diff options
Diffstat (limited to '')
| -rw-r--r-- | trees.c | 1048 |
1 files changed, 1048 insertions, 0 deletions
| @@ -0,0 +1,1048 @@ | |||
| 1 | /* trees.c -- output deflated data using Huffman coding | ||
| 2 | * Copyright (C) 1995 Jean-loup Gailly | ||
| 3 | * For conditions of distribution and use, see copyright notice in zlib.h | ||
| 4 | */ | ||
| 5 | |||
| 6 | /* | ||
| 7 | * ALGORITHM | ||
| 8 | * | ||
| 9 | * The "deflation" process uses several Huffman trees. The more | ||
| 10 | * common source values are represented by shorter bit sequences. | ||
| 11 | * | ||
| 12 | * Each code tree is stored in a compressed form which is itself | ||
| 13 | * a Huffman encoding of the lengths of all the code strings (in | ||
| 14 | * ascending order by source values). The actual code strings are | ||
| 15 | * reconstructed from the lengths in the inflate process, as described | ||
| 16 | * in the deflate specification. | ||
| 17 | * | ||
| 18 | * REFERENCES | ||
| 19 | * | ||
| 20 | * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". | ||
| 21 | * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc | ||
| 22 | * | ||
| 23 | * Storer, James A. | ||
| 24 | * Data Compression: Methods and Theory, pp. 49-50. | ||
| 25 | * Computer Science Press, 1988. ISBN 0-7167-8156-5. | ||
| 26 | * | ||
| 27 | * Sedgewick, R. | ||
| 28 | * Algorithms, p290. | ||
| 29 | * Addison-Wesley, 1983. ISBN 0-201-06672-6. | ||
| 30 | */ | ||
| 31 | |||
| 32 | /* $Id: trees.c,v 1.2 1995/04/10 16:21:44 jloup Exp $ */ | ||
| 33 | |||
| 34 | #include "deflate.h" | ||
| 35 | |||
| 36 | #ifdef DEBUG | ||
| 37 | # include <ctype.h> | ||
| 38 | #endif | ||
| 39 | |||
| 40 | /* =========================================================================== | ||
| 41 | * Constants | ||
| 42 | */ | ||
| 43 | |||
| 44 | #define MAX_BL_BITS 7 | ||
| 45 | /* Bit length codes must not exceed MAX_BL_BITS bits */ | ||
| 46 | |||
| 47 | #define END_BLOCK 256 | ||
| 48 | /* end of block literal code */ | ||
| 49 | |||
| 50 | #define REP_3_6 16 | ||
| 51 | /* repeat previous bit length 3-6 times (2 bits of repeat count) */ | ||
| 52 | |||
| 53 | #define REPZ_3_10 17 | ||
| 54 | /* repeat a zero length 3-10 times (3 bits of repeat count) */ | ||
| 55 | |||
| 56 | #define REPZ_11_138 18 | ||
| 57 | /* repeat a zero length 11-138 times (7 bits of repeat count) */ | ||
| 58 | |||
| 59 | local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ | ||
| 60 | = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; | ||
| 61 | |||
| 62 | local int extra_dbits[D_CODES] /* extra bits for each distance code */ | ||
| 63 | = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; | ||
| 64 | |||
| 65 | local int extra_blbits[BL_CODES]/* extra bits for each bit length code */ | ||
| 66 | = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; | ||
| 67 | |||
| 68 | local uch bl_order[BL_CODES] | ||
| 69 | = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; | ||
| 70 | /* The lengths of the bit length codes are sent in order of decreasing | ||
| 71 | * probability, to avoid transmitting the lengths for unused bit length codes. | ||
| 72 | */ | ||
| 73 | |||
| 74 | #define Buf_size (8 * 2*sizeof(char)) | ||
| 75 | /* Number of bits used within bi_buf. (bi_buf might be implemented on | ||
| 76 | * more than 16 bits on some systems.) | ||
| 77 | */ | ||
| 78 | |||
| 79 | /* =========================================================================== | ||
| 80 | * Local data. These are initialized only once. | ||
| 81 | * To do: initialize at compile time to be completely reentrant. ??? | ||
| 82 | */ | ||
| 83 | |||
| 84 | local ct_data static_ltree[L_CODES+2]; | ||
| 85 | /* The static literal tree. Since the bit lengths are imposed, there is no | ||
| 86 | * need for the L_CODES extra codes used during heap construction. However | ||
| 87 | * The codes 286 and 287 are needed to build a canonical tree (see ct_init | ||
| 88 | * below). | ||
| 89 | */ | ||
| 90 | |||
| 91 | local ct_data static_dtree[D_CODES]; | ||
| 92 | /* The static distance tree. (Actually a trivial tree since all codes use | ||
| 93 | * 5 bits.) | ||
| 94 | */ | ||
| 95 | |||
| 96 | local uch dist_code[512]; | ||
| 97 | /* distance codes. The first 256 values correspond to the distances | ||
| 98 | * 3 .. 258, the last 256 values correspond to the top 8 bits of | ||
| 99 | * the 15 bit distances. | ||
| 100 | */ | ||
| 101 | |||
| 102 | local uch length_code[MAX_MATCH-MIN_MATCH+1]; | ||
| 103 | /* length code for each normalized match length (0 == MIN_MATCH) */ | ||
| 104 | |||
| 105 | local int base_length[LENGTH_CODES]; | ||
| 106 | /* First normalized length for each code (0 = MIN_MATCH) */ | ||
| 107 | |||
| 108 | local int base_dist[D_CODES]; | ||
| 109 | /* First normalized distance for each code (0 = distance of 1) */ | ||
| 110 | |||
| 111 | struct static_tree_desc_s { | ||
| 112 | ct_data *static_tree; /* static tree or NULL */ | ||
| 113 | int *extra_bits; /* extra bits for each code or NULL */ | ||
| 114 | int extra_base; /* base index for extra_bits */ | ||
| 115 | int elems; /* max number of elements in the tree */ | ||
| 116 | int max_length; /* max bit length for the codes */ | ||
| 117 | }; | ||
| 118 | |||
| 119 | local static_tree_desc static_l_desc = | ||
| 120 | {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; | ||
| 121 | |||
| 122 | local static_tree_desc static_d_desc = | ||
| 123 | {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; | ||
| 124 | |||
| 125 | local static_tree_desc static_bl_desc = | ||
| 126 | {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; | ||
| 127 | |||
| 128 | /* =========================================================================== | ||
| 129 | * Local (static) routines in this file. | ||
| 130 | */ | ||
| 131 | |||
| 132 | local void ct_static_init __P((void)); | ||
| 133 | local void init_block __P((deflate_state *s)); | ||
| 134 | local void pqdownheap __P((deflate_state *s, ct_data *tree, int k)); | ||
| 135 | local void gen_bitlen __P((deflate_state *s, tree_desc *desc)); | ||
| 136 | local void gen_codes __P((ct_data *tree, int max_code, ush bl_count[])); | ||
| 137 | local void build_tree __P((deflate_state *s, tree_desc *desc)); | ||
| 138 | local void scan_tree __P((deflate_state *s, ct_data *tree, int max_code)); | ||
| 139 | local void send_tree __P((deflate_state *s, ct_data *tree, int max_code)); | ||
| 140 | local int build_bl_tree __P((deflate_state *s)); | ||
| 141 | local void send_all_trees __P((deflate_state *s, int lcodes, int dcodes, | ||
| 142 | int blcodes)); | ||
| 143 | local void compress_block __P((deflate_state *s, ct_data *ltree, | ||
| 144 | ct_data *dtree)); | ||
| 145 | local void set_data_type __P((deflate_state *s)); | ||
| 146 | local void send_bits __P((deflate_state *s, int value, int length)); | ||
| 147 | local unsigned bi_reverse __P((unsigned value, int length)); | ||
| 148 | local void bi_windup __P((deflate_state *s)); | ||
| 149 | local void copy_block __P((deflate_state *s, char *buf, unsigned len, | ||
| 150 | int header)); | ||
| 151 | |||
| 152 | #ifndef DEBUG | ||
| 153 | # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) | ||
| 154 | /* Send a code of the given tree. c and tree must not have side effects */ | ||
| 155 | |||
| 156 | #else /* DEBUG */ | ||
| 157 | # define send_code(s, c, tree) \ | ||
| 158 | { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \ | ||
| 159 | send_bits(s, tree[c].Code, tree[c].Len); } | ||
| 160 | #endif | ||
| 161 | |||
| 162 | #define d_code(dist) \ | ||
| 163 | ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)]) | ||
| 164 | /* Mapping from a distance to a distance code. dist is the distance - 1 and | ||
| 165 | * must not have side effects. dist_code[256] and dist_code[257] are never | ||
| 166 | * used. | ||
| 167 | */ | ||
| 168 | |||
| 169 | #define MAX(a,b) (a >= b ? a : b) | ||
| 170 | /* the arguments must not have side effects */ | ||
| 171 | |||
| 172 | /* =========================================================================== | ||
| 173 | * Initialize the various 'constant' tables. | ||
| 174 | * To do: do this at compile time. | ||
| 175 | */ | ||
| 176 | local void ct_static_init() | ||
| 177 | { | ||
| 178 | int n; /* iterates over tree elements */ | ||
| 179 | int bits; /* bit counter */ | ||
| 180 | int length; /* length value */ | ||
| 181 | int code; /* code value */ | ||
| 182 | int dist; /* distance index */ | ||
| 183 | ush bl_count[MAX_BITS+1]; | ||
| 184 | /* number of codes at each bit length for an optimal tree */ | ||
| 185 | |||
| 186 | /* Initialize the mapping length (0..255) -> length code (0..28) */ | ||
| 187 | length = 0; | ||
| 188 | for (code = 0; code < LENGTH_CODES-1; code++) { | ||
| 189 | base_length[code] = length; | ||
| 190 | for (n = 0; n < (1<<extra_lbits[code]); n++) { | ||
| 191 | length_code[length++] = (uch)code; | ||
| 192 | } | ||
| 193 | } | ||
| 194 | Assert (length == 256, "ct_static_init: length != 256"); | ||
| 195 | /* Note that the length 255 (match length 258) can be represented | ||
| 196 | * in two different ways: code 284 + 5 bits or code 285, so we | ||
| 197 | * overwrite length_code[255] to use the best encoding: | ||
| 198 | */ | ||
| 199 | length_code[length-1] = (uch)code; | ||
| 200 | |||
| 201 | /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | ||
| 202 | dist = 0; | ||
| 203 | for (code = 0 ; code < 16; code++) { | ||
| 204 | base_dist[code] = dist; | ||
| 205 | for (n = 0; n < (1<<extra_dbits[code]); n++) { | ||
| 206 | dist_code[dist++] = (uch)code; | ||
| 207 | } | ||
| 208 | } | ||
| 209 | Assert (dist == 256, "ct_static_init: dist != 256"); | ||
| 210 | dist >>= 7; /* from now on, all distances are divided by 128 */ | ||
| 211 | for ( ; code < D_CODES; code++) { | ||
| 212 | base_dist[code] = dist << 7; | ||
| 213 | for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { | ||
| 214 | dist_code[256 + dist++] = (uch)code; | ||
| 215 | } | ||
| 216 | } | ||
| 217 | Assert (dist == 256, "ct_static_init: 256+dist != 512"); | ||
| 218 | |||
| 219 | /* Construct the codes of the static literal tree */ | ||
| 220 | for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; | ||
| 221 | n = 0; | ||
| 222 | while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; | ||
| 223 | while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; | ||
| 224 | while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; | ||
| 225 | while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; | ||
| 226 | /* Codes 286 and 287 do not exist, but we must include them in the | ||
| 227 | * tree construction to get a canonical Huffman tree (longest code | ||
| 228 | * all ones) | ||
| 229 | */ | ||
| 230 | gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); | ||
| 231 | |||
| 232 | /* The static distance tree is trivial: */ | ||
| 233 | for (n = 0; n < D_CODES; n++) { | ||
| 234 | static_dtree[n].Len = 5; | ||
| 235 | static_dtree[n].Code = bi_reverse(n, 5); | ||
| 236 | } | ||
| 237 | } | ||
| 238 | |||
| 239 | /* =========================================================================== | ||
| 240 | * Initialize the tree data structures for a new zlib stream. | ||
| 241 | */ | ||
| 242 | void ct_init(s) | ||
| 243 | deflate_state *s; | ||
| 244 | { | ||
| 245 | if (static_dtree[0].Len == 0) { | ||
| 246 | ct_static_init(); /* To do: at compile time */ | ||
| 247 | } | ||
| 248 | |||
| 249 | s->compressed_len = 0L; | ||
| 250 | |||
| 251 | s->l_desc.dyn_tree = s->dyn_ltree; | ||
| 252 | s->l_desc.stat_desc = &static_l_desc; | ||
| 253 | |||
| 254 | s->d_desc.dyn_tree = s->dyn_dtree; | ||
| 255 | s->d_desc.stat_desc = &static_d_desc; | ||
| 256 | |||
| 257 | s->bl_desc.dyn_tree = s->bl_tree; | ||
| 258 | s->bl_desc.stat_desc = &static_bl_desc; | ||
| 259 | |||
| 260 | s->bi_buf = 0; | ||
| 261 | s->bi_valid = 0; | ||
| 262 | #ifdef DEBUG | ||
| 263 | s->bits_sent = 0L; | ||
| 264 | #endif | ||
| 265 | |||
| 266 | /* Initialize the first block of the first file: */ | ||
| 267 | init_block(s); | ||
| 268 | } | ||
| 269 | |||
| 270 | /* =========================================================================== | ||
| 271 | * Initialize a new block. | ||
| 272 | */ | ||
| 273 | local void init_block(s) | ||
| 274 | deflate_state *s; | ||
| 275 | { | ||
| 276 | int n; /* iterates over tree elements */ | ||
| 277 | |||
| 278 | /* Initialize the trees. */ | ||
| 279 | for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; | ||
| 280 | for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; | ||
| 281 | for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; | ||
| 282 | |||
| 283 | s->dyn_ltree[END_BLOCK].Freq = 1; | ||
| 284 | s->opt_len = s->static_len = 0L; | ||
| 285 | s->last_lit = s->matches = 0; | ||
| 286 | } | ||
| 287 | |||
| 288 | #define SMALLEST 1 | ||
| 289 | /* Index within the heap array of least frequent node in the Huffman tree */ | ||
| 290 | |||
| 291 | |||
| 292 | /* =========================================================================== | ||
| 293 | * Remove the smallest element from the heap and recreate the heap with | ||
| 294 | * one less element. Updates heap and heap_len. | ||
| 295 | */ | ||
| 296 | #define pqremove(s, tree, top) \ | ||
| 297 | {\ | ||
| 298 | top = s->heap[SMALLEST]; \ | ||
| 299 | s->heap[SMALLEST] = s->heap[s->heap_len--]; \ | ||
| 300 | pqdownheap(s, tree, SMALLEST); \ | ||
| 301 | } | ||
| 302 | |||
| 303 | /* =========================================================================== | ||
| 304 | * Compares to subtrees, using the tree depth as tie breaker when | ||
| 305 | * the subtrees have equal frequency. This minimizes the worst case length. | ||
| 306 | */ | ||
| 307 | #define smaller(tree, n, m, depth) \ | ||
| 308 | (tree[n].Freq < tree[m].Freq || \ | ||
| 309 | (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) | ||
| 310 | |||
| 311 | /* =========================================================================== | ||
| 312 | * Restore the heap property by moving down the tree starting at node k, | ||
| 313 | * exchanging a node with the smallest of its two sons if necessary, stopping | ||
| 314 | * when the heap property is re-established (each father smaller than its | ||
| 315 | * two sons). | ||
| 316 | */ | ||
| 317 | local void pqdownheap(s, tree, k) | ||
| 318 | deflate_state *s; | ||
| 319 | ct_data *tree; /* the tree to restore */ | ||
| 320 | int k; /* node to move down */ | ||
| 321 | { | ||
| 322 | int v = s->heap[k]; | ||
| 323 | int j = k << 1; /* left son of k */ | ||
| 324 | while (j <= s->heap_len) { | ||
| 325 | /* Set j to the smallest of the two sons: */ | ||
| 326 | if (j < s->heap_len && | ||
| 327 | smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { | ||
| 328 | j++; | ||
| 329 | } | ||
| 330 | /* Exit if v is smaller than both sons */ | ||
| 331 | if (smaller(tree, v, s->heap[j], s->depth)) break; | ||
| 332 | |||
| 333 | /* Exchange v with the smallest son */ | ||
| 334 | s->heap[k] = s->heap[j]; k = j; | ||
| 335 | |||
| 336 | /* And continue down the tree, setting j to the left son of k */ | ||
| 337 | j <<= 1; | ||
| 338 | } | ||
| 339 | s->heap[k] = v; | ||
| 340 | } | ||
| 341 | |||
| 342 | /* =========================================================================== | ||
| 343 | * Compute the optimal bit lengths for a tree and update the total bit length | ||
| 344 | * for the current block. | ||
| 345 | * IN assertion: the fields freq and dad are set, heap[heap_max] and | ||
| 346 | * above are the tree nodes sorted by increasing frequency. | ||
| 347 | * OUT assertions: the field len is set to the optimal bit length, the | ||
| 348 | * array bl_count contains the frequencies for each bit length. | ||
| 349 | * The length opt_len is updated; static_len is also updated if stree is | ||
| 350 | * not null. | ||
| 351 | */ | ||
| 352 | local void gen_bitlen(s, desc) | ||
| 353 | deflate_state *s; | ||
| 354 | tree_desc *desc; /* the tree descriptor */ | ||
| 355 | { | ||
| 356 | ct_data *tree = desc->dyn_tree; | ||
| 357 | int max_code = desc->max_code; | ||
| 358 | ct_data *stree = desc->stat_desc->static_tree; | ||
| 359 | int *extra = desc->stat_desc->extra_bits; | ||
| 360 | int base = desc->stat_desc->extra_base; | ||
| 361 | int max_length = desc->stat_desc->max_length; | ||
| 362 | int h; /* heap index */ | ||
| 363 | int n, m; /* iterate over the tree elements */ | ||
| 364 | int bits; /* bit length */ | ||
| 365 | int xbits; /* extra bits */ | ||
| 366 | ush f; /* frequency */ | ||
| 367 | int overflow = 0; /* number of elements with bit length too large */ | ||
| 368 | |||
| 369 | for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; | ||
| 370 | |||
| 371 | /* In a first pass, compute the optimal bit lengths (which may | ||
| 372 | * overflow in the case of the bit length tree). | ||
| 373 | */ | ||
| 374 | tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ | ||
| 375 | |||
| 376 | for (h = s->heap_max+1; h < HEAP_SIZE; h++) { | ||
| 377 | n = s->heap[h]; | ||
| 378 | bits = tree[tree[n].Dad].Len + 1; | ||
| 379 | if (bits > max_length) bits = max_length, overflow++; | ||
| 380 | tree[n].Len = (ush)bits; | ||
| 381 | /* We overwrite tree[n].Dad which is no longer needed */ | ||
| 382 | |||
| 383 | if (n > max_code) continue; /* not a leaf node */ | ||
| 384 | |||
| 385 | s->bl_count[bits]++; | ||
| 386 | xbits = 0; | ||
| 387 | if (n >= base) xbits = extra[n-base]; | ||
| 388 | f = tree[n].Freq; | ||
| 389 | s->opt_len += (ulg)f * (bits + xbits); | ||
| 390 | if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); | ||
| 391 | } | ||
| 392 | if (overflow == 0) return; | ||
| 393 | |||
| 394 | Trace((stderr,"\nbit length overflow\n")); | ||
| 395 | /* This happens for example on obj2 and pic of the Calgary corpus */ | ||
| 396 | |||
| 397 | /* Find the first bit length which could increase: */ | ||
| 398 | do { | ||
| 399 | bits = max_length-1; | ||
| 400 | while (s->bl_count[bits] == 0) bits--; | ||
| 401 | s->bl_count[bits]--; /* move one leaf down the tree */ | ||
| 402 | s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ | ||
| 403 | s->bl_count[max_length]--; | ||
| 404 | /* The brother of the overflow item also moves one step up, | ||
| 405 | * but this does not affect bl_count[max_length] | ||
| 406 | */ | ||
| 407 | overflow -= 2; | ||
| 408 | } while (overflow > 0); | ||
| 409 | |||
| 410 | /* Now recompute all bit lengths, scanning in increasing frequency. | ||
| 411 | * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | ||
| 412 | * lengths instead of fixing only the wrong ones. This idea is taken | ||
| 413 | * from 'ar' written by Haruhiko Okumura.) | ||
| 414 | */ | ||
| 415 | for (bits = max_length; bits != 0; bits--) { | ||
| 416 | n = s->bl_count[bits]; | ||
| 417 | while (n != 0) { | ||
| 418 | m = s->heap[--h]; | ||
| 419 | if (m > max_code) continue; | ||
| 420 | if (tree[m].Len != (unsigned) bits) { | ||
| 421 | Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); | ||
| 422 | s->opt_len += ((long)bits - (long)tree[m].Len) | ||
| 423 | *(long)tree[m].Freq; | ||
| 424 | tree[m].Len = (ush)bits; | ||
| 425 | } | ||
| 426 | n--; | ||
| 427 | } | ||
| 428 | } | ||
| 429 | } | ||
| 430 | |||
| 431 | /* =========================================================================== | ||
| 432 | * Generate the codes for a given tree and bit counts (which need not be | ||
| 433 | * optimal). | ||
| 434 | * IN assertion: the array bl_count contains the bit length statistics for | ||
| 435 | * the given tree and the field len is set for all tree elements. | ||
| 436 | * OUT assertion: the field code is set for all tree elements of non | ||
| 437 | * zero code length. | ||
| 438 | */ | ||
| 439 | local void gen_codes (tree, max_code, bl_count) | ||
| 440 | ct_data *tree; /* the tree to decorate */ | ||
| 441 | int max_code; /* largest code with non zero frequency */ | ||
| 442 | ush bl_count[]; /* number of codes at each bit length */ | ||
| 443 | { | ||
| 444 | ush next_code[MAX_BITS+1]; /* next code value for each bit length */ | ||
| 445 | ush code = 0; /* running code value */ | ||
| 446 | int bits; /* bit index */ | ||
| 447 | int n; /* code index */ | ||
| 448 | |||
| 449 | /* The distribution counts are first used to generate the code values | ||
| 450 | * without bit reversal. | ||
| 451 | */ | ||
| 452 | for (bits = 1; bits <= MAX_BITS; bits++) { | ||
| 453 | next_code[bits] = code = (code + bl_count[bits-1]) << 1; | ||
| 454 | } | ||
| 455 | /* Check that the bit counts in bl_count are consistent. The last code | ||
| 456 | * must be all ones. | ||
| 457 | */ | ||
| 458 | Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, | ||
| 459 | "inconsistent bit counts"); | ||
| 460 | Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); | ||
| 461 | |||
| 462 | for (n = 0; n <= max_code; n++) { | ||
| 463 | int len = tree[n].Len; | ||
| 464 | if (len == 0) continue; | ||
| 465 | /* Now reverse the bits */ | ||
| 466 | tree[n].Code = bi_reverse(next_code[len]++, len); | ||
| 467 | |||
| 468 | Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", | ||
| 469 | n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); | ||
| 470 | } | ||
| 471 | } | ||
| 472 | |||
| 473 | /* =========================================================================== | ||
| 474 | * Construct one Huffman tree and assigns the code bit strings and lengths. | ||
| 475 | * Update the total bit length for the current block. | ||
| 476 | * IN assertion: the field freq is set for all tree elements. | ||
| 477 | * OUT assertions: the fields len and code are set to the optimal bit length | ||
| 478 | * and corresponding code. The length opt_len is updated; static_len is | ||
| 479 | * also updated if stree is not null. The field max_code is set. | ||
| 480 | */ | ||
| 481 | local void build_tree(s, desc) | ||
| 482 | deflate_state *s; | ||
| 483 | tree_desc *desc; /* the tree descriptor */ | ||
| 484 | { | ||
| 485 | ct_data *tree = desc->dyn_tree; | ||
| 486 | ct_data *stree = desc->stat_desc->static_tree; | ||
| 487 | int elems = desc->stat_desc->elems; | ||
| 488 | int n, m; /* iterate over heap elements */ | ||
| 489 | int max_code = -1; /* largest code with non zero frequency */ | ||
| 490 | int node = elems; /* next internal node of the tree */ | ||
| 491 | int new; /* new node being created */ | ||
| 492 | |||
| 493 | /* Construct the initial heap, with least frequent element in | ||
| 494 | * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | ||
| 495 | * heap[0] is not used. | ||
| 496 | */ | ||
| 497 | s->heap_len = 0, s->heap_max = HEAP_SIZE; | ||
| 498 | |||
| 499 | for (n = 0; n < elems; n++) { | ||
| 500 | if (tree[n].Freq != 0) { | ||
| 501 | s->heap[++(s->heap_len)] = max_code = n; | ||
| 502 | s->depth[n] = 0; | ||
| 503 | } else { | ||
| 504 | tree[n].Len = 0; | ||
| 505 | } | ||
| 506 | } | ||
| 507 | |||
| 508 | /* The pkzip format requires that at least one distance code exists, | ||
| 509 | * and that at least one bit should be sent even if there is only one | ||
| 510 | * possible code. So to avoid special checks later on we force at least | ||
| 511 | * two codes of non zero frequency. | ||
| 512 | */ | ||
| 513 | while (s->heap_len < 2) { | ||
| 514 | new = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); | ||
| 515 | tree[new].Freq = 1; | ||
| 516 | s->depth[new] = 0; | ||
| 517 | s->opt_len--; if (stree) s->static_len -= stree[new].Len; | ||
| 518 | /* new is 0 or 1 so it does not have extra bits */ | ||
| 519 | } | ||
| 520 | desc->max_code = max_code; | ||
| 521 | |||
| 522 | /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, | ||
| 523 | * establish sub-heaps of increasing lengths: | ||
| 524 | */ | ||
| 525 | for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); | ||
| 526 | |||
| 527 | /* Construct the Huffman tree by repeatedly combining the least two | ||
| 528 | * frequent nodes. | ||
| 529 | */ | ||
| 530 | do { | ||
| 531 | pqremove(s, tree, n); /* n = node of least frequency */ | ||
| 532 | m = s->heap[SMALLEST]; /* m = node of next least frequency */ | ||
| 533 | |||
| 534 | s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ | ||
| 535 | s->heap[--(s->heap_max)] = m; | ||
| 536 | |||
| 537 | /* Create a new node father of n and m */ | ||
| 538 | tree[node].Freq = tree[n].Freq + tree[m].Freq; | ||
| 539 | s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1); | ||
| 540 | tree[n].Dad = tree[m].Dad = (ush)node; | ||
| 541 | #ifdef DUMP_BL_TREE | ||
| 542 | if (tree == s->bl_tree) { | ||
| 543 | fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", | ||
| 544 | node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); | ||
| 545 | } | ||
| 546 | #endif | ||
| 547 | /* and insert the new node in the heap */ | ||
| 548 | s->heap[SMALLEST] = node++; | ||
| 549 | pqdownheap(s, tree, SMALLEST); | ||
| 550 | |||
| 551 | } while (s->heap_len >= 2); | ||
| 552 | |||
| 553 | s->heap[--(s->heap_max)] = s->heap[SMALLEST]; | ||
| 554 | |||
| 555 | /* At this point, the fields freq and dad are set. We can now | ||
| 556 | * generate the bit lengths. | ||
| 557 | */ | ||
| 558 | gen_bitlen(s, (tree_desc *)desc); | ||
| 559 | |||
| 560 | /* The field len is now set, we can generate the bit codes */ | ||
| 561 | gen_codes ((ct_data *)tree, max_code, s->bl_count); | ||
| 562 | } | ||
| 563 | |||
| 564 | /* =========================================================================== | ||
| 565 | * Scan a literal or distance tree to determine the frequencies of the codes | ||
| 566 | * in the bit length tree. | ||
| 567 | */ | ||
| 568 | local void scan_tree (s, tree, max_code) | ||
| 569 | deflate_state *s; | ||
| 570 | ct_data *tree; /* the tree to be scanned */ | ||
| 571 | int max_code; /* and its largest code of non zero frequency */ | ||
| 572 | { | ||
| 573 | int n; /* iterates over all tree elements */ | ||
| 574 | int prevlen = -1; /* last emitted length */ | ||
| 575 | int curlen; /* length of current code */ | ||
| 576 | int nextlen = tree[0].Len; /* length of next code */ | ||
| 577 | int count = 0; /* repeat count of the current code */ | ||
| 578 | int max_count = 7; /* max repeat count */ | ||
| 579 | int min_count = 4; /* min repeat count */ | ||
| 580 | |||
| 581 | if (nextlen == 0) max_count = 138, min_count = 3; | ||
| 582 | tree[max_code+1].Len = (ush)0xffff; /* guard */ | ||
| 583 | |||
| 584 | for (n = 0; n <= max_code; n++) { | ||
| 585 | curlen = nextlen; nextlen = tree[n+1].Len; | ||
| 586 | if (++count < max_count && curlen == nextlen) { | ||
| 587 | continue; | ||
| 588 | } else if (count < min_count) { | ||
| 589 | s->bl_tree[curlen].Freq += count; | ||
| 590 | } else if (curlen != 0) { | ||
| 591 | if (curlen != prevlen) s->bl_tree[curlen].Freq++; | ||
| 592 | s->bl_tree[REP_3_6].Freq++; | ||
| 593 | } else if (count <= 10) { | ||
| 594 | s->bl_tree[REPZ_3_10].Freq++; | ||
| 595 | } else { | ||
| 596 | s->bl_tree[REPZ_11_138].Freq++; | ||
| 597 | } | ||
| 598 | count = 0; prevlen = curlen; | ||
| 599 | if (nextlen == 0) { | ||
| 600 | max_count = 138, min_count = 3; | ||
| 601 | } else if (curlen == nextlen) { | ||
| 602 | max_count = 6, min_count = 3; | ||
| 603 | } else { | ||
| 604 | max_count = 7, min_count = 4; | ||
| 605 | } | ||
| 606 | } | ||
| 607 | } | ||
| 608 | |||
| 609 | /* =========================================================================== | ||
| 610 | * Send a literal or distance tree in compressed form, using the codes in | ||
| 611 | * bl_tree. | ||
| 612 | */ | ||
| 613 | local void send_tree (s, tree, max_code) | ||
| 614 | deflate_state *s; | ||
| 615 | ct_data *tree; /* the tree to be scanned */ | ||
| 616 | int max_code; /* and its largest code of non zero frequency */ | ||
| 617 | { | ||
| 618 | int n; /* iterates over all tree elements */ | ||
| 619 | int prevlen = -1; /* last emitted length */ | ||
| 620 | int curlen; /* length of current code */ | ||
| 621 | int nextlen = tree[0].Len; /* length of next code */ | ||
| 622 | int count = 0; /* repeat count of the current code */ | ||
| 623 | int max_count = 7; /* max repeat count */ | ||
| 624 | int min_count = 4; /* min repeat count */ | ||
| 625 | |||
| 626 | /* tree[max_code+1].Len = -1; */ /* guard already set */ | ||
| 627 | if (nextlen == 0) max_count = 138, min_count = 3; | ||
| 628 | |||
| 629 | for (n = 0; n <= max_code; n++) { | ||
| 630 | curlen = nextlen; nextlen = tree[n+1].Len; | ||
| 631 | if (++count < max_count && curlen == nextlen) { | ||
| 632 | continue; | ||
| 633 | } else if (count < min_count) { | ||
| 634 | do { send_code(s, curlen, s->bl_tree); } while (--count != 0); | ||
| 635 | |||
| 636 | } else if (curlen != 0) { | ||
| 637 | if (curlen != prevlen) { | ||
| 638 | send_code(s, curlen, s->bl_tree); count--; | ||
| 639 | } | ||
| 640 | Assert(count >= 3 && count <= 6, " 3_6?"); | ||
| 641 | send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); | ||
| 642 | |||
| 643 | } else if (count <= 10) { | ||
| 644 | send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); | ||
| 645 | |||
| 646 | } else { | ||
| 647 | send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); | ||
| 648 | } | ||
| 649 | count = 0; prevlen = curlen; | ||
| 650 | if (nextlen == 0) { | ||
| 651 | max_count = 138, min_count = 3; | ||
| 652 | } else if (curlen == nextlen) { | ||
| 653 | max_count = 6, min_count = 3; | ||
| 654 | } else { | ||
| 655 | max_count = 7, min_count = 4; | ||
| 656 | } | ||
| 657 | } | ||
| 658 | } | ||
| 659 | |||
| 660 | /* =========================================================================== | ||
| 661 | * Construct the Huffman tree for the bit lengths and return the index in | ||
| 662 | * bl_order of the last bit length code to send. | ||
| 663 | */ | ||
| 664 | local int build_bl_tree(s) | ||
| 665 | deflate_state *s; | ||
| 666 | { | ||
| 667 | int max_blindex; /* index of last bit length code of non zero freq */ | ||
| 668 | |||
| 669 | /* Determine the bit length frequencies for literal and distance trees */ | ||
| 670 | scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); | ||
| 671 | scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); | ||
| 672 | |||
| 673 | /* Build the bit length tree: */ | ||
| 674 | build_tree(s, (tree_desc *)(&(s->bl_desc))); | ||
| 675 | /* opt_len now includes the length of the tree representations, except | ||
| 676 | * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | ||
| 677 | */ | ||
| 678 | |||
| 679 | /* Determine the number of bit length codes to send. The pkzip format | ||
| 680 | * requires that at least 4 bit length codes be sent. (appnote.txt says | ||
| 681 | * 3 but the actual value used is 4.) | ||
| 682 | */ | ||
| 683 | for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { | ||
| 684 | if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; | ||
| 685 | } | ||
| 686 | /* Update opt_len to include the bit length tree and counts */ | ||
| 687 | s->opt_len += 3*(max_blindex+1) + 5+5+4; | ||
| 688 | Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", | ||
| 689 | s->opt_len, s->static_len)); | ||
| 690 | |||
| 691 | return max_blindex; | ||
| 692 | } | ||
| 693 | |||
| 694 | /* =========================================================================== | ||
| 695 | * Send the header for a block using dynamic Huffman trees: the counts, the | ||
| 696 | * lengths of the bit length codes, the literal tree and the distance tree. | ||
| 697 | * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | ||
| 698 | */ | ||
| 699 | local void send_all_trees(s, lcodes, dcodes, blcodes) | ||
| 700 | deflate_state *s; | ||
| 701 | int lcodes, dcodes, blcodes; /* number of codes for each tree */ | ||
| 702 | { | ||
| 703 | int rank; /* index in bl_order */ | ||
| 704 | |||
| 705 | Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); | ||
| 706 | Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, | ||
| 707 | "too many codes"); | ||
| 708 | Tracev((stderr, "\nbl counts: ")); | ||
| 709 | send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ | ||
| 710 | send_bits(s, dcodes-1, 5); | ||
| 711 | send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ | ||
| 712 | for (rank = 0; rank < blcodes; rank++) { | ||
| 713 | Tracev((stderr, "\nbl code %2d ", bl_order[rank])); | ||
| 714 | send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); | ||
| 715 | } | ||
| 716 | Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); | ||
| 717 | |||
| 718 | send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ | ||
| 719 | Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); | ||
| 720 | |||
| 721 | send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ | ||
| 722 | Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); | ||
| 723 | } | ||
| 724 | |||
| 725 | /* =========================================================================== | ||
| 726 | * Determine the best encoding for the current block: dynamic trees, static | ||
| 727 | * trees or store, and output the encoded block to the zip file. This function | ||
| 728 | * returns the total compressed length for the file so far. | ||
| 729 | */ | ||
| 730 | ulg ct_flush_block(s, buf, stored_len, eof) | ||
| 731 | deflate_state *s; | ||
| 732 | char *buf; /* input block, or NULL if too old */ | ||
| 733 | ulg stored_len; /* length of input block */ | ||
| 734 | int eof; /* true if this is the last block for a file */ | ||
| 735 | { | ||
| 736 | ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ | ||
| 737 | int max_blindex; /* index of last bit length code of non zero freq */ | ||
| 738 | |||
| 739 | /* Check if the file is ascii or binary */ | ||
| 740 | if (s->data_type == UNKNOWN) set_data_type(s); | ||
| 741 | |||
| 742 | /* Construct the literal and distance trees */ | ||
| 743 | build_tree(s, (tree_desc *)(&(s->l_desc))); | ||
| 744 | Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, | ||
| 745 | s->static_len)); | ||
| 746 | |||
| 747 | build_tree(s, (tree_desc *)(&(s->d_desc))); | ||
| 748 | Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, | ||
| 749 | s->static_len)); | ||
| 750 | /* At this point, opt_len and static_len are the total bit lengths of | ||
| 751 | * the compressed block data, excluding the tree representations. | ||
| 752 | */ | ||
| 753 | |||
| 754 | /* Build the bit length tree for the above two trees, and get the index | ||
| 755 | * in bl_order of the last bit length code to send. | ||
| 756 | */ | ||
| 757 | max_blindex = build_bl_tree(s); | ||
| 758 | |||
| 759 | /* Determine the best encoding. Compute first the block length in bytes */ | ||
| 760 | opt_lenb = (s->opt_len+3+7)>>3; | ||
| 761 | static_lenb = (s->static_len+3+7)>>3; | ||
| 762 | |||
| 763 | Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", | ||
| 764 | opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, | ||
| 765 | s->last_lit)); | ||
| 766 | |||
| 767 | if (static_lenb <= opt_lenb) opt_lenb = static_lenb; | ||
| 768 | |||
| 769 | /* If compression failed and this is the first and last block, | ||
| 770 | * and if the .zip file can be seeked (to rewrite the local header), | ||
| 771 | * the whole file is transformed into a stored file: | ||
| 772 | */ | ||
| 773 | #ifdef STORED_FILE_OK | ||
| 774 | # ifdef FORCE_METHOD | ||
| 775 | if (level == 1 && eof && compressed_len == 0L) { /* force stored file */ | ||
| 776 | # else | ||
| 777 | if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) { | ||
| 778 | # endif | ||
| 779 | /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */ | ||
| 780 | if (buf == (char*)0) error ("block vanished"); | ||
| 781 | |||
| 782 | copy_block(buf, (unsigned)stored_len, 0); /* without header */ | ||
| 783 | s->compressed_len = stored_len << 3; | ||
| 784 | s->method = STORED; | ||
| 785 | } else | ||
| 786 | #endif /* STORED_FILE_OK */ | ||
| 787 | |||
| 788 | #ifdef FORCE_METHOD | ||
| 789 | if (level == 2 && buf != (char*)0) { /* force stored block */ | ||
| 790 | #else | ||
| 791 | if (stored_len+4 <= opt_lenb && buf != (char*)0) { | ||
| 792 | /* 4: two words for the lengths */ | ||
| 793 | #endif | ||
| 794 | /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | ||
| 795 | * Otherwise we can't have processed more than WSIZE input bytes since | ||
| 796 | * the last block flush, because compression would have been | ||
| 797 | * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | ||
| 798 | * transform a block into a stored block. | ||
| 799 | */ | ||
| 800 | send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ | ||
| 801 | s->compressed_len = (s->compressed_len + 3 + 7) & ~7L; | ||
| 802 | s->compressed_len += (stored_len + 4) << 3; | ||
| 803 | |||
| 804 | copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ | ||
| 805 | |||
| 806 | #ifdef FORCE_METHOD | ||
| 807 | } else if (level == 3) { /* force static trees */ | ||
| 808 | #else | ||
| 809 | } else if (static_lenb == opt_lenb) { | ||
| 810 | #endif | ||
| 811 | send_bits(s, (STATIC_TREES<<1)+eof, 3); | ||
| 812 | compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); | ||
| 813 | s->compressed_len += 3 + s->static_len; | ||
| 814 | } else { | ||
| 815 | send_bits(s, (DYN_TREES<<1)+eof, 3); | ||
| 816 | send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, | ||
| 817 | max_blindex+1); | ||
| 818 | compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); | ||
| 819 | s->compressed_len += 3 + s->opt_len; | ||
| 820 | } | ||
| 821 | Assert (s->compressed_len == s->bits_sent, "bad compressed size"); | ||
| 822 | init_block(s); | ||
| 823 | |||
| 824 | if (eof) { | ||
| 825 | bi_windup(s); | ||
| 826 | s->compressed_len += 7; /* align on byte boundary */ | ||
| 827 | } | ||
| 828 | Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, | ||
| 829 | s->compressed_len-7*eof)); | ||
| 830 | |||
| 831 | return s->compressed_len >> 3; | ||
| 832 | } | ||
| 833 | |||
| 834 | /* =========================================================================== | ||
| 835 | * Save the match info and tally the frequency counts. Return true if | ||
| 836 | * the current block must be flushed. | ||
| 837 | */ | ||
| 838 | int ct_tally (s, dist, lc) | ||
| 839 | deflate_state *s; | ||
| 840 | int dist; /* distance of matched string */ | ||
| 841 | int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ | ||
| 842 | { | ||
| 843 | s->d_buf[s->last_lit] = (ush)dist; | ||
| 844 | s->l_buf[s->last_lit++] = (uch)lc; | ||
| 845 | if (dist == 0) { | ||
| 846 | /* lc is the unmatched char */ | ||
| 847 | s->dyn_ltree[lc].Freq++; | ||
| 848 | } else { | ||
| 849 | s->matches++; | ||
| 850 | /* Here, lc is the match length - MIN_MATCH */ | ||
| 851 | dist--; /* dist = match distance - 1 */ | ||
| 852 | Assert((ush)dist < (ush)MAX_DIST(s) && | ||
| 853 | (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && | ||
| 854 | (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match"); | ||
| 855 | |||
| 856 | s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++; | ||
| 857 | s->dyn_dtree[d_code(dist)].Freq++; | ||
| 858 | } | ||
| 859 | |||
| 860 | /* Try to guess if it is profitable to stop the current block here */ | ||
| 861 | if (s->level > 2 && (s->last_lit & 0xfff) == 0) { | ||
| 862 | /* Compute an upper bound for the compressed length */ | ||
| 863 | ulg out_length = (ulg)s->last_lit*8L; | ||
| 864 | ulg in_length = (ulg)s->strstart - s->block_start; | ||
| 865 | int dcode; | ||
| 866 | for (dcode = 0; dcode < D_CODES; dcode++) { | ||
| 867 | out_length += (ulg)s->dyn_dtree[dcode].Freq * | ||
| 868 | (5L+extra_dbits[dcode]); | ||
| 869 | } | ||
| 870 | out_length >>= 3; | ||
| 871 | Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", | ||
| 872 | s->last_lit, in_length, out_length, | ||
| 873 | 100L - out_length*100L/in_length)); | ||
| 874 | if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; | ||
| 875 | } | ||
| 876 | return (s->last_lit == s->lit_bufsize-1); | ||
| 877 | /* We avoid equality with lit_bufsize because of wraparound at 64K | ||
| 878 | * on 16 bit machines and because stored blocks are restricted to | ||
| 879 | * 64K-1 bytes. | ||
| 880 | */ | ||
| 881 | } | ||
| 882 | |||
| 883 | /* =========================================================================== | ||
| 884 | * Send the block data compressed using the given Huffman trees | ||
| 885 | */ | ||
| 886 | local void compress_block(s, ltree, dtree) | ||
| 887 | deflate_state *s; | ||
| 888 | ct_data *ltree; /* literal tree */ | ||
| 889 | ct_data *dtree; /* distance tree */ | ||
| 890 | { | ||
| 891 | unsigned dist; /* distance of matched string */ | ||
| 892 | int lc; /* match length or unmatched char (if dist == 0) */ | ||
| 893 | unsigned lx = 0; /* running index in l_buf */ | ||
| 894 | unsigned code; /* the code to send */ | ||
| 895 | int extra; /* number of extra bits to send */ | ||
| 896 | |||
| 897 | if (s->last_lit != 0) do { | ||
| 898 | dist = s->d_buf[lx]; | ||
| 899 | lc = s->l_buf[lx++]; | ||
| 900 | if (dist == 0) { | ||
| 901 | send_code(s, lc, ltree); /* send a literal byte */ | ||
| 902 | Tracecv(isgraph(lc), (stderr," '%c' ", lc)); | ||
| 903 | } else { | ||
| 904 | /* Here, lc is the match length - MIN_MATCH */ | ||
| 905 | code = length_code[lc]; | ||
| 906 | send_code(s, code+LITERALS+1, ltree); /* send the length code */ | ||
| 907 | extra = extra_lbits[code]; | ||
| 908 | if (extra != 0) { | ||
| 909 | lc -= base_length[code]; | ||
| 910 | send_bits(s, lc, extra); /* send the extra length bits */ | ||
| 911 | } | ||
| 912 | dist--; /* dist is now the match distance - 1 */ | ||
| 913 | code = d_code(dist); | ||
| 914 | Assert (code < D_CODES, "bad d_code"); | ||
| 915 | |||
| 916 | send_code(s, code, dtree); /* send the distance code */ | ||
| 917 | extra = extra_dbits[code]; | ||
| 918 | if (extra != 0) { | ||
| 919 | dist -= base_dist[code]; | ||
| 920 | send_bits(s, dist, extra); /* send the extra distance bits */ | ||
| 921 | } | ||
| 922 | } /* literal or match pair ? */ | ||
| 923 | |||
| 924 | /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ | ||
| 925 | Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow"); | ||
| 926 | |||
| 927 | } while (lx < s->last_lit); | ||
| 928 | |||
| 929 | send_code(s, END_BLOCK, ltree); | ||
| 930 | } | ||
| 931 | |||
| 932 | /* =========================================================================== | ||
| 933 | * Set the data type to ASCII or BINARY, using a crude approximation: | ||
| 934 | * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. | ||
| 935 | * IN assertion: the fields freq of dyn_ltree are set and the total of all | ||
| 936 | * frequencies does not exceed 64K (to fit in an int on 16 bit machines). | ||
| 937 | */ | ||
| 938 | local void set_data_type(s) | ||
| 939 | deflate_state *s; | ||
| 940 | { | ||
| 941 | int n = 0; | ||
| 942 | unsigned ascii_freq = 0; | ||
| 943 | unsigned bin_freq = 0; | ||
| 944 | while (n < 7) bin_freq += s->dyn_ltree[n++].Freq; | ||
| 945 | while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq; | ||
| 946 | while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq; | ||
| 947 | s->data_type = bin_freq > (ascii_freq >> 2) ? BINARY : ASCII; | ||
| 948 | } | ||
| 949 | |||
| 950 | /* =========================================================================== | ||
| 951 | * Output a short LSB first on the stream. | ||
| 952 | * IN assertion: there is enough room in pendingBuf. | ||
| 953 | */ | ||
| 954 | #define put_short(s, w) { \ | ||
| 955 | put_byte(s, (uch)((w) & 0xff)); \ | ||
| 956 | put_byte(s, (uch)((ush)(w) >> 8)); \ | ||
| 957 | } | ||
| 958 | |||
| 959 | /* =========================================================================== | ||
| 960 | * Send a value on a given number of bits. | ||
| 961 | * IN assertion: length <= 16 and value fits in length bits. | ||
| 962 | */ | ||
| 963 | local void send_bits(s, value, length) | ||
| 964 | deflate_state *s; | ||
| 965 | int value; /* value to send */ | ||
| 966 | int length; /* number of bits */ | ||
| 967 | { | ||
| 968 | #ifdef DEBUG | ||
| 969 | Tracev((stderr," l %2d v %4x ", length, value)); | ||
| 970 | Assert(length > 0 && length <= 15, "invalid length"); | ||
| 971 | s->bits_sent += (ulg)length; | ||
| 972 | #endif | ||
| 973 | /* If not enough room in bi_buf, use (valid) bits from bi_buf and | ||
| 974 | * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) | ||
| 975 | * unused bits in value. | ||
| 976 | */ | ||
| 977 | if (s->bi_valid > (int)Buf_size - length) { | ||
| 978 | s->bi_buf |= (value << s->bi_valid); | ||
| 979 | put_short(s, s->bi_buf); | ||
| 980 | s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); | ||
| 981 | s->bi_valid += length - Buf_size; | ||
| 982 | } else { | ||
| 983 | s->bi_buf |= value << s->bi_valid; | ||
| 984 | s->bi_valid += length; | ||
| 985 | } | ||
| 986 | } | ||
| 987 | |||
| 988 | /* =========================================================================== | ||
| 989 | * Reverse the first len bits of a code, using straightforward code (a faster | ||
| 990 | * method would use a table) | ||
| 991 | * IN assertion: 1 <= len <= 15 | ||
| 992 | */ | ||
| 993 | local unsigned bi_reverse(code, len) | ||
| 994 | unsigned code; /* the value to invert */ | ||
| 995 | int len; /* its bit length */ | ||
| 996 | { | ||
| 997 | register unsigned res = 0; | ||
| 998 | do { | ||
| 999 | res |= code & 1; | ||
| 1000 | code >>= 1, res <<= 1; | ||
| 1001 | } while (--len > 0); | ||
| 1002 | return res >> 1; | ||
| 1003 | } | ||
| 1004 | |||
| 1005 | /* =========================================================================== | ||
| 1006 | * Write out any remaining bits in an incomplete byte. | ||
| 1007 | */ | ||
| 1008 | local void bi_windup(s) | ||
| 1009 | deflate_state *s; | ||
| 1010 | { | ||
| 1011 | if (s->bi_valid > 8) { | ||
| 1012 | put_short(s, s->bi_buf); | ||
| 1013 | } else if (s->bi_valid > 0) { | ||
| 1014 | put_byte(s, s->bi_buf); | ||
| 1015 | } | ||
| 1016 | s->bi_buf = 0; | ||
| 1017 | s->bi_valid = 0; | ||
| 1018 | #ifdef DEBUG | ||
| 1019 | s->bits_sent = (s->bits_sent+7) & ~7; | ||
| 1020 | #endif | ||
| 1021 | } | ||
| 1022 | |||
| 1023 | /* =========================================================================== | ||
| 1024 | * Copy a stored block, storing first the length and its | ||
| 1025 | * one's complement if requested. | ||
| 1026 | */ | ||
| 1027 | local void copy_block(s, buf, len, header) | ||
| 1028 | deflate_state *s; | ||
| 1029 | char *buf; /* the input data */ | ||
| 1030 | unsigned len; /* its length */ | ||
| 1031 | int header; /* true if block header must be written */ | ||
| 1032 | { | ||
| 1033 | bi_windup(s); /* align on byte boundary */ | ||
| 1034 | |||
| 1035 | if (header) { | ||
| 1036 | put_short(s, (ush)len); | ||
| 1037 | put_short(s, (ush)~len); | ||
| 1038 | #ifdef DEBUG | ||
| 1039 | s->bits_sent += 2*16; | ||
| 1040 | #endif | ||
| 1041 | } | ||
| 1042 | #ifdef DEBUG | ||
| 1043 | s->bits_sent += (ulg)len<<3; | ||
| 1044 | #endif | ||
| 1045 | while (len--) { | ||
| 1046 | put_byte(s, *buf++); | ||
| 1047 | } | ||
| 1048 | } | ||
