aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDenys Vlasenko <vda.linux@googlemail.com>2021-10-05 20:00:50 +0200
committerDenys Vlasenko <vda.linux@googlemail.com>2021-10-05 20:01:38 +0200
commit3b411ebbfc749f9f12b0eb739cb5ba3ec052197e (patch)
treeda81f1546b78d25f4ac63e612e76cb27aa4c2db3
parent55578f2fb7c05357fb0b1ce84b616ba8ffd6d907 (diff)
downloadbusybox-w32-3b411ebbfc749f9f12b0eb739cb5ba3ec052197e.tar.gz
busybox-w32-3b411ebbfc749f9f12b0eb739cb5ba3ec052197e.tar.bz2
busybox-w32-3b411ebbfc749f9f12b0eb739cb5ba3ec052197e.zip
tls: replace "26-bit" P256 code with 32-bit one.
function old new delta sp_256_ecc_mulmod_8 - 1171 +1171 sp_256_mod_mul_norm_8 - 834 +834 sp_256_proj_point_dbl_8 - 374 +374 sp_256_mont_reduce_8 - 268 +268 sp_256_mont_mul_8 - 151 +151 sp_256_sub_8 - 76 +76 sp_256_add_8 - 76 +76 sp_256_cmp_8 - 38 +38 static.sp_256_mont_dbl_8 - 31 +31 static.sp_256_mont_sub_8 - 29 +29 sp_256_to_bin_8 - 28 +28 sp_256_point_from_bin2x32 50 73 +23 sp_256_mont_sqr_8 - 7 +7 sp_256_mont_sqr_10 7 - -7 p256_mod 40 32 -8 curve_P256_compute_pubkey_and_premaster 186 167 -19 sp_256_sub_10 22 - -22 sp_256_add_10 22 - -22 sp_256_cmp_10 24 - -24 sp_256_norm_10 31 - -31 static.sp_256_mont_sub_10 49 - -49 static.sp_256_mont_dbl_10 52 - -52 static.sp_256_mul_add_10 82 - -82 sp_256_from_bin_10 119 - -119 sp_256_to_bin_10 120 - -120 sp_256_mont_reduce_10 178 - -178 sp_256_mont_mul_10 214 - -214 sp_256_proj_point_dbl_10 451 - -451 sp_256_ecc_mulmod_10 1216 - -1216 sp_256_mod_mul_norm_10 1305 - -1305 ------------------------------------------------------------------------------ (add/remove: 12/15 grow/shrink: 1/2 up/down: 3106/-3919) Total: -813 bytes Signed-off-by: Denys Vlasenko <vda.linux@googlemail.com>
-rw-r--r--networking/tls.c15
-rw-r--r--networking/tls_sp_c32.c1071
2 files changed, 588 insertions, 498 deletions
diff --git a/networking/tls.c b/networking/tls.c
index 4f0e2b6eb..675ef4b3a 100644
--- a/networking/tls.c
+++ b/networking/tls.c
@@ -2334,7 +2334,6 @@ void FAST_FUNC tls_run_copy_loop(tls_state_t *tls, unsigned flags)
2334// e.g. at the very beginning of wget_main() 2334// e.g. at the very beginning of wget_main()
2335// 2335//
2336{ 2336{
2337//kbuild:lib-$(CONFIG_TLS) += tls_sp_c32_new.o
2338 uint8_t ecc_pub_key32[2 * 32]; 2337 uint8_t ecc_pub_key32[2 * 32];
2339 uint8_t pubkey2x32[2 * 32]; 2338 uint8_t pubkey2x32[2 * 32];
2340 uint8_t premaster32[32]; 2339 uint8_t premaster32[32];
@@ -2345,14 +2344,14 @@ void FAST_FUNC tls_run_copy_loop(tls_state_t *tls, unsigned flags)
2345// memset(ecc_pub_key32, 0x00, sizeof(ecc_pub_key32)); 2344// memset(ecc_pub_key32, 0x00, sizeof(ecc_pub_key32));
2346// ecc_pub_key32[18] = 0xab; 2345// ecc_pub_key32[18] = 0xab;
2347//Random key: 2346//Random key:
2348 tls_get_random(ecc_pub_key32, sizeof(ecc_pub_key32)); 2347// tls_get_random(ecc_pub_key32, sizeof(ecc_pub_key32));
2349//Biased random (almost all zeros or almost all ones): 2348//Biased random (almost all zeros or almost all ones):
2350// srand(time(NULL) ^ getpid()); 2349 srand(time(NULL) ^ getpid());
2351// if (rand() & 1) 2350 if (rand() & 1)
2352// memset(ecc_pub_key32, 0x00, sizeof(ecc_pub_key32)); 2351 memset(ecc_pub_key32, 0x00, sizeof(ecc_pub_key32));
2353// else 2352 else
2354// memset(ecc_pub_key32, 0xff, sizeof(ecc_pub_key32)); 2353 memset(ecc_pub_key32, 0xff, sizeof(ecc_pub_key32));
2355// ecc_pub_key32[rand() & 0x3f] = rand(); 2354 ecc_pub_key32[rand() & 0x3f] = rand();
2356 2355
2357 xmove_fd(xopen("p256.OLD", O_WRONLY | O_CREAT | O_TRUNC), 2); 2356 xmove_fd(xopen("p256.OLD", O_WRONLY | O_CREAT | O_TRUNC), 2);
2358 curve_P256_compute_pubkey_and_premaster( 2357 curve_P256_compute_pubkey_and_premaster(
diff --git a/networking/tls_sp_c32.c b/networking/tls_sp_c32.c
index bba22dee3..b99951890 100644
--- a/networking/tls_sp_c32.c
+++ b/networking/tls_sp_c32.c
@@ -9,6 +9,8 @@
9#define FIXED_SECRET 0 9#define FIXED_SECRET 0
10#define FIXED_PEER_PUBKEY 0 10#define FIXED_PEER_PUBKEY 0
11 11
12#define ALLOW_ASM 1
13
12#if SP_DEBUG 14#if SP_DEBUG
13# define dbg(...) fprintf(stderr, __VA_ARGS__) 15# define dbg(...) fprintf(stderr, __VA_ARGS__)
14static void dump_hex(const char *fmt, const void *vp, int len) 16static void dump_hex(const char *fmt, const void *vp, int len)
@@ -24,7 +26,8 @@ static void dump_hex(const char *fmt, const void *vp, int len)
24# define dump_hex(...) ((void)0) 26# define dump_hex(...) ((void)0)
25#endif 27#endif
26 28
27typedef int32_t sp_digit; 29typedef uint32_t sp_digit;
30typedef int32_t signed_sp_digit;
28 31
29/* The code below is taken from parts of 32/* The code below is taken from parts of
30 * wolfssl-3.15.3/wolfcrypt/src/sp_c32.c 33 * wolfssl-3.15.3/wolfcrypt/src/sp_c32.c
@@ -32,53 +35,23 @@ typedef int32_t sp_digit;
32 * Header comment is kept intact: 35 * Header comment is kept intact:
33 */ 36 */
34 37
35/* sp.c
36 *
37 * Copyright (C) 2006-2018 wolfSSL Inc.
38 *
39 * This file is part of wolfSSL.
40 *
41 * wolfSSL is free software; you can redistribute it and/or modify
42 * it under the terms of the GNU General Public License as published by
43 * the Free Software Foundation; either version 2 of the License, or
44 * (at your option) any later version.
45 *
46 * wolfSSL is distributed in the hope that it will be useful,
47 * but WITHOUT ANY WARRANTY; without even the implied warranty of
48 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
49 * GNU General Public License for more details.
50 *
51 * You should have received a copy of the GNU General Public License
52 * along with this program; if not, write to the Free Software
53 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
54 */
55
56/* Implementation by Sean Parkinson. */
57
58typedef struct sp_point { 38typedef struct sp_point {
59 sp_digit x[2 * 10]; 39 sp_digit x[2 * 8];
60 sp_digit y[2 * 10]; 40 sp_digit y[2 * 8];
61 sp_digit z[2 * 10]; 41 sp_digit z[2 * 8];
62 int infinity; 42 int infinity;
63} sp_point; 43} sp_point;
64 44
65/* The modulus (prime) of the curve P256. */ 45/* The modulus (prime) of the curve P256. */
66static const sp_digit p256_mod[10] = { 46static const sp_digit p256_mod[8] = {
67 0x3ffffff,0x3ffffff,0x3ffffff,0x003ffff,0x0000000, 47 0xffffffff,0xffffffff,0xffffffff,0x00000000,
68 0x0000000,0x0000000,0x0000400,0x3ff0000,0x03fffff, 48 0x00000000,0x00000000,0x00000001,0xffffffff,
69}; 49};
70 50
71#define p256_mp_mod ((sp_digit)0x000001) 51#define p256_mp_mod ((sp_digit)0x000001)
72 52
73/* Normalize the values in each word to 26 bits. */ 53/* Normalize the values in each word to 32 bits - NOP */
74static void sp_256_norm_10(sp_digit* a) 54#define sp_256_norm_8(a) ((void)0)
75{
76 int i;
77 for (i = 0; i < 9; i++) {
78 a[i+1] += a[i] >> 26;
79 a[i] &= 0x3ffffff;
80 }
81}
82 55
83/* Write r as big endian to byte array. 56/* Write r as big endian to byte array.
84 * Fixed length number of bytes written: 32 57 * Fixed length number of bytes written: 32
@@ -86,31 +59,17 @@ static void sp_256_norm_10(sp_digit* a)
86 * r A single precision integer. 59 * r A single precision integer.
87 * a Byte array. 60 * a Byte array.
88 */ 61 */
89static void sp_256_to_bin_10(sp_digit* r, uint8_t* a) 62static void sp_256_to_bin_8(const sp_digit* r, uint8_t* a)
90{ 63{
91 int i, j, s = 0, b; 64 int i;
92 65
93 sp_256_norm_10(r); 66 sp_256_norm_8(r);
94 67
95 j = 256 / 8 - 1; 68 r += 8;
96 a[j] = 0; 69 for (i = 0; i < 8; i++) {
97 for (i = 0; i < 10 && j >= 0; i++) { 70 r--;
98 b = 0; 71 move_to_unaligned32(a, SWAP_BE32(*r));
99 a[j--] |= r[i] << s; 72 a += 4;
100 b += 8 - s;
101 if (j < 0)
102 break;
103 while (b < 26) {
104 a[j--] = r[i] >> b;
105 b += 8;
106 if (j < 0)
107 break;
108 }
109 s = 8 - (b - 26);
110 if (j >= 0)
111 a[j] = 0;
112 if (s != 0)
113 j++;
114 } 73 }
115} 74}
116 75
@@ -120,67 +79,32 @@ static void sp_256_to_bin_10(sp_digit* r, uint8_t* a)
120 * a Byte array. 79 * a Byte array.
121 * n Number of bytes in array to read. 80 * n Number of bytes in array to read.
122 */ 81 */
123static void sp_256_from_bin_10(sp_digit* r, const uint8_t* a) 82static void sp_256_from_bin_8(sp_digit* r, const uint8_t* a)
124{ 83{
125 int i, j = 0, s = 0; 84 int i;
126 85
127 r[0] = 0; 86 r += 8;
128 for (i = 32 - 1; i >= 0; i--) { 87 for (i = 0; i < 8; i++) {
129 r[j] |= ((sp_digit)a[i]) << s; 88 sp_digit v;
130 if (s >= 18) { 89 move_from_unaligned32(v, a);
131 r[j] &= 0x3ffffff; 90 *--r = SWAP_BE32(v);
132 s = 26 - s; 91 a += 4;
133 r[++j] = a[i] >> s;
134 s = 8 - s;
135 }
136 else
137 s += 8;
138 } 92 }
139} 93}
140 94
141#if SP_DEBUG 95#if SP_DEBUG
142static void dump_256(const char *fmt, const sp_digit* cr) 96static void dump_256(const char *fmt, const sp_digit* r)
143{ 97{
144 sp_digit* r = (sp_digit*)cr;
145 uint8_t b32[32]; 98 uint8_t b32[32];
146 sp_256_to_bin_10(r, b32); 99 sp_256_to_bin_8(r, b32);
147 dump_hex(fmt, b32, 32); 100 dump_hex(fmt, b32, 32);
148} 101}
149static void dump_512(const char *fmt, const sp_digit* cr) 102static void dump_512(const char *fmt, const sp_digit* r)
150{ 103{
151 sp_digit* r = (sp_digit*)cr; 104 uint8_t b64[64];
152 uint8_t a[64]; 105 sp_256_to_bin_8(r, b64 + 32);
153 int i, j, s, b; 106 sp_256_to_bin_8(r+8, b64);
154 107 dump_hex(fmt, b64, 64);
155 /* sp_512_norm_10: */
156 for (i = 0; i < 19; i++) {
157 r[i+1] += r[i] >> 26;
158 r[i] &= 0x3ffffff;
159 }
160 /* sp_512_to_bin_10: */
161 s = 0;
162 j = 512 / 8 - 1;
163 a[j] = 0;
164 for (i = 0; i < 20 && j >= 0; i++) {
165 b = 0;
166 a[j--] |= r[i] << s;
167 b += 8 - s;
168 if (j < 0)
169 break;
170 while (b < 26) {
171 a[j--] = r[i] >> b;
172 b += 8;
173 if (j < 0)
174 break;
175 }
176 s = 8 - (b - 26);
177 if (j >= 0)
178 a[j] = 0;
179 if (s != 0)
180 j++;
181 }
182
183 dump_hex(fmt, a, 64);
184} 108}
185#else 109#else
186# define dump_256(...) ((void)0) 110# define dump_256(...) ((void)0)
@@ -192,8 +116,8 @@ static void sp_256_point_from_bin2x32(sp_point* p, const uint8_t *bin2x32)
192{ 116{
193 memset(p, 0, sizeof(*p)); 117 memset(p, 0, sizeof(*p));
194 /*p->infinity = 0;*/ 118 /*p->infinity = 0;*/
195 sp_256_from_bin_10(p->x, bin2x32); 119 sp_256_from_bin_8(p->x, bin2x32);
196 sp_256_from_bin_10(p->y, bin2x32 + 32); 120 sp_256_from_bin_8(p->y, bin2x32 + 32);
197 p->z[0] = 1; /* p->z = 1 */ 121 p->z[0] = 1; /* p->z = 1 */
198} 122}
199 123
@@ -202,170 +126,303 @@ static void sp_256_point_from_bin2x32(sp_point* p, const uint8_t *bin2x32)
202 * return -ve, 0 or +ve if a is less than, equal to or greater than b 126 * return -ve, 0 or +ve if a is less than, equal to or greater than b
203 * respectively. 127 * respectively.
204 */ 128 */
205static sp_digit sp_256_cmp_10(const sp_digit* a, const sp_digit* b) 129static signed_sp_digit sp_256_cmp_8(const sp_digit* a, const sp_digit* b)
206{ 130{
207 sp_digit r;
208 int i; 131 int i;
209 for (i = 9; i >= 0; i--) { 132 for (i = 7; i >= 0; i--) {
210 r = a[i] - b[i]; 133/* signed_sp_digit r = a[i] - b[i];
211 if (r != 0) 134 * if (r != 0)
212 break; 135 * return r;
136 * does not work: think about a[i]=0, b[i]=0xffffffff
137 */
138 if (a[i] == b[i])
139 continue;
140 return (a[i] > b[i]) * 2 - 1;
213 } 141 }
214 return r; 142 return 0;
215} 143}
216 144
217/* Compare two numbers to determine if they are equal. 145/* Compare two numbers to determine if they are equal.
218 * 146 *
219 * return 1 when equal and 0 otherwise. 147 * return 1 when equal and 0 otherwise.
220 */ 148 */
221static int sp_256_cmp_equal_10(const sp_digit* a, const sp_digit* b) 149static int sp_256_cmp_equal_8(const sp_digit* a, const sp_digit* b)
222{ 150{
223 return sp_256_cmp_10(a, b) == 0; 151 return sp_256_cmp_8(a, b) == 0;
224} 152}
225 153
226/* Add b to a into r. (r = a + b) */ 154/* Add b to a into r. (r = a + b). Return !0 on overflow */
227static void sp_256_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b) 155static int sp_256_add_8(sp_digit* r, const sp_digit* a, const sp_digit* b)
228{ 156{
157#if ALLOW_ASM && defined(__GNUC__) && defined(__i386__)
158 sp_digit reg;
159 asm volatile (
160"\n movl (%0), %3"
161"\n addl (%1), %3"
162"\n movl %3, (%2)"
163"\n"
164"\n movl 1*4(%0), %3"
165"\n adcl 1*4(%1), %3"
166"\n movl %3, 1*4(%2)"
167"\n"
168"\n movl 2*4(%0), %3"
169"\n adcl 2*4(%1), %3"
170"\n movl %3, 2*4(%2)"
171"\n"
172"\n movl 3*4(%0), %3"
173"\n adcl 3*4(%1), %3"
174"\n movl %3, 3*4(%2)"
175"\n"
176"\n movl 4*4(%0), %3"
177"\n adcl 4*4(%1), %3"
178"\n movl %3, 4*4(%2)"
179"\n"
180"\n movl 5*4(%0), %3"
181"\n adcl 5*4(%1), %3"
182"\n movl %3, 5*4(%2)"
183"\n"
184"\n movl 6*4(%0), %3"
185"\n adcl 6*4(%1), %3"
186"\n movl %3, 6*4(%2)"
187"\n"
188"\n movl 7*4(%0), %3"
189"\n adcl 7*4(%1), %3"
190"\n movl %3, 7*4(%2)"
191"\n"
192"\n sbbl %3, %3"
193"\n"
194 : "=r" (a), "=r" (b), "=r" (r), "=r" (reg)
195 : "0" (a), "1" (b), "2" (r)
196 : "memory"
197 );
198 return reg;
199#else
229 int i; 200 int i;
230 for (i = 0; i < 10; i++) 201 sp_digit carry;
231 r[i] = a[i] + b[i]; 202
203 carry = 0;
204 for (i = 0; i < 8; i++) {
205 sp_digit w, v;
206 w = b[i] + carry;
207 v = a[i];
208 if (w != 0) {
209 v = a[i] + w;
210 carry = (v < a[i]);
211 /* hope compiler detects above as "carry flag set" */
212 }
213 /* else: b + carry == 0, two cases:
214 * b:ffffffff, carry:1
215 * b:00000000, carry:0
216 * in either case, r[i] = a[i] and carry remains unchanged
217 */
218 r[i] = v;
219 }
220 return carry;
221#endif
232} 222}
233 223
234/* Sub b from a into r. (r = a - b) */ 224/* Sub b from a into r. (r = a - b). Return !0 on underflow */
235static void sp_256_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b) 225static int sp_256_sub_8(sp_digit* r, const sp_digit* a, const sp_digit* b)
236{ 226{
227#if ALLOW_ASM && defined(__GNUC__) && defined(__i386__)
228 sp_digit reg;
229 asm volatile (
230"\n movl (%0), %3"
231"\n subl (%1), %3"
232"\n movl %3, (%2)"
233"\n"
234"\n movl 1*4(%0), %3"
235"\n sbbl 1*4(%1), %3"
236"\n movl %3, 1*4(%2)"
237"\n"
238"\n movl 2*4(%0), %3"
239"\n sbbl 2*4(%1), %3"
240"\n movl %3, 2*4(%2)"
241"\n"
242"\n movl 3*4(%0), %3"
243"\n sbbl 3*4(%1), %3"
244"\n movl %3, 3*4(%2)"
245"\n"
246"\n movl 4*4(%0), %3"
247"\n sbbl 4*4(%1), %3"
248"\n movl %3, 4*4(%2)"
249"\n"
250"\n movl 5*4(%0), %3"
251"\n sbbl 5*4(%1), %3"
252"\n movl %3, 5*4(%2)"
253"\n"
254"\n movl 6*4(%0), %3"
255"\n sbbl 6*4(%1), %3"
256"\n movl %3, 6*4(%2)"
257"\n"
258"\n movl 7*4(%0), %3"
259"\n sbbl 7*4(%1), %3"
260"\n movl %3, 7*4(%2)"
261"\n"
262"\n sbbl %3, %3"
263"\n"
264 : "=r" (a), "=r" (b), "=r" (r), "=r" (reg)
265 : "0" (a), "1" (b), "2" (r)
266 : "memory"
267 );
268 return reg;
269#else
237 int i; 270 int i;
238 for (i = 0; i < 10; i++) 271 sp_digit borrow;
239 r[i] = a[i] - b[i]; 272
273 borrow = 0;
274 for (i = 0; i < 8; i++) {
275 sp_digit w, v;
276 w = b[i] + borrow;
277 v = a[i];
278 if (w != 0) {
279 v = a[i] - w;
280 borrow = (v > a[i]);
281 /* hope compiler detects above as "carry flag set" */
282 }
283 /* else: b + borrow == 0, two cases:
284 * b:ffffffff, borrow:1
285 * b:00000000, borrow:0
286 * in either case, r[i] = a[i] and borrow remains unchanged
287 */
288 r[i] = v;
289 }
290 return borrow;
291#endif
240} 292}
241 293
242/* Multiply a and b into r. (r = a * b) */ 294/* Multiply a and b into r. (r = a * b) */
243static void sp_256_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b) 295static void sp_256_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b)
244{ 296{
297 sp_digit rr[15]; /* in case r coincides with a or b */
245 int i, j, k; 298 int i, j, k;
246 int64_t c; 299 uint64_t acc;
247 300
248 c = ((int64_t)a[9]) * b[9]; 301 acc = 0;
249 r[19] = (sp_digit)(c >> 26); 302 for (k = 0; k < 15; k++) {
250 c = (c & 0x3ffffff) << 26; 303 uint32_t acc_hi;
251 for (k = 17; k >= 0; k--) { 304 i = k - 7;
252 for (i = 9; i >= 0; i--) { 305 if (i < 0)
253 j = k - i; 306 i = 0;
254 if (j >= 10) 307 j = k - i;
255 break; 308 acc_hi = 0;
256 if (j < 0) 309 while (i != 8 && i <= k) {
257 continue; 310 uint64_t m = ((uint64_t)a[i]) * b[j];
258 c += ((int64_t)a[i]) * b[j]; 311 acc += m;
312 if (acc < m)
313 acc_hi++;
314 j--;
315 i++;
259 } 316 }
260 r[k + 2] += c >> 52; 317 rr[k] = acc;
261 r[k + 1] = (c >> 26) & 0x3ffffff; 318 acc = (acc >> 32) | ((uint64_t)acc_hi << 32);
262 c = (c & 0x3ffffff) << 26;
263 } 319 }
264 r[0] = (sp_digit)(c >> 26); 320 r[15] = acc;
321 memcpy(r, rr, sizeof(rr));
265} 322}
266 323
267/* Shift number right one bit. Bottom bit is lost. */ 324/* Shift number right one bit. Bottom bit is lost. */
268static void sp_256_rshift1_10(sp_digit* r, sp_digit* a) 325static void sp_256_rshift1_8(sp_digit* r, sp_digit* a, sp_digit carry)
269{ 326{
270 int i; 327 int i;
271 for (i = 0; i < 9; i++) 328
272 r[i] = ((a[i] >> 1) | (a[i + 1] << 25)) & 0x3ffffff; 329 carry = (!!carry << 31);
273 r[9] = a[9] >> 1; 330 for (i = 7; i >= 0; i--) {
331 sp_digit c = a[i] << 31;
332 r[i] = (a[i] >> 1) | carry;
333 carry = c;
334 }
274} 335}
275 336
276/* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m) */ 337/* Divide the number by 2 mod the modulus (prime). (r = a / 2 % m) */
277static void sp_256_div2_10(sp_digit* r, const sp_digit* a, const sp_digit* m) 338static void sp_256_div2_8(sp_digit* r, const sp_digit* a, const sp_digit* m)
278{ 339{
340 int carry = 0;
279 if (a[0] & 1) 341 if (a[0] & 1)
280 sp_256_add_10(r, a, m); 342 carry = sp_256_add_8(r, a, m);
281 sp_256_norm_10(r); 343 sp_256_norm_8(r);
282 sp_256_rshift1_10(r, r); 344 sp_256_rshift1_8(r, r, carry);
283} 345}
284 346
285/* Add two Montgomery form numbers (r = a + b % m) */ 347/* Add two Montgomery form numbers (r = a + b % m) */
286static void sp_256_mont_add_10(sp_digit* r, const sp_digit* a, const sp_digit* b, 348static void sp_256_mont_add_8(sp_digit* r, const sp_digit* a, const sp_digit* b,
287 const sp_digit* m) 349 const sp_digit* m)
288{ 350{
289 sp_256_add_10(r, a, b); 351 int carry = sp_256_add_8(r, a, b);
290 sp_256_norm_10(r); 352 sp_256_norm_8(r);
291 if ((r[9] >> 22) > 0) { 353 if (carry) {
292 sp_256_sub_10(r, r, m); 354 sp_256_sub_8(r, r, m);
293 sp_256_norm_10(r); 355 sp_256_norm_8(r);
294 } 356 }
295} 357}
296 358
297/* Subtract two Montgomery form numbers (r = a - b % m) */ 359/* Subtract two Montgomery form numbers (r = a - b % m) */
298static void sp_256_mont_sub_10(sp_digit* r, const sp_digit* a, const sp_digit* b, 360static void sp_256_mont_sub_8(sp_digit* r, const sp_digit* a, const sp_digit* b,
299 const sp_digit* m) 361 const sp_digit* m)
300{ 362{
301 sp_256_sub_10(r, a, b); 363 int borrow;
302 sp_256_norm_10(r); 364 borrow = sp_256_sub_8(r, a, b);
303 if (r[9] >> 22) { 365 sp_256_norm_8(r);
304 sp_256_add_10(r, r, m); 366 if (borrow) {
305 sp_256_norm_10(r); 367 sp_256_add_8(r, r, m);
306 r[9] &= 0x03fffff; /* truncate to 22 bits */ 368 sp_256_norm_8(r);
307 } 369 }
308} 370}
309 371
310/* Double a Montgomery form number (r = a + a % m) */ 372/* Double a Montgomery form number (r = a + a % m) */
311static void sp_256_mont_dbl_10(sp_digit* r, const sp_digit* a, const sp_digit* m) 373static void sp_256_mont_dbl_8(sp_digit* r, const sp_digit* a, const sp_digit* m)
312{ 374{
313 sp_256_add_10(r, a, a); 375 int carry = sp_256_add_8(r, a, a);
314 sp_256_norm_10(r); 376 sp_256_norm_8(r);
315 if ((r[9] >> 22) > 0) 377 if (carry)
316 sp_256_sub_10(r, r, m); 378 sp_256_sub_8(r, r, m);
317 sp_256_norm_10(r); 379 sp_256_norm_8(r);
318} 380}
319 381
320/* Triple a Montgomery form number (r = a + a + a % m) */ 382/* Triple a Montgomery form number (r = a + a + a % m) */
321static void sp_256_mont_tpl_10(sp_digit* r, const sp_digit* a, const sp_digit* m) 383static void sp_256_mont_tpl_8(sp_digit* r, const sp_digit* a, const sp_digit* m)
322{ 384{
323 sp_256_add_10(r, a, a); 385 int carry = sp_256_add_8(r, a, a);
324 sp_256_norm_10(r); 386 sp_256_norm_8(r);
325 if ((r[9] >> 22) > 0) { 387 if (carry) {
326 sp_256_sub_10(r, r, m); 388 sp_256_sub_8(r, r, m);
327 sp_256_norm_10(r); 389 sp_256_norm_8(r);
328 } 390 }
329 sp_256_add_10(r, r, a); 391 carry = sp_256_add_8(r, r, a);
330 sp_256_norm_10(r); 392 sp_256_norm_8(r);
331 if ((r[9] >> 22) > 0) { 393 if (carry) {
332 sp_256_sub_10(r, r, m); 394 sp_256_sub_8(r, r, m);
333 sp_256_norm_10(r); 395 sp_256_norm_8(r);
334 } 396 }
335 r[9] &= 0x03fffff; /* truncate to 22 bits */
336} 397}
337 398
338/* Shift the result in the high 256 bits down to the bottom. */ 399/* Shift the result in the high 256 bits down to the bottom. */
339static void sp_256_mont_shift_10(sp_digit* r, const sp_digit* a) 400static void sp_256_mont_shift_8(sp_digit* r, const sp_digit* a)
340{ 401{
341 int i; 402 int i;
342 sp_digit n, s; 403
343 404 for (i = 0; i < 8; i++) {
344 s = a[10]; 405 r[i] = a[i+8];
345 n = a[9] >> 22; 406 r[i+8] = 0;
346 for (i = 0; i < 9; i++) {
347 n += (s & 0x3ffffff) << 4;
348 r[i] = n & 0x3ffffff;
349 n >>= 26;
350 s = a[11 + i] + (s >> 26);
351 } 407 }
352 n += s << 4;
353 r[9] = n;
354 memset(&r[10], 0, sizeof(*r) * 10);
355} 408}
356 409
357/* Mul a by scalar b and add into r. (r += a * b) */ 410/* Mul a by scalar b and add into r. (r += a * b) */
358static void sp_256_mul_add_10(sp_digit* r, const sp_digit* a, sp_digit b) 411static int sp_256_mul_add_8(sp_digit* r, const sp_digit* a, sp_digit b)
359{ 412{
360 int64_t t = 0; 413 uint64_t t = 0;
361 int i; 414 int i;
362 415
363 for (i = 0; i < 10; i++) { 416 for (i = 0; i < 8; i++) {
364 t += ((int64_t)b * a[i]) + r[i]; 417 uint32_t t_hi;
365 r[i] = t & 0x3ffffff; 418 uint64_t m = ((uint64_t)b * a[i]) + r[i];
366 t >>= 26; 419 t += m;
420 t_hi = (t < m);
421 r[i] = (sp_digit)t;
422 t = (t >> 32) | ((uint64_t)t_hi << 32);
367 } 423 }
368 r[10] += t; 424 r[8] += (sp_digit)t;
425 return (r[8] < (sp_digit)t); /* 1 if addition overflowed */
369} 426}
370 427
371/* Reduce the number back to 256 bits using Montgomery reduction. 428/* Reduce the number back to 256 bits using Montgomery reduction.
@@ -374,7 +431,7 @@ static void sp_256_mul_add_10(sp_digit* r, const sp_digit* a, sp_digit b)
374 * m The single precision number representing the modulus. 431 * m The single precision number representing the modulus.
375 * mp The digit representing the negative inverse of m mod 2^n. 432 * mp The digit representing the negative inverse of m mod 2^n.
376 */ 433 */
377static void sp_256_mont_reduce_10(sp_digit* a /*, const sp_digit* m, sp_digit mp*/) 434static void sp_256_mont_reduce_8(sp_digit* a/*, const sp_digit* m, sp_digit mp*/)
378{ 435{
379 const sp_digit* m = p256_mod; 436 const sp_digit* m = p256_mod;
380 sp_digit mp = p256_mp_mod; 437 sp_digit mp = p256_mp_mod;
@@ -383,33 +440,144 @@ static void sp_256_mont_reduce_10(sp_digit* a /*, const sp_digit* m, sp_digit mp
383 sp_digit mu; 440 sp_digit mu;
384 441
385 if (mp != 1) { 442 if (mp != 1) {
386 for (i = 0; i < 9; i++) { 443 int too_wide;
387 mu = (a[i] * mp) & 0x3ffffff; 444 for (i = 0; i < 7; i++) {
388 sp_256_mul_add_10(a+i, m, mu); 445 mu = (sp_digit)(a[i] * mp);
389 a[i+1] += a[i] >> 26; 446 if (sp_256_mul_add_8(a+i, m, mu))
447 (a+i)[9]++;
390 } 448 }
391 mu = (a[i] * mp) & 0x03fffff; 449 mu = (sp_digit)(a[7] * mp);
392 sp_256_mul_add_10(a+i, m, mu); 450 too_wide = sp_256_mul_add_8(a+7, m, mu);
393 a[i+1] += a[i] >> 26; 451 sp_256_mont_shift_8(a, a);
394 a[i] &= 0x3ffffff; 452 if (too_wide)
453 sp_256_sub_8(a, a, m);
454 sp_256_norm_8(a);
395 } 455 }
396 else { /* Same code for explicit mp == 1 (which is always the case for P256) */ 456 else { /* Same code for explicit mp == 1 (which is always the case for P256) */
397 for (i = 0; i < 9; i++) { 457 sp_digit word16th = 0;
398 mu = a[i] & 0x3ffffff; 458 for (i = 0; i < 8; i++) {
399 sp_256_mul_add_10(a+i, m, mu); 459 mu = a[i];
400 a[i+1] += a[i] >> 26; 460//m = ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff ffffffff
461 if (sp_256_mul_add_8(a+i, m, mu)) {
462 int j = i + 8;
463 inc_next_word:
464 if (++j > 15) { /* a[16] array has no more words? */
465 word16th++;
466 continue;
467 }
468 if (++a[j] == 0) /* did this overflow too? */
469 goto inc_next_word;
470 }
401 } 471 }
402 mu = a[i] & 0x03fffff; 472 sp_256_mont_shift_8(a, a);
403 sp_256_mul_add_10(a+i, m, mu); 473 if (word16th != 0)
404 a[i+1] += a[i] >> 26; 474 sp_256_sub_8(a, a, m);
405 a[i] &= 0x3ffffff; 475 sp_256_norm_8(a);
406 } 476 }
407
408 sp_256_mont_shift_10(a, a);
409 if ((a[9] >> 22) > 0)
410 sp_256_sub_10(a, a, m);
411 sp_256_norm_10(a);
412} 477}
478#if 0
479//TODO: arm32 asm (also adapt for x86?)
480static void sp_256_mont_reduce_8(sp_digit* a, sp_digit* m, sp_digit mp)
481{
482 sp_digit ca = 0;
483
484 asm volatile (
485 # i = 0
486 mov r12, #0 # i = 0
487 ldr r10, [%[a], #0] # r10 = a[0]
488 ldr r14, [%[a], #4] # r14 = a[1]
4891:
490 # mu = a[i] * mp #
491 mul r8, %[mp], r10 # mu = a[i] * mp
492 # a[i+0] += m[0] * mu #
493 ldr r7, [%[m], #0] # a[i+0] += m[0] * mu
494 ldr r9, [%[a], #0] #
495 umull r6, r7, r8, r7 # r7:r6 = mu * m[0]
496 adds r10, r10, r6 # r5:r10 += r7:r6
497 adc r5, r7, #0 #
498 # a[i+1] += m[1] * mu #
499 ldr r7, [%[m], #4] # a[i+1] += m[1] * mu
500 ldr r9, [%[a], #4] #
501 umull r6, r7, r8, r7 # r7:r6 = mu * m[1]
502 adds r10, r14, r6 # r4:r10 = r7:r14 + r7:r6
503 adc r4, r7, #0 #
504 adds r10, r10, r5 # r4:r10 += r5
505 adc r4, r4, #0 #
506 # a[i+2] += m[2] * mu #
507 ldr r7, [%[m], #8] # a[i+2] += m[2] * mu
508 ldr r14, [%[a], #8] #
509 umull r6, r7, r8, r7 #
510 adds r14, r14, r6 #
511 adc r5, r7, #0 #
512 adds r14, r14, r4 #
513 adc r5, r5, #0 #
514 # a[i+3] += m[3] * mu #
515 ldr r7, [%[m], #12] # a[i+3] += m[3] * mu
516 ldr r9, [%[a], #12] #
517 umull r6, r7, r8, r7 #
518 adds r9, r9, r6 #
519 adc r4, r7, #0 #
520 adds r9, r9, r5 #
521 str r9, [%[a], #12] # a[3] = r9
522 adc r4, r4, #0 #
523 # a[i+4] += m[4] * mu #
524 ldr r7, [%[m], #16] # a[i+4] += m[4] * mu
525 ldr r9, [%[a], #16] #
526 umull r6, r7, r8, r7 #
527 adds r9, r9, r6 #
528 adc r5, r7, #0 #
529 adds r9, r9, r4 #
530 str r9, [%[a], #16] # a[4] = r9
531 adc r5, r5, #0 #
532 # a[i+5] += m[5] * mu #
533 ldr r7, [%[m], #20] # a[i+5] += m[5] * mu
534 ldr r9, [%[a], #20] #
535 umull r6, r7, r8, r7 #
536 adds r9, r9, r6 #
537 adc r4, r7, #0 #
538 adds r9, r9, r5 #
539 str r9, [%[a], #20] # a[5] = r9
540 adc r4, r4, #0 #
541 # a[i+6] += m[6] * mu #
542 ldr r7, [%[m], #24] # a[i+6] += m[6] * mu
543 ldr r9, [%[a], #24] #
544 umull r6, r7, r8, r7 #
545 adds r9, r9, r6 #
546 adc r5, r7, #0 #
547 adds r9, r9, r4 #
548 str r9, [%[a], #24] # a[6] = r9
549 adc r5, r5, #0 #
550 # a[i+7] += m[7] * mu #
551 ldr r7, [%[m], #28] # a[i+7] += m[7] * mu
552 ldr r9, [%[a], #28] #
553 umull r6, r7, r8, r7 #
554 adds r5, r5, r6 #
555 adcs r7, r7, %[ca] #
556 mov %[ca], #0 #
557 adc %[ca], %[ca], %[ca] # ca = CF
558 adds r9, r9, r5 #
559 str r9, [%[a], #28] # a[7] = r9
560 ldr r9, [%[a], #32] # r9 = a[8]
561 adcs r9, r9, r7 #
562 str r9, [%[a], #32] # a[8] = r9
563 adc %[ca], %[ca], #0 # ca += CF
564 # i += 1 # i++
565 add %[a], %[a], #4 # a++
566 add r12, r12, #4 # i += 4
567 cmp r12, #32 # if (i < 32)
568 blt 1b # goto 1
569
570 str r10, [%[a], #0] # a[0] = r10
571 str r14, [%[a], #4] # a[1] = r14
572 : [ca] "+r" (ca), [a] "+r" (a)
573 : [m] "r" (m), [mp] "r" (mp)
574 : "memory", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r14", "r12"
575 );
576
577 if (ca)
578 a -= m;
579}
580#endif
413 581
414/* Multiply two Montogmery form numbers mod the modulus (prime). 582/* Multiply two Montogmery form numbers mod the modulus (prime).
415 * (r = a * b mod m) 583 * (r = a * b mod m)
@@ -420,14 +588,13 @@ static void sp_256_mont_reduce_10(sp_digit* a /*, const sp_digit* m, sp_digit mp
420 * m Modulus (prime). 588 * m Modulus (prime).
421 * mp Montogmery mulitplier. 589 * mp Montogmery mulitplier.
422 */ 590 */
423static void sp_256_mont_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b 591static void sp_256_mont_mul_8(sp_digit* r, const sp_digit* a, const sp_digit* b
424 /*, const sp_digit* m, sp_digit mp*/) 592 /*, const sp_digit* m, sp_digit mp*/)
425{ 593{
426 //const sp_digit* m = p256_mod; 594 //const sp_digit* m = p256_mod;
427 //sp_digit mp = p256_mp_mod; 595 //sp_digit mp = p256_mp_mod;
428 596 sp_256_mul_8(r, a, b);
429 sp_256_mul_10(r, a, b); 597 sp_256_mont_reduce_8(r /*, m, mp*/);
430 sp_256_mont_reduce_10(r /*, m, mp*/);
431} 598}
432 599
433/* Square the Montgomery form number. (r = a * a mod m) 600/* Square the Montgomery form number. (r = a * a mod m)
@@ -437,13 +604,12 @@ static void sp_256_mont_mul_10(sp_digit* r, const sp_digit* a, const sp_digit* b
437 * m Modulus (prime). 604 * m Modulus (prime).
438 * mp Montogmery mulitplier. 605 * mp Montogmery mulitplier.
439 */ 606 */
440static void sp_256_mont_sqr_10(sp_digit* r, const sp_digit* a 607static void sp_256_mont_sqr_8(sp_digit* r, const sp_digit* a
441 /*, const sp_digit* m, sp_digit mp*/) 608 /*, const sp_digit* m, sp_digit mp*/)
442{ 609{
443 //const sp_digit* m = p256_mod; 610 //const sp_digit* m = p256_mod;
444 //sp_digit mp = p256_mp_mod; 611 //sp_digit mp = p256_mp_mod;
445 612 sp_256_mont_mul_8(r, a, a /*, m, mp*/);
446 sp_256_mont_mul_10(r, a, a /*, m, mp*/);
447} 613}
448 614
449/* Invert the number, in Montgomery form, modulo the modulus (prime) of the 615/* Invert the number, in Montgomery form, modulo the modulus (prime) of the
@@ -464,19 +630,19 @@ static const uint32_t p256_mod_2[8] = {
464//543210987654321098765432109876543210987654321098765432109876543210...09876543210...09876543210 630//543210987654321098765432109876543210987654321098765432109876543210...09876543210...09876543210
465//111111111111111111111111111111110000000000000000000000000000000100...00000111111...11111111101 631//111111111111111111111111111111110000000000000000000000000000000100...00000111111...11111111101
466#endif 632#endif
467static void sp_256_mont_inv_10(sp_digit* r, sp_digit* a) 633static void sp_256_mont_inv_8(sp_digit* r, sp_digit* a)
468{ 634{
469 sp_digit t[2*10]; //can be just [10]? 635 sp_digit t[2*8]; //can be just [8]?
470 int i; 636 int i;
471 637
472 memcpy(t, a, sizeof(sp_digit) * 10); 638 memcpy(t, a, sizeof(sp_digit) * 8);
473 for (i = 254; i >= 0; i--) { 639 for (i = 254; i >= 0; i--) {
474 sp_256_mont_sqr_10(t, t /*, p256_mod, p256_mp_mod*/); 640 sp_256_mont_sqr_8(t, t /*, p256_mod, p256_mp_mod*/);
475 /*if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32)))*/ 641 /*if (p256_mod_2[i / 32] & ((sp_digit)1 << (i % 32)))*/
476 if (i >= 224 || i == 192 || (i <= 95 && i != 1)) 642 if (i >= 224 || i == 192 || (i <= 95 && i != 1))
477 sp_256_mont_mul_10(t, t, a /*, p256_mod, p256_mp_mod*/); 643 sp_256_mont_mul_8(t, t, a /*, p256_mod, p256_mp_mod*/);
478 } 644 }
479 memcpy(r, t, sizeof(sp_digit) * 10); 645 memcpy(r, t, sizeof(sp_digit) * 8);
480} 646}
481 647
482/* Multiply a number by Montogmery normalizer mod modulus (prime). 648/* Multiply a number by Montogmery normalizer mod modulus (prime).
@@ -484,93 +650,29 @@ static void sp_256_mont_inv_10(sp_digit* r, sp_digit* a)
484 * r The resulting Montgomery form number. 650 * r The resulting Montgomery form number.
485 * a The number to convert. 651 * a The number to convert.
486 */ 652 */
487static void sp_256_mod_mul_norm_10(sp_digit* r, const sp_digit* a) 653static void sp_256_mod_mul_norm_8(sp_digit* r, const sp_digit* a)
488{ 654{
489 int64_t t[8]; 655 int64_t t[8];
490 int64_t o; 656 int32_t o;
491 uint32_t a32;
492 657
658#define A(n) ((uint64_t)a[n])
493 /* 1 1 0 -1 -1 -1 -1 0 */ 659 /* 1 1 0 -1 -1 -1 -1 0 */
660 t[0] = 0 + A(0) + A(1) - A(3) - A(4) - A(5) - A(6);
494 /* 0 1 1 0 -1 -1 -1 -1 */ 661 /* 0 1 1 0 -1 -1 -1 -1 */
662 t[1] = 0 + A(1) + A(2) - A(4) - A(5) - A(6) - A(7);
495 /* 0 0 1 1 0 -1 -1 -1 */ 663 /* 0 0 1 1 0 -1 -1 -1 */
664 t[2] = 0 + A(2) + A(3) - A(5) - A(6) - A(7);
496 /* -1 -1 0 2 2 1 0 -1 */ 665 /* -1 -1 0 2 2 1 0 -1 */
666 t[3] = 0 - A(0) - A(1) + 2 * A(3) + 2 * A(4) + A(5) - A(7);
497 /* 0 -1 -1 0 2 2 1 0 */ 667 /* 0 -1 -1 0 2 2 1 0 */
668 t[4] = 0 - A(1) - A(2) + 2 * A(4) + 2 * A(5) + A(6);
498 /* 0 0 -1 -1 0 2 2 1 */ 669 /* 0 0 -1 -1 0 2 2 1 */
670 t[5] = 0 - A(2) - A(3) + 2 * A(5) + 2 * A(6) + A(7);
499 /* -1 -1 0 0 0 1 3 2 */ 671 /* -1 -1 0 0 0 1 3 2 */
672 t[6] = 0 - A(0) - A(1) + A(5) + 3 * A(6) + 2 * A(7);
500 /* 1 0 -1 -1 -1 -1 0 3 */ 673 /* 1 0 -1 -1 -1 -1 0 3 */
501 // t[] should be calculated from "a" (converted from 26-bit to 32-bit vector a32[8]) 674 t[7] = 0 + A(0) - A(2) - A(3) - A(4) - A(5) + 3 * A(7);
502 // according to the above matrix: 675#undef A
503 //t[0] = 0 + a32[0] + a32[1] - a32[3] - a32[4] - a32[5] - a32[6] ;
504 //t[1] = 0 + a32[1] + a32[2] - a32[4] - a32[5] - a32[6] - a32[7] ;
505 //t[2] = 0 + a32[2] + a32[3] - a32[5] - a32[6] - a32[7] ;
506 //t[3] = 0 - a32[0] - a32[1] + 2*a32[3] + 2*a32[4] + a32[5] - a32[7] ;
507 //t[4] = 0 - a32[1] - a32[2] + 2*a32[4] + 2*a32[5] + a32[6] ;
508 //t[5] = 0 - a32[2] - a32[3] + 2*a32[5] + 2*a32[6] + a32[7] ;
509 //t[6] = 0 - a32[0] - a32[1] + a32[5] + 3*a32[6] + 2*a32[7];
510 //t[7] = 0 + a32[0] - a32[2] - a32[3] - a32[4] - a32[5] + 3*a32[7];
511 // We can do it "piecemeal" after each a32[i] is known, no need to store entire a32[8] vector:
512
513#define A32 (int64_t)a32
514 a32 = a[0] | (a[1] << 26);
515 t[0] = 0 + A32;
516 t[3] = 0 - A32;
517 t[6] = 0 - A32;
518 t[7] = 0 + A32;
519
520 a32 = (a[1] >> 6) | (a[2] << 20);
521 t[0] += A32 ;
522 t[1] = 0 + A32;
523 t[3] -= A32 ;
524 t[4] = 0 - A32;
525 t[6] -= A32 ;
526
527 a32 = (a[2] >> 12) | (a[3] << 14);
528 t[1] += A32 ;
529 t[2] = 0 + A32;
530 t[4] -= A32 ;
531 t[5] = 0 - A32;
532 t[7] -= A32 ;
533
534 a32 = (a[3] >> 18) | (a[4] << 8);
535 t[0] -= A32 ;
536 t[2] += A32 ;
537 t[3] += 2*A32;
538 t[5] -= A32 ;
539 t[7] -= A32 ;
540
541 a32 = (a[4] >> 24) | (a[5] << 2) | (a[6] << 28);
542 t[0] -= A32 ;
543 t[1] -= A32 ;
544 t[3] += 2*A32;
545 t[4] += 2*A32;
546 t[7] -= A32 ;
547
548 a32 = (a[6] >> 4) | (a[7] << 22);
549 t[0] -= A32 ;
550 t[1] -= A32 ;
551 t[2] -= A32 ;
552 t[3] += A32 ;
553 t[4] += 2*A32;
554 t[5] += 2*A32;
555 t[6] += A32 ;
556 t[7] -= A32 ;
557
558 a32 = (a[7] >> 10) | (a[8] << 16);
559 t[0] -= A32 ;
560 t[1] -= A32 ;
561 t[2] -= A32 ;
562 t[4] += A32 ;
563 t[5] += 2*A32;
564 t[6] += 3*A32;
565
566 a32 = (a[8] >> 16) | (a[9] << 10);
567 t[1] -= A32 ;
568 t[2] -= A32 ;
569 t[3] -= A32 ;
570 t[5] += A32 ;
571 t[6] += 2*A32;
572 t[7] += 3*A32;
573#undef A32
574 676
575 t[1] += t[0] >> 32; t[0] &= 0xffffffff; 677 t[1] += t[0] >> 32; t[0] &= 0xffffffff;
576 t[2] += t[1] >> 32; t[1] &= 0xffffffff; 678 t[2] += t[1] >> 32; t[1] &= 0xffffffff;
@@ -579,29 +681,27 @@ static void sp_256_mod_mul_norm_10(sp_digit* r, const sp_digit* a)
579 t[5] += t[4] >> 32; t[4] &= 0xffffffff; 681 t[5] += t[4] >> 32; t[4] &= 0xffffffff;
580 t[6] += t[5] >> 32; t[5] &= 0xffffffff; 682 t[6] += t[5] >> 32; t[5] &= 0xffffffff;
581 t[7] += t[6] >> 32; t[6] &= 0xffffffff; 683 t[7] += t[6] >> 32; t[6] &= 0xffffffff;
582 o = t[7] >> 32; t[7] &= 0xffffffff; 684 o = t[7] >> 32; //t[7] &= 0xffffffff;
583 t[0] += o; 685 t[0] += o;
584 t[3] -= o; 686 t[3] -= o;
585 t[6] -= o; 687 t[6] -= o;
586 t[7] += o; 688 t[7] += o;
587 t[1] += t[0] >> 32; //t[0] &= 0xffffffff; 689 r[0] = (sp_digit)t[0];
588 t[2] += t[1] >> 32; //t[1] &= 0xffffffff; 690 t[1] += t[0] >> 32;
589 t[3] += t[2] >> 32; //t[2] &= 0xffffffff; 691 r[1] = (sp_digit)t[1];
590 t[4] += t[3] >> 32; //t[3] &= 0xffffffff; 692 t[2] += t[1] >> 32;
591 t[5] += t[4] >> 32; //t[4] &= 0xffffffff; 693 r[2] = (sp_digit)t[2];
592 t[6] += t[5] >> 32; //t[5] &= 0xffffffff; 694 t[3] += t[2] >> 32;
593 t[7] += t[6] >> 32; //t[6] &= 0xffffffff; - (uint32_t)t[i] casts below accomplish masking 695 r[3] = (sp_digit)t[3];
594 696 t[4] += t[3] >> 32;
595 r[0] = 0x3ffffff & ((sp_digit)((uint32_t)t[0])); 697 r[4] = (sp_digit)t[4];
596 r[1] = 0x3ffffff & ((sp_digit)((uint32_t)t[0] >> 26) | ((sp_digit)t[1] << 6)); 698 t[5] += t[4] >> 32;
597 r[2] = 0x3ffffff & ((sp_digit)((uint32_t)t[1] >> 20) | ((sp_digit)t[2] << 12)); 699 r[5] = (sp_digit)t[5];
598 r[3] = 0x3ffffff & ((sp_digit)((uint32_t)t[2] >> 14) | ((sp_digit)t[3] << 18)); 700 t[6] += t[5] >> 32;
599 r[4] = 0x3ffffff & ((sp_digit)((uint32_t)t[3] >> 8) | ((sp_digit)t[4] << 24)); 701 r[6] = (sp_digit)t[6];
600 r[5] = 0x3ffffff & ((sp_digit)((uint32_t)t[4] >> 2)); 702// t[7] += t[6] >> 32;
601 r[6] = 0x3ffffff & ((sp_digit)((uint32_t)t[4] >> 28) | ((sp_digit)t[5] << 4)); 703// r[7] = (sp_digit)t[7];
602 r[7] = 0x3ffffff & ((sp_digit)((uint32_t)t[5] >> 22) | ((sp_digit)t[6] << 10)); 704 r[7] = (sp_digit)t[7] + (sp_digit)(t[6] >> 32);
603 r[8] = 0x3ffffff & ((sp_digit)((uint32_t)t[6] >> 16) | ((sp_digit)t[7] << 16));
604 r[9] = ((sp_digit)((uint32_t)t[7] >> 10));
605} 705}
606 706
607/* Map the Montgomery form projective co-ordinate point to an affine point. 707/* Map the Montgomery form projective co-ordinate point to an affine point.
@@ -609,33 +709,33 @@ static void sp_256_mod_mul_norm_10(sp_digit* r, const sp_digit* a)
609 * r Resulting affine co-ordinate point. 709 * r Resulting affine co-ordinate point.
610 * p Montgomery form projective co-ordinate point. 710 * p Montgomery form projective co-ordinate point.
611 */ 711 */
612static void sp_256_map_10(sp_point* r, sp_point* p) 712static void sp_256_map_8(sp_point* r, sp_point* p)
613{ 713{
614 sp_digit t1[2*10]; 714 sp_digit t1[2*8];
615 sp_digit t2[2*10]; 715 sp_digit t2[2*8];
616 716
617 sp_256_mont_inv_10(t1, p->z); 717 sp_256_mont_inv_8(t1, p->z);
618 718
619 sp_256_mont_sqr_10(t2, t1 /*, p256_mod, p256_mp_mod*/); 719 sp_256_mont_sqr_8(t2, t1 /*, p256_mod, p256_mp_mod*/);
620 sp_256_mont_mul_10(t1, t2, t1 /*, p256_mod, p256_mp_mod*/); 720 sp_256_mont_mul_8(t1, t2, t1 /*, p256_mod, p256_mp_mod*/);
621 721
622 /* x /= z^2 */ 722 /* x /= z^2 */
623 sp_256_mont_mul_10(r->x, p->x, t2 /*, p256_mod, p256_mp_mod*/); 723 sp_256_mont_mul_8(r->x, p->x, t2 /*, p256_mod, p256_mp_mod*/);
624 memset(r->x + 10, 0, sizeof(r->x) / 2); 724 memset(r->x + 8, 0, sizeof(r->x) / 2);
625 sp_256_mont_reduce_10(r->x /*, p256_mod, p256_mp_mod*/); 725 sp_256_mont_reduce_8(r->x /*, p256_mod, p256_mp_mod*/);
626 /* Reduce x to less than modulus */ 726 /* Reduce x to less than modulus */
627 if (sp_256_cmp_10(r->x, p256_mod) >= 0) 727 if (sp_256_cmp_8(r->x, p256_mod) >= 0)
628 sp_256_sub_10(r->x, r->x, p256_mod); 728 sp_256_sub_8(r->x, r->x, p256_mod);
629 sp_256_norm_10(r->x); 729 sp_256_norm_8(r->x);
630 730
631 /* y /= z^3 */ 731 /* y /= z^3 */
632 sp_256_mont_mul_10(r->y, p->y, t1 /*, p256_mod, p256_mp_mod*/); 732 sp_256_mont_mul_8(r->y, p->y, t1 /*, p256_mod, p256_mp_mod*/);
633 memset(r->y + 10, 0, sizeof(r->y) / 2); 733 memset(r->y + 8, 0, sizeof(r->y) / 2);
634 sp_256_mont_reduce_10(r->y /*, p256_mod, p256_mp_mod*/); 734 sp_256_mont_reduce_8(r->y /*, p256_mod, p256_mp_mod*/);
635 /* Reduce y to less than modulus */ 735 /* Reduce y to less than modulus */
636 if (sp_256_cmp_10(r->y, p256_mod) >= 0) 736 if (sp_256_cmp_8(r->y, p256_mod) >= 0)
637 sp_256_sub_10(r->y, r->y, p256_mod); 737 sp_256_sub_8(r->y, r->y, p256_mod);
638 sp_256_norm_10(r->y); 738 sp_256_norm_8(r->y);
639 739
640 memset(r->z, 0, sizeof(r->z)); 740 memset(r->z, 0, sizeof(r->z));
641 r->z[0] = 1; 741 r->z[0] = 1;
@@ -646,16 +746,16 @@ static void sp_256_map_10(sp_point* r, sp_point* p)
646 * r Result of doubling point. 746 * r Result of doubling point.
647 * p Point to double. 747 * p Point to double.
648 */ 748 */
649static void sp_256_proj_point_dbl_10(sp_point* r, sp_point* p) 749static void sp_256_proj_point_dbl_8(sp_point* r, sp_point* p)
650{ 750{
651 sp_digit t1[2*10]; 751 sp_digit t1[2*8];
652 sp_digit t2[2*10]; 752 sp_digit t2[2*8];
653 753
654 /* Put point to double into result */ 754 /* Put point to double into result */
655 if (r != p) 755 if (r != p)
656 *r = *p; /* struct copy */ 756 *r = *p; /* struct copy */
657 757
658 if (r->infinity) /* If infinity, don't double */ 758 if (r->infinity)
659 return; 759 return;
660 760
661 if (SP_DEBUG) { 761 if (SP_DEBUG) {
@@ -666,41 +766,42 @@ static void sp_256_proj_point_dbl_10(sp_point* r, sp_point* p)
666 } 766 }
667 767
668 /* T1 = Z * Z */ 768 /* T1 = Z * Z */
669 sp_256_mont_sqr_10(t1, r->z /*, p256_mod, p256_mp_mod*/); 769 sp_256_mont_sqr_8(t1, r->z /*, p256_mod, p256_mp_mod*/);
670 /* Z = Y * Z */ 770 /* Z = Y * Z */
671 sp_256_mont_mul_10(r->z, r->y, r->z /*, p256_mod, p256_mp_mod*/); 771 sp_256_mont_mul_8(r->z, r->y, r->z /*, p256_mod, p256_mp_mod*/);
672 /* Z = 2Z */ 772 /* Z = 2Z */
673 sp_256_mont_dbl_10(r->z, r->z, p256_mod); 773 sp_256_mont_dbl_8(r->z, r->z, p256_mod);
674 /* T2 = X - T1 */ 774 /* T2 = X - T1 */
675 sp_256_mont_sub_10(t2, r->x, t1, p256_mod); 775 sp_256_mont_sub_8(t2, r->x, t1, p256_mod);
676 /* T1 = X + T1 */ 776 /* T1 = X + T1 */
677 sp_256_mont_add_10(t1, r->x, t1, p256_mod); 777 sp_256_mont_add_8(t1, r->x, t1, p256_mod);
678 /* T2 = T1 * T2 */ 778 /* T2 = T1 * T2 */
679 sp_256_mont_mul_10(t2, t1, t2 /*, p256_mod, p256_mp_mod*/); 779 sp_256_mont_mul_8(t2, t1, t2 /*, p256_mod, p256_mp_mod*/);
680 /* T1 = 3T2 */ 780 /* T1 = 3T2 */
681 sp_256_mont_tpl_10(t1, t2, p256_mod); 781 sp_256_mont_tpl_8(t1, t2, p256_mod);
682 /* Y = 2Y */ 782 /* Y = 2Y */
683 sp_256_mont_dbl_10(r->y, r->y, p256_mod); 783 sp_256_mont_dbl_8(r->y, r->y, p256_mod);
684 /* Y = Y * Y */ 784 /* Y = Y * Y */
685 sp_256_mont_sqr_10(r->y, r->y /*, p256_mod, p256_mp_mod*/); 785 sp_256_mont_sqr_8(r->y, r->y /*, p256_mod, p256_mp_mod*/);
686 /* T2 = Y * Y */ 786 /* T2 = Y * Y */
687 sp_256_mont_sqr_10(t2, r->y /*, p256_mod, p256_mp_mod*/); 787 sp_256_mont_sqr_8(t2, r->y /*, p256_mod, p256_mp_mod*/);
688 /* T2 = T2/2 */ 788 /* T2 = T2/2 */
689 sp_256_div2_10(t2, t2, p256_mod); 789 sp_256_div2_8(t2, t2, p256_mod);
690 /* Y = Y * X */ 790 /* Y = Y * X */
691 sp_256_mont_mul_10(r->y, r->y, r->x /*, p256_mod, p256_mp_mod*/); 791 sp_256_mont_mul_8(r->y, r->y, r->x /*, p256_mod, p256_mp_mod*/);
692 /* X = T1 * T1 */ 792 /* X = T1 * T1 */
693 sp_256_mont_mul_10(r->x, t1, t1 /*, p256_mod, p256_mp_mod*/); 793 sp_256_mont_mul_8(r->x, t1, t1 /*, p256_mod, p256_mp_mod*/);
694 /* X = X - Y */ 794 /* X = X - Y */
695 sp_256_mont_sub_10(r->x, r->x, r->y, p256_mod); 795 sp_256_mont_sub_8(r->x, r->x, r->y, p256_mod);
696 /* X = X - Y */ 796 /* X = X - Y */
697 sp_256_mont_sub_10(r->x, r->x, r->y, p256_mod); 797 sp_256_mont_sub_8(r->x, r->x, r->y, p256_mod);
698 /* Y = Y - X */ 798 /* Y = Y - X */
699 sp_256_mont_sub_10(r->y, r->y, r->x, p256_mod); 799 sp_256_mont_sub_8(r->y, r->y, r->x, p256_mod);
700 /* Y = Y * T1 */ 800 /* Y = Y * T1 */
701 sp_256_mont_mul_10(r->y, r->y, t1 /*, p256_mod, p256_mp_mod*/); 801 sp_256_mont_mul_8(r->y, r->y, t1 /*, p256_mod, p256_mp_mod*/);
702 /* Y = Y - T2 */ 802 /* Y = Y - T2 */
703 sp_256_mont_sub_10(r->y, r->y, t2, p256_mod); 803 sp_256_mont_sub_8(r->y, r->y, t2, p256_mod);
804 dump_512("y2 %s\n", r->y);
704} 805}
705 806
706/* Add two Montgomery form projective points. 807/* Add two Montgomery form projective points.
@@ -709,13 +810,13 @@ static void sp_256_proj_point_dbl_10(sp_point* r, sp_point* p)
709 * p Frist point to add. 810 * p Frist point to add.
710 * q Second point to add. 811 * q Second point to add.
711 */ 812 */
712static void sp_256_proj_point_add_10(sp_point* r, sp_point* p, sp_point* q) 813static void sp_256_proj_point_add_8(sp_point* r, sp_point* p, sp_point* q)
713{ 814{
714 sp_digit t1[2*10]; 815 sp_digit t1[2*8];
715 sp_digit t2[2*10]; 816 sp_digit t2[2*8];
716 sp_digit t3[2*10]; 817 sp_digit t3[2*8];
717 sp_digit t4[2*10]; 818 sp_digit t4[2*8];
718 sp_digit t5[2*10]; 819 sp_digit t5[2*8];
719 820
720 /* Ensure only the first point is the same as the result. */ 821 /* Ensure only the first point is the same as the result. */
721 if (q == r) { 822 if (q == r) {
@@ -725,13 +826,13 @@ static void sp_256_proj_point_add_10(sp_point* r, sp_point* p, sp_point* q)
725 } 826 }
726 827
727 /* Check double */ 828 /* Check double */
728 sp_256_sub_10(t1, p256_mod, q->y); 829 sp_256_sub_8(t1, p256_mod, q->y);
729 sp_256_norm_10(t1); 830 sp_256_norm_8(t1);
730 if (sp_256_cmp_equal_10(p->x, q->x) 831 if (sp_256_cmp_equal_8(p->x, q->x)
731 && sp_256_cmp_equal_10(p->z, q->z) 832 && sp_256_cmp_equal_8(p->z, q->z)
732 && (sp_256_cmp_equal_10(p->y, q->y) || sp_256_cmp_equal_10(p->y, t1)) 833 && (sp_256_cmp_equal_8(p->y, q->y) || sp_256_cmp_equal_8(p->y, t1))
733 ) { 834 ) {
734 sp_256_proj_point_dbl_10(r, p); 835 sp_256_proj_point_dbl_8(r, p);
735 } 836 }
736 else { 837 else {
737 sp_point tp; 838 sp_point tp;
@@ -746,37 +847,37 @@ static void sp_256_proj_point_add_10(sp_point* r, sp_point* p, sp_point* q)
746 *r = p->infinity ? *q : *p; /* struct copy */ 847 *r = p->infinity ? *q : *p; /* struct copy */
747 848
748 /* U1 = X1*Z2^2 */ 849 /* U1 = X1*Z2^2 */
749 sp_256_mont_sqr_10(t1, q->z /*, p256_mod, p256_mp_mod*/); 850 sp_256_mont_sqr_8(t1, q->z /*, p256_mod, p256_mp_mod*/);
750 sp_256_mont_mul_10(t3, t1, q->z /*, p256_mod, p256_mp_mod*/); 851 sp_256_mont_mul_8(t3, t1, q->z /*, p256_mod, p256_mp_mod*/);
751 sp_256_mont_mul_10(t1, t1, v->x /*, p256_mod, p256_mp_mod*/); 852 sp_256_mont_mul_8(t1, t1, v->x /*, p256_mod, p256_mp_mod*/);
752 /* U2 = X2*Z1^2 */ 853 /* U2 = X2*Z1^2 */
753 sp_256_mont_sqr_10(t2, v->z /*, p256_mod, p256_mp_mod*/); 854 sp_256_mont_sqr_8(t2, v->z /*, p256_mod, p256_mp_mod*/);
754 sp_256_mont_mul_10(t4, t2, v->z /*, p256_mod, p256_mp_mod*/); 855 sp_256_mont_mul_8(t4, t2, v->z /*, p256_mod, p256_mp_mod*/);
755 sp_256_mont_mul_10(t2, t2, q->x /*, p256_mod, p256_mp_mod*/); 856 sp_256_mont_mul_8(t2, t2, q->x /*, p256_mod, p256_mp_mod*/);
756 /* S1 = Y1*Z2^3 */ 857 /* S1 = Y1*Z2^3 */
757 sp_256_mont_mul_10(t3, t3, v->y /*, p256_mod, p256_mp_mod*/); 858 sp_256_mont_mul_8(t3, t3, v->y /*, p256_mod, p256_mp_mod*/);
758 /* S2 = Y2*Z1^3 */ 859 /* S2 = Y2*Z1^3 */
759 sp_256_mont_mul_10(t4, t4, q->y /*, p256_mod, p256_mp_mod*/); 860 sp_256_mont_mul_8(t4, t4, q->y /*, p256_mod, p256_mp_mod*/);
760 /* H = U2 - U1 */ 861 /* H = U2 - U1 */
761 sp_256_mont_sub_10(t2, t2, t1, p256_mod); 862 sp_256_mont_sub_8(t2, t2, t1, p256_mod);
762 /* R = S2 - S1 */ 863 /* R = S2 - S1 */
763 sp_256_mont_sub_10(t4, t4, t3, p256_mod); 864 sp_256_mont_sub_8(t4, t4, t3, p256_mod);
764 /* Z3 = H*Z1*Z2 */ 865 /* Z3 = H*Z1*Z2 */
765 sp_256_mont_mul_10(v->z, v->z, q->z /*, p256_mod, p256_mp_mod*/); 866 sp_256_mont_mul_8(v->z, v->z, q->z /*, p256_mod, p256_mp_mod*/);
766 sp_256_mont_mul_10(v->z, v->z, t2 /*, p256_mod, p256_mp_mod*/); 867 sp_256_mont_mul_8(v->z, v->z, t2 /*, p256_mod, p256_mp_mod*/);
767 /* X3 = R^2 - H^3 - 2*U1*H^2 */ 868 /* X3 = R^2 - H^3 - 2*U1*H^2 */
768 sp_256_mont_sqr_10(v->x, t4 /*, p256_mod, p256_mp_mod*/); 869 sp_256_mont_sqr_8(v->x, t4 /*, p256_mod, p256_mp_mod*/);
769 sp_256_mont_sqr_10(t5, t2 /*, p256_mod, p256_mp_mod*/); 870 sp_256_mont_sqr_8(t5, t2 /*, p256_mod, p256_mp_mod*/);
770 sp_256_mont_mul_10(v->y, t1, t5 /*, p256_mod, p256_mp_mod*/); 871 sp_256_mont_mul_8(v->y, t1, t5 /*, p256_mod, p256_mp_mod*/);
771 sp_256_mont_mul_10(t5, t5, t2 /*, p256_mod, p256_mp_mod*/); 872 sp_256_mont_mul_8(t5, t5, t2 /*, p256_mod, p256_mp_mod*/);
772 sp_256_mont_sub_10(v->x, v->x, t5, p256_mod); 873 sp_256_mont_sub_8(v->x, v->x, t5, p256_mod);
773 sp_256_mont_dbl_10(t1, v->y, p256_mod); 874 sp_256_mont_dbl_8(t1, v->y, p256_mod);
774 sp_256_mont_sub_10(v->x, v->x, t1, p256_mod); 875 sp_256_mont_sub_8(v->x, v->x, t1, p256_mod);
775 /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */ 876 /* Y3 = R*(U1*H^2 - X3) - S1*H^3 */
776 sp_256_mont_sub_10(v->y, v->y, v->x, p256_mod); 877 sp_256_mont_sub_8(v->y, v->y, v->x, p256_mod);
777 sp_256_mont_mul_10(v->y, v->y, t4 /*, p256_mod, p256_mp_mod*/); 878 sp_256_mont_mul_8(v->y, v->y, t4 /*, p256_mod, p256_mp_mod*/);
778 sp_256_mont_mul_10(t5, t5, t3 /*, p256_mod, p256_mp_mod*/); 879 sp_256_mont_mul_8(t5, t5, t3 /*, p256_mod, p256_mp_mod*/);
779 sp_256_mont_sub_10(v->y, v->y, t5, p256_mod); 880 sp_256_mont_sub_8(v->y, v->y, t5, p256_mod);
780 } 881 }
781} 882}
782 883
@@ -788,12 +889,11 @@ static void sp_256_proj_point_add_10(sp_point* r, sp_point* p, sp_point* q)
788 * k Scalar to multiply by. 889 * k Scalar to multiply by.
789 * map Indicates whether to convert result to affine. 890 * map Indicates whether to convert result to affine.
790 */ 891 */
791static void sp_256_ecc_mulmod_10(sp_point* r, const sp_point* g, const sp_digit* k /*, int map*/) 892static void sp_256_ecc_mulmod_8(sp_point* r, const sp_point* g, const sp_digit* k /*, int map*/)
792{ 893{
793 enum { map = 1 }; /* we always convert result to affine coordinates */ 894 enum { map = 1 }; /* we always convert result to affine coordinates */
794 sp_point t[3]; 895 sp_point t[3];
795 sp_digit n; 896 sp_digit n = n; /* for compiler */
796 int i;
797 int c, y; 897 int c, y;
798 898
799 memset(t, 0, sizeof(t)); 899 memset(t, 0, sizeof(t));
@@ -801,36 +901,44 @@ static void sp_256_ecc_mulmod_10(sp_point* r, const sp_point* g, const sp_digit*
801 /* t[0] = {0, 0, 1} * norm */ 901 /* t[0] = {0, 0, 1} * norm */
802 t[0].infinity = 1; 902 t[0].infinity = 1;
803 /* t[1] = {g->x, g->y, g->z} * norm */ 903 /* t[1] = {g->x, g->y, g->z} * norm */
804 sp_256_mod_mul_norm_10(t[1].x, g->x); 904 sp_256_mod_mul_norm_8(t[1].x, g->x);
805 sp_256_mod_mul_norm_10(t[1].y, g->y); 905 sp_256_mod_mul_norm_8(t[1].y, g->y);
806 sp_256_mod_mul_norm_10(t[1].z, g->z); 906 sp_256_mod_mul_norm_8(t[1].z, g->z);
807 dump_512("t[1].x %s\n", t[1].x);
808 dump_512("t[1].y %s\n", t[1].y);
809 dump_512("t[1].z %s\n", t[1].z);
810
811 i = 9;
812 c = 22;
813 n = k[i--] << (26 - c);
814 for (; ; c--) {
815 if (c == 0) {
816 if (i == -1)
817 break;
818 907
819 n = k[i--]; 908 /* For every bit, starting from most significant... */
820 c = 26; 909 k += 7;
910 c = 256;
911 for (;;) {
912 if ((c & 0x1f) == 0) {
913 if (c == 0)
914 break;
915 n = *k--;
821 } 916 }
822 917
823 y = (n >> 25) & 1; 918 y = (n >> 31);
824 n <<= 1; 919 dbg("y:%d t[%d] = t[0]+t[1]\n", y, y^1);
825 920 sp_256_proj_point_add_8(&t[y^1], &t[0], &t[1]);
826 sp_256_proj_point_add_10(&t[y^1], &t[0], &t[1]); 921 dump_512("t[0].x %s\n", t[0].x);
922 dump_512("t[0].y %s\n", t[0].y);
923 dump_512("t[0].z %s\n", t[0].z);
924 dump_512("t[1].x %s\n", t[1].x);
925 dump_512("t[1].y %s\n", t[1].y);
926 dump_512("t[1].z %s\n", t[1].z);
927 dbg("t[2] = t[%d]\n", y);
827 memcpy(&t[2], &t[y], sizeof(sp_point)); 928 memcpy(&t[2], &t[y], sizeof(sp_point));
828 sp_256_proj_point_dbl_10(&t[2], &t[2]); 929 dbg("t[2] *= 2\n");
930 sp_256_proj_point_dbl_8(&t[2], &t[2]);
931 dump_512("t[2].x %s\n", t[2].x);
932 dump_512("t[2].y %s\n", t[2].y);
933 dump_512("t[2].z %s\n", t[2].z);
829 memcpy(&t[y], &t[2], sizeof(sp_point)); 934 memcpy(&t[y], &t[2], sizeof(sp_point));
935
936 n <<= 1;
937 c--;
830 } 938 }
831 939
832 if (map) 940 if (map)
833 sp_256_map_10(r, &t[0]); 941 sp_256_map_8(r, &t[0]);
834 else 942 else
835 memcpy(r, &t[0], sizeof(sp_point)); 943 memcpy(r, &t[0], sizeof(sp_point));
836 944
@@ -844,7 +952,7 @@ static void sp_256_ecc_mulmod_10(sp_point* r, const sp_point* g, const sp_digit*
844 * k Scalar to multiply by. 952 * k Scalar to multiply by.
845 * map Indicates whether to convert result to affine. 953 * map Indicates whether to convert result to affine.
846 */ 954 */
847static void sp_256_ecc_mulmod_base_10(sp_point* r, sp_digit* k /*, int map*/) 955static void sp_256_ecc_mulmod_base_8(sp_point* r, sp_digit* k /*, int map*/)
848{ 956{
849 /* Since this function is called only once, save space: 957 /* Since this function is called only once, save space:
850 * don't have "static const sp_point p256_base = {...}", 958 * don't have "static const sp_point p256_base = {...}",
@@ -861,7 +969,7 @@ static void sp_256_ecc_mulmod_base_10(sp_point* r, sp_digit* k /*, int map*/)
861 969
862 sp_256_point_from_bin2x32(&p256_base, p256_base_bin); 970 sp_256_point_from_bin2x32(&p256_base, p256_base_bin);
863 971
864 sp_256_ecc_mulmod_10(r, &p256_base, k /*, map*/); 972 sp_256_ecc_mulmod_8(r, &p256_base, k /*, map*/);
865} 973}
866 974
867/* Multiply the point by the scalar and serialize the X ordinate. 975/* Multiply the point by the scalar and serialize the X ordinate.
@@ -871,7 +979,7 @@ static void sp_256_ecc_mulmod_base_10(sp_point* r, sp_digit* k /*, int map*/)
871 * pub2x32 Point to multiply. 979 * pub2x32 Point to multiply.
872 * out32 Buffer to hold X ordinate. 980 * out32 Buffer to hold X ordinate.
873 */ 981 */
874static void sp_ecc_secret_gen_256(const sp_digit priv[10], const uint8_t *pub2x32, uint8_t* out32) 982static void sp_ecc_secret_gen_256(const sp_digit priv[8], const uint8_t *pub2x32, uint8_t* out32)
875{ 983{
876 sp_point point[1]; 984 sp_point point[1];
877 985
@@ -885,66 +993,48 @@ static void sp_ecc_secret_gen_256(const sp_digit priv[10], const uint8_t *pub2x3
885 dump_512("point->x %s\n", point->x); 993 dump_512("point->x %s\n", point->x);
886 dump_512("point->y %s\n", point->y); 994 dump_512("point->y %s\n", point->y);
887 995
888 sp_256_ecc_mulmod_10(point, point, priv); 996 sp_256_ecc_mulmod_8(point, point, priv);
889 997
890 sp_256_to_bin_10(point->x, out32); 998 sp_256_to_bin_8(point->x, out32);
891 dump_hex("out32: %s\n", out32, 32); 999 dump_hex("out32: %s\n", out32, 32);
892} 1000}
893 1001
894/* Generates a scalar that is in the range 1..order-1. */ 1002/* Generates a random scalar in [1..order-1] range. */
895#define SIMPLIFY 1 1003static void sp_256_ecc_gen_k_8(sp_digit k[8])
896/* Add 1 to a. (a = a + 1) */
897static void sp_256_add_one_10(sp_digit* a)
898{
899 a[0]++;
900 sp_256_norm_10(a);
901}
902static void sp_256_ecc_gen_k_10(sp_digit k[10])
903{ 1004{
904#if !SIMPLIFY 1005 /* Since 32-bit words are "dense", no need to use
905 /* The order of the curve P256 minus 2. */ 1006 * sp_256_from_bin_8(k, buf) to convert random stream
906 static const sp_digit p256_order2[10] = { 1007 * to sp_digit array - just store random bits there directly.
907 0x063254f,0x272b0bf,0x1e84f3b,0x2b69c5e,0x3bce6fa, 1008 */
908 0x3ffffff,0x3ffffff,0x00003ff,0x3ff0000,0x03fffff, 1009 tls_get_random(k, 8 * sizeof(k[0]));
909 };
910#endif
911 uint8_t buf[32];
912
913 for (;;) {
914 tls_get_random(buf, sizeof(buf));
915#if FIXED_SECRET 1010#if FIXED_SECRET
916 memset(buf, 0x77, sizeof(buf)); 1011 memset(k, 0x77, 8 * sizeof(k[0]));
917#endif 1012#endif
918 sp_256_from_bin_10(k, buf); 1013
919#if !SIMPLIFY 1014// If scalar is too large, try again (pseudo-code)
920 if (sp_256_cmp_10(k, p256_order2) < 0) 1015// if (k >= 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551 - 1) // order of P256
921 break; 1016// goto pick_another_random;
922#else 1017// k++; // ensure non-zero
923 /* non-loopy version (and not needing p256_order2[]): 1018 /* Simpler alternative, at the cost of not choosing some valid
924 * if most-significant word seems that k can be larger 1019 * random values, and slightly non-uniform distribution */
925 * than p256_order2, fix it up: 1020 if (k[0] == 0)
926 */ 1021 k[0] = 1;
927 if (k[9] >= 0x03fffff) 1022 if (k[7] >= 0xffffffff)
928 k[9] = 0x03ffffe; 1023 k[7] = 0xfffffffe;
929 break;
930#endif
931 }
932 sp_256_add_one_10(k);
933#undef SIMPLIFY
934} 1024}
935 1025
936/* Makes a random EC key pair. */ 1026/* Makes a random EC key pair. */
937static void sp_ecc_make_key_256(sp_digit privkey[10], uint8_t *pubkey) 1027static void sp_ecc_make_key_256(sp_digit privkey[8], uint8_t *pubkey)
938{ 1028{
939 sp_point point[1]; 1029 sp_point point[1];
940 1030
941 sp_256_ecc_gen_k_10(privkey); 1031 sp_256_ecc_gen_k_8(privkey);
942 dump_256("privkey %s\n", privkey); 1032 dump_256("privkey %s\n", privkey);
943 sp_256_ecc_mulmod_base_10(point, privkey); 1033 sp_256_ecc_mulmod_base_8(point, privkey);
944 dump_512("point->x %s\n", point->x); 1034 dump_512("point->x %s\n", point->x);
945 dump_512("point->y %s\n", point->y); 1035 dump_512("point->y %s\n", point->y);
946 sp_256_to_bin_10(point->x, pubkey); 1036 sp_256_to_bin_8(point->x, pubkey);
947 sp_256_to_bin_10(point->y, pubkey + 32); 1037 sp_256_to_bin_8(point->y, pubkey + 32);
948 1038
949 memset(point, 0, sizeof(point)); //paranoia 1039 memset(point, 0, sizeof(point)); //paranoia
950} 1040}
@@ -953,8 +1043,9 @@ void FAST_FUNC curve_P256_compute_pubkey_and_premaster(
953 uint8_t *pubkey2x32, uint8_t *premaster32, 1043 uint8_t *pubkey2x32, uint8_t *premaster32,
954 const uint8_t *peerkey2x32) 1044 const uint8_t *peerkey2x32)
955{ 1045{
956 sp_digit privkey[10]; 1046 sp_digit privkey[8];
957 1047
1048 dump_hex("peerkey2x32: %s\n", peerkey2x32, 64);
958 sp_ecc_make_key_256(privkey, pubkey2x32); 1049 sp_ecc_make_key_256(privkey, pubkey2x32);
959 dump_hex("pubkey: %s\n", pubkey2x32, 32); 1050 dump_hex("pubkey: %s\n", pubkey2x32, 32);
960 dump_hex(" %s\n", pubkey2x32 + 32, 32); 1051 dump_hex(" %s\n", pubkey2x32 + 32, 32);