1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
|
; SortTest.asm -- ASM version of HeapSort() function
; Igor Pavlov : Public domain
include ../../../../Asm/x86/7zAsm.asm
MY_ASM_START
ifndef Z7_SORT_ASM_USE_SEGMENT
if (IS_LINUX gt 0)
; Z7_SORT_ASM_USE_SEGMENT equ 1
else
; Z7_SORT_ASM_USE_SEGMENT equ 1
endif
endif
ifdef Z7_SORT_ASM_USE_SEGMENT
_TEXT$Z7_SORT SEGMENT ALIGN(64) 'CODE'
MY_ALIGN macro num:req
align num
endm
else
MY_ALIGN macro num:req
; We expect that ".text" is aligned for 16-bytes.
; So we don't need large alignment inside our function.
align 16
endm
endif
MY_ALIGN_16 macro
MY_ALIGN 16
endm
MY_ALIGN_32 macro
MY_ALIGN 32
endm
MY_ALIGN_64 macro
MY_ALIGN 64
endm
ifdef x64
NUM_PREFETCH_LEVELS equ 3 ; to prefetch 1x 64-bytes line (is good for most cases)
; NUM_PREFETCH_LEVELS equ 4 ; to prefetch 2x 64-bytes lines (better for big arrays)
acc equ x0
k equ r0
k_x equ x0
p equ r1
s equ r2
s_x equ x2
a0 equ x3
t0 equ a0
a3 equ x5
qq equ a3
a1 equ x6
t1 equ a1
t1_r equ r6
a2 equ x7
t2 equ a2
i equ r8
e0 equ x8
e1 equ x9
num_last equ r10
num_last_x equ x10
next4_lim equ r11
pref_lim equ r12
SORT_2_WITH_TEMP_REG macro b0, b1, temp_reg
mov temp_reg, b0
cmp b0, b1
cmovae b0, b1 ; min
cmovae b1, temp_reg ; max
endm
SORT macro b0, b1
SORT_2_WITH_TEMP_REG b0, b1, acc
endm
LOAD macro dest:req, index:req
mov dest, [p + 4 * index]
endm
STORE macro reg:req, index:req
mov [p + 4 * index], reg
endm
if (NUM_PREFETCH_LEVELS gt 3)
num_prefetches equ (1 SHL (NUM_PREFETCH_LEVELS - 3))
else
num_prefetches equ 1
endif
PREFETCH_OP macro offs
cur_offset = 7 * 4 ; it's average offset in 64-bytes cache line.
; cur_offset = 0 ; we can use zero offset, if we are sure that array is aligned for 64-bytes.
rept num_prefetches
if 1
prefetcht0 byte ptr [p + offs + cur_offset]
else
mov pref_x, dword ptr [p + offs + cur_offset]
endif
cur_offset = cur_offset + 64
endm
endm
PREFETCH_MY macro
if 1
if 1
shl k, NUM_PREFETCH_LEVELS + 3
else
; we delay prefetch instruction to improve main loads
shl k, NUM_PREFETCH_LEVELS
shl k, 3
; shl k, 0
endif
PREFETCH_OP k
elseif 1
shl k, 3
PREFETCH_OP k * (1 SHL NUM_PREFETCH_LEVELS) ; change it
endif
endm
STEP_1 macro exit_label, prefetch_macro
use_cmov_1 equ 1 ; set 1 for cmov, but it's slower in some cases
; set 0 for LOAD after adc s, 0
cmp t0, t1
if use_cmov_1
cmovb t0, t1
; STORE t0, k
endif
adc s, 0
if use_cmov_1 eq 0
LOAD t0, s
endif
cmp qq, t0
jae exit_label
if 1 ; use_cmov_1 eq 0
STORE t0, k
endif
prefetch_macro
mov t0, [p + s * 8]
mov t1, [p + s * 8 + 4]
mov k, s
add s, s ; slower for some cpus
; lea s, dword ptr [s + s] ; slower for some cpus
; shl s, 1 ; faster for some cpus
; lea s, dword ptr [s * 2] ; faster for some cpus
rept 0 ; 1000 for debug : 0 for normal
; number of calls in generate_stage : ~0.6 of number of items
shl k, 0
endm
endm
STEP_2 macro exit_label, prefetch_macro
use_cmov_2 equ 0 ; set 1 for cmov, but it's slower in some cases
; set 0 for LOAD after adc s, 0
cmp t0, t1
if use_cmov_2
mov t2, t0
cmovb t2, t1
; STORE t2, k
endif
mov t0, [p + s * 8]
mov t1, [p + s * 8 + 4]
cmovb t0, [p + s * 8 + 8]
cmovb t1, [p + s * 8 + 12]
adc s, 0
if use_cmov_2 eq 0
LOAD t2, s
endif
cmp qq, t2
jae exit_label
if 1 ; use_cmov_2 eq 0
STORE t2, k
endif
prefetch_macro
mov k, s
; add s, s
; lea s, [s + s]
shl s, 1
; lea s, [s * 2]
endm
MOVE_SMALLEST_UP macro STEP, use_prefetch, num_unrolls
LOCAL exit_1, exit_2, leaves, opt_loop, last_nodes
; s == k * 2
; t0 == (p)[s]
; t1 == (p)[s + 1]
cmp k, next4_lim
jae leaves
rept num_unrolls
STEP exit_2
cmp k, next4_lim
jae leaves
endm
if use_prefetch
prefetch_macro equ PREFETCH_MY
pref_lim_2 equ pref_lim
; lea pref_lim, dword ptr [num_last + 1]
; shr pref_lim, NUM_PREFETCH_LEVELS + 1
cmp k, pref_lim_2
jae last_nodes
else
prefetch_macro equ
pref_lim_2 equ next4_lim
endif
MY_ALIGN_16
opt_loop:
STEP exit_2, prefetch_macro
cmp k, pref_lim_2
jb opt_loop
last_nodes:
; k >= pref_lim_2
; 2 cases are possible:
; case-1: num_after_prefetch_levels == 0 && next4_lim = pref_lim_2
; case-2: num_after_prefetch_levels == NUM_PREFETCH_LEVELS - 1 &&
; next4_lim = pref_lim_2 / (NUM_PREFETCH_LEVELS - 1)
if use_prefetch
yyy = NUM_PREFETCH_LEVELS - 1
while yyy
yyy = yyy - 1
STEP exit_2
if yyy
cmp k, next4_lim
jae leaves
endif
endm
endif
leaves:
; k >= next4_lim == (num_last + 1) / 4 must be provided by previous code.
; we have 2 nodes in (s) level : always
; we can have some nodes in (s * 2) level : low probability case
; we have no nodes in (s * 4) level
; s == k * 2
; t0 == (p)[s]
; t1 == (p)[s + 1]
cmp t0, t1
cmovb t0, t1
adc s, 0
STORE t0, k
; t0 == (p)[s]
; s / 2 == k : (s) is index of max item from (p)[k * 2], (p)[k * 2 + 1]
; we have 3 possible cases here:
; s * 2 > num_last : (s) node has no childs
; s * 2 == num_last : (s) node has 1 leaf child that is last item of array
; s * 2 < num_last : (s) node has 2 leaf childs. We provide (s * 4 > num_last)
; we check for (s * 2 > num_last) before "cmp qq, t0" check, because
; we will replace conditional jump with cmov instruction later.
lea t1_r, dword ptr [s + s]
cmp t1_r, num_last
ja exit_1 ; if (s * 2 > num_last), we have no childs : it's high probability branch
; it's low probability branch
; s * 2 <= num_last
cmp qq, t0
jae exit_2
; qq < t0, so we go to next level
; we check 1 or 2 childs in next level
mov t0, [p + s * 8]
mov k, s
mov s, t1_r
cmp t1_r, num_last
je @F ; (s == num_last) means that we have single child in tree
; (s < num_last) : so we must read both childs and select max of them.
mov t1, [p + k * 8 + 4]
cmp t0, t1
cmovb t0, t1
adc s, 0
@@:
STORE t0, k
exit_1:
; t0 == (p)[s], s / 2 == k : (s) is index of max item from (p)[k * 2], (p)[k * 2 + 1]
cmp qq, t0
cmovb k, s
exit_2:
STORE qq, k
endm
ifdef Z7_SORT_ASM_USE_SEGMENT
; MY_ALIGN_64
else
MY_ALIGN_16
endif
MY_PROC HeapSort, 2
if (IS_LINUX gt 0)
mov p, REG_ABI_PARAM_0 ; r1 <- r7 : linux
endif
mov num_last, REG_ABI_PARAM_1 ; r10 <- r6 : linux
; r10 <- r2 : win64
cmp num_last, 2
jb end_1
; MY_PUSH_PRESERVED_ABI_REGS
MY_PUSH_PRESERVED_ABI_REGS_UP_TO_INCLUDING_R11
push r12
cmp num_last, 4
ja sort_5
LOAD a0, 0
LOAD a1, 1
SORT a0, a1
cmp num_last, 3
jb end_2
LOAD a2, 2
je sort_3
LOAD a3, 3
SORT a2, a3
SORT a1, a3
STORE a3, 3
sort_3:
SORT a0, a2
SORT a1, a2
STORE a2, 2
jmp end_2
sort_5:
; (num_last > 4) is required here
; if (num_last >= 6) : we will use optimized loop for leaf nodes loop_down_1
mov next4_lim, num_last
shr next4_lim, 2
dec num_last
mov k, num_last
shr k, 1
mov i, num_last
shr i, 2
test num_last, 1
jnz size_even
; ODD number of items. So we compare parent with single child
LOAD t1, num_last
LOAD t0, k
SORT_2_WITH_TEMP_REG t1, t0, t2
STORE t1, num_last
STORE t0, k
dec k
size_even:
cmp k, i
jbe loop_down ; jump for num_last == 4 case
if 0 ; 1 for debug
mov r15, k
mov r14d, 1 ; 100
loop_benchmark:
endif
; optimized loop for leaf nodes:
mov t0, [p + k * 8]
mov t1, [p + k * 8 + 4]
MY_ALIGN_16
loop_down_1:
; we compare parent with max of childs:
; lea s, dword ptr [2 * k]
mov s, k
cmp t0, t1
cmovb t0, t1
adc s, s
LOAD t2, k
STORE t0, k
cmp t2, t0
cmovae s, k
dec k
; we preload next items before STORE operation for calculated address
mov t0, [p + k * 8]
mov t1, [p + k * 8 + 4]
STORE t2, s
cmp k, i
jne loop_down_1
if 0 ; 1 for debug
mov k, r15
dec r14d
jnz loop_benchmark
; jmp end_debug
endif
MY_ALIGN_16
loop_down:
mov t0, [p + i * 8]
mov t1, [p + i * 8 + 4]
LOAD qq, i
mov k, i
lea s, dword ptr [i + i]
; jmp end_debug
DOWN_use_prefetch equ 0
DOWN_num_unrolls equ 0
MOVE_SMALLEST_UP STEP_1, DOWN_use_prefetch, DOWN_num_unrolls
sub i, 1
jnb loop_down
; jmp end_debug
LOAD e0, 0
LOAD e1, 1
LEVEL_3_LIMIT equ 8 ; 8 is default, but 7 also can work
cmp num_last, LEVEL_3_LIMIT + 1
jb main_loop_sort_5
MY_ALIGN_16
main_loop_sort:
; num_last > LEVEL_3_LIMIT
; p[size--] = p[0];
LOAD qq, num_last
STORE e0, num_last
mov e0, e1
mov next4_lim, num_last
shr next4_lim, 2
mov pref_lim, num_last
shr pref_lim, NUM_PREFETCH_LEVELS + 1
dec num_last
if 0 ; 1 for debug
; that optional optimization can improve the performance, if there are identical items in array
; 3 times improvement : if all items in array are identical
; 20% improvement : if items are different for 1 bit only
; 1-10% improvement : if items are different for (2+) bits
; no gain : if items are different
cmp qq, e1
jae next_iter_main
endif
LOAD e1, 2
LOAD t0, 3
mov k_x, 2
cmp e1, t0
cmovb e1, t0
mov t0, [p + 4 * (4 + 0)]
mov t1, [p + 4 * (4 + 1)]
cmovb t0, [p + 4 * (4 + 2)]
cmovb t1, [p + 4 * (4 + 3)]
adc k_x, 0
; (qq <= e1), because the tree is correctly sorted
; also here we could check (qq >= e1) or (qq == e1) for faster exit
lea s, dword ptr [k + k]
MAIN_use_prefetch equ 1
MAIN_num_unrolls equ 0
MOVE_SMALLEST_UP STEP_2, MAIN_use_prefetch, MAIN_num_unrolls
next_iter_main:
cmp num_last, LEVEL_3_LIMIT
jne main_loop_sort
; num_last == LEVEL_3_LIMIT
main_loop_sort_5:
; 4 <= num_last <= LEVEL_3_LIMIT
; p[size--] = p[0];
LOAD qq, num_last
STORE e0, num_last
mov e0, e1
dec num_last_x
LOAD e1, 2
LOAD t0, 3
mov k_x, 2
cmp e1, t0
cmovb e1, t0
adc k_x, 0
lea s_x, dword ptr [k * 2]
cmp s_x, num_last_x
ja exit_2
mov t0, [p + k * 8]
je exit_1
; s < num_last
mov t1, [p + k * 8 + 4]
cmp t0, t1
cmovb t0, t1
adc s_x, 0
exit_1:
STORE t0, k
cmp qq, t0
cmovb k_x, s_x
exit_2:
STORE qq, k
cmp num_last_x, 3
jne main_loop_sort_5
; num_last == 3 (real_size == 4)
LOAD a0, 2
LOAD a1, 3
STORE e1, 2
STORE e0, 3
SORT a0, a1
end_2:
STORE a0, 0
STORE a1, 1
; end_debug:
; MY_POP_PRESERVED_ABI_REGS
pop r12
MY_POP_PRESERVED_ABI_REGS_UP_TO_INCLUDING_R11
end_1:
MY_ENDP
else
; ------------ x86 32-bit ------------
ifdef x64
IS_CDECL = 0
endif
acc equ x0
k equ r0
k_x equ acc
p equ r1
num_last equ r2
num_last_x equ x2
a0 equ x3
t0 equ a0
a3 equ x5
i equ r5
e0 equ a3
a1 equ x6
qq equ a1
a2 equ x7
s equ r7
s_x equ a2
SORT macro b0, b1
cmp b1, b0
jae @F
if 1
xchg b0, b1
else
mov acc, b0
mov b0, b1 ; min
mov b1, acc ; max
endif
@@:
endm
LOAD macro dest:req, index:req
mov dest, [p + 4 * index]
endm
STORE macro reg:req, index:req
mov [p + 4 * index], reg
endm
STEP_1 macro exit_label
mov t0, [p + k * 8]
cmp t0, [p + k * 8 + 4]
adc s, 0
LOAD t0, s
STORE t0, k ; we lookahed stooring for most expected branch
cmp qq, t0
jae exit_label
; STORE t0, k ; use if
mov k, s
add s, s
; lea s, dword ptr [s + s]
; shl s, 1
; lea s, dword ptr [s * 2]
endm
STEP_BRANCH macro exit_label
mov t0, [p + k * 8]
cmp t0, [p + k * 8 + 4]
jae @F
inc s
mov t0, [p + k * 8 + 4]
@@:
cmp qq, t0
jae exit_label
STORE t0, k
mov k, s
add s, s
endm
MOVE_SMALLEST_UP macro STEP, num_unrolls, exit_2
LOCAL leaves, opt_loop, single
; s == k * 2
rept num_unrolls
cmp s, num_last
jae leaves
STEP_1 exit_2
endm
cmp s, num_last
jb opt_loop
leaves:
; (s >= num_last)
jne exit_2
single:
; (s == num_last)
mov t0, [p + k * 8]
cmp qq, t0
jae exit_2
STORE t0, k
mov k, s
jmp exit_2
MY_ALIGN_16
opt_loop:
STEP exit_2
cmp s, num_last
jb opt_loop
je single
exit_2:
STORE qq, k
endm
ifdef Z7_SORT_ASM_USE_SEGMENT
; MY_ALIGN_64
else
MY_ALIGN_16
endif
MY_PROC HeapSort, 2
ifdef x64
if (IS_LINUX gt 0)
mov num_last, REG_ABI_PARAM_1 ; r2 <- r6 : linux
mov p, REG_ABI_PARAM_0 ; r1 <- r7 : linux
endif
elseif (IS_CDECL gt 0)
mov num_last, [r4 + REG_SIZE * 2]
mov p, [r4 + REG_SIZE * 1]
endif
cmp num_last, 2
jb end_1
MY_PUSH_PRESERVED_ABI_REGS_UP_TO_INCLUDING_R11
cmp num_last, 4
ja sort_5
LOAD a0, 0
LOAD a1, 1
SORT a0, a1
cmp num_last, 3
jb end_2
LOAD a2, 2
je sort_3
LOAD a3, 3
SORT a2, a3
SORT a1, a3
STORE a3, 3
sort_3:
SORT a0, a2
SORT a1, a2
STORE a2, 2
jmp end_2
sort_5:
; num_last > 4
lea i, dword ptr [num_last - 2]
dec num_last
test i, 1
jz loop_down
; single child
mov t0, [p + num_last * 4]
mov qq, [p + num_last * 2]
dec i
cmp qq, t0
jae loop_down
mov [p + num_last * 2], t0
mov [p + num_last * 4], qq
MY_ALIGN_16
loop_down:
mov t0, [p + i * 4]
cmp t0, [p + i * 4 + 4]
mov k, i
mov qq, [p + i * 2]
adc k, 0
LOAD t0, k
cmp qq, t0
jae down_next
mov [p + i * 2], t0
lea s, dword ptr [k + k]
DOWN_num_unrolls equ 0
MOVE_SMALLEST_UP STEP_1, DOWN_num_unrolls, down_exit_label
down_next:
sub i, 2
jnb loop_down
; jmp end_debug
LOAD e0, 0
MY_ALIGN_16
main_loop_sort:
; num_last > 3
mov t0, [p + 2 * 4]
cmp t0, [p + 3 * 4]
LOAD qq, num_last
STORE e0, num_last
LOAD e0, 1
mov s_x, 2
mov k_x, 1
adc s, 0
LOAD t0, s
dec num_last
cmp qq, t0
jae main_exit_label
STORE t0, 1
mov k, s
add s, s
if 1
; for branch data prefetch mode :
; it's faster for large arrays : larger than (1 << 13) items.
MAIN_num_unrolls equ 10
STEP_LOOP equ STEP_BRANCH
else
MAIN_num_unrolls equ 0
STEP_LOOP equ STEP_1
endif
MOVE_SMALLEST_UP STEP_LOOP, MAIN_num_unrolls, main_exit_label
; jmp end_debug
cmp num_last, 3
jne main_loop_sort
; num_last == 3 (real_size == 4)
LOAD a0, 2
LOAD a1, 3
LOAD a2, 1
STORE e0, 3 ; e0 is alias for a3
STORE a2, 2
SORT a0, a1
end_2:
STORE a0, 0
STORE a1, 1
; end_debug:
MY_POP_PRESERVED_ABI_REGS_UP_TO_INCLUDING_R11
end_1:
MY_ENDP
endif
ifdef Z7_SORT_ASM_USE_SEGMENT
_TEXT$Z7_SORT ENDS
endif
if 0
LEA_IS_D8 (R64) [R2 * 4 + 16]
Lat : TP
2 : 1 : adl-e
2 : 3 p056 adl-p
1 : 2 : p15 hsw-rocket
1 : 2 : p01 snb-ivb
1 : 1 : p1 conroe-wsm
1 : 4 : zen3,zen4
2 : 4 : zen1,zen2
LEA_B_IS (R64) [R2 + R3 * 4]
Lat : TP
1 : 1 : adl-e
2 : 3 p056 adl-p
1 : 2 : p15 hsw-rocket
1 : 2 : p01 snb-ivb
1 : 1 : p1 nhm-wsm
1 : 1 : p0 conroe-wsm
1 : 4 : zen3,zen4
2 :2,4 : zen1,zen2
LEA_B_IS_D8 (R64) [R2 + R3 * 4 + 16]
Lat : TP
2 : 1 : adl-e
2 : 3 p056 adl-p
1 : 2 : p15 ice-rocket
3 : 1 : p1/p15 hsw-rocket
3 : 1 : p01 snb-ivb
1 : 1 : p1 nhm-wsm
1 : 1 : p0 conroe-wsm
2,1 : 2 : zen3,zen4
2 : 2 : zen1,zen2
CMOVB (R64, R64)
Lat : TP
1,2 : 2 : adl-e
1 : 2 p06 adl-p
1 : 2 : p06 bwd-rocket
1,2 : 2 : p0156+p06 hsw
1,2 :1.5 : p015+p05 snb-ivb
1,2 : 1 : p015+p05 nhm
1 : 1 : 2*p015 conroe
1 : 2 : zen3,zen4
1 : 4 : zen1,zen2
ADC (R64, 0)
Lat : TP
1,2 : 2 : adl-e
1 : 2 p06 adl-p
1 : 2 : p06 bwd-rocket
1 :1.5 : p0156+p06 hsw
1 :1.5 : p015+p05 snb-ivb
2 : 1 : 2*p015 conroe-wstm
1 : 2 : zen1,zen2,zen3,zen4
PREFETCHNTA : fetch data into non-temporal cache close to the processor, minimizing cache pollution.
L1 : Pentium3
L2 : NetBurst
L1, not L2: Core duo, Core 2, Atom processors
L1, not L2, may fetch into L3 with fast replacement: Nehalem, Westmere, Sandy Bridge, ...
NEHALEM: Fills L1/L3, L1 LRU is not updated
L3 with fast replacement: Xeon Processors based on Nehalem, Westmere, Sandy Bridge, ...
PREFETCHT0 : fetch data into all cache levels.
PREFETCHT1 : fetch data into L2 and L3
endif
end
|