /dev/null +++ b/src/3rdParty/lua/lcode.c | |||
@@ -0,0 +1,1814 @@ | |||
1 | /* | ||
2 | ** $Id: lcode.c $ | ||
3 | ** Code generator for Lua | ||
4 | ** See Copyright Notice in lua.h | ||
5 | */ | ||
6 | |||
7 | #define lcode_c | ||
8 | #define LUA_CORE | ||
9 | |||
10 | #include "lprefix.h" | ||
11 | |||
12 | |||
13 | #include <limits.h> | ||
14 | #include <math.h> | ||
15 | #include <stdlib.h> | ||
16 | |||
17 | #include "lua.h" | ||
18 | |||
19 | #include "lcode.h" | ||
20 | #include "ldebug.h" | ||
21 | #include "ldo.h" | ||
22 | #include "lgc.h" | ||
23 | #include "llex.h" | ||
24 | #include "lmem.h" | ||
25 | #include "lobject.h" | ||
26 | #include "lopcodes.h" | ||
27 | #include "lparser.h" | ||
28 | #include "lstring.h" | ||
29 | #include "ltable.h" | ||
30 | #include "lvm.h" | ||
31 | |||
32 | |||
33 | /* Maximum number of registers in a Lua function (must fit in 8 bits) */ | ||
34 | #define MAXREGS 255 | ||
35 | |||
36 | |||
37 | #define hasjumps(e) ((e)->t != (e)->f) | ||
38 | |||
39 | |||
40 | static int codesJ (FuncState *fs, OpCode o, int sj, int k); | ||
41 | |||
42 | |||
43 | |||
44 | /* semantic error */ | ||
45 | l_noret luaK_semerror (LexState *ls, const char *msg) { | ||
46 | ls->t.token = 0; /* remove "near <token>" from final message */ | ||
47 | luaX_syntaxerror(ls, msg); | ||
48 | } | ||
49 | |||
50 | |||
51 | /* | ||
52 | ** If expression is a numeric constant, fills 'v' with its value | ||
53 | ** and returns 1. Otherwise, returns 0. | ||
54 | */ | ||
55 | static int tonumeral (const expdesc *e, TValue *v) { | ||
56 | if (hasjumps(e)) | ||
57 | return 0; /* not a numeral */ | ||
58 | switch (e->k) { | ||
59 | case VKINT: | ||
60 | if (v) setivalue(v, e->u.ival); | ||
61 | return 1; | ||
62 | case VKFLT: | ||
63 | if (v) setfltvalue(v, e->u.nval); | ||
64 | return 1; | ||
65 | default: return 0; | ||
66 | } | ||
67 | } | ||
68 | |||
69 | |||
70 | /* | ||
71 | ** Get the constant value from a constant expression | ||
72 | */ | ||
73 | static TValue *const2val (FuncState *fs, const expdesc *e) { | ||
74 | lua_assert(e->k == VCONST); | ||
75 | return &fs->ls->dyd->actvar.arr[e->u.info].k; | ||
76 | } | ||
77 | |||
78 | |||
79 | /* | ||
80 | ** If expression is a constant, fills 'v' with its value | ||
81 | ** and returns 1. Otherwise, returns 0. | ||
82 | */ | ||
83 | int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) { | ||
84 | if (hasjumps(e)) | ||
85 | return 0; /* not a constant */ | ||
86 | switch (e->k) { | ||
87 | case VFALSE: | ||
88 | setbfvalue(v); | ||
89 | return 1; | ||
90 | case VTRUE: | ||
91 | setbtvalue(v); | ||
92 | return 1; | ||
93 | case VNIL: | ||
94 | setnilvalue(v); | ||
95 | return 1; | ||
96 | case VKSTR: { | ||
97 | setsvalue(fs->ls->L, v, e->u.strval); | ||
98 | return 1; | ||
99 | } | ||
100 | case VCONST: { | ||
101 | setobj(fs->ls->L, v, const2val(fs, e)); | ||
102 | return 1; | ||
103 | } | ||
104 | default: return tonumeral(e, v); | ||
105 | } | ||
106 | } | ||
107 | |||
108 | |||
109 | /* | ||
110 | ** Return the previous instruction of the current code. If there | ||
111 | ** may be a jump target between the current instruction and the | ||
112 | ** previous one, return an invalid instruction (to avoid wrong | ||
113 | ** optimizations). | ||
114 | */ | ||
115 | static Instruction *previousinstruction (FuncState *fs) { | ||
116 | static const Instruction invalidinstruction = ~(Instruction)0; | ||
117 | if (fs->pc > fs->lasttarget) | ||
118 | return &fs->f->code[fs->pc - 1]; /* previous instruction */ | ||
119 | else | ||
120 | return cast(Instruction*, &invalidinstruction); | ||
121 | } | ||
122 | |||
123 | |||
124 | /* | ||
125 | ** Create a OP_LOADNIL instruction, but try to optimize: if the previous | ||
126 | ** instruction is also OP_LOADNIL and ranges are compatible, adjust | ||
127 | ** range of previous instruction instead of emitting a new one. (For | ||
128 | ** instance, 'local a; local b' will generate a single opcode.) | ||
129 | */ | ||
130 | void luaK_nil (FuncState *fs, int from, int n) { | ||
131 | int l = from + n - 1; /* last register to set nil */ | ||
132 | Instruction *previous = previousinstruction(fs); | ||
133 | if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */ | ||
134 | int pfrom = GETARG_A(*previous); /* get previous range */ | ||
135 | int pl = pfrom + GETARG_B(*previous); | ||
136 | if ((pfrom <= from && from <= pl + 1) || | ||
137 | (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */ | ||
138 | if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */ | ||
139 | if (pl > l) l = pl; /* l = max(l, pl) */ | ||
140 | SETARG_A(*previous, from); | ||
141 | SETARG_B(*previous, l - from); | ||
142 | return; | ||
143 | } /* else go through */ | ||
144 | } | ||
145 | luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */ | ||
146 | } | ||
147 | |||
148 | |||
149 | /* | ||
150 | ** Gets the destination address of a jump instruction. Used to traverse | ||
151 | ** a list of jumps. | ||
152 | */ | ||
153 | static int getjump (FuncState *fs, int pc) { | ||
154 | int offset = GETARG_sJ(fs->f->code[pc]); | ||
155 | if (offset == NO_JUMP) /* point to itself represents end of list */ | ||
156 | return NO_JUMP; /* end of list */ | ||
157 | else | ||
158 | return (pc+1)+offset; /* turn offset into absolute position */ | ||
159 | } | ||
160 | |||
161 | |||
162 | /* | ||
163 | ** Fix jump instruction at position 'pc' to jump to 'dest'. | ||
164 | ** (Jump addresses are relative in Lua) | ||
165 | */ | ||
166 | static void fixjump (FuncState *fs, int pc, int dest) { | ||
167 | Instruction *jmp = &fs->f->code[pc]; | ||
168 | int offset = dest - (pc + 1); | ||
169 | lua_assert(dest != NO_JUMP); | ||
170 | if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ)) | ||
171 | luaX_syntaxerror(fs->ls, "control structure too long"); | ||
172 | lua_assert(GET_OPCODE(*jmp) == OP_JMP); | ||
173 | SETARG_sJ(*jmp, offset); | ||
174 | } | ||
175 | |||
176 | |||
177 | /* | ||
178 | ** Concatenate jump-list 'l2' into jump-list 'l1' | ||
179 | */ | ||
180 | void luaK_concat (FuncState *fs, int *l1, int l2) { | ||
181 | if (l2 == NO_JUMP) return; /* nothing to concatenate? */ | ||
182 | else if (*l1 == NO_JUMP) /* no original list? */ | ||
183 | *l1 = l2; /* 'l1' points to 'l2' */ | ||
184 | else { | ||
185 | int list = *l1; | ||
186 | int next; | ||
187 | while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */ | ||
188 | list = next; | ||
189 | fixjump(fs, list, l2); /* last element links to 'l2' */ | ||
190 | } | ||
191 | } | ||
192 | |||
193 | |||
194 | /* | ||
195 | ** Create a jump instruction and return its position, so its destination | ||
196 | ** can be fixed later (with 'fixjump'). | ||
197 | */ | ||
198 | int luaK_jump (FuncState *fs) { | ||
199 | return codesJ(fs, OP_JMP, NO_JUMP, 0); | ||
200 | } | ||
201 | |||
202 | |||
203 | /* | ||
204 | ** Code a 'return' instruction | ||
205 | */ | ||
206 | void luaK_ret (FuncState *fs, int first, int nret) { | ||
207 | OpCode op; | ||
208 | switch (nret) { | ||
209 | case 0: op = OP_RETURN0; break; | ||
210 | case 1: op = OP_RETURN1; break; | ||
211 | default: op = OP_RETURN; break; | ||
212 | } | ||
213 | luaK_codeABC(fs, op, first, nret + 1, 0); | ||
214 | } | ||
215 | |||
216 | |||
217 | /* | ||
218 | ** Code a "conditional jump", that is, a test or comparison opcode | ||
219 | ** followed by a jump. Return jump position. | ||
220 | */ | ||
221 | static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) { | ||
222 | luaK_codeABCk(fs, op, A, B, C, k); | ||
223 | return luaK_jump(fs); | ||
224 | } | ||
225 | |||
226 | |||
227 | /* | ||
228 | ** returns current 'pc' and marks it as a jump target (to avoid wrong | ||
229 | ** optimizations with consecutive instructions not in the same basic block). | ||
230 | */ | ||
231 | int luaK_getlabel (FuncState *fs) { | ||
232 | fs->lasttarget = fs->pc; | ||
233 | return fs->pc; | ||
234 | } | ||
235 | |||
236 | |||
237 | /* | ||
238 | ** Returns the position of the instruction "controlling" a given | ||
239 | ** jump (that is, its condition), or the jump itself if it is | ||
240 | ** unconditional. | ||
241 | */ | ||
242 | static Instruction *getjumpcontrol (FuncState *fs, int pc) { | ||
243 | Instruction *pi = &fs->f->code[pc]; | ||
244 | if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1)))) | ||
245 | return pi-1; | ||
246 | else | ||
247 | return pi; | ||
248 | } | ||
249 | |||
250 | |||
251 | /* | ||
252 | ** Patch destination register for a TESTSET instruction. | ||
253 | ** If instruction in position 'node' is not a TESTSET, return 0 ("fails"). | ||
254 | ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination | ||
255 | ** register. Otherwise, change instruction to a simple 'TEST' (produces | ||
256 | ** no register value) | ||
257 | */ | ||
258 | static int patchtestreg (FuncState *fs, int node, int reg) { | ||
259 | Instruction *i = getjumpcontrol(fs, node); | ||
260 | if (GET_OPCODE(*i) != OP_TESTSET) | ||
261 | return 0; /* cannot patch other instructions */ | ||
262 | if (reg != NO_REG && reg != GETARG_B(*i)) | ||
263 | SETARG_A(*i, reg); | ||
264 | else { | ||
265 | /* no register to put value or register already has the value; | ||
266 | change instruction to simple test */ | ||
267 | *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i)); | ||
268 | } | ||
269 | return 1; | ||
270 | } | ||
271 | |||
272 | |||
273 | /* | ||
274 | ** Traverse a list of tests ensuring no one produces a value | ||
275 | */ | ||
276 | static void removevalues (FuncState *fs, int list) { | ||
277 | for (; list != NO_JUMP; list = getjump(fs, list)) | ||
278 | patchtestreg(fs, list, NO_REG); | ||
279 | } | ||
280 | |||
281 | |||
282 | /* | ||
283 | ** Traverse a list of tests, patching their destination address and | ||
284 | ** registers: tests producing values jump to 'vtarget' (and put their | ||
285 | ** values in 'reg'), other tests jump to 'dtarget'. | ||
286 | */ | ||
287 | static void patchlistaux (FuncState *fs, int list, int vtarget, int reg, | ||
288 | int dtarget) { | ||
289 | while (list != NO_JUMP) { | ||
290 | int next = getjump(fs, list); | ||
291 | if (patchtestreg(fs, list, reg)) | ||
292 | fixjump(fs, list, vtarget); | ||
293 | else | ||
294 | fixjump(fs, list, dtarget); /* jump to default target */ | ||
295 | list = next; | ||
296 | } | ||
297 | } | ||
298 | |||
299 | |||
300 | /* | ||
301 | ** Path all jumps in 'list' to jump to 'target'. | ||
302 | ** (The assert means that we cannot fix a jump to a forward address | ||
303 | ** because we only know addresses once code is generated.) | ||
304 | */ | ||
305 | void luaK_patchlist (FuncState *fs, int list, int target) { | ||
306 | lua_assert(target <= fs->pc); | ||
307 | patchlistaux(fs, list, target, NO_REG, target); | ||
308 | } | ||
309 | |||
310 | |||
311 | void luaK_patchtohere (FuncState *fs, int list) { | ||
312 | int hr = luaK_getlabel(fs); /* mark "here" as a jump target */ | ||
313 | luaK_patchlist(fs, list, hr); | ||
314 | } | ||
315 | |||
316 | |||
317 | /* limit for difference between lines in relative line info. */ | ||
318 | #define LIMLINEDIFF 0x80 | ||
319 | |||
320 | |||
321 | /* | ||
322 | ** Save line info for a new instruction. If difference from last line | ||
323 | ** does not fit in a byte, of after that many instructions, save a new | ||
324 | ** absolute line info; (in that case, the special value 'ABSLINEINFO' | ||
325 | ** in 'lineinfo' signals the existence of this absolute information.) | ||
326 | ** Otherwise, store the difference from last line in 'lineinfo'. | ||
327 | */ | ||
328 | static void savelineinfo (FuncState *fs, Proto *f, int line) { | ||
329 | int linedif = line - fs->previousline; | ||
330 | int pc = fs->pc - 1; /* last instruction coded */ | ||
331 | if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) { | ||
332 | luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo, | ||
333 | f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines"); | ||
334 | f->abslineinfo[fs->nabslineinfo].pc = pc; | ||
335 | f->abslineinfo[fs->nabslineinfo++].line = line; | ||
336 | linedif = ABSLINEINFO; /* signal that there is absolute information */ | ||
337 | fs->iwthabs = 1; /* restart counter */ | ||
338 | } | ||
339 | luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte, | ||
340 | MAX_INT, "opcodes"); | ||
341 | f->lineinfo[pc] = linedif; | ||
342 | fs->previousline = line; /* last line saved */ | ||
343 | } | ||
344 | |||
345 | |||
346 | /* | ||
347 | ** Remove line information from the last instruction. | ||
348 | ** If line information for that instruction is absolute, set 'iwthabs' | ||
349 | ** above its max to force the new (replacing) instruction to have | ||
350 | ** absolute line info, too. | ||
351 | */ | ||
352 | static void removelastlineinfo (FuncState *fs) { | ||
353 | Proto *f = fs->f; | ||
354 | int pc = fs->pc - 1; /* last instruction coded */ | ||
355 | if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */ | ||
356 | fs->previousline -= f->lineinfo[pc]; /* correct last line saved */ | ||
357 | fs->iwthabs--; /* undo previous increment */ | ||
358 | } | ||
359 | else { /* absolute line information */ | ||
360 | lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc); | ||
361 | fs->nabslineinfo--; /* remove it */ | ||
362 | fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */ | ||
363 | } | ||
364 | } | ||
365 | |||
366 | |||
367 | /* | ||
368 | ** Remove the last instruction created, correcting line information | ||
369 | ** accordingly. | ||
370 | */ | ||
371 | static void removelastinstruction (FuncState *fs) { | ||
372 | removelastlineinfo(fs); | ||
373 | fs->pc--; | ||
374 | } | ||
375 | |||
376 | |||
377 | /* | ||
378 | ** Emit instruction 'i', checking for array sizes and saving also its | ||
379 | ** line information. Return 'i' position. | ||
380 | */ | ||
381 | int luaK_code (FuncState *fs, Instruction i) { | ||
382 | Proto *f = fs->f; | ||
383 | /* put new instruction in code array */ | ||
384 | luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction, | ||
385 | MAX_INT, "opcodes"); | ||
386 | f->code[fs->pc++] = i; | ||
387 | savelineinfo(fs, f, fs->ls->lastline); | ||
388 | return fs->pc - 1; /* index of new instruction */ | ||
389 | } | ||
390 | |||
391 | |||
392 | /* | ||
393 | ** Format and emit an 'iABC' instruction. (Assertions check consistency | ||
394 | ** of parameters versus opcode.) | ||
395 | */ | ||
396 | int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) { | ||
397 | lua_assert(getOpMode(o) == iABC); | ||
398 | lua_assert(a <= MAXARG_A && b <= MAXARG_B && | ||
399 | c <= MAXARG_C && (k & ~1) == 0); | ||
400 | return luaK_code(fs, CREATE_ABCk(o, a, b, c, k)); | ||
401 | } | ||
402 | |||
403 | |||
404 | /* | ||
405 | ** Format and emit an 'iABx' instruction. | ||
406 | */ | ||
407 | int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) { | ||
408 | lua_assert(getOpMode(o) == iABx); | ||
409 | lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx); | ||
410 | return luaK_code(fs, CREATE_ABx(o, a, bc)); | ||
411 | } | ||
412 | |||
413 | |||
414 | /* | ||
415 | ** Format and emit an 'iAsBx' instruction. | ||
416 | */ | ||
417 | int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) { | ||
418 | unsigned int b = bc + OFFSET_sBx; | ||
419 | lua_assert(getOpMode(o) == iAsBx); | ||
420 | lua_assert(a <= MAXARG_A && b <= MAXARG_Bx); | ||
421 | return luaK_code(fs, CREATE_ABx(o, a, b)); | ||
422 | } | ||
423 | |||
424 | |||
425 | /* | ||
426 | ** Format and emit an 'isJ' instruction. | ||
427 | */ | ||
428 | static int codesJ (FuncState *fs, OpCode o, int sj, int k) { | ||
429 | unsigned int j = sj + OFFSET_sJ; | ||
430 | lua_assert(getOpMode(o) == isJ); | ||
431 | lua_assert(j <= MAXARG_sJ && (k & ~1) == 0); | ||
432 | return luaK_code(fs, CREATE_sJ(o, j, k)); | ||
433 | } | ||
434 | |||
435 | |||
436 | /* | ||
437 | ** Emit an "extra argument" instruction (format 'iAx') | ||
438 | */ | ||
439 | static int codeextraarg (FuncState *fs, int a) { | ||
440 | lua_assert(a <= MAXARG_Ax); | ||
441 | return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a)); | ||
442 | } | ||
443 | |||
444 | |||
445 | /* | ||
446 | ** Emit a "load constant" instruction, using either 'OP_LOADK' | ||
447 | ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX' | ||
448 | ** instruction with "extra argument". | ||
449 | */ | ||
450 | static int luaK_codek (FuncState *fs, int reg, int k) { | ||
451 | if (k <= MAXARG_Bx) | ||
452 | return luaK_codeABx(fs, OP_LOADK, reg, k); | ||
453 | else { | ||
454 | int p = luaK_codeABx(fs, OP_LOADKX, reg, 0); | ||
455 | codeextraarg(fs, k); | ||
456 | return p; | ||
457 | } | ||
458 | } | ||
459 | |||
460 | |||
461 | /* | ||
462 | ** Check register-stack level, keeping track of its maximum size | ||
463 | ** in field 'maxstacksize' | ||
464 | */ | ||
465 | void luaK_checkstack (FuncState *fs, int n) { | ||
466 | int newstack = fs->freereg + n; | ||
467 | if (newstack > fs->f->maxstacksize) { | ||
468 | if (newstack >= MAXREGS) | ||
469 | luaX_syntaxerror(fs->ls, | ||
470 | "function or expression needs too many registers"); | ||
471 | fs->f->maxstacksize = cast_byte(newstack); | ||
472 | } | ||
473 | } | ||
474 | |||
475 | |||
476 | /* | ||
477 | ** Reserve 'n' registers in register stack | ||
478 | */ | ||
479 | void luaK_reserveregs (FuncState *fs, int n) { | ||
480 | luaK_checkstack(fs, n); | ||
481 | fs->freereg += n; | ||
482 | } | ||
483 | |||
484 | |||
485 | /* | ||
486 | ** Free register 'reg', if it is neither a constant index nor | ||
487 | ** a local variable. | ||
488 | ) | ||
489 | */ | ||
490 | static void freereg (FuncState *fs, int reg) { | ||
491 | if (reg >= luaY_nvarstack(fs)) { | ||
492 | fs->freereg--; | ||
493 | lua_assert(reg == fs->freereg); | ||
494 | } | ||
495 | } | ||
496 | |||
497 | |||
498 | /* | ||
499 | ** Free two registers in proper order | ||
500 | */ | ||
501 | static void freeregs (FuncState *fs, int r1, int r2) { | ||
502 | if (r1 > r2) { | ||
503 | freereg(fs, r1); | ||
504 | freereg(fs, r2); | ||
505 | } | ||
506 | else { | ||
507 | freereg(fs, r2); | ||
508 | freereg(fs, r1); | ||
509 | } | ||
510 | } | ||
511 | |||
512 | |||
513 | /* | ||
514 | ** Free register used by expression 'e' (if any) | ||
515 | */ | ||
516 | static void freeexp (FuncState *fs, expdesc *e) { | ||
517 | if (e->k == VNONRELOC) | ||
518 | freereg(fs, e->u.info); | ||
519 | } | ||
520 | |||
521 | |||
522 | /* | ||
523 | ** Free registers used by expressions 'e1' and 'e2' (if any) in proper | ||
524 | ** order. | ||
525 | */ | ||
526 | static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) { | ||
527 | int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1; | ||
528 | int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1; | ||
529 | freeregs(fs, r1, r2); | ||
530 | } | ||
531 | |||
532 | |||
533 | /* | ||
534 | ** Add constant 'v' to prototype's list of constants (field 'k'). | ||
535 | ** Use scanner's table to cache position of constants in constant list | ||
536 | ** and try to reuse constants. Because some values should not be used | ||
537 | ** as keys (nil cannot be a key, integer keys can collapse with float | ||
538 | ** keys), the caller must provide a useful 'key' for indexing the cache. | ||
539 | ** Note that all functions share the same table, so entering or exiting | ||
540 | ** a function can make some indices wrong. | ||
541 | */ | ||
542 | static int addk (FuncState *fs, TValue *key, TValue *v) { | ||
543 | TValue val; | ||
544 | lua_State *L = fs->ls->L; | ||
545 | Proto *f = fs->f; | ||
546 | const TValue *idx = luaH_get(fs->ls->h, key); /* query scanner table */ | ||
547 | int k, oldsize; | ||
548 | if (ttisinteger(idx)) { /* is there an index there? */ | ||
549 | k = cast_int(ivalue(idx)); | ||
550 | /* correct value? (warning: must distinguish floats from integers!) */ | ||
551 | if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) && | ||
552 | luaV_rawequalobj(&f->k[k], v)) | ||
553 | return k; /* reuse index */ | ||
554 | } | ||
555 | /* constant not found; create a new entry */ | ||
556 | oldsize = f->sizek; | ||
557 | k = fs->nk; | ||
558 | /* numerical value does not need GC barrier; | ||
559 | table has no metatable, so it does not need to invalidate cache */ | ||
560 | setivalue(&val, k); | ||
561 | luaH_finishset(L, fs->ls->h, key, idx, &val); | ||
562 | luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants"); | ||
563 | while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]); | ||
564 | setobj(L, &f->k[k], v); | ||
565 | fs->nk++; | ||
566 | luaC_barrier(L, f, v); | ||
567 | return k; | ||
568 | } | ||
569 | |||
570 | |||
571 | /* | ||
572 | ** Add a string to list of constants and return its index. | ||
573 | */ | ||
574 | static int stringK (FuncState *fs, TString *s) { | ||
575 | TValue o; | ||
576 | setsvalue(fs->ls->L, &o, s); | ||
577 | return addk(fs, &o, &o); /* use string itself as key */ | ||
578 | } | ||
579 | |||
580 | |||
581 | /* | ||
582 | ** Add an integer to list of constants and return its index. | ||
583 | ** Integers use userdata as keys to avoid collision with floats with | ||
584 | ** same value; conversion to 'void*' is used only for hashing, so there | ||
585 | ** are no "precision" problems. | ||
586 | */ | ||
587 | static int luaK_intK (FuncState *fs, lua_Integer n) { | ||
588 | TValue k, o; | ||
589 | setpvalue(&k, cast_voidp(cast_sizet(n))); | ||
590 | setivalue(&o, n); | ||
591 | return addk(fs, &k, &o); | ||
592 | } | ||
593 | |||
594 | /* | ||
595 | ** Add a float to list of constants and return its index. | ||
596 | */ | ||
597 | static int luaK_numberK (FuncState *fs, lua_Number r) { | ||
598 | TValue o; | ||
599 | setfltvalue(&o, r); | ||
600 | return addk(fs, &o, &o); /* use number itself as key */ | ||
601 | } | ||
602 | |||
603 | |||
604 | /* | ||
605 | ** Add a false to list of constants and return its index. | ||
606 | */ | ||
607 | static int boolF (FuncState *fs) { | ||
608 | TValue o; | ||
609 | setbfvalue(&o); | ||
610 | return addk(fs, &o, &o); /* use boolean itself as key */ | ||
611 | } | ||
612 | |||
613 | |||
614 | /* | ||
615 | ** Add a true to list of constants and return its index. | ||
616 | */ | ||
617 | static int boolT (FuncState *fs) { | ||
618 | TValue o; | ||
619 | setbtvalue(&o); | ||
620 | return addk(fs, &o, &o); /* use boolean itself as key */ | ||
621 | } | ||
622 | |||
623 | |||
624 | /* | ||
625 | ** Add nil to list of constants and return its index. | ||
626 | */ | ||
627 | static int nilK (FuncState *fs) { | ||
628 | TValue k, v; | ||
629 | setnilvalue(&v); | ||
630 | /* cannot use nil as key; instead use table itself to represent nil */ | ||
631 | sethvalue(fs->ls->L, &k, fs->ls->h); | ||
632 | return addk(fs, &k, &v); | ||
633 | } | ||
634 | |||
635 | |||
636 | /* | ||
637 | ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to | ||
638 | ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of | ||
639 | ** overflows in the hidden addition inside 'int2sC'. | ||
640 | */ | ||
641 | static int fitsC (lua_Integer i) { | ||
642 | return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C)); | ||
643 | } | ||
644 | |||
645 | |||
646 | /* | ||
647 | ** Check whether 'i' can be stored in an 'sBx' operand. | ||
648 | */ | ||
649 | static int fitsBx (lua_Integer i) { | ||
650 | return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx); | ||
651 | } | ||
652 | |||
653 | |||
654 | void luaK_int (FuncState *fs, int reg, lua_Integer i) { | ||
655 | if (fitsBx(i)) | ||
656 | luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i)); | ||
657 | else | ||
658 | luaK_codek(fs, reg, luaK_intK(fs, i)); | ||
659 | } | ||
660 | |||
661 | |||
662 | static void luaK_float (FuncState *fs, int reg, lua_Number f) { | ||
663 | lua_Integer fi; | ||
664 | if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi)) | ||
665 | luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi)); | ||
666 | else | ||
667 | luaK_codek(fs, reg, luaK_numberK(fs, f)); | ||
668 | } | ||
669 | |||
670 | |||
671 | /* | ||
672 | ** Convert a constant in 'v' into an expression description 'e' | ||
673 | */ | ||
674 | static void const2exp (TValue *v, expdesc *e) { | ||
675 | switch (ttypetag(v)) { | ||
676 | case LUA_VNUMINT: | ||
677 | e->k = VKINT; e->u.ival = ivalue(v); | ||
678 | break; | ||
679 | case LUA_VNUMFLT: | ||
680 | e->k = VKFLT; e->u.nval = fltvalue(v); | ||
681 | break; | ||
682 | case LUA_VFALSE: | ||
683 | e->k = VFALSE; | ||
684 | break; | ||
685 | case LUA_VTRUE: | ||
686 | e->k = VTRUE; | ||
687 | break; | ||
688 | case LUA_VNIL: | ||
689 | e->k = VNIL; | ||
690 | break; | ||
691 | case LUA_VSHRSTR: case LUA_VLNGSTR: | ||
692 | e->k = VKSTR; e->u.strval = tsvalue(v); | ||
693 | break; | ||
694 | default: lua_assert(0); | ||
695 | } | ||
696 | } | ||
697 | |||
698 | |||
699 | /* | ||
700 | ** Fix an expression to return the number of results 'nresults'. | ||
701 | ** 'e' must be a multi-ret expression (function call or vararg). | ||
702 | */ | ||
703 | void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) { | ||
704 | Instruction *pc = &getinstruction(fs, e); | ||
705 | if (e->k == VCALL) /* expression is an open function call? */ | ||
706 | SETARG_C(*pc, nresults + 1); | ||
707 | else { | ||
708 | lua_assert(e->k == VVARARG); | ||
709 | SETARG_C(*pc, nresults + 1); | ||
710 | SETARG_A(*pc, fs->freereg); | ||
711 | luaK_reserveregs(fs, 1); | ||
712 | } | ||
713 | } | ||
714 | |||
715 | |||
716 | /* | ||
717 | ** Convert a VKSTR to a VK | ||
718 | */ | ||
719 | static void str2K (FuncState *fs, expdesc *e) { | ||
720 | lua_assert(e->k == VKSTR); | ||
721 | e->u.info = stringK(fs, e->u.strval); | ||
722 | e->k = VK; | ||
723 | } | ||
724 | |||
725 | |||
726 | /* | ||
727 | ** Fix an expression to return one result. | ||
728 | ** If expression is not a multi-ret expression (function call or | ||
729 | ** vararg), it already returns one result, so nothing needs to be done. | ||
730 | ** Function calls become VNONRELOC expressions (as its result comes | ||
731 | ** fixed in the base register of the call), while vararg expressions | ||
732 | ** become VRELOC (as OP_VARARG puts its results where it wants). | ||
733 | ** (Calls are created returning one result, so that does not need | ||
734 | ** to be fixed.) | ||
735 | */ | ||
736 | void luaK_setoneret (FuncState *fs, expdesc *e) { | ||
737 | if (e->k == VCALL) { /* expression is an open function call? */ | ||
738 | /* already returns 1 value */ | ||
739 | lua_assert(GETARG_C(getinstruction(fs, e)) == 2); | ||
740 | e->k = VNONRELOC; /* result has fixed position */ | ||
741 | e->u.info = GETARG_A(getinstruction(fs, e)); | ||
742 | } | ||
743 | else if (e->k == VVARARG) { | ||
744 | SETARG_C(getinstruction(fs, e), 2); | ||
745 | e->k = VRELOC; /* can relocate its simple result */ | ||
746 | } | ||
747 | } | ||
748 | |||
749 | |||
750 | /* | ||
751 | ** Ensure that expression 'e' is not a variable (nor a <const>). | ||
752 | ** (Expression still may have jump lists.) | ||
753 | */ | ||
754 | void luaK_dischargevars (FuncState *fs, expdesc *e) { | ||
755 | switch (e->k) { | ||
756 | case VCONST: { | ||
757 | const2exp(const2val(fs, e), e); | ||
758 | break; | ||
759 | } | ||
760 | case VLOCAL: { /* already in a register */ | ||
761 | e->u.info = e->u.var.ridx; | ||
762 | e->k = VNONRELOC; /* becomes a non-relocatable value */ | ||
763 | break; | ||
764 | } | ||
765 | case VUPVAL: { /* move value to some (pending) register */ | ||
766 | e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0); | ||
767 | e->k = VRELOC; | ||
768 | break; | ||
769 | } | ||
770 | case VINDEXUP: { | ||
771 | e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx); | ||
772 | e->k = VRELOC; | ||
773 | break; | ||
774 | } | ||
775 | case VINDEXI: { | ||
776 | freereg(fs, e->u.ind.t); | ||
777 | e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx); | ||
778 | e->k = VRELOC; | ||
779 | break; | ||
780 | } | ||
781 | case VINDEXSTR: { | ||
782 | freereg(fs, e->u.ind.t); | ||
783 | e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx); | ||
784 | e->k = VRELOC; | ||
785 | break; | ||
786 | } | ||
787 | case VINDEXED: { | ||
788 | freeregs(fs, e->u.ind.t, e->u.ind.idx); | ||
789 | e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx); | ||
790 | e->k = VRELOC; | ||
791 | break; | ||
792 | } | ||
793 | case VVARARG: case VCALL: { | ||
794 | luaK_setoneret(fs, e); | ||
795 | break; | ||
796 | } | ||
797 | default: break; /* there is one value available (somewhere) */ | ||
798 | } | ||
799 | } | ||
800 | |||
801 | |||
802 | /* | ||
803 | ** Ensure expression value is in register 'reg', making 'e' a | ||
804 | ** non-relocatable expression. | ||
805 | ** (Expression still may have jump lists.) | ||
806 | */ | ||
807 | static void discharge2reg (FuncState *fs, expdesc *e, int reg) { | ||
808 | luaK_dischargevars(fs, e); | ||
809 | switch (e->k) { | ||
810 | case VNIL: { | ||
811 | luaK_nil(fs, reg, 1); | ||
812 | break; | ||
813 | } | ||
814 | case VFALSE: { | ||
815 | luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0); | ||
816 | break; | ||
817 | } | ||
818 | case VTRUE: { | ||
819 | luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0); | ||
820 | break; | ||
821 | } | ||
822 | case VKSTR: { | ||
823 | str2K(fs, e); | ||
824 | } /* FALLTHROUGH */ | ||
825 | case VK: { | ||
826 | luaK_codek(fs, reg, e->u.info); | ||
827 | break; | ||
828 | } | ||
829 | case VKFLT: { | ||
830 | luaK_float(fs, reg, e->u.nval); | ||
831 | break; | ||
832 | } | ||
833 | case VKINT: { | ||
834 | luaK_int(fs, reg, e->u.ival); | ||
835 | break; | ||
836 | } | ||
837 | case VRELOC: { | ||
838 | Instruction *pc = &getinstruction(fs, e); | ||
839 | SETARG_A(*pc, reg); /* instruction will put result in 'reg' */ | ||
840 | break; | ||
841 | } | ||
842 | case VNONRELOC: { | ||
843 | if (reg != e->u.info) | ||
844 | luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0); | ||
845 | break; | ||
846 | } | ||
847 | default: { | ||
848 | lua_assert(e->k == VJMP); | ||
849 | return; /* nothing to do... */ | ||
850 | } | ||
851 | } | ||
852 | e->u.info = reg; | ||
853 | e->k = VNONRELOC; | ||
854 | } | ||
855 | |||
856 | |||
857 | /* | ||
858 | ** Ensure expression value is in a register, making 'e' a | ||
859 | ** non-relocatable expression. | ||
860 | ** (Expression still may have jump lists.) | ||
861 | */ | ||
862 | static void discharge2anyreg (FuncState *fs, expdesc *e) { | ||
863 | if (e->k != VNONRELOC) { /* no fixed register yet? */ | ||
864 | luaK_reserveregs(fs, 1); /* get a register */ | ||
865 | discharge2reg(fs, e, fs->freereg-1); /* put value there */ | ||
866 | } | ||
867 | } | ||
868 | |||
869 | |||
870 | static int code_loadbool (FuncState *fs, int A, OpCode op) { | ||
871 | luaK_getlabel(fs); /* those instructions may be jump targets */ | ||
872 | return luaK_codeABC(fs, op, A, 0, 0); | ||
873 | } | ||
874 | |||
875 | |||
876 | /* | ||
877 | ** check whether list has any jump that do not produce a value | ||
878 | ** or produce an inverted value | ||
879 | */ | ||
880 | static int need_value (FuncState *fs, int list) { | ||
881 | for (; list != NO_JUMP; list = getjump(fs, list)) { | ||
882 | Instruction i = *getjumpcontrol(fs, list); | ||
883 | if (GET_OPCODE(i) != OP_TESTSET) return 1; | ||
884 | } | ||
885 | return 0; /* not found */ | ||
886 | } | ||
887 | |||
888 | |||
889 | /* | ||
890 | ** Ensures final expression result (which includes results from its | ||
891 | ** jump lists) is in register 'reg'. | ||
892 | ** If expression has jumps, need to patch these jumps either to | ||
893 | ** its final position or to "load" instructions (for those tests | ||
894 | ** that do not produce values). | ||
895 | */ | ||
896 | static void exp2reg (FuncState *fs, expdesc *e, int reg) { | ||
897 | discharge2reg(fs, e, reg); | ||
898 | if (e->k == VJMP) /* expression itself is a test? */ | ||
899 | luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */ | ||
900 | if (hasjumps(e)) { | ||
901 | int final; /* position after whole expression */ | ||
902 | int p_f = NO_JUMP; /* position of an eventual LOAD false */ | ||
903 | int p_t = NO_JUMP; /* position of an eventual LOAD true */ | ||
904 | if (need_value(fs, e->t) || need_value(fs, e->f)) { | ||
905 | int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs); | ||
906 | p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */ | ||
907 | p_t = code_loadbool(fs, reg, OP_LOADTRUE); | ||
908 | /* jump around these booleans if 'e' is not a test */ | ||
909 | luaK_patchtohere(fs, fj); | ||
910 | } | ||
911 | final = luaK_getlabel(fs); | ||
912 | patchlistaux(fs, e->f, final, reg, p_f); | ||
913 | patchlistaux(fs, e->t, final, reg, p_t); | ||
914 | } | ||
915 | e->f = e->t = NO_JUMP; | ||
916 | e->u.info = reg; | ||
917 | e->k = VNONRELOC; | ||
918 | } | ||
919 | |||
920 | |||
921 | /* | ||
922 | ** Ensures final expression result is in next available register. | ||
923 | */ | ||
924 | void luaK_exp2nextreg (FuncState *fs, expdesc *e) { | ||
925 | luaK_dischargevars(fs, e); | ||
926 | freeexp(fs, e); | ||
927 | luaK_reserveregs(fs, 1); | ||
928 | exp2reg(fs, e, fs->freereg - 1); | ||
929 | } | ||
930 | |||
931 | |||
932 | /* | ||
933 | ** Ensures final expression result is in some (any) register | ||
934 | ** and return that register. | ||
935 | */ | ||
936 | int luaK_exp2anyreg (FuncState *fs, expdesc *e) { | ||
937 | luaK_dischargevars(fs, e); | ||
938 | if (e->k == VNONRELOC) { /* expression already has a register? */ | ||
939 | if (!hasjumps(e)) /* no jumps? */ | ||
940 | return e->u.info; /* result is already in a register */ | ||
941 | if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */ | ||
942 | exp2reg(fs, e, e->u.info); /* put final result in it */ | ||
943 | return e->u.info; | ||
944 | } | ||
945 | /* else expression has jumps and cannot change its register | ||
946 | to hold the jump values, because it is a local variable. | ||
947 | Go through to the default case. */ | ||
948 | } | ||
949 | luaK_exp2nextreg(fs, e); /* default: use next available register */ | ||
950 | return e->u.info; | ||
951 | } | ||
952 | |||
953 | |||
954 | /* | ||
955 | ** Ensures final expression result is either in a register | ||
956 | ** or in an upvalue. | ||
957 | */ | ||
958 | void luaK_exp2anyregup (FuncState *fs, expdesc *e) { | ||
959 | if (e->k != VUPVAL || hasjumps(e)) | ||
960 | luaK_exp2anyreg(fs, e); | ||
961 | } | ||
962 | |||
963 | |||
964 | /* | ||
965 | ** Ensures final expression result is either in a register | ||
966 | ** or it is a constant. | ||
967 | */ | ||
968 | void luaK_exp2val (FuncState *fs, expdesc *e) { | ||
969 | if (hasjumps(e)) | ||
970 | luaK_exp2anyreg(fs, e); | ||
971 | else | ||
972 | luaK_dischargevars(fs, e); | ||
973 | } | ||
974 | |||
975 | |||
976 | /* | ||
977 | ** Try to make 'e' a K expression with an index in the range of R/K | ||
978 | ** indices. Return true iff succeeded. | ||
979 | */ | ||
980 | static int luaK_exp2K (FuncState *fs, expdesc *e) { | ||
981 | if (!hasjumps(e)) { | ||
982 | int info; | ||
983 | switch (e->k) { /* move constants to 'k' */ | ||
984 | case VTRUE: info = boolT(fs); break; | ||
985 | case VFALSE: info = boolF(fs); break; | ||
986 | case VNIL: info = nilK(fs); break; | ||
987 | case VKINT: info = luaK_intK(fs, e->u.ival); break; | ||
988 | case VKFLT: info = luaK_numberK(fs, e->u.nval); break; | ||
989 | case VKSTR: info = stringK(fs, e->u.strval); break; | ||
990 | case VK: info = e->u.info; break; | ||
991 | default: return 0; /* not a constant */ | ||
992 | } | ||
993 | if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */ | ||
994 | e->k = VK; /* make expression a 'K' expression */ | ||
995 | e->u.info = info; | ||
996 | return 1; | ||
997 | } | ||
998 | } | ||
999 | /* else, expression doesn't fit; leave it unchanged */ | ||
1000 | return 0; | ||
1001 | } | ||
1002 | |||
1003 | |||
1004 | /* | ||
1005 | ** Ensures final expression result is in a valid R/K index | ||
1006 | ** (that is, it is either in a register or in 'k' with an index | ||
1007 | ** in the range of R/K indices). | ||
1008 | ** Returns 1 iff expression is K. | ||
1009 | */ | ||
1010 | int luaK_exp2RK (FuncState *fs, expdesc *e) { | ||
1011 | if (luaK_exp2K(fs, e)) | ||
1012 | return 1; | ||
1013 | else { /* not a constant in the right range: put it in a register */ | ||
1014 | luaK_exp2anyreg(fs, e); | ||
1015 | return 0; | ||
1016 | } | ||
1017 | } | ||
1018 | |||
1019 | |||
1020 | static void codeABRK (FuncState *fs, OpCode o, int a, int b, | ||
1021 | expdesc *ec) { | ||
1022 | int k = luaK_exp2RK(fs, ec); | ||
1023 | luaK_codeABCk(fs, o, a, b, ec->u.info, k); | ||
1024 | } | ||
1025 | |||
1026 | |||
1027 | /* | ||
1028 | ** Generate code to store result of expression 'ex' into variable 'var'. | ||
1029 | */ | ||
1030 | void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) { | ||
1031 | switch (var->k) { | ||
1032 | case VLOCAL: { | ||
1033 | freeexp(fs, ex); | ||
1034 | exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */ | ||
1035 | return; | ||
1036 | } | ||
1037 | case VUPVAL: { | ||
1038 | int e = luaK_exp2anyreg(fs, ex); | ||
1039 | luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0); | ||
1040 | break; | ||
1041 | } | ||
1042 | case VINDEXUP: { | ||
1043 | codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex); | ||
1044 | break; | ||
1045 | } | ||
1046 | case VINDEXI: { | ||
1047 | codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex); | ||
1048 | break; | ||
1049 | } | ||
1050 | case VINDEXSTR: { | ||
1051 | codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex); | ||
1052 | break; | ||
1053 | } | ||
1054 | case VINDEXED: { | ||
1055 | codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex); | ||
1056 | break; | ||
1057 | } | ||
1058 | default: lua_assert(0); /* invalid var kind to store */ | ||
1059 | } | ||
1060 | freeexp(fs, ex); | ||
1061 | } | ||
1062 | |||
1063 | |||
1064 | /* | ||
1065 | ** Emit SELF instruction (convert expression 'e' into 'e:key(e,'). | ||
1066 | */ | ||
1067 | void luaK_self (FuncState *fs, expdesc *e, expdesc *key) { | ||
1068 | int ereg; | ||
1069 | luaK_exp2anyreg(fs, e); | ||
1070 | ereg = e->u.info; /* register where 'e' was placed */ | ||
1071 | freeexp(fs, e); | ||
1072 | e->u.info = fs->freereg; /* base register for op_self */ | ||
1073 | e->k = VNONRELOC; /* self expression has a fixed register */ | ||
1074 | luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */ | ||
1075 | codeABRK(fs, OP_SELF, e->u.info, ereg, key); | ||
1076 | freeexp(fs, key); | ||
1077 | } | ||
1078 | |||
1079 | |||
1080 | /* | ||
1081 | ** Negate condition 'e' (where 'e' is a comparison). | ||
1082 | */ | ||
1083 | static void negatecondition (FuncState *fs, expdesc *e) { | ||
1084 | Instruction *pc = getjumpcontrol(fs, e->u.info); | ||
1085 | lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET && | ||
1086 | GET_OPCODE(*pc) != OP_TEST); | ||
1087 | SETARG_k(*pc, (GETARG_k(*pc) ^ 1)); | ||
1088 | } | ||
1089 | |||
1090 | |||
1091 | /* | ||
1092 | ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond' | ||
1093 | ** is true, code will jump if 'e' is true.) Return jump position. | ||
1094 | ** Optimize when 'e' is 'not' something, inverting the condition | ||
1095 | ** and removing the 'not'. | ||
1096 | */ | ||
1097 | static int jumponcond (FuncState *fs, expdesc *e, int cond) { | ||
1098 | if (e->k == VRELOC) { | ||
1099 | Instruction ie = getinstruction(fs, e); | ||
1100 | if (GET_OPCODE(ie) == OP_NOT) { | ||
1101 | removelastinstruction(fs); /* remove previous OP_NOT */ | ||
1102 | return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond); | ||
1103 | } | ||
1104 | /* else go through */ | ||
1105 | } | ||
1106 | discharge2anyreg(fs, e); | ||
1107 | freeexp(fs, e); | ||
1108 | return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond); | ||
1109 | } | ||
1110 | |||
1111 | |||
1112 | /* | ||
1113 | ** Emit code to go through if 'e' is true, jump otherwise. | ||
1114 | */ | ||
1115 | void luaK_goiftrue (FuncState *fs, expdesc *e) { | ||
1116 | int pc; /* pc of new jump */ | ||
1117 | luaK_dischargevars(fs, e); | ||
1118 | switch (e->k) { | ||
1119 | case VJMP: { /* condition? */ | ||
1120 | negatecondition(fs, e); /* jump when it is false */ | ||
1121 | pc = e->u.info; /* save jump position */ | ||
1122 | break; | ||
1123 | } | ||
1124 | case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: { | ||
1125 | pc = NO_JUMP; /* always true; do nothing */ | ||
1126 | break; | ||
1127 | } | ||
1128 | default: { | ||
1129 | pc = jumponcond(fs, e, 0); /* jump when false */ | ||
1130 | break; | ||
1131 | } | ||
1132 | } | ||
1133 | luaK_concat(fs, &e->f, pc); /* insert new jump in false list */ | ||
1134 | luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */ | ||
1135 | e->t = NO_JUMP; | ||
1136 | } | ||
1137 | |||
1138 | |||
1139 | /* | ||
1140 | ** Emit code to go through if 'e' is false, jump otherwise. | ||
1141 | */ | ||
1142 | void luaK_goiffalse (FuncState *fs, expdesc *e) { | ||
1143 | int pc; /* pc of new jump */ | ||
1144 | luaK_dischargevars(fs, e); | ||
1145 | switch (e->k) { | ||
1146 | case VJMP: { | ||
1147 | pc = e->u.info; /* already jump if true */ | ||
1148 | break; | ||
1149 | } | ||
1150 | case VNIL: case VFALSE: { | ||
1151 | pc = NO_JUMP; /* always false; do nothing */ | ||
1152 | break; | ||
1153 | } | ||
1154 | default: { | ||
1155 | pc = jumponcond(fs, e, 1); /* jump if true */ | ||
1156 | break; | ||
1157 | } | ||
1158 | } | ||
1159 | luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */ | ||
1160 | luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */ | ||
1161 | e->f = NO_JUMP; | ||
1162 | } | ||
1163 | |||
1164 | |||
1165 | /* | ||
1166 | ** Code 'not e', doing constant folding. | ||
1167 | */ | ||
1168 | static void codenot (FuncState *fs, expdesc *e) { | ||
1169 | switch (e->k) { | ||
1170 | case VNIL: case VFALSE: { | ||
1171 | e->k = VTRUE; /* true == not nil == not false */ | ||
1172 | break; | ||
1173 | } | ||
1174 | case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: { | ||
1175 | e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */ | ||
1176 | break; | ||
1177 | } | ||
1178 | case VJMP: { | ||
1179 | negatecondition(fs, e); | ||
1180 | break; | ||
1181 | } | ||
1182 | case VRELOC: | ||
1183 | case VNONRELOC: { | ||
1184 | discharge2anyreg(fs, e); | ||
1185 | freeexp(fs, e); | ||
1186 | e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0); | ||
1187 | e->k = VRELOC; | ||
1188 | break; | ||
1189 | } | ||
1190 | default: lua_assert(0); /* cannot happen */ | ||
1191 | } | ||
1192 | /* interchange true and false lists */ | ||
1193 | { int temp = e->f; e->f = e->t; e->t = temp; } | ||
1194 | removevalues(fs, e->f); /* values are useless when negated */ | ||
1195 | removevalues(fs, e->t); | ||
1196 | } | ||
1197 | |||
1198 | |||
1199 | /* | ||
1200 | ** Check whether expression 'e' is a small literal string | ||
1201 | */ | ||
1202 | static int isKstr (FuncState *fs, expdesc *e) { | ||
1203 | return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B && | ||
1204 | ttisshrstring(&fs->f->k[e->u.info])); | ||
1205 | } | ||
1206 | |||
1207 | /* | ||
1208 | ** Check whether expression 'e' is a literal integer. | ||
1209 | */ | ||
1210 | int luaK_isKint (expdesc *e) { | ||
1211 | return (e->k == VKINT && !hasjumps(e)); | ||
1212 | } | ||
1213 | |||
1214 | |||
1215 | /* | ||
1216 | ** Check whether expression 'e' is a literal integer in | ||
1217 | ** proper range to fit in register C | ||
1218 | */ | ||
1219 | static int isCint (expdesc *e) { | ||
1220 | return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C)); | ||
1221 | } | ||
1222 | |||
1223 | |||
1224 | /* | ||
1225 | ** Check whether expression 'e' is a literal integer in | ||
1226 | ** proper range to fit in register sC | ||
1227 | */ | ||
1228 | static int isSCint (expdesc *e) { | ||
1229 | return luaK_isKint(e) && fitsC(e->u.ival); | ||
1230 | } | ||
1231 | |||
1232 | |||
1233 | /* | ||
1234 | ** Check whether expression 'e' is a literal integer or float in | ||
1235 | ** proper range to fit in a register (sB or sC). | ||
1236 | */ | ||
1237 | static int isSCnumber (expdesc *e, int *pi, int *isfloat) { | ||
1238 | lua_Integer i; | ||
1239 | if (e->k == VKINT) | ||
1240 | i = e->u.ival; | ||
1241 | else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq)) | ||
1242 | *isfloat = 1; | ||
1243 | else | ||
1244 | return 0; /* not a number */ | ||
1245 | if (!hasjumps(e) && fitsC(i)) { | ||
1246 | *pi = int2sC(cast_int(i)); | ||
1247 | return 1; | ||
1248 | } | ||
1249 | else | ||
1250 | return 0; | ||
1251 | } | ||
1252 | |||
1253 | |||
1254 | /* | ||
1255 | ** Create expression 't[k]'. 't' must have its final result already in a | ||
1256 | ** register or upvalue. Upvalues can only be indexed by literal strings. | ||
1257 | ** Keys can be literal strings in the constant table or arbitrary | ||
1258 | ** values in registers. | ||
1259 | */ | ||
1260 | void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) { | ||
1261 | if (k->k == VKSTR) | ||
1262 | str2K(fs, k); | ||
1263 | lua_assert(!hasjumps(t) && | ||
1264 | (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL)); | ||
1265 | if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */ | ||
1266 | luaK_exp2anyreg(fs, t); /* put it in a register */ | ||
1267 | if (t->k == VUPVAL) { | ||
1268 | t->u.ind.t = t->u.info; /* upvalue index */ | ||
1269 | t->u.ind.idx = k->u.info; /* literal string */ | ||
1270 | t->k = VINDEXUP; | ||
1271 | } | ||
1272 | else { | ||
1273 | /* register index of the table */ | ||
1274 | t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info; | ||
1275 | if (isKstr(fs, k)) { | ||
1276 | t->u.ind.idx = k->u.info; /* literal string */ | ||
1277 | t->k = VINDEXSTR; | ||
1278 | } | ||
1279 | else if (isCint(k)) { | ||
1280 | t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */ | ||
1281 | t->k = VINDEXI; | ||
1282 | } | ||
1283 | else { | ||
1284 | t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */ | ||
1285 | t->k = VINDEXED; | ||
1286 | } | ||
1287 | } | ||
1288 | } | ||
1289 | |||
1290 | |||
1291 | /* | ||
1292 | ** Return false if folding can raise an error. | ||
1293 | ** Bitwise operations need operands convertible to integers; division | ||
1294 | ** operations cannot have 0 as divisor. | ||
1295 | */ | ||
1296 | static int validop (int op, TValue *v1, TValue *v2) { | ||
1297 | switch (op) { | ||
1298 | case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR: | ||
1299 | case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */ | ||
1300 | lua_Integer i; | ||
1301 | return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) && | ||
1302 | luaV_tointegerns(v2, &i, LUA_FLOORN2I)); | ||
1303 | } | ||
1304 | case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */ | ||
1305 | return (nvalue(v2) != 0); | ||
1306 | default: return 1; /* everything else is valid */ | ||
1307 | } | ||
1308 | } | ||
1309 | |||
1310 | |||
1311 | /* | ||
1312 | ** Try to "constant-fold" an operation; return 1 iff successful. | ||
1313 | ** (In this case, 'e1' has the final result.) | ||
1314 | */ | ||
1315 | static int constfolding (FuncState *fs, int op, expdesc *e1, | ||
1316 | const expdesc *e2) { | ||
1317 | TValue v1, v2, res; | ||
1318 | if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2)) | ||
1319 | return 0; /* non-numeric operands or not safe to fold */ | ||
1320 | luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */ | ||
1321 | if (ttisinteger(&res)) { | ||
1322 | e1->k = VKINT; | ||
1323 | e1->u.ival = ivalue(&res); | ||
1324 | } | ||
1325 | else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */ | ||
1326 | lua_Number n = fltvalue(&res); | ||
1327 | if (luai_numisnan(n) || n == 0) | ||
1328 | return 0; | ||
1329 | e1->k = VKFLT; | ||
1330 | e1->u.nval = n; | ||
1331 | } | ||
1332 | return 1; | ||
1333 | } | ||
1334 | |||
1335 | |||
1336 | /* | ||
1337 | ** Emit code for unary expressions that "produce values" | ||
1338 | ** (everything but 'not'). | ||
1339 | ** Expression to produce final result will be encoded in 'e'. | ||
1340 | */ | ||
1341 | static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) { | ||
1342 | int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */ | ||
1343 | freeexp(fs, e); | ||
1344 | e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */ | ||
1345 | e->k = VRELOC; /* all those operations are relocatable */ | ||
1346 | luaK_fixline(fs, line); | ||
1347 | } | ||
1348 | |||
1349 | |||
1350 | /* | ||
1351 | ** Emit code for binary expressions that "produce values" | ||
1352 | ** (everything but logical operators 'and'/'or' and comparison | ||
1353 | ** operators). | ||
1354 | ** Expression to produce final result will be encoded in 'e1'. | ||
1355 | */ | ||
1356 | static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2, | ||
1357 | OpCode op, int v2, int flip, int line, | ||
1358 | OpCode mmop, TMS event) { | ||
1359 | int v1 = luaK_exp2anyreg(fs, e1); | ||
1360 | int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0); | ||
1361 | freeexps(fs, e1, e2); | ||
1362 | e1->u.info = pc; | ||
1363 | e1->k = VRELOC; /* all those operations are relocatable */ | ||
1364 | luaK_fixline(fs, line); | ||
1365 | luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */ | ||
1366 | luaK_fixline(fs, line); | ||
1367 | } | ||
1368 | |||
1369 | |||
1370 | /* | ||
1371 | ** Emit code for binary expressions that "produce values" over | ||
1372 | ** two registers. | ||
1373 | */ | ||
1374 | static void codebinexpval (FuncState *fs, OpCode op, | ||
1375 | expdesc *e1, expdesc *e2, int line) { | ||
1376 | int v2 = luaK_exp2anyreg(fs, e2); /* both operands are in registers */ | ||
1377 | lua_assert(OP_ADD <= op && op <= OP_SHR); | ||
1378 | finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, | ||
1379 | cast(TMS, (op - OP_ADD) + TM_ADD)); | ||
1380 | } | ||
1381 | |||
1382 | |||
1383 | /* | ||
1384 | ** Code binary operators with immediate operands. | ||
1385 | */ | ||
1386 | static void codebini (FuncState *fs, OpCode op, | ||
1387 | expdesc *e1, expdesc *e2, int flip, int line, | ||
1388 | TMS event) { | ||
1389 | int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */ | ||
1390 | lua_assert(e2->k == VKINT); | ||
1391 | finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event); | ||
1392 | } | ||
1393 | |||
1394 | |||
1395 | /* Try to code a binary operator negating its second operand. | ||
1396 | ** For the metamethod, 2nd operand must keep its original value. | ||
1397 | */ | ||
1398 | static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2, | ||
1399 | OpCode op, int line, TMS event) { | ||
1400 | if (!luaK_isKint(e2)) | ||
1401 | return 0; /* not an integer constant */ | ||
1402 | else { | ||
1403 | lua_Integer i2 = e2->u.ival; | ||
1404 | if (!(fitsC(i2) && fitsC(-i2))) | ||
1405 | return 0; /* not in the proper range */ | ||
1406 | else { /* operating a small integer constant */ | ||
1407 | int v2 = cast_int(i2); | ||
1408 | finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event); | ||
1409 | /* correct metamethod argument */ | ||
1410 | SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2)); | ||
1411 | return 1; /* successfully coded */ | ||
1412 | } | ||
1413 | } | ||
1414 | } | ||
1415 | |||
1416 | |||
1417 | static void swapexps (expdesc *e1, expdesc *e2) { | ||
1418 | expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */ | ||
1419 | } | ||
1420 | |||
1421 | |||
1422 | /* | ||
1423 | ** Code arithmetic operators ('+', '-', ...). If second operand is a | ||
1424 | ** constant in the proper range, use variant opcodes with K operands. | ||
1425 | */ | ||
1426 | static void codearith (FuncState *fs, BinOpr opr, | ||
1427 | expdesc *e1, expdesc *e2, int flip, int line) { | ||
1428 | TMS event = cast(TMS, opr + TM_ADD); | ||
1429 | if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) { /* K operand? */ | ||
1430 | int v2 = e2->u.info; /* K index */ | ||
1431 | OpCode op = cast(OpCode, opr + OP_ADDK); | ||
1432 | finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event); | ||
1433 | } | ||
1434 | else { /* 'e2' is neither an immediate nor a K operand */ | ||
1435 | OpCode op = cast(OpCode, opr + OP_ADD); | ||
1436 | if (flip) | ||
1437 | swapexps(e1, e2); /* back to original order */ | ||
1438 | codebinexpval(fs, op, e1, e2, line); /* use standard operators */ | ||
1439 | } | ||
1440 | } | ||
1441 | |||
1442 | |||
1443 | /* | ||
1444 | ** Code commutative operators ('+', '*'). If first operand is a | ||
1445 | ** numeric constant, change order of operands to try to use an | ||
1446 | ** immediate or K operator. | ||
1447 | */ | ||
1448 | static void codecommutative (FuncState *fs, BinOpr op, | ||
1449 | expdesc *e1, expdesc *e2, int line) { | ||
1450 | int flip = 0; | ||
1451 | if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */ | ||
1452 | swapexps(e1, e2); /* change order */ | ||
1453 | flip = 1; | ||
1454 | } | ||
1455 | if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */ | ||
1456 | codebini(fs, cast(OpCode, OP_ADDI), e1, e2, flip, line, TM_ADD); | ||
1457 | else | ||
1458 | codearith(fs, op, e1, e2, flip, line); | ||
1459 | } | ||
1460 | |||
1461 | |||
1462 | /* | ||
1463 | ** Code bitwise operations; they are all associative, so the function | ||
1464 | ** tries to put an integer constant as the 2nd operand (a K operand). | ||
1465 | */ | ||
1466 | static void codebitwise (FuncState *fs, BinOpr opr, | ||
1467 | expdesc *e1, expdesc *e2, int line) { | ||
1468 | int flip = 0; | ||
1469 | int v2; | ||
1470 | OpCode op; | ||
1471 | if (e1->k == VKINT && luaK_exp2RK(fs, e1)) { | ||
1472 | swapexps(e1, e2); /* 'e2' will be the constant operand */ | ||
1473 | flip = 1; | ||
1474 | } | ||
1475 | else if (!(e2->k == VKINT && luaK_exp2RK(fs, e2))) { /* no constants? */ | ||
1476 | op = cast(OpCode, opr + OP_ADD); | ||
1477 | codebinexpval(fs, op, e1, e2, line); /* all-register opcodes */ | ||
1478 | return; | ||
1479 | } | ||
1480 | v2 = e2->u.info; /* index in K array */ | ||
1481 | op = cast(OpCode, opr + OP_ADDK); | ||
1482 | lua_assert(ttisinteger(&fs->f->k[v2])); | ||
1483 | finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, | ||
1484 | cast(TMS, opr + TM_ADD)); | ||
1485 | } | ||
1486 | |||
1487 | |||
1488 | /* | ||
1489 | ** Emit code for order comparisons. When using an immediate operand, | ||
1490 | ** 'isfloat' tells whether the original value was a float. | ||
1491 | */ | ||
1492 | static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) { | ||
1493 | int r1, r2; | ||
1494 | int im; | ||
1495 | int isfloat = 0; | ||
1496 | if (isSCnumber(e2, &im, &isfloat)) { | ||
1497 | /* use immediate operand */ | ||
1498 | r1 = luaK_exp2anyreg(fs, e1); | ||
1499 | r2 = im; | ||
1500 | op = cast(OpCode, (op - OP_LT) + OP_LTI); | ||
1501 | } | ||
1502 | else if (isSCnumber(e1, &im, &isfloat)) { | ||
1503 | /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */ | ||
1504 | r1 = luaK_exp2anyreg(fs, e2); | ||
1505 | r2 = im; | ||
1506 | op = (op == OP_LT) ? OP_GTI : OP_GEI; | ||
1507 | } | ||
1508 | else { /* regular case, compare two registers */ | ||
1509 | r1 = luaK_exp2anyreg(fs, e1); | ||
1510 | r2 = luaK_exp2anyreg(fs, e2); | ||
1511 | } | ||
1512 | freeexps(fs, e1, e2); | ||
1513 | e1->u.info = condjump(fs, op, r1, r2, isfloat, 1); | ||
1514 | e1->k = VJMP; | ||
1515 | } | ||
1516 | |||
1517 | |||
1518 | /* | ||
1519 | ** Emit code for equality comparisons ('==', '~='). | ||
1520 | ** 'e1' was already put as RK by 'luaK_infix'. | ||
1521 | */ | ||
1522 | static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) { | ||
1523 | int r1, r2; | ||
1524 | int im; | ||
1525 | int isfloat = 0; /* not needed here, but kept for symmetry */ | ||
1526 | OpCode op; | ||
1527 | if (e1->k != VNONRELOC) { | ||
1528 | lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT); | ||
1529 | swapexps(e1, e2); | ||
1530 | } | ||
1531 | r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */ | ||
1532 | if (isSCnumber(e2, &im, &isfloat)) { | ||
1533 | op = OP_EQI; | ||
1534 | r2 = im; /* immediate operand */ | ||
1535 | } | ||
1536 | else if (luaK_exp2RK(fs, e2)) { /* 1st expression is constant? */ | ||
1537 | op = OP_EQK; | ||
1538 | r2 = e2->u.info; /* constant index */ | ||
1539 | } | ||
1540 | else { | ||
1541 | op = OP_EQ; /* will compare two registers */ | ||
1542 | r2 = luaK_exp2anyreg(fs, e2); | ||
1543 | } | ||
1544 | freeexps(fs, e1, e2); | ||
1545 | e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ)); | ||
1546 | e1->k = VJMP; | ||
1547 | } | ||
1548 | |||
1549 | |||
1550 | /* | ||
1551 | ** Apply prefix operation 'op' to expression 'e'. | ||
1552 | */ | ||
1553 | void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) { | ||
1554 | static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP}; | ||
1555 | luaK_dischargevars(fs, e); | ||
1556 | switch (op) { | ||
1557 | case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */ | ||
1558 | if (constfolding(fs, op + LUA_OPUNM, e, &ef)) | ||
1559 | break; | ||
1560 | /* else */ /* FALLTHROUGH */ | ||
1561 | case OPR_LEN: | ||
1562 | codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line); | ||
1563 | break; | ||
1564 | case OPR_NOT: codenot(fs, e); break; | ||
1565 | default: lua_assert(0); | ||
1566 | } | ||
1567 | } | ||
1568 | |||
1569 | |||
1570 | /* | ||
1571 | ** Process 1st operand 'v' of binary operation 'op' before reading | ||
1572 | ** 2nd operand. | ||
1573 | */ | ||
1574 | void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) { | ||
1575 | luaK_dischargevars(fs, v); | ||
1576 | switch (op) { | ||
1577 | case OPR_AND: { | ||
1578 | luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */ | ||
1579 | break; | ||
1580 | } | ||
1581 | case OPR_OR: { | ||
1582 | luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */ | ||
1583 | break; | ||
1584 | } | ||
1585 | case OPR_CONCAT: { | ||
1586 | luaK_exp2nextreg(fs, v); /* operand must be on the stack */ | ||
1587 | break; | ||
1588 | } | ||
1589 | case OPR_ADD: case OPR_SUB: | ||
1590 | case OPR_MUL: case OPR_DIV: case OPR_IDIV: | ||
1591 | case OPR_MOD: case OPR_POW: | ||
1592 | case OPR_BAND: case OPR_BOR: case OPR_BXOR: | ||
1593 | case OPR_SHL: case OPR_SHR: { | ||
1594 | if (!tonumeral(v, NULL)) | ||
1595 | luaK_exp2anyreg(fs, v); | ||
1596 | /* else keep numeral, which may be folded with 2nd operand */ | ||
1597 | break; | ||
1598 | } | ||
1599 | case OPR_EQ: case OPR_NE: { | ||
1600 | if (!tonumeral(v, NULL)) | ||
1601 | luaK_exp2RK(fs, v); | ||
1602 | /* else keep numeral, which may be an immediate operand */ | ||
1603 | break; | ||
1604 | } | ||
1605 | case OPR_LT: case OPR_LE: | ||
1606 | case OPR_GT: case OPR_GE: { | ||
1607 | int dummy, dummy2; | ||
1608 | if (!isSCnumber(v, &dummy, &dummy2)) | ||
1609 | luaK_exp2anyreg(fs, v); | ||
1610 | /* else keep numeral, which may be an immediate operand */ | ||
1611 | break; | ||
1612 | } | ||
1613 | default: lua_assert(0); | ||
1614 | } | ||
1615 | } | ||
1616 | |||
1617 | /* | ||
1618 | ** Create code for '(e1 .. e2)'. | ||
1619 | ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))', | ||
1620 | ** because concatenation is right associative), merge both CONCATs. | ||
1621 | */ | ||
1622 | static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) { | ||
1623 | Instruction *ie2 = previousinstruction(fs); | ||
1624 | if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */ | ||
1625 | int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */ | ||
1626 | lua_assert(e1->u.info + 1 == GETARG_A(*ie2)); | ||
1627 | freeexp(fs, e2); | ||
1628 | SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */ | ||
1629 | SETARG_B(*ie2, n + 1); /* will concatenate one more element */ | ||
1630 | } | ||
1631 | else { /* 'e2' is not a concatenation */ | ||
1632 | luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */ | ||
1633 | freeexp(fs, e2); | ||
1634 | luaK_fixline(fs, line); | ||
1635 | } | ||
1636 | } | ||
1637 | |||
1638 | |||
1639 | /* | ||
1640 | ** Finalize code for binary operation, after reading 2nd operand. | ||
1641 | */ | ||
1642 | void luaK_posfix (FuncState *fs, BinOpr opr, | ||
1643 | expdesc *e1, expdesc *e2, int line) { | ||
1644 | luaK_dischargevars(fs, e2); | ||
1645 | if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2)) | ||
1646 | return; /* done by folding */ | ||
1647 | switch (opr) { | ||
1648 | case OPR_AND: { | ||
1649 | lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */ | ||
1650 | luaK_concat(fs, &e2->f, e1->f); | ||
1651 | *e1 = *e2; | ||
1652 | break; | ||
1653 | } | ||
1654 | case OPR_OR: { | ||
1655 | lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */ | ||
1656 | luaK_concat(fs, &e2->t, e1->t); | ||
1657 | *e1 = *e2; | ||
1658 | break; | ||
1659 | } | ||
1660 | case OPR_CONCAT: { /* e1 .. e2 */ | ||
1661 | luaK_exp2nextreg(fs, e2); | ||
1662 | codeconcat(fs, e1, e2, line); | ||
1663 | break; | ||
1664 | } | ||
1665 | case OPR_ADD: case OPR_MUL: { | ||
1666 | codecommutative(fs, opr, e1, e2, line); | ||
1667 | break; | ||
1668 | } | ||
1669 | case OPR_SUB: { | ||
1670 | if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB)) | ||
1671 | break; /* coded as (r1 + -I) */ | ||
1672 | /* ELSE */ | ||
1673 | } /* FALLTHROUGH */ | ||
1674 | case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: { | ||
1675 | codearith(fs, opr, e1, e2, 0, line); | ||
1676 | break; | ||
1677 | } | ||
1678 | case OPR_BAND: case OPR_BOR: case OPR_BXOR: { | ||
1679 | codebitwise(fs, opr, e1, e2, line); | ||
1680 | break; | ||
1681 | } | ||
1682 | case OPR_SHL: { | ||
1683 | if (isSCint(e1)) { | ||
1684 | swapexps(e1, e2); | ||
1685 | codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */ | ||
1686 | } | ||
1687 | else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) { | ||
1688 | /* coded as (r1 >> -I) */; | ||
1689 | } | ||
1690 | else /* regular case (two registers) */ | ||
1691 | codebinexpval(fs, OP_SHL, e1, e2, line); | ||
1692 | break; | ||
1693 | } | ||
1694 | case OPR_SHR: { | ||
1695 | if (isSCint(e2)) | ||
1696 | codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */ | ||
1697 | else /* regular case (two registers) */ | ||
1698 | codebinexpval(fs, OP_SHR, e1, e2, line); | ||
1699 | break; | ||
1700 | } | ||
1701 | case OPR_EQ: case OPR_NE: { | ||
1702 | codeeq(fs, opr, e1, e2); | ||
1703 | break; | ||
1704 | } | ||
1705 | case OPR_LT: case OPR_LE: { | ||
1706 | OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ); | ||
1707 | codeorder(fs, op, e1, e2); | ||
1708 | break; | ||
1709 | } | ||
1710 | case OPR_GT: case OPR_GE: { | ||
1711 | /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */ | ||
1712 | OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ); | ||
1713 | swapexps(e1, e2); | ||
1714 | codeorder(fs, op, e1, e2); | ||
1715 | break; | ||
1716 | } | ||
1717 | default: lua_assert(0); | ||
1718 | } | ||
1719 | } | ||
1720 | |||
1721 | |||
1722 | /* | ||
1723 | ** Change line information associated with current position, by removing | ||
1724 | ** previous info and adding it again with new line. | ||
1725 | */ | ||
1726 | void luaK_fixline (FuncState *fs, int line) { | ||
1727 | removelastlineinfo(fs); | ||
1728 | savelineinfo(fs, fs->f, line); | ||
1729 | } | ||
1730 | |||
1731 | |||
1732 | void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) { | ||
1733 | Instruction *inst = &fs->f->code[pc]; | ||
1734 | int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */ | ||
1735 | int extra = asize / (MAXARG_C + 1); /* higher bits of array size */ | ||
1736 | int rc = asize % (MAXARG_C + 1); /* lower bits of array size */ | ||
1737 | int k = (extra > 0); /* true iff needs extra argument */ | ||
1738 | *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k); | ||
1739 | *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra); | ||
1740 | } | ||
1741 | |||
1742 | |||
1743 | /* | ||
1744 | ** Emit a SETLIST instruction. | ||
1745 | ** 'base' is register that keeps table; | ||
1746 | ** 'nelems' is #table plus those to be stored now; | ||
1747 | ** 'tostore' is number of values (in registers 'base + 1',...) to add to | ||
1748 | ** table (or LUA_MULTRET to add up to stack top). | ||
1749 | */ | ||
1750 | void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) { | ||
1751 | lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH); | ||
1752 | if (tostore == LUA_MULTRET) | ||
1753 | tostore = 0; | ||
1754 | if (nelems <= MAXARG_C) | ||
1755 | luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems); | ||
1756 | else { | ||
1757 | int extra = nelems / (MAXARG_C + 1); | ||
1758 | nelems %= (MAXARG_C + 1); | ||
1759 | luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1); | ||
1760 | codeextraarg(fs, extra); | ||
1761 | } | ||
1762 | fs->freereg = base + 1; /* free registers with list values */ | ||
1763 | } | ||
1764 | |||
1765 | |||
1766 | /* | ||
1767 | ** return the final target of a jump (skipping jumps to jumps) | ||
1768 | */ | ||
1769 | static int finaltarget (Instruction *code, int i) { | ||
1770 | int count; | ||
1771 | for (count = 0; count < 100; count++) { /* avoid infinite loops */ | ||
1772 | Instruction pc = code[i]; | ||
1773 | if (GET_OPCODE(pc) != OP_JMP) | ||
1774 | break; | ||
1775 | else | ||
1776 | i += GETARG_sJ(pc) + 1; | ||
1777 | } | ||
1778 | return i; | ||
1779 | } | ||
1780 | |||
1781 | |||
1782 | /* | ||
1783 | ** Do a final pass over the code of a function, doing small peephole | ||
1784 | ** optimizations and adjustments. | ||
1785 | */ | ||
1786 | void luaK_finish (FuncState *fs) { | ||
1787 | int i; | ||
1788 | Proto *p = fs->f; | ||
1789 | for (i = 0; i < fs->pc; i++) { | ||
1790 | Instruction *pc = &p->code[i]; | ||
1791 | lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc)); | ||
1792 | switch (GET_OPCODE(*pc)) { | ||
1793 | case OP_RETURN0: case OP_RETURN1: { | ||
1794 | if (!(fs->needclose || p->is_vararg)) | ||
1795 | break; /* no extra work */ | ||
1796 | /* else use OP_RETURN to do the extra work */ | ||
1797 | SET_OPCODE(*pc, OP_RETURN); | ||
1798 | } /* FALLTHROUGH */ | ||
1799 | case OP_RETURN: case OP_TAILCALL: { | ||
1800 | if (fs->needclose) | ||
1801 | SETARG_k(*pc, 1); /* signal that it needs to close */ | ||
1802 | if (p->is_vararg) | ||
1803 | SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */ | ||
1804 | break; | ||
1805 | } | ||
1806 | case OP_JMP: { | ||
1807 | int target = finaltarget(p->code, i); | ||
1808 | fixjump(fs, i, target); | ||
1809 | break; | ||
1810 | } | ||
1811 | default: break; | ||
1812 | } | ||
1813 | } | ||
1814 | } | ||