diff options
Diffstat (limited to '')
| -rw-r--r-- | src/lua/lcode.c | 1814 |
1 files changed, 1814 insertions, 0 deletions
diff --git a/src/lua/lcode.c b/src/lua/lcode.c new file mode 100644 index 0000000..6f241c9 --- /dev/null +++ b/src/lua/lcode.c | |||
| @@ -0,0 +1,1814 @@ | |||
| 1 | /* | ||
| 2 | ** $Id: lcode.c $ | ||
| 3 | ** Code generator for Lua | ||
| 4 | ** See Copyright Notice in lua.h | ||
| 5 | */ | ||
| 6 | |||
| 7 | #define lcode_c | ||
| 8 | #define LUA_CORE | ||
| 9 | |||
| 10 | #include "lprefix.h" | ||
| 11 | |||
| 12 | |||
| 13 | #include <limits.h> | ||
| 14 | #include <math.h> | ||
| 15 | #include <stdlib.h> | ||
| 16 | |||
| 17 | #include "lua.h" | ||
| 18 | |||
| 19 | #include "lcode.h" | ||
| 20 | #include "ldebug.h" | ||
| 21 | #include "ldo.h" | ||
| 22 | #include "lgc.h" | ||
| 23 | #include "llex.h" | ||
| 24 | #include "lmem.h" | ||
| 25 | #include "lobject.h" | ||
| 26 | #include "lopcodes.h" | ||
| 27 | #include "lparser.h" | ||
| 28 | #include "lstring.h" | ||
| 29 | #include "ltable.h" | ||
| 30 | #include "lvm.h" | ||
| 31 | |||
| 32 | |||
| 33 | /* Maximum number of registers in a Lua function (must fit in 8 bits) */ | ||
| 34 | #define MAXREGS 255 | ||
| 35 | |||
| 36 | |||
| 37 | #define hasjumps(e) ((e)->t != (e)->f) | ||
| 38 | |||
| 39 | |||
| 40 | static int codesJ (FuncState *fs, OpCode o, int sj, int k); | ||
| 41 | |||
| 42 | |||
| 43 | |||
| 44 | /* semantic error */ | ||
| 45 | l_noret luaK_semerror (LexState *ls, const char *msg) { | ||
| 46 | ls->t.token = 0; /* remove "near <token>" from final message */ | ||
| 47 | luaX_syntaxerror(ls, msg); | ||
| 48 | } | ||
| 49 | |||
| 50 | |||
| 51 | /* | ||
| 52 | ** If expression is a numeric constant, fills 'v' with its value | ||
| 53 | ** and returns 1. Otherwise, returns 0. | ||
| 54 | */ | ||
| 55 | static int tonumeral (const expdesc *e, TValue *v) { | ||
| 56 | if (hasjumps(e)) | ||
| 57 | return 0; /* not a numeral */ | ||
| 58 | switch (e->k) { | ||
| 59 | case VKINT: | ||
| 60 | if (v) setivalue(v, e->u.ival); | ||
| 61 | return 1; | ||
| 62 | case VKFLT: | ||
| 63 | if (v) setfltvalue(v, e->u.nval); | ||
| 64 | return 1; | ||
| 65 | default: return 0; | ||
| 66 | } | ||
| 67 | } | ||
| 68 | |||
| 69 | |||
| 70 | /* | ||
| 71 | ** Get the constant value from a constant expression | ||
| 72 | */ | ||
| 73 | static TValue *const2val (FuncState *fs, const expdesc *e) { | ||
| 74 | lua_assert(e->k == VCONST); | ||
| 75 | return &fs->ls->dyd->actvar.arr[e->u.info].k; | ||
| 76 | } | ||
| 77 | |||
| 78 | |||
| 79 | /* | ||
| 80 | ** If expression is a constant, fills 'v' with its value | ||
| 81 | ** and returns 1. Otherwise, returns 0. | ||
| 82 | */ | ||
| 83 | int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) { | ||
| 84 | if (hasjumps(e)) | ||
| 85 | return 0; /* not a constant */ | ||
| 86 | switch (e->k) { | ||
| 87 | case VFALSE: | ||
| 88 | setbfvalue(v); | ||
| 89 | return 1; | ||
| 90 | case VTRUE: | ||
| 91 | setbtvalue(v); | ||
| 92 | return 1; | ||
| 93 | case VNIL: | ||
| 94 | setnilvalue(v); | ||
| 95 | return 1; | ||
| 96 | case VKSTR: { | ||
| 97 | setsvalue(fs->ls->L, v, e->u.strval); | ||
| 98 | return 1; | ||
| 99 | } | ||
| 100 | case VCONST: { | ||
| 101 | setobj(fs->ls->L, v, const2val(fs, e)); | ||
| 102 | return 1; | ||
| 103 | } | ||
| 104 | default: return tonumeral(e, v); | ||
| 105 | } | ||
| 106 | } | ||
| 107 | |||
| 108 | |||
| 109 | /* | ||
| 110 | ** Return the previous instruction of the current code. If there | ||
| 111 | ** may be a jump target between the current instruction and the | ||
| 112 | ** previous one, return an invalid instruction (to avoid wrong | ||
| 113 | ** optimizations). | ||
| 114 | */ | ||
| 115 | static Instruction *previousinstruction (FuncState *fs) { | ||
| 116 | static const Instruction invalidinstruction = ~(Instruction)0; | ||
| 117 | if (fs->pc > fs->lasttarget) | ||
| 118 | return &fs->f->code[fs->pc - 1]; /* previous instruction */ | ||
| 119 | else | ||
| 120 | return cast(Instruction*, &invalidinstruction); | ||
| 121 | } | ||
| 122 | |||
| 123 | |||
| 124 | /* | ||
| 125 | ** Create a OP_LOADNIL instruction, but try to optimize: if the previous | ||
| 126 | ** instruction is also OP_LOADNIL and ranges are compatible, adjust | ||
| 127 | ** range of previous instruction instead of emitting a new one. (For | ||
| 128 | ** instance, 'local a; local b' will generate a single opcode.) | ||
| 129 | */ | ||
| 130 | void luaK_nil (FuncState *fs, int from, int n) { | ||
| 131 | int l = from + n - 1; /* last register to set nil */ | ||
| 132 | Instruction *previous = previousinstruction(fs); | ||
| 133 | if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */ | ||
| 134 | int pfrom = GETARG_A(*previous); /* get previous range */ | ||
| 135 | int pl = pfrom + GETARG_B(*previous); | ||
| 136 | if ((pfrom <= from && from <= pl + 1) || | ||
| 137 | (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */ | ||
| 138 | if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */ | ||
| 139 | if (pl > l) l = pl; /* l = max(l, pl) */ | ||
| 140 | SETARG_A(*previous, from); | ||
| 141 | SETARG_B(*previous, l - from); | ||
| 142 | return; | ||
| 143 | } /* else go through */ | ||
| 144 | } | ||
| 145 | luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */ | ||
| 146 | } | ||
| 147 | |||
| 148 | |||
| 149 | /* | ||
| 150 | ** Gets the destination address of a jump instruction. Used to traverse | ||
| 151 | ** a list of jumps. | ||
| 152 | */ | ||
| 153 | static int getjump (FuncState *fs, int pc) { | ||
| 154 | int offset = GETARG_sJ(fs->f->code[pc]); | ||
| 155 | if (offset == NO_JUMP) /* point to itself represents end of list */ | ||
| 156 | return NO_JUMP; /* end of list */ | ||
| 157 | else | ||
| 158 | return (pc+1)+offset; /* turn offset into absolute position */ | ||
| 159 | } | ||
| 160 | |||
| 161 | |||
| 162 | /* | ||
| 163 | ** Fix jump instruction at position 'pc' to jump to 'dest'. | ||
| 164 | ** (Jump addresses are relative in Lua) | ||
| 165 | */ | ||
| 166 | static void fixjump (FuncState *fs, int pc, int dest) { | ||
| 167 | Instruction *jmp = &fs->f->code[pc]; | ||
| 168 | int offset = dest - (pc + 1); | ||
| 169 | lua_assert(dest != NO_JUMP); | ||
| 170 | if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ)) | ||
| 171 | luaX_syntaxerror(fs->ls, "control structure too long"); | ||
| 172 | lua_assert(GET_OPCODE(*jmp) == OP_JMP); | ||
| 173 | SETARG_sJ(*jmp, offset); | ||
| 174 | } | ||
| 175 | |||
| 176 | |||
| 177 | /* | ||
| 178 | ** Concatenate jump-list 'l2' into jump-list 'l1' | ||
| 179 | */ | ||
| 180 | void luaK_concat (FuncState *fs, int *l1, int l2) { | ||
| 181 | if (l2 == NO_JUMP) return; /* nothing to concatenate? */ | ||
| 182 | else if (*l1 == NO_JUMP) /* no original list? */ | ||
| 183 | *l1 = l2; /* 'l1' points to 'l2' */ | ||
| 184 | else { | ||
| 185 | int list = *l1; | ||
| 186 | int next; | ||
| 187 | while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */ | ||
| 188 | list = next; | ||
| 189 | fixjump(fs, list, l2); /* last element links to 'l2' */ | ||
| 190 | } | ||
| 191 | } | ||
| 192 | |||
| 193 | |||
| 194 | /* | ||
| 195 | ** Create a jump instruction and return its position, so its destination | ||
| 196 | ** can be fixed later (with 'fixjump'). | ||
| 197 | */ | ||
| 198 | int luaK_jump (FuncState *fs) { | ||
| 199 | return codesJ(fs, OP_JMP, NO_JUMP, 0); | ||
| 200 | } | ||
| 201 | |||
| 202 | |||
| 203 | /* | ||
| 204 | ** Code a 'return' instruction | ||
| 205 | */ | ||
| 206 | void luaK_ret (FuncState *fs, int first, int nret) { | ||
| 207 | OpCode op; | ||
| 208 | switch (nret) { | ||
| 209 | case 0: op = OP_RETURN0; break; | ||
| 210 | case 1: op = OP_RETURN1; break; | ||
| 211 | default: op = OP_RETURN; break; | ||
| 212 | } | ||
| 213 | luaK_codeABC(fs, op, first, nret + 1, 0); | ||
| 214 | } | ||
| 215 | |||
| 216 | |||
| 217 | /* | ||
| 218 | ** Code a "conditional jump", that is, a test or comparison opcode | ||
| 219 | ** followed by a jump. Return jump position. | ||
| 220 | */ | ||
| 221 | static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) { | ||
| 222 | luaK_codeABCk(fs, op, A, B, C, k); | ||
| 223 | return luaK_jump(fs); | ||
| 224 | } | ||
| 225 | |||
| 226 | |||
| 227 | /* | ||
| 228 | ** returns current 'pc' and marks it as a jump target (to avoid wrong | ||
| 229 | ** optimizations with consecutive instructions not in the same basic block). | ||
| 230 | */ | ||
| 231 | int luaK_getlabel (FuncState *fs) { | ||
| 232 | fs->lasttarget = fs->pc; | ||
| 233 | return fs->pc; | ||
| 234 | } | ||
| 235 | |||
| 236 | |||
| 237 | /* | ||
| 238 | ** Returns the position of the instruction "controlling" a given | ||
| 239 | ** jump (that is, its condition), or the jump itself if it is | ||
| 240 | ** unconditional. | ||
| 241 | */ | ||
| 242 | static Instruction *getjumpcontrol (FuncState *fs, int pc) { | ||
| 243 | Instruction *pi = &fs->f->code[pc]; | ||
| 244 | if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1)))) | ||
| 245 | return pi-1; | ||
| 246 | else | ||
| 247 | return pi; | ||
| 248 | } | ||
| 249 | |||
| 250 | |||
| 251 | /* | ||
| 252 | ** Patch destination register for a TESTSET instruction. | ||
| 253 | ** If instruction in position 'node' is not a TESTSET, return 0 ("fails"). | ||
| 254 | ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination | ||
| 255 | ** register. Otherwise, change instruction to a simple 'TEST' (produces | ||
| 256 | ** no register value) | ||
| 257 | */ | ||
| 258 | static int patchtestreg (FuncState *fs, int node, int reg) { | ||
| 259 | Instruction *i = getjumpcontrol(fs, node); | ||
| 260 | if (GET_OPCODE(*i) != OP_TESTSET) | ||
| 261 | return 0; /* cannot patch other instructions */ | ||
| 262 | if (reg != NO_REG && reg != GETARG_B(*i)) | ||
| 263 | SETARG_A(*i, reg); | ||
| 264 | else { | ||
| 265 | /* no register to put value or register already has the value; | ||
| 266 | change instruction to simple test */ | ||
| 267 | *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i)); | ||
| 268 | } | ||
| 269 | return 1; | ||
| 270 | } | ||
| 271 | |||
| 272 | |||
| 273 | /* | ||
| 274 | ** Traverse a list of tests ensuring no one produces a value | ||
| 275 | */ | ||
| 276 | static void removevalues (FuncState *fs, int list) { | ||
| 277 | for (; list != NO_JUMP; list = getjump(fs, list)) | ||
| 278 | patchtestreg(fs, list, NO_REG); | ||
| 279 | } | ||
| 280 | |||
| 281 | |||
| 282 | /* | ||
| 283 | ** Traverse a list of tests, patching their destination address and | ||
| 284 | ** registers: tests producing values jump to 'vtarget' (and put their | ||
| 285 | ** values in 'reg'), other tests jump to 'dtarget'. | ||
| 286 | */ | ||
| 287 | static void patchlistaux (FuncState *fs, int list, int vtarget, int reg, | ||
| 288 | int dtarget) { | ||
| 289 | while (list != NO_JUMP) { | ||
| 290 | int next = getjump(fs, list); | ||
| 291 | if (patchtestreg(fs, list, reg)) | ||
| 292 | fixjump(fs, list, vtarget); | ||
| 293 | else | ||
| 294 | fixjump(fs, list, dtarget); /* jump to default target */ | ||
| 295 | list = next; | ||
| 296 | } | ||
| 297 | } | ||
| 298 | |||
| 299 | |||
| 300 | /* | ||
| 301 | ** Path all jumps in 'list' to jump to 'target'. | ||
| 302 | ** (The assert means that we cannot fix a jump to a forward address | ||
| 303 | ** because we only know addresses once code is generated.) | ||
| 304 | */ | ||
| 305 | void luaK_patchlist (FuncState *fs, int list, int target) { | ||
| 306 | lua_assert(target <= fs->pc); | ||
| 307 | patchlistaux(fs, list, target, NO_REG, target); | ||
| 308 | } | ||
| 309 | |||
| 310 | |||
| 311 | void luaK_patchtohere (FuncState *fs, int list) { | ||
| 312 | int hr = luaK_getlabel(fs); /* mark "here" as a jump target */ | ||
| 313 | luaK_patchlist(fs, list, hr); | ||
| 314 | } | ||
| 315 | |||
| 316 | |||
| 317 | /* | ||
| 318 | ** MAXimum number of successive Instructions WiTHout ABSolute line | ||
| 319 | ** information. | ||
| 320 | */ | ||
| 321 | #if !defined(MAXIWTHABS) | ||
| 322 | #define MAXIWTHABS 120 | ||
| 323 | #endif | ||
| 324 | |||
| 325 | |||
| 326 | /* limit for difference between lines in relative line info. */ | ||
| 327 | #define LIMLINEDIFF 0x80 | ||
| 328 | |||
| 329 | |||
| 330 | /* | ||
| 331 | ** Save line info for a new instruction. If difference from last line | ||
| 332 | ** does not fit in a byte, of after that many instructions, save a new | ||
| 333 | ** absolute line info; (in that case, the special value 'ABSLINEINFO' | ||
| 334 | ** in 'lineinfo' signals the existence of this absolute information.) | ||
| 335 | ** Otherwise, store the difference from last line in 'lineinfo'. | ||
| 336 | */ | ||
| 337 | static void savelineinfo (FuncState *fs, Proto *f, int line) { | ||
| 338 | int linedif = line - fs->previousline; | ||
| 339 | int pc = fs->pc - 1; /* last instruction coded */ | ||
| 340 | if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ > MAXIWTHABS) { | ||
| 341 | luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo, | ||
| 342 | f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines"); | ||
| 343 | f->abslineinfo[fs->nabslineinfo].pc = pc; | ||
| 344 | f->abslineinfo[fs->nabslineinfo++].line = line; | ||
| 345 | linedif = ABSLINEINFO; /* signal that there is absolute information */ | ||
| 346 | fs->iwthabs = 0; /* restart counter */ | ||
| 347 | } | ||
| 348 | luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte, | ||
| 349 | MAX_INT, "opcodes"); | ||
| 350 | f->lineinfo[pc] = linedif; | ||
| 351 | fs->previousline = line; /* last line saved */ | ||
| 352 | } | ||
| 353 | |||
| 354 | |||
| 355 | /* | ||
| 356 | ** Remove line information from the last instruction. | ||
| 357 | ** If line information for that instruction is absolute, set 'iwthabs' | ||
| 358 | ** above its max to force the new (replacing) instruction to have | ||
| 359 | ** absolute line info, too. | ||
| 360 | */ | ||
| 361 | static void removelastlineinfo (FuncState *fs) { | ||
| 362 | Proto *f = fs->f; | ||
| 363 | int pc = fs->pc - 1; /* last instruction coded */ | ||
| 364 | if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */ | ||
| 365 | fs->previousline -= f->lineinfo[pc]; /* correct last line saved */ | ||
| 366 | fs->iwthabs--; /* undo previous increment */ | ||
| 367 | } | ||
| 368 | else { /* absolute line information */ | ||
| 369 | lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc); | ||
| 370 | fs->nabslineinfo--; /* remove it */ | ||
| 371 | fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */ | ||
| 372 | } | ||
| 373 | } | ||
| 374 | |||
| 375 | |||
| 376 | /* | ||
| 377 | ** Remove the last instruction created, correcting line information | ||
| 378 | ** accordingly. | ||
| 379 | */ | ||
| 380 | static void removelastinstruction (FuncState *fs) { | ||
| 381 | removelastlineinfo(fs); | ||
| 382 | fs->pc--; | ||
| 383 | } | ||
| 384 | |||
| 385 | |||
| 386 | /* | ||
| 387 | ** Emit instruction 'i', checking for array sizes and saving also its | ||
| 388 | ** line information. Return 'i' position. | ||
| 389 | */ | ||
| 390 | int luaK_code (FuncState *fs, Instruction i) { | ||
| 391 | Proto *f = fs->f; | ||
| 392 | /* put new instruction in code array */ | ||
| 393 | luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction, | ||
| 394 | MAX_INT, "opcodes"); | ||
| 395 | f->code[fs->pc++] = i; | ||
| 396 | savelineinfo(fs, f, fs->ls->lastline); | ||
| 397 | return fs->pc - 1; /* index of new instruction */ | ||
| 398 | } | ||
| 399 | |||
| 400 | |||
| 401 | /* | ||
| 402 | ** Format and emit an 'iABC' instruction. (Assertions check consistency | ||
| 403 | ** of parameters versus opcode.) | ||
| 404 | */ | ||
| 405 | int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) { | ||
| 406 | lua_assert(getOpMode(o) == iABC); | ||
| 407 | lua_assert(a <= MAXARG_A && b <= MAXARG_B && | ||
| 408 | c <= MAXARG_C && (k & ~1) == 0); | ||
| 409 | return luaK_code(fs, CREATE_ABCk(o, a, b, c, k)); | ||
| 410 | } | ||
| 411 | |||
| 412 | |||
| 413 | /* | ||
| 414 | ** Format and emit an 'iABx' instruction. | ||
| 415 | */ | ||
| 416 | int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) { | ||
| 417 | lua_assert(getOpMode(o) == iABx); | ||
| 418 | lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx); | ||
| 419 | return luaK_code(fs, CREATE_ABx(o, a, bc)); | ||
| 420 | } | ||
| 421 | |||
| 422 | |||
| 423 | /* | ||
| 424 | ** Format and emit an 'iAsBx' instruction. | ||
| 425 | */ | ||
| 426 | int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) { | ||
| 427 | unsigned int b = bc + OFFSET_sBx; | ||
| 428 | lua_assert(getOpMode(o) == iAsBx); | ||
| 429 | lua_assert(a <= MAXARG_A && b <= MAXARG_Bx); | ||
| 430 | return luaK_code(fs, CREATE_ABx(o, a, b)); | ||
| 431 | } | ||
| 432 | |||
| 433 | |||
| 434 | /* | ||
| 435 | ** Format and emit an 'isJ' instruction. | ||
| 436 | */ | ||
| 437 | static int codesJ (FuncState *fs, OpCode o, int sj, int k) { | ||
| 438 | unsigned int j = sj + OFFSET_sJ; | ||
| 439 | lua_assert(getOpMode(o) == isJ); | ||
| 440 | lua_assert(j <= MAXARG_sJ && (k & ~1) == 0); | ||
| 441 | return luaK_code(fs, CREATE_sJ(o, j, k)); | ||
| 442 | } | ||
| 443 | |||
| 444 | |||
| 445 | /* | ||
| 446 | ** Emit an "extra argument" instruction (format 'iAx') | ||
| 447 | */ | ||
| 448 | static int codeextraarg (FuncState *fs, int a) { | ||
| 449 | lua_assert(a <= MAXARG_Ax); | ||
| 450 | return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a)); | ||
| 451 | } | ||
| 452 | |||
| 453 | |||
| 454 | /* | ||
| 455 | ** Emit a "load constant" instruction, using either 'OP_LOADK' | ||
| 456 | ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX' | ||
| 457 | ** instruction with "extra argument". | ||
| 458 | */ | ||
| 459 | static int luaK_codek (FuncState *fs, int reg, int k) { | ||
| 460 | if (k <= MAXARG_Bx) | ||
| 461 | return luaK_codeABx(fs, OP_LOADK, reg, k); | ||
| 462 | else { | ||
| 463 | int p = luaK_codeABx(fs, OP_LOADKX, reg, 0); | ||
| 464 | codeextraarg(fs, k); | ||
| 465 | return p; | ||
| 466 | } | ||
| 467 | } | ||
| 468 | |||
| 469 | |||
| 470 | /* | ||
| 471 | ** Check register-stack level, keeping track of its maximum size | ||
| 472 | ** in field 'maxstacksize' | ||
| 473 | */ | ||
| 474 | void luaK_checkstack (FuncState *fs, int n) { | ||
| 475 | int newstack = fs->freereg + n; | ||
| 476 | if (newstack > fs->f->maxstacksize) { | ||
| 477 | if (newstack >= MAXREGS) | ||
| 478 | luaX_syntaxerror(fs->ls, | ||
| 479 | "function or expression needs too many registers"); | ||
| 480 | fs->f->maxstacksize = cast_byte(newstack); | ||
| 481 | } | ||
| 482 | } | ||
| 483 | |||
| 484 | |||
| 485 | /* | ||
| 486 | ** Reserve 'n' registers in register stack | ||
| 487 | */ | ||
| 488 | void luaK_reserveregs (FuncState *fs, int n) { | ||
| 489 | luaK_checkstack(fs, n); | ||
| 490 | fs->freereg += n; | ||
| 491 | } | ||
| 492 | |||
| 493 | |||
| 494 | /* | ||
| 495 | ** Free register 'reg', if it is neither a constant index nor | ||
| 496 | ** a local variable. | ||
| 497 | ) | ||
| 498 | */ | ||
| 499 | static void freereg (FuncState *fs, int reg) { | ||
| 500 | if (reg >= luaY_nvarstack(fs)) { | ||
| 501 | fs->freereg--; | ||
| 502 | lua_assert(reg == fs->freereg); | ||
| 503 | } | ||
| 504 | } | ||
| 505 | |||
| 506 | |||
| 507 | /* | ||
| 508 | ** Free two registers in proper order | ||
| 509 | */ | ||
| 510 | static void freeregs (FuncState *fs, int r1, int r2) { | ||
| 511 | if (r1 > r2) { | ||
| 512 | freereg(fs, r1); | ||
| 513 | freereg(fs, r2); | ||
| 514 | } | ||
| 515 | else { | ||
| 516 | freereg(fs, r2); | ||
| 517 | freereg(fs, r1); | ||
| 518 | } | ||
| 519 | } | ||
| 520 | |||
| 521 | |||
| 522 | /* | ||
| 523 | ** Free register used by expression 'e' (if any) | ||
| 524 | */ | ||
| 525 | static void freeexp (FuncState *fs, expdesc *e) { | ||
| 526 | if (e->k == VNONRELOC) | ||
| 527 | freereg(fs, e->u.info); | ||
| 528 | } | ||
| 529 | |||
| 530 | |||
| 531 | /* | ||
| 532 | ** Free registers used by expressions 'e1' and 'e2' (if any) in proper | ||
| 533 | ** order. | ||
| 534 | */ | ||
| 535 | static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) { | ||
| 536 | int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1; | ||
| 537 | int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1; | ||
| 538 | freeregs(fs, r1, r2); | ||
| 539 | } | ||
| 540 | |||
| 541 | |||
| 542 | /* | ||
| 543 | ** Add constant 'v' to prototype's list of constants (field 'k'). | ||
| 544 | ** Use scanner's table to cache position of constants in constant list | ||
| 545 | ** and try to reuse constants. Because some values should not be used | ||
| 546 | ** as keys (nil cannot be a key, integer keys can collapse with float | ||
| 547 | ** keys), the caller must provide a useful 'key' for indexing the cache. | ||
| 548 | */ | ||
| 549 | static int addk (FuncState *fs, TValue *key, TValue *v) { | ||
| 550 | lua_State *L = fs->ls->L; | ||
| 551 | Proto *f = fs->f; | ||
| 552 | TValue *idx = luaH_set(L, fs->ls->h, key); /* index scanner table */ | ||
| 553 | int k, oldsize; | ||
| 554 | if (ttisinteger(idx)) { /* is there an index there? */ | ||
| 555 | k = cast_int(ivalue(idx)); | ||
| 556 | /* correct value? (warning: must distinguish floats from integers!) */ | ||
| 557 | if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) && | ||
| 558 | luaV_rawequalobj(&f->k[k], v)) | ||
| 559 | return k; /* reuse index */ | ||
| 560 | } | ||
| 561 | /* constant not found; create a new entry */ | ||
| 562 | oldsize = f->sizek; | ||
| 563 | k = fs->nk; | ||
| 564 | /* numerical value does not need GC barrier; | ||
| 565 | table has no metatable, so it does not need to invalidate cache */ | ||
| 566 | setivalue(idx, k); | ||
| 567 | luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants"); | ||
| 568 | while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]); | ||
| 569 | setobj(L, &f->k[k], v); | ||
| 570 | fs->nk++; | ||
| 571 | luaC_barrier(L, f, v); | ||
| 572 | return k; | ||
| 573 | } | ||
| 574 | |||
| 575 | |||
| 576 | /* | ||
| 577 | ** Add a string to list of constants and return its index. | ||
| 578 | */ | ||
| 579 | static int stringK (FuncState *fs, TString *s) { | ||
| 580 | TValue o; | ||
| 581 | setsvalue(fs->ls->L, &o, s); | ||
| 582 | return addk(fs, &o, &o); /* use string itself as key */ | ||
| 583 | } | ||
| 584 | |||
| 585 | |||
| 586 | /* | ||
| 587 | ** Add an integer to list of constants and return its index. | ||
| 588 | ** Integers use userdata as keys to avoid collision with floats with | ||
| 589 | ** same value; conversion to 'void*' is used only for hashing, so there | ||
| 590 | ** are no "precision" problems. | ||
| 591 | */ | ||
| 592 | static int luaK_intK (FuncState *fs, lua_Integer n) { | ||
| 593 | TValue k, o; | ||
| 594 | setpvalue(&k, cast_voidp(cast_sizet(n))); | ||
| 595 | setivalue(&o, n); | ||
| 596 | return addk(fs, &k, &o); | ||
| 597 | } | ||
| 598 | |||
| 599 | /* | ||
| 600 | ** Add a float to list of constants and return its index. | ||
| 601 | */ | ||
| 602 | static int luaK_numberK (FuncState *fs, lua_Number r) { | ||
| 603 | TValue o; | ||
| 604 | setfltvalue(&o, r); | ||
| 605 | return addk(fs, &o, &o); /* use number itself as key */ | ||
| 606 | } | ||
| 607 | |||
| 608 | |||
| 609 | /* | ||
| 610 | ** Add a false to list of constants and return its index. | ||
| 611 | */ | ||
| 612 | static int boolF (FuncState *fs) { | ||
| 613 | TValue o; | ||
| 614 | setbfvalue(&o); | ||
| 615 | return addk(fs, &o, &o); /* use boolean itself as key */ | ||
| 616 | } | ||
| 617 | |||
| 618 | |||
| 619 | /* | ||
| 620 | ** Add a true to list of constants and return its index. | ||
| 621 | */ | ||
| 622 | static int boolT (FuncState *fs) { | ||
| 623 | TValue o; | ||
| 624 | setbtvalue(&o); | ||
| 625 | return addk(fs, &o, &o); /* use boolean itself as key */ | ||
| 626 | } | ||
| 627 | |||
| 628 | |||
| 629 | /* | ||
| 630 | ** Add nil to list of constants and return its index. | ||
| 631 | */ | ||
| 632 | static int nilK (FuncState *fs) { | ||
| 633 | TValue k, v; | ||
| 634 | setnilvalue(&v); | ||
| 635 | /* cannot use nil as key; instead use table itself to represent nil */ | ||
| 636 | sethvalue(fs->ls->L, &k, fs->ls->h); | ||
| 637 | return addk(fs, &k, &v); | ||
| 638 | } | ||
| 639 | |||
| 640 | |||
| 641 | /* | ||
| 642 | ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to | ||
| 643 | ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of | ||
| 644 | ** overflows in the hidden addition inside 'int2sC'. | ||
| 645 | */ | ||
| 646 | static int fitsC (lua_Integer i) { | ||
| 647 | return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C)); | ||
| 648 | } | ||
| 649 | |||
| 650 | |||
| 651 | /* | ||
| 652 | ** Check whether 'i' can be stored in an 'sBx' operand. | ||
| 653 | */ | ||
| 654 | static int fitsBx (lua_Integer i) { | ||
| 655 | return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx); | ||
| 656 | } | ||
| 657 | |||
| 658 | |||
| 659 | void luaK_int (FuncState *fs, int reg, lua_Integer i) { | ||
| 660 | if (fitsBx(i)) | ||
| 661 | luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i)); | ||
| 662 | else | ||
| 663 | luaK_codek(fs, reg, luaK_intK(fs, i)); | ||
| 664 | } | ||
| 665 | |||
| 666 | |||
| 667 | static void luaK_float (FuncState *fs, int reg, lua_Number f) { | ||
| 668 | lua_Integer fi; | ||
| 669 | if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi)) | ||
| 670 | luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi)); | ||
| 671 | else | ||
| 672 | luaK_codek(fs, reg, luaK_numberK(fs, f)); | ||
| 673 | } | ||
| 674 | |||
| 675 | |||
| 676 | /* | ||
| 677 | ** Convert a constant in 'v' into an expression description 'e' | ||
| 678 | */ | ||
| 679 | static void const2exp (TValue *v, expdesc *e) { | ||
| 680 | switch (ttypetag(v)) { | ||
| 681 | case LUA_VNUMINT: | ||
| 682 | e->k = VKINT; e->u.ival = ivalue(v); | ||
| 683 | break; | ||
| 684 | case LUA_VNUMFLT: | ||
| 685 | e->k = VKFLT; e->u.nval = fltvalue(v); | ||
| 686 | break; | ||
| 687 | case LUA_VFALSE: | ||
| 688 | e->k = VFALSE; | ||
| 689 | break; | ||
| 690 | case LUA_VTRUE: | ||
| 691 | e->k = VTRUE; | ||
| 692 | break; | ||
| 693 | case LUA_VNIL: | ||
| 694 | e->k = VNIL; | ||
| 695 | break; | ||
| 696 | case LUA_VSHRSTR: case LUA_VLNGSTR: | ||
| 697 | e->k = VKSTR; e->u.strval = tsvalue(v); | ||
| 698 | break; | ||
| 699 | default: lua_assert(0); | ||
| 700 | } | ||
| 701 | } | ||
| 702 | |||
| 703 | |||
| 704 | /* | ||
| 705 | ** Fix an expression to return the number of results 'nresults'. | ||
| 706 | ** 'e' must be a multi-ret expression (function call or vararg). | ||
| 707 | */ | ||
| 708 | void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) { | ||
| 709 | Instruction *pc = &getinstruction(fs, e); | ||
| 710 | if (e->k == VCALL) /* expression is an open function call? */ | ||
| 711 | SETARG_C(*pc, nresults + 1); | ||
| 712 | else { | ||
| 713 | lua_assert(e->k == VVARARG); | ||
| 714 | SETARG_C(*pc, nresults + 1); | ||
| 715 | SETARG_A(*pc, fs->freereg); | ||
| 716 | luaK_reserveregs(fs, 1); | ||
| 717 | } | ||
| 718 | } | ||
| 719 | |||
| 720 | |||
| 721 | /* | ||
| 722 | ** Convert a VKSTR to a VK | ||
| 723 | */ | ||
| 724 | static void str2K (FuncState *fs, expdesc *e) { | ||
| 725 | lua_assert(e->k == VKSTR); | ||
| 726 | e->u.info = stringK(fs, e->u.strval); | ||
| 727 | e->k = VK; | ||
| 728 | } | ||
| 729 | |||
| 730 | |||
| 731 | /* | ||
| 732 | ** Fix an expression to return one result. | ||
| 733 | ** If expression is not a multi-ret expression (function call or | ||
| 734 | ** vararg), it already returns one result, so nothing needs to be done. | ||
| 735 | ** Function calls become VNONRELOC expressions (as its result comes | ||
| 736 | ** fixed in the base register of the call), while vararg expressions | ||
| 737 | ** become VRELOC (as OP_VARARG puts its results where it wants). | ||
| 738 | ** (Calls are created returning one result, so that does not need | ||
| 739 | ** to be fixed.) | ||
| 740 | */ | ||
| 741 | void luaK_setoneret (FuncState *fs, expdesc *e) { | ||
| 742 | if (e->k == VCALL) { /* expression is an open function call? */ | ||
| 743 | /* already returns 1 value */ | ||
| 744 | lua_assert(GETARG_C(getinstruction(fs, e)) == 2); | ||
| 745 | e->k = VNONRELOC; /* result has fixed position */ | ||
| 746 | e->u.info = GETARG_A(getinstruction(fs, e)); | ||
| 747 | } | ||
| 748 | else if (e->k == VVARARG) { | ||
| 749 | SETARG_C(getinstruction(fs, e), 2); | ||
| 750 | e->k = VRELOC; /* can relocate its simple result */ | ||
| 751 | } | ||
| 752 | } | ||
| 753 | |||
| 754 | |||
| 755 | /* | ||
| 756 | ** Ensure that expression 'e' is not a variable (nor a constant). | ||
| 757 | ** (Expression still may have jump lists.) | ||
| 758 | */ | ||
| 759 | void luaK_dischargevars (FuncState *fs, expdesc *e) { | ||
| 760 | switch (e->k) { | ||
| 761 | case VCONST: { | ||
| 762 | const2exp(const2val(fs, e), e); | ||
| 763 | break; | ||
| 764 | } | ||
| 765 | case VLOCAL: { /* already in a register */ | ||
| 766 | e->u.info = e->u.var.sidx; | ||
| 767 | e->k = VNONRELOC; /* becomes a non-relocatable value */ | ||
| 768 | break; | ||
| 769 | } | ||
| 770 | case VUPVAL: { /* move value to some (pending) register */ | ||
| 771 | e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0); | ||
| 772 | e->k = VRELOC; | ||
| 773 | break; | ||
| 774 | } | ||
| 775 | case VINDEXUP: { | ||
| 776 | e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx); | ||
| 777 | e->k = VRELOC; | ||
| 778 | break; | ||
| 779 | } | ||
| 780 | case VINDEXI: { | ||
| 781 | freereg(fs, e->u.ind.t); | ||
| 782 | e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx); | ||
| 783 | e->k = VRELOC; | ||
| 784 | break; | ||
| 785 | } | ||
| 786 | case VINDEXSTR: { | ||
| 787 | freereg(fs, e->u.ind.t); | ||
| 788 | e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx); | ||
| 789 | e->k = VRELOC; | ||
| 790 | break; | ||
| 791 | } | ||
| 792 | case VINDEXED: { | ||
| 793 | freeregs(fs, e->u.ind.t, e->u.ind.idx); | ||
| 794 | e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx); | ||
| 795 | e->k = VRELOC; | ||
| 796 | break; | ||
| 797 | } | ||
| 798 | case VVARARG: case VCALL: { | ||
| 799 | luaK_setoneret(fs, e); | ||
| 800 | break; | ||
| 801 | } | ||
| 802 | default: break; /* there is one value available (somewhere) */ | ||
| 803 | } | ||
| 804 | } | ||
| 805 | |||
| 806 | |||
| 807 | /* | ||
| 808 | ** Ensures expression value is in register 'reg' (and therefore | ||
| 809 | ** 'e' will become a non-relocatable expression). | ||
| 810 | ** (Expression still may have jump lists.) | ||
| 811 | */ | ||
| 812 | static void discharge2reg (FuncState *fs, expdesc *e, int reg) { | ||
| 813 | luaK_dischargevars(fs, e); | ||
| 814 | switch (e->k) { | ||
| 815 | case VNIL: { | ||
| 816 | luaK_nil(fs, reg, 1); | ||
| 817 | break; | ||
| 818 | } | ||
| 819 | case VFALSE: { | ||
| 820 | luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0); | ||
| 821 | break; | ||
| 822 | } | ||
| 823 | case VTRUE: { | ||
| 824 | luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0); | ||
| 825 | break; | ||
| 826 | } | ||
| 827 | case VKSTR: { | ||
| 828 | str2K(fs, e); | ||
| 829 | } /* FALLTHROUGH */ | ||
| 830 | case VK: { | ||
| 831 | luaK_codek(fs, reg, e->u.info); | ||
| 832 | break; | ||
| 833 | } | ||
| 834 | case VKFLT: { | ||
| 835 | luaK_float(fs, reg, e->u.nval); | ||
| 836 | break; | ||
| 837 | } | ||
| 838 | case VKINT: { | ||
| 839 | luaK_int(fs, reg, e->u.ival); | ||
| 840 | break; | ||
| 841 | } | ||
| 842 | case VRELOC: { | ||
| 843 | Instruction *pc = &getinstruction(fs, e); | ||
| 844 | SETARG_A(*pc, reg); /* instruction will put result in 'reg' */ | ||
| 845 | break; | ||
| 846 | } | ||
| 847 | case VNONRELOC: { | ||
| 848 | if (reg != e->u.info) | ||
| 849 | luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0); | ||
| 850 | break; | ||
| 851 | } | ||
| 852 | default: { | ||
| 853 | lua_assert(e->k == VJMP); | ||
| 854 | return; /* nothing to do... */ | ||
| 855 | } | ||
| 856 | } | ||
| 857 | e->u.info = reg; | ||
| 858 | e->k = VNONRELOC; | ||
| 859 | } | ||
| 860 | |||
| 861 | |||
| 862 | /* | ||
| 863 | ** Ensures expression value is in any register. | ||
| 864 | ** (Expression still may have jump lists.) | ||
| 865 | */ | ||
| 866 | static void discharge2anyreg (FuncState *fs, expdesc *e) { | ||
| 867 | if (e->k != VNONRELOC) { /* no fixed register yet? */ | ||
| 868 | luaK_reserveregs(fs, 1); /* get a register */ | ||
| 869 | discharge2reg(fs, e, fs->freereg-1); /* put value there */ | ||
| 870 | } | ||
| 871 | } | ||
| 872 | |||
| 873 | |||
| 874 | static int code_loadbool (FuncState *fs, int A, OpCode op) { | ||
| 875 | luaK_getlabel(fs); /* those instructions may be jump targets */ | ||
| 876 | return luaK_codeABC(fs, op, A, 0, 0); | ||
| 877 | } | ||
| 878 | |||
| 879 | |||
| 880 | /* | ||
| 881 | ** check whether list has any jump that do not produce a value | ||
| 882 | ** or produce an inverted value | ||
| 883 | */ | ||
| 884 | static int need_value (FuncState *fs, int list) { | ||
| 885 | for (; list != NO_JUMP; list = getjump(fs, list)) { | ||
| 886 | Instruction i = *getjumpcontrol(fs, list); | ||
| 887 | if (GET_OPCODE(i) != OP_TESTSET) return 1; | ||
| 888 | } | ||
| 889 | return 0; /* not found */ | ||
| 890 | } | ||
| 891 | |||
| 892 | |||
| 893 | /* | ||
| 894 | ** Ensures final expression result (which includes results from its | ||
| 895 | ** jump lists) is in register 'reg'. | ||
| 896 | ** If expression has jumps, need to patch these jumps either to | ||
| 897 | ** its final position or to "load" instructions (for those tests | ||
| 898 | ** that do not produce values). | ||
| 899 | */ | ||
| 900 | static void exp2reg (FuncState *fs, expdesc *e, int reg) { | ||
| 901 | discharge2reg(fs, e, reg); | ||
| 902 | if (e->k == VJMP) /* expression itself is a test? */ | ||
| 903 | luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */ | ||
| 904 | if (hasjumps(e)) { | ||
| 905 | int final; /* position after whole expression */ | ||
| 906 | int p_f = NO_JUMP; /* position of an eventual LOAD false */ | ||
| 907 | int p_t = NO_JUMP; /* position of an eventual LOAD true */ | ||
| 908 | if (need_value(fs, e->t) || need_value(fs, e->f)) { | ||
| 909 | int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs); | ||
| 910 | p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */ | ||
| 911 | p_t = code_loadbool(fs, reg, OP_LOADTRUE); | ||
| 912 | /* jump around these booleans if 'e' is not a test */ | ||
| 913 | luaK_patchtohere(fs, fj); | ||
| 914 | } | ||
| 915 | final = luaK_getlabel(fs); | ||
| 916 | patchlistaux(fs, e->f, final, reg, p_f); | ||
| 917 | patchlistaux(fs, e->t, final, reg, p_t); | ||
| 918 | } | ||
| 919 | e->f = e->t = NO_JUMP; | ||
| 920 | e->u.info = reg; | ||
| 921 | e->k = VNONRELOC; | ||
| 922 | } | ||
| 923 | |||
| 924 | |||
| 925 | /* | ||
| 926 | ** Ensures final expression result is in next available register. | ||
| 927 | */ | ||
| 928 | void luaK_exp2nextreg (FuncState *fs, expdesc *e) { | ||
| 929 | luaK_dischargevars(fs, e); | ||
| 930 | freeexp(fs, e); | ||
| 931 | luaK_reserveregs(fs, 1); | ||
| 932 | exp2reg(fs, e, fs->freereg - 1); | ||
| 933 | } | ||
| 934 | |||
| 935 | |||
| 936 | /* | ||
| 937 | ** Ensures final expression result is in some (any) register | ||
| 938 | ** and return that register. | ||
| 939 | */ | ||
| 940 | int luaK_exp2anyreg (FuncState *fs, expdesc *e) { | ||
| 941 | luaK_dischargevars(fs, e); | ||
| 942 | if (e->k == VNONRELOC) { /* expression already has a register? */ | ||
| 943 | if (!hasjumps(e)) /* no jumps? */ | ||
| 944 | return e->u.info; /* result is already in a register */ | ||
| 945 | if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */ | ||
| 946 | exp2reg(fs, e, e->u.info); /* put final result in it */ | ||
| 947 | return e->u.info; | ||
| 948 | } | ||
| 949 | } | ||
| 950 | luaK_exp2nextreg(fs, e); /* otherwise, use next available register */ | ||
| 951 | return e->u.info; | ||
| 952 | } | ||
| 953 | |||
| 954 | |||
| 955 | /* | ||
| 956 | ** Ensures final expression result is either in a register | ||
| 957 | ** or in an upvalue. | ||
| 958 | */ | ||
| 959 | void luaK_exp2anyregup (FuncState *fs, expdesc *e) { | ||
| 960 | if (e->k != VUPVAL || hasjumps(e)) | ||
| 961 | luaK_exp2anyreg(fs, e); | ||
| 962 | } | ||
| 963 | |||
| 964 | |||
| 965 | /* | ||
| 966 | ** Ensures final expression result is either in a register | ||
| 967 | ** or it is a constant. | ||
| 968 | */ | ||
| 969 | void luaK_exp2val (FuncState *fs, expdesc *e) { | ||
| 970 | if (hasjumps(e)) | ||
| 971 | luaK_exp2anyreg(fs, e); | ||
| 972 | else | ||
| 973 | luaK_dischargevars(fs, e); | ||
| 974 | } | ||
| 975 | |||
| 976 | |||
| 977 | /* | ||
| 978 | ** Try to make 'e' a K expression with an index in the range of R/K | ||
| 979 | ** indices. Return true iff succeeded. | ||
| 980 | */ | ||
| 981 | static int luaK_exp2K (FuncState *fs, expdesc *e) { | ||
| 982 | if (!hasjumps(e)) { | ||
| 983 | int info; | ||
| 984 | switch (e->k) { /* move constants to 'k' */ | ||
| 985 | case VTRUE: info = boolT(fs); break; | ||
| 986 | case VFALSE: info = boolF(fs); break; | ||
| 987 | case VNIL: info = nilK(fs); break; | ||
| 988 | case VKINT: info = luaK_intK(fs, e->u.ival); break; | ||
| 989 | case VKFLT: info = luaK_numberK(fs, e->u.nval); break; | ||
| 990 | case VKSTR: info = stringK(fs, e->u.strval); break; | ||
| 991 | case VK: info = e->u.info; break; | ||
| 992 | default: return 0; /* not a constant */ | ||
| 993 | } | ||
| 994 | if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */ | ||
| 995 | e->k = VK; /* make expression a 'K' expression */ | ||
| 996 | e->u.info = info; | ||
| 997 | return 1; | ||
| 998 | } | ||
| 999 | } | ||
| 1000 | /* else, expression doesn't fit; leave it unchanged */ | ||
| 1001 | return 0; | ||
| 1002 | } | ||
| 1003 | |||
| 1004 | |||
| 1005 | /* | ||
| 1006 | ** Ensures final expression result is in a valid R/K index | ||
| 1007 | ** (that is, it is either in a register or in 'k' with an index | ||
| 1008 | ** in the range of R/K indices). | ||
| 1009 | ** Returns 1 iff expression is K. | ||
| 1010 | */ | ||
| 1011 | int luaK_exp2RK (FuncState *fs, expdesc *e) { | ||
| 1012 | if (luaK_exp2K(fs, e)) | ||
| 1013 | return 1; | ||
| 1014 | else { /* not a constant in the right range: put it in a register */ | ||
| 1015 | luaK_exp2anyreg(fs, e); | ||
| 1016 | return 0; | ||
| 1017 | } | ||
| 1018 | } | ||
| 1019 | |||
| 1020 | |||
| 1021 | static void codeABRK (FuncState *fs, OpCode o, int a, int b, | ||
| 1022 | expdesc *ec) { | ||
| 1023 | int k = luaK_exp2RK(fs, ec); | ||
| 1024 | luaK_codeABCk(fs, o, a, b, ec->u.info, k); | ||
| 1025 | } | ||
| 1026 | |||
| 1027 | |||
| 1028 | /* | ||
| 1029 | ** Generate code to store result of expression 'ex' into variable 'var'. | ||
| 1030 | */ | ||
| 1031 | void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) { | ||
| 1032 | switch (var->k) { | ||
| 1033 | case VLOCAL: { | ||
| 1034 | freeexp(fs, ex); | ||
| 1035 | exp2reg(fs, ex, var->u.var.sidx); /* compute 'ex' into proper place */ | ||
| 1036 | return; | ||
| 1037 | } | ||
| 1038 | case VUPVAL: { | ||
| 1039 | int e = luaK_exp2anyreg(fs, ex); | ||
| 1040 | luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0); | ||
| 1041 | break; | ||
| 1042 | } | ||
| 1043 | case VINDEXUP: { | ||
| 1044 | codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex); | ||
| 1045 | break; | ||
| 1046 | } | ||
| 1047 | case VINDEXI: { | ||
| 1048 | codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex); | ||
| 1049 | break; | ||
| 1050 | } | ||
| 1051 | case VINDEXSTR: { | ||
| 1052 | codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex); | ||
| 1053 | break; | ||
| 1054 | } | ||
| 1055 | case VINDEXED: { | ||
| 1056 | codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex); | ||
| 1057 | break; | ||
| 1058 | } | ||
| 1059 | default: lua_assert(0); /* invalid var kind to store */ | ||
| 1060 | } | ||
| 1061 | freeexp(fs, ex); | ||
| 1062 | } | ||
| 1063 | |||
| 1064 | |||
| 1065 | /* | ||
| 1066 | ** Emit SELF instruction (convert expression 'e' into 'e:key(e,'). | ||
| 1067 | */ | ||
| 1068 | void luaK_self (FuncState *fs, expdesc *e, expdesc *key) { | ||
| 1069 | int ereg; | ||
| 1070 | luaK_exp2anyreg(fs, e); | ||
| 1071 | ereg = e->u.info; /* register where 'e' was placed */ | ||
| 1072 | freeexp(fs, e); | ||
| 1073 | e->u.info = fs->freereg; /* base register for op_self */ | ||
| 1074 | e->k = VNONRELOC; /* self expression has a fixed register */ | ||
| 1075 | luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */ | ||
| 1076 | codeABRK(fs, OP_SELF, e->u.info, ereg, key); | ||
| 1077 | freeexp(fs, key); | ||
| 1078 | } | ||
| 1079 | |||
| 1080 | |||
| 1081 | /* | ||
| 1082 | ** Negate condition 'e' (where 'e' is a comparison). | ||
| 1083 | */ | ||
| 1084 | static void negatecondition (FuncState *fs, expdesc *e) { | ||
| 1085 | Instruction *pc = getjumpcontrol(fs, e->u.info); | ||
| 1086 | lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET && | ||
| 1087 | GET_OPCODE(*pc) != OP_TEST); | ||
| 1088 | SETARG_k(*pc, (GETARG_k(*pc) ^ 1)); | ||
| 1089 | } | ||
| 1090 | |||
| 1091 | |||
| 1092 | /* | ||
| 1093 | ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond' | ||
| 1094 | ** is true, code will jump if 'e' is true.) Return jump position. | ||
| 1095 | ** Optimize when 'e' is 'not' something, inverting the condition | ||
| 1096 | ** and removing the 'not'. | ||
| 1097 | */ | ||
| 1098 | static int jumponcond (FuncState *fs, expdesc *e, int cond) { | ||
| 1099 | if (e->k == VRELOC) { | ||
| 1100 | Instruction ie = getinstruction(fs, e); | ||
| 1101 | if (GET_OPCODE(ie) == OP_NOT) { | ||
| 1102 | removelastinstruction(fs); /* remove previous OP_NOT */ | ||
| 1103 | return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond); | ||
| 1104 | } | ||
| 1105 | /* else go through */ | ||
| 1106 | } | ||
| 1107 | discharge2anyreg(fs, e); | ||
| 1108 | freeexp(fs, e); | ||
| 1109 | return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond); | ||
| 1110 | } | ||
| 1111 | |||
| 1112 | |||
| 1113 | /* | ||
| 1114 | ** Emit code to go through if 'e' is true, jump otherwise. | ||
| 1115 | */ | ||
| 1116 | void luaK_goiftrue (FuncState *fs, expdesc *e) { | ||
| 1117 | int pc; /* pc of new jump */ | ||
| 1118 | luaK_dischargevars(fs, e); | ||
| 1119 | switch (e->k) { | ||
| 1120 | case VJMP: { /* condition? */ | ||
| 1121 | negatecondition(fs, e); /* jump when it is false */ | ||
| 1122 | pc = e->u.info; /* save jump position */ | ||
| 1123 | break; | ||
| 1124 | } | ||
| 1125 | case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: { | ||
| 1126 | pc = NO_JUMP; /* always true; do nothing */ | ||
| 1127 | break; | ||
| 1128 | } | ||
| 1129 | default: { | ||
| 1130 | pc = jumponcond(fs, e, 0); /* jump when false */ | ||
| 1131 | break; | ||
| 1132 | } | ||
| 1133 | } | ||
| 1134 | luaK_concat(fs, &e->f, pc); /* insert new jump in false list */ | ||
| 1135 | luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */ | ||
| 1136 | e->t = NO_JUMP; | ||
| 1137 | } | ||
| 1138 | |||
| 1139 | |||
| 1140 | /* | ||
| 1141 | ** Emit code to go through if 'e' is false, jump otherwise. | ||
| 1142 | */ | ||
| 1143 | void luaK_goiffalse (FuncState *fs, expdesc *e) { | ||
| 1144 | int pc; /* pc of new jump */ | ||
| 1145 | luaK_dischargevars(fs, e); | ||
| 1146 | switch (e->k) { | ||
| 1147 | case VJMP: { | ||
| 1148 | pc = e->u.info; /* already jump if true */ | ||
| 1149 | break; | ||
| 1150 | } | ||
| 1151 | case VNIL: case VFALSE: { | ||
| 1152 | pc = NO_JUMP; /* always false; do nothing */ | ||
| 1153 | break; | ||
| 1154 | } | ||
| 1155 | default: { | ||
| 1156 | pc = jumponcond(fs, e, 1); /* jump if true */ | ||
| 1157 | break; | ||
| 1158 | } | ||
| 1159 | } | ||
| 1160 | luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */ | ||
| 1161 | luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */ | ||
| 1162 | e->f = NO_JUMP; | ||
| 1163 | } | ||
| 1164 | |||
| 1165 | |||
| 1166 | /* | ||
| 1167 | ** Code 'not e', doing constant folding. | ||
| 1168 | */ | ||
| 1169 | static void codenot (FuncState *fs, expdesc *e) { | ||
| 1170 | switch (e->k) { | ||
| 1171 | case VNIL: case VFALSE: { | ||
| 1172 | e->k = VTRUE; /* true == not nil == not false */ | ||
| 1173 | break; | ||
| 1174 | } | ||
| 1175 | case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: { | ||
| 1176 | e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */ | ||
| 1177 | break; | ||
| 1178 | } | ||
| 1179 | case VJMP: { | ||
| 1180 | negatecondition(fs, e); | ||
| 1181 | break; | ||
| 1182 | } | ||
| 1183 | case VRELOC: | ||
| 1184 | case VNONRELOC: { | ||
| 1185 | discharge2anyreg(fs, e); | ||
| 1186 | freeexp(fs, e); | ||
| 1187 | e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0); | ||
| 1188 | e->k = VRELOC; | ||
| 1189 | break; | ||
| 1190 | } | ||
| 1191 | default: lua_assert(0); /* cannot happen */ | ||
| 1192 | } | ||
| 1193 | /* interchange true and false lists */ | ||
| 1194 | { int temp = e->f; e->f = e->t; e->t = temp; } | ||
| 1195 | removevalues(fs, e->f); /* values are useless when negated */ | ||
| 1196 | removevalues(fs, e->t); | ||
| 1197 | } | ||
| 1198 | |||
| 1199 | |||
| 1200 | /* | ||
| 1201 | ** Check whether expression 'e' is a small literal string | ||
| 1202 | */ | ||
| 1203 | static int isKstr (FuncState *fs, expdesc *e) { | ||
| 1204 | return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B && | ||
| 1205 | ttisshrstring(&fs->f->k[e->u.info])); | ||
| 1206 | } | ||
| 1207 | |||
| 1208 | /* | ||
| 1209 | ** Check whether expression 'e' is a literal integer. | ||
| 1210 | */ | ||
| 1211 | int luaK_isKint (expdesc *e) { | ||
| 1212 | return (e->k == VKINT && !hasjumps(e)); | ||
| 1213 | } | ||
| 1214 | |||
| 1215 | |||
| 1216 | /* | ||
| 1217 | ** Check whether expression 'e' is a literal integer in | ||
| 1218 | ** proper range to fit in register C | ||
| 1219 | */ | ||
| 1220 | static int isCint (expdesc *e) { | ||
| 1221 | return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C)); | ||
| 1222 | } | ||
| 1223 | |||
| 1224 | |||
| 1225 | /* | ||
| 1226 | ** Check whether expression 'e' is a literal integer in | ||
| 1227 | ** proper range to fit in register sC | ||
| 1228 | */ | ||
| 1229 | static int isSCint (expdesc *e) { | ||
| 1230 | return luaK_isKint(e) && fitsC(e->u.ival); | ||
| 1231 | } | ||
| 1232 | |||
| 1233 | |||
| 1234 | /* | ||
| 1235 | ** Check whether expression 'e' is a literal integer or float in | ||
| 1236 | ** proper range to fit in a register (sB or sC). | ||
| 1237 | */ | ||
| 1238 | static int isSCnumber (expdesc *e, int *pi, int *isfloat) { | ||
| 1239 | lua_Integer i; | ||
| 1240 | if (e->k == VKINT) | ||
| 1241 | i = e->u.ival; | ||
| 1242 | else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq)) | ||
| 1243 | *isfloat = 1; | ||
| 1244 | else | ||
| 1245 | return 0; /* not a number */ | ||
| 1246 | if (!hasjumps(e) && fitsC(i)) { | ||
| 1247 | *pi = int2sC(cast_int(i)); | ||
| 1248 | return 1; | ||
| 1249 | } | ||
| 1250 | else | ||
| 1251 | return 0; | ||
| 1252 | } | ||
| 1253 | |||
| 1254 | |||
| 1255 | /* | ||
| 1256 | ** Create expression 't[k]'. 't' must have its final result already in a | ||
| 1257 | ** register or upvalue. Upvalues can only be indexed by literal strings. | ||
| 1258 | ** Keys can be literal strings in the constant table or arbitrary | ||
| 1259 | ** values in registers. | ||
| 1260 | */ | ||
| 1261 | void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) { | ||
| 1262 | if (k->k == VKSTR) | ||
| 1263 | str2K(fs, k); | ||
| 1264 | lua_assert(!hasjumps(t) && | ||
| 1265 | (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL)); | ||
| 1266 | if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */ | ||
| 1267 | luaK_exp2anyreg(fs, t); /* put it in a register */ | ||
| 1268 | if (t->k == VUPVAL) { | ||
| 1269 | t->u.ind.t = t->u.info; /* upvalue index */ | ||
| 1270 | t->u.ind.idx = k->u.info; /* literal string */ | ||
| 1271 | t->k = VINDEXUP; | ||
| 1272 | } | ||
| 1273 | else { | ||
| 1274 | /* register index of the table */ | ||
| 1275 | t->u.ind.t = (t->k == VLOCAL) ? t->u.var.sidx: t->u.info; | ||
| 1276 | if (isKstr(fs, k)) { | ||
| 1277 | t->u.ind.idx = k->u.info; /* literal string */ | ||
| 1278 | t->k = VINDEXSTR; | ||
| 1279 | } | ||
| 1280 | else if (isCint(k)) { | ||
| 1281 | t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */ | ||
| 1282 | t->k = VINDEXI; | ||
| 1283 | } | ||
| 1284 | else { | ||
| 1285 | t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */ | ||
| 1286 | t->k = VINDEXED; | ||
| 1287 | } | ||
| 1288 | } | ||
| 1289 | } | ||
| 1290 | |||
| 1291 | |||
| 1292 | /* | ||
| 1293 | ** Return false if folding can raise an error. | ||
| 1294 | ** Bitwise operations need operands convertible to integers; division | ||
| 1295 | ** operations cannot have 0 as divisor. | ||
| 1296 | */ | ||
| 1297 | static int validop (int op, TValue *v1, TValue *v2) { | ||
| 1298 | switch (op) { | ||
| 1299 | case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR: | ||
| 1300 | case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */ | ||
| 1301 | lua_Integer i; | ||
| 1302 | return (tointegerns(v1, &i) && tointegerns(v2, &i)); | ||
| 1303 | } | ||
| 1304 | case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */ | ||
| 1305 | return (nvalue(v2) != 0); | ||
| 1306 | default: return 1; /* everything else is valid */ | ||
| 1307 | } | ||
| 1308 | } | ||
| 1309 | |||
| 1310 | |||
| 1311 | /* | ||
| 1312 | ** Try to "constant-fold" an operation; return 1 iff successful. | ||
| 1313 | ** (In this case, 'e1' has the final result.) | ||
| 1314 | */ | ||
| 1315 | static int constfolding (FuncState *fs, int op, expdesc *e1, | ||
| 1316 | const expdesc *e2) { | ||
| 1317 | TValue v1, v2, res; | ||
| 1318 | if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2)) | ||
| 1319 | return 0; /* non-numeric operands or not safe to fold */ | ||
| 1320 | luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */ | ||
| 1321 | if (ttisinteger(&res)) { | ||
| 1322 | e1->k = VKINT; | ||
| 1323 | e1->u.ival = ivalue(&res); | ||
| 1324 | } | ||
| 1325 | else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */ | ||
| 1326 | lua_Number n = fltvalue(&res); | ||
| 1327 | if (luai_numisnan(n) || n == 0) | ||
| 1328 | return 0; | ||
| 1329 | e1->k = VKFLT; | ||
| 1330 | e1->u.nval = n; | ||
| 1331 | } | ||
| 1332 | return 1; | ||
| 1333 | } | ||
| 1334 | |||
| 1335 | |||
| 1336 | /* | ||
| 1337 | ** Emit code for unary expressions that "produce values" | ||
| 1338 | ** (everything but 'not'). | ||
| 1339 | ** Expression to produce final result will be encoded in 'e'. | ||
| 1340 | */ | ||
| 1341 | static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) { | ||
| 1342 | int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */ | ||
| 1343 | freeexp(fs, e); | ||
| 1344 | e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */ | ||
| 1345 | e->k = VRELOC; /* all those operations are relocatable */ | ||
| 1346 | luaK_fixline(fs, line); | ||
| 1347 | } | ||
| 1348 | |||
| 1349 | |||
| 1350 | /* | ||
| 1351 | ** Emit code for binary expressions that "produce values" | ||
| 1352 | ** (everything but logical operators 'and'/'or' and comparison | ||
| 1353 | ** operators). | ||
| 1354 | ** Expression to produce final result will be encoded in 'e1'. | ||
| 1355 | */ | ||
| 1356 | static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2, | ||
| 1357 | OpCode op, int v2, int flip, int line, | ||
| 1358 | OpCode mmop, TMS event) { | ||
| 1359 | int v1 = luaK_exp2anyreg(fs, e1); | ||
| 1360 | int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0); | ||
| 1361 | freeexps(fs, e1, e2); | ||
| 1362 | e1->u.info = pc; | ||
| 1363 | e1->k = VRELOC; /* all those operations are relocatable */ | ||
| 1364 | luaK_fixline(fs, line); | ||
| 1365 | luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */ | ||
| 1366 | luaK_fixline(fs, line); | ||
| 1367 | } | ||
| 1368 | |||
| 1369 | |||
| 1370 | /* | ||
| 1371 | ** Emit code for binary expressions that "produce values" over | ||
| 1372 | ** two registers. | ||
| 1373 | */ | ||
| 1374 | static void codebinexpval (FuncState *fs, OpCode op, | ||
| 1375 | expdesc *e1, expdesc *e2, int line) { | ||
| 1376 | int v2 = luaK_exp2anyreg(fs, e2); /* both operands are in registers */ | ||
| 1377 | lua_assert(OP_ADD <= op && op <= OP_SHR); | ||
| 1378 | finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, | ||
| 1379 | cast(TMS, (op - OP_ADD) + TM_ADD)); | ||
| 1380 | } | ||
| 1381 | |||
| 1382 | |||
| 1383 | /* | ||
| 1384 | ** Code binary operators with immediate operands. | ||
| 1385 | */ | ||
| 1386 | static void codebini (FuncState *fs, OpCode op, | ||
| 1387 | expdesc *e1, expdesc *e2, int flip, int line, | ||
| 1388 | TMS event) { | ||
| 1389 | int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */ | ||
| 1390 | lua_assert(e2->k == VKINT); | ||
| 1391 | finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event); | ||
| 1392 | } | ||
| 1393 | |||
| 1394 | |||
| 1395 | /* Try to code a binary operator negating its second operand. | ||
| 1396 | ** For the metamethod, 2nd operand must keep its original value. | ||
| 1397 | */ | ||
| 1398 | static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2, | ||
| 1399 | OpCode op, int line, TMS event) { | ||
| 1400 | if (!luaK_isKint(e2)) | ||
| 1401 | return 0; /* not an integer constant */ | ||
| 1402 | else { | ||
| 1403 | lua_Integer i2 = e2->u.ival; | ||
| 1404 | if (!(fitsC(i2) && fitsC(-i2))) | ||
| 1405 | return 0; /* not in the proper range */ | ||
| 1406 | else { /* operating a small integer constant */ | ||
| 1407 | int v2 = cast_int(i2); | ||
| 1408 | finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event); | ||
| 1409 | /* correct metamethod argument */ | ||
| 1410 | SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2)); | ||
| 1411 | return 1; /* successfully coded */ | ||
| 1412 | } | ||
| 1413 | } | ||
| 1414 | } | ||
| 1415 | |||
| 1416 | |||
| 1417 | static void swapexps (expdesc *e1, expdesc *e2) { | ||
| 1418 | expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */ | ||
| 1419 | } | ||
| 1420 | |||
| 1421 | |||
| 1422 | /* | ||
| 1423 | ** Code arithmetic operators ('+', '-', ...). If second operand is a | ||
| 1424 | ** constant in the proper range, use variant opcodes with K operands. | ||
| 1425 | */ | ||
| 1426 | static void codearith (FuncState *fs, BinOpr opr, | ||
| 1427 | expdesc *e1, expdesc *e2, int flip, int line) { | ||
| 1428 | TMS event = cast(TMS, opr + TM_ADD); | ||
| 1429 | if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) { /* K operand? */ | ||
| 1430 | int v2 = e2->u.info; /* K index */ | ||
| 1431 | OpCode op = cast(OpCode, opr + OP_ADDK); | ||
| 1432 | finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event); | ||
| 1433 | } | ||
| 1434 | else { /* 'e2' is neither an immediate nor a K operand */ | ||
| 1435 | OpCode op = cast(OpCode, opr + OP_ADD); | ||
| 1436 | if (flip) | ||
| 1437 | swapexps(e1, e2); /* back to original order */ | ||
| 1438 | codebinexpval(fs, op, e1, e2, line); /* use standard operators */ | ||
| 1439 | } | ||
| 1440 | } | ||
| 1441 | |||
| 1442 | |||
| 1443 | /* | ||
| 1444 | ** Code commutative operators ('+', '*'). If first operand is a | ||
| 1445 | ** numeric constant, change order of operands to try to use an | ||
| 1446 | ** immediate or K operator. | ||
| 1447 | */ | ||
| 1448 | static void codecommutative (FuncState *fs, BinOpr op, | ||
| 1449 | expdesc *e1, expdesc *e2, int line) { | ||
| 1450 | int flip = 0; | ||
| 1451 | if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */ | ||
| 1452 | swapexps(e1, e2); /* change order */ | ||
| 1453 | flip = 1; | ||
| 1454 | } | ||
| 1455 | if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */ | ||
| 1456 | codebini(fs, cast(OpCode, OP_ADDI), e1, e2, flip, line, TM_ADD); | ||
| 1457 | else | ||
| 1458 | codearith(fs, op, e1, e2, flip, line); | ||
| 1459 | } | ||
| 1460 | |||
| 1461 | |||
| 1462 | /* | ||
| 1463 | ** Code bitwise operations; they are all associative, so the function | ||
| 1464 | ** tries to put an integer constant as the 2nd operand (a K operand). | ||
| 1465 | */ | ||
| 1466 | static void codebitwise (FuncState *fs, BinOpr opr, | ||
| 1467 | expdesc *e1, expdesc *e2, int line) { | ||
| 1468 | int flip = 0; | ||
| 1469 | int v2; | ||
| 1470 | OpCode op; | ||
| 1471 | if (e1->k == VKINT && luaK_exp2RK(fs, e1)) { | ||
| 1472 | swapexps(e1, e2); /* 'e2' will be the constant operand */ | ||
| 1473 | flip = 1; | ||
| 1474 | } | ||
| 1475 | else if (!(e2->k == VKINT && luaK_exp2RK(fs, e2))) { /* no constants? */ | ||
| 1476 | op = cast(OpCode, opr + OP_ADD); | ||
| 1477 | codebinexpval(fs, op, e1, e2, line); /* all-register opcodes */ | ||
| 1478 | return; | ||
| 1479 | } | ||
| 1480 | v2 = e2->u.info; /* index in K array */ | ||
| 1481 | op = cast(OpCode, opr + OP_ADDK); | ||
| 1482 | lua_assert(ttisinteger(&fs->f->k[v2])); | ||
| 1483 | finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, | ||
| 1484 | cast(TMS, opr + TM_ADD)); | ||
| 1485 | } | ||
| 1486 | |||
| 1487 | |||
| 1488 | /* | ||
| 1489 | ** Emit code for order comparisons. When using an immediate operand, | ||
| 1490 | ** 'isfloat' tells whether the original value was a float. | ||
| 1491 | */ | ||
| 1492 | static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) { | ||
| 1493 | int r1, r2; | ||
| 1494 | int im; | ||
| 1495 | int isfloat = 0; | ||
| 1496 | if (isSCnumber(e2, &im, &isfloat)) { | ||
| 1497 | /* use immediate operand */ | ||
| 1498 | r1 = luaK_exp2anyreg(fs, e1); | ||
| 1499 | r2 = im; | ||
| 1500 | op = cast(OpCode, (op - OP_LT) + OP_LTI); | ||
| 1501 | } | ||
| 1502 | else if (isSCnumber(e1, &im, &isfloat)) { | ||
| 1503 | /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */ | ||
| 1504 | r1 = luaK_exp2anyreg(fs, e2); | ||
| 1505 | r2 = im; | ||
| 1506 | op = (op == OP_LT) ? OP_GTI : OP_GEI; | ||
| 1507 | } | ||
| 1508 | else { /* regular case, compare two registers */ | ||
| 1509 | r1 = luaK_exp2anyreg(fs, e1); | ||
| 1510 | r2 = luaK_exp2anyreg(fs, e2); | ||
| 1511 | } | ||
| 1512 | freeexps(fs, e1, e2); | ||
| 1513 | e1->u.info = condjump(fs, op, r1, r2, isfloat, 1); | ||
| 1514 | e1->k = VJMP; | ||
| 1515 | } | ||
| 1516 | |||
| 1517 | |||
| 1518 | /* | ||
| 1519 | ** Emit code for equality comparisons ('==', '~='). | ||
| 1520 | ** 'e1' was already put as RK by 'luaK_infix'. | ||
| 1521 | */ | ||
| 1522 | static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) { | ||
| 1523 | int r1, r2; | ||
| 1524 | int im; | ||
| 1525 | int isfloat = 0; /* not needed here, but kept for symmetry */ | ||
| 1526 | OpCode op; | ||
| 1527 | if (e1->k != VNONRELOC) { | ||
| 1528 | lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT); | ||
| 1529 | swapexps(e1, e2); | ||
| 1530 | } | ||
| 1531 | r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */ | ||
| 1532 | if (isSCnumber(e2, &im, &isfloat)) { | ||
| 1533 | op = OP_EQI; | ||
| 1534 | r2 = im; /* immediate operand */ | ||
| 1535 | } | ||
| 1536 | else if (luaK_exp2RK(fs, e2)) { /* 1st expression is constant? */ | ||
| 1537 | op = OP_EQK; | ||
| 1538 | r2 = e2->u.info; /* constant index */ | ||
| 1539 | } | ||
| 1540 | else { | ||
| 1541 | op = OP_EQ; /* will compare two registers */ | ||
| 1542 | r2 = luaK_exp2anyreg(fs, e2); | ||
| 1543 | } | ||
| 1544 | freeexps(fs, e1, e2); | ||
| 1545 | e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ)); | ||
| 1546 | e1->k = VJMP; | ||
| 1547 | } | ||
| 1548 | |||
| 1549 | |||
| 1550 | /* | ||
| 1551 | ** Apply prefix operation 'op' to expression 'e'. | ||
| 1552 | */ | ||
| 1553 | void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) { | ||
| 1554 | static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP}; | ||
| 1555 | luaK_dischargevars(fs, e); | ||
| 1556 | switch (op) { | ||
| 1557 | case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */ | ||
| 1558 | if (constfolding(fs, op + LUA_OPUNM, e, &ef)) | ||
| 1559 | break; | ||
| 1560 | /* else */ /* FALLTHROUGH */ | ||
| 1561 | case OPR_LEN: | ||
| 1562 | codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line); | ||
| 1563 | break; | ||
| 1564 | case OPR_NOT: codenot(fs, e); break; | ||
| 1565 | default: lua_assert(0); | ||
| 1566 | } | ||
| 1567 | } | ||
| 1568 | |||
| 1569 | |||
| 1570 | /* | ||
| 1571 | ** Process 1st operand 'v' of binary operation 'op' before reading | ||
| 1572 | ** 2nd operand. | ||
| 1573 | */ | ||
| 1574 | void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) { | ||
| 1575 | luaK_dischargevars(fs, v); | ||
| 1576 | switch (op) { | ||
| 1577 | case OPR_AND: { | ||
| 1578 | luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */ | ||
| 1579 | break; | ||
| 1580 | } | ||
| 1581 | case OPR_OR: { | ||
| 1582 | luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */ | ||
| 1583 | break; | ||
| 1584 | } | ||
| 1585 | case OPR_CONCAT: { | ||
| 1586 | luaK_exp2nextreg(fs, v); /* operand must be on the stack */ | ||
| 1587 | break; | ||
| 1588 | } | ||
| 1589 | case OPR_ADD: case OPR_SUB: | ||
| 1590 | case OPR_MUL: case OPR_DIV: case OPR_IDIV: | ||
| 1591 | case OPR_MOD: case OPR_POW: | ||
| 1592 | case OPR_BAND: case OPR_BOR: case OPR_BXOR: | ||
| 1593 | case OPR_SHL: case OPR_SHR: { | ||
| 1594 | if (!tonumeral(v, NULL)) | ||
| 1595 | luaK_exp2anyreg(fs, v); | ||
| 1596 | /* else keep numeral, which may be folded with 2nd operand */ | ||
| 1597 | break; | ||
| 1598 | } | ||
| 1599 | case OPR_EQ: case OPR_NE: { | ||
| 1600 | if (!tonumeral(v, NULL)) | ||
| 1601 | luaK_exp2RK(fs, v); | ||
| 1602 | /* else keep numeral, which may be an immediate operand */ | ||
| 1603 | break; | ||
| 1604 | } | ||
| 1605 | case OPR_LT: case OPR_LE: | ||
| 1606 | case OPR_GT: case OPR_GE: { | ||
| 1607 | int dummy, dummy2; | ||
| 1608 | if (!isSCnumber(v, &dummy, &dummy2)) | ||
| 1609 | luaK_exp2anyreg(fs, v); | ||
| 1610 | /* else keep numeral, which may be an immediate operand */ | ||
| 1611 | break; | ||
| 1612 | } | ||
| 1613 | default: lua_assert(0); | ||
| 1614 | } | ||
| 1615 | } | ||
| 1616 | |||
| 1617 | /* | ||
| 1618 | ** Create code for '(e1 .. e2)'. | ||
| 1619 | ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))', | ||
| 1620 | ** because concatenation is right associative), merge both CONCATs. | ||
| 1621 | */ | ||
| 1622 | static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) { | ||
| 1623 | Instruction *ie2 = previousinstruction(fs); | ||
| 1624 | if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */ | ||
| 1625 | int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */ | ||
| 1626 | lua_assert(e1->u.info + 1 == GETARG_A(*ie2)); | ||
| 1627 | freeexp(fs, e2); | ||
| 1628 | SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */ | ||
| 1629 | SETARG_B(*ie2, n + 1); /* will concatenate one more element */ | ||
| 1630 | } | ||
| 1631 | else { /* 'e2' is not a concatenation */ | ||
| 1632 | luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */ | ||
| 1633 | freeexp(fs, e2); | ||
| 1634 | luaK_fixline(fs, line); | ||
| 1635 | } | ||
| 1636 | } | ||
| 1637 | |||
| 1638 | |||
| 1639 | /* | ||
| 1640 | ** Finalize code for binary operation, after reading 2nd operand. | ||
| 1641 | */ | ||
| 1642 | void luaK_posfix (FuncState *fs, BinOpr opr, | ||
| 1643 | expdesc *e1, expdesc *e2, int line) { | ||
| 1644 | luaK_dischargevars(fs, e2); | ||
| 1645 | if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2)) | ||
| 1646 | return; /* done by folding */ | ||
| 1647 | switch (opr) { | ||
| 1648 | case OPR_AND: { | ||
| 1649 | lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */ | ||
| 1650 | luaK_concat(fs, &e2->f, e1->f); | ||
| 1651 | *e1 = *e2; | ||
| 1652 | break; | ||
| 1653 | } | ||
| 1654 | case OPR_OR: { | ||
| 1655 | lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */ | ||
| 1656 | luaK_concat(fs, &e2->t, e1->t); | ||
| 1657 | *e1 = *e2; | ||
| 1658 | break; | ||
| 1659 | } | ||
| 1660 | case OPR_CONCAT: { /* e1 .. e2 */ | ||
| 1661 | luaK_exp2nextreg(fs, e2); | ||
| 1662 | codeconcat(fs, e1, e2, line); | ||
| 1663 | break; | ||
| 1664 | } | ||
| 1665 | case OPR_ADD: case OPR_MUL: { | ||
| 1666 | codecommutative(fs, opr, e1, e2, line); | ||
| 1667 | break; | ||
| 1668 | } | ||
| 1669 | case OPR_SUB: { | ||
| 1670 | if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB)) | ||
| 1671 | break; /* coded as (r1 + -I) */ | ||
| 1672 | /* ELSE */ | ||
| 1673 | } /* FALLTHROUGH */ | ||
| 1674 | case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: { | ||
| 1675 | codearith(fs, opr, e1, e2, 0, line); | ||
| 1676 | break; | ||
| 1677 | } | ||
| 1678 | case OPR_BAND: case OPR_BOR: case OPR_BXOR: { | ||
| 1679 | codebitwise(fs, opr, e1, e2, line); | ||
| 1680 | break; | ||
| 1681 | } | ||
| 1682 | case OPR_SHL: { | ||
| 1683 | if (isSCint(e1)) { | ||
| 1684 | swapexps(e1, e2); | ||
| 1685 | codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */ | ||
| 1686 | } | ||
| 1687 | else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) { | ||
| 1688 | /* coded as (r1 >> -I) */; | ||
| 1689 | } | ||
| 1690 | else /* regular case (two registers) */ | ||
| 1691 | codebinexpval(fs, OP_SHL, e1, e2, line); | ||
| 1692 | break; | ||
| 1693 | } | ||
| 1694 | case OPR_SHR: { | ||
| 1695 | if (isSCint(e2)) | ||
| 1696 | codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */ | ||
| 1697 | else /* regular case (two registers) */ | ||
| 1698 | codebinexpval(fs, OP_SHR, e1, e2, line); | ||
| 1699 | break; | ||
| 1700 | } | ||
| 1701 | case OPR_EQ: case OPR_NE: { | ||
| 1702 | codeeq(fs, opr, e1, e2); | ||
| 1703 | break; | ||
| 1704 | } | ||
| 1705 | case OPR_LT: case OPR_LE: { | ||
| 1706 | OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ); | ||
| 1707 | codeorder(fs, op, e1, e2); | ||
| 1708 | break; | ||
| 1709 | } | ||
| 1710 | case OPR_GT: case OPR_GE: { | ||
| 1711 | /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */ | ||
| 1712 | OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ); | ||
| 1713 | swapexps(e1, e2); | ||
| 1714 | codeorder(fs, op, e1, e2); | ||
| 1715 | break; | ||
| 1716 | } | ||
| 1717 | default: lua_assert(0); | ||
| 1718 | } | ||
| 1719 | } | ||
| 1720 | |||
| 1721 | |||
| 1722 | /* | ||
| 1723 | ** Change line information associated with current position, by removing | ||
| 1724 | ** previous info and adding it again with new line. | ||
| 1725 | */ | ||
| 1726 | void luaK_fixline (FuncState *fs, int line) { | ||
| 1727 | removelastlineinfo(fs); | ||
| 1728 | savelineinfo(fs, fs->f, line); | ||
| 1729 | } | ||
| 1730 | |||
| 1731 | |||
| 1732 | void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) { | ||
| 1733 | Instruction *inst = &fs->f->code[pc]; | ||
| 1734 | int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */ | ||
| 1735 | int extra = asize / (MAXARG_C + 1); /* higher bits of array size */ | ||
| 1736 | int rc = asize % (MAXARG_C + 1); /* lower bits of array size */ | ||
| 1737 | int k = (extra > 0); /* true iff needs extra argument */ | ||
| 1738 | *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k); | ||
| 1739 | *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra); | ||
| 1740 | } | ||
| 1741 | |||
| 1742 | |||
| 1743 | /* | ||
| 1744 | ** Emit a SETLIST instruction. | ||
| 1745 | ** 'base' is register that keeps table; | ||
| 1746 | ** 'nelems' is #table plus those to be stored now; | ||
| 1747 | ** 'tostore' is number of values (in registers 'base + 1',...) to add to | ||
| 1748 | ** table (or LUA_MULTRET to add up to stack top). | ||
| 1749 | */ | ||
| 1750 | void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) { | ||
| 1751 | lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH); | ||
| 1752 | if (tostore == LUA_MULTRET) | ||
| 1753 | tostore = 0; | ||
| 1754 | if (nelems <= MAXARG_C) | ||
| 1755 | luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems); | ||
| 1756 | else { | ||
| 1757 | int extra = nelems / (MAXARG_C + 1); | ||
| 1758 | nelems %= (MAXARG_C + 1); | ||
| 1759 | luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1); | ||
| 1760 | codeextraarg(fs, extra); | ||
| 1761 | } | ||
| 1762 | fs->freereg = base + 1; /* free registers with list values */ | ||
| 1763 | } | ||
| 1764 | |||
| 1765 | |||
| 1766 | /* | ||
| 1767 | ** return the final target of a jump (skipping jumps to jumps) | ||
| 1768 | */ | ||
| 1769 | static int finaltarget (Instruction *code, int i) { | ||
| 1770 | int count; | ||
| 1771 | for (count = 0; count < 100; count++) { /* avoid infinite loops */ | ||
| 1772 | Instruction pc = code[i]; | ||
| 1773 | if (GET_OPCODE(pc) != OP_JMP) | ||
| 1774 | break; | ||
| 1775 | else | ||
| 1776 | i += GETARG_sJ(pc) + 1; | ||
| 1777 | } | ||
| 1778 | return i; | ||
| 1779 | } | ||
| 1780 | |||
| 1781 | |||
| 1782 | /* | ||
| 1783 | ** Do a final pass over the code of a function, doing small peephole | ||
| 1784 | ** optimizations and adjustments. | ||
| 1785 | */ | ||
| 1786 | void luaK_finish (FuncState *fs) { | ||
| 1787 | int i; | ||
| 1788 | Proto *p = fs->f; | ||
| 1789 | for (i = 0; i < fs->pc; i++) { | ||
| 1790 | Instruction *pc = &p->code[i]; | ||
| 1791 | lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc)); | ||
| 1792 | switch (GET_OPCODE(*pc)) { | ||
| 1793 | case OP_RETURN0: case OP_RETURN1: { | ||
| 1794 | if (!(fs->needclose || p->is_vararg)) | ||
| 1795 | break; /* no extra work */ | ||
| 1796 | /* else use OP_RETURN to do the extra work */ | ||
| 1797 | SET_OPCODE(*pc, OP_RETURN); | ||
| 1798 | } /* FALLTHROUGH */ | ||
| 1799 | case OP_RETURN: case OP_TAILCALL: { | ||
| 1800 | if (fs->needclose) | ||
| 1801 | SETARG_k(*pc, 1); /* signal that it needs to close */ | ||
| 1802 | if (p->is_vararg) | ||
| 1803 | SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */ | ||
| 1804 | break; | ||
| 1805 | } | ||
| 1806 | case OP_JMP: { | ||
| 1807 | int target = finaltarget(p->code, i); | ||
| 1808 | fixjump(fs, i, target); | ||
| 1809 | break; | ||
| 1810 | } | ||
| 1811 | default: break; | ||
| 1812 | } | ||
| 1813 | } | ||
| 1814 | } | ||
