diff options
Diffstat (limited to 'src/lua/lgc.c')
| -rw-r--r-- | src/lua/lgc.c | 1616 |
1 files changed, 1616 insertions, 0 deletions
diff --git a/src/lua/lgc.c b/src/lua/lgc.c new file mode 100644 index 0000000..f26c921 --- /dev/null +++ b/src/lua/lgc.c | |||
| @@ -0,0 +1,1616 @@ | |||
| 1 | /* | ||
| 2 | ** $Id: lgc.c $ | ||
| 3 | ** Garbage Collector | ||
| 4 | ** See Copyright Notice in lua.h | ||
| 5 | */ | ||
| 6 | |||
| 7 | #define lgc_c | ||
| 8 | #define LUA_CORE | ||
| 9 | |||
| 10 | #include "lprefix.h" | ||
| 11 | |||
| 12 | #include <stdio.h> | ||
| 13 | #include <string.h> | ||
| 14 | |||
| 15 | |||
| 16 | #include "lua.h" | ||
| 17 | |||
| 18 | #include "ldebug.h" | ||
| 19 | #include "ldo.h" | ||
| 20 | #include "lfunc.h" | ||
| 21 | #include "lgc.h" | ||
| 22 | #include "lmem.h" | ||
| 23 | #include "lobject.h" | ||
| 24 | #include "lstate.h" | ||
| 25 | #include "lstring.h" | ||
| 26 | #include "ltable.h" | ||
| 27 | #include "ltm.h" | ||
| 28 | |||
| 29 | |||
| 30 | /* | ||
| 31 | ** Maximum number of elements to sweep in each single step. | ||
| 32 | ** (Large enough to dissipate fixed overheads but small enough | ||
| 33 | ** to allow small steps for the collector.) | ||
| 34 | */ | ||
| 35 | #define GCSWEEPMAX 100 | ||
| 36 | |||
| 37 | /* | ||
| 38 | ** Maximum number of finalizers to call in each single step. | ||
| 39 | */ | ||
| 40 | #define GCFINMAX 10 | ||
| 41 | |||
| 42 | |||
| 43 | /* | ||
| 44 | ** Cost of calling one finalizer. | ||
| 45 | */ | ||
| 46 | #define GCFINALIZECOST 50 | ||
| 47 | |||
| 48 | |||
| 49 | /* | ||
| 50 | ** The equivalent, in bytes, of one unit of "work" (visiting a slot, | ||
| 51 | ** sweeping an object, etc.) | ||
| 52 | */ | ||
| 53 | #define WORK2MEM sizeof(TValue) | ||
| 54 | |||
| 55 | |||
| 56 | /* | ||
| 57 | ** macro to adjust 'pause': 'pause' is actually used like | ||
| 58 | ** 'pause / PAUSEADJ' (value chosen by tests) | ||
| 59 | */ | ||
| 60 | #define PAUSEADJ 100 | ||
| 61 | |||
| 62 | |||
| 63 | /* mask to erase all color bits (plus gen. related stuff) */ | ||
| 64 | #define maskcolors (~(bitmask(BLACKBIT) | WHITEBITS | AGEBITS)) | ||
| 65 | |||
| 66 | |||
| 67 | /* macro to erase all color bits then sets only the current white bit */ | ||
| 68 | #define makewhite(g,x) \ | ||
| 69 | (x->marked = cast_byte((x->marked & maskcolors) | luaC_white(g))) | ||
| 70 | |||
| 71 | #define white2gray(x) resetbits(x->marked, WHITEBITS) | ||
| 72 | #define black2gray(x) resetbit(x->marked, BLACKBIT) | ||
| 73 | |||
| 74 | |||
| 75 | #define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x))) | ||
| 76 | |||
| 77 | #define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n))) | ||
| 78 | |||
| 79 | |||
| 80 | #define checkconsistency(obj) \ | ||
| 81 | lua_longassert(!iscollectable(obj) || righttt(obj)) | ||
| 82 | |||
| 83 | /* | ||
| 84 | ** Protected access to objects in values | ||
| 85 | */ | ||
| 86 | #define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL) | ||
| 87 | |||
| 88 | |||
| 89 | #define markvalue(g,o) { checkconsistency(o); \ | ||
| 90 | if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); } | ||
| 91 | |||
| 92 | #define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); } | ||
| 93 | |||
| 94 | #define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); } | ||
| 95 | |||
| 96 | /* | ||
| 97 | ** mark an object that can be NULL (either because it is really optional, | ||
| 98 | ** or it was stripped as debug info, or inside an uncompleted structure) | ||
| 99 | */ | ||
| 100 | #define markobjectN(g,t) { if (t) markobject(g,t); } | ||
| 101 | |||
| 102 | static void reallymarkobject (global_State *g, GCObject *o); | ||
| 103 | static lu_mem atomic (lua_State *L); | ||
| 104 | static void entersweep (lua_State *L); | ||
| 105 | |||
| 106 | |||
| 107 | /* | ||
| 108 | ** {====================================================== | ||
| 109 | ** Generic functions | ||
| 110 | ** ======================================================= | ||
| 111 | */ | ||
| 112 | |||
| 113 | |||
| 114 | /* | ||
| 115 | ** one after last element in a hash array | ||
| 116 | */ | ||
| 117 | #define gnodelast(h) gnode(h, cast_sizet(sizenode(h))) | ||
| 118 | |||
| 119 | |||
| 120 | static GCObject **getgclist (GCObject *o) { | ||
| 121 | switch (o->tt) { | ||
| 122 | case LUA_VTABLE: return &gco2t(o)->gclist; | ||
| 123 | case LUA_VLCL: return &gco2lcl(o)->gclist; | ||
| 124 | case LUA_VCCL: return &gco2ccl(o)->gclist; | ||
| 125 | case LUA_VTHREAD: return &gco2th(o)->gclist; | ||
| 126 | case LUA_VPROTO: return &gco2p(o)->gclist; | ||
| 127 | case LUA_VUSERDATA: { | ||
| 128 | Udata *u = gco2u(o); | ||
| 129 | lua_assert(u->nuvalue > 0); | ||
| 130 | return &u->gclist; | ||
| 131 | } | ||
| 132 | default: lua_assert(0); return 0; | ||
| 133 | } | ||
| 134 | } | ||
| 135 | |||
| 136 | |||
| 137 | /* | ||
| 138 | ** Link a collectable object 'o' with a known type into list pointed by 'p'. | ||
| 139 | */ | ||
| 140 | #define linkgclist(o,p) ((o)->gclist = (p), (p) = obj2gco(o)) | ||
| 141 | |||
| 142 | |||
| 143 | /* | ||
| 144 | ** Link a generic collectable object 'o' into list pointed by 'p'. | ||
| 145 | */ | ||
| 146 | #define linkobjgclist(o,p) (*getgclist(o) = (p), (p) = obj2gco(o)) | ||
| 147 | |||
| 148 | |||
| 149 | |||
| 150 | /* | ||
| 151 | ** Clear keys for empty entries in tables. If entry is empty | ||
| 152 | ** and its key is not marked, mark its entry as dead. This allows the | ||
| 153 | ** collection of the key, but keeps its entry in the table (its removal | ||
| 154 | ** could break a chain). The main feature of a dead key is that it must | ||
| 155 | ** be different from any other value, to do not disturb searches. | ||
| 156 | ** Other places never manipulate dead keys, because its associated empty | ||
| 157 | ** value is enough to signal that the entry is logically empty. | ||
| 158 | */ | ||
| 159 | static void clearkey (Node *n) { | ||
| 160 | lua_assert(isempty(gval(n))); | ||
| 161 | if (keyiswhite(n)) | ||
| 162 | setdeadkey(n); /* unused and unmarked key; remove it */ | ||
| 163 | } | ||
| 164 | |||
| 165 | |||
| 166 | /* | ||
| 167 | ** tells whether a key or value can be cleared from a weak | ||
| 168 | ** table. Non-collectable objects are never removed from weak | ||
| 169 | ** tables. Strings behave as 'values', so are never removed too. for | ||
| 170 | ** other objects: if really collected, cannot keep them; for objects | ||
| 171 | ** being finalized, keep them in keys, but not in values | ||
| 172 | */ | ||
| 173 | static int iscleared (global_State *g, const GCObject *o) { | ||
| 174 | if (o == NULL) return 0; /* non-collectable value */ | ||
| 175 | else if (novariant(o->tt) == LUA_TSTRING) { | ||
| 176 | markobject(g, o); /* strings are 'values', so are never weak */ | ||
| 177 | return 0; | ||
| 178 | } | ||
| 179 | else return iswhite(o); | ||
| 180 | } | ||
| 181 | |||
| 182 | |||
| 183 | /* | ||
| 184 | ** barrier that moves collector forward, that is, mark the white object | ||
| 185 | ** 'v' being pointed by the black object 'o'. (If in sweep phase, clear | ||
| 186 | ** the black object to white [sweep it] to avoid other barrier calls for | ||
| 187 | ** this same object.) In the generational mode, 'v' must also become | ||
| 188 | ** old, if 'o' is old; however, it cannot be changed directly to OLD, | ||
| 189 | ** because it may still point to non-old objects. So, it is marked as | ||
| 190 | ** OLD0. In the next cycle it will become OLD1, and in the next it | ||
| 191 | ** will finally become OLD (regular old). | ||
| 192 | */ | ||
| 193 | void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) { | ||
| 194 | global_State *g = G(L); | ||
| 195 | lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o)); | ||
| 196 | if (keepinvariant(g)) { /* must keep invariant? */ | ||
| 197 | reallymarkobject(g, v); /* restore invariant */ | ||
| 198 | if (isold(o)) { | ||
| 199 | lua_assert(!isold(v)); /* white object could not be old */ | ||
| 200 | setage(v, G_OLD0); /* restore generational invariant */ | ||
| 201 | } | ||
| 202 | } | ||
| 203 | else { /* sweep phase */ | ||
| 204 | lua_assert(issweepphase(g)); | ||
| 205 | makewhite(g, o); /* mark main obj. as white to avoid other barriers */ | ||
| 206 | } | ||
| 207 | } | ||
| 208 | |||
| 209 | |||
| 210 | /* | ||
| 211 | ** barrier that moves collector backward, that is, mark the black object | ||
| 212 | ** pointing to a white object as gray again. | ||
| 213 | */ | ||
| 214 | void luaC_barrierback_ (lua_State *L, GCObject *o) { | ||
| 215 | global_State *g = G(L); | ||
| 216 | lua_assert(isblack(o) && !isdead(g, o)); | ||
| 217 | lua_assert(g->gckind != KGC_GEN || (isold(o) && getage(o) != G_TOUCHED1)); | ||
| 218 | if (getage(o) != G_TOUCHED2) /* not already in gray list? */ | ||
| 219 | linkobjgclist(o, g->grayagain); /* link it in 'grayagain' */ | ||
| 220 | black2gray(o); /* make object gray (again) */ | ||
| 221 | setage(o, G_TOUCHED1); /* touched in current cycle */ | ||
| 222 | } | ||
| 223 | |||
| 224 | |||
| 225 | void luaC_fix (lua_State *L, GCObject *o) { | ||
| 226 | global_State *g = G(L); | ||
| 227 | lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */ | ||
| 228 | white2gray(o); /* they will be gray forever */ | ||
| 229 | setage(o, G_OLD); /* and old forever */ | ||
| 230 | g->allgc = o->next; /* remove object from 'allgc' list */ | ||
| 231 | o->next = g->fixedgc; /* link it to 'fixedgc' list */ | ||
| 232 | g->fixedgc = o; | ||
| 233 | } | ||
| 234 | |||
| 235 | |||
| 236 | /* | ||
| 237 | ** create a new collectable object (with given type and size) and link | ||
| 238 | ** it to 'allgc' list. | ||
| 239 | */ | ||
| 240 | GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) { | ||
| 241 | global_State *g = G(L); | ||
| 242 | GCObject *o = cast(GCObject *, luaM_newobject(L, novariant(tt), sz)); | ||
| 243 | o->marked = luaC_white(g); | ||
| 244 | o->tt = tt; | ||
| 245 | o->next = g->allgc; | ||
| 246 | g->allgc = o; | ||
| 247 | return o; | ||
| 248 | } | ||
| 249 | |||
| 250 | /* }====================================================== */ | ||
| 251 | |||
| 252 | |||
| 253 | |||
| 254 | /* | ||
| 255 | ** {====================================================== | ||
| 256 | ** Mark functions | ||
| 257 | ** ======================================================= | ||
| 258 | */ | ||
| 259 | |||
| 260 | |||
| 261 | /* | ||
| 262 | ** Mark an object. Userdata, strings, and closed upvalues are visited | ||
| 263 | ** and turned black here. Other objects are marked gray and added | ||
| 264 | ** to appropriate list to be visited (and turned black) later. (Open | ||
| 265 | ** upvalues are already linked in 'headuv' list. They are kept gray | ||
| 266 | ** to avoid barriers, as their values will be revisited by the thread.) | ||
| 267 | */ | ||
| 268 | static void reallymarkobject (global_State *g, GCObject *o) { | ||
| 269 | white2gray(o); | ||
| 270 | switch (o->tt) { | ||
| 271 | case LUA_VSHRSTR: | ||
| 272 | case LUA_VLNGSTR: { | ||
| 273 | gray2black(o); | ||
| 274 | break; | ||
| 275 | } | ||
| 276 | case LUA_VUPVAL: { | ||
| 277 | UpVal *uv = gco2upv(o); | ||
| 278 | if (!upisopen(uv)) /* open upvalues are kept gray */ | ||
| 279 | gray2black(o); | ||
| 280 | markvalue(g, uv->v); /* mark its content */ | ||
| 281 | break; | ||
| 282 | } | ||
| 283 | case LUA_VUSERDATA: { | ||
| 284 | Udata *u = gco2u(o); | ||
| 285 | if (u->nuvalue == 0) { /* no user values? */ | ||
| 286 | markobjectN(g, u->metatable); /* mark its metatable */ | ||
| 287 | gray2black(o); /* nothing else to mark */ | ||
| 288 | break; | ||
| 289 | } | ||
| 290 | /* else... */ | ||
| 291 | } /* FALLTHROUGH */ | ||
| 292 | case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE: | ||
| 293 | case LUA_VTHREAD: case LUA_VPROTO: { | ||
| 294 | linkobjgclist(o, g->gray); | ||
| 295 | break; | ||
| 296 | } | ||
| 297 | default: lua_assert(0); break; | ||
| 298 | } | ||
| 299 | } | ||
| 300 | |||
| 301 | |||
| 302 | /* | ||
| 303 | ** mark metamethods for basic types | ||
| 304 | */ | ||
| 305 | static void markmt (global_State *g) { | ||
| 306 | int i; | ||
| 307 | for (i=0; i < LUA_NUMTAGS; i++) | ||
| 308 | markobjectN(g, g->mt[i]); | ||
| 309 | } | ||
| 310 | |||
| 311 | |||
| 312 | /* | ||
| 313 | ** mark all objects in list of being-finalized | ||
| 314 | */ | ||
| 315 | static lu_mem markbeingfnz (global_State *g) { | ||
| 316 | GCObject *o; | ||
| 317 | lu_mem count = 0; | ||
| 318 | for (o = g->tobefnz; o != NULL; o = o->next) { | ||
| 319 | count++; | ||
| 320 | markobject(g, o); | ||
| 321 | } | ||
| 322 | return count; | ||
| 323 | } | ||
| 324 | |||
| 325 | |||
| 326 | /* | ||
| 327 | ** Mark all values stored in marked open upvalues from non-marked threads. | ||
| 328 | ** (Values from marked threads were already marked when traversing the | ||
| 329 | ** thread.) Remove from the list threads that no longer have upvalues and | ||
| 330 | ** not-marked threads. | ||
| 331 | */ | ||
| 332 | static int remarkupvals (global_State *g) { | ||
| 333 | lua_State *thread; | ||
| 334 | lua_State **p = &g->twups; | ||
| 335 | int work = 0; | ||
| 336 | while ((thread = *p) != NULL) { | ||
| 337 | work++; | ||
| 338 | lua_assert(!isblack(thread)); /* threads are never black */ | ||
| 339 | if (isgray(thread) && thread->openupval != NULL) | ||
| 340 | p = &thread->twups; /* keep marked thread with upvalues in the list */ | ||
| 341 | else { /* thread is not marked or without upvalues */ | ||
| 342 | UpVal *uv; | ||
| 343 | *p = thread->twups; /* remove thread from the list */ | ||
| 344 | thread->twups = thread; /* mark that it is out of list */ | ||
| 345 | for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) { | ||
| 346 | work++; | ||
| 347 | if (!iswhite(uv)) /* upvalue already visited? */ | ||
| 348 | markvalue(g, uv->v); /* mark its value */ | ||
| 349 | } | ||
| 350 | } | ||
| 351 | } | ||
| 352 | return work; | ||
| 353 | } | ||
| 354 | |||
| 355 | |||
| 356 | /* | ||
| 357 | ** mark root set and reset all gray lists, to start a new collection | ||
| 358 | */ | ||
| 359 | static void restartcollection (global_State *g) { | ||
| 360 | g->gray = g->grayagain = NULL; | ||
| 361 | g->weak = g->allweak = g->ephemeron = NULL; | ||
| 362 | markobject(g, g->mainthread); | ||
| 363 | markvalue(g, &g->l_registry); | ||
| 364 | markmt(g); | ||
| 365 | markbeingfnz(g); /* mark any finalizing object left from previous cycle */ | ||
| 366 | } | ||
| 367 | |||
| 368 | /* }====================================================== */ | ||
| 369 | |||
| 370 | |||
| 371 | /* | ||
| 372 | ** {====================================================== | ||
| 373 | ** Traverse functions | ||
| 374 | ** ======================================================= | ||
| 375 | */ | ||
| 376 | |||
| 377 | /* | ||
| 378 | ** Traverse a table with weak values and link it to proper list. During | ||
| 379 | ** propagate phase, keep it in 'grayagain' list, to be revisited in the | ||
| 380 | ** atomic phase. In the atomic phase, if table has any white value, | ||
| 381 | ** put it in 'weak' list, to be cleared. | ||
| 382 | */ | ||
| 383 | static void traverseweakvalue (global_State *g, Table *h) { | ||
| 384 | Node *n, *limit = gnodelast(h); | ||
| 385 | /* if there is array part, assume it may have white values (it is not | ||
| 386 | worth traversing it now just to check) */ | ||
| 387 | int hasclears = (h->alimit > 0); | ||
| 388 | for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ | ||
| 389 | if (isempty(gval(n))) /* entry is empty? */ | ||
| 390 | clearkey(n); /* clear its key */ | ||
| 391 | else { | ||
| 392 | lua_assert(!keyisnil(n)); | ||
| 393 | markkey(g, n); | ||
| 394 | if (!hasclears && iscleared(g, gcvalueN(gval(n)))) /* a white value? */ | ||
| 395 | hasclears = 1; /* table will have to be cleared */ | ||
| 396 | } | ||
| 397 | } | ||
| 398 | if (g->gcstate == GCSatomic && hasclears) | ||
| 399 | linkgclist(h, g->weak); /* has to be cleared later */ | ||
| 400 | else | ||
| 401 | linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ | ||
| 402 | } | ||
| 403 | |||
| 404 | |||
| 405 | /* | ||
| 406 | ** Traverse an ephemeron table and link it to proper list. Returns true | ||
| 407 | ** iff any object was marked during this traversal (which implies that | ||
| 408 | ** convergence has to continue). During propagation phase, keep table | ||
| 409 | ** in 'grayagain' list, to be visited again in the atomic phase. In | ||
| 410 | ** the atomic phase, if table has any white->white entry, it has to | ||
| 411 | ** be revisited during ephemeron convergence (as that key may turn | ||
| 412 | ** black). Otherwise, if it has any white key, table has to be cleared | ||
| 413 | ** (in the atomic phase). In generational mode, it (like all visited | ||
| 414 | ** tables) must be kept in some gray list for post-processing. | ||
| 415 | */ | ||
| 416 | static int traverseephemeron (global_State *g, Table *h, int inv) { | ||
| 417 | int marked = 0; /* true if an object is marked in this traversal */ | ||
| 418 | int hasclears = 0; /* true if table has white keys */ | ||
| 419 | int hasww = 0; /* true if table has entry "white-key -> white-value" */ | ||
| 420 | unsigned int i; | ||
| 421 | unsigned int asize = luaH_realasize(h); | ||
| 422 | unsigned int nsize = sizenode(h); | ||
| 423 | /* traverse array part */ | ||
| 424 | for (i = 0; i < asize; i++) { | ||
| 425 | if (valiswhite(&h->array[i])) { | ||
| 426 | marked = 1; | ||
| 427 | reallymarkobject(g, gcvalue(&h->array[i])); | ||
| 428 | } | ||
| 429 | } | ||
| 430 | /* traverse hash part; if 'inv', traverse descending | ||
| 431 | (see 'convergeephemerons') */ | ||
| 432 | for (i = 0; i < nsize; i++) { | ||
| 433 | Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i); | ||
| 434 | if (isempty(gval(n))) /* entry is empty? */ | ||
| 435 | clearkey(n); /* clear its key */ | ||
| 436 | else if (iscleared(g, gckeyN(n))) { /* key is not marked (yet)? */ | ||
| 437 | hasclears = 1; /* table must be cleared */ | ||
| 438 | if (valiswhite(gval(n))) /* value not marked yet? */ | ||
| 439 | hasww = 1; /* white-white entry */ | ||
| 440 | } | ||
| 441 | else if (valiswhite(gval(n))) { /* value not marked yet? */ | ||
| 442 | marked = 1; | ||
| 443 | reallymarkobject(g, gcvalue(gval(n))); /* mark it now */ | ||
| 444 | } | ||
| 445 | } | ||
| 446 | /* link table into proper list */ | ||
| 447 | if (g->gcstate == GCSpropagate) | ||
| 448 | linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ | ||
| 449 | else if (hasww) /* table has white->white entries? */ | ||
| 450 | linkgclist(h, g->ephemeron); /* have to propagate again */ | ||
| 451 | else if (hasclears) /* table has white keys? */ | ||
| 452 | linkgclist(h, g->allweak); /* may have to clean white keys */ | ||
| 453 | else if (g->gckind == KGC_GEN) | ||
| 454 | linkgclist(h, g->grayagain); /* keep it in some list */ | ||
| 455 | else | ||
| 456 | gray2black(h); | ||
| 457 | return marked; | ||
| 458 | } | ||
| 459 | |||
| 460 | |||
| 461 | static void traversestrongtable (global_State *g, Table *h) { | ||
| 462 | Node *n, *limit = gnodelast(h); | ||
| 463 | unsigned int i; | ||
| 464 | unsigned int asize = luaH_realasize(h); | ||
| 465 | for (i = 0; i < asize; i++) /* traverse array part */ | ||
| 466 | markvalue(g, &h->array[i]); | ||
| 467 | for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ | ||
| 468 | if (isempty(gval(n))) /* entry is empty? */ | ||
| 469 | clearkey(n); /* clear its key */ | ||
| 470 | else { | ||
| 471 | lua_assert(!keyisnil(n)); | ||
| 472 | markkey(g, n); | ||
| 473 | markvalue(g, gval(n)); | ||
| 474 | } | ||
| 475 | } | ||
| 476 | if (g->gckind == KGC_GEN) { | ||
| 477 | linkgclist(h, g->grayagain); /* keep it in some gray list */ | ||
| 478 | black2gray(h); | ||
| 479 | } | ||
| 480 | } | ||
| 481 | |||
| 482 | |||
| 483 | static lu_mem traversetable (global_State *g, Table *h) { | ||
| 484 | const char *weakkey, *weakvalue; | ||
| 485 | const TValue *mode = gfasttm(g, h->metatable, TM_MODE); | ||
| 486 | markobjectN(g, h->metatable); | ||
| 487 | if (mode && ttisstring(mode) && /* is there a weak mode? */ | ||
| 488 | (cast_void(weakkey = strchr(svalue(mode), 'k')), | ||
| 489 | cast_void(weakvalue = strchr(svalue(mode), 'v')), | ||
| 490 | (weakkey || weakvalue))) { /* is really weak? */ | ||
| 491 | black2gray(h); /* keep table gray */ | ||
| 492 | if (!weakkey) /* strong keys? */ | ||
| 493 | traverseweakvalue(g, h); | ||
| 494 | else if (!weakvalue) /* strong values? */ | ||
| 495 | traverseephemeron(g, h, 0); | ||
| 496 | else /* all weak */ | ||
| 497 | linkgclist(h, g->allweak); /* nothing to traverse now */ | ||
| 498 | } | ||
| 499 | else /* not weak */ | ||
| 500 | traversestrongtable(g, h); | ||
| 501 | return 1 + h->alimit + 2 * allocsizenode(h); | ||
| 502 | } | ||
| 503 | |||
| 504 | |||
| 505 | static int traverseudata (global_State *g, Udata *u) { | ||
| 506 | int i; | ||
| 507 | markobjectN(g, u->metatable); /* mark its metatable */ | ||
| 508 | for (i = 0; i < u->nuvalue; i++) | ||
| 509 | markvalue(g, &u->uv[i].uv); | ||
| 510 | if (g->gckind == KGC_GEN) { | ||
| 511 | linkgclist(u, g->grayagain); /* keep it in some gray list */ | ||
| 512 | black2gray(u); | ||
| 513 | } | ||
| 514 | return 1 + u->nuvalue; | ||
| 515 | } | ||
| 516 | |||
| 517 | |||
| 518 | /* | ||
| 519 | ** Traverse a prototype. (While a prototype is being build, its | ||
| 520 | ** arrays can be larger than needed; the extra slots are filled with | ||
| 521 | ** NULL, so the use of 'markobjectN') | ||
| 522 | */ | ||
| 523 | static int traverseproto (global_State *g, Proto *f) { | ||
| 524 | int i; | ||
| 525 | markobjectN(g, f->source); | ||
| 526 | for (i = 0; i < f->sizek; i++) /* mark literals */ | ||
| 527 | markvalue(g, &f->k[i]); | ||
| 528 | for (i = 0; i < f->sizeupvalues; i++) /* mark upvalue names */ | ||
| 529 | markobjectN(g, f->upvalues[i].name); | ||
| 530 | for (i = 0; i < f->sizep; i++) /* mark nested protos */ | ||
| 531 | markobjectN(g, f->p[i]); | ||
| 532 | for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */ | ||
| 533 | markobjectN(g, f->locvars[i].varname); | ||
| 534 | return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars; | ||
| 535 | } | ||
| 536 | |||
| 537 | |||
| 538 | static int traverseCclosure (global_State *g, CClosure *cl) { | ||
| 539 | int i; | ||
| 540 | for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */ | ||
| 541 | markvalue(g, &cl->upvalue[i]); | ||
| 542 | return 1 + cl->nupvalues; | ||
| 543 | } | ||
| 544 | |||
| 545 | /* | ||
| 546 | ** Traverse a Lua closure, marking its prototype and its upvalues. | ||
| 547 | ** (Both can be NULL while closure is being created.) | ||
| 548 | */ | ||
| 549 | static int traverseLclosure (global_State *g, LClosure *cl) { | ||
| 550 | int i; | ||
| 551 | markobjectN(g, cl->p); /* mark its prototype */ | ||
| 552 | for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */ | ||
| 553 | UpVal *uv = cl->upvals[i]; | ||
| 554 | markobjectN(g, uv); /* mark upvalue */ | ||
| 555 | } | ||
| 556 | return 1 + cl->nupvalues; | ||
| 557 | } | ||
| 558 | |||
| 559 | |||
| 560 | /* | ||
| 561 | ** Traverse a thread, marking the elements in the stack up to its top | ||
| 562 | ** and cleaning the rest of the stack in the final traversal. | ||
| 563 | ** That ensures that the entire stack have valid (non-dead) objects. | ||
| 564 | */ | ||
| 565 | static int traversethread (global_State *g, lua_State *th) { | ||
| 566 | UpVal *uv; | ||
| 567 | StkId o = th->stack; | ||
| 568 | if (o == NULL) | ||
| 569 | return 1; /* stack not completely built yet */ | ||
| 570 | lua_assert(g->gcstate == GCSatomic || | ||
| 571 | th->openupval == NULL || isintwups(th)); | ||
| 572 | for (; o < th->top; o++) /* mark live elements in the stack */ | ||
| 573 | markvalue(g, s2v(o)); | ||
| 574 | for (uv = th->openupval; uv != NULL; uv = uv->u.open.next) | ||
| 575 | markobject(g, uv); /* open upvalues cannot be collected */ | ||
| 576 | if (g->gcstate == GCSatomic) { /* final traversal? */ | ||
| 577 | StkId lim = th->stack + th->stacksize; /* real end of stack */ | ||
| 578 | for (; o < lim; o++) /* clear not-marked stack slice */ | ||
| 579 | setnilvalue(s2v(o)); | ||
| 580 | /* 'remarkupvals' may have removed thread from 'twups' list */ | ||
| 581 | if (!isintwups(th) && th->openupval != NULL) { | ||
| 582 | th->twups = g->twups; /* link it back to the list */ | ||
| 583 | g->twups = th; | ||
| 584 | } | ||
| 585 | } | ||
| 586 | else if (!g->gcemergency) | ||
| 587 | luaD_shrinkstack(th); /* do not change stack in emergency cycle */ | ||
| 588 | return 1 + th->stacksize; | ||
| 589 | } | ||
| 590 | |||
| 591 | |||
| 592 | /* | ||
| 593 | ** traverse one gray object, turning it to black (except for threads, | ||
| 594 | ** which are always gray). | ||
| 595 | */ | ||
| 596 | static lu_mem propagatemark (global_State *g) { | ||
| 597 | GCObject *o = g->gray; | ||
| 598 | gray2black(o); | ||
| 599 | g->gray = *getgclist(o); /* remove from 'gray' list */ | ||
| 600 | switch (o->tt) { | ||
| 601 | case LUA_VTABLE: return traversetable(g, gco2t(o)); | ||
| 602 | case LUA_VUSERDATA: return traverseudata(g, gco2u(o)); | ||
| 603 | case LUA_VLCL: return traverseLclosure(g, gco2lcl(o)); | ||
| 604 | case LUA_VCCL: return traverseCclosure(g, gco2ccl(o)); | ||
| 605 | case LUA_VPROTO: return traverseproto(g, gco2p(o)); | ||
| 606 | case LUA_VTHREAD: { | ||
| 607 | lua_State *th = gco2th(o); | ||
| 608 | linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ | ||
| 609 | black2gray(o); | ||
| 610 | return traversethread(g, th); | ||
| 611 | } | ||
| 612 | default: lua_assert(0); return 0; | ||
| 613 | } | ||
| 614 | } | ||
| 615 | |||
| 616 | |||
| 617 | static lu_mem propagateall (global_State *g) { | ||
| 618 | lu_mem tot = 0; | ||
| 619 | while (g->gray) | ||
| 620 | tot += propagatemark(g); | ||
| 621 | return tot; | ||
| 622 | } | ||
| 623 | |||
| 624 | |||
| 625 | /* | ||
| 626 | ** Traverse all ephemeron tables propagating marks from keys to values. | ||
| 627 | ** Repeat until it converges, that is, nothing new is marked. 'dir' | ||
| 628 | ** inverts the direction of the traversals, trying to speed up | ||
| 629 | ** convergence on chains in the same table. | ||
| 630 | ** | ||
| 631 | */ | ||
| 632 | static void convergeephemerons (global_State *g) { | ||
| 633 | int changed; | ||
| 634 | int dir = 0; | ||
| 635 | do { | ||
| 636 | GCObject *w; | ||
| 637 | GCObject *next = g->ephemeron; /* get ephemeron list */ | ||
| 638 | g->ephemeron = NULL; /* tables may return to this list when traversed */ | ||
| 639 | changed = 0; | ||
| 640 | while ((w = next) != NULL) { /* for each ephemeron table */ | ||
| 641 | next = gco2t(w)->gclist; /* list is rebuilt during loop */ | ||
| 642 | if (traverseephemeron(g, gco2t(w), dir)) { /* marked some value? */ | ||
| 643 | propagateall(g); /* propagate changes */ | ||
| 644 | changed = 1; /* will have to revisit all ephemeron tables */ | ||
| 645 | } | ||
| 646 | } | ||
| 647 | dir = !dir; /* invert direction next time */ | ||
| 648 | } while (changed); /* repeat until no more changes */ | ||
| 649 | } | ||
| 650 | |||
| 651 | /* }====================================================== */ | ||
| 652 | |||
| 653 | |||
| 654 | /* | ||
| 655 | ** {====================================================== | ||
| 656 | ** Sweep Functions | ||
| 657 | ** ======================================================= | ||
| 658 | */ | ||
| 659 | |||
| 660 | |||
| 661 | /* | ||
| 662 | ** clear entries with unmarked keys from all weaktables in list 'l' | ||
| 663 | */ | ||
| 664 | static void clearbykeys (global_State *g, GCObject *l) { | ||
| 665 | for (; l; l = gco2t(l)->gclist) { | ||
| 666 | Table *h = gco2t(l); | ||
| 667 | Node *limit = gnodelast(h); | ||
| 668 | Node *n; | ||
| 669 | for (n = gnode(h, 0); n < limit; n++) { | ||
| 670 | if (iscleared(g, gckeyN(n))) /* unmarked key? */ | ||
| 671 | setempty(gval(n)); /* remove entry */ | ||
| 672 | if (isempty(gval(n))) /* is entry empty? */ | ||
| 673 | clearkey(n); /* clear its key */ | ||
| 674 | } | ||
| 675 | } | ||
| 676 | } | ||
| 677 | |||
| 678 | |||
| 679 | /* | ||
| 680 | ** clear entries with unmarked values from all weaktables in list 'l' up | ||
| 681 | ** to element 'f' | ||
| 682 | */ | ||
| 683 | static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) { | ||
| 684 | for (; l != f; l = gco2t(l)->gclist) { | ||
| 685 | Table *h = gco2t(l); | ||
| 686 | Node *n, *limit = gnodelast(h); | ||
| 687 | unsigned int i; | ||
| 688 | unsigned int asize = luaH_realasize(h); | ||
| 689 | for (i = 0; i < asize; i++) { | ||
| 690 | TValue *o = &h->array[i]; | ||
| 691 | if (iscleared(g, gcvalueN(o))) /* value was collected? */ | ||
| 692 | setempty(o); /* remove entry */ | ||
| 693 | } | ||
| 694 | for (n = gnode(h, 0); n < limit; n++) { | ||
| 695 | if (iscleared(g, gcvalueN(gval(n)))) /* unmarked value? */ | ||
| 696 | setempty(gval(n)); /* remove entry */ | ||
| 697 | if (isempty(gval(n))) /* is entry empty? */ | ||
| 698 | clearkey(n); /* clear its key */ | ||
| 699 | } | ||
| 700 | } | ||
| 701 | } | ||
| 702 | |||
| 703 | |||
| 704 | static void freeupval (lua_State *L, UpVal *uv) { | ||
| 705 | if (upisopen(uv)) | ||
| 706 | luaF_unlinkupval(uv); | ||
| 707 | luaM_free(L, uv); | ||
| 708 | } | ||
| 709 | |||
| 710 | |||
| 711 | static void freeobj (lua_State *L, GCObject *o) { | ||
| 712 | switch (o->tt) { | ||
| 713 | case LUA_VPROTO: | ||
| 714 | luaF_freeproto(L, gco2p(o)); | ||
| 715 | break; | ||
| 716 | case LUA_VUPVAL: | ||
| 717 | freeupval(L, gco2upv(o)); | ||
| 718 | break; | ||
| 719 | case LUA_VLCL: | ||
| 720 | luaM_freemem(L, o, sizeLclosure(gco2lcl(o)->nupvalues)); | ||
| 721 | break; | ||
| 722 | case LUA_VCCL: | ||
| 723 | luaM_freemem(L, o, sizeCclosure(gco2ccl(o)->nupvalues)); | ||
| 724 | break; | ||
| 725 | case LUA_VTABLE: | ||
| 726 | luaH_free(L, gco2t(o)); | ||
| 727 | break; | ||
| 728 | case LUA_VTHREAD: | ||
| 729 | luaE_freethread(L, gco2th(o)); | ||
| 730 | break; | ||
| 731 | case LUA_VUSERDATA: { | ||
| 732 | Udata *u = gco2u(o); | ||
| 733 | luaM_freemem(L, o, sizeudata(u->nuvalue, u->len)); | ||
| 734 | break; | ||
| 735 | } | ||
| 736 | case LUA_VSHRSTR: | ||
| 737 | luaS_remove(L, gco2ts(o)); /* remove it from hash table */ | ||
| 738 | luaM_freemem(L, o, sizelstring(gco2ts(o)->shrlen)); | ||
| 739 | break; | ||
| 740 | case LUA_VLNGSTR: | ||
| 741 | luaM_freemem(L, o, sizelstring(gco2ts(o)->u.lnglen)); | ||
| 742 | break; | ||
| 743 | default: lua_assert(0); | ||
| 744 | } | ||
| 745 | } | ||
| 746 | |||
| 747 | |||
| 748 | /* | ||
| 749 | ** sweep at most 'countin' elements from a list of GCObjects erasing dead | ||
| 750 | ** objects, where a dead object is one marked with the old (non current) | ||
| 751 | ** white; change all non-dead objects back to white, preparing for next | ||
| 752 | ** collection cycle. Return where to continue the traversal or NULL if | ||
| 753 | ** list is finished. ('*countout' gets the number of elements traversed.) | ||
| 754 | */ | ||
| 755 | static GCObject **sweeplist (lua_State *L, GCObject **p, int countin, | ||
| 756 | int *countout) { | ||
| 757 | global_State *g = G(L); | ||
| 758 | int ow = otherwhite(g); | ||
| 759 | int i; | ||
| 760 | int white = luaC_white(g); /* current white */ | ||
| 761 | for (i = 0; *p != NULL && i < countin; i++) { | ||
| 762 | GCObject *curr = *p; | ||
| 763 | int marked = curr->marked; | ||
| 764 | if (isdeadm(ow, marked)) { /* is 'curr' dead? */ | ||
| 765 | *p = curr->next; /* remove 'curr' from list */ | ||
| 766 | freeobj(L, curr); /* erase 'curr' */ | ||
| 767 | } | ||
| 768 | else { /* change mark to 'white' */ | ||
| 769 | curr->marked = cast_byte((marked & maskcolors) | white); | ||
| 770 | p = &curr->next; /* go to next element */ | ||
| 771 | } | ||
| 772 | } | ||
| 773 | if (countout) | ||
| 774 | *countout = i; /* number of elements traversed */ | ||
| 775 | return (*p == NULL) ? NULL : p; | ||
| 776 | } | ||
| 777 | |||
| 778 | |||
| 779 | /* | ||
| 780 | ** sweep a list until a live object (or end of list) | ||
| 781 | */ | ||
| 782 | static GCObject **sweeptolive (lua_State *L, GCObject **p) { | ||
| 783 | GCObject **old = p; | ||
| 784 | do { | ||
| 785 | p = sweeplist(L, p, 1, NULL); | ||
| 786 | } while (p == old); | ||
| 787 | return p; | ||
| 788 | } | ||
| 789 | |||
| 790 | /* }====================================================== */ | ||
| 791 | |||
| 792 | |||
| 793 | /* | ||
| 794 | ** {====================================================== | ||
| 795 | ** Finalization | ||
| 796 | ** ======================================================= | ||
| 797 | */ | ||
| 798 | |||
| 799 | /* | ||
| 800 | ** If possible, shrink string table. | ||
| 801 | */ | ||
| 802 | static void checkSizes (lua_State *L, global_State *g) { | ||
| 803 | if (!g->gcemergency) { | ||
| 804 | if (g->strt.nuse < g->strt.size / 4) { /* string table too big? */ | ||
| 805 | l_mem olddebt = g->GCdebt; | ||
| 806 | luaS_resize(L, g->strt.size / 2); | ||
| 807 | g->GCestimate += g->GCdebt - olddebt; /* correct estimate */ | ||
| 808 | } | ||
| 809 | } | ||
| 810 | } | ||
| 811 | |||
| 812 | |||
| 813 | /* | ||
| 814 | ** Get the next udata to be finalized from the 'tobefnz' list, and | ||
| 815 | ** link it back into the 'allgc' list. | ||
| 816 | */ | ||
| 817 | static GCObject *udata2finalize (global_State *g) { | ||
| 818 | GCObject *o = g->tobefnz; /* get first element */ | ||
| 819 | lua_assert(tofinalize(o)); | ||
| 820 | g->tobefnz = o->next; /* remove it from 'tobefnz' list */ | ||
| 821 | o->next = g->allgc; /* return it to 'allgc' list */ | ||
| 822 | g->allgc = o; | ||
| 823 | resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */ | ||
| 824 | if (issweepphase(g)) | ||
| 825 | makewhite(g, o); /* "sweep" object */ | ||
| 826 | return o; | ||
| 827 | } | ||
| 828 | |||
| 829 | |||
| 830 | static void dothecall (lua_State *L, void *ud) { | ||
| 831 | UNUSED(ud); | ||
| 832 | luaD_callnoyield(L, L->top - 2, 0); | ||
| 833 | } | ||
| 834 | |||
| 835 | |||
| 836 | static void GCTM (lua_State *L) { | ||
| 837 | global_State *g = G(L); | ||
| 838 | const TValue *tm; | ||
| 839 | TValue v; | ||
| 840 | lua_assert(!g->gcemergency); | ||
| 841 | setgcovalue(L, &v, udata2finalize(g)); | ||
| 842 | tm = luaT_gettmbyobj(L, &v, TM_GC); | ||
| 843 | if (!notm(tm)) { /* is there a finalizer? */ | ||
| 844 | int status; | ||
| 845 | lu_byte oldah = L->allowhook; | ||
| 846 | int running = g->gcrunning; | ||
| 847 | L->allowhook = 0; /* stop debug hooks during GC metamethod */ | ||
| 848 | g->gcrunning = 0; /* avoid GC steps */ | ||
| 849 | setobj2s(L, L->top++, tm); /* push finalizer... */ | ||
| 850 | setobj2s(L, L->top++, &v); /* ... and its argument */ | ||
| 851 | L->ci->callstatus |= CIST_FIN; /* will run a finalizer */ | ||
| 852 | status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top - 2), 0); | ||
| 853 | L->ci->callstatus &= ~CIST_FIN; /* not running a finalizer anymore */ | ||
| 854 | L->allowhook = oldah; /* restore hooks */ | ||
| 855 | g->gcrunning = running; /* restore state */ | ||
| 856 | if (unlikely(status != LUA_OK)) { /* error while running __gc? */ | ||
| 857 | luaE_warnerror(L, "__gc metamethod"); | ||
| 858 | L->top--; /* pops error object */ | ||
| 859 | } | ||
| 860 | } | ||
| 861 | } | ||
| 862 | |||
| 863 | |||
| 864 | /* | ||
| 865 | ** Call a few finalizers | ||
| 866 | */ | ||
| 867 | static int runafewfinalizers (lua_State *L, int n) { | ||
| 868 | global_State *g = G(L); | ||
| 869 | int i; | ||
| 870 | for (i = 0; i < n && g->tobefnz; i++) | ||
| 871 | GCTM(L); /* call one finalizer */ | ||
| 872 | return i; | ||
| 873 | } | ||
| 874 | |||
| 875 | |||
| 876 | /* | ||
| 877 | ** call all pending finalizers | ||
| 878 | */ | ||
| 879 | static void callallpendingfinalizers (lua_State *L) { | ||
| 880 | global_State *g = G(L); | ||
| 881 | while (g->tobefnz) | ||
| 882 | GCTM(L); | ||
| 883 | } | ||
| 884 | |||
| 885 | |||
| 886 | /* | ||
| 887 | ** find last 'next' field in list 'p' list (to add elements in its end) | ||
| 888 | */ | ||
| 889 | static GCObject **findlast (GCObject **p) { | ||
| 890 | while (*p != NULL) | ||
| 891 | p = &(*p)->next; | ||
| 892 | return p; | ||
| 893 | } | ||
| 894 | |||
| 895 | |||
| 896 | /* | ||
| 897 | ** Move all unreachable objects (or 'all' objects) that need | ||
| 898 | ** finalization from list 'finobj' to list 'tobefnz' (to be finalized). | ||
| 899 | ** (Note that objects after 'finobjold' cannot be white, so they | ||
| 900 | ** don't need to be traversed. In incremental mode, 'finobjold' is NULL, | ||
| 901 | ** so the whole list is traversed.) | ||
| 902 | */ | ||
| 903 | static void separatetobefnz (global_State *g, int all) { | ||
| 904 | GCObject *curr; | ||
| 905 | GCObject **p = &g->finobj; | ||
| 906 | GCObject **lastnext = findlast(&g->tobefnz); | ||
| 907 | while ((curr = *p) != g->finobjold) { /* traverse all finalizable objects */ | ||
| 908 | lua_assert(tofinalize(curr)); | ||
| 909 | if (!(iswhite(curr) || all)) /* not being collected? */ | ||
| 910 | p = &curr->next; /* don't bother with it */ | ||
| 911 | else { | ||
| 912 | if (curr == g->finobjsur) /* removing 'finobjsur'? */ | ||
| 913 | g->finobjsur = curr->next; /* correct it */ | ||
| 914 | *p = curr->next; /* remove 'curr' from 'finobj' list */ | ||
| 915 | curr->next = *lastnext; /* link at the end of 'tobefnz' list */ | ||
| 916 | *lastnext = curr; | ||
| 917 | lastnext = &curr->next; | ||
| 918 | } | ||
| 919 | } | ||
| 920 | } | ||
| 921 | |||
| 922 | |||
| 923 | /* | ||
| 924 | ** if object 'o' has a finalizer, remove it from 'allgc' list (must | ||
| 925 | ** search the list to find it) and link it in 'finobj' list. | ||
| 926 | */ | ||
| 927 | void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) { | ||
| 928 | global_State *g = G(L); | ||
| 929 | if (tofinalize(o) || /* obj. is already marked... */ | ||
| 930 | gfasttm(g, mt, TM_GC) == NULL) /* or has no finalizer? */ | ||
| 931 | return; /* nothing to be done */ | ||
| 932 | else { /* move 'o' to 'finobj' list */ | ||
| 933 | GCObject **p; | ||
| 934 | if (issweepphase(g)) { | ||
| 935 | makewhite(g, o); /* "sweep" object 'o' */ | ||
| 936 | if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */ | ||
| 937 | g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */ | ||
| 938 | } | ||
| 939 | else { /* correct pointers into 'allgc' list, if needed */ | ||
| 940 | if (o == g->survival) | ||
| 941 | g->survival = o->next; | ||
| 942 | if (o == g->old) | ||
| 943 | g->old = o->next; | ||
| 944 | if (o == g->reallyold) | ||
| 945 | g->reallyold = o->next; | ||
| 946 | } | ||
| 947 | /* search for pointer pointing to 'o' */ | ||
| 948 | for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ } | ||
| 949 | *p = o->next; /* remove 'o' from 'allgc' list */ | ||
| 950 | o->next = g->finobj; /* link it in 'finobj' list */ | ||
| 951 | g->finobj = o; | ||
| 952 | l_setbit(o->marked, FINALIZEDBIT); /* mark it as such */ | ||
| 953 | } | ||
| 954 | } | ||
| 955 | |||
| 956 | /* }====================================================== */ | ||
| 957 | |||
| 958 | |||
| 959 | /* | ||
| 960 | ** {====================================================== | ||
| 961 | ** Generational Collector | ||
| 962 | ** ======================================================= | ||
| 963 | */ | ||
| 964 | |||
| 965 | static void setpause (global_State *g); | ||
| 966 | |||
| 967 | |||
| 968 | /* mask to erase all color bits, not changing gen-related stuff */ | ||
| 969 | #define maskgencolors (~(bitmask(BLACKBIT) | WHITEBITS)) | ||
| 970 | |||
| 971 | |||
| 972 | /* | ||
| 973 | ** Sweep a list of objects, deleting dead ones and turning | ||
| 974 | ** the non dead to old (without changing their colors). | ||
| 975 | */ | ||
| 976 | static void sweep2old (lua_State *L, GCObject **p) { | ||
| 977 | GCObject *curr; | ||
| 978 | while ((curr = *p) != NULL) { | ||
| 979 | if (iswhite(curr)) { /* is 'curr' dead? */ | ||
| 980 | lua_assert(isdead(G(L), curr)); | ||
| 981 | *p = curr->next; /* remove 'curr' from list */ | ||
| 982 | freeobj(L, curr); /* erase 'curr' */ | ||
| 983 | } | ||
| 984 | else { /* all surviving objects become old */ | ||
| 985 | setage(curr, G_OLD); | ||
| 986 | p = &curr->next; /* go to next element */ | ||
| 987 | } | ||
| 988 | } | ||
| 989 | } | ||
| 990 | |||
| 991 | |||
| 992 | /* | ||
| 993 | ** Sweep for generational mode. Delete dead objects. (Because the | ||
| 994 | ** collection is not incremental, there are no "new white" objects | ||
| 995 | ** during the sweep. So, any white object must be dead.) For | ||
| 996 | ** non-dead objects, advance their ages and clear the color of | ||
| 997 | ** new objects. (Old objects keep their colors.) | ||
| 998 | */ | ||
| 999 | static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p, | ||
| 1000 | GCObject *limit) { | ||
| 1001 | static const lu_byte nextage[] = { | ||
| 1002 | G_SURVIVAL, /* from G_NEW */ | ||
| 1003 | G_OLD1, /* from G_SURVIVAL */ | ||
| 1004 | G_OLD1, /* from G_OLD0 */ | ||
| 1005 | G_OLD, /* from G_OLD1 */ | ||
| 1006 | G_OLD, /* from G_OLD (do not change) */ | ||
| 1007 | G_TOUCHED1, /* from G_TOUCHED1 (do not change) */ | ||
| 1008 | G_TOUCHED2 /* from G_TOUCHED2 (do not change) */ | ||
| 1009 | }; | ||
| 1010 | int white = luaC_white(g); | ||
| 1011 | GCObject *curr; | ||
| 1012 | while ((curr = *p) != limit) { | ||
| 1013 | if (iswhite(curr)) { /* is 'curr' dead? */ | ||
| 1014 | lua_assert(!isold(curr) && isdead(g, curr)); | ||
| 1015 | *p = curr->next; /* remove 'curr' from list */ | ||
| 1016 | freeobj(L, curr); /* erase 'curr' */ | ||
| 1017 | } | ||
| 1018 | else { /* correct mark and age */ | ||
| 1019 | if (getage(curr) == G_NEW) | ||
| 1020 | curr->marked = cast_byte((curr->marked & maskgencolors) | white); | ||
| 1021 | setage(curr, nextage[getage(curr)]); | ||
| 1022 | p = &curr->next; /* go to next element */ | ||
| 1023 | } | ||
| 1024 | } | ||
| 1025 | return p; | ||
| 1026 | } | ||
| 1027 | |||
| 1028 | |||
| 1029 | /* | ||
| 1030 | ** Traverse a list making all its elements white and clearing their | ||
| 1031 | ** age. | ||
| 1032 | */ | ||
| 1033 | static void whitelist (global_State *g, GCObject *p) { | ||
| 1034 | int white = luaC_white(g); | ||
| 1035 | for (; p != NULL; p = p->next) | ||
| 1036 | p->marked = cast_byte((p->marked & maskcolors) | white); | ||
| 1037 | } | ||
| 1038 | |||
| 1039 | |||
| 1040 | /* | ||
| 1041 | ** Correct a list of gray objects. | ||
| 1042 | ** Because this correction is done after sweeping, young objects might | ||
| 1043 | ** be turned white and still be in the list. They are only removed. | ||
| 1044 | ** For tables and userdata, advance 'touched1' to 'touched2'; 'touched2' | ||
| 1045 | ** objects become regular old and are removed from the list. | ||
| 1046 | ** For threads, just remove white ones from the list. | ||
| 1047 | */ | ||
| 1048 | static GCObject **correctgraylist (GCObject **p) { | ||
| 1049 | GCObject *curr; | ||
| 1050 | while ((curr = *p) != NULL) { | ||
| 1051 | switch (curr->tt) { | ||
| 1052 | case LUA_VTABLE: case LUA_VUSERDATA: { | ||
| 1053 | GCObject **next = getgclist(curr); | ||
| 1054 | if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */ | ||
| 1055 | lua_assert(isgray(curr)); | ||
| 1056 | gray2black(curr); /* make it black, for next barrier */ | ||
| 1057 | changeage(curr, G_TOUCHED1, G_TOUCHED2); | ||
| 1058 | p = next; /* go to next element */ | ||
| 1059 | } | ||
| 1060 | else { /* not touched in this cycle */ | ||
| 1061 | if (!iswhite(curr)) { /* not white? */ | ||
| 1062 | lua_assert(isold(curr)); | ||
| 1063 | if (getage(curr) == G_TOUCHED2) /* advance from G_TOUCHED2... */ | ||
| 1064 | changeage(curr, G_TOUCHED2, G_OLD); /* ... to G_OLD */ | ||
| 1065 | gray2black(curr); /* make it black */ | ||
| 1066 | } | ||
| 1067 | /* else, object is white: just remove it from this list */ | ||
| 1068 | *p = *next; /* remove 'curr' from gray list */ | ||
| 1069 | } | ||
| 1070 | break; | ||
| 1071 | } | ||
| 1072 | case LUA_VTHREAD: { | ||
| 1073 | lua_State *th = gco2th(curr); | ||
| 1074 | lua_assert(!isblack(th)); | ||
| 1075 | if (iswhite(th)) /* new object? */ | ||
| 1076 | *p = th->gclist; /* remove from gray list */ | ||
| 1077 | else /* old threads remain gray */ | ||
| 1078 | p = &th->gclist; /* go to next element */ | ||
| 1079 | break; | ||
| 1080 | } | ||
| 1081 | default: lua_assert(0); /* nothing more could be gray here */ | ||
| 1082 | } | ||
| 1083 | } | ||
| 1084 | return p; | ||
| 1085 | } | ||
| 1086 | |||
| 1087 | |||
| 1088 | /* | ||
| 1089 | ** Correct all gray lists, coalescing them into 'grayagain'. | ||
| 1090 | */ | ||
| 1091 | static void correctgraylists (global_State *g) { | ||
| 1092 | GCObject **list = correctgraylist(&g->grayagain); | ||
| 1093 | *list = g->weak; g->weak = NULL; | ||
| 1094 | list = correctgraylist(list); | ||
| 1095 | *list = g->allweak; g->allweak = NULL; | ||
| 1096 | list = correctgraylist(list); | ||
| 1097 | *list = g->ephemeron; g->ephemeron = NULL; | ||
| 1098 | correctgraylist(list); | ||
| 1099 | } | ||
| 1100 | |||
| 1101 | |||
| 1102 | /* | ||
| 1103 | ** Mark 'OLD1' objects when starting a new young collection. | ||
| 1104 | ** Gray objects are already in some gray list, and so will be visited | ||
| 1105 | ** in the atomic step. | ||
| 1106 | */ | ||
| 1107 | static void markold (global_State *g, GCObject *from, GCObject *to) { | ||
| 1108 | GCObject *p; | ||
| 1109 | for (p = from; p != to; p = p->next) { | ||
| 1110 | if (getage(p) == G_OLD1) { | ||
| 1111 | lua_assert(!iswhite(p)); | ||
| 1112 | if (isblack(p)) { | ||
| 1113 | black2gray(p); /* should be '2white', but gray works too */ | ||
| 1114 | reallymarkobject(g, p); | ||
| 1115 | } | ||
| 1116 | } | ||
| 1117 | } | ||
| 1118 | } | ||
| 1119 | |||
| 1120 | |||
| 1121 | /* | ||
| 1122 | ** Finish a young-generation collection. | ||
| 1123 | */ | ||
| 1124 | static void finishgencycle (lua_State *L, global_State *g) { | ||
| 1125 | correctgraylists(g); | ||
| 1126 | checkSizes(L, g); | ||
| 1127 | g->gcstate = GCSpropagate; /* skip restart */ | ||
| 1128 | if (!g->gcemergency) | ||
| 1129 | callallpendingfinalizers(L); | ||
| 1130 | } | ||
| 1131 | |||
| 1132 | |||
| 1133 | /* | ||
| 1134 | ** Does a young collection. First, mark 'OLD1' objects. (Only survival | ||
| 1135 | ** and "recent old" lists can contain 'OLD1' objects. New lists cannot | ||
| 1136 | ** contain 'OLD1' objects, at most 'OLD0' objects that were already | ||
| 1137 | ** visited when marked old.) Then does the atomic step. Then, | ||
| 1138 | ** sweep all lists and advance pointers. Finally, finish the collection. | ||
| 1139 | */ | ||
| 1140 | static void youngcollection (lua_State *L, global_State *g) { | ||
| 1141 | GCObject **psurvival; /* to point to first non-dead survival object */ | ||
| 1142 | lua_assert(g->gcstate == GCSpropagate); | ||
| 1143 | markold(g, g->survival, g->reallyold); | ||
| 1144 | markold(g, g->finobj, g->finobjrold); | ||
| 1145 | atomic(L); | ||
| 1146 | |||
| 1147 | /* sweep nursery and get a pointer to its last live element */ | ||
| 1148 | psurvival = sweepgen(L, g, &g->allgc, g->survival); | ||
| 1149 | /* sweep 'survival' and 'old' */ | ||
| 1150 | sweepgen(L, g, psurvival, g->reallyold); | ||
| 1151 | g->reallyold = g->old; | ||
| 1152 | g->old = *psurvival; /* 'survival' survivals are old now */ | ||
| 1153 | g->survival = g->allgc; /* all news are survivals */ | ||
| 1154 | |||
| 1155 | /* repeat for 'finobj' lists */ | ||
| 1156 | psurvival = sweepgen(L, g, &g->finobj, g->finobjsur); | ||
| 1157 | /* sweep 'survival' and 'old' */ | ||
| 1158 | sweepgen(L, g, psurvival, g->finobjrold); | ||
| 1159 | g->finobjrold = g->finobjold; | ||
| 1160 | g->finobjold = *psurvival; /* 'survival' survivals are old now */ | ||
| 1161 | g->finobjsur = g->finobj; /* all news are survivals */ | ||
| 1162 | |||
| 1163 | sweepgen(L, g, &g->tobefnz, NULL); | ||
| 1164 | |||
| 1165 | finishgencycle(L, g); | ||
| 1166 | } | ||
| 1167 | |||
| 1168 | |||
| 1169 | static void atomic2gen (lua_State *L, global_State *g) { | ||
| 1170 | /* sweep all elements making them old */ | ||
| 1171 | sweep2old(L, &g->allgc); | ||
| 1172 | /* everything alive now is old */ | ||
| 1173 | g->reallyold = g->old = g->survival = g->allgc; | ||
| 1174 | |||
| 1175 | /* repeat for 'finobj' lists */ | ||
| 1176 | sweep2old(L, &g->finobj); | ||
| 1177 | g->finobjrold = g->finobjold = g->finobjsur = g->finobj; | ||
| 1178 | |||
| 1179 | sweep2old(L, &g->tobefnz); | ||
| 1180 | |||
| 1181 | g->gckind = KGC_GEN; | ||
| 1182 | g->lastatomic = 0; | ||
| 1183 | g->GCestimate = gettotalbytes(g); /* base for memory control */ | ||
| 1184 | finishgencycle(L, g); | ||
| 1185 | } | ||
| 1186 | |||
| 1187 | |||
| 1188 | /* | ||
| 1189 | ** Enter generational mode. Must go until the end of an atomic cycle | ||
| 1190 | ** to ensure that all threads and weak tables are in the gray lists. | ||
| 1191 | ** Then, turn all objects into old and finishes the collection. | ||
| 1192 | */ | ||
| 1193 | static lu_mem entergen (lua_State *L, global_State *g) { | ||
| 1194 | lu_mem numobjs; | ||
| 1195 | luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */ | ||
| 1196 | luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ | ||
| 1197 | numobjs = atomic(L); /* propagates all and then do the atomic stuff */ | ||
| 1198 | atomic2gen(L, g); | ||
| 1199 | return numobjs; | ||
| 1200 | } | ||
| 1201 | |||
| 1202 | |||
| 1203 | /* | ||
| 1204 | ** Enter incremental mode. Turn all objects white, make all | ||
| 1205 | ** intermediate lists point to NULL (to avoid invalid pointers), | ||
| 1206 | ** and go to the pause state. | ||
| 1207 | */ | ||
| 1208 | static void enterinc (global_State *g) { | ||
| 1209 | whitelist(g, g->allgc); | ||
| 1210 | g->reallyold = g->old = g->survival = NULL; | ||
| 1211 | whitelist(g, g->finobj); | ||
| 1212 | whitelist(g, g->tobefnz); | ||
| 1213 | g->finobjrold = g->finobjold = g->finobjsur = NULL; | ||
| 1214 | g->gcstate = GCSpause; | ||
| 1215 | g->gckind = KGC_INC; | ||
| 1216 | g->lastatomic = 0; | ||
| 1217 | } | ||
| 1218 | |||
| 1219 | |||
| 1220 | /* | ||
| 1221 | ** Change collector mode to 'newmode'. | ||
| 1222 | */ | ||
| 1223 | void luaC_changemode (lua_State *L, int newmode) { | ||
| 1224 | global_State *g = G(L); | ||
| 1225 | if (newmode != g->gckind) { | ||
| 1226 | if (newmode == KGC_GEN) /* entering generational mode? */ | ||
| 1227 | entergen(L, g); | ||
| 1228 | else | ||
| 1229 | enterinc(g); /* entering incremental mode */ | ||
| 1230 | } | ||
| 1231 | g->lastatomic = 0; | ||
| 1232 | } | ||
| 1233 | |||
| 1234 | |||
| 1235 | /* | ||
| 1236 | ** Does a full collection in generational mode. | ||
| 1237 | */ | ||
| 1238 | static lu_mem fullgen (lua_State *L, global_State *g) { | ||
| 1239 | enterinc(g); | ||
| 1240 | return entergen(L, g); | ||
| 1241 | } | ||
| 1242 | |||
| 1243 | |||
| 1244 | /* | ||
| 1245 | ** Set debt for the next minor collection, which will happen when | ||
| 1246 | ** memory grows 'genminormul'%. | ||
| 1247 | */ | ||
| 1248 | static void setminordebt (global_State *g) { | ||
| 1249 | luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul)); | ||
| 1250 | } | ||
| 1251 | |||
| 1252 | |||
| 1253 | /* | ||
| 1254 | ** Does a major collection after last collection was a "bad collection". | ||
| 1255 | ** | ||
| 1256 | ** When the program is building a big structure, it allocates lots of | ||
| 1257 | ** memory but generates very little garbage. In those scenarios, | ||
| 1258 | ** the generational mode just wastes time doing small collections, and | ||
| 1259 | ** major collections are frequently what we call a "bad collection", a | ||
| 1260 | ** collection that frees too few objects. To avoid the cost of switching | ||
| 1261 | ** between generational mode and the incremental mode needed for full | ||
| 1262 | ** (major) collections, the collector tries to stay in incremental mode | ||
| 1263 | ** after a bad collection, and to switch back to generational mode only | ||
| 1264 | ** after a "good" collection (one that traverses less than 9/8 objects | ||
| 1265 | ** of the previous one). | ||
| 1266 | ** The collector must choose whether to stay in incremental mode or to | ||
| 1267 | ** switch back to generational mode before sweeping. At this point, it | ||
| 1268 | ** does not know the real memory in use, so it cannot use memory to | ||
| 1269 | ** decide whether to return to generational mode. Instead, it uses the | ||
| 1270 | ** number of objects traversed (returned by 'atomic') as a proxy. The | ||
| 1271 | ** field 'g->lastatomic' keeps this count from the last collection. | ||
| 1272 | ** ('g->lastatomic != 0' also means that the last collection was bad.) | ||
| 1273 | */ | ||
| 1274 | static void stepgenfull (lua_State *L, global_State *g) { | ||
| 1275 | lu_mem newatomic; /* count of traversed objects */ | ||
| 1276 | lu_mem lastatomic = g->lastatomic; /* count from last collection */ | ||
| 1277 | if (g->gckind == KGC_GEN) /* still in generational mode? */ | ||
| 1278 | enterinc(g); /* enter incremental mode */ | ||
| 1279 | luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ | ||
| 1280 | newatomic = atomic(L); /* mark everybody */ | ||
| 1281 | if (newatomic < lastatomic + (lastatomic >> 3)) { /* good collection? */ | ||
| 1282 | atomic2gen(L, g); /* return to generational mode */ | ||
| 1283 | setminordebt(g); | ||
| 1284 | } | ||
| 1285 | else { /* another bad collection; stay in incremental mode */ | ||
| 1286 | g->GCestimate = gettotalbytes(g); /* first estimate */; | ||
| 1287 | entersweep(L); | ||
| 1288 | luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ | ||
| 1289 | setpause(g); | ||
| 1290 | g->lastatomic = newatomic; | ||
| 1291 | } | ||
| 1292 | } | ||
| 1293 | |||
| 1294 | |||
| 1295 | /* | ||
| 1296 | ** Does a generational "step". | ||
| 1297 | ** Usually, this means doing a minor collection and setting the debt to | ||
| 1298 | ** make another collection when memory grows 'genminormul'% larger. | ||
| 1299 | ** | ||
| 1300 | ** However, there are exceptions. If memory grows 'genmajormul'% | ||
| 1301 | ** larger than it was at the end of the last major collection (kept | ||
| 1302 | ** in 'g->GCestimate'), the function does a major collection. At the | ||
| 1303 | ** end, it checks whether the major collection was able to free a | ||
| 1304 | ** decent amount of memory (at least half the growth in memory since | ||
| 1305 | ** previous major collection). If so, the collector keeps its state, | ||
| 1306 | ** and the next collection will probably be minor again. Otherwise, | ||
| 1307 | ** we have what we call a "bad collection". In that case, set the field | ||
| 1308 | ** 'g->lastatomic' to signal that fact, so that the next collection will | ||
| 1309 | ** go to 'stepgenfull'. | ||
| 1310 | ** | ||
| 1311 | ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero; | ||
| 1312 | ** in that case, do a minor collection. | ||
| 1313 | */ | ||
| 1314 | static void genstep (lua_State *L, global_State *g) { | ||
| 1315 | if (g->lastatomic != 0) /* last collection was a bad one? */ | ||
| 1316 | stepgenfull(L, g); /* do a full step */ | ||
| 1317 | else { | ||
| 1318 | lu_mem majorbase = g->GCestimate; /* memory after last major collection */ | ||
| 1319 | lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul); | ||
| 1320 | if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) { | ||
| 1321 | lu_mem numobjs = fullgen(L, g); /* do a major collection */ | ||
| 1322 | if (gettotalbytes(g) < majorbase + (majorinc / 2)) { | ||
| 1323 | /* collected at least half of memory growth since last major | ||
| 1324 | collection; keep doing minor collections */ | ||
| 1325 | setminordebt(g); | ||
| 1326 | } | ||
| 1327 | else { /* bad collection */ | ||
| 1328 | g->lastatomic = numobjs; /* signal that last collection was bad */ | ||
| 1329 | setpause(g); /* do a long wait for next (major) collection */ | ||
| 1330 | } | ||
| 1331 | } | ||
| 1332 | else { /* regular case; do a minor collection */ | ||
| 1333 | youngcollection(L, g); | ||
| 1334 | setminordebt(g); | ||
| 1335 | g->GCestimate = majorbase; /* preserve base value */ | ||
| 1336 | } | ||
| 1337 | } | ||
| 1338 | lua_assert(isdecGCmodegen(g)); | ||
| 1339 | } | ||
| 1340 | |||
| 1341 | /* }====================================================== */ | ||
| 1342 | |||
| 1343 | |||
| 1344 | /* | ||
| 1345 | ** {====================================================== | ||
| 1346 | ** GC control | ||
| 1347 | ** ======================================================= | ||
| 1348 | */ | ||
| 1349 | |||
| 1350 | |||
| 1351 | /* | ||
| 1352 | ** Set the "time" to wait before starting a new GC cycle; cycle will | ||
| 1353 | ** start when memory use hits the threshold of ('estimate' * pause / | ||
| 1354 | ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero, | ||
| 1355 | ** because Lua cannot even start with less than PAUSEADJ bytes). | ||
| 1356 | */ | ||
| 1357 | static void setpause (global_State *g) { | ||
| 1358 | l_mem threshold, debt; | ||
| 1359 | int pause = getgcparam(g->gcpause); | ||
| 1360 | l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */ | ||
| 1361 | lua_assert(estimate > 0); | ||
| 1362 | threshold = (pause < MAX_LMEM / estimate) /* overflow? */ | ||
| 1363 | ? estimate * pause /* no overflow */ | ||
| 1364 | : MAX_LMEM; /* overflow; truncate to maximum */ | ||
| 1365 | debt = gettotalbytes(g) - threshold; | ||
| 1366 | if (debt > 0) debt = 0; | ||
| 1367 | luaE_setdebt(g, debt); | ||
| 1368 | } | ||
| 1369 | |||
| 1370 | |||
| 1371 | /* | ||
| 1372 | ** Enter first sweep phase. | ||
| 1373 | ** The call to 'sweeptolive' makes the pointer point to an object | ||
| 1374 | ** inside the list (instead of to the header), so that the real sweep do | ||
| 1375 | ** not need to skip objects created between "now" and the start of the | ||
| 1376 | ** real sweep. | ||
| 1377 | */ | ||
| 1378 | static void entersweep (lua_State *L) { | ||
| 1379 | global_State *g = G(L); | ||
| 1380 | g->gcstate = GCSswpallgc; | ||
| 1381 | lua_assert(g->sweepgc == NULL); | ||
| 1382 | g->sweepgc = sweeptolive(L, &g->allgc); | ||
| 1383 | } | ||
| 1384 | |||
| 1385 | |||
| 1386 | /* | ||
| 1387 | ** Delete all objects in list 'p' until (but not including) object | ||
| 1388 | ** 'limit'. | ||
| 1389 | */ | ||
| 1390 | static void deletelist (lua_State *L, GCObject *p, GCObject *limit) { | ||
| 1391 | while (p != limit) { | ||
| 1392 | GCObject *next = p->next; | ||
| 1393 | freeobj(L, p); | ||
| 1394 | p = next; | ||
| 1395 | } | ||
| 1396 | } | ||
| 1397 | |||
| 1398 | |||
| 1399 | /* | ||
| 1400 | ** Call all finalizers of the objects in the given Lua state, and | ||
| 1401 | ** then free all objects, except for the main thread. | ||
| 1402 | */ | ||
| 1403 | void luaC_freeallobjects (lua_State *L) { | ||
| 1404 | global_State *g = G(L); | ||
| 1405 | luaC_changemode(L, KGC_INC); | ||
| 1406 | separatetobefnz(g, 1); /* separate all objects with finalizers */ | ||
| 1407 | lua_assert(g->finobj == NULL); | ||
| 1408 | callallpendingfinalizers(L); | ||
| 1409 | deletelist(L, g->allgc, obj2gco(g->mainthread)); | ||
| 1410 | deletelist(L, g->finobj, NULL); | ||
| 1411 | deletelist(L, g->fixedgc, NULL); /* collect fixed objects */ | ||
| 1412 | lua_assert(g->strt.nuse == 0); | ||
| 1413 | } | ||
| 1414 | |||
| 1415 | |||
| 1416 | static lu_mem atomic (lua_State *L) { | ||
| 1417 | global_State *g = G(L); | ||
| 1418 | lu_mem work = 0; | ||
| 1419 | GCObject *origweak, *origall; | ||
| 1420 | GCObject *grayagain = g->grayagain; /* save original list */ | ||
| 1421 | g->grayagain = NULL; | ||
| 1422 | lua_assert(g->ephemeron == NULL && g->weak == NULL); | ||
| 1423 | lua_assert(!iswhite(g->mainthread)); | ||
| 1424 | g->gcstate = GCSatomic; | ||
| 1425 | markobject(g, L); /* mark running thread */ | ||
| 1426 | /* registry and global metatables may be changed by API */ | ||
| 1427 | markvalue(g, &g->l_registry); | ||
| 1428 | markmt(g); /* mark global metatables */ | ||
| 1429 | work += propagateall(g); /* empties 'gray' list */ | ||
| 1430 | /* remark occasional upvalues of (maybe) dead threads */ | ||
| 1431 | work += remarkupvals(g); | ||
| 1432 | work += propagateall(g); /* propagate changes */ | ||
| 1433 | g->gray = grayagain; | ||
| 1434 | work += propagateall(g); /* traverse 'grayagain' list */ | ||
| 1435 | convergeephemerons(g); | ||
| 1436 | /* at this point, all strongly accessible objects are marked. */ | ||
| 1437 | /* Clear values from weak tables, before checking finalizers */ | ||
| 1438 | clearbyvalues(g, g->weak, NULL); | ||
| 1439 | clearbyvalues(g, g->allweak, NULL); | ||
| 1440 | origweak = g->weak; origall = g->allweak; | ||
| 1441 | separatetobefnz(g, 0); /* separate objects to be finalized */ | ||
| 1442 | work += markbeingfnz(g); /* mark objects that will be finalized */ | ||
| 1443 | work += propagateall(g); /* remark, to propagate 'resurrection' */ | ||
| 1444 | convergeephemerons(g); | ||
| 1445 | /* at this point, all resurrected objects are marked. */ | ||
| 1446 | /* remove dead objects from weak tables */ | ||
| 1447 | clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */ | ||
| 1448 | clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */ | ||
| 1449 | /* clear values from resurrected weak tables */ | ||
| 1450 | clearbyvalues(g, g->weak, origweak); | ||
| 1451 | clearbyvalues(g, g->allweak, origall); | ||
| 1452 | luaS_clearcache(g); | ||
| 1453 | g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */ | ||
| 1454 | lua_assert(g->gray == NULL); | ||
| 1455 | return work; /* estimate of slots marked by 'atomic' */ | ||
| 1456 | } | ||
| 1457 | |||
| 1458 | |||
| 1459 | static int sweepstep (lua_State *L, global_State *g, | ||
| 1460 | int nextstate, GCObject **nextlist) { | ||
| 1461 | if (g->sweepgc) { | ||
| 1462 | l_mem olddebt = g->GCdebt; | ||
| 1463 | int count; | ||
| 1464 | g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count); | ||
| 1465 | g->GCestimate += g->GCdebt - olddebt; /* update estimate */ | ||
| 1466 | return count; | ||
| 1467 | } | ||
| 1468 | else { /* enter next state */ | ||
| 1469 | g->gcstate = nextstate; | ||
| 1470 | g->sweepgc = nextlist; | ||
| 1471 | return 0; /* no work done */ | ||
| 1472 | } | ||
| 1473 | } | ||
| 1474 | |||
| 1475 | |||
| 1476 | static lu_mem singlestep (lua_State *L) { | ||
| 1477 | global_State *g = G(L); | ||
| 1478 | switch (g->gcstate) { | ||
| 1479 | case GCSpause: { | ||
| 1480 | restartcollection(g); | ||
| 1481 | g->gcstate = GCSpropagate; | ||
| 1482 | return 1; | ||
| 1483 | } | ||
| 1484 | case GCSpropagate: { | ||
| 1485 | if (g->gray == NULL) { /* no more gray objects? */ | ||
| 1486 | g->gcstate = GCSenteratomic; /* finish propagate phase */ | ||
| 1487 | return 0; | ||
| 1488 | } | ||
| 1489 | else | ||
| 1490 | return propagatemark(g); /* traverse one gray object */ | ||
| 1491 | } | ||
| 1492 | case GCSenteratomic: { | ||
| 1493 | lu_mem work = atomic(L); /* work is what was traversed by 'atomic' */ | ||
| 1494 | entersweep(L); | ||
| 1495 | g->GCestimate = gettotalbytes(g); /* first estimate */; | ||
| 1496 | return work; | ||
| 1497 | } | ||
| 1498 | case GCSswpallgc: { /* sweep "regular" objects */ | ||
| 1499 | return sweepstep(L, g, GCSswpfinobj, &g->finobj); | ||
| 1500 | } | ||
| 1501 | case GCSswpfinobj: { /* sweep objects with finalizers */ | ||
| 1502 | return sweepstep(L, g, GCSswptobefnz, &g->tobefnz); | ||
| 1503 | } | ||
| 1504 | case GCSswptobefnz: { /* sweep objects to be finalized */ | ||
| 1505 | return sweepstep(L, g, GCSswpend, NULL); | ||
| 1506 | } | ||
| 1507 | case GCSswpend: { /* finish sweeps */ | ||
| 1508 | checkSizes(L, g); | ||
| 1509 | g->gcstate = GCScallfin; | ||
| 1510 | return 0; | ||
| 1511 | } | ||
| 1512 | case GCScallfin: { /* call remaining finalizers */ | ||
| 1513 | if (g->tobefnz && !g->gcemergency) { | ||
| 1514 | int n = runafewfinalizers(L, GCFINMAX); | ||
| 1515 | return n * GCFINALIZECOST; | ||
| 1516 | } | ||
| 1517 | else { /* emergency mode or no more finalizers */ | ||
| 1518 | g->gcstate = GCSpause; /* finish collection */ | ||
| 1519 | return 0; | ||
| 1520 | } | ||
| 1521 | } | ||
| 1522 | default: lua_assert(0); return 0; | ||
| 1523 | } | ||
| 1524 | } | ||
| 1525 | |||
| 1526 | |||
| 1527 | /* | ||
| 1528 | ** advances the garbage collector until it reaches a state allowed | ||
| 1529 | ** by 'statemask' | ||
| 1530 | */ | ||
| 1531 | void luaC_runtilstate (lua_State *L, int statesmask) { | ||
| 1532 | global_State *g = G(L); | ||
| 1533 | while (!testbit(statesmask, g->gcstate)) | ||
| 1534 | singlestep(L); | ||
| 1535 | } | ||
| 1536 | |||
| 1537 | |||
| 1538 | /* | ||
| 1539 | ** Performs a basic incremental step. The debt and step size are | ||
| 1540 | ** converted from bytes to "units of work"; then the function loops | ||
| 1541 | ** running single steps until adding that many units of work or | ||
| 1542 | ** finishing a cycle (pause state). Finally, it sets the debt that | ||
| 1543 | ** controls when next step will be performed. | ||
| 1544 | */ | ||
| 1545 | static void incstep (lua_State *L, global_State *g) { | ||
| 1546 | int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */ | ||
| 1547 | l_mem debt = (g->GCdebt / WORK2MEM) * stepmul; | ||
| 1548 | l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem)) | ||
| 1549 | ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul | ||
| 1550 | : MAX_LMEM; /* overflow; keep maximum value */ | ||
| 1551 | do { /* repeat until pause or enough "credit" (negative debt) */ | ||
| 1552 | lu_mem work = singlestep(L); /* perform one single step */ | ||
| 1553 | debt -= work; | ||
| 1554 | } while (debt > -stepsize && g->gcstate != GCSpause); | ||
| 1555 | if (g->gcstate == GCSpause) | ||
| 1556 | setpause(g); /* pause until next cycle */ | ||
| 1557 | else { | ||
| 1558 | debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */ | ||
| 1559 | luaE_setdebt(g, debt); | ||
| 1560 | } | ||
| 1561 | } | ||
| 1562 | |||
| 1563 | /* | ||
| 1564 | ** performs a basic GC step if collector is running | ||
| 1565 | */ | ||
| 1566 | void luaC_step (lua_State *L) { | ||
| 1567 | global_State *g = G(L); | ||
| 1568 | lua_assert(!g->gcemergency); | ||
| 1569 | if (g->gcrunning) { /* running? */ | ||
| 1570 | if(isdecGCmodegen(g)) | ||
| 1571 | genstep(L, g); | ||
| 1572 | else | ||
| 1573 | incstep(L, g); | ||
| 1574 | } | ||
| 1575 | } | ||
| 1576 | |||
| 1577 | |||
| 1578 | /* | ||
| 1579 | ** Perform a full collection in incremental mode. | ||
| 1580 | ** Before running the collection, check 'keepinvariant'; if it is true, | ||
| 1581 | ** there may be some objects marked as black, so the collector has | ||
| 1582 | ** to sweep all objects to turn them back to white (as white has not | ||
| 1583 | ** changed, nothing will be collected). | ||
| 1584 | */ | ||
| 1585 | static void fullinc (lua_State *L, global_State *g) { | ||
| 1586 | if (keepinvariant(g)) /* black objects? */ | ||
| 1587 | entersweep(L); /* sweep everything to turn them back to white */ | ||
| 1588 | /* finish any pending sweep phase to start a new cycle */ | ||
| 1589 | luaC_runtilstate(L, bitmask(GCSpause)); | ||
| 1590 | luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */ | ||
| 1591 | /* estimate must be correct after a full GC cycle */ | ||
| 1592 | lua_assert(g->GCestimate == gettotalbytes(g)); | ||
| 1593 | luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ | ||
| 1594 | setpause(g); | ||
| 1595 | } | ||
| 1596 | |||
| 1597 | |||
| 1598 | /* | ||
| 1599 | ** Performs a full GC cycle; if 'isemergency', set a flag to avoid | ||
| 1600 | ** some operations which could change the interpreter state in some | ||
| 1601 | ** unexpected ways (running finalizers and shrinking some structures). | ||
| 1602 | */ | ||
| 1603 | void luaC_fullgc (lua_State *L, int isemergency) { | ||
| 1604 | global_State *g = G(L); | ||
| 1605 | lua_assert(!g->gcemergency); | ||
| 1606 | g->gcemergency = isemergency; /* set flag */ | ||
| 1607 | if (g->gckind == KGC_INC) | ||
| 1608 | fullinc(L, g); | ||
| 1609 | else | ||
| 1610 | fullgen(L, g); | ||
| 1611 | g->gcemergency = 0; | ||
| 1612 | } | ||
| 1613 | |||
| 1614 | /* }====================================================== */ | ||
| 1615 | |||
| 1616 | |||
