diff options
Diffstat (limited to 'src/lua/ltable.c')
| -rw-r--r-- | src/lua/ltable.c | 924 |
1 files changed, 924 insertions, 0 deletions
diff --git a/src/lua/ltable.c b/src/lua/ltable.c new file mode 100644 index 0000000..d7eb69a --- /dev/null +++ b/src/lua/ltable.c | |||
| @@ -0,0 +1,924 @@ | |||
| 1 | /* | ||
| 2 | ** $Id: ltable.c $ | ||
| 3 | ** Lua tables (hash) | ||
| 4 | ** See Copyright Notice in lua.h | ||
| 5 | */ | ||
| 6 | |||
| 7 | #define ltable_c | ||
| 8 | #define LUA_CORE | ||
| 9 | |||
| 10 | #include "lprefix.h" | ||
| 11 | |||
| 12 | |||
| 13 | /* | ||
| 14 | ** Implementation of tables (aka arrays, objects, or hash tables). | ||
| 15 | ** Tables keep its elements in two parts: an array part and a hash part. | ||
| 16 | ** Non-negative integer keys are all candidates to be kept in the array | ||
| 17 | ** part. The actual size of the array is the largest 'n' such that | ||
| 18 | ** more than half the slots between 1 and n are in use. | ||
| 19 | ** Hash uses a mix of chained scatter table with Brent's variation. | ||
| 20 | ** A main invariant of these tables is that, if an element is not | ||
| 21 | ** in its main position (i.e. the 'original' position that its hash gives | ||
| 22 | ** to it), then the colliding element is in its own main position. | ||
| 23 | ** Hence even when the load factor reaches 100%, performance remains good. | ||
| 24 | */ | ||
| 25 | |||
| 26 | #include <math.h> | ||
| 27 | #include <limits.h> | ||
| 28 | |||
| 29 | #include "lua.h" | ||
| 30 | |||
| 31 | #include "ldebug.h" | ||
| 32 | #include "ldo.h" | ||
| 33 | #include "lgc.h" | ||
| 34 | #include "lmem.h" | ||
| 35 | #include "lobject.h" | ||
| 36 | #include "lstate.h" | ||
| 37 | #include "lstring.h" | ||
| 38 | #include "ltable.h" | ||
| 39 | #include "lvm.h" | ||
| 40 | |||
| 41 | |||
| 42 | /* | ||
| 43 | ** MAXABITS is the largest integer such that MAXASIZE fits in an | ||
| 44 | ** unsigned int. | ||
| 45 | */ | ||
| 46 | #define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1) | ||
| 47 | |||
| 48 | |||
| 49 | /* | ||
| 50 | ** MAXASIZE is the maximum size of the array part. It is the minimum | ||
| 51 | ** between 2^MAXABITS and the maximum size that, measured in bytes, | ||
| 52 | ** fits in a 'size_t'. | ||
| 53 | */ | ||
| 54 | #define MAXASIZE luaM_limitN(1u << MAXABITS, TValue) | ||
| 55 | |||
| 56 | /* | ||
| 57 | ** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a | ||
| 58 | ** signed int. | ||
| 59 | */ | ||
| 60 | #define MAXHBITS (MAXABITS - 1) | ||
| 61 | |||
| 62 | |||
| 63 | /* | ||
| 64 | ** MAXHSIZE is the maximum size of the hash part. It is the minimum | ||
| 65 | ** between 2^MAXHBITS and the maximum size such that, measured in bytes, | ||
| 66 | ** it fits in a 'size_t'. | ||
| 67 | */ | ||
| 68 | #define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node) | ||
| 69 | |||
| 70 | |||
| 71 | #define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t)))) | ||
| 72 | |||
| 73 | #define hashstr(t,str) hashpow2(t, (str)->hash) | ||
| 74 | #define hashboolean(t,p) hashpow2(t, p) | ||
| 75 | #define hashint(t,i) hashpow2(t, i) | ||
| 76 | |||
| 77 | |||
| 78 | /* | ||
| 79 | ** for some types, it is better to avoid modulus by power of 2, as | ||
| 80 | ** they tend to have many 2 factors. | ||
| 81 | */ | ||
| 82 | #define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1)))) | ||
| 83 | |||
| 84 | |||
| 85 | #define hashpointer(t,p) hashmod(t, point2uint(p)) | ||
| 86 | |||
| 87 | |||
| 88 | #define dummynode (&dummynode_) | ||
| 89 | |||
| 90 | static const Node dummynode_ = { | ||
| 91 | {{NULL}, LUA_VEMPTY, /* value's value and type */ | ||
| 92 | LUA_VNIL, 0, {NULL}} /* key type, next, and key value */ | ||
| 93 | }; | ||
| 94 | |||
| 95 | |||
| 96 | static const TValue absentkey = {ABSTKEYCONSTANT}; | ||
| 97 | |||
| 98 | |||
| 99 | |||
| 100 | /* | ||
| 101 | ** Hash for floating-point numbers. | ||
| 102 | ** The main computation should be just | ||
| 103 | ** n = frexp(n, &i); return (n * INT_MAX) + i | ||
| 104 | ** but there are some numerical subtleties. | ||
| 105 | ** In a two-complement representation, INT_MAX does not has an exact | ||
| 106 | ** representation as a float, but INT_MIN does; because the absolute | ||
| 107 | ** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the | ||
| 108 | ** absolute value of the product 'frexp * -INT_MIN' is smaller or equal | ||
| 109 | ** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when | ||
| 110 | ** adding 'i'; the use of '~u' (instead of '-u') avoids problems with | ||
| 111 | ** INT_MIN. | ||
| 112 | */ | ||
| 113 | #if !defined(l_hashfloat) | ||
| 114 | static int l_hashfloat (lua_Number n) { | ||
| 115 | int i; | ||
| 116 | lua_Integer ni; | ||
| 117 | n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN); | ||
| 118 | if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */ | ||
| 119 | lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL)); | ||
| 120 | return 0; | ||
| 121 | } | ||
| 122 | else { /* normal case */ | ||
| 123 | unsigned int u = cast_uint(i) + cast_uint(ni); | ||
| 124 | return cast_int(u <= cast_uint(INT_MAX) ? u : ~u); | ||
| 125 | } | ||
| 126 | } | ||
| 127 | #endif | ||
| 128 | |||
| 129 | |||
| 130 | /* | ||
| 131 | ** returns the 'main' position of an element in a table (that is, | ||
| 132 | ** the index of its hash value). The key comes broken (tag in 'ktt' | ||
| 133 | ** and value in 'vkl') so that we can call it on keys inserted into | ||
| 134 | ** nodes. | ||
| 135 | */ | ||
| 136 | static Node *mainposition (const Table *t, int ktt, const Value *kvl) { | ||
| 137 | switch (withvariant(ktt)) { | ||
| 138 | case LUA_VNUMINT: | ||
| 139 | return hashint(t, ivalueraw(*kvl)); | ||
| 140 | case LUA_VNUMFLT: | ||
| 141 | return hashmod(t, l_hashfloat(fltvalueraw(*kvl))); | ||
| 142 | case LUA_VSHRSTR: | ||
| 143 | return hashstr(t, tsvalueraw(*kvl)); | ||
| 144 | case LUA_VLNGSTR: | ||
| 145 | return hashpow2(t, luaS_hashlongstr(tsvalueraw(*kvl))); | ||
| 146 | case LUA_VFALSE: | ||
| 147 | return hashboolean(t, 0); | ||
| 148 | case LUA_VTRUE: | ||
| 149 | return hashboolean(t, 1); | ||
| 150 | case LUA_VLIGHTUSERDATA: | ||
| 151 | return hashpointer(t, pvalueraw(*kvl)); | ||
| 152 | case LUA_VLCF: | ||
| 153 | return hashpointer(t, fvalueraw(*kvl)); | ||
| 154 | default: | ||
| 155 | return hashpointer(t, gcvalueraw(*kvl)); | ||
| 156 | } | ||
| 157 | } | ||
| 158 | |||
| 159 | |||
| 160 | /* | ||
| 161 | ** Returns the main position of an element given as a 'TValue' | ||
| 162 | */ | ||
| 163 | static Node *mainpositionTV (const Table *t, const TValue *key) { | ||
| 164 | return mainposition(t, rawtt(key), valraw(key)); | ||
| 165 | } | ||
| 166 | |||
| 167 | |||
| 168 | /* | ||
| 169 | ** Check whether key 'k1' is equal to the key in node 'n2'. | ||
| 170 | ** This equality is raw, so there are no metamethods. Floats | ||
| 171 | ** with integer values have been normalized, so integers cannot | ||
| 172 | ** be equal to floats. It is assumed that 'eqshrstr' is simply | ||
| 173 | ** pointer equality, so that short strings are handled in the | ||
| 174 | ** default case. | ||
| 175 | */ | ||
| 176 | static int equalkey (const TValue *k1, const Node *n2) { | ||
| 177 | if (rawtt(k1) != keytt(n2)) /* not the same variants? */ | ||
| 178 | return 0; /* cannot be same key */ | ||
| 179 | switch (ttypetag(k1)) { | ||
| 180 | case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: | ||
| 181 | return 1; | ||
| 182 | case LUA_VNUMINT: | ||
| 183 | return (ivalue(k1) == keyival(n2)); | ||
| 184 | case LUA_VNUMFLT: | ||
| 185 | return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2))); | ||
| 186 | case LUA_VLIGHTUSERDATA: | ||
| 187 | return pvalue(k1) == pvalueraw(keyval(n2)); | ||
| 188 | case LUA_VLCF: | ||
| 189 | return fvalue(k1) == fvalueraw(keyval(n2)); | ||
| 190 | case LUA_VLNGSTR: | ||
| 191 | return luaS_eqlngstr(tsvalue(k1), keystrval(n2)); | ||
| 192 | default: | ||
| 193 | return gcvalue(k1) == gcvalueraw(keyval(n2)); | ||
| 194 | } | ||
| 195 | } | ||
| 196 | |||
| 197 | |||
| 198 | /* | ||
| 199 | ** True if value of 'alimit' is equal to the real size of the array | ||
| 200 | ** part of table 't'. (Otherwise, the array part must be larger than | ||
| 201 | ** 'alimit'.) | ||
| 202 | */ | ||
| 203 | #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit)) | ||
| 204 | |||
| 205 | |||
| 206 | /* | ||
| 207 | ** Returns the real size of the 'array' array | ||
| 208 | */ | ||
| 209 | LUAI_FUNC unsigned int luaH_realasize (const Table *t) { | ||
| 210 | if (limitequalsasize(t)) | ||
| 211 | return t->alimit; /* this is the size */ | ||
| 212 | else { | ||
| 213 | unsigned int size = t->alimit; | ||
| 214 | /* compute the smallest power of 2 not smaller than 'n' */ | ||
| 215 | size |= (size >> 1); | ||
| 216 | size |= (size >> 2); | ||
| 217 | size |= (size >> 4); | ||
| 218 | size |= (size >> 8); | ||
| 219 | size |= (size >> 16); | ||
| 220 | #if (UINT_MAX >> 30) > 3 | ||
| 221 | size |= (size >> 32); /* unsigned int has more than 32 bits */ | ||
| 222 | #endif | ||
| 223 | size++; | ||
| 224 | lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size); | ||
| 225 | return size; | ||
| 226 | } | ||
| 227 | } | ||
| 228 | |||
| 229 | |||
| 230 | /* | ||
| 231 | ** Check whether real size of the array is a power of 2. | ||
| 232 | ** (If it is not, 'alimit' cannot be changed to any other value | ||
| 233 | ** without changing the real size.) | ||
| 234 | */ | ||
| 235 | static int ispow2realasize (const Table *t) { | ||
| 236 | return (!isrealasize(t) || ispow2(t->alimit)); | ||
| 237 | } | ||
| 238 | |||
| 239 | |||
| 240 | static unsigned int setlimittosize (Table *t) { | ||
| 241 | t->alimit = luaH_realasize(t); | ||
| 242 | setrealasize(t); | ||
| 243 | return t->alimit; | ||
| 244 | } | ||
| 245 | |||
| 246 | |||
| 247 | #define limitasasize(t) check_exp(isrealasize(t), t->alimit) | ||
| 248 | |||
| 249 | |||
| 250 | |||
| 251 | /* | ||
| 252 | ** "Generic" get version. (Not that generic: not valid for integers, | ||
| 253 | ** which may be in array part, nor for floats with integral values.) | ||
| 254 | */ | ||
| 255 | static const TValue *getgeneric (Table *t, const TValue *key) { | ||
| 256 | Node *n = mainpositionTV(t, key); | ||
| 257 | for (;;) { /* check whether 'key' is somewhere in the chain */ | ||
| 258 | if (equalkey(key, n)) | ||
| 259 | return gval(n); /* that's it */ | ||
| 260 | else { | ||
| 261 | int nx = gnext(n); | ||
| 262 | if (nx == 0) | ||
| 263 | return &absentkey; /* not found */ | ||
| 264 | n += nx; | ||
| 265 | } | ||
| 266 | } | ||
| 267 | } | ||
| 268 | |||
| 269 | |||
| 270 | /* | ||
| 271 | ** returns the index for 'k' if 'k' is an appropriate key to live in | ||
| 272 | ** the array part of a table, 0 otherwise. | ||
| 273 | */ | ||
| 274 | static unsigned int arrayindex (lua_Integer k) { | ||
| 275 | if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */ | ||
| 276 | return cast_uint(k); /* 'key' is an appropriate array index */ | ||
| 277 | else | ||
| 278 | return 0; | ||
| 279 | } | ||
| 280 | |||
| 281 | |||
| 282 | /* | ||
| 283 | ** returns the index of a 'key' for table traversals. First goes all | ||
| 284 | ** elements in the array part, then elements in the hash part. The | ||
| 285 | ** beginning of a traversal is signaled by 0. | ||
| 286 | */ | ||
| 287 | static unsigned int findindex (lua_State *L, Table *t, TValue *key, | ||
| 288 | unsigned int asize) { | ||
| 289 | unsigned int i; | ||
| 290 | if (ttisnil(key)) return 0; /* first iteration */ | ||
| 291 | i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0; | ||
| 292 | if (i - 1u < asize) /* is 'key' inside array part? */ | ||
| 293 | return i; /* yes; that's the index */ | ||
| 294 | else { | ||
| 295 | const TValue *n = getgeneric(t, key); | ||
| 296 | if (unlikely(isabstkey(n))) | ||
| 297 | luaG_runerror(L, "invalid key to 'next'"); /* key not found */ | ||
| 298 | i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */ | ||
| 299 | /* hash elements are numbered after array ones */ | ||
| 300 | return (i + 1) + asize; | ||
| 301 | } | ||
| 302 | } | ||
| 303 | |||
| 304 | |||
| 305 | int luaH_next (lua_State *L, Table *t, StkId key) { | ||
| 306 | unsigned int asize = luaH_realasize(t); | ||
| 307 | unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */ | ||
| 308 | for (; i < asize; i++) { /* try first array part */ | ||
| 309 | if (!isempty(&t->array[i])) { /* a non-empty entry? */ | ||
| 310 | setivalue(s2v(key), i + 1); | ||
| 311 | setobj2s(L, key + 1, &t->array[i]); | ||
| 312 | return 1; | ||
| 313 | } | ||
| 314 | } | ||
| 315 | for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */ | ||
| 316 | if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */ | ||
| 317 | Node *n = gnode(t, i); | ||
| 318 | getnodekey(L, s2v(key), n); | ||
| 319 | setobj2s(L, key + 1, gval(n)); | ||
| 320 | return 1; | ||
| 321 | } | ||
| 322 | } | ||
| 323 | return 0; /* no more elements */ | ||
| 324 | } | ||
| 325 | |||
| 326 | |||
| 327 | static void freehash (lua_State *L, Table *t) { | ||
| 328 | if (!isdummy(t)) | ||
| 329 | luaM_freearray(L, t->node, cast_sizet(sizenode(t))); | ||
| 330 | } | ||
| 331 | |||
| 332 | |||
| 333 | /* | ||
| 334 | ** {============================================================= | ||
| 335 | ** Rehash | ||
| 336 | ** ============================================================== | ||
| 337 | */ | ||
| 338 | |||
| 339 | /* | ||
| 340 | ** Compute the optimal size for the array part of table 't'. 'nums' is a | ||
| 341 | ** "count array" where 'nums[i]' is the number of integers in the table | ||
| 342 | ** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of | ||
| 343 | ** integer keys in the table and leaves with the number of keys that | ||
| 344 | ** will go to the array part; return the optimal size. (The condition | ||
| 345 | ** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.) | ||
| 346 | */ | ||
| 347 | static unsigned int computesizes (unsigned int nums[], unsigned int *pna) { | ||
| 348 | int i; | ||
| 349 | unsigned int twotoi; /* 2^i (candidate for optimal size) */ | ||
| 350 | unsigned int a = 0; /* number of elements smaller than 2^i */ | ||
| 351 | unsigned int na = 0; /* number of elements to go to array part */ | ||
| 352 | unsigned int optimal = 0; /* optimal size for array part */ | ||
| 353 | /* loop while keys can fill more than half of total size */ | ||
| 354 | for (i = 0, twotoi = 1; | ||
| 355 | twotoi > 0 && *pna > twotoi / 2; | ||
| 356 | i++, twotoi *= 2) { | ||
| 357 | a += nums[i]; | ||
| 358 | if (a > twotoi/2) { /* more than half elements present? */ | ||
| 359 | optimal = twotoi; /* optimal size (till now) */ | ||
| 360 | na = a; /* all elements up to 'optimal' will go to array part */ | ||
| 361 | } | ||
| 362 | } | ||
| 363 | lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal); | ||
| 364 | *pna = na; | ||
| 365 | return optimal; | ||
| 366 | } | ||
| 367 | |||
| 368 | |||
| 369 | static int countint (lua_Integer key, unsigned int *nums) { | ||
| 370 | unsigned int k = arrayindex(key); | ||
| 371 | if (k != 0) { /* is 'key' an appropriate array index? */ | ||
| 372 | nums[luaO_ceillog2(k)]++; /* count as such */ | ||
| 373 | return 1; | ||
| 374 | } | ||
| 375 | else | ||
| 376 | return 0; | ||
| 377 | } | ||
| 378 | |||
| 379 | |||
| 380 | /* | ||
| 381 | ** Count keys in array part of table 't': Fill 'nums[i]' with | ||
| 382 | ** number of keys that will go into corresponding slice and return | ||
| 383 | ** total number of non-nil keys. | ||
| 384 | */ | ||
| 385 | static unsigned int numusearray (const Table *t, unsigned int *nums) { | ||
| 386 | int lg; | ||
| 387 | unsigned int ttlg; /* 2^lg */ | ||
| 388 | unsigned int ause = 0; /* summation of 'nums' */ | ||
| 389 | unsigned int i = 1; /* count to traverse all array keys */ | ||
| 390 | unsigned int asize = limitasasize(t); /* real array size */ | ||
| 391 | /* traverse each slice */ | ||
| 392 | for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { | ||
| 393 | unsigned int lc = 0; /* counter */ | ||
| 394 | unsigned int lim = ttlg; | ||
| 395 | if (lim > asize) { | ||
| 396 | lim = asize; /* adjust upper limit */ | ||
| 397 | if (i > lim) | ||
| 398 | break; /* no more elements to count */ | ||
| 399 | } | ||
| 400 | /* count elements in range (2^(lg - 1), 2^lg] */ | ||
| 401 | for (; i <= lim; i++) { | ||
| 402 | if (!isempty(&t->array[i-1])) | ||
| 403 | lc++; | ||
| 404 | } | ||
| 405 | nums[lg] += lc; | ||
| 406 | ause += lc; | ||
| 407 | } | ||
| 408 | return ause; | ||
| 409 | } | ||
| 410 | |||
| 411 | |||
| 412 | static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) { | ||
| 413 | int totaluse = 0; /* total number of elements */ | ||
| 414 | int ause = 0; /* elements added to 'nums' (can go to array part) */ | ||
| 415 | int i = sizenode(t); | ||
| 416 | while (i--) { | ||
| 417 | Node *n = &t->node[i]; | ||
| 418 | if (!isempty(gval(n))) { | ||
| 419 | if (keyisinteger(n)) | ||
| 420 | ause += countint(keyival(n), nums); | ||
| 421 | totaluse++; | ||
| 422 | } | ||
| 423 | } | ||
| 424 | *pna += ause; | ||
| 425 | return totaluse; | ||
| 426 | } | ||
| 427 | |||
| 428 | |||
| 429 | /* | ||
| 430 | ** Creates an array for the hash part of a table with the given | ||
| 431 | ** size, or reuses the dummy node if size is zero. | ||
| 432 | ** The computation for size overflow is in two steps: the first | ||
| 433 | ** comparison ensures that the shift in the second one does not | ||
| 434 | ** overflow. | ||
| 435 | */ | ||
| 436 | static void setnodevector (lua_State *L, Table *t, unsigned int size) { | ||
| 437 | if (size == 0) { /* no elements to hash part? */ | ||
| 438 | t->node = cast(Node *, dummynode); /* use common 'dummynode' */ | ||
| 439 | t->lsizenode = 0; | ||
| 440 | t->lastfree = NULL; /* signal that it is using dummy node */ | ||
| 441 | } | ||
| 442 | else { | ||
| 443 | int i; | ||
| 444 | int lsize = luaO_ceillog2(size); | ||
| 445 | if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE) | ||
| 446 | luaG_runerror(L, "table overflow"); | ||
| 447 | size = twoto(lsize); | ||
| 448 | t->node = luaM_newvector(L, size, Node); | ||
| 449 | for (i = 0; i < (int)size; i++) { | ||
| 450 | Node *n = gnode(t, i); | ||
| 451 | gnext(n) = 0; | ||
| 452 | setnilkey(n); | ||
| 453 | setempty(gval(n)); | ||
| 454 | } | ||
| 455 | t->lsizenode = cast_byte(lsize); | ||
| 456 | t->lastfree = gnode(t, size); /* all positions are free */ | ||
| 457 | } | ||
| 458 | } | ||
| 459 | |||
| 460 | |||
| 461 | /* | ||
| 462 | ** (Re)insert all elements from the hash part of 'ot' into table 't'. | ||
| 463 | */ | ||
| 464 | static void reinsert (lua_State *L, Table *ot, Table *t) { | ||
| 465 | int j; | ||
| 466 | int size = sizenode(ot); | ||
| 467 | for (j = 0; j < size; j++) { | ||
| 468 | Node *old = gnode(ot, j); | ||
| 469 | if (!isempty(gval(old))) { | ||
| 470 | /* doesn't need barrier/invalidate cache, as entry was | ||
| 471 | already present in the table */ | ||
| 472 | TValue k; | ||
| 473 | getnodekey(L, &k, old); | ||
| 474 | setobjt2t(L, luaH_set(L, t, &k), gval(old)); | ||
| 475 | } | ||
| 476 | } | ||
| 477 | } | ||
| 478 | |||
| 479 | |||
| 480 | /* | ||
| 481 | ** Exchange the hash part of 't1' and 't2'. | ||
| 482 | */ | ||
| 483 | static void exchangehashpart (Table *t1, Table *t2) { | ||
| 484 | lu_byte lsizenode = t1->lsizenode; | ||
| 485 | Node *node = t1->node; | ||
| 486 | Node *lastfree = t1->lastfree; | ||
| 487 | t1->lsizenode = t2->lsizenode; | ||
| 488 | t1->node = t2->node; | ||
| 489 | t1->lastfree = t2->lastfree; | ||
| 490 | t2->lsizenode = lsizenode; | ||
| 491 | t2->node = node; | ||
| 492 | t2->lastfree = lastfree; | ||
| 493 | } | ||
| 494 | |||
| 495 | |||
| 496 | /* | ||
| 497 | ** Resize table 't' for the new given sizes. Both allocations (for | ||
| 498 | ** the hash part and for the array part) can fail, which creates some | ||
| 499 | ** subtleties. If the first allocation, for the hash part, fails, an | ||
| 500 | ** error is raised and that is it. Otherwise, it copies the elements from | ||
| 501 | ** the shrinking part of the array (if it is shrinking) into the new | ||
| 502 | ** hash. Then it reallocates the array part. If that fails, the table | ||
| 503 | ** is in its original state; the function frees the new hash part and then | ||
| 504 | ** raises the allocation error. Otherwise, it sets the new hash part | ||
| 505 | ** into the table, initializes the new part of the array (if any) with | ||
| 506 | ** nils and reinserts the elements of the old hash back into the new | ||
| 507 | ** parts of the table. | ||
| 508 | */ | ||
| 509 | void luaH_resize (lua_State *L, Table *t, unsigned int newasize, | ||
| 510 | unsigned int nhsize) { | ||
| 511 | unsigned int i; | ||
| 512 | Table newt; /* to keep the new hash part */ | ||
| 513 | unsigned int oldasize = setlimittosize(t); | ||
| 514 | TValue *newarray; | ||
| 515 | /* create new hash part with appropriate size into 'newt' */ | ||
| 516 | setnodevector(L, &newt, nhsize); | ||
| 517 | if (newasize < oldasize) { /* will array shrink? */ | ||
| 518 | t->alimit = newasize; /* pretend array has new size... */ | ||
| 519 | exchangehashpart(t, &newt); /* and new hash */ | ||
| 520 | /* re-insert into the new hash the elements from vanishing slice */ | ||
| 521 | for (i = newasize; i < oldasize; i++) { | ||
| 522 | if (!isempty(&t->array[i])) | ||
| 523 | luaH_setint(L, t, i + 1, &t->array[i]); | ||
| 524 | } | ||
| 525 | t->alimit = oldasize; /* restore current size... */ | ||
| 526 | exchangehashpart(t, &newt); /* and hash (in case of errors) */ | ||
| 527 | } | ||
| 528 | /* allocate new array */ | ||
| 529 | newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue); | ||
| 530 | if (unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */ | ||
| 531 | freehash(L, &newt); /* release new hash part */ | ||
| 532 | luaM_error(L); /* raise error (with array unchanged) */ | ||
| 533 | } | ||
| 534 | /* allocation ok; initialize new part of the array */ | ||
| 535 | exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */ | ||
| 536 | t->array = newarray; /* set new array part */ | ||
| 537 | t->alimit = newasize; | ||
| 538 | for (i = oldasize; i < newasize; i++) /* clear new slice of the array */ | ||
| 539 | setempty(&t->array[i]); | ||
| 540 | /* re-insert elements from old hash part into new parts */ | ||
| 541 | reinsert(L, &newt, t); /* 'newt' now has the old hash */ | ||
| 542 | freehash(L, &newt); /* free old hash part */ | ||
| 543 | } | ||
| 544 | |||
| 545 | |||
| 546 | void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) { | ||
| 547 | int nsize = allocsizenode(t); | ||
| 548 | luaH_resize(L, t, nasize, nsize); | ||
| 549 | } | ||
| 550 | |||
| 551 | /* | ||
| 552 | ** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i | ||
| 553 | */ | ||
| 554 | static void rehash (lua_State *L, Table *t, const TValue *ek) { | ||
| 555 | unsigned int asize; /* optimal size for array part */ | ||
| 556 | unsigned int na; /* number of keys in the array part */ | ||
| 557 | unsigned int nums[MAXABITS + 1]; | ||
| 558 | int i; | ||
| 559 | int totaluse; | ||
| 560 | for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */ | ||
| 561 | setlimittosize(t); | ||
| 562 | na = numusearray(t, nums); /* count keys in array part */ | ||
| 563 | totaluse = na; /* all those keys are integer keys */ | ||
| 564 | totaluse += numusehash(t, nums, &na); /* count keys in hash part */ | ||
| 565 | /* count extra key */ | ||
| 566 | if (ttisinteger(ek)) | ||
| 567 | na += countint(ivalue(ek), nums); | ||
| 568 | totaluse++; | ||
| 569 | /* compute new size for array part */ | ||
| 570 | asize = computesizes(nums, &na); | ||
| 571 | /* resize the table to new computed sizes */ | ||
| 572 | luaH_resize(L, t, asize, totaluse - na); | ||
| 573 | } | ||
| 574 | |||
| 575 | |||
| 576 | |||
| 577 | /* | ||
| 578 | ** }============================================================= | ||
| 579 | */ | ||
| 580 | |||
| 581 | |||
| 582 | Table *luaH_new (lua_State *L) { | ||
| 583 | GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table)); | ||
| 584 | Table *t = gco2t(o); | ||
| 585 | t->metatable = NULL; | ||
| 586 | t->flags = cast_byte(~0); | ||
| 587 | t->array = NULL; | ||
| 588 | t->alimit = 0; | ||
| 589 | setnodevector(L, t, 0); | ||
| 590 | return t; | ||
| 591 | } | ||
| 592 | |||
| 593 | |||
| 594 | void luaH_free (lua_State *L, Table *t) { | ||
| 595 | freehash(L, t); | ||
| 596 | luaM_freearray(L, t->array, luaH_realasize(t)); | ||
| 597 | luaM_free(L, t); | ||
| 598 | } | ||
| 599 | |||
| 600 | |||
| 601 | static Node *getfreepos (Table *t) { | ||
| 602 | if (!isdummy(t)) { | ||
| 603 | while (t->lastfree > t->node) { | ||
| 604 | t->lastfree--; | ||
| 605 | if (keyisnil(t->lastfree)) | ||
| 606 | return t->lastfree; | ||
| 607 | } | ||
| 608 | } | ||
| 609 | return NULL; /* could not find a free place */ | ||
| 610 | } | ||
| 611 | |||
| 612 | |||
| 613 | |||
| 614 | /* | ||
| 615 | ** inserts a new key into a hash table; first, check whether key's main | ||
| 616 | ** position is free. If not, check whether colliding node is in its main | ||
| 617 | ** position or not: if it is not, move colliding node to an empty place and | ||
| 618 | ** put new key in its main position; otherwise (colliding node is in its main | ||
| 619 | ** position), new key goes to an empty position. | ||
| 620 | */ | ||
| 621 | TValue *luaH_newkey (lua_State *L, Table *t, const TValue *key) { | ||
| 622 | Node *mp; | ||
| 623 | TValue aux; | ||
| 624 | if (unlikely(ttisnil(key))) | ||
| 625 | luaG_runerror(L, "table index is nil"); | ||
| 626 | else if (ttisfloat(key)) { | ||
| 627 | lua_Number f = fltvalue(key); | ||
| 628 | lua_Integer k; | ||
| 629 | if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */ | ||
| 630 | setivalue(&aux, k); | ||
| 631 | key = &aux; /* insert it as an integer */ | ||
| 632 | } | ||
| 633 | else if (unlikely(luai_numisnan(f))) | ||
| 634 | luaG_runerror(L, "table index is NaN"); | ||
| 635 | } | ||
| 636 | mp = mainpositionTV(t, key); | ||
| 637 | if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */ | ||
| 638 | Node *othern; | ||
| 639 | Node *f = getfreepos(t); /* get a free place */ | ||
| 640 | if (f == NULL) { /* cannot find a free place? */ | ||
| 641 | rehash(L, t, key); /* grow table */ | ||
| 642 | /* whatever called 'newkey' takes care of TM cache */ | ||
| 643 | return luaH_set(L, t, key); /* insert key into grown table */ | ||
| 644 | } | ||
| 645 | lua_assert(!isdummy(t)); | ||
| 646 | othern = mainposition(t, keytt(mp), &keyval(mp)); | ||
| 647 | if (othern != mp) { /* is colliding node out of its main position? */ | ||
| 648 | /* yes; move colliding node into free position */ | ||
| 649 | while (othern + gnext(othern) != mp) /* find previous */ | ||
| 650 | othern += gnext(othern); | ||
| 651 | gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */ | ||
| 652 | *f = *mp; /* copy colliding node into free pos. (mp->next also goes) */ | ||
| 653 | if (gnext(mp) != 0) { | ||
| 654 | gnext(f) += cast_int(mp - f); /* correct 'next' */ | ||
| 655 | gnext(mp) = 0; /* now 'mp' is free */ | ||
| 656 | } | ||
| 657 | setempty(gval(mp)); | ||
| 658 | } | ||
| 659 | else { /* colliding node is in its own main position */ | ||
| 660 | /* new node will go into free position */ | ||
| 661 | if (gnext(mp) != 0) | ||
| 662 | gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */ | ||
| 663 | else lua_assert(gnext(f) == 0); | ||
| 664 | gnext(mp) = cast_int(f - mp); | ||
| 665 | mp = f; | ||
| 666 | } | ||
| 667 | } | ||
| 668 | setnodekey(L, mp, key); | ||
| 669 | luaC_barrierback(L, obj2gco(t), key); | ||
| 670 | lua_assert(isempty(gval(mp))); | ||
| 671 | return gval(mp); | ||
| 672 | } | ||
| 673 | |||
| 674 | |||
| 675 | /* | ||
| 676 | ** Search function for integers. If integer is inside 'alimit', get it | ||
| 677 | ** directly from the array part. Otherwise, if 'alimit' is not equal to | ||
| 678 | ** the real size of the array, key still can be in the array part. In | ||
| 679 | ** this case, try to avoid a call to 'luaH_realasize' when key is just | ||
| 680 | ** one more than the limit (so that it can be incremented without | ||
| 681 | ** changing the real size of the array). | ||
| 682 | */ | ||
| 683 | const TValue *luaH_getint (Table *t, lua_Integer key) { | ||
| 684 | if (l_castS2U(key) - 1u < t->alimit) /* 'key' in [1, t->alimit]? */ | ||
| 685 | return &t->array[key - 1]; | ||
| 686 | else if (!limitequalsasize(t) && /* key still may be in the array part? */ | ||
| 687 | (l_castS2U(key) == t->alimit + 1 || | ||
| 688 | l_castS2U(key) - 1u < luaH_realasize(t))) { | ||
| 689 | t->alimit = cast_uint(key); /* probably '#t' is here now */ | ||
| 690 | return &t->array[key - 1]; | ||
| 691 | } | ||
| 692 | else { | ||
| 693 | Node *n = hashint(t, key); | ||
| 694 | for (;;) { /* check whether 'key' is somewhere in the chain */ | ||
| 695 | if (keyisinteger(n) && keyival(n) == key) | ||
| 696 | return gval(n); /* that's it */ | ||
| 697 | else { | ||
| 698 | int nx = gnext(n); | ||
| 699 | if (nx == 0) break; | ||
| 700 | n += nx; | ||
| 701 | } | ||
| 702 | } | ||
| 703 | return &absentkey; | ||
| 704 | } | ||
| 705 | } | ||
| 706 | |||
| 707 | |||
| 708 | /* | ||
| 709 | ** search function for short strings | ||
| 710 | */ | ||
| 711 | const TValue *luaH_getshortstr (Table *t, TString *key) { | ||
| 712 | Node *n = hashstr(t, key); | ||
| 713 | lua_assert(key->tt == LUA_VSHRSTR); | ||
| 714 | for (;;) { /* check whether 'key' is somewhere in the chain */ | ||
| 715 | if (keyisshrstr(n) && eqshrstr(keystrval(n), key)) | ||
| 716 | return gval(n); /* that's it */ | ||
| 717 | else { | ||
| 718 | int nx = gnext(n); | ||
| 719 | if (nx == 0) | ||
| 720 | return &absentkey; /* not found */ | ||
| 721 | n += nx; | ||
| 722 | } | ||
| 723 | } | ||
| 724 | } | ||
| 725 | |||
| 726 | |||
| 727 | const TValue *luaH_getstr (Table *t, TString *key) { | ||
| 728 | if (key->tt == LUA_VSHRSTR) | ||
| 729 | return luaH_getshortstr(t, key); | ||
| 730 | else { /* for long strings, use generic case */ | ||
| 731 | TValue ko; | ||
| 732 | setsvalue(cast(lua_State *, NULL), &ko, key); | ||
| 733 | return getgeneric(t, &ko); | ||
| 734 | } | ||
| 735 | } | ||
| 736 | |||
| 737 | |||
| 738 | /* | ||
| 739 | ** main search function | ||
| 740 | */ | ||
| 741 | const TValue *luaH_get (Table *t, const TValue *key) { | ||
| 742 | switch (ttypetag(key)) { | ||
| 743 | case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key)); | ||
| 744 | case LUA_VNUMINT: return luaH_getint(t, ivalue(key)); | ||
| 745 | case LUA_VNIL: return &absentkey; | ||
| 746 | case LUA_VNUMFLT: { | ||
| 747 | lua_Integer k; | ||
| 748 | if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ | ||
| 749 | return luaH_getint(t, k); /* use specialized version */ | ||
| 750 | /* else... */ | ||
| 751 | } /* FALLTHROUGH */ | ||
| 752 | default: | ||
| 753 | return getgeneric(t, key); | ||
| 754 | } | ||
| 755 | } | ||
| 756 | |||
| 757 | |||
| 758 | /* | ||
| 759 | ** beware: when using this function you probably need to check a GC | ||
| 760 | ** barrier and invalidate the TM cache. | ||
| 761 | */ | ||
| 762 | TValue *luaH_set (lua_State *L, Table *t, const TValue *key) { | ||
| 763 | const TValue *p = luaH_get(t, key); | ||
| 764 | if (!isabstkey(p)) | ||
| 765 | return cast(TValue *, p); | ||
| 766 | else return luaH_newkey(L, t, key); | ||
| 767 | } | ||
| 768 | |||
| 769 | |||
| 770 | void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) { | ||
| 771 | const TValue *p = luaH_getint(t, key); | ||
| 772 | TValue *cell; | ||
| 773 | if (!isabstkey(p)) | ||
| 774 | cell = cast(TValue *, p); | ||
| 775 | else { | ||
| 776 | TValue k; | ||
| 777 | setivalue(&k, key); | ||
| 778 | cell = luaH_newkey(L, t, &k); | ||
| 779 | } | ||
| 780 | setobj2t(L, cell, value); | ||
| 781 | } | ||
| 782 | |||
| 783 | |||
| 784 | /* | ||
| 785 | ** Try to find a boundary in the hash part of table 't'. From the | ||
| 786 | ** caller, we know that 'j' is zero or present and that 'j + 1' is | ||
| 787 | ** present. We want to find a larger key that is absent from the | ||
| 788 | ** table, so that we can do a binary search between the two keys to | ||
| 789 | ** find a boundary. We keep doubling 'j' until we get an absent index. | ||
| 790 | ** If the doubling would overflow, we try LUA_MAXINTEGER. If it is | ||
| 791 | ** absent, we are ready for the binary search. ('j', being max integer, | ||
| 792 | ** is larger or equal to 'i', but it cannot be equal because it is | ||
| 793 | ** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a | ||
| 794 | ** boundary. ('j + 1' cannot be a present integer key because it is | ||
| 795 | ** not a valid integer in Lua.) | ||
| 796 | */ | ||
| 797 | static lua_Unsigned hash_search (Table *t, lua_Unsigned j) { | ||
| 798 | lua_Unsigned i; | ||
| 799 | if (j == 0) j++; /* the caller ensures 'j + 1' is present */ | ||
| 800 | do { | ||
| 801 | i = j; /* 'i' is a present index */ | ||
| 802 | if (j <= l_castS2U(LUA_MAXINTEGER) / 2) | ||
| 803 | j *= 2; | ||
| 804 | else { | ||
| 805 | j = LUA_MAXINTEGER; | ||
| 806 | if (isempty(luaH_getint(t, j))) /* t[j] not present? */ | ||
| 807 | break; /* 'j' now is an absent index */ | ||
| 808 | else /* weird case */ | ||
| 809 | return j; /* well, max integer is a boundary... */ | ||
| 810 | } | ||
| 811 | } while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */ | ||
| 812 | /* i < j && t[i] present && t[j] absent */ | ||
| 813 | while (j - i > 1u) { /* do a binary search between them */ | ||
| 814 | lua_Unsigned m = (i + j) / 2; | ||
| 815 | if (isempty(luaH_getint(t, m))) j = m; | ||
| 816 | else i = m; | ||
| 817 | } | ||
| 818 | return i; | ||
| 819 | } | ||
| 820 | |||
| 821 | |||
| 822 | static unsigned int binsearch (const TValue *array, unsigned int i, | ||
| 823 | unsigned int j) { | ||
| 824 | while (j - i > 1u) { /* binary search */ | ||
| 825 | unsigned int m = (i + j) / 2; | ||
| 826 | if (isempty(&array[m - 1])) j = m; | ||
| 827 | else i = m; | ||
| 828 | } | ||
| 829 | return i; | ||
| 830 | } | ||
| 831 | |||
| 832 | |||
| 833 | /* | ||
| 834 | ** Try to find a boundary in table 't'. (A 'boundary' is an integer index | ||
| 835 | ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent | ||
| 836 | ** and 'maxinteger' if t[maxinteger] is present.) | ||
| 837 | ** (In the next explanation, we use Lua indices, that is, with base 1. | ||
| 838 | ** The code itself uses base 0 when indexing the array part of the table.) | ||
| 839 | ** The code starts with 'limit = t->alimit', a position in the array | ||
| 840 | ** part that may be a boundary. | ||
| 841 | ** | ||
| 842 | ** (1) If 't[limit]' is empty, there must be a boundary before it. | ||
| 843 | ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1' | ||
| 844 | ** is present. If so, it is a boundary. Otherwise, do a binary search | ||
| 845 | ** between 0 and limit to find a boundary. In both cases, try to | ||
| 846 | ** use this boundary as the new 'alimit', as a hint for the next call. | ||
| 847 | ** | ||
| 848 | ** (2) If 't[limit]' is not empty and the array has more elements | ||
| 849 | ** after 'limit', try to find a boundary there. Again, try first | ||
| 850 | ** the special case (which should be quite frequent) where 'limit+1' | ||
| 851 | ** is empty, so that 'limit' is a boundary. Otherwise, check the | ||
| 852 | ** last element of the array part. If it is empty, there must be a | ||
| 853 | ** boundary between the old limit (present) and the last element | ||
| 854 | ** (absent), which is found with a binary search. (This boundary always | ||
| 855 | ** can be a new limit.) | ||
| 856 | ** | ||
| 857 | ** (3) The last case is when there are no elements in the array part | ||
| 858 | ** (limit == 0) or its last element (the new limit) is present. | ||
| 859 | ** In this case, must check the hash part. If there is no hash part | ||
| 860 | ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call | ||
| 861 | ** 'hash_search' to find a boundary in the hash part of the table. | ||
| 862 | ** (In those cases, the boundary is not inside the array part, and | ||
| 863 | ** therefore cannot be used as a new limit.) | ||
| 864 | */ | ||
| 865 | lua_Unsigned luaH_getn (Table *t) { | ||
| 866 | unsigned int limit = t->alimit; | ||
| 867 | if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */ | ||
| 868 | /* there must be a boundary before 'limit' */ | ||
| 869 | if (limit >= 2 && !isempty(&t->array[limit - 2])) { | ||
| 870 | /* 'limit - 1' is a boundary; can it be a new limit? */ | ||
| 871 | if (ispow2realasize(t) && !ispow2(limit - 1)) { | ||
| 872 | t->alimit = limit - 1; | ||
| 873 | setnorealasize(t); /* now 'alimit' is not the real size */ | ||
| 874 | } | ||
| 875 | return limit - 1; | ||
| 876 | } | ||
| 877 | else { /* must search for a boundary in [0, limit] */ | ||
| 878 | unsigned int boundary = binsearch(t->array, 0, limit); | ||
| 879 | /* can this boundary represent the real size of the array? */ | ||
| 880 | if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) { | ||
| 881 | t->alimit = boundary; /* use it as the new limit */ | ||
| 882 | setnorealasize(t); | ||
| 883 | } | ||
| 884 | return boundary; | ||
| 885 | } | ||
| 886 | } | ||
| 887 | /* 'limit' is zero or present in table */ | ||
| 888 | if (!limitequalsasize(t)) { /* (2)? */ | ||
| 889 | /* 'limit' > 0 and array has more elements after 'limit' */ | ||
| 890 | if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */ | ||
| 891 | return limit; /* this is the boundary */ | ||
| 892 | /* else, try last element in the array */ | ||
| 893 | limit = luaH_realasize(t); | ||
| 894 | if (isempty(&t->array[limit - 1])) { /* empty? */ | ||
| 895 | /* there must be a boundary in the array after old limit, | ||
| 896 | and it must be a valid new limit */ | ||
| 897 | unsigned int boundary = binsearch(t->array, t->alimit, limit); | ||
| 898 | t->alimit = boundary; | ||
| 899 | return boundary; | ||
| 900 | } | ||
| 901 | /* else, new limit is present in the table; check the hash part */ | ||
| 902 | } | ||
| 903 | /* (3) 'limit' is the last element and either is zero or present in table */ | ||
| 904 | lua_assert(limit == luaH_realasize(t) && | ||
| 905 | (limit == 0 || !isempty(&t->array[limit - 1]))); | ||
| 906 | if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1)))) | ||
| 907 | return limit; /* 'limit + 1' is absent */ | ||
| 908 | else /* 'limit + 1' is also present */ | ||
| 909 | return hash_search(t, limit); | ||
| 910 | } | ||
| 911 | |||
| 912 | |||
| 913 | |||
| 914 | #if defined(LUA_DEBUG) | ||
| 915 | |||
| 916 | /* export these functions for the test library */ | ||
| 917 | |||
| 918 | Node *luaH_mainposition (const Table *t, const TValue *key) { | ||
| 919 | return mainpositionTV(t, key); | ||
| 920 | } | ||
| 921 | |||
| 922 | int luaH_isdummy (const Table *t) { return isdummy(t); } | ||
| 923 | |||
| 924 | #endif | ||
