diff options
author | Nguyễn Thái Ngọc Duy <pclouds@gmail.com> | 2010-04-14 02:04:07 +0200 |
---|---|---|
committer | Nguyễn Thái Ngọc Duy <pclouds@gmail.com> | 2010-04-20 19:14:11 +0200 |
commit | a1b05ef61f4d1c4ba64f758292cece2fdf2828bf (patch) | |
tree | 5b9749ac8264948cda6b7c5a7d365f1cc98a20fe | |
parent | 27dadd087befac1f51eac50f886185a62c7d5860 (diff) | |
download | busybox-w32-a1b05ef61f4d1c4ba64f758292cece2fdf2828bf.tar.gz busybox-w32-a1b05ef61f4d1c4ba64f758292cece2fdf2828bf.tar.bz2 busybox-w32-a1b05ef61f4d1c4ba64f758292cece2fdf2828bf.zip |
win32: Import regex source
These were extracted from commit
e56b799d6ad8afba4168fffa7218d44c041a72d2
in Git repository. Changes from the original version:
> diff --git a/tmp/regex.c b/win32/regex.c
> index 87b33e4..2cca169 100644
> --- a/tmp/regex.c
> +++ b/win32/regex.c
> @@ -24,7 +24,9 @@
> #pragma alloca
> #endif
>
> +#ifndef _GNU_SOURCE
> #define _GNU_SOURCE
> +#endif
>
> /* We need this for `regex.h', and perhaps for the Emacs include files. */
> #include <sys/types.h>
Signed-off-by: Nguyễn Thái Ngọc Duy <pclouds@gmail.com>
-rw-r--r-- | win32/regex.c | 4929 | ||||
-rw-r--r-- | win32/regex.h | 490 |
2 files changed, 5419 insertions, 0 deletions
diff --git a/win32/regex.c b/win32/regex.c new file mode 100644 index 000000000..2cca16934 --- /dev/null +++ b/win32/regex.c | |||
@@ -0,0 +1,4929 @@ | |||
1 | /* Extended regular expression matching and search library, | ||
2 | version 0.12. | ||
3 | (Implements POSIX draft P10003.2/D11.2, except for | ||
4 | internationalization features.) | ||
5 | |||
6 | Copyright (C) 1993 Free Software Foundation, Inc. | ||
7 | |||
8 | This program is free software; you can redistribute it and/or modify | ||
9 | it under the terms of the GNU General Public License as published by | ||
10 | the Free Software Foundation; either version 2, or (at your option) | ||
11 | any later version. | ||
12 | |||
13 | This program is distributed in the hope that it will be useful, | ||
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
16 | GNU General Public License for more details. | ||
17 | |||
18 | You should have received a copy of the GNU General Public License | ||
19 | along with this program; if not, write to the Free Software | ||
20 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | ||
21 | |||
22 | /* AIX requires this to be the first thing in the file. */ | ||
23 | #if defined (_AIX) && !defined (REGEX_MALLOC) | ||
24 | #pragma alloca | ||
25 | #endif | ||
26 | |||
27 | #ifndef _GNU_SOURCE | ||
28 | #define _GNU_SOURCE | ||
29 | #endif | ||
30 | |||
31 | /* We need this for `regex.h', and perhaps for the Emacs include files. */ | ||
32 | #include <sys/types.h> | ||
33 | |||
34 | /* We used to test for `BSTRING' here, but only GCC and Emacs define | ||
35 | `BSTRING', as far as I know, and neither of them use this code. */ | ||
36 | #include <string.h> | ||
37 | #ifndef bcmp | ||
38 | #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n)) | ||
39 | #endif | ||
40 | #ifndef bcopy | ||
41 | #define bcopy(s, d, n) memcpy ((d), (s), (n)) | ||
42 | #endif | ||
43 | #ifndef bzero | ||
44 | #define bzero(s, n) memset ((s), 0, (n)) | ||
45 | #endif | ||
46 | |||
47 | #include <stdlib.h> | ||
48 | |||
49 | |||
50 | /* Define the syntax stuff for \<, \>, etc. */ | ||
51 | |||
52 | /* This must be nonzero for the wordchar and notwordchar pattern | ||
53 | commands in re_match_2. */ | ||
54 | #ifndef Sword | ||
55 | #define Sword 1 | ||
56 | #endif | ||
57 | |||
58 | #ifdef SYNTAX_TABLE | ||
59 | |||
60 | extern char *re_syntax_table; | ||
61 | |||
62 | #else /* not SYNTAX_TABLE */ | ||
63 | |||
64 | /* How many characters in the character set. */ | ||
65 | #define CHAR_SET_SIZE 256 | ||
66 | |||
67 | static char re_syntax_table[CHAR_SET_SIZE]; | ||
68 | |||
69 | static void | ||
70 | init_syntax_once () | ||
71 | { | ||
72 | register int c; | ||
73 | static int done = 0; | ||
74 | |||
75 | if (done) | ||
76 | return; | ||
77 | |||
78 | bzero (re_syntax_table, sizeof re_syntax_table); | ||
79 | |||
80 | for (c = 'a'; c <= 'z'; c++) | ||
81 | re_syntax_table[c] = Sword; | ||
82 | |||
83 | for (c = 'A'; c <= 'Z'; c++) | ||
84 | re_syntax_table[c] = Sword; | ||
85 | |||
86 | for (c = '0'; c <= '9'; c++) | ||
87 | re_syntax_table[c] = Sword; | ||
88 | |||
89 | re_syntax_table['_'] = Sword; | ||
90 | |||
91 | done = 1; | ||
92 | } | ||
93 | |||
94 | #endif /* not SYNTAX_TABLE */ | ||
95 | |||
96 | #define SYNTAX(c) re_syntax_table[c] | ||
97 | |||
98 | |||
99 | /* Get the interface, including the syntax bits. */ | ||
100 | #include "regex.h" | ||
101 | |||
102 | /* isalpha etc. are used for the character classes. */ | ||
103 | #include <ctype.h> | ||
104 | |||
105 | #ifndef isascii | ||
106 | #define isascii(c) 1 | ||
107 | #endif | ||
108 | |||
109 | #ifdef isblank | ||
110 | #define ISBLANK(c) (isascii (c) && isblank (c)) | ||
111 | #else | ||
112 | #define ISBLANK(c) ((c) == ' ' || (c) == '\t') | ||
113 | #endif | ||
114 | #ifdef isgraph | ||
115 | #define ISGRAPH(c) (isascii (c) && isgraph (c)) | ||
116 | #else | ||
117 | #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c)) | ||
118 | #endif | ||
119 | |||
120 | #define ISPRINT(c) (isascii (c) && isprint (c)) | ||
121 | #define ISDIGIT(c) (isascii (c) && isdigit (c)) | ||
122 | #define ISALNUM(c) (isascii (c) && isalnum (c)) | ||
123 | #define ISALPHA(c) (isascii (c) && isalpha (c)) | ||
124 | #define ISCNTRL(c) (isascii (c) && iscntrl (c)) | ||
125 | #define ISLOWER(c) (isascii (c) && islower (c)) | ||
126 | #define ISPUNCT(c) (isascii (c) && ispunct (c)) | ||
127 | #define ISSPACE(c) (isascii (c) && isspace (c)) | ||
128 | #define ISUPPER(c) (isascii (c) && isupper (c)) | ||
129 | #define ISXDIGIT(c) (isascii (c) && isxdigit (c)) | ||
130 | |||
131 | #ifndef NULL | ||
132 | #define NULL 0 | ||
133 | #endif | ||
134 | |||
135 | /* We remove any previous definition of `SIGN_EXTEND_CHAR', | ||
136 | since ours (we hope) works properly with all combinations of | ||
137 | machines, compilers, `char' and `unsigned char' argument types. | ||
138 | (Per Bothner suggested the basic approach.) */ | ||
139 | #undef SIGN_EXTEND_CHAR | ||
140 | #if __STDC__ | ||
141 | #define SIGN_EXTEND_CHAR(c) ((signed char) (c)) | ||
142 | #else /* not __STDC__ */ | ||
143 | /* As in Harbison and Steele. */ | ||
144 | #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) | ||
145 | #endif | ||
146 | |||
147 | /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we | ||
148 | use `alloca' instead of `malloc'. This is because using malloc in | ||
149 | re_search* or re_match* could cause memory leaks when C-g is used in | ||
150 | Emacs; also, malloc is slower and causes storage fragmentation. On | ||
151 | the other hand, malloc is more portable, and easier to debug. | ||
152 | |||
153 | Because we sometimes use alloca, some routines have to be macros, | ||
154 | not functions -- `alloca'-allocated space disappears at the end of the | ||
155 | function it is called in. */ | ||
156 | |||
157 | #ifdef REGEX_MALLOC | ||
158 | |||
159 | #define REGEX_ALLOCATE malloc | ||
160 | #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) | ||
161 | |||
162 | #else /* not REGEX_MALLOC */ | ||
163 | |||
164 | /* Emacs already defines alloca, sometimes. */ | ||
165 | #ifndef alloca | ||
166 | |||
167 | /* Make alloca work the best possible way. */ | ||
168 | #ifdef __GNUC__ | ||
169 | #define alloca __builtin_alloca | ||
170 | #else /* not __GNUC__ */ | ||
171 | #if HAVE_ALLOCA_H | ||
172 | #include <alloca.h> | ||
173 | #else /* not __GNUC__ or HAVE_ALLOCA_H */ | ||
174 | #ifndef _AIX /* Already did AIX, up at the top. */ | ||
175 | char *alloca (); | ||
176 | #endif /* not _AIX */ | ||
177 | #endif /* not HAVE_ALLOCA_H */ | ||
178 | #endif /* not __GNUC__ */ | ||
179 | |||
180 | #endif /* not alloca */ | ||
181 | |||
182 | #define REGEX_ALLOCATE alloca | ||
183 | |||
184 | /* Assumes a `char *destination' variable. */ | ||
185 | #define REGEX_REALLOCATE(source, osize, nsize) \ | ||
186 | (destination = (char *) alloca (nsize), \ | ||
187 | bcopy (source, destination, osize), \ | ||
188 | destination) | ||
189 | |||
190 | #endif /* not REGEX_MALLOC */ | ||
191 | |||
192 | |||
193 | /* True if `size1' is non-NULL and PTR is pointing anywhere inside | ||
194 | `string1' or just past its end. This works if PTR is NULL, which is | ||
195 | a good thing. */ | ||
196 | #define FIRST_STRING_P(ptr) \ | ||
197 | (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) | ||
198 | |||
199 | /* (Re)Allocate N items of type T using malloc, or fail. */ | ||
200 | #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) | ||
201 | #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) | ||
202 | #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) | ||
203 | |||
204 | #define BYTEWIDTH 8 /* In bits. */ | ||
205 | |||
206 | #define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) | ||
207 | |||
208 | #define MAX(a, b) ((a) > (b) ? (a) : (b)) | ||
209 | #define MIN(a, b) ((a) < (b) ? (a) : (b)) | ||
210 | |||
211 | typedef char boolean; | ||
212 | #define false 0 | ||
213 | #define true 1 | ||
214 | |||
215 | /* These are the command codes that appear in compiled regular | ||
216 | expressions. Some opcodes are followed by argument bytes. A | ||
217 | command code can specify any interpretation whatsoever for its | ||
218 | arguments. Zero bytes may appear in the compiled regular expression. | ||
219 | |||
220 | The value of `exactn' is needed in search.c (search_buffer) in Emacs. | ||
221 | So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of | ||
222 | `exactn' we use here must also be 1. */ | ||
223 | |||
224 | typedef enum | ||
225 | { | ||
226 | no_op = 0, | ||
227 | |||
228 | /* Followed by one byte giving n, then by n literal bytes. */ | ||
229 | exactn = 1, | ||
230 | |||
231 | /* Matches any (more or less) character. */ | ||
232 | anychar, | ||
233 | |||
234 | /* Matches any one char belonging to specified set. First | ||
235 | following byte is number of bitmap bytes. Then come bytes | ||
236 | for a bitmap saying which chars are in. Bits in each byte | ||
237 | are ordered low-bit-first. A character is in the set if its | ||
238 | bit is 1. A character too large to have a bit in the map is | ||
239 | automatically not in the set. */ | ||
240 | charset, | ||
241 | |||
242 | /* Same parameters as charset, but match any character that is | ||
243 | not one of those specified. */ | ||
244 | charset_not, | ||
245 | |||
246 | /* Start remembering the text that is matched, for storing in a | ||
247 | register. Followed by one byte with the register number, in | ||
248 | the range 0 to one less than the pattern buffer's re_nsub | ||
249 | field. Then followed by one byte with the number of groups | ||
250 | inner to this one. (This last has to be part of the | ||
251 | start_memory only because we need it in the on_failure_jump | ||
252 | of re_match_2.) */ | ||
253 | start_memory, | ||
254 | |||
255 | /* Stop remembering the text that is matched and store it in a | ||
256 | memory register. Followed by one byte with the register | ||
257 | number, in the range 0 to one less than `re_nsub' in the | ||
258 | pattern buffer, and one byte with the number of inner groups, | ||
259 | just like `start_memory'. (We need the number of inner | ||
260 | groups here because we don't have any easy way of finding the | ||
261 | corresponding start_memory when we're at a stop_memory.) */ | ||
262 | stop_memory, | ||
263 | |||
264 | /* Match a duplicate of something remembered. Followed by one | ||
265 | byte containing the register number. */ | ||
266 | duplicate, | ||
267 | |||
268 | /* Fail unless at beginning of line. */ | ||
269 | begline, | ||
270 | |||
271 | /* Fail unless at end of line. */ | ||
272 | endline, | ||
273 | |||
274 | /* Succeeds if at beginning of buffer (if emacs) or at beginning | ||
275 | of string to be matched (if not). */ | ||
276 | begbuf, | ||
277 | |||
278 | /* Analogously, for end of buffer/string. */ | ||
279 | endbuf, | ||
280 | |||
281 | /* Followed by two byte relative address to which to jump. */ | ||
282 | jump, | ||
283 | |||
284 | /* Same as jump, but marks the end of an alternative. */ | ||
285 | jump_past_alt, | ||
286 | |||
287 | /* Followed by two-byte relative address of place to resume at | ||
288 | in case of failure. */ | ||
289 | on_failure_jump, | ||
290 | |||
291 | /* Like on_failure_jump, but pushes a placeholder instead of the | ||
292 | current string position when executed. */ | ||
293 | on_failure_keep_string_jump, | ||
294 | |||
295 | /* Throw away latest failure point and then jump to following | ||
296 | two-byte relative address. */ | ||
297 | pop_failure_jump, | ||
298 | |||
299 | /* Change to pop_failure_jump if know won't have to backtrack to | ||
300 | match; otherwise change to jump. This is used to jump | ||
301 | back to the beginning of a repeat. If what follows this jump | ||
302 | clearly won't match what the repeat does, such that we can be | ||
303 | sure that there is no use backtracking out of repetitions | ||
304 | already matched, then we change it to a pop_failure_jump. | ||
305 | Followed by two-byte address. */ | ||
306 | maybe_pop_jump, | ||
307 | |||
308 | /* Jump to following two-byte address, and push a dummy failure | ||
309 | point. This failure point will be thrown away if an attempt | ||
310 | is made to use it for a failure. A `+' construct makes this | ||
311 | before the first repeat. Also used as an intermediary kind | ||
312 | of jump when compiling an alternative. */ | ||
313 | dummy_failure_jump, | ||
314 | |||
315 | /* Push a dummy failure point and continue. Used at the end of | ||
316 | alternatives. */ | ||
317 | push_dummy_failure, | ||
318 | |||
319 | /* Followed by two-byte relative address and two-byte number n. | ||
320 | After matching N times, jump to the address upon failure. */ | ||
321 | succeed_n, | ||
322 | |||
323 | /* Followed by two-byte relative address, and two-byte number n. | ||
324 | Jump to the address N times, then fail. */ | ||
325 | jump_n, | ||
326 | |||
327 | /* Set the following two-byte relative address to the | ||
328 | subsequent two-byte number. The address *includes* the two | ||
329 | bytes of number. */ | ||
330 | set_number_at, | ||
331 | |||
332 | wordchar, /* Matches any word-constituent character. */ | ||
333 | notwordchar, /* Matches any char that is not a word-constituent. */ | ||
334 | |||
335 | wordbeg, /* Succeeds if at word beginning. */ | ||
336 | wordend, /* Succeeds if at word end. */ | ||
337 | |||
338 | wordbound, /* Succeeds if at a word boundary. */ | ||
339 | notwordbound /* Succeeds if not at a word boundary. */ | ||
340 | |||
341 | #ifdef emacs | ||
342 | ,before_dot, /* Succeeds if before point. */ | ||
343 | at_dot, /* Succeeds if at point. */ | ||
344 | after_dot, /* Succeeds if after point. */ | ||
345 | |||
346 | /* Matches any character whose syntax is specified. Followed by | ||
347 | a byte which contains a syntax code, e.g., Sword. */ | ||
348 | syntaxspec, | ||
349 | |||
350 | /* Matches any character whose syntax is not that specified. */ | ||
351 | notsyntaxspec | ||
352 | #endif /* emacs */ | ||
353 | } re_opcode_t; | ||
354 | |||
355 | /* Common operations on the compiled pattern. */ | ||
356 | |||
357 | /* Store NUMBER in two contiguous bytes starting at DESTINATION. */ | ||
358 | |||
359 | #define STORE_NUMBER(destination, number) \ | ||
360 | do { \ | ||
361 | (destination)[0] = (number) & 0377; \ | ||
362 | (destination)[1] = (number) >> 8; \ | ||
363 | } while (0) | ||
364 | |||
365 | /* Same as STORE_NUMBER, except increment DESTINATION to | ||
366 | the byte after where the number is stored. Therefore, DESTINATION | ||
367 | must be an lvalue. */ | ||
368 | |||
369 | #define STORE_NUMBER_AND_INCR(destination, number) \ | ||
370 | do { \ | ||
371 | STORE_NUMBER (destination, number); \ | ||
372 | (destination) += 2; \ | ||
373 | } while (0) | ||
374 | |||
375 | /* Put into DESTINATION a number stored in two contiguous bytes starting | ||
376 | at SOURCE. */ | ||
377 | |||
378 | #define EXTRACT_NUMBER(destination, source) \ | ||
379 | do { \ | ||
380 | (destination) = *(source) & 0377; \ | ||
381 | (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ | ||
382 | } while (0) | ||
383 | |||
384 | #ifdef DEBUG | ||
385 | static void | ||
386 | extract_number (dest, source) | ||
387 | int *dest; | ||
388 | unsigned char *source; | ||
389 | { | ||
390 | int temp = SIGN_EXTEND_CHAR (*(source + 1)); | ||
391 | *dest = *source & 0377; | ||
392 | *dest += temp << 8; | ||
393 | } | ||
394 | |||
395 | #ifndef EXTRACT_MACROS /* To debug the macros. */ | ||
396 | #undef EXTRACT_NUMBER | ||
397 | #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) | ||
398 | #endif /* not EXTRACT_MACROS */ | ||
399 | |||
400 | #endif /* DEBUG */ | ||
401 | |||
402 | /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. | ||
403 | SOURCE must be an lvalue. */ | ||
404 | |||
405 | #define EXTRACT_NUMBER_AND_INCR(destination, source) \ | ||
406 | do { \ | ||
407 | EXTRACT_NUMBER (destination, source); \ | ||
408 | (source) += 2; \ | ||
409 | } while (0) | ||
410 | |||
411 | #ifdef DEBUG | ||
412 | static void | ||
413 | extract_number_and_incr (destination, source) | ||
414 | int *destination; | ||
415 | unsigned char **source; | ||
416 | { | ||
417 | extract_number (destination, *source); | ||
418 | *source += 2; | ||
419 | } | ||
420 | |||
421 | #ifndef EXTRACT_MACROS | ||
422 | #undef EXTRACT_NUMBER_AND_INCR | ||
423 | #define EXTRACT_NUMBER_AND_INCR(dest, src) \ | ||
424 | extract_number_and_incr (&dest, &src) | ||
425 | #endif /* not EXTRACT_MACROS */ | ||
426 | |||
427 | #endif /* DEBUG */ | ||
428 | |||
429 | /* If DEBUG is defined, Regex prints many voluminous messages about what | ||
430 | it is doing (if the variable `debug' is nonzero). If linked with the | ||
431 | main program in `iregex.c', you can enter patterns and strings | ||
432 | interactively. And if linked with the main program in `main.c' and | ||
433 | the other test files, you can run the already-written tests. */ | ||
434 | |||
435 | #ifdef DEBUG | ||
436 | |||
437 | /* We use standard I/O for debugging. */ | ||
438 | #include <stdio.h> | ||
439 | |||
440 | /* It is useful to test things that ``must'' be true when debugging. */ | ||
441 | #include <assert.h> | ||
442 | |||
443 | static int debug = 0; | ||
444 | |||
445 | #define DEBUG_STATEMENT(e) e | ||
446 | #define DEBUG_PRINT1(x) if (debug) printf (x) | ||
447 | #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) | ||
448 | #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) | ||
449 | #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) | ||
450 | #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ | ||
451 | if (debug) print_partial_compiled_pattern (s, e) | ||
452 | #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ | ||
453 | if (debug) print_double_string (w, s1, sz1, s2, sz2) | ||
454 | |||
455 | |||
456 | extern void printchar (); | ||
457 | |||
458 | /* Print the fastmap in human-readable form. */ | ||
459 | |||
460 | void | ||
461 | print_fastmap (fastmap) | ||
462 | char *fastmap; | ||
463 | { | ||
464 | unsigned was_a_range = 0; | ||
465 | unsigned i = 0; | ||
466 | |||
467 | while (i < (1 << BYTEWIDTH)) | ||
468 | { | ||
469 | if (fastmap[i++]) | ||
470 | { | ||
471 | was_a_range = 0; | ||
472 | printchar (i - 1); | ||
473 | while (i < (1 << BYTEWIDTH) && fastmap[i]) | ||
474 | { | ||
475 | was_a_range = 1; | ||
476 | i++; | ||
477 | } | ||
478 | if (was_a_range) | ||
479 | { | ||
480 | printf ("-"); | ||
481 | printchar (i - 1); | ||
482 | } | ||
483 | } | ||
484 | } | ||
485 | putchar ('\n'); | ||
486 | } | ||
487 | |||
488 | |||
489 | /* Print a compiled pattern string in human-readable form, starting at | ||
490 | the START pointer into it and ending just before the pointer END. */ | ||
491 | |||
492 | void | ||
493 | print_partial_compiled_pattern (start, end) | ||
494 | unsigned char *start; | ||
495 | unsigned char *end; | ||
496 | { | ||
497 | int mcnt, mcnt2; | ||
498 | unsigned char *p = start; | ||
499 | unsigned char *pend = end; | ||
500 | |||
501 | if (start == NULL) | ||
502 | { | ||
503 | printf ("(null)\n"); | ||
504 | return; | ||
505 | } | ||
506 | |||
507 | /* Loop over pattern commands. */ | ||
508 | while (p < pend) | ||
509 | { | ||
510 | switch ((re_opcode_t) *p++) | ||
511 | { | ||
512 | case no_op: | ||
513 | printf ("/no_op"); | ||
514 | break; | ||
515 | |||
516 | case exactn: | ||
517 | mcnt = *p++; | ||
518 | printf ("/exactn/%d", mcnt); | ||
519 | do | ||
520 | { | ||
521 | putchar ('/'); | ||
522 | printchar (*p++); | ||
523 | } | ||
524 | while (--mcnt); | ||
525 | break; | ||
526 | |||
527 | case start_memory: | ||
528 | mcnt = *p++; | ||
529 | printf ("/start_memory/%d/%d", mcnt, *p++); | ||
530 | break; | ||
531 | |||
532 | case stop_memory: | ||
533 | mcnt = *p++; | ||
534 | printf ("/stop_memory/%d/%d", mcnt, *p++); | ||
535 | break; | ||
536 | |||
537 | case duplicate: | ||
538 | printf ("/duplicate/%d", *p++); | ||
539 | break; | ||
540 | |||
541 | case anychar: | ||
542 | printf ("/anychar"); | ||
543 | break; | ||
544 | |||
545 | case charset: | ||
546 | case charset_not: | ||
547 | { | ||
548 | register int c; | ||
549 | |||
550 | printf ("/charset%s", | ||
551 | (re_opcode_t) *(p - 1) == charset_not ? "_not" : ""); | ||
552 | |||
553 | assert (p + *p < pend); | ||
554 | |||
555 | for (c = 0; c < *p; c++) | ||
556 | { | ||
557 | unsigned bit; | ||
558 | unsigned char map_byte = p[1 + c]; | ||
559 | |||
560 | putchar ('/'); | ||
561 | |||
562 | for (bit = 0; bit < BYTEWIDTH; bit++) | ||
563 | if (map_byte & (1 << bit)) | ||
564 | printchar (c * BYTEWIDTH + bit); | ||
565 | } | ||
566 | p += 1 + *p; | ||
567 | break; | ||
568 | } | ||
569 | |||
570 | case begline: | ||
571 | printf ("/begline"); | ||
572 | break; | ||
573 | |||
574 | case endline: | ||
575 | printf ("/endline"); | ||
576 | break; | ||
577 | |||
578 | case on_failure_jump: | ||
579 | extract_number_and_incr (&mcnt, &p); | ||
580 | printf ("/on_failure_jump/0/%d", mcnt); | ||
581 | break; | ||
582 | |||
583 | case on_failure_keep_string_jump: | ||
584 | extract_number_and_incr (&mcnt, &p); | ||
585 | printf ("/on_failure_keep_string_jump/0/%d", mcnt); | ||
586 | break; | ||
587 | |||
588 | case dummy_failure_jump: | ||
589 | extract_number_and_incr (&mcnt, &p); | ||
590 | printf ("/dummy_failure_jump/0/%d", mcnt); | ||
591 | break; | ||
592 | |||
593 | case push_dummy_failure: | ||
594 | printf ("/push_dummy_failure"); | ||
595 | break; | ||
596 | |||
597 | case maybe_pop_jump: | ||
598 | extract_number_and_incr (&mcnt, &p); | ||
599 | printf ("/maybe_pop_jump/0/%d", mcnt); | ||
600 | break; | ||
601 | |||
602 | case pop_failure_jump: | ||
603 | extract_number_and_incr (&mcnt, &p); | ||
604 | printf ("/pop_failure_jump/0/%d", mcnt); | ||
605 | break; | ||
606 | |||
607 | case jump_past_alt: | ||
608 | extract_number_and_incr (&mcnt, &p); | ||
609 | printf ("/jump_past_alt/0/%d", mcnt); | ||
610 | break; | ||
611 | |||
612 | case jump: | ||
613 | extract_number_and_incr (&mcnt, &p); | ||
614 | printf ("/jump/0/%d", mcnt); | ||
615 | break; | ||
616 | |||
617 | case succeed_n: | ||
618 | extract_number_and_incr (&mcnt, &p); | ||
619 | extract_number_and_incr (&mcnt2, &p); | ||
620 | printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2); | ||
621 | break; | ||
622 | |||
623 | case jump_n: | ||
624 | extract_number_and_incr (&mcnt, &p); | ||
625 | extract_number_and_incr (&mcnt2, &p); | ||
626 | printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2); | ||
627 | break; | ||
628 | |||
629 | case set_number_at: | ||
630 | extract_number_and_incr (&mcnt, &p); | ||
631 | extract_number_and_incr (&mcnt2, &p); | ||
632 | printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2); | ||
633 | break; | ||
634 | |||
635 | case wordbound: | ||
636 | printf ("/wordbound"); | ||
637 | break; | ||
638 | |||
639 | case notwordbound: | ||
640 | printf ("/notwordbound"); | ||
641 | break; | ||
642 | |||
643 | case wordbeg: | ||
644 | printf ("/wordbeg"); | ||
645 | break; | ||
646 | |||
647 | case wordend: | ||
648 | printf ("/wordend"); | ||
649 | |||
650 | #ifdef emacs | ||
651 | case before_dot: | ||
652 | printf ("/before_dot"); | ||
653 | break; | ||
654 | |||
655 | case at_dot: | ||
656 | printf ("/at_dot"); | ||
657 | break; | ||
658 | |||
659 | case after_dot: | ||
660 | printf ("/after_dot"); | ||
661 | break; | ||
662 | |||
663 | case syntaxspec: | ||
664 | printf ("/syntaxspec"); | ||
665 | mcnt = *p++; | ||
666 | printf ("/%d", mcnt); | ||
667 | break; | ||
668 | |||
669 | case notsyntaxspec: | ||
670 | printf ("/notsyntaxspec"); | ||
671 | mcnt = *p++; | ||
672 | printf ("/%d", mcnt); | ||
673 | break; | ||
674 | #endif /* emacs */ | ||
675 | |||
676 | case wordchar: | ||
677 | printf ("/wordchar"); | ||
678 | break; | ||
679 | |||
680 | case notwordchar: | ||
681 | printf ("/notwordchar"); | ||
682 | break; | ||
683 | |||
684 | case begbuf: | ||
685 | printf ("/begbuf"); | ||
686 | break; | ||
687 | |||
688 | case endbuf: | ||
689 | printf ("/endbuf"); | ||
690 | break; | ||
691 | |||
692 | default: | ||
693 | printf ("?%d", *(p-1)); | ||
694 | } | ||
695 | } | ||
696 | printf ("/\n"); | ||
697 | } | ||
698 | |||
699 | |||
700 | void | ||
701 | print_compiled_pattern (bufp) | ||
702 | struct re_pattern_buffer *bufp; | ||
703 | { | ||
704 | unsigned char *buffer = bufp->buffer; | ||
705 | |||
706 | print_partial_compiled_pattern (buffer, buffer + bufp->used); | ||
707 | printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated); | ||
708 | |||
709 | if (bufp->fastmap_accurate && bufp->fastmap) | ||
710 | { | ||
711 | printf ("fastmap: "); | ||
712 | print_fastmap (bufp->fastmap); | ||
713 | } | ||
714 | |||
715 | printf ("re_nsub: %d\t", bufp->re_nsub); | ||
716 | printf ("regs_alloc: %d\t", bufp->regs_allocated); | ||
717 | printf ("can_be_null: %d\t", bufp->can_be_null); | ||
718 | printf ("newline_anchor: %d\n", bufp->newline_anchor); | ||
719 | printf ("no_sub: %d\t", bufp->no_sub); | ||
720 | printf ("not_bol: %d\t", bufp->not_bol); | ||
721 | printf ("not_eol: %d\t", bufp->not_eol); | ||
722 | printf ("syntax: %d\n", bufp->syntax); | ||
723 | /* Perhaps we should print the translate table? */ | ||
724 | } | ||
725 | |||
726 | |||
727 | void | ||
728 | print_double_string (where, string1, size1, string2, size2) | ||
729 | const char *where; | ||
730 | const char *string1; | ||
731 | const char *string2; | ||
732 | int size1; | ||
733 | int size2; | ||
734 | { | ||
735 | unsigned this_char; | ||
736 | |||
737 | if (where == NULL) | ||
738 | printf ("(null)"); | ||
739 | else | ||
740 | { | ||
741 | if (FIRST_STRING_P (where)) | ||
742 | { | ||
743 | for (this_char = where - string1; this_char < size1; this_char++) | ||
744 | printchar (string1[this_char]); | ||
745 | |||
746 | where = string2; | ||
747 | } | ||
748 | |||
749 | for (this_char = where - string2; this_char < size2; this_char++) | ||
750 | printchar (string2[this_char]); | ||
751 | } | ||
752 | } | ||
753 | |||
754 | #else /* not DEBUG */ | ||
755 | |||
756 | #undef assert | ||
757 | #define assert(e) | ||
758 | |||
759 | #define DEBUG_STATEMENT(e) | ||
760 | #define DEBUG_PRINT1(x) | ||
761 | #define DEBUG_PRINT2(x1, x2) | ||
762 | #define DEBUG_PRINT3(x1, x2, x3) | ||
763 | #define DEBUG_PRINT4(x1, x2, x3, x4) | ||
764 | #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) | ||
765 | #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) | ||
766 | |||
767 | #endif /* not DEBUG */ | ||
768 | |||
769 | /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can | ||
770 | also be assigned to arbitrarily: each pattern buffer stores its own | ||
771 | syntax, so it can be changed between regex compilations. */ | ||
772 | reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS; | ||
773 | |||
774 | |||
775 | /* Specify the precise syntax of regexps for compilation. This provides | ||
776 | for compatibility for various utilities which historically have | ||
777 | different, incompatible syntaxes. | ||
778 | |||
779 | The argument SYNTAX is a bit mask comprised of the various bits | ||
780 | defined in regex.h. We return the old syntax. */ | ||
781 | |||
782 | reg_syntax_t | ||
783 | re_set_syntax (syntax) | ||
784 | reg_syntax_t syntax; | ||
785 | { | ||
786 | reg_syntax_t ret = re_syntax_options; | ||
787 | |||
788 | re_syntax_options = syntax; | ||
789 | return ret; | ||
790 | } | ||
791 | |||
792 | /* This table gives an error message for each of the error codes listed | ||
793 | in regex.h. Obviously the order here has to be same as there. */ | ||
794 | |||
795 | static const char *re_error_msg[] = | ||
796 | { NULL, /* REG_NOERROR */ | ||
797 | "No match", /* REG_NOMATCH */ | ||
798 | "Invalid regular expression", /* REG_BADPAT */ | ||
799 | "Invalid collation character", /* REG_ECOLLATE */ | ||
800 | "Invalid character class name", /* REG_ECTYPE */ | ||
801 | "Trailing backslash", /* REG_EESCAPE */ | ||
802 | "Invalid back reference", /* REG_ESUBREG */ | ||
803 | "Unmatched [ or [^", /* REG_EBRACK */ | ||
804 | "Unmatched ( or \\(", /* REG_EPAREN */ | ||
805 | "Unmatched \\{", /* REG_EBRACE */ | ||
806 | "Invalid content of \\{\\}", /* REG_BADBR */ | ||
807 | "Invalid range end", /* REG_ERANGE */ | ||
808 | "Memory exhausted", /* REG_ESPACE */ | ||
809 | "Invalid preceding regular expression", /* REG_BADRPT */ | ||
810 | "Premature end of regular expression", /* REG_EEND */ | ||
811 | "Regular expression too big", /* REG_ESIZE */ | ||
812 | "Unmatched ) or \\)", /* REG_ERPAREN */ | ||
813 | }; | ||
814 | |||
815 | /* Subroutine declarations and macros for regex_compile. */ | ||
816 | |||
817 | static void store_op1 (), store_op2 (); | ||
818 | static void insert_op1 (), insert_op2 (); | ||
819 | static boolean at_begline_loc_p (), at_endline_loc_p (); | ||
820 | static boolean group_in_compile_stack (); | ||
821 | static reg_errcode_t compile_range (); | ||
822 | |||
823 | /* Fetch the next character in the uncompiled pattern---translating it | ||
824 | if necessary. Also cast from a signed character in the constant | ||
825 | string passed to us by the user to an unsigned char that we can use | ||
826 | as an array index (in, e.g., `translate'). */ | ||
827 | #define PATFETCH(c) \ | ||
828 | do {if (p == pend) return REG_EEND; \ | ||
829 | c = (unsigned char) *p++; \ | ||
830 | if (translate) c = translate[c]; \ | ||
831 | } while (0) | ||
832 | |||
833 | /* Fetch the next character in the uncompiled pattern, with no | ||
834 | translation. */ | ||
835 | #define PATFETCH_RAW(c) \ | ||
836 | do {if (p == pend) return REG_EEND; \ | ||
837 | c = (unsigned char) *p++; \ | ||
838 | } while (0) | ||
839 | |||
840 | /* Go backwards one character in the pattern. */ | ||
841 | #define PATUNFETCH p-- | ||
842 | |||
843 | |||
844 | /* If `translate' is non-null, return translate[D], else just D. We | ||
845 | cast the subscript to translate because some data is declared as | ||
846 | `char *', to avoid warnings when a string constant is passed. But | ||
847 | when we use a character as a subscript we must make it unsigned. */ | ||
848 | #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d)) | ||
849 | |||
850 | |||
851 | /* Macros for outputting the compiled pattern into `buffer'. */ | ||
852 | |||
853 | /* If the buffer isn't allocated when it comes in, use this. */ | ||
854 | #define INIT_BUF_SIZE 32 | ||
855 | |||
856 | /* Make sure we have at least N more bytes of space in buffer. */ | ||
857 | #define GET_BUFFER_SPACE(n) \ | ||
858 | while (b - bufp->buffer + (n) > bufp->allocated) \ | ||
859 | EXTEND_BUFFER () | ||
860 | |||
861 | /* Make sure we have one more byte of buffer space and then add C to it. */ | ||
862 | #define BUF_PUSH(c) \ | ||
863 | do { \ | ||
864 | GET_BUFFER_SPACE (1); \ | ||
865 | *b++ = (unsigned char) (c); \ | ||
866 | } while (0) | ||
867 | |||
868 | |||
869 | /* Ensure we have two more bytes of buffer space and then append C1 and C2. */ | ||
870 | #define BUF_PUSH_2(c1, c2) \ | ||
871 | do { \ | ||
872 | GET_BUFFER_SPACE (2); \ | ||
873 | *b++ = (unsigned char) (c1); \ | ||
874 | *b++ = (unsigned char) (c2); \ | ||
875 | } while (0) | ||
876 | |||
877 | |||
878 | /* As with BUF_PUSH_2, except for three bytes. */ | ||
879 | #define BUF_PUSH_3(c1, c2, c3) \ | ||
880 | do { \ | ||
881 | GET_BUFFER_SPACE (3); \ | ||
882 | *b++ = (unsigned char) (c1); \ | ||
883 | *b++ = (unsigned char) (c2); \ | ||
884 | *b++ = (unsigned char) (c3); \ | ||
885 | } while (0) | ||
886 | |||
887 | |||
888 | /* Store a jump with opcode OP at LOC to location TO. We store a | ||
889 | relative address offset by the three bytes the jump itself occupies. */ | ||
890 | #define STORE_JUMP(op, loc, to) \ | ||
891 | store_op1 (op, loc, (to) - (loc) - 3) | ||
892 | |||
893 | /* Likewise, for a two-argument jump. */ | ||
894 | #define STORE_JUMP2(op, loc, to, arg) \ | ||
895 | store_op2 (op, loc, (to) - (loc) - 3, arg) | ||
896 | |||
897 | /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ | ||
898 | #define INSERT_JUMP(op, loc, to) \ | ||
899 | insert_op1 (op, loc, (to) - (loc) - 3, b) | ||
900 | |||
901 | /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ | ||
902 | #define INSERT_JUMP2(op, loc, to, arg) \ | ||
903 | insert_op2 (op, loc, (to) - (loc) - 3, arg, b) | ||
904 | |||
905 | |||
906 | /* This is not an arbitrary limit: the arguments which represent offsets | ||
907 | into the pattern are two bytes long. So if 2^16 bytes turns out to | ||
908 | be too small, many things would have to change. */ | ||
909 | #define MAX_BUF_SIZE (1L << 16) | ||
910 | |||
911 | |||
912 | /* Extend the buffer by twice its current size via realloc and | ||
913 | reset the pointers that pointed into the old block to point to the | ||
914 | correct places in the new one. If extending the buffer results in it | ||
915 | being larger than MAX_BUF_SIZE, then flag memory exhausted. */ | ||
916 | #define EXTEND_BUFFER() \ | ||
917 | do { \ | ||
918 | unsigned char *old_buffer = bufp->buffer; \ | ||
919 | if (bufp->allocated == MAX_BUF_SIZE) \ | ||
920 | return REG_ESIZE; \ | ||
921 | bufp->allocated <<= 1; \ | ||
922 | if (bufp->allocated > MAX_BUF_SIZE) \ | ||
923 | bufp->allocated = MAX_BUF_SIZE; \ | ||
924 | bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ | ||
925 | if (bufp->buffer == NULL) \ | ||
926 | return REG_ESPACE; \ | ||
927 | /* If the buffer moved, move all the pointers into it. */ \ | ||
928 | if (old_buffer != bufp->buffer) \ | ||
929 | { \ | ||
930 | b = (b - old_buffer) + bufp->buffer; \ | ||
931 | begalt = (begalt - old_buffer) + bufp->buffer; \ | ||
932 | if (fixup_alt_jump) \ | ||
933 | fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ | ||
934 | if (laststart) \ | ||
935 | laststart = (laststart - old_buffer) + bufp->buffer; \ | ||
936 | if (pending_exact) \ | ||
937 | pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ | ||
938 | } \ | ||
939 | } while (0) | ||
940 | |||
941 | |||
942 | /* Since we have one byte reserved for the register number argument to | ||
943 | {start,stop}_memory, the maximum number of groups we can report | ||
944 | things about is what fits in that byte. */ | ||
945 | #define MAX_REGNUM 255 | ||
946 | |||
947 | /* But patterns can have more than `MAX_REGNUM' registers. We just | ||
948 | ignore the excess. */ | ||
949 | typedef unsigned regnum_t; | ||
950 | |||
951 | |||
952 | /* Macros for the compile stack. */ | ||
953 | |||
954 | /* Since offsets can go either forwards or backwards, this type needs to | ||
955 | be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ | ||
956 | typedef int pattern_offset_t; | ||
957 | |||
958 | typedef struct | ||
959 | { | ||
960 | pattern_offset_t begalt_offset; | ||
961 | pattern_offset_t fixup_alt_jump; | ||
962 | pattern_offset_t inner_group_offset; | ||
963 | pattern_offset_t laststart_offset; | ||
964 | regnum_t regnum; | ||
965 | } compile_stack_elt_t; | ||
966 | |||
967 | |||
968 | typedef struct | ||
969 | { | ||
970 | compile_stack_elt_t *stack; | ||
971 | unsigned size; | ||
972 | unsigned avail; /* Offset of next open position. */ | ||
973 | } compile_stack_type; | ||
974 | |||
975 | |||
976 | #define INIT_COMPILE_STACK_SIZE 32 | ||
977 | |||
978 | #define COMPILE_STACK_EMPTY (compile_stack.avail == 0) | ||
979 | #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) | ||
980 | |||
981 | /* The next available element. */ | ||
982 | #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) | ||
983 | |||
984 | |||
985 | /* Set the bit for character C in a list. */ | ||
986 | #define SET_LIST_BIT(c) \ | ||
987 | (b[((unsigned char) (c)) / BYTEWIDTH] \ | ||
988 | |= 1 << (((unsigned char) c) % BYTEWIDTH)) | ||
989 | |||
990 | |||
991 | /* Get the next unsigned number in the uncompiled pattern. */ | ||
992 | #define GET_UNSIGNED_NUMBER(num) \ | ||
993 | { if (p != pend) \ | ||
994 | { \ | ||
995 | PATFETCH (c); \ | ||
996 | while (ISDIGIT (c)) \ | ||
997 | { \ | ||
998 | if (num < 0) \ | ||
999 | num = 0; \ | ||
1000 | num = num * 10 + c - '0'; \ | ||
1001 | if (p == pend) \ | ||
1002 | break; \ | ||
1003 | PATFETCH (c); \ | ||
1004 | } \ | ||
1005 | } \ | ||
1006 | } | ||
1007 | |||
1008 | #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ | ||
1009 | |||
1010 | #define IS_CHAR_CLASS(string) \ | ||
1011 | (STREQ (string, "alpha") || STREQ (string, "upper") \ | ||
1012 | || STREQ (string, "lower") || STREQ (string, "digit") \ | ||
1013 | || STREQ (string, "alnum") || STREQ (string, "xdigit") \ | ||
1014 | || STREQ (string, "space") || STREQ (string, "print") \ | ||
1015 | || STREQ (string, "punct") || STREQ (string, "graph") \ | ||
1016 | || STREQ (string, "cntrl") || STREQ (string, "blank")) | ||
1017 | |||
1018 | /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. | ||
1019 | Returns one of error codes defined in `regex.h', or zero for success. | ||
1020 | |||
1021 | Assumes the `allocated' (and perhaps `buffer') and `translate' | ||
1022 | fields are set in BUFP on entry. | ||
1023 | |||
1024 | If it succeeds, results are put in BUFP (if it returns an error, the | ||
1025 | contents of BUFP are undefined): | ||
1026 | `buffer' is the compiled pattern; | ||
1027 | `syntax' is set to SYNTAX; | ||
1028 | `used' is set to the length of the compiled pattern; | ||
1029 | `fastmap_accurate' is zero; | ||
1030 | `re_nsub' is the number of subexpressions in PATTERN; | ||
1031 | `not_bol' and `not_eol' are zero; | ||
1032 | |||
1033 | The `fastmap' and `newline_anchor' fields are neither | ||
1034 | examined nor set. */ | ||
1035 | |||
1036 | static reg_errcode_t | ||
1037 | regex_compile (pattern, size, syntax, bufp) | ||
1038 | const char *pattern; | ||
1039 | int size; | ||
1040 | reg_syntax_t syntax; | ||
1041 | struct re_pattern_buffer *bufp; | ||
1042 | { | ||
1043 | /* We fetch characters from PATTERN here. Even though PATTERN is | ||
1044 | `char *' (i.e., signed), we declare these variables as unsigned, so | ||
1045 | they can be reliably used as array indices. */ | ||
1046 | register unsigned char c, c1; | ||
1047 | |||
1048 | /* A random tempory spot in PATTERN. */ | ||
1049 | const char *p1; | ||
1050 | |||
1051 | /* Points to the end of the buffer, where we should append. */ | ||
1052 | register unsigned char *b; | ||
1053 | |||
1054 | /* Keeps track of unclosed groups. */ | ||
1055 | compile_stack_type compile_stack; | ||
1056 | |||
1057 | /* Points to the current (ending) position in the pattern. */ | ||
1058 | const char *p = pattern; | ||
1059 | const char *pend = pattern + size; | ||
1060 | |||
1061 | /* How to translate the characters in the pattern. */ | ||
1062 | char *translate = bufp->translate; | ||
1063 | |||
1064 | /* Address of the count-byte of the most recently inserted `exactn' | ||
1065 | command. This makes it possible to tell if a new exact-match | ||
1066 | character can be added to that command or if the character requires | ||
1067 | a new `exactn' command. */ | ||
1068 | unsigned char *pending_exact = 0; | ||
1069 | |||
1070 | /* Address of start of the most recently finished expression. | ||
1071 | This tells, e.g., postfix * where to find the start of its | ||
1072 | operand. Reset at the beginning of groups and alternatives. */ | ||
1073 | unsigned char *laststart = 0; | ||
1074 | |||
1075 | /* Address of beginning of regexp, or inside of last group. */ | ||
1076 | unsigned char *begalt; | ||
1077 | |||
1078 | /* Place in the uncompiled pattern (i.e., the {) to | ||
1079 | which to go back if the interval is invalid. */ | ||
1080 | const char *beg_interval; | ||
1081 | |||
1082 | /* Address of the place where a forward jump should go to the end of | ||
1083 | the containing expression. Each alternative of an `or' -- except the | ||
1084 | last -- ends with a forward jump of this sort. */ | ||
1085 | unsigned char *fixup_alt_jump = 0; | ||
1086 | |||
1087 | /* Counts open-groups as they are encountered. Remembered for the | ||
1088 | matching close-group on the compile stack, so the same register | ||
1089 | number is put in the stop_memory as the start_memory. */ | ||
1090 | regnum_t regnum = 0; | ||
1091 | |||
1092 | #ifdef DEBUG | ||
1093 | DEBUG_PRINT1 ("\nCompiling pattern: "); | ||
1094 | if (debug) | ||
1095 | { | ||
1096 | unsigned debug_count; | ||
1097 | |||
1098 | for (debug_count = 0; debug_count < size; debug_count++) | ||
1099 | printchar (pattern[debug_count]); | ||
1100 | putchar ('\n'); | ||
1101 | } | ||
1102 | #endif /* DEBUG */ | ||
1103 | |||
1104 | /* Initialize the compile stack. */ | ||
1105 | compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); | ||
1106 | if (compile_stack.stack == NULL) | ||
1107 | return REG_ESPACE; | ||
1108 | |||
1109 | compile_stack.size = INIT_COMPILE_STACK_SIZE; | ||
1110 | compile_stack.avail = 0; | ||
1111 | |||
1112 | /* Initialize the pattern buffer. */ | ||
1113 | bufp->syntax = syntax; | ||
1114 | bufp->fastmap_accurate = 0; | ||
1115 | bufp->not_bol = bufp->not_eol = 0; | ||
1116 | |||
1117 | /* Set `used' to zero, so that if we return an error, the pattern | ||
1118 | printer (for debugging) will think there's no pattern. We reset it | ||
1119 | at the end. */ | ||
1120 | bufp->used = 0; | ||
1121 | |||
1122 | /* Always count groups, whether or not bufp->no_sub is set. */ | ||
1123 | bufp->re_nsub = 0; | ||
1124 | |||
1125 | #if !defined (emacs) && !defined (SYNTAX_TABLE) | ||
1126 | /* Initialize the syntax table. */ | ||
1127 | init_syntax_once (); | ||
1128 | #endif | ||
1129 | |||
1130 | if (bufp->allocated == 0) | ||
1131 | { | ||
1132 | if (bufp->buffer) | ||
1133 | { /* If zero allocated, but buffer is non-null, try to realloc | ||
1134 | enough space. This loses if buffer's address is bogus, but | ||
1135 | that is the user's responsibility. */ | ||
1136 | RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); | ||
1137 | } | ||
1138 | else | ||
1139 | { /* Caller did not allocate a buffer. Do it for them. */ | ||
1140 | bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); | ||
1141 | } | ||
1142 | if (!bufp->buffer) return REG_ESPACE; | ||
1143 | |||
1144 | bufp->allocated = INIT_BUF_SIZE; | ||
1145 | } | ||
1146 | |||
1147 | begalt = b = bufp->buffer; | ||
1148 | |||
1149 | /* Loop through the uncompiled pattern until we're at the end. */ | ||
1150 | while (p != pend) | ||
1151 | { | ||
1152 | PATFETCH (c); | ||
1153 | |||
1154 | switch (c) | ||
1155 | { | ||
1156 | case '^': | ||
1157 | { | ||
1158 | if ( /* If at start of pattern, it's an operator. */ | ||
1159 | p == pattern + 1 | ||
1160 | /* If context independent, it's an operator. */ | ||
1161 | || syntax & RE_CONTEXT_INDEP_ANCHORS | ||
1162 | /* Otherwise, depends on what's come before. */ | ||
1163 | || at_begline_loc_p (pattern, p, syntax)) | ||
1164 | BUF_PUSH (begline); | ||
1165 | else | ||
1166 | goto normal_char; | ||
1167 | } | ||
1168 | break; | ||
1169 | |||
1170 | |||
1171 | case '$': | ||
1172 | { | ||
1173 | if ( /* If at end of pattern, it's an operator. */ | ||
1174 | p == pend | ||
1175 | /* If context independent, it's an operator. */ | ||
1176 | || syntax & RE_CONTEXT_INDEP_ANCHORS | ||
1177 | /* Otherwise, depends on what's next. */ | ||
1178 | || at_endline_loc_p (p, pend, syntax)) | ||
1179 | BUF_PUSH (endline); | ||
1180 | else | ||
1181 | goto normal_char; | ||
1182 | } | ||
1183 | break; | ||
1184 | |||
1185 | |||
1186 | case '+': | ||
1187 | case '?': | ||
1188 | if ((syntax & RE_BK_PLUS_QM) | ||
1189 | || (syntax & RE_LIMITED_OPS)) | ||
1190 | goto normal_char; | ||
1191 | handle_plus: | ||
1192 | case '*': | ||
1193 | /* If there is no previous pattern... */ | ||
1194 | if (!laststart) | ||
1195 | { | ||
1196 | if (syntax & RE_CONTEXT_INVALID_OPS) | ||
1197 | return REG_BADRPT; | ||
1198 | else if (!(syntax & RE_CONTEXT_INDEP_OPS)) | ||
1199 | goto normal_char; | ||
1200 | } | ||
1201 | |||
1202 | { | ||
1203 | /* Are we optimizing this jump? */ | ||
1204 | boolean keep_string_p = false; | ||
1205 | |||
1206 | /* 1 means zero (many) matches is allowed. */ | ||
1207 | char zero_times_ok = 0, many_times_ok = 0; | ||
1208 | |||
1209 | /* If there is a sequence of repetition chars, collapse it | ||
1210 | down to just one (the right one). We can't combine | ||
1211 | interval operators with these because of, e.g., `a{2}*', | ||
1212 | which should only match an even number of `a's. */ | ||
1213 | |||
1214 | for (;;) | ||
1215 | { | ||
1216 | zero_times_ok |= c != '+'; | ||
1217 | many_times_ok |= c != '?'; | ||
1218 | |||
1219 | if (p == pend) | ||
1220 | break; | ||
1221 | |||
1222 | PATFETCH (c); | ||
1223 | |||
1224 | if (c == '*' | ||
1225 | || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) | ||
1226 | ; | ||
1227 | |||
1228 | else if (syntax & RE_BK_PLUS_QM && c == '\\') | ||
1229 | { | ||
1230 | if (p == pend) return REG_EESCAPE; | ||
1231 | |||
1232 | PATFETCH (c1); | ||
1233 | if (!(c1 == '+' || c1 == '?')) | ||
1234 | { | ||
1235 | PATUNFETCH; | ||
1236 | PATUNFETCH; | ||
1237 | break; | ||
1238 | } | ||
1239 | |||
1240 | c = c1; | ||
1241 | } | ||
1242 | else | ||
1243 | { | ||
1244 | PATUNFETCH; | ||
1245 | break; | ||
1246 | } | ||
1247 | |||
1248 | /* If we get here, we found another repeat character. */ | ||
1249 | } | ||
1250 | |||
1251 | /* Star, etc. applied to an empty pattern is equivalent | ||
1252 | to an empty pattern. */ | ||
1253 | if (!laststart) | ||
1254 | break; | ||
1255 | |||
1256 | /* Now we know whether or not zero matches is allowed | ||
1257 | and also whether or not two or more matches is allowed. */ | ||
1258 | if (many_times_ok) | ||
1259 | { /* More than one repetition is allowed, so put in at the | ||
1260 | end a backward relative jump from `b' to before the next | ||
1261 | jump we're going to put in below (which jumps from | ||
1262 | laststart to after this jump). | ||
1263 | |||
1264 | But if we are at the `*' in the exact sequence `.*\n', | ||
1265 | insert an unconditional jump backwards to the ., | ||
1266 | instead of the beginning of the loop. This way we only | ||
1267 | push a failure point once, instead of every time | ||
1268 | through the loop. */ | ||
1269 | assert (p - 1 > pattern); | ||
1270 | |||
1271 | /* Allocate the space for the jump. */ | ||
1272 | GET_BUFFER_SPACE (3); | ||
1273 | |||
1274 | /* We know we are not at the first character of the pattern, | ||
1275 | because laststart was nonzero. And we've already | ||
1276 | incremented `p', by the way, to be the character after | ||
1277 | the `*'. Do we have to do something analogous here | ||
1278 | for null bytes, because of RE_DOT_NOT_NULL? */ | ||
1279 | if (TRANSLATE (*(p - 2)) == TRANSLATE ('.') | ||
1280 | && zero_times_ok | ||
1281 | && p < pend && TRANSLATE (*p) == TRANSLATE ('\n') | ||
1282 | && !(syntax & RE_DOT_NEWLINE)) | ||
1283 | { /* We have .*\n. */ | ||
1284 | STORE_JUMP (jump, b, laststart); | ||
1285 | keep_string_p = true; | ||
1286 | } | ||
1287 | else | ||
1288 | /* Anything else. */ | ||
1289 | STORE_JUMP (maybe_pop_jump, b, laststart - 3); | ||
1290 | |||
1291 | /* We've added more stuff to the buffer. */ | ||
1292 | b += 3; | ||
1293 | } | ||
1294 | |||
1295 | /* On failure, jump from laststart to b + 3, which will be the | ||
1296 | end of the buffer after this jump is inserted. */ | ||
1297 | GET_BUFFER_SPACE (3); | ||
1298 | INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump | ||
1299 | : on_failure_jump, | ||
1300 | laststart, b + 3); | ||
1301 | pending_exact = 0; | ||
1302 | b += 3; | ||
1303 | |||
1304 | if (!zero_times_ok) | ||
1305 | { | ||
1306 | /* At least one repetition is required, so insert a | ||
1307 | `dummy_failure_jump' before the initial | ||
1308 | `on_failure_jump' instruction of the loop. This | ||
1309 | effects a skip over that instruction the first time | ||
1310 | we hit that loop. */ | ||
1311 | GET_BUFFER_SPACE (3); | ||
1312 | INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6); | ||
1313 | b += 3; | ||
1314 | } | ||
1315 | } | ||
1316 | break; | ||
1317 | |||
1318 | |||
1319 | case '.': | ||
1320 | laststart = b; | ||
1321 | BUF_PUSH (anychar); | ||
1322 | break; | ||
1323 | |||
1324 | |||
1325 | case '[': | ||
1326 | { | ||
1327 | boolean had_char_class = false; | ||
1328 | |||
1329 | if (p == pend) return REG_EBRACK; | ||
1330 | |||
1331 | /* Ensure that we have enough space to push a charset: the | ||
1332 | opcode, the length count, and the bitset; 34 bytes in all. */ | ||
1333 | GET_BUFFER_SPACE (34); | ||
1334 | |||
1335 | laststart = b; | ||
1336 | |||
1337 | /* We test `*p == '^' twice, instead of using an if | ||
1338 | statement, so we only need one BUF_PUSH. */ | ||
1339 | BUF_PUSH (*p == '^' ? charset_not : charset); | ||
1340 | if (*p == '^') | ||
1341 | p++; | ||
1342 | |||
1343 | /* Remember the first position in the bracket expression. */ | ||
1344 | p1 = p; | ||
1345 | |||
1346 | /* Push the number of bytes in the bitmap. */ | ||
1347 | BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); | ||
1348 | |||
1349 | /* Clear the whole map. */ | ||
1350 | bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); | ||
1351 | |||
1352 | /* charset_not matches newline according to a syntax bit. */ | ||
1353 | if ((re_opcode_t) b[-2] == charset_not | ||
1354 | && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) | ||
1355 | SET_LIST_BIT ('\n'); | ||
1356 | |||
1357 | /* Read in characters and ranges, setting map bits. */ | ||
1358 | for (;;) | ||
1359 | { | ||
1360 | if (p == pend) return REG_EBRACK; | ||
1361 | |||
1362 | PATFETCH (c); | ||
1363 | |||
1364 | /* \ might escape characters inside [...] and [^...]. */ | ||
1365 | if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') | ||
1366 | { | ||
1367 | if (p == pend) return REG_EESCAPE; | ||
1368 | |||
1369 | PATFETCH (c1); | ||
1370 | SET_LIST_BIT (c1); | ||
1371 | continue; | ||
1372 | } | ||
1373 | |||
1374 | /* Could be the end of the bracket expression. If it's | ||
1375 | not (i.e., when the bracket expression is `[]' so | ||
1376 | far), the ']' character bit gets set way below. */ | ||
1377 | if (c == ']' && p != p1 + 1) | ||
1378 | break; | ||
1379 | |||
1380 | /* Look ahead to see if it's a range when the last thing | ||
1381 | was a character class. */ | ||
1382 | if (had_char_class && c == '-' && *p != ']') | ||
1383 | return REG_ERANGE; | ||
1384 | |||
1385 | /* Look ahead to see if it's a range when the last thing | ||
1386 | was a character: if this is a hyphen not at the | ||
1387 | beginning or the end of a list, then it's the range | ||
1388 | operator. */ | ||
1389 | if (c == '-' | ||
1390 | && !(p - 2 >= pattern && p[-2] == '[') | ||
1391 | && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') | ||
1392 | && *p != ']') | ||
1393 | { | ||
1394 | reg_errcode_t ret | ||
1395 | = compile_range (&p, pend, translate, syntax, b); | ||
1396 | if (ret != REG_NOERROR) return ret; | ||
1397 | } | ||
1398 | |||
1399 | else if (p[0] == '-' && p[1] != ']') | ||
1400 | { /* This handles ranges made up of characters only. */ | ||
1401 | reg_errcode_t ret; | ||
1402 | |||
1403 | /* Move past the `-'. */ | ||
1404 | PATFETCH (c1); | ||
1405 | |||
1406 | ret = compile_range (&p, pend, translate, syntax, b); | ||
1407 | if (ret != REG_NOERROR) return ret; | ||
1408 | } | ||
1409 | |||
1410 | /* See if we're at the beginning of a possible character | ||
1411 | class. */ | ||
1412 | |||
1413 | else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') | ||
1414 | { /* Leave room for the null. */ | ||
1415 | char str[CHAR_CLASS_MAX_LENGTH + 1]; | ||
1416 | |||
1417 | PATFETCH (c); | ||
1418 | c1 = 0; | ||
1419 | |||
1420 | /* If pattern is `[[:'. */ | ||
1421 | if (p == pend) return REG_EBRACK; | ||
1422 | |||
1423 | for (;;) | ||
1424 | { | ||
1425 | PATFETCH (c); | ||
1426 | if (c == ':' || c == ']' || p == pend | ||
1427 | || c1 == CHAR_CLASS_MAX_LENGTH) | ||
1428 | break; | ||
1429 | str[c1++] = c; | ||
1430 | } | ||
1431 | str[c1] = '\0'; | ||
1432 | |||
1433 | /* If isn't a word bracketed by `[:' and:`]': | ||
1434 | undo the ending character, the letters, and leave | ||
1435 | the leading `:' and `[' (but set bits for them). */ | ||
1436 | if (c == ':' && *p == ']') | ||
1437 | { | ||
1438 | int ch; | ||
1439 | boolean is_alnum = STREQ (str, "alnum"); | ||
1440 | boolean is_alpha = STREQ (str, "alpha"); | ||
1441 | boolean is_blank = STREQ (str, "blank"); | ||
1442 | boolean is_cntrl = STREQ (str, "cntrl"); | ||
1443 | boolean is_digit = STREQ (str, "digit"); | ||
1444 | boolean is_graph = STREQ (str, "graph"); | ||
1445 | boolean is_lower = STREQ (str, "lower"); | ||
1446 | boolean is_print = STREQ (str, "print"); | ||
1447 | boolean is_punct = STREQ (str, "punct"); | ||
1448 | boolean is_space = STREQ (str, "space"); | ||
1449 | boolean is_upper = STREQ (str, "upper"); | ||
1450 | boolean is_xdigit = STREQ (str, "xdigit"); | ||
1451 | |||
1452 | if (!IS_CHAR_CLASS (str)) return REG_ECTYPE; | ||
1453 | |||
1454 | /* Throw away the ] at the end of the character | ||
1455 | class. */ | ||
1456 | PATFETCH (c); | ||
1457 | |||
1458 | if (p == pend) return REG_EBRACK; | ||
1459 | |||
1460 | for (ch = 0; ch < 1 << BYTEWIDTH; ch++) | ||
1461 | { | ||
1462 | if ( (is_alnum && ISALNUM (ch)) | ||
1463 | || (is_alpha && ISALPHA (ch)) | ||
1464 | || (is_blank && ISBLANK (ch)) | ||
1465 | || (is_cntrl && ISCNTRL (ch)) | ||
1466 | || (is_digit && ISDIGIT (ch)) | ||
1467 | || (is_graph && ISGRAPH (ch)) | ||
1468 | || (is_lower && ISLOWER (ch)) | ||
1469 | || (is_print && ISPRINT (ch)) | ||
1470 | || (is_punct && ISPUNCT (ch)) | ||
1471 | || (is_space && ISSPACE (ch)) | ||
1472 | || (is_upper && ISUPPER (ch)) | ||
1473 | || (is_xdigit && ISXDIGIT (ch))) | ||
1474 | SET_LIST_BIT (ch); | ||
1475 | } | ||
1476 | had_char_class = true; | ||
1477 | } | ||
1478 | else | ||
1479 | { | ||
1480 | c1++; | ||
1481 | while (c1--) | ||
1482 | PATUNFETCH; | ||
1483 | SET_LIST_BIT ('['); | ||
1484 | SET_LIST_BIT (':'); | ||
1485 | had_char_class = false; | ||
1486 | } | ||
1487 | } | ||
1488 | else | ||
1489 | { | ||
1490 | had_char_class = false; | ||
1491 | SET_LIST_BIT (c); | ||
1492 | } | ||
1493 | } | ||
1494 | |||
1495 | /* Discard any (non)matching list bytes that are all 0 at the | ||
1496 | end of the map. Decrease the map-length byte too. */ | ||
1497 | while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) | ||
1498 | b[-1]--; | ||
1499 | b += b[-1]; | ||
1500 | } | ||
1501 | break; | ||
1502 | |||
1503 | |||
1504 | case '(': | ||
1505 | if (syntax & RE_NO_BK_PARENS) | ||
1506 | goto handle_open; | ||
1507 | else | ||
1508 | goto normal_char; | ||
1509 | |||
1510 | |||
1511 | case ')': | ||
1512 | if (syntax & RE_NO_BK_PARENS) | ||
1513 | goto handle_close; | ||
1514 | else | ||
1515 | goto normal_char; | ||
1516 | |||
1517 | |||
1518 | case '\n': | ||
1519 | if (syntax & RE_NEWLINE_ALT) | ||
1520 | goto handle_alt; | ||
1521 | else | ||
1522 | goto normal_char; | ||
1523 | |||
1524 | |||
1525 | case '|': | ||
1526 | if (syntax & RE_NO_BK_VBAR) | ||
1527 | goto handle_alt; | ||
1528 | else | ||
1529 | goto normal_char; | ||
1530 | |||
1531 | |||
1532 | case '{': | ||
1533 | if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) | ||
1534 | goto handle_interval; | ||
1535 | else | ||
1536 | goto normal_char; | ||
1537 | |||
1538 | |||
1539 | case '\\': | ||
1540 | if (p == pend) return REG_EESCAPE; | ||
1541 | |||
1542 | /* Do not translate the character after the \, so that we can | ||
1543 | distinguish, e.g., \B from \b, even if we normally would | ||
1544 | translate, e.g., B to b. */ | ||
1545 | PATFETCH_RAW (c); | ||
1546 | |||
1547 | switch (c) | ||
1548 | { | ||
1549 | case '(': | ||
1550 | if (syntax & RE_NO_BK_PARENS) | ||
1551 | goto normal_backslash; | ||
1552 | |||
1553 | handle_open: | ||
1554 | bufp->re_nsub++; | ||
1555 | regnum++; | ||
1556 | |||
1557 | if (COMPILE_STACK_FULL) | ||
1558 | { | ||
1559 | RETALLOC (compile_stack.stack, compile_stack.size << 1, | ||
1560 | compile_stack_elt_t); | ||
1561 | if (compile_stack.stack == NULL) return REG_ESPACE; | ||
1562 | |||
1563 | compile_stack.size <<= 1; | ||
1564 | } | ||
1565 | |||
1566 | /* These are the values to restore when we hit end of this | ||
1567 | group. They are all relative offsets, so that if the | ||
1568 | whole pattern moves because of realloc, they will still | ||
1569 | be valid. */ | ||
1570 | COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; | ||
1571 | COMPILE_STACK_TOP.fixup_alt_jump | ||
1572 | = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; | ||
1573 | COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; | ||
1574 | COMPILE_STACK_TOP.regnum = regnum; | ||
1575 | |||
1576 | /* We will eventually replace the 0 with the number of | ||
1577 | groups inner to this one. But do not push a | ||
1578 | start_memory for groups beyond the last one we can | ||
1579 | represent in the compiled pattern. */ | ||
1580 | if (regnum <= MAX_REGNUM) | ||
1581 | { | ||
1582 | COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2; | ||
1583 | BUF_PUSH_3 (start_memory, regnum, 0); | ||
1584 | } | ||
1585 | |||
1586 | compile_stack.avail++; | ||
1587 | |||
1588 | fixup_alt_jump = 0; | ||
1589 | laststart = 0; | ||
1590 | begalt = b; | ||
1591 | /* If we've reached MAX_REGNUM groups, then this open | ||
1592 | won't actually generate any code, so we'll have to | ||
1593 | clear pending_exact explicitly. */ | ||
1594 | pending_exact = 0; | ||
1595 | break; | ||
1596 | |||
1597 | |||
1598 | case ')': | ||
1599 | if (syntax & RE_NO_BK_PARENS) goto normal_backslash; | ||
1600 | |||
1601 | if (COMPILE_STACK_EMPTY) | ||
1602 | { | ||
1603 | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | ||
1604 | goto normal_backslash; | ||
1605 | else | ||
1606 | return REG_ERPAREN; | ||
1607 | } | ||
1608 | |||
1609 | handle_close: | ||
1610 | if (fixup_alt_jump) | ||
1611 | { /* Push a dummy failure point at the end of the | ||
1612 | alternative for a possible future | ||
1613 | `pop_failure_jump' to pop. See comments at | ||
1614 | `push_dummy_failure' in `re_match_2'. */ | ||
1615 | BUF_PUSH (push_dummy_failure); | ||
1616 | |||
1617 | /* We allocated space for this jump when we assigned | ||
1618 | to `fixup_alt_jump', in the `handle_alt' case below. */ | ||
1619 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); | ||
1620 | } | ||
1621 | |||
1622 | /* See similar code for backslashed left paren above. */ | ||
1623 | if (COMPILE_STACK_EMPTY) | ||
1624 | { | ||
1625 | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | ||
1626 | goto normal_char; | ||
1627 | else | ||
1628 | return REG_ERPAREN; | ||
1629 | } | ||
1630 | |||
1631 | /* Since we just checked for an empty stack above, this | ||
1632 | ``can't happen''. */ | ||
1633 | assert (compile_stack.avail != 0); | ||
1634 | { | ||
1635 | /* We don't just want to restore into `regnum', because | ||
1636 | later groups should continue to be numbered higher, | ||
1637 | as in `(ab)c(de)' -- the second group is #2. */ | ||
1638 | regnum_t this_group_regnum; | ||
1639 | |||
1640 | compile_stack.avail--; | ||
1641 | begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; | ||
1642 | fixup_alt_jump | ||
1643 | = COMPILE_STACK_TOP.fixup_alt_jump | ||
1644 | ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 | ||
1645 | : 0; | ||
1646 | laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; | ||
1647 | this_group_regnum = COMPILE_STACK_TOP.regnum; | ||
1648 | /* If we've reached MAX_REGNUM groups, then this open | ||
1649 | won't actually generate any code, so we'll have to | ||
1650 | clear pending_exact explicitly. */ | ||
1651 | pending_exact = 0; | ||
1652 | |||
1653 | /* We're at the end of the group, so now we know how many | ||
1654 | groups were inside this one. */ | ||
1655 | if (this_group_regnum <= MAX_REGNUM) | ||
1656 | { | ||
1657 | unsigned char *inner_group_loc | ||
1658 | = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; | ||
1659 | |||
1660 | *inner_group_loc = regnum - this_group_regnum; | ||
1661 | BUF_PUSH_3 (stop_memory, this_group_regnum, | ||
1662 | regnum - this_group_regnum); | ||
1663 | } | ||
1664 | } | ||
1665 | break; | ||
1666 | |||
1667 | |||
1668 | case '|': /* `\|'. */ | ||
1669 | if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) | ||
1670 | goto normal_backslash; | ||
1671 | handle_alt: | ||
1672 | if (syntax & RE_LIMITED_OPS) | ||
1673 | goto normal_char; | ||
1674 | |||
1675 | /* Insert before the previous alternative a jump which | ||
1676 | jumps to this alternative if the former fails. */ | ||
1677 | GET_BUFFER_SPACE (3); | ||
1678 | INSERT_JUMP (on_failure_jump, begalt, b + 6); | ||
1679 | pending_exact = 0; | ||
1680 | b += 3; | ||
1681 | |||
1682 | /* The alternative before this one has a jump after it | ||
1683 | which gets executed if it gets matched. Adjust that | ||
1684 | jump so it will jump to this alternative's analogous | ||
1685 | jump (put in below, which in turn will jump to the next | ||
1686 | (if any) alternative's such jump, etc.). The last such | ||
1687 | jump jumps to the correct final destination. A picture: | ||
1688 | _____ _____ | ||
1689 | | | | | | ||
1690 | | v | v | ||
1691 | a | b | c | ||
1692 | |||
1693 | If we are at `b', then fixup_alt_jump right now points to a | ||
1694 | three-byte space after `a'. We'll put in the jump, set | ||
1695 | fixup_alt_jump to right after `b', and leave behind three | ||
1696 | bytes which we'll fill in when we get to after `c'. */ | ||
1697 | |||
1698 | if (fixup_alt_jump) | ||
1699 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b); | ||
1700 | |||
1701 | /* Mark and leave space for a jump after this alternative, | ||
1702 | to be filled in later either by next alternative or | ||
1703 | when know we're at the end of a series of alternatives. */ | ||
1704 | fixup_alt_jump = b; | ||
1705 | GET_BUFFER_SPACE (3); | ||
1706 | b += 3; | ||
1707 | |||
1708 | laststart = 0; | ||
1709 | begalt = b; | ||
1710 | break; | ||
1711 | |||
1712 | |||
1713 | case '{': | ||
1714 | /* If \{ is a literal. */ | ||
1715 | if (!(syntax & RE_INTERVALS) | ||
1716 | /* If we're at `\{' and it's not the open-interval | ||
1717 | operator. */ | ||
1718 | || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | ||
1719 | || (p - 2 == pattern && p == pend)) | ||
1720 | goto normal_backslash; | ||
1721 | |||
1722 | handle_interval: | ||
1723 | { | ||
1724 | /* If got here, then the syntax allows intervals. */ | ||
1725 | |||
1726 | /* At least (most) this many matches must be made. */ | ||
1727 | int lower_bound = -1, upper_bound = -1; | ||
1728 | |||
1729 | beg_interval = p - 1; | ||
1730 | |||
1731 | if (p == pend) | ||
1732 | { | ||
1733 | if (syntax & RE_NO_BK_BRACES) | ||
1734 | goto unfetch_interval; | ||
1735 | else | ||
1736 | return REG_EBRACE; | ||
1737 | } | ||
1738 | |||
1739 | GET_UNSIGNED_NUMBER (lower_bound); | ||
1740 | |||
1741 | if (c == ',') | ||
1742 | { | ||
1743 | GET_UNSIGNED_NUMBER (upper_bound); | ||
1744 | if (upper_bound < 0) upper_bound = RE_DUP_MAX; | ||
1745 | } | ||
1746 | else | ||
1747 | /* Interval such as `{1}' => match exactly once. */ | ||
1748 | upper_bound = lower_bound; | ||
1749 | |||
1750 | if (lower_bound < 0 || upper_bound > RE_DUP_MAX | ||
1751 | || lower_bound > upper_bound) | ||
1752 | { | ||
1753 | if (syntax & RE_NO_BK_BRACES) | ||
1754 | goto unfetch_interval; | ||
1755 | else | ||
1756 | return REG_BADBR; | ||
1757 | } | ||
1758 | |||
1759 | if (!(syntax & RE_NO_BK_BRACES)) | ||
1760 | { | ||
1761 | if (c != '\\') return REG_EBRACE; | ||
1762 | |||
1763 | PATFETCH (c); | ||
1764 | } | ||
1765 | |||
1766 | if (c != '}') | ||
1767 | { | ||
1768 | if (syntax & RE_NO_BK_BRACES) | ||
1769 | goto unfetch_interval; | ||
1770 | else | ||
1771 | return REG_BADBR; | ||
1772 | } | ||
1773 | |||
1774 | /* We just parsed a valid interval. */ | ||
1775 | |||
1776 | /* If it's invalid to have no preceding re. */ | ||
1777 | if (!laststart) | ||
1778 | { | ||
1779 | if (syntax & RE_CONTEXT_INVALID_OPS) | ||
1780 | return REG_BADRPT; | ||
1781 | else if (syntax & RE_CONTEXT_INDEP_OPS) | ||
1782 | laststart = b; | ||
1783 | else | ||
1784 | goto unfetch_interval; | ||
1785 | } | ||
1786 | |||
1787 | /* If the upper bound is zero, don't want to succeed at | ||
1788 | all; jump from `laststart' to `b + 3', which will be | ||
1789 | the end of the buffer after we insert the jump. */ | ||
1790 | if (upper_bound == 0) | ||
1791 | { | ||
1792 | GET_BUFFER_SPACE (3); | ||
1793 | INSERT_JUMP (jump, laststart, b + 3); | ||
1794 | b += 3; | ||
1795 | } | ||
1796 | |||
1797 | /* Otherwise, we have a nontrivial interval. When | ||
1798 | we're all done, the pattern will look like: | ||
1799 | set_number_at <jump count> <upper bound> | ||
1800 | set_number_at <succeed_n count> <lower bound> | ||
1801 | succeed_n <after jump addr> <succed_n count> | ||
1802 | <body of loop> | ||
1803 | jump_n <succeed_n addr> <jump count> | ||
1804 | (The upper bound and `jump_n' are omitted if | ||
1805 | `upper_bound' is 1, though.) */ | ||
1806 | else | ||
1807 | { /* If the upper bound is > 1, we need to insert | ||
1808 | more at the end of the loop. */ | ||
1809 | unsigned nbytes = 10 + (upper_bound > 1) * 10; | ||
1810 | |||
1811 | GET_BUFFER_SPACE (nbytes); | ||
1812 | |||
1813 | /* Initialize lower bound of the `succeed_n', even | ||
1814 | though it will be set during matching by its | ||
1815 | attendant `set_number_at' (inserted next), | ||
1816 | because `re_compile_fastmap' needs to know. | ||
1817 | Jump to the `jump_n' we might insert below. */ | ||
1818 | INSERT_JUMP2 (succeed_n, laststart, | ||
1819 | b + 5 + (upper_bound > 1) * 5, | ||
1820 | lower_bound); | ||
1821 | b += 5; | ||
1822 | |||
1823 | /* Code to initialize the lower bound. Insert | ||
1824 | before the `succeed_n'. The `5' is the last two | ||
1825 | bytes of this `set_number_at', plus 3 bytes of | ||
1826 | the following `succeed_n'. */ | ||
1827 | insert_op2 (set_number_at, laststart, 5, lower_bound, b); | ||
1828 | b += 5; | ||
1829 | |||
1830 | if (upper_bound > 1) | ||
1831 | { /* More than one repetition is allowed, so | ||
1832 | append a backward jump to the `succeed_n' | ||
1833 | that starts this interval. | ||
1834 | |||
1835 | When we've reached this during matching, | ||
1836 | we'll have matched the interval once, so | ||
1837 | jump back only `upper_bound - 1' times. */ | ||
1838 | STORE_JUMP2 (jump_n, b, laststart + 5, | ||
1839 | upper_bound - 1); | ||
1840 | b += 5; | ||
1841 | |||
1842 | /* The location we want to set is the second | ||
1843 | parameter of the `jump_n'; that is `b-2' as | ||
1844 | an absolute address. `laststart' will be | ||
1845 | the `set_number_at' we're about to insert; | ||
1846 | `laststart+3' the number to set, the source | ||
1847 | for the relative address. But we are | ||
1848 | inserting into the middle of the pattern -- | ||
1849 | so everything is getting moved up by 5. | ||
1850 | Conclusion: (b - 2) - (laststart + 3) + 5, | ||
1851 | i.e., b - laststart. | ||
1852 | |||
1853 | We insert this at the beginning of the loop | ||
1854 | so that if we fail during matching, we'll | ||
1855 | reinitialize the bounds. */ | ||
1856 | insert_op2 (set_number_at, laststart, b - laststart, | ||
1857 | upper_bound - 1, b); | ||
1858 | b += 5; | ||
1859 | } | ||
1860 | } | ||
1861 | pending_exact = 0; | ||
1862 | beg_interval = NULL; | ||
1863 | } | ||
1864 | break; | ||
1865 | |||
1866 | unfetch_interval: | ||
1867 | /* If an invalid interval, match the characters as literals. */ | ||
1868 | assert (beg_interval); | ||
1869 | p = beg_interval; | ||
1870 | beg_interval = NULL; | ||
1871 | |||
1872 | /* normal_char and normal_backslash need `c'. */ | ||
1873 | PATFETCH (c); | ||
1874 | |||
1875 | if (!(syntax & RE_NO_BK_BRACES)) | ||
1876 | { | ||
1877 | if (p > pattern && p[-1] == '\\') | ||
1878 | goto normal_backslash; | ||
1879 | } | ||
1880 | goto normal_char; | ||
1881 | |||
1882 | #ifdef emacs | ||
1883 | /* There is no way to specify the before_dot and after_dot | ||
1884 | operators. rms says this is ok. --karl */ | ||
1885 | case '=': | ||
1886 | BUF_PUSH (at_dot); | ||
1887 | break; | ||
1888 | |||
1889 | case 's': | ||
1890 | laststart = b; | ||
1891 | PATFETCH (c); | ||
1892 | BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); | ||
1893 | break; | ||
1894 | |||
1895 | case 'S': | ||
1896 | laststart = b; | ||
1897 | PATFETCH (c); | ||
1898 | BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); | ||
1899 | break; | ||
1900 | #endif /* emacs */ | ||
1901 | |||
1902 | |||
1903 | case 'w': | ||
1904 | laststart = b; | ||
1905 | BUF_PUSH (wordchar); | ||
1906 | break; | ||
1907 | |||
1908 | |||
1909 | case 'W': | ||
1910 | laststart = b; | ||
1911 | BUF_PUSH (notwordchar); | ||
1912 | break; | ||
1913 | |||
1914 | |||
1915 | case '<': | ||
1916 | BUF_PUSH (wordbeg); | ||
1917 | break; | ||
1918 | |||
1919 | case '>': | ||
1920 | BUF_PUSH (wordend); | ||
1921 | break; | ||
1922 | |||
1923 | case 'b': | ||
1924 | BUF_PUSH (wordbound); | ||
1925 | break; | ||
1926 | |||
1927 | case 'B': | ||
1928 | BUF_PUSH (notwordbound); | ||
1929 | break; | ||
1930 | |||
1931 | case '`': | ||
1932 | BUF_PUSH (begbuf); | ||
1933 | break; | ||
1934 | |||
1935 | case '\'': | ||
1936 | BUF_PUSH (endbuf); | ||
1937 | break; | ||
1938 | |||
1939 | case '1': case '2': case '3': case '4': case '5': | ||
1940 | case '6': case '7': case '8': case '9': | ||
1941 | if (syntax & RE_NO_BK_REFS) | ||
1942 | goto normal_char; | ||
1943 | |||
1944 | c1 = c - '0'; | ||
1945 | |||
1946 | if (c1 > regnum) | ||
1947 | return REG_ESUBREG; | ||
1948 | |||
1949 | /* Can't back reference to a subexpression if inside of it. */ | ||
1950 | if (group_in_compile_stack (compile_stack, c1)) | ||
1951 | goto normal_char; | ||
1952 | |||
1953 | laststart = b; | ||
1954 | BUF_PUSH_2 (duplicate, c1); | ||
1955 | break; | ||
1956 | |||
1957 | |||
1958 | case '+': | ||
1959 | case '?': | ||
1960 | if (syntax & RE_BK_PLUS_QM) | ||
1961 | goto handle_plus; | ||
1962 | else | ||
1963 | goto normal_backslash; | ||
1964 | |||
1965 | default: | ||
1966 | normal_backslash: | ||
1967 | /* You might think it would be useful for \ to mean | ||
1968 | not to translate; but if we don't translate it | ||
1969 | it will never match anything. */ | ||
1970 | c = TRANSLATE (c); | ||
1971 | goto normal_char; | ||
1972 | } | ||
1973 | break; | ||
1974 | |||
1975 | |||
1976 | default: | ||
1977 | /* Expects the character in `c'. */ | ||
1978 | normal_char: | ||
1979 | /* If no exactn currently being built. */ | ||
1980 | if (!pending_exact | ||
1981 | |||
1982 | /* If last exactn not at current position. */ | ||
1983 | || pending_exact + *pending_exact + 1 != b | ||
1984 | |||
1985 | /* We have only one byte following the exactn for the count. */ | ||
1986 | || *pending_exact == (1 << BYTEWIDTH) - 1 | ||
1987 | |||
1988 | /* If followed by a repetition operator. */ | ||
1989 | || *p == '*' || *p == '^' | ||
1990 | || ((syntax & RE_BK_PLUS_QM) | ||
1991 | ? *p == '\\' && (p[1] == '+' || p[1] == '?') | ||
1992 | : (*p == '+' || *p == '?')) | ||
1993 | || ((syntax & RE_INTERVALS) | ||
1994 | && ((syntax & RE_NO_BK_BRACES) | ||
1995 | ? *p == '{' | ||
1996 | : (p[0] == '\\' && p[1] == '{')))) | ||
1997 | { | ||
1998 | /* Start building a new exactn. */ | ||
1999 | |||
2000 | laststart = b; | ||
2001 | |||
2002 | BUF_PUSH_2 (exactn, 0); | ||
2003 | pending_exact = b - 1; | ||
2004 | } | ||
2005 | |||
2006 | BUF_PUSH (c); | ||
2007 | (*pending_exact)++; | ||
2008 | break; | ||
2009 | } /* switch (c) */ | ||
2010 | } /* while p != pend */ | ||
2011 | |||
2012 | |||
2013 | /* Through the pattern now. */ | ||
2014 | |||
2015 | if (fixup_alt_jump) | ||
2016 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b); | ||
2017 | |||
2018 | if (!COMPILE_STACK_EMPTY) | ||
2019 | return REG_EPAREN; | ||
2020 | |||
2021 | free (compile_stack.stack); | ||
2022 | |||
2023 | /* We have succeeded; set the length of the buffer. */ | ||
2024 | bufp->used = b - bufp->buffer; | ||
2025 | |||
2026 | #ifdef DEBUG | ||
2027 | if (debug) | ||
2028 | { | ||
2029 | DEBUG_PRINT1 ("\nCompiled pattern: "); | ||
2030 | print_compiled_pattern (bufp); | ||
2031 | } | ||
2032 | #endif /* DEBUG */ | ||
2033 | |||
2034 | return REG_NOERROR; | ||
2035 | } /* regex_compile */ | ||
2036 | |||
2037 | /* Subroutines for `regex_compile'. */ | ||
2038 | |||
2039 | /* Store OP at LOC followed by two-byte integer parameter ARG. */ | ||
2040 | |||
2041 | static void | ||
2042 | store_op1 (op, loc, arg) | ||
2043 | re_opcode_t op; | ||
2044 | unsigned char *loc; | ||
2045 | int arg; | ||
2046 | { | ||
2047 | *loc = (unsigned char) op; | ||
2048 | STORE_NUMBER (loc + 1, arg); | ||
2049 | } | ||
2050 | |||
2051 | |||
2052 | /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ | ||
2053 | |||
2054 | static void | ||
2055 | store_op2 (op, loc, arg1, arg2) | ||
2056 | re_opcode_t op; | ||
2057 | unsigned char *loc; | ||
2058 | int arg1, arg2; | ||
2059 | { | ||
2060 | *loc = (unsigned char) op; | ||
2061 | STORE_NUMBER (loc + 1, arg1); | ||
2062 | STORE_NUMBER (loc + 3, arg2); | ||
2063 | } | ||
2064 | |||
2065 | |||
2066 | /* Copy the bytes from LOC to END to open up three bytes of space at LOC | ||
2067 | for OP followed by two-byte integer parameter ARG. */ | ||
2068 | |||
2069 | static void | ||
2070 | insert_op1 (op, loc, arg, end) | ||
2071 | re_opcode_t op; | ||
2072 | unsigned char *loc; | ||
2073 | int arg; | ||
2074 | unsigned char *end; | ||
2075 | { | ||
2076 | register unsigned char *pfrom = end; | ||
2077 | register unsigned char *pto = end + 3; | ||
2078 | |||
2079 | while (pfrom != loc) | ||
2080 | *--pto = *--pfrom; | ||
2081 | |||
2082 | store_op1 (op, loc, arg); | ||
2083 | } | ||
2084 | |||
2085 | |||
2086 | /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ | ||
2087 | |||
2088 | static void | ||
2089 | insert_op2 (op, loc, arg1, arg2, end) | ||
2090 | re_opcode_t op; | ||
2091 | unsigned char *loc; | ||
2092 | int arg1, arg2; | ||
2093 | unsigned char *end; | ||
2094 | { | ||
2095 | register unsigned char *pfrom = end; | ||
2096 | register unsigned char *pto = end + 5; | ||
2097 | |||
2098 | while (pfrom != loc) | ||
2099 | *--pto = *--pfrom; | ||
2100 | |||
2101 | store_op2 (op, loc, arg1, arg2); | ||
2102 | } | ||
2103 | |||
2104 | |||
2105 | /* P points to just after a ^ in PATTERN. Return true if that ^ comes | ||
2106 | after an alternative or a begin-subexpression. We assume there is at | ||
2107 | least one character before the ^. */ | ||
2108 | |||
2109 | static boolean | ||
2110 | at_begline_loc_p (pattern, p, syntax) | ||
2111 | const char *pattern, *p; | ||
2112 | reg_syntax_t syntax; | ||
2113 | { | ||
2114 | const char *prev = p - 2; | ||
2115 | boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; | ||
2116 | |||
2117 | return | ||
2118 | /* After a subexpression? */ | ||
2119 | (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) | ||
2120 | /* After an alternative? */ | ||
2121 | || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); | ||
2122 | } | ||
2123 | |||
2124 | |||
2125 | /* The dual of at_begline_loc_p. This one is for $. We assume there is | ||
2126 | at least one character after the $, i.e., `P < PEND'. */ | ||
2127 | |||
2128 | static boolean | ||
2129 | at_endline_loc_p (p, pend, syntax) | ||
2130 | const char *p, *pend; | ||
2131 | int syntax; | ||
2132 | { | ||
2133 | const char *next = p; | ||
2134 | boolean next_backslash = *next == '\\'; | ||
2135 | const char *next_next = p + 1 < pend ? p + 1 : NULL; | ||
2136 | |||
2137 | return | ||
2138 | /* Before a subexpression? */ | ||
2139 | (syntax & RE_NO_BK_PARENS ? *next == ')' | ||
2140 | : next_backslash && next_next && *next_next == ')') | ||
2141 | /* Before an alternative? */ | ||
2142 | || (syntax & RE_NO_BK_VBAR ? *next == '|' | ||
2143 | : next_backslash && next_next && *next_next == '|'); | ||
2144 | } | ||
2145 | |||
2146 | |||
2147 | /* Returns true if REGNUM is in one of COMPILE_STACK's elements and | ||
2148 | false if it's not. */ | ||
2149 | |||
2150 | static boolean | ||
2151 | group_in_compile_stack (compile_stack, regnum) | ||
2152 | compile_stack_type compile_stack; | ||
2153 | regnum_t regnum; | ||
2154 | { | ||
2155 | int this_element; | ||
2156 | |||
2157 | for (this_element = compile_stack.avail - 1; | ||
2158 | this_element >= 0; | ||
2159 | this_element--) | ||
2160 | if (compile_stack.stack[this_element].regnum == regnum) | ||
2161 | return true; | ||
2162 | |||
2163 | return false; | ||
2164 | } | ||
2165 | |||
2166 | |||
2167 | /* Read the ending character of a range (in a bracket expression) from the | ||
2168 | uncompiled pattern *P_PTR (which ends at PEND). We assume the | ||
2169 | starting character is in `P[-2]'. (`P[-1]' is the character `-'.) | ||
2170 | Then we set the translation of all bits between the starting and | ||
2171 | ending characters (inclusive) in the compiled pattern B. | ||
2172 | |||
2173 | Return an error code. | ||
2174 | |||
2175 | We use these short variable names so we can use the same macros as | ||
2176 | `regex_compile' itself. */ | ||
2177 | |||
2178 | static reg_errcode_t | ||
2179 | compile_range (p_ptr, pend, translate, syntax, b) | ||
2180 | const char **p_ptr, *pend; | ||
2181 | char *translate; | ||
2182 | reg_syntax_t syntax; | ||
2183 | unsigned char *b; | ||
2184 | { | ||
2185 | unsigned this_char; | ||
2186 | |||
2187 | const char *p = *p_ptr; | ||
2188 | int range_start, range_end; | ||
2189 | |||
2190 | if (p == pend) | ||
2191 | return REG_ERANGE; | ||
2192 | |||
2193 | /* Even though the pattern is a signed `char *', we need to fetch | ||
2194 | with unsigned char *'s; if the high bit of the pattern character | ||
2195 | is set, the range endpoints will be negative if we fetch using a | ||
2196 | signed char *. | ||
2197 | |||
2198 | We also want to fetch the endpoints without translating them; the | ||
2199 | appropriate translation is done in the bit-setting loop below. */ | ||
2200 | range_start = ((unsigned char *) p)[-2]; | ||
2201 | range_end = ((unsigned char *) p)[0]; | ||
2202 | |||
2203 | /* Have to increment the pointer into the pattern string, so the | ||
2204 | caller isn't still at the ending character. */ | ||
2205 | (*p_ptr)++; | ||
2206 | |||
2207 | /* If the start is after the end, the range is empty. */ | ||
2208 | if (range_start > range_end) | ||
2209 | return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; | ||
2210 | |||
2211 | /* Here we see why `this_char' has to be larger than an `unsigned | ||
2212 | char' -- the range is inclusive, so if `range_end' == 0xff | ||
2213 | (assuming 8-bit characters), we would otherwise go into an infinite | ||
2214 | loop, since all characters <= 0xff. */ | ||
2215 | for (this_char = range_start; this_char <= range_end; this_char++) | ||
2216 | { | ||
2217 | SET_LIST_BIT (TRANSLATE (this_char)); | ||
2218 | } | ||
2219 | |||
2220 | return REG_NOERROR; | ||
2221 | } | ||
2222 | |||
2223 | /* Failure stack declarations and macros; both re_compile_fastmap and | ||
2224 | re_match_2 use a failure stack. These have to be macros because of | ||
2225 | REGEX_ALLOCATE. */ | ||
2226 | |||
2227 | |||
2228 | /* Number of failure points for which to initially allocate space | ||
2229 | when matching. If this number is exceeded, we allocate more | ||
2230 | space, so it is not a hard limit. */ | ||
2231 | #ifndef INIT_FAILURE_ALLOC | ||
2232 | #define INIT_FAILURE_ALLOC 5 | ||
2233 | #endif | ||
2234 | |||
2235 | /* Roughly the maximum number of failure points on the stack. Would be | ||
2236 | exactly that if always used MAX_FAILURE_SPACE each time we failed. | ||
2237 | This is a variable only so users of regex can assign to it; we never | ||
2238 | change it ourselves. */ | ||
2239 | int re_max_failures = 2000; | ||
2240 | |||
2241 | typedef const unsigned char *fail_stack_elt_t; | ||
2242 | |||
2243 | typedef struct | ||
2244 | { | ||
2245 | fail_stack_elt_t *stack; | ||
2246 | unsigned size; | ||
2247 | unsigned avail; /* Offset of next open position. */ | ||
2248 | } fail_stack_type; | ||
2249 | |||
2250 | #define FAIL_STACK_EMPTY() (fail_stack.avail == 0) | ||
2251 | #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) | ||
2252 | #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) | ||
2253 | #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail]) | ||
2254 | |||
2255 | |||
2256 | /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */ | ||
2257 | |||
2258 | #define INIT_FAIL_STACK() \ | ||
2259 | do { \ | ||
2260 | fail_stack.stack = (fail_stack_elt_t *) \ | ||
2261 | REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \ | ||
2262 | \ | ||
2263 | if (fail_stack.stack == NULL) \ | ||
2264 | return -2; \ | ||
2265 | \ | ||
2266 | fail_stack.size = INIT_FAILURE_ALLOC; \ | ||
2267 | fail_stack.avail = 0; \ | ||
2268 | } while (0) | ||
2269 | |||
2270 | |||
2271 | /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. | ||
2272 | |||
2273 | Return 1 if succeeds, and 0 if either ran out of memory | ||
2274 | allocating space for it or it was already too large. | ||
2275 | |||
2276 | REGEX_REALLOCATE requires `destination' be declared. */ | ||
2277 | |||
2278 | #define DOUBLE_FAIL_STACK(fail_stack) \ | ||
2279 | ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \ | ||
2280 | ? 0 \ | ||
2281 | : ((fail_stack).stack = (fail_stack_elt_t *) \ | ||
2282 | REGEX_REALLOCATE ((fail_stack).stack, \ | ||
2283 | (fail_stack).size * sizeof (fail_stack_elt_t), \ | ||
2284 | ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ | ||
2285 | \ | ||
2286 | (fail_stack).stack == NULL \ | ||
2287 | ? 0 \ | ||
2288 | : ((fail_stack).size <<= 1, \ | ||
2289 | 1))) | ||
2290 | |||
2291 | |||
2292 | /* Push PATTERN_OP on FAIL_STACK. | ||
2293 | |||
2294 | Return 1 if was able to do so and 0 if ran out of memory allocating | ||
2295 | space to do so. */ | ||
2296 | #define PUSH_PATTERN_OP(pattern_op, fail_stack) \ | ||
2297 | ((FAIL_STACK_FULL () \ | ||
2298 | && !DOUBLE_FAIL_STACK (fail_stack)) \ | ||
2299 | ? 0 \ | ||
2300 | : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \ | ||
2301 | 1)) | ||
2302 | |||
2303 | /* This pushes an item onto the failure stack. Must be a four-byte | ||
2304 | value. Assumes the variable `fail_stack'. Probably should only | ||
2305 | be called from within `PUSH_FAILURE_POINT'. */ | ||
2306 | #define PUSH_FAILURE_ITEM(item) \ | ||
2307 | fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item | ||
2308 | |||
2309 | /* The complement operation. Assumes `fail_stack' is nonempty. */ | ||
2310 | #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail] | ||
2311 | |||
2312 | /* Used to omit pushing failure point id's when we're not debugging. */ | ||
2313 | #ifdef DEBUG | ||
2314 | #define DEBUG_PUSH PUSH_FAILURE_ITEM | ||
2315 | #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM () | ||
2316 | #else | ||
2317 | #define DEBUG_PUSH(item) | ||
2318 | #define DEBUG_POP(item_addr) | ||
2319 | #endif | ||
2320 | |||
2321 | |||
2322 | /* Push the information about the state we will need | ||
2323 | if we ever fail back to it. | ||
2324 | |||
2325 | Requires variables fail_stack, regstart, regend, reg_info, and | ||
2326 | num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be | ||
2327 | declared. | ||
2328 | |||
2329 | Does `return FAILURE_CODE' if runs out of memory. */ | ||
2330 | |||
2331 | #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ | ||
2332 | do { \ | ||
2333 | char *destination; \ | ||
2334 | /* Must be int, so when we don't save any registers, the arithmetic \ | ||
2335 | of 0 + -1 isn't done as unsigned. */ \ | ||
2336 | int this_reg; \ | ||
2337 | \ | ||
2338 | DEBUG_STATEMENT (failure_id++); \ | ||
2339 | DEBUG_STATEMENT (nfailure_points_pushed++); \ | ||
2340 | DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ | ||
2341 | DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ | ||
2342 | DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ | ||
2343 | \ | ||
2344 | DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ | ||
2345 | DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ | ||
2346 | \ | ||
2347 | /* Ensure we have enough space allocated for what we will push. */ \ | ||
2348 | while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ | ||
2349 | { \ | ||
2350 | if (!DOUBLE_FAIL_STACK (fail_stack)) \ | ||
2351 | return failure_code; \ | ||
2352 | \ | ||
2353 | DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ | ||
2354 | (fail_stack).size); \ | ||
2355 | DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ | ||
2356 | } \ | ||
2357 | \ | ||
2358 | /* Push the info, starting with the registers. */ \ | ||
2359 | DEBUG_PRINT1 ("\n"); \ | ||
2360 | \ | ||
2361 | for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ | ||
2362 | this_reg++) \ | ||
2363 | { \ | ||
2364 | DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \ | ||
2365 | DEBUG_STATEMENT (num_regs_pushed++); \ | ||
2366 | \ | ||
2367 | DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ | ||
2368 | PUSH_FAILURE_ITEM (regstart[this_reg]); \ | ||
2369 | \ | ||
2370 | DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ | ||
2371 | PUSH_FAILURE_ITEM (regend[this_reg]); \ | ||
2372 | \ | ||
2373 | DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \ | ||
2374 | DEBUG_PRINT2 (" match_null=%d", \ | ||
2375 | REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ | ||
2376 | DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ | ||
2377 | DEBUG_PRINT2 (" matched_something=%d", \ | ||
2378 | MATCHED_SOMETHING (reg_info[this_reg])); \ | ||
2379 | DEBUG_PRINT2 (" ever_matched=%d", \ | ||
2380 | EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ | ||
2381 | DEBUG_PRINT1 ("\n"); \ | ||
2382 | PUSH_FAILURE_ITEM (reg_info[this_reg].word); \ | ||
2383 | } \ | ||
2384 | \ | ||
2385 | DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\ | ||
2386 | PUSH_FAILURE_ITEM (lowest_active_reg); \ | ||
2387 | \ | ||
2388 | DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\ | ||
2389 | PUSH_FAILURE_ITEM (highest_active_reg); \ | ||
2390 | \ | ||
2391 | DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ | ||
2392 | DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ | ||
2393 | PUSH_FAILURE_ITEM (pattern_place); \ | ||
2394 | \ | ||
2395 | DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ | ||
2396 | DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ | ||
2397 | size2); \ | ||
2398 | DEBUG_PRINT1 ("'\n"); \ | ||
2399 | PUSH_FAILURE_ITEM (string_place); \ | ||
2400 | \ | ||
2401 | DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ | ||
2402 | DEBUG_PUSH (failure_id); \ | ||
2403 | } while (0) | ||
2404 | |||
2405 | /* This is the number of items that are pushed and popped on the stack | ||
2406 | for each register. */ | ||
2407 | #define NUM_REG_ITEMS 3 | ||
2408 | |||
2409 | /* Individual items aside from the registers. */ | ||
2410 | #ifdef DEBUG | ||
2411 | #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ | ||
2412 | #else | ||
2413 | #define NUM_NONREG_ITEMS 4 | ||
2414 | #endif | ||
2415 | |||
2416 | /* We push at most this many items on the stack. */ | ||
2417 | #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS) | ||
2418 | |||
2419 | /* We actually push this many items. */ | ||
2420 | #define NUM_FAILURE_ITEMS \ | ||
2421 | ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \ | ||
2422 | + NUM_NONREG_ITEMS) | ||
2423 | |||
2424 | /* How many items can still be added to the stack without overflowing it. */ | ||
2425 | #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) | ||
2426 | |||
2427 | |||
2428 | /* Pops what PUSH_FAIL_STACK pushes. | ||
2429 | |||
2430 | We restore into the parameters, all of which should be lvalues: | ||
2431 | STR -- the saved data position. | ||
2432 | PAT -- the saved pattern position. | ||
2433 | LOW_REG, HIGH_REG -- the highest and lowest active registers. | ||
2434 | REGSTART, REGEND -- arrays of string positions. | ||
2435 | REG_INFO -- array of information about each subexpression. | ||
2436 | |||
2437 | Also assumes the variables `fail_stack' and (if debugging), `bufp', | ||
2438 | `pend', `string1', `size1', `string2', and `size2'. */ | ||
2439 | |||
2440 | #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ | ||
2441 | { \ | ||
2442 | DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ | ||
2443 | int this_reg; \ | ||
2444 | const unsigned char *string_temp; \ | ||
2445 | \ | ||
2446 | assert (!FAIL_STACK_EMPTY ()); \ | ||
2447 | \ | ||
2448 | /* Remove failure points and point to how many regs pushed. */ \ | ||
2449 | DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ | ||
2450 | DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ | ||
2451 | DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ | ||
2452 | \ | ||
2453 | assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ | ||
2454 | \ | ||
2455 | DEBUG_POP (&failure_id); \ | ||
2456 | DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ | ||
2457 | \ | ||
2458 | /* If the saved string location is NULL, it came from an \ | ||
2459 | on_failure_keep_string_jump opcode, and we want to throw away the \ | ||
2460 | saved NULL, thus retaining our current position in the string. */ \ | ||
2461 | string_temp = POP_FAILURE_ITEM (); \ | ||
2462 | if (string_temp != NULL) \ | ||
2463 | str = (const char *) string_temp; \ | ||
2464 | \ | ||
2465 | DEBUG_PRINT2 (" Popping string 0x%x: `", str); \ | ||
2466 | DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ | ||
2467 | DEBUG_PRINT1 ("'\n"); \ | ||
2468 | \ | ||
2469 | pat = (unsigned char *) POP_FAILURE_ITEM (); \ | ||
2470 | DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \ | ||
2471 | DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ | ||
2472 | \ | ||
2473 | /* Restore register info. */ \ | ||
2474 | high_reg = (unsigned) POP_FAILURE_ITEM (); \ | ||
2475 | DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \ | ||
2476 | \ | ||
2477 | low_reg = (unsigned) POP_FAILURE_ITEM (); \ | ||
2478 | DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ | ||
2479 | \ | ||
2480 | for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ | ||
2481 | { \ | ||
2482 | DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ | ||
2483 | \ | ||
2484 | reg_info[this_reg].word = POP_FAILURE_ITEM (); \ | ||
2485 | DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ | ||
2486 | \ | ||
2487 | regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \ | ||
2488 | DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ | ||
2489 | \ | ||
2490 | regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \ | ||
2491 | DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ | ||
2492 | } \ | ||
2493 | \ | ||
2494 | DEBUG_STATEMENT (nfailure_points_popped++); \ | ||
2495 | } /* POP_FAILURE_POINT */ | ||
2496 | |||
2497 | /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in | ||
2498 | BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible | ||
2499 | characters can start a string that matches the pattern. This fastmap | ||
2500 | is used by re_search to skip quickly over impossible starting points. | ||
2501 | |||
2502 | The caller must supply the address of a (1 << BYTEWIDTH)-byte data | ||
2503 | area as BUFP->fastmap. | ||
2504 | |||
2505 | We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in | ||
2506 | the pattern buffer. | ||
2507 | |||
2508 | Returns 0 if we succeed, -2 if an internal error. */ | ||
2509 | |||
2510 | int | ||
2511 | re_compile_fastmap (bufp) | ||
2512 | struct re_pattern_buffer *bufp; | ||
2513 | { | ||
2514 | int j, k; | ||
2515 | fail_stack_type fail_stack; | ||
2516 | #ifndef REGEX_MALLOC | ||
2517 | char *destination; | ||
2518 | #endif | ||
2519 | /* We don't push any register information onto the failure stack. */ | ||
2520 | unsigned num_regs = 0; | ||
2521 | |||
2522 | register char *fastmap = bufp->fastmap; | ||
2523 | unsigned char *pattern = bufp->buffer; | ||
2524 | unsigned long size = bufp->used; | ||
2525 | const unsigned char *p = pattern; | ||
2526 | register unsigned char *pend = pattern + size; | ||
2527 | |||
2528 | /* Assume that each path through the pattern can be null until | ||
2529 | proven otherwise. We set this false at the bottom of switch | ||
2530 | statement, to which we get only if a particular path doesn't | ||
2531 | match the empty string. */ | ||
2532 | boolean path_can_be_null = true; | ||
2533 | |||
2534 | /* We aren't doing a `succeed_n' to begin with. */ | ||
2535 | boolean succeed_n_p = false; | ||
2536 | |||
2537 | assert (fastmap != NULL && p != NULL); | ||
2538 | |||
2539 | INIT_FAIL_STACK (); | ||
2540 | bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ | ||
2541 | bufp->fastmap_accurate = 1; /* It will be when we're done. */ | ||
2542 | bufp->can_be_null = 0; | ||
2543 | |||
2544 | while (p != pend || !FAIL_STACK_EMPTY ()) | ||
2545 | { | ||
2546 | if (p == pend) | ||
2547 | { | ||
2548 | bufp->can_be_null |= path_can_be_null; | ||
2549 | |||
2550 | /* Reset for next path. */ | ||
2551 | path_can_be_null = true; | ||
2552 | |||
2553 | p = fail_stack.stack[--fail_stack.avail]; | ||
2554 | } | ||
2555 | |||
2556 | /* We should never be about to go beyond the end of the pattern. */ | ||
2557 | assert (p < pend); | ||
2558 | |||
2559 | #ifdef SWITCH_ENUM_BUG | ||
2560 | switch ((int) ((re_opcode_t) *p++)) | ||
2561 | #else | ||
2562 | switch ((re_opcode_t) *p++) | ||
2563 | #endif | ||
2564 | { | ||
2565 | |||
2566 | /* I guess the idea here is to simply not bother with a fastmap | ||
2567 | if a backreference is used, since it's too hard to figure out | ||
2568 | the fastmap for the corresponding group. Setting | ||
2569 | `can_be_null' stops `re_search_2' from using the fastmap, so | ||
2570 | that is all we do. */ | ||
2571 | case duplicate: | ||
2572 | bufp->can_be_null = 1; | ||
2573 | return 0; | ||
2574 | |||
2575 | |||
2576 | /* Following are the cases which match a character. These end | ||
2577 | with `break'. */ | ||
2578 | |||
2579 | case exactn: | ||
2580 | fastmap[p[1]] = 1; | ||
2581 | break; | ||
2582 | |||
2583 | |||
2584 | case charset: | ||
2585 | for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | ||
2586 | if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) | ||
2587 | fastmap[j] = 1; | ||
2588 | break; | ||
2589 | |||
2590 | |||
2591 | case charset_not: | ||
2592 | /* Chars beyond end of map must be allowed. */ | ||
2593 | for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) | ||
2594 | fastmap[j] = 1; | ||
2595 | |||
2596 | for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | ||
2597 | if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) | ||
2598 | fastmap[j] = 1; | ||
2599 | break; | ||
2600 | |||
2601 | |||
2602 | case wordchar: | ||
2603 | for (j = 0; j < (1 << BYTEWIDTH); j++) | ||
2604 | if (SYNTAX (j) == Sword) | ||
2605 | fastmap[j] = 1; | ||
2606 | break; | ||
2607 | |||
2608 | |||
2609 | case notwordchar: | ||
2610 | for (j = 0; j < (1 << BYTEWIDTH); j++) | ||
2611 | if (SYNTAX (j) != Sword) | ||
2612 | fastmap[j] = 1; | ||
2613 | break; | ||
2614 | |||
2615 | |||
2616 | case anychar: | ||
2617 | /* `.' matches anything ... */ | ||
2618 | for (j = 0; j < (1 << BYTEWIDTH); j++) | ||
2619 | fastmap[j] = 1; | ||
2620 | |||
2621 | /* ... except perhaps newline. */ | ||
2622 | if (!(bufp->syntax & RE_DOT_NEWLINE)) | ||
2623 | fastmap['\n'] = 0; | ||
2624 | |||
2625 | /* Return if we have already set `can_be_null'; if we have, | ||
2626 | then the fastmap is irrelevant. Something's wrong here. */ | ||
2627 | else if (bufp->can_be_null) | ||
2628 | return 0; | ||
2629 | |||
2630 | /* Otherwise, have to check alternative paths. */ | ||
2631 | break; | ||
2632 | |||
2633 | |||
2634 | #ifdef emacs | ||
2635 | case syntaxspec: | ||
2636 | k = *p++; | ||
2637 | for (j = 0; j < (1 << BYTEWIDTH); j++) | ||
2638 | if (SYNTAX (j) == (enum syntaxcode) k) | ||
2639 | fastmap[j] = 1; | ||
2640 | break; | ||
2641 | |||
2642 | |||
2643 | case notsyntaxspec: | ||
2644 | k = *p++; | ||
2645 | for (j = 0; j < (1 << BYTEWIDTH); j++) | ||
2646 | if (SYNTAX (j) != (enum syntaxcode) k) | ||
2647 | fastmap[j] = 1; | ||
2648 | break; | ||
2649 | |||
2650 | |||
2651 | /* All cases after this match the empty string. These end with | ||
2652 | `continue'. */ | ||
2653 | |||
2654 | |||
2655 | case before_dot: | ||
2656 | case at_dot: | ||
2657 | case after_dot: | ||
2658 | continue; | ||
2659 | #endif /* not emacs */ | ||
2660 | |||
2661 | |||
2662 | case no_op: | ||
2663 | case begline: | ||
2664 | case endline: | ||
2665 | case begbuf: | ||
2666 | case endbuf: | ||
2667 | case wordbound: | ||
2668 | case notwordbound: | ||
2669 | case wordbeg: | ||
2670 | case wordend: | ||
2671 | case push_dummy_failure: | ||
2672 | continue; | ||
2673 | |||
2674 | |||
2675 | case jump_n: | ||
2676 | case pop_failure_jump: | ||
2677 | case maybe_pop_jump: | ||
2678 | case jump: | ||
2679 | case jump_past_alt: | ||
2680 | case dummy_failure_jump: | ||
2681 | EXTRACT_NUMBER_AND_INCR (j, p); | ||
2682 | p += j; | ||
2683 | if (j > 0) | ||
2684 | continue; | ||
2685 | |||
2686 | /* Jump backward implies we just went through the body of a | ||
2687 | loop and matched nothing. Opcode jumped to should be | ||
2688 | `on_failure_jump' or `succeed_n'. Just treat it like an | ||
2689 | ordinary jump. For a * loop, it has pushed its failure | ||
2690 | point already; if so, discard that as redundant. */ | ||
2691 | if ((re_opcode_t) *p != on_failure_jump | ||
2692 | && (re_opcode_t) *p != succeed_n) | ||
2693 | continue; | ||
2694 | |||
2695 | p++; | ||
2696 | EXTRACT_NUMBER_AND_INCR (j, p); | ||
2697 | p += j; | ||
2698 | |||
2699 | /* If what's on the stack is where we are now, pop it. */ | ||
2700 | if (!FAIL_STACK_EMPTY () | ||
2701 | && fail_stack.stack[fail_stack.avail - 1] == p) | ||
2702 | fail_stack.avail--; | ||
2703 | |||
2704 | continue; | ||
2705 | |||
2706 | |||
2707 | case on_failure_jump: | ||
2708 | case on_failure_keep_string_jump: | ||
2709 | handle_on_failure_jump: | ||
2710 | EXTRACT_NUMBER_AND_INCR (j, p); | ||
2711 | |||
2712 | /* For some patterns, e.g., `(a?)?', `p+j' here points to the | ||
2713 | end of the pattern. We don't want to push such a point, | ||
2714 | since when we restore it above, entering the switch will | ||
2715 | increment `p' past the end of the pattern. We don't need | ||
2716 | to push such a point since we obviously won't find any more | ||
2717 | fastmap entries beyond `pend'. Such a pattern can match | ||
2718 | the null string, though. */ | ||
2719 | if (p + j < pend) | ||
2720 | { | ||
2721 | if (!PUSH_PATTERN_OP (p + j, fail_stack)) | ||
2722 | return -2; | ||
2723 | } | ||
2724 | else | ||
2725 | bufp->can_be_null = 1; | ||
2726 | |||
2727 | if (succeed_n_p) | ||
2728 | { | ||
2729 | EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ | ||
2730 | succeed_n_p = false; | ||
2731 | } | ||
2732 | |||
2733 | continue; | ||
2734 | |||
2735 | |||
2736 | case succeed_n: | ||
2737 | /* Get to the number of times to succeed. */ | ||
2738 | p += 2; | ||
2739 | |||
2740 | /* Increment p past the n for when k != 0. */ | ||
2741 | EXTRACT_NUMBER_AND_INCR (k, p); | ||
2742 | if (k == 0) | ||
2743 | { | ||
2744 | p -= 4; | ||
2745 | succeed_n_p = true; /* Spaghetti code alert. */ | ||
2746 | goto handle_on_failure_jump; | ||
2747 | } | ||
2748 | continue; | ||
2749 | |||
2750 | |||
2751 | case set_number_at: | ||
2752 | p += 4; | ||
2753 | continue; | ||
2754 | |||
2755 | |||
2756 | case start_memory: | ||
2757 | case stop_memory: | ||
2758 | p += 2; | ||
2759 | continue; | ||
2760 | |||
2761 | |||
2762 | default: | ||
2763 | abort (); /* We have listed all the cases. */ | ||
2764 | } /* switch *p++ */ | ||
2765 | |||
2766 | /* Getting here means we have found the possible starting | ||
2767 | characters for one path of the pattern -- and that the empty | ||
2768 | string does not match. We need not follow this path further. | ||
2769 | Instead, look at the next alternative (remembered on the | ||
2770 | stack), or quit if no more. The test at the top of the loop | ||
2771 | does these things. */ | ||
2772 | path_can_be_null = false; | ||
2773 | p = pend; | ||
2774 | } /* while p */ | ||
2775 | |||
2776 | /* Set `can_be_null' for the last path (also the first path, if the | ||
2777 | pattern is empty). */ | ||
2778 | bufp->can_be_null |= path_can_be_null; | ||
2779 | return 0; | ||
2780 | } /* re_compile_fastmap */ | ||
2781 | |||
2782 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | ||
2783 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use | ||
2784 | this memory for recording register information. STARTS and ENDS | ||
2785 | must be allocated using the malloc library routine, and must each | ||
2786 | be at least NUM_REGS * sizeof (regoff_t) bytes long. | ||
2787 | |||
2788 | If NUM_REGS == 0, then subsequent matches should allocate their own | ||
2789 | register data. | ||
2790 | |||
2791 | Unless this function is called, the first search or match using | ||
2792 | PATTERN_BUFFER will allocate its own register data, without | ||
2793 | freeing the old data. */ | ||
2794 | |||
2795 | void | ||
2796 | re_set_registers (bufp, regs, num_regs, starts, ends) | ||
2797 | struct re_pattern_buffer *bufp; | ||
2798 | struct re_registers *regs; | ||
2799 | unsigned num_regs; | ||
2800 | regoff_t *starts, *ends; | ||
2801 | { | ||
2802 | if (num_regs) | ||
2803 | { | ||
2804 | bufp->regs_allocated = REGS_REALLOCATE; | ||
2805 | regs->num_regs = num_regs; | ||
2806 | regs->start = starts; | ||
2807 | regs->end = ends; | ||
2808 | } | ||
2809 | else | ||
2810 | { | ||
2811 | bufp->regs_allocated = REGS_UNALLOCATED; | ||
2812 | regs->num_regs = 0; | ||
2813 | regs->start = regs->end = (regoff_t) 0; | ||
2814 | } | ||
2815 | } | ||
2816 | |||
2817 | /* Searching routines. */ | ||
2818 | |||
2819 | /* Like re_search_2, below, but only one string is specified, and | ||
2820 | doesn't let you say where to stop matching. */ | ||
2821 | |||
2822 | int | ||
2823 | re_search (bufp, string, size, startpos, range, regs) | ||
2824 | struct re_pattern_buffer *bufp; | ||
2825 | const char *string; | ||
2826 | int size, startpos, range; | ||
2827 | struct re_registers *regs; | ||
2828 | { | ||
2829 | return re_search_2 (bufp, NULL, 0, string, size, startpos, range, | ||
2830 | regs, size); | ||
2831 | } | ||
2832 | |||
2833 | |||
2834 | /* Using the compiled pattern in BUFP->buffer, first tries to match the | ||
2835 | virtual concatenation of STRING1 and STRING2, starting first at index | ||
2836 | STARTPOS, then at STARTPOS + 1, and so on. | ||
2837 | |||
2838 | STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. | ||
2839 | |||
2840 | RANGE is how far to scan while trying to match. RANGE = 0 means try | ||
2841 | only at STARTPOS; in general, the last start tried is STARTPOS + | ||
2842 | RANGE. | ||
2843 | |||
2844 | In REGS, return the indices of the virtual concatenation of STRING1 | ||
2845 | and STRING2 that matched the entire BUFP->buffer and its contained | ||
2846 | subexpressions. | ||
2847 | |||
2848 | Do not consider matching one past the index STOP in the virtual | ||
2849 | concatenation of STRING1 and STRING2. | ||
2850 | |||
2851 | We return either the position in the strings at which the match was | ||
2852 | found, -1 if no match, or -2 if error (such as failure | ||
2853 | stack overflow). */ | ||
2854 | |||
2855 | int | ||
2856 | re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop) | ||
2857 | struct re_pattern_buffer *bufp; | ||
2858 | const char *string1, *string2; | ||
2859 | int size1, size2; | ||
2860 | int startpos; | ||
2861 | int range; | ||
2862 | struct re_registers *regs; | ||
2863 | int stop; | ||
2864 | { | ||
2865 | int val; | ||
2866 | register char *fastmap = bufp->fastmap; | ||
2867 | register char *translate = bufp->translate; | ||
2868 | int total_size = size1 + size2; | ||
2869 | int endpos = startpos + range; | ||
2870 | |||
2871 | /* Check for out-of-range STARTPOS. */ | ||
2872 | if (startpos < 0 || startpos > total_size) | ||
2873 | return -1; | ||
2874 | |||
2875 | /* Fix up RANGE if it might eventually take us outside | ||
2876 | the virtual concatenation of STRING1 and STRING2. */ | ||
2877 | if (endpos < -1) | ||
2878 | range = -1 - startpos; | ||
2879 | else if (endpos > total_size) | ||
2880 | range = total_size - startpos; | ||
2881 | |||
2882 | /* If the search isn't to be a backwards one, don't waste time in a | ||
2883 | search for a pattern that must be anchored. */ | ||
2884 | if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) | ||
2885 | { | ||
2886 | if (startpos > 0) | ||
2887 | return -1; | ||
2888 | else | ||
2889 | range = 1; | ||
2890 | } | ||
2891 | |||
2892 | /* Update the fastmap now if not correct already. */ | ||
2893 | if (fastmap && !bufp->fastmap_accurate) | ||
2894 | if (re_compile_fastmap (bufp) == -2) | ||
2895 | return -2; | ||
2896 | |||
2897 | /* Loop through the string, looking for a place to start matching. */ | ||
2898 | for (;;) | ||
2899 | { | ||
2900 | /* If a fastmap is supplied, skip quickly over characters that | ||
2901 | cannot be the start of a match. If the pattern can match the | ||
2902 | null string, however, we don't need to skip characters; we want | ||
2903 | the first null string. */ | ||
2904 | if (fastmap && startpos < total_size && !bufp->can_be_null) | ||
2905 | { | ||
2906 | if (range > 0) /* Searching forwards. */ | ||
2907 | { | ||
2908 | register const char *d; | ||
2909 | register int lim = 0; | ||
2910 | int irange = range; | ||
2911 | |||
2912 | if (startpos < size1 && startpos + range >= size1) | ||
2913 | lim = range - (size1 - startpos); | ||
2914 | |||
2915 | d = (startpos >= size1 ? string2 - size1 : string1) + startpos; | ||
2916 | |||
2917 | /* Written out as an if-else to avoid testing `translate' | ||
2918 | inside the loop. */ | ||
2919 | if (translate) | ||
2920 | while (range > lim | ||
2921 | && !fastmap[(unsigned char) | ||
2922 | translate[(unsigned char) *d++]]) | ||
2923 | range--; | ||
2924 | else | ||
2925 | while (range > lim && !fastmap[(unsigned char) *d++]) | ||
2926 | range--; | ||
2927 | |||
2928 | startpos += irange - range; | ||
2929 | } | ||
2930 | else /* Searching backwards. */ | ||
2931 | { | ||
2932 | register char c = (size1 == 0 || startpos >= size1 | ||
2933 | ? string2[startpos - size1] | ||
2934 | : string1[startpos]); | ||
2935 | |||
2936 | if (!fastmap[(unsigned char) TRANSLATE (c)]) | ||
2937 | goto advance; | ||
2938 | } | ||
2939 | } | ||
2940 | |||
2941 | /* If can't match the null string, and that's all we have left, fail. */ | ||
2942 | if (range >= 0 && startpos == total_size && fastmap | ||
2943 | && !bufp->can_be_null) | ||
2944 | return -1; | ||
2945 | |||
2946 | val = re_match_2 (bufp, string1, size1, string2, size2, | ||
2947 | startpos, regs, stop); | ||
2948 | if (val >= 0) | ||
2949 | return startpos; | ||
2950 | |||
2951 | if (val == -2) | ||
2952 | return -2; | ||
2953 | |||
2954 | advance: | ||
2955 | if (!range) | ||
2956 | break; | ||
2957 | else if (range > 0) | ||
2958 | { | ||
2959 | range--; | ||
2960 | startpos++; | ||
2961 | } | ||
2962 | else | ||
2963 | { | ||
2964 | range++; | ||
2965 | startpos--; | ||
2966 | } | ||
2967 | } | ||
2968 | return -1; | ||
2969 | } /* re_search_2 */ | ||
2970 | |||
2971 | /* Declarations and macros for re_match_2. */ | ||
2972 | |||
2973 | static int bcmp_translate (); | ||
2974 | static boolean alt_match_null_string_p (), | ||
2975 | common_op_match_null_string_p (), | ||
2976 | group_match_null_string_p (); | ||
2977 | |||
2978 | /* Structure for per-register (a.k.a. per-group) information. | ||
2979 | This must not be longer than one word, because we push this value | ||
2980 | onto the failure stack. Other register information, such as the | ||
2981 | starting and ending positions (which are addresses), and the list of | ||
2982 | inner groups (which is a bits list) are maintained in separate | ||
2983 | variables. | ||
2984 | |||
2985 | We are making a (strictly speaking) nonportable assumption here: that | ||
2986 | the compiler will pack our bit fields into something that fits into | ||
2987 | the type of `word', i.e., is something that fits into one item on the | ||
2988 | failure stack. */ | ||
2989 | typedef union | ||
2990 | { | ||
2991 | fail_stack_elt_t word; | ||
2992 | struct | ||
2993 | { | ||
2994 | /* This field is one if this group can match the empty string, | ||
2995 | zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ | ||
2996 | #define MATCH_NULL_UNSET_VALUE 3 | ||
2997 | unsigned match_null_string_p : 2; | ||
2998 | unsigned is_active : 1; | ||
2999 | unsigned matched_something : 1; | ||
3000 | unsigned ever_matched_something : 1; | ||
3001 | } bits; | ||
3002 | } register_info_type; | ||
3003 | |||
3004 | #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) | ||
3005 | #define IS_ACTIVE(R) ((R).bits.is_active) | ||
3006 | #define MATCHED_SOMETHING(R) ((R).bits.matched_something) | ||
3007 | #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) | ||
3008 | |||
3009 | |||
3010 | /* Call this when have matched a real character; it sets `matched' flags | ||
3011 | for the subexpressions which we are currently inside. Also records | ||
3012 | that those subexprs have matched. */ | ||
3013 | #define SET_REGS_MATCHED() \ | ||
3014 | do \ | ||
3015 | { \ | ||
3016 | unsigned r; \ | ||
3017 | for (r = lowest_active_reg; r <= highest_active_reg; r++) \ | ||
3018 | { \ | ||
3019 | MATCHED_SOMETHING (reg_info[r]) \ | ||
3020 | = EVER_MATCHED_SOMETHING (reg_info[r]) \ | ||
3021 | = 1; \ | ||
3022 | } \ | ||
3023 | } \ | ||
3024 | while (0) | ||
3025 | |||
3026 | |||
3027 | /* This converts PTR, a pointer into one of the search strings `string1' | ||
3028 | and `string2' into an offset from the beginning of that string. */ | ||
3029 | #define POINTER_TO_OFFSET(ptr) \ | ||
3030 | (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1) | ||
3031 | |||
3032 | /* Registers are set to a sentinel when they haven't yet matched. */ | ||
3033 | #define REG_UNSET_VALUE ((char *) -1) | ||
3034 | #define REG_UNSET(e) ((e) == REG_UNSET_VALUE) | ||
3035 | |||
3036 | |||
3037 | /* Macros for dealing with the split strings in re_match_2. */ | ||
3038 | |||
3039 | #define MATCHING_IN_FIRST_STRING (dend == end_match_1) | ||
3040 | |||
3041 | /* Call before fetching a character with *d. This switches over to | ||
3042 | string2 if necessary. */ | ||
3043 | #define PREFETCH() \ | ||
3044 | while (d == dend) \ | ||
3045 | { \ | ||
3046 | /* End of string2 => fail. */ \ | ||
3047 | if (dend == end_match_2) \ | ||
3048 | goto fail; \ | ||
3049 | /* End of string1 => advance to string2. */ \ | ||
3050 | d = string2; \ | ||
3051 | dend = end_match_2; \ | ||
3052 | } | ||
3053 | |||
3054 | |||
3055 | /* Test if at very beginning or at very end of the virtual concatenation | ||
3056 | of `string1' and `string2'. If only one string, it's `string2'. */ | ||
3057 | #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) | ||
3058 | #define AT_STRINGS_END(d) ((d) == end2) | ||
3059 | |||
3060 | |||
3061 | /* Test if D points to a character which is word-constituent. We have | ||
3062 | two special cases to check for: if past the end of string1, look at | ||
3063 | the first character in string2; and if before the beginning of | ||
3064 | string2, look at the last character in string1. */ | ||
3065 | #define WORDCHAR_P(d) \ | ||
3066 | (SYNTAX ((d) == end1 ? *string2 \ | ||
3067 | : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ | ||
3068 | == Sword) | ||
3069 | |||
3070 | /* Test if the character before D and the one at D differ with respect | ||
3071 | to being word-constituent. */ | ||
3072 | #define AT_WORD_BOUNDARY(d) \ | ||
3073 | (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \ | ||
3074 | || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) | ||
3075 | |||
3076 | |||
3077 | /* Free everything we malloc. */ | ||
3078 | #ifdef REGEX_MALLOC | ||
3079 | #define FREE_VAR(var) if (var) free (var); var = NULL | ||
3080 | #define FREE_VARIABLES() \ | ||
3081 | do { \ | ||
3082 | FREE_VAR (fail_stack.stack); \ | ||
3083 | FREE_VAR (regstart); \ | ||
3084 | FREE_VAR (regend); \ | ||
3085 | FREE_VAR (old_regstart); \ | ||
3086 | FREE_VAR (old_regend); \ | ||
3087 | FREE_VAR (best_regstart); \ | ||
3088 | FREE_VAR (best_regend); \ | ||
3089 | FREE_VAR (reg_info); \ | ||
3090 | FREE_VAR (reg_dummy); \ | ||
3091 | FREE_VAR (reg_info_dummy); \ | ||
3092 | } while (0) | ||
3093 | #else /* not REGEX_MALLOC */ | ||
3094 | /* Some MIPS systems (at least) want this to free alloca'd storage. */ | ||
3095 | #define FREE_VARIABLES() alloca (0) | ||
3096 | #endif /* not REGEX_MALLOC */ | ||
3097 | |||
3098 | |||
3099 | /* These values must meet several constraints. They must not be valid | ||
3100 | register values; since we have a limit of 255 registers (because | ||
3101 | we use only one byte in the pattern for the register number), we can | ||
3102 | use numbers larger than 255. They must differ by 1, because of | ||
3103 | NUM_FAILURE_ITEMS above. And the value for the lowest register must | ||
3104 | be larger than the value for the highest register, so we do not try | ||
3105 | to actually save any registers when none are active. */ | ||
3106 | #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) | ||
3107 | #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) | ||
3108 | |||
3109 | /* Matching routines. */ | ||
3110 | |||
3111 | #ifndef emacs /* Emacs never uses this. */ | ||
3112 | /* re_match is like re_match_2 except it takes only a single string. */ | ||
3113 | |||
3114 | int | ||
3115 | re_match (bufp, string, size, pos, regs) | ||
3116 | struct re_pattern_buffer *bufp; | ||
3117 | const char *string; | ||
3118 | int size, pos; | ||
3119 | struct re_registers *regs; | ||
3120 | { | ||
3121 | return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size); | ||
3122 | } | ||
3123 | #endif /* not emacs */ | ||
3124 | |||
3125 | |||
3126 | /* re_match_2 matches the compiled pattern in BUFP against the | ||
3127 | the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 | ||
3128 | and SIZE2, respectively). We start matching at POS, and stop | ||
3129 | matching at STOP. | ||
3130 | |||
3131 | If REGS is non-null and the `no_sub' field of BUFP is nonzero, we | ||
3132 | store offsets for the substring each group matched in REGS. See the | ||
3133 | documentation for exactly how many groups we fill. | ||
3134 | |||
3135 | We return -1 if no match, -2 if an internal error (such as the | ||
3136 | failure stack overflowing). Otherwise, we return the length of the | ||
3137 | matched substring. */ | ||
3138 | |||
3139 | int | ||
3140 | re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) | ||
3141 | struct re_pattern_buffer *bufp; | ||
3142 | const char *string1, *string2; | ||
3143 | int size1, size2; | ||
3144 | int pos; | ||
3145 | struct re_registers *regs; | ||
3146 | int stop; | ||
3147 | { | ||
3148 | /* General temporaries. */ | ||
3149 | int mcnt; | ||
3150 | unsigned char *p1; | ||
3151 | |||
3152 | /* Just past the end of the corresponding string. */ | ||
3153 | const char *end1, *end2; | ||
3154 | |||
3155 | /* Pointers into string1 and string2, just past the last characters in | ||
3156 | each to consider matching. */ | ||
3157 | const char *end_match_1, *end_match_2; | ||
3158 | |||
3159 | /* Where we are in the data, and the end of the current string. */ | ||
3160 | const char *d, *dend; | ||
3161 | |||
3162 | /* Where we are in the pattern, and the end of the pattern. */ | ||
3163 | unsigned char *p = bufp->buffer; | ||
3164 | register unsigned char *pend = p + bufp->used; | ||
3165 | |||
3166 | /* We use this to map every character in the string. */ | ||
3167 | char *translate = bufp->translate; | ||
3168 | |||
3169 | /* Failure point stack. Each place that can handle a failure further | ||
3170 | down the line pushes a failure point on this stack. It consists of | ||
3171 | restart, regend, and reg_info for all registers corresponding to | ||
3172 | the subexpressions we're currently inside, plus the number of such | ||
3173 | registers, and, finally, two char *'s. The first char * is where | ||
3174 | to resume scanning the pattern; the second one is where to resume | ||
3175 | scanning the strings. If the latter is zero, the failure point is | ||
3176 | a ``dummy''; if a failure happens and the failure point is a dummy, | ||
3177 | it gets discarded and the next next one is tried. */ | ||
3178 | fail_stack_type fail_stack; | ||
3179 | #ifdef DEBUG | ||
3180 | static unsigned failure_id = 0; | ||
3181 | unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; | ||
3182 | #endif | ||
3183 | |||
3184 | /* We fill all the registers internally, independent of what we | ||
3185 | return, for use in backreferences. The number here includes | ||
3186 | an element for register zero. */ | ||
3187 | unsigned num_regs = bufp->re_nsub + 1; | ||
3188 | |||
3189 | /* The currently active registers. */ | ||
3190 | unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG; | ||
3191 | unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG; | ||
3192 | |||
3193 | /* Information on the contents of registers. These are pointers into | ||
3194 | the input strings; they record just what was matched (on this | ||
3195 | attempt) by a subexpression part of the pattern, that is, the | ||
3196 | regnum-th regstart pointer points to where in the pattern we began | ||
3197 | matching and the regnum-th regend points to right after where we | ||
3198 | stopped matching the regnum-th subexpression. (The zeroth register | ||
3199 | keeps track of what the whole pattern matches.) */ | ||
3200 | const char **regstart = NULL, **regend = NULL; | ||
3201 | |||
3202 | /* If a group that's operated upon by a repetition operator fails to | ||
3203 | match anything, then the register for its start will need to be | ||
3204 | restored because it will have been set to wherever in the string we | ||
3205 | are when we last see its open-group operator. Similarly for a | ||
3206 | register's end. */ | ||
3207 | const char **old_regstart = NULL, **old_regend = NULL; | ||
3208 | |||
3209 | /* The is_active field of reg_info helps us keep track of which (possibly | ||
3210 | nested) subexpressions we are currently in. The matched_something | ||
3211 | field of reg_info[reg_num] helps us tell whether or not we have | ||
3212 | matched any of the pattern so far this time through the reg_num-th | ||
3213 | subexpression. These two fields get reset each time through any | ||
3214 | loop their register is in. */ | ||
3215 | register_info_type *reg_info = NULL; | ||
3216 | |||
3217 | /* The following record the register info as found in the above | ||
3218 | variables when we find a match better than any we've seen before. | ||
3219 | This happens as we backtrack through the failure points, which in | ||
3220 | turn happens only if we have not yet matched the entire string. */ | ||
3221 | unsigned best_regs_set = false; | ||
3222 | const char **best_regstart = NULL, **best_regend = NULL; | ||
3223 | |||
3224 | /* Logically, this is `best_regend[0]'. But we don't want to have to | ||
3225 | allocate space for that if we're not allocating space for anything | ||
3226 | else (see below). Also, we never need info about register 0 for | ||
3227 | any of the other register vectors, and it seems rather a kludge to | ||
3228 | treat `best_regend' differently than the rest. So we keep track of | ||
3229 | the end of the best match so far in a separate variable. We | ||
3230 | initialize this to NULL so that when we backtrack the first time | ||
3231 | and need to test it, it's not garbage. */ | ||
3232 | const char *match_end = NULL; | ||
3233 | |||
3234 | /* Used when we pop values we don't care about. */ | ||
3235 | const char **reg_dummy = NULL; | ||
3236 | register_info_type *reg_info_dummy = NULL; | ||
3237 | |||
3238 | #ifdef DEBUG | ||
3239 | /* Counts the total number of registers pushed. */ | ||
3240 | unsigned num_regs_pushed = 0; | ||
3241 | #endif | ||
3242 | |||
3243 | DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); | ||
3244 | |||
3245 | INIT_FAIL_STACK (); | ||
3246 | |||
3247 | /* Do not bother to initialize all the register variables if there are | ||
3248 | no groups in the pattern, as it takes a fair amount of time. If | ||
3249 | there are groups, we include space for register 0 (the whole | ||
3250 | pattern), even though we never use it, since it simplifies the | ||
3251 | array indexing. We should fix this. */ | ||
3252 | if (bufp->re_nsub) | ||
3253 | { | ||
3254 | regstart = REGEX_TALLOC (num_regs, const char *); | ||
3255 | regend = REGEX_TALLOC (num_regs, const char *); | ||
3256 | old_regstart = REGEX_TALLOC (num_regs, const char *); | ||
3257 | old_regend = REGEX_TALLOC (num_regs, const char *); | ||
3258 | best_regstart = REGEX_TALLOC (num_regs, const char *); | ||
3259 | best_regend = REGEX_TALLOC (num_regs, const char *); | ||
3260 | reg_info = REGEX_TALLOC (num_regs, register_info_type); | ||
3261 | reg_dummy = REGEX_TALLOC (num_regs, const char *); | ||
3262 | reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); | ||
3263 | |||
3264 | if (!(regstart && regend && old_regstart && old_regend && reg_info | ||
3265 | && best_regstart && best_regend && reg_dummy && reg_info_dummy)) | ||
3266 | { | ||
3267 | FREE_VARIABLES (); | ||
3268 | return -2; | ||
3269 | } | ||
3270 | } | ||
3271 | #ifdef REGEX_MALLOC | ||
3272 | else | ||
3273 | { | ||
3274 | /* We must initialize all our variables to NULL, so that | ||
3275 | `FREE_VARIABLES' doesn't try to free them. */ | ||
3276 | regstart = regend = old_regstart = old_regend = best_regstart | ||
3277 | = best_regend = reg_dummy = NULL; | ||
3278 | reg_info = reg_info_dummy = (register_info_type *) NULL; | ||
3279 | } | ||
3280 | #endif /* REGEX_MALLOC */ | ||
3281 | |||
3282 | /* The starting position is bogus. */ | ||
3283 | if (pos < 0 || pos > size1 + size2) | ||
3284 | { | ||
3285 | FREE_VARIABLES (); | ||
3286 | return -1; | ||
3287 | } | ||
3288 | |||
3289 | /* Initialize subexpression text positions to -1 to mark ones that no | ||
3290 | start_memory/stop_memory has been seen for. Also initialize the | ||
3291 | register information struct. */ | ||
3292 | for (mcnt = 1; mcnt < num_regs; mcnt++) | ||
3293 | { | ||
3294 | regstart[mcnt] = regend[mcnt] | ||
3295 | = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; | ||
3296 | |||
3297 | REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; | ||
3298 | IS_ACTIVE (reg_info[mcnt]) = 0; | ||
3299 | MATCHED_SOMETHING (reg_info[mcnt]) = 0; | ||
3300 | EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; | ||
3301 | } | ||
3302 | |||
3303 | /* We move `string1' into `string2' if the latter's empty -- but not if | ||
3304 | `string1' is null. */ | ||
3305 | if (size2 == 0 && string1 != NULL) | ||
3306 | { | ||
3307 | string2 = string1; | ||
3308 | size2 = size1; | ||
3309 | string1 = 0; | ||
3310 | size1 = 0; | ||
3311 | } | ||
3312 | end1 = string1 + size1; | ||
3313 | end2 = string2 + size2; | ||
3314 | |||
3315 | /* Compute where to stop matching, within the two strings. */ | ||
3316 | if (stop <= size1) | ||
3317 | { | ||
3318 | end_match_1 = string1 + stop; | ||
3319 | end_match_2 = string2; | ||
3320 | } | ||
3321 | else | ||
3322 | { | ||
3323 | end_match_1 = end1; | ||
3324 | end_match_2 = string2 + stop - size1; | ||
3325 | } | ||
3326 | |||
3327 | /* `p' scans through the pattern as `d' scans through the data. | ||
3328 | `dend' is the end of the input string that `d' points within. `d' | ||
3329 | is advanced into the following input string whenever necessary, but | ||
3330 | this happens before fetching; therefore, at the beginning of the | ||
3331 | loop, `d' can be pointing at the end of a string, but it cannot | ||
3332 | equal `string2'. */ | ||
3333 | if (size1 > 0 && pos <= size1) | ||
3334 | { | ||
3335 | d = string1 + pos; | ||
3336 | dend = end_match_1; | ||
3337 | } | ||
3338 | else | ||
3339 | { | ||
3340 | d = string2 + pos - size1; | ||
3341 | dend = end_match_2; | ||
3342 | } | ||
3343 | |||
3344 | DEBUG_PRINT1 ("The compiled pattern is: "); | ||
3345 | DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); | ||
3346 | DEBUG_PRINT1 ("The string to match is: `"); | ||
3347 | DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); | ||
3348 | DEBUG_PRINT1 ("'\n"); | ||
3349 | |||
3350 | /* This loops over pattern commands. It exits by returning from the | ||
3351 | function if the match is complete, or it drops through if the match | ||
3352 | fails at this starting point in the input data. */ | ||
3353 | for (;;) | ||
3354 | { | ||
3355 | DEBUG_PRINT2 ("\n0x%x: ", p); | ||
3356 | |||
3357 | if (p == pend) | ||
3358 | { /* End of pattern means we might have succeeded. */ | ||
3359 | DEBUG_PRINT1 ("end of pattern ... "); | ||
3360 | |||
3361 | /* If we haven't matched the entire string, and we want the | ||
3362 | longest match, try backtracking. */ | ||
3363 | if (d != end_match_2) | ||
3364 | { | ||
3365 | DEBUG_PRINT1 ("backtracking.\n"); | ||
3366 | |||
3367 | if (!FAIL_STACK_EMPTY ()) | ||
3368 | { /* More failure points to try. */ | ||
3369 | boolean same_str_p = (FIRST_STRING_P (match_end) | ||
3370 | == MATCHING_IN_FIRST_STRING); | ||
3371 | |||
3372 | /* If exceeds best match so far, save it. */ | ||
3373 | if (!best_regs_set | ||
3374 | || (same_str_p && d > match_end) | ||
3375 | || (!same_str_p && !MATCHING_IN_FIRST_STRING)) | ||
3376 | { | ||
3377 | best_regs_set = true; | ||
3378 | match_end = d; | ||
3379 | |||
3380 | DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); | ||
3381 | |||
3382 | for (mcnt = 1; mcnt < num_regs; mcnt++) | ||
3383 | { | ||
3384 | best_regstart[mcnt] = regstart[mcnt]; | ||
3385 | best_regend[mcnt] = regend[mcnt]; | ||
3386 | } | ||
3387 | } | ||
3388 | goto fail; | ||
3389 | } | ||
3390 | |||
3391 | /* If no failure points, don't restore garbage. */ | ||
3392 | else if (best_regs_set) | ||
3393 | { | ||
3394 | restore_best_regs: | ||
3395 | /* Restore best match. It may happen that `dend == | ||
3396 | end_match_1' while the restored d is in string2. | ||
3397 | For example, the pattern `x.*y.*z' against the | ||
3398 | strings `x-' and `y-z-', if the two strings are | ||
3399 | not consecutive in memory. */ | ||
3400 | DEBUG_PRINT1 ("Restoring best registers.\n"); | ||
3401 | |||
3402 | d = match_end; | ||
3403 | dend = ((d >= string1 && d <= end1) | ||
3404 | ? end_match_1 : end_match_2); | ||
3405 | |||
3406 | for (mcnt = 1; mcnt < num_regs; mcnt++) | ||
3407 | { | ||
3408 | regstart[mcnt] = best_regstart[mcnt]; | ||
3409 | regend[mcnt] = best_regend[mcnt]; | ||
3410 | } | ||
3411 | } | ||
3412 | } /* d != end_match_2 */ | ||
3413 | |||
3414 | DEBUG_PRINT1 ("Accepting match.\n"); | ||
3415 | |||
3416 | /* If caller wants register contents data back, do it. */ | ||
3417 | if (regs && !bufp->no_sub) | ||
3418 | { | ||
3419 | /* Have the register data arrays been allocated? */ | ||
3420 | if (bufp->regs_allocated == REGS_UNALLOCATED) | ||
3421 | { /* No. So allocate them with malloc. We need one | ||
3422 | extra element beyond `num_regs' for the `-1' marker | ||
3423 | GNU code uses. */ | ||
3424 | regs->num_regs = MAX (RE_NREGS, num_regs + 1); | ||
3425 | regs->start = TALLOC (regs->num_regs, regoff_t); | ||
3426 | regs->end = TALLOC (regs->num_regs, regoff_t); | ||
3427 | if (regs->start == NULL || regs->end == NULL) | ||
3428 | return -2; | ||
3429 | bufp->regs_allocated = REGS_REALLOCATE; | ||
3430 | } | ||
3431 | else if (bufp->regs_allocated == REGS_REALLOCATE) | ||
3432 | { /* Yes. If we need more elements than were already | ||
3433 | allocated, reallocate them. If we need fewer, just | ||
3434 | leave it alone. */ | ||
3435 | if (regs->num_regs < num_regs + 1) | ||
3436 | { | ||
3437 | regs->num_regs = num_regs + 1; | ||
3438 | RETALLOC (regs->start, regs->num_regs, regoff_t); | ||
3439 | RETALLOC (regs->end, regs->num_regs, regoff_t); | ||
3440 | if (regs->start == NULL || regs->end == NULL) | ||
3441 | return -2; | ||
3442 | } | ||
3443 | } | ||
3444 | else | ||
3445 | assert (bufp->regs_allocated == REGS_FIXED); | ||
3446 | |||
3447 | /* Convert the pointer data in `regstart' and `regend' to | ||
3448 | indices. Register zero has to be set differently, | ||
3449 | since we haven't kept track of any info for it. */ | ||
3450 | if (regs->num_regs > 0) | ||
3451 | { | ||
3452 | regs->start[0] = pos; | ||
3453 | regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1 | ||
3454 | : d - string2 + size1); | ||
3455 | } | ||
3456 | |||
3457 | /* Go through the first `min (num_regs, regs->num_regs)' | ||
3458 | registers, since that is all we initialized. */ | ||
3459 | for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++) | ||
3460 | { | ||
3461 | if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) | ||
3462 | regs->start[mcnt] = regs->end[mcnt] = -1; | ||
3463 | else | ||
3464 | { | ||
3465 | regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]); | ||
3466 | regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]); | ||
3467 | } | ||
3468 | } | ||
3469 | |||
3470 | /* If the regs structure we return has more elements than | ||
3471 | were in the pattern, set the extra elements to -1. If | ||
3472 | we (re)allocated the registers, this is the case, | ||
3473 | because we always allocate enough to have at least one | ||
3474 | -1 at the end. */ | ||
3475 | for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) | ||
3476 | regs->start[mcnt] = regs->end[mcnt] = -1; | ||
3477 | } /* regs && !bufp->no_sub */ | ||
3478 | |||
3479 | FREE_VARIABLES (); | ||
3480 | DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", | ||
3481 | nfailure_points_pushed, nfailure_points_popped, | ||
3482 | nfailure_points_pushed - nfailure_points_popped); | ||
3483 | DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); | ||
3484 | |||
3485 | mcnt = d - pos - (MATCHING_IN_FIRST_STRING | ||
3486 | ? string1 | ||
3487 | : string2 - size1); | ||
3488 | |||
3489 | DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); | ||
3490 | |||
3491 | return mcnt; | ||
3492 | } | ||
3493 | |||
3494 | /* Otherwise match next pattern command. */ | ||
3495 | #ifdef SWITCH_ENUM_BUG | ||
3496 | switch ((int) ((re_opcode_t) *p++)) | ||
3497 | #else | ||
3498 | switch ((re_opcode_t) *p++) | ||
3499 | #endif | ||
3500 | { | ||
3501 | /* Ignore these. Used to ignore the n of succeed_n's which | ||
3502 | currently have n == 0. */ | ||
3503 | case no_op: | ||
3504 | DEBUG_PRINT1 ("EXECUTING no_op.\n"); | ||
3505 | break; | ||
3506 | |||
3507 | |||
3508 | /* Match the next n pattern characters exactly. The following | ||
3509 | byte in the pattern defines n, and the n bytes after that | ||
3510 | are the characters to match. */ | ||
3511 | case exactn: | ||
3512 | mcnt = *p++; | ||
3513 | DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); | ||
3514 | |||
3515 | /* This is written out as an if-else so we don't waste time | ||
3516 | testing `translate' inside the loop. */ | ||
3517 | if (translate) | ||
3518 | { | ||
3519 | do | ||
3520 | { | ||
3521 | PREFETCH (); | ||
3522 | if (translate[(unsigned char) *d++] != (char) *p++) | ||
3523 | goto fail; | ||
3524 | } | ||
3525 | while (--mcnt); | ||
3526 | } | ||
3527 | else | ||
3528 | { | ||
3529 | do | ||
3530 | { | ||
3531 | PREFETCH (); | ||
3532 | if (*d++ != (char) *p++) goto fail; | ||
3533 | } | ||
3534 | while (--mcnt); | ||
3535 | } | ||
3536 | SET_REGS_MATCHED (); | ||
3537 | break; | ||
3538 | |||
3539 | |||
3540 | /* Match any character except possibly a newline or a null. */ | ||
3541 | case anychar: | ||
3542 | DEBUG_PRINT1 ("EXECUTING anychar.\n"); | ||
3543 | |||
3544 | PREFETCH (); | ||
3545 | |||
3546 | if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n') | ||
3547 | || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000')) | ||
3548 | goto fail; | ||
3549 | |||
3550 | SET_REGS_MATCHED (); | ||
3551 | DEBUG_PRINT2 (" Matched `%d'.\n", *d); | ||
3552 | d++; | ||
3553 | break; | ||
3554 | |||
3555 | |||
3556 | case charset: | ||
3557 | case charset_not: | ||
3558 | { | ||
3559 | register unsigned char c; | ||
3560 | boolean not = (re_opcode_t) *(p - 1) == charset_not; | ||
3561 | |||
3562 | DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); | ||
3563 | |||
3564 | PREFETCH (); | ||
3565 | c = TRANSLATE (*d); /* The character to match. */ | ||
3566 | |||
3567 | /* Cast to `unsigned' instead of `unsigned char' in case the | ||
3568 | bit list is a full 32 bytes long. */ | ||
3569 | if (c < (unsigned) (*p * BYTEWIDTH) | ||
3570 | && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) | ||
3571 | not = !not; | ||
3572 | |||
3573 | p += 1 + *p; | ||
3574 | |||
3575 | if (!not) goto fail; | ||
3576 | |||
3577 | SET_REGS_MATCHED (); | ||
3578 | d++; | ||
3579 | break; | ||
3580 | } | ||
3581 | |||
3582 | |||
3583 | /* The beginning of a group is represented by start_memory. | ||
3584 | The arguments are the register number in the next byte, and the | ||
3585 | number of groups inner to this one in the next. The text | ||
3586 | matched within the group is recorded (in the internal | ||
3587 | registers data structure) under the register number. */ | ||
3588 | case start_memory: | ||
3589 | DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); | ||
3590 | |||
3591 | /* Find out if this group can match the empty string. */ | ||
3592 | p1 = p; /* To send to group_match_null_string_p. */ | ||
3593 | |||
3594 | if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) | ||
3595 | REG_MATCH_NULL_STRING_P (reg_info[*p]) | ||
3596 | = group_match_null_string_p (&p1, pend, reg_info); | ||
3597 | |||
3598 | /* Save the position in the string where we were the last time | ||
3599 | we were at this open-group operator in case the group is | ||
3600 | operated upon by a repetition operator, e.g., with `(a*)*b' | ||
3601 | against `ab'; then we want to ignore where we are now in | ||
3602 | the string in case this attempt to match fails. */ | ||
3603 | old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | ||
3604 | ? REG_UNSET (regstart[*p]) ? d : regstart[*p] | ||
3605 | : regstart[*p]; | ||
3606 | DEBUG_PRINT2 (" old_regstart: %d\n", | ||
3607 | POINTER_TO_OFFSET (old_regstart[*p])); | ||
3608 | |||
3609 | regstart[*p] = d; | ||
3610 | DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); | ||
3611 | |||
3612 | IS_ACTIVE (reg_info[*p]) = 1; | ||
3613 | MATCHED_SOMETHING (reg_info[*p]) = 0; | ||
3614 | |||
3615 | /* This is the new highest active register. */ | ||
3616 | highest_active_reg = *p; | ||
3617 | |||
3618 | /* If nothing was active before, this is the new lowest active | ||
3619 | register. */ | ||
3620 | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | ||
3621 | lowest_active_reg = *p; | ||
3622 | |||
3623 | /* Move past the register number and inner group count. */ | ||
3624 | p += 2; | ||
3625 | break; | ||
3626 | |||
3627 | |||
3628 | /* The stop_memory opcode represents the end of a group. Its | ||
3629 | arguments are the same as start_memory's: the register | ||
3630 | number, and the number of inner groups. */ | ||
3631 | case stop_memory: | ||
3632 | DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); | ||
3633 | |||
3634 | /* We need to save the string position the last time we were at | ||
3635 | this close-group operator in case the group is operated | ||
3636 | upon by a repetition operator, e.g., with `((a*)*(b*)*)*' | ||
3637 | against `aba'; then we want to ignore where we are now in | ||
3638 | the string in case this attempt to match fails. */ | ||
3639 | old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | ||
3640 | ? REG_UNSET (regend[*p]) ? d : regend[*p] | ||
3641 | : regend[*p]; | ||
3642 | DEBUG_PRINT2 (" old_regend: %d\n", | ||
3643 | POINTER_TO_OFFSET (old_regend[*p])); | ||
3644 | |||
3645 | regend[*p] = d; | ||
3646 | DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); | ||
3647 | |||
3648 | /* This register isn't active anymore. */ | ||
3649 | IS_ACTIVE (reg_info[*p]) = 0; | ||
3650 | |||
3651 | /* If this was the only register active, nothing is active | ||
3652 | anymore. */ | ||
3653 | if (lowest_active_reg == highest_active_reg) | ||
3654 | { | ||
3655 | lowest_active_reg = NO_LOWEST_ACTIVE_REG; | ||
3656 | highest_active_reg = NO_HIGHEST_ACTIVE_REG; | ||
3657 | } | ||
3658 | else | ||
3659 | { /* We must scan for the new highest active register, since | ||
3660 | it isn't necessarily one less than now: consider | ||
3661 | (a(b)c(d(e)f)g). When group 3 ends, after the f), the | ||
3662 | new highest active register is 1. */ | ||
3663 | unsigned char r = *p - 1; | ||
3664 | while (r > 0 && !IS_ACTIVE (reg_info[r])) | ||
3665 | r--; | ||
3666 | |||
3667 | /* If we end up at register zero, that means that we saved | ||
3668 | the registers as the result of an `on_failure_jump', not | ||
3669 | a `start_memory', and we jumped to past the innermost | ||
3670 | `stop_memory'. For example, in ((.)*) we save | ||
3671 | registers 1 and 2 as a result of the *, but when we pop | ||
3672 | back to the second ), we are at the stop_memory 1. | ||
3673 | Thus, nothing is active. */ | ||
3674 | if (r == 0) | ||
3675 | { | ||
3676 | lowest_active_reg = NO_LOWEST_ACTIVE_REG; | ||
3677 | highest_active_reg = NO_HIGHEST_ACTIVE_REG; | ||
3678 | } | ||
3679 | else | ||
3680 | highest_active_reg = r; | ||
3681 | } | ||
3682 | |||
3683 | /* If just failed to match something this time around with a | ||
3684 | group that's operated on by a repetition operator, try to | ||
3685 | force exit from the ``loop'', and restore the register | ||
3686 | information for this group that we had before trying this | ||
3687 | last match. */ | ||
3688 | if ((!MATCHED_SOMETHING (reg_info[*p]) | ||
3689 | || (re_opcode_t) p[-3] == start_memory) | ||
3690 | && (p + 2) < pend) | ||
3691 | { | ||
3692 | boolean is_a_jump_n = false; | ||
3693 | |||
3694 | p1 = p + 2; | ||
3695 | mcnt = 0; | ||
3696 | switch ((re_opcode_t) *p1++) | ||
3697 | { | ||
3698 | case jump_n: | ||
3699 | is_a_jump_n = true; | ||
3700 | case pop_failure_jump: | ||
3701 | case maybe_pop_jump: | ||
3702 | case jump: | ||
3703 | case dummy_failure_jump: | ||
3704 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
3705 | if (is_a_jump_n) | ||
3706 | p1 += 2; | ||
3707 | break; | ||
3708 | |||
3709 | default: | ||
3710 | /* do nothing */ ; | ||
3711 | } | ||
3712 | p1 += mcnt; | ||
3713 | |||
3714 | /* If the next operation is a jump backwards in the pattern | ||
3715 | to an on_failure_jump right before the start_memory | ||
3716 | corresponding to this stop_memory, exit from the loop | ||
3717 | by forcing a failure after pushing on the stack the | ||
3718 | on_failure_jump's jump in the pattern, and d. */ | ||
3719 | if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump | ||
3720 | && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) | ||
3721 | { | ||
3722 | /* If this group ever matched anything, then restore | ||
3723 | what its registers were before trying this last | ||
3724 | failed match, e.g., with `(a*)*b' against `ab' for | ||
3725 | regstart[1], and, e.g., with `((a*)*(b*)*)*' | ||
3726 | against `aba' for regend[3]. | ||
3727 | |||
3728 | Also restore the registers for inner groups for, | ||
3729 | e.g., `((a*)(b*))*' against `aba' (register 3 would | ||
3730 | otherwise get trashed). */ | ||
3731 | |||
3732 | if (EVER_MATCHED_SOMETHING (reg_info[*p])) | ||
3733 | { | ||
3734 | unsigned r; | ||
3735 | |||
3736 | EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; | ||
3737 | |||
3738 | /* Restore this and inner groups' (if any) registers. */ | ||
3739 | for (r = *p; r < *p + *(p + 1); r++) | ||
3740 | { | ||
3741 | regstart[r] = old_regstart[r]; | ||
3742 | |||
3743 | /* xx why this test? */ | ||
3744 | if ((int) old_regend[r] >= (int) regstart[r]) | ||
3745 | regend[r] = old_regend[r]; | ||
3746 | } | ||
3747 | } | ||
3748 | p1++; | ||
3749 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
3750 | PUSH_FAILURE_POINT (p1 + mcnt, d, -2); | ||
3751 | |||
3752 | goto fail; | ||
3753 | } | ||
3754 | } | ||
3755 | |||
3756 | /* Move past the register number and the inner group count. */ | ||
3757 | p += 2; | ||
3758 | break; | ||
3759 | |||
3760 | |||
3761 | /* \<digit> has been turned into a `duplicate' command which is | ||
3762 | followed by the numeric value of <digit> as the register number. */ | ||
3763 | case duplicate: | ||
3764 | { | ||
3765 | register const char *d2, *dend2; | ||
3766 | int regno = *p++; /* Get which register to match against. */ | ||
3767 | DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); | ||
3768 | |||
3769 | /* Can't back reference a group which we've never matched. */ | ||
3770 | if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) | ||
3771 | goto fail; | ||
3772 | |||
3773 | /* Where in input to try to start matching. */ | ||
3774 | d2 = regstart[regno]; | ||
3775 | |||
3776 | /* Where to stop matching; if both the place to start and | ||
3777 | the place to stop matching are in the same string, then | ||
3778 | set to the place to stop, otherwise, for now have to use | ||
3779 | the end of the first string. */ | ||
3780 | |||
3781 | dend2 = ((FIRST_STRING_P (regstart[regno]) | ||
3782 | == FIRST_STRING_P (regend[regno])) | ||
3783 | ? regend[regno] : end_match_1); | ||
3784 | for (;;) | ||
3785 | { | ||
3786 | /* If necessary, advance to next segment in register | ||
3787 | contents. */ | ||
3788 | while (d2 == dend2) | ||
3789 | { | ||
3790 | if (dend2 == end_match_2) break; | ||
3791 | if (dend2 == regend[regno]) break; | ||
3792 | |||
3793 | /* End of string1 => advance to string2. */ | ||
3794 | d2 = string2; | ||
3795 | dend2 = regend[regno]; | ||
3796 | } | ||
3797 | /* At end of register contents => success */ | ||
3798 | if (d2 == dend2) break; | ||
3799 | |||
3800 | /* If necessary, advance to next segment in data. */ | ||
3801 | PREFETCH (); | ||
3802 | |||
3803 | /* How many characters left in this segment to match. */ | ||
3804 | mcnt = dend - d; | ||
3805 | |||
3806 | /* Want how many consecutive characters we can match in | ||
3807 | one shot, so, if necessary, adjust the count. */ | ||
3808 | if (mcnt > dend2 - d2) | ||
3809 | mcnt = dend2 - d2; | ||
3810 | |||
3811 | /* Compare that many; failure if mismatch, else move | ||
3812 | past them. */ | ||
3813 | if (translate | ||
3814 | ? bcmp_translate (d, d2, mcnt, translate) | ||
3815 | : bcmp (d, d2, mcnt)) | ||
3816 | goto fail; | ||
3817 | d += mcnt, d2 += mcnt; | ||
3818 | } | ||
3819 | } | ||
3820 | break; | ||
3821 | |||
3822 | |||
3823 | /* begline matches the empty string at the beginning of the string | ||
3824 | (unless `not_bol' is set in `bufp'), and, if | ||
3825 | `newline_anchor' is set, after newlines. */ | ||
3826 | case begline: | ||
3827 | DEBUG_PRINT1 ("EXECUTING begline.\n"); | ||
3828 | |||
3829 | if (AT_STRINGS_BEG (d)) | ||
3830 | { | ||
3831 | if (!bufp->not_bol) break; | ||
3832 | } | ||
3833 | else if (d[-1] == '\n' && bufp->newline_anchor) | ||
3834 | { | ||
3835 | break; | ||
3836 | } | ||
3837 | /* In all other cases, we fail. */ | ||
3838 | goto fail; | ||
3839 | |||
3840 | |||
3841 | /* endline is the dual of begline. */ | ||
3842 | case endline: | ||
3843 | DEBUG_PRINT1 ("EXECUTING endline.\n"); | ||
3844 | |||
3845 | if (AT_STRINGS_END (d)) | ||
3846 | { | ||
3847 | if (!bufp->not_eol) break; | ||
3848 | } | ||
3849 | |||
3850 | /* We have to ``prefetch'' the next character. */ | ||
3851 | else if ((d == end1 ? *string2 : *d) == '\n' | ||
3852 | && bufp->newline_anchor) | ||
3853 | { | ||
3854 | break; | ||
3855 | } | ||
3856 | goto fail; | ||
3857 | |||
3858 | |||
3859 | /* Match at the very beginning of the data. */ | ||
3860 | case begbuf: | ||
3861 | DEBUG_PRINT1 ("EXECUTING begbuf.\n"); | ||
3862 | if (AT_STRINGS_BEG (d)) | ||
3863 | break; | ||
3864 | goto fail; | ||
3865 | |||
3866 | |||
3867 | /* Match at the very end of the data. */ | ||
3868 | case endbuf: | ||
3869 | DEBUG_PRINT1 ("EXECUTING endbuf.\n"); | ||
3870 | if (AT_STRINGS_END (d)) | ||
3871 | break; | ||
3872 | goto fail; | ||
3873 | |||
3874 | |||
3875 | /* on_failure_keep_string_jump is used to optimize `.*\n'. It | ||
3876 | pushes NULL as the value for the string on the stack. Then | ||
3877 | `pop_failure_point' will keep the current value for the | ||
3878 | string, instead of restoring it. To see why, consider | ||
3879 | matching `foo\nbar' against `.*\n'. The .* matches the foo; | ||
3880 | then the . fails against the \n. But the next thing we want | ||
3881 | to do is match the \n against the \n; if we restored the | ||
3882 | string value, we would be back at the foo. | ||
3883 | |||
3884 | Because this is used only in specific cases, we don't need to | ||
3885 | check all the things that `on_failure_jump' does, to make | ||
3886 | sure the right things get saved on the stack. Hence we don't | ||
3887 | share its code. The only reason to push anything on the | ||
3888 | stack at all is that otherwise we would have to change | ||
3889 | `anychar's code to do something besides goto fail in this | ||
3890 | case; that seems worse than this. */ | ||
3891 | case on_failure_keep_string_jump: | ||
3892 | DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); | ||
3893 | |||
3894 | EXTRACT_NUMBER_AND_INCR (mcnt, p); | ||
3895 | DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); | ||
3896 | |||
3897 | PUSH_FAILURE_POINT (p + mcnt, NULL, -2); | ||
3898 | break; | ||
3899 | |||
3900 | |||
3901 | /* Uses of on_failure_jump: | ||
3902 | |||
3903 | Each alternative starts with an on_failure_jump that points | ||
3904 | to the beginning of the next alternative. Each alternative | ||
3905 | except the last ends with a jump that in effect jumps past | ||
3906 | the rest of the alternatives. (They really jump to the | ||
3907 | ending jump of the following alternative, because tensioning | ||
3908 | these jumps is a hassle.) | ||
3909 | |||
3910 | Repeats start with an on_failure_jump that points past both | ||
3911 | the repetition text and either the following jump or | ||
3912 | pop_failure_jump back to this on_failure_jump. */ | ||
3913 | case on_failure_jump: | ||
3914 | on_failure: | ||
3915 | DEBUG_PRINT1 ("EXECUTING on_failure_jump"); | ||
3916 | |||
3917 | EXTRACT_NUMBER_AND_INCR (mcnt, p); | ||
3918 | DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); | ||
3919 | |||
3920 | /* If this on_failure_jump comes right before a group (i.e., | ||
3921 | the original * applied to a group), save the information | ||
3922 | for that group and all inner ones, so that if we fail back | ||
3923 | to this point, the group's information will be correct. | ||
3924 | For example, in \(a*\)*\1, we need the preceding group, | ||
3925 | and in \(\(a*\)b*\)\2, we need the inner group. */ | ||
3926 | |||
3927 | /* We can't use `p' to check ahead because we push | ||
3928 | a failure point to `p + mcnt' after we do this. */ | ||
3929 | p1 = p; | ||
3930 | |||
3931 | /* We need to skip no_op's before we look for the | ||
3932 | start_memory in case this on_failure_jump is happening as | ||
3933 | the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 | ||
3934 | against aba. */ | ||
3935 | while (p1 < pend && (re_opcode_t) *p1 == no_op) | ||
3936 | p1++; | ||
3937 | |||
3938 | if (p1 < pend && (re_opcode_t) *p1 == start_memory) | ||
3939 | { | ||
3940 | /* We have a new highest active register now. This will | ||
3941 | get reset at the start_memory we are about to get to, | ||
3942 | but we will have saved all the registers relevant to | ||
3943 | this repetition op, as described above. */ | ||
3944 | highest_active_reg = *(p1 + 1) + *(p1 + 2); | ||
3945 | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | ||
3946 | lowest_active_reg = *(p1 + 1); | ||
3947 | } | ||
3948 | |||
3949 | DEBUG_PRINT1 (":\n"); | ||
3950 | PUSH_FAILURE_POINT (p + mcnt, d, -2); | ||
3951 | break; | ||
3952 | |||
3953 | |||
3954 | /* A smart repeat ends with `maybe_pop_jump'. | ||
3955 | We change it to either `pop_failure_jump' or `jump'. */ | ||
3956 | case maybe_pop_jump: | ||
3957 | EXTRACT_NUMBER_AND_INCR (mcnt, p); | ||
3958 | DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); | ||
3959 | { | ||
3960 | register unsigned char *p2 = p; | ||
3961 | |||
3962 | /* Compare the beginning of the repeat with what in the | ||
3963 | pattern follows its end. If we can establish that there | ||
3964 | is nothing that they would both match, i.e., that we | ||
3965 | would have to backtrack because of (as in, e.g., `a*a') | ||
3966 | then we can change to pop_failure_jump, because we'll | ||
3967 | never have to backtrack. | ||
3968 | |||
3969 | This is not true in the case of alternatives: in | ||
3970 | `(a|ab)*' we do need to backtrack to the `ab' alternative | ||
3971 | (e.g., if the string was `ab'). But instead of trying to | ||
3972 | detect that here, the alternative has put on a dummy | ||
3973 | failure point which is what we will end up popping. */ | ||
3974 | |||
3975 | /* Skip over open/close-group commands. */ | ||
3976 | while (p2 + 2 < pend | ||
3977 | && ((re_opcode_t) *p2 == stop_memory | ||
3978 | || (re_opcode_t) *p2 == start_memory)) | ||
3979 | p2 += 3; /* Skip over args, too. */ | ||
3980 | |||
3981 | /* If we're at the end of the pattern, we can change. */ | ||
3982 | if (p2 == pend) | ||
3983 | { | ||
3984 | /* Consider what happens when matching ":\(.*\)" | ||
3985 | against ":/". I don't really understand this code | ||
3986 | yet. */ | ||
3987 | p[-3] = (unsigned char) pop_failure_jump; | ||
3988 | DEBUG_PRINT1 | ||
3989 | (" End of pattern: change to `pop_failure_jump'.\n"); | ||
3990 | } | ||
3991 | |||
3992 | else if ((re_opcode_t) *p2 == exactn | ||
3993 | || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) | ||
3994 | { | ||
3995 | register unsigned char c | ||
3996 | = *p2 == (unsigned char) endline ? '\n' : p2[2]; | ||
3997 | p1 = p + mcnt; | ||
3998 | |||
3999 | /* p1[0] ... p1[2] are the `on_failure_jump' corresponding | ||
4000 | to the `maybe_finalize_jump' of this case. Examine what | ||
4001 | follows. */ | ||
4002 | if ((re_opcode_t) p1[3] == exactn && p1[5] != c) | ||
4003 | { | ||
4004 | p[-3] = (unsigned char) pop_failure_jump; | ||
4005 | DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", | ||
4006 | c, p1[5]); | ||
4007 | } | ||
4008 | |||
4009 | else if ((re_opcode_t) p1[3] == charset | ||
4010 | || (re_opcode_t) p1[3] == charset_not) | ||
4011 | { | ||
4012 | int not = (re_opcode_t) p1[3] == charset_not; | ||
4013 | |||
4014 | if (c < (unsigned char) (p1[4] * BYTEWIDTH) | ||
4015 | && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) | ||
4016 | not = !not; | ||
4017 | |||
4018 | /* `not' is equal to 1 if c would match, which means | ||
4019 | that we can't change to pop_failure_jump. */ | ||
4020 | if (!not) | ||
4021 | { | ||
4022 | p[-3] = (unsigned char) pop_failure_jump; | ||
4023 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | ||
4024 | } | ||
4025 | } | ||
4026 | } | ||
4027 | } | ||
4028 | p -= 2; /* Point at relative address again. */ | ||
4029 | if ((re_opcode_t) p[-1] != pop_failure_jump) | ||
4030 | { | ||
4031 | p[-1] = (unsigned char) jump; | ||
4032 | DEBUG_PRINT1 (" Match => jump.\n"); | ||
4033 | goto unconditional_jump; | ||
4034 | } | ||
4035 | /* Note fall through. */ | ||
4036 | |||
4037 | |||
4038 | /* The end of a simple repeat has a pop_failure_jump back to | ||
4039 | its matching on_failure_jump, where the latter will push a | ||
4040 | failure point. The pop_failure_jump takes off failure | ||
4041 | points put on by this pop_failure_jump's matching | ||
4042 | on_failure_jump; we got through the pattern to here from the | ||
4043 | matching on_failure_jump, so didn't fail. */ | ||
4044 | case pop_failure_jump: | ||
4045 | { | ||
4046 | /* We need to pass separate storage for the lowest and | ||
4047 | highest registers, even though we don't care about the | ||
4048 | actual values. Otherwise, we will restore only one | ||
4049 | register from the stack, since lowest will == highest in | ||
4050 | `pop_failure_point'. */ | ||
4051 | unsigned dummy_low_reg, dummy_high_reg; | ||
4052 | unsigned char *pdummy; | ||
4053 | const char *sdummy; | ||
4054 | |||
4055 | DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); | ||
4056 | POP_FAILURE_POINT (sdummy, pdummy, | ||
4057 | dummy_low_reg, dummy_high_reg, | ||
4058 | reg_dummy, reg_dummy, reg_info_dummy); | ||
4059 | } | ||
4060 | /* Note fall through. */ | ||
4061 | |||
4062 | |||
4063 | /* Unconditionally jump (without popping any failure points). */ | ||
4064 | case jump: | ||
4065 | unconditional_jump: | ||
4066 | EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ | ||
4067 | DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); | ||
4068 | p += mcnt; /* Do the jump. */ | ||
4069 | DEBUG_PRINT2 ("(to 0x%x).\n", p); | ||
4070 | break; | ||
4071 | |||
4072 | |||
4073 | /* We need this opcode so we can detect where alternatives end | ||
4074 | in `group_match_null_string_p' et al. */ | ||
4075 | case jump_past_alt: | ||
4076 | DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); | ||
4077 | goto unconditional_jump; | ||
4078 | |||
4079 | |||
4080 | /* Normally, the on_failure_jump pushes a failure point, which | ||
4081 | then gets popped at pop_failure_jump. We will end up at | ||
4082 | pop_failure_jump, also, and with a pattern of, say, `a+', we | ||
4083 | are skipping over the on_failure_jump, so we have to push | ||
4084 | something meaningless for pop_failure_jump to pop. */ | ||
4085 | case dummy_failure_jump: | ||
4086 | DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); | ||
4087 | /* It doesn't matter what we push for the string here. What | ||
4088 | the code at `fail' tests is the value for the pattern. */ | ||
4089 | PUSH_FAILURE_POINT (0, 0, -2); | ||
4090 | goto unconditional_jump; | ||
4091 | |||
4092 | |||
4093 | /* At the end of an alternative, we need to push a dummy failure | ||
4094 | point in case we are followed by a `pop_failure_jump', because | ||
4095 | we don't want the failure point for the alternative to be | ||
4096 | popped. For example, matching `(a|ab)*' against `aab' | ||
4097 | requires that we match the `ab' alternative. */ | ||
4098 | case push_dummy_failure: | ||
4099 | DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); | ||
4100 | /* See comments just above at `dummy_failure_jump' about the | ||
4101 | two zeroes. */ | ||
4102 | PUSH_FAILURE_POINT (0, 0, -2); | ||
4103 | break; | ||
4104 | |||
4105 | /* Have to succeed matching what follows at least n times. | ||
4106 | After that, handle like `on_failure_jump'. */ | ||
4107 | case succeed_n: | ||
4108 | EXTRACT_NUMBER (mcnt, p + 2); | ||
4109 | DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); | ||
4110 | |||
4111 | assert (mcnt >= 0); | ||
4112 | /* Originally, this is how many times we HAVE to succeed. */ | ||
4113 | if (mcnt > 0) | ||
4114 | { | ||
4115 | mcnt--; | ||
4116 | p += 2; | ||
4117 | STORE_NUMBER_AND_INCR (p, mcnt); | ||
4118 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt); | ||
4119 | } | ||
4120 | else if (mcnt == 0) | ||
4121 | { | ||
4122 | DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2); | ||
4123 | p[2] = (unsigned char) no_op; | ||
4124 | p[3] = (unsigned char) no_op; | ||
4125 | goto on_failure; | ||
4126 | } | ||
4127 | break; | ||
4128 | |||
4129 | case jump_n: | ||
4130 | EXTRACT_NUMBER (mcnt, p + 2); | ||
4131 | DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); | ||
4132 | |||
4133 | /* Originally, this is how many times we CAN jump. */ | ||
4134 | if (mcnt) | ||
4135 | { | ||
4136 | mcnt--; | ||
4137 | STORE_NUMBER (p + 2, mcnt); | ||
4138 | goto unconditional_jump; | ||
4139 | } | ||
4140 | /* If don't have to jump any more, skip over the rest of command. */ | ||
4141 | else | ||
4142 | p += 4; | ||
4143 | break; | ||
4144 | |||
4145 | case set_number_at: | ||
4146 | { | ||
4147 | DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); | ||
4148 | |||
4149 | EXTRACT_NUMBER_AND_INCR (mcnt, p); | ||
4150 | p1 = p + mcnt; | ||
4151 | EXTRACT_NUMBER_AND_INCR (mcnt, p); | ||
4152 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); | ||
4153 | STORE_NUMBER (p1, mcnt); | ||
4154 | break; | ||
4155 | } | ||
4156 | |||
4157 | case wordbound: | ||
4158 | DEBUG_PRINT1 ("EXECUTING wordbound.\n"); | ||
4159 | if (AT_WORD_BOUNDARY (d)) | ||
4160 | break; | ||
4161 | goto fail; | ||
4162 | |||
4163 | case notwordbound: | ||
4164 | DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); | ||
4165 | if (AT_WORD_BOUNDARY (d)) | ||
4166 | goto fail; | ||
4167 | break; | ||
4168 | |||
4169 | case wordbeg: | ||
4170 | DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); | ||
4171 | if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) | ||
4172 | break; | ||
4173 | goto fail; | ||
4174 | |||
4175 | case wordend: | ||
4176 | DEBUG_PRINT1 ("EXECUTING wordend.\n"); | ||
4177 | if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) | ||
4178 | && (!WORDCHAR_P (d) || AT_STRINGS_END (d))) | ||
4179 | break; | ||
4180 | goto fail; | ||
4181 | |||
4182 | #ifdef emacs | ||
4183 | #ifdef emacs19 | ||
4184 | case before_dot: | ||
4185 | DEBUG_PRINT1 ("EXECUTING before_dot.\n"); | ||
4186 | if (PTR_CHAR_POS ((unsigned char *) d) >= point) | ||
4187 | goto fail; | ||
4188 | break; | ||
4189 | |||
4190 | case at_dot: | ||
4191 | DEBUG_PRINT1 ("EXECUTING at_dot.\n"); | ||
4192 | if (PTR_CHAR_POS ((unsigned char *) d) != point) | ||
4193 | goto fail; | ||
4194 | break; | ||
4195 | |||
4196 | case after_dot: | ||
4197 | DEBUG_PRINT1 ("EXECUTING after_dot.\n"); | ||
4198 | if (PTR_CHAR_POS ((unsigned char *) d) <= point) | ||
4199 | goto fail; | ||
4200 | break; | ||
4201 | #else /* not emacs19 */ | ||
4202 | case at_dot: | ||
4203 | DEBUG_PRINT1 ("EXECUTING at_dot.\n"); | ||
4204 | if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point) | ||
4205 | goto fail; | ||
4206 | break; | ||
4207 | #endif /* not emacs19 */ | ||
4208 | |||
4209 | case syntaxspec: | ||
4210 | DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); | ||
4211 | mcnt = *p++; | ||
4212 | goto matchsyntax; | ||
4213 | |||
4214 | case wordchar: | ||
4215 | DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); | ||
4216 | mcnt = (int) Sword; | ||
4217 | matchsyntax: | ||
4218 | PREFETCH (); | ||
4219 | if (SYNTAX (*d++) != (enum syntaxcode) mcnt) | ||
4220 | goto fail; | ||
4221 | SET_REGS_MATCHED (); | ||
4222 | break; | ||
4223 | |||
4224 | case notsyntaxspec: | ||
4225 | DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); | ||
4226 | mcnt = *p++; | ||
4227 | goto matchnotsyntax; | ||
4228 | |||
4229 | case notwordchar: | ||
4230 | DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); | ||
4231 | mcnt = (int) Sword; | ||
4232 | matchnotsyntax: | ||
4233 | PREFETCH (); | ||
4234 | if (SYNTAX (*d++) == (enum syntaxcode) mcnt) | ||
4235 | goto fail; | ||
4236 | SET_REGS_MATCHED (); | ||
4237 | break; | ||
4238 | |||
4239 | #else /* not emacs */ | ||
4240 | case wordchar: | ||
4241 | DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); | ||
4242 | PREFETCH (); | ||
4243 | if (!WORDCHAR_P (d)) | ||
4244 | goto fail; | ||
4245 | SET_REGS_MATCHED (); | ||
4246 | d++; | ||
4247 | break; | ||
4248 | |||
4249 | case notwordchar: | ||
4250 | DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); | ||
4251 | PREFETCH (); | ||
4252 | if (WORDCHAR_P (d)) | ||
4253 | goto fail; | ||
4254 | SET_REGS_MATCHED (); | ||
4255 | d++; | ||
4256 | break; | ||
4257 | #endif /* not emacs */ | ||
4258 | |||
4259 | default: | ||
4260 | abort (); | ||
4261 | } | ||
4262 | continue; /* Successfully executed one pattern command; keep going. */ | ||
4263 | |||
4264 | |||
4265 | /* We goto here if a matching operation fails. */ | ||
4266 | fail: | ||
4267 | if (!FAIL_STACK_EMPTY ()) | ||
4268 | { /* A restart point is known. Restore to that state. */ | ||
4269 | DEBUG_PRINT1 ("\nFAIL:\n"); | ||
4270 | POP_FAILURE_POINT (d, p, | ||
4271 | lowest_active_reg, highest_active_reg, | ||
4272 | regstart, regend, reg_info); | ||
4273 | |||
4274 | /* If this failure point is a dummy, try the next one. */ | ||
4275 | if (!p) | ||
4276 | goto fail; | ||
4277 | |||
4278 | /* If we failed to the end of the pattern, don't examine *p. */ | ||
4279 | assert (p <= pend); | ||
4280 | if (p < pend) | ||
4281 | { | ||
4282 | boolean is_a_jump_n = false; | ||
4283 | |||
4284 | /* If failed to a backwards jump that's part of a repetition | ||
4285 | loop, need to pop this failure point and use the next one. */ | ||
4286 | switch ((re_opcode_t) *p) | ||
4287 | { | ||
4288 | case jump_n: | ||
4289 | is_a_jump_n = true; | ||
4290 | case maybe_pop_jump: | ||
4291 | case pop_failure_jump: | ||
4292 | case jump: | ||
4293 | p1 = p + 1; | ||
4294 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
4295 | p1 += mcnt; | ||
4296 | |||
4297 | if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) | ||
4298 | || (!is_a_jump_n | ||
4299 | && (re_opcode_t) *p1 == on_failure_jump)) | ||
4300 | goto fail; | ||
4301 | break; | ||
4302 | default: | ||
4303 | /* do nothing */ ; | ||
4304 | } | ||
4305 | } | ||
4306 | |||
4307 | if (d >= string1 && d <= end1) | ||
4308 | dend = end_match_1; | ||
4309 | } | ||
4310 | else | ||
4311 | break; /* Matching at this starting point really fails. */ | ||
4312 | } /* for (;;) */ | ||
4313 | |||
4314 | if (best_regs_set) | ||
4315 | goto restore_best_regs; | ||
4316 | |||
4317 | FREE_VARIABLES (); | ||
4318 | |||
4319 | return -1; /* Failure to match. */ | ||
4320 | } /* re_match_2 */ | ||
4321 | |||
4322 | /* Subroutine definitions for re_match_2. */ | ||
4323 | |||
4324 | |||
4325 | /* We are passed P pointing to a register number after a start_memory. | ||
4326 | |||
4327 | Return true if the pattern up to the corresponding stop_memory can | ||
4328 | match the empty string, and false otherwise. | ||
4329 | |||
4330 | If we find the matching stop_memory, sets P to point to one past its number. | ||
4331 | Otherwise, sets P to an undefined byte less than or equal to END. | ||
4332 | |||
4333 | We don't handle duplicates properly (yet). */ | ||
4334 | |||
4335 | static boolean | ||
4336 | group_match_null_string_p (p, end, reg_info) | ||
4337 | unsigned char **p, *end; | ||
4338 | register_info_type *reg_info; | ||
4339 | { | ||
4340 | int mcnt; | ||
4341 | /* Point to after the args to the start_memory. */ | ||
4342 | unsigned char *p1 = *p + 2; | ||
4343 | |||
4344 | while (p1 < end) | ||
4345 | { | ||
4346 | /* Skip over opcodes that can match nothing, and return true or | ||
4347 | false, as appropriate, when we get to one that can't, or to the | ||
4348 | matching stop_memory. */ | ||
4349 | |||
4350 | switch ((re_opcode_t) *p1) | ||
4351 | { | ||
4352 | /* Could be either a loop or a series of alternatives. */ | ||
4353 | case on_failure_jump: | ||
4354 | p1++; | ||
4355 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
4356 | |||
4357 | /* If the next operation is not a jump backwards in the | ||
4358 | pattern. */ | ||
4359 | |||
4360 | if (mcnt >= 0) | ||
4361 | { | ||
4362 | /* Go through the on_failure_jumps of the alternatives, | ||
4363 | seeing if any of the alternatives cannot match nothing. | ||
4364 | The last alternative starts with only a jump, | ||
4365 | whereas the rest start with on_failure_jump and end | ||
4366 | with a jump, e.g., here is the pattern for `a|b|c': | ||
4367 | |||
4368 | /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 | ||
4369 | /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 | ||
4370 | /exactn/1/c | ||
4371 | |||
4372 | So, we have to first go through the first (n-1) | ||
4373 | alternatives and then deal with the last one separately. */ | ||
4374 | |||
4375 | |||
4376 | /* Deal with the first (n-1) alternatives, which start | ||
4377 | with an on_failure_jump (see above) that jumps to right | ||
4378 | past a jump_past_alt. */ | ||
4379 | |||
4380 | while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) | ||
4381 | { | ||
4382 | /* `mcnt' holds how many bytes long the alternative | ||
4383 | is, including the ending `jump_past_alt' and | ||
4384 | its number. */ | ||
4385 | |||
4386 | if (!alt_match_null_string_p (p1, p1 + mcnt - 3, | ||
4387 | reg_info)) | ||
4388 | return false; | ||
4389 | |||
4390 | /* Move to right after this alternative, including the | ||
4391 | jump_past_alt. */ | ||
4392 | p1 += mcnt; | ||
4393 | |||
4394 | /* Break if it's the beginning of an n-th alternative | ||
4395 | that doesn't begin with an on_failure_jump. */ | ||
4396 | if ((re_opcode_t) *p1 != on_failure_jump) | ||
4397 | break; | ||
4398 | |||
4399 | /* Still have to check that it's not an n-th | ||
4400 | alternative that starts with an on_failure_jump. */ | ||
4401 | p1++; | ||
4402 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
4403 | if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) | ||
4404 | { | ||
4405 | /* Get to the beginning of the n-th alternative. */ | ||
4406 | p1 -= 3; | ||
4407 | break; | ||
4408 | } | ||
4409 | } | ||
4410 | |||
4411 | /* Deal with the last alternative: go back and get number | ||
4412 | of the `jump_past_alt' just before it. `mcnt' contains | ||
4413 | the length of the alternative. */ | ||
4414 | EXTRACT_NUMBER (mcnt, p1 - 2); | ||
4415 | |||
4416 | if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) | ||
4417 | return false; | ||
4418 | |||
4419 | p1 += mcnt; /* Get past the n-th alternative. */ | ||
4420 | } /* if mcnt > 0 */ | ||
4421 | break; | ||
4422 | |||
4423 | |||
4424 | case stop_memory: | ||
4425 | assert (p1[1] == **p); | ||
4426 | *p = p1 + 2; | ||
4427 | return true; | ||
4428 | |||
4429 | |||
4430 | default: | ||
4431 | if (!common_op_match_null_string_p (&p1, end, reg_info)) | ||
4432 | return false; | ||
4433 | } | ||
4434 | } /* while p1 < end */ | ||
4435 | |||
4436 | return false; | ||
4437 | } /* group_match_null_string_p */ | ||
4438 | |||
4439 | |||
4440 | /* Similar to group_match_null_string_p, but doesn't deal with alternatives: | ||
4441 | It expects P to be the first byte of a single alternative and END one | ||
4442 | byte past the last. The alternative can contain groups. */ | ||
4443 | |||
4444 | static boolean | ||
4445 | alt_match_null_string_p (p, end, reg_info) | ||
4446 | unsigned char *p, *end; | ||
4447 | register_info_type *reg_info; | ||
4448 | { | ||
4449 | int mcnt; | ||
4450 | unsigned char *p1 = p; | ||
4451 | |||
4452 | while (p1 < end) | ||
4453 | { | ||
4454 | /* Skip over opcodes that can match nothing, and break when we get | ||
4455 | to one that can't. */ | ||
4456 | |||
4457 | switch ((re_opcode_t) *p1) | ||
4458 | { | ||
4459 | /* It's a loop. */ | ||
4460 | case on_failure_jump: | ||
4461 | p1++; | ||
4462 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
4463 | p1 += mcnt; | ||
4464 | break; | ||
4465 | |||
4466 | default: | ||
4467 | if (!common_op_match_null_string_p (&p1, end, reg_info)) | ||
4468 | return false; | ||
4469 | } | ||
4470 | } /* while p1 < end */ | ||
4471 | |||
4472 | return true; | ||
4473 | } /* alt_match_null_string_p */ | ||
4474 | |||
4475 | |||
4476 | /* Deals with the ops common to group_match_null_string_p and | ||
4477 | alt_match_null_string_p. | ||
4478 | |||
4479 | Sets P to one after the op and its arguments, if any. */ | ||
4480 | |||
4481 | static boolean | ||
4482 | common_op_match_null_string_p (p, end, reg_info) | ||
4483 | unsigned char **p, *end; | ||
4484 | register_info_type *reg_info; | ||
4485 | { | ||
4486 | int mcnt; | ||
4487 | boolean ret; | ||
4488 | int reg_no; | ||
4489 | unsigned char *p1 = *p; | ||
4490 | |||
4491 | switch ((re_opcode_t) *p1++) | ||
4492 | { | ||
4493 | case no_op: | ||
4494 | case begline: | ||
4495 | case endline: | ||
4496 | case begbuf: | ||
4497 | case endbuf: | ||
4498 | case wordbeg: | ||
4499 | case wordend: | ||
4500 | case wordbound: | ||
4501 | case notwordbound: | ||
4502 | #ifdef emacs | ||
4503 | case before_dot: | ||
4504 | case at_dot: | ||
4505 | case after_dot: | ||
4506 | #endif | ||
4507 | break; | ||
4508 | |||
4509 | case start_memory: | ||
4510 | reg_no = *p1; | ||
4511 | assert (reg_no > 0 && reg_no <= MAX_REGNUM); | ||
4512 | ret = group_match_null_string_p (&p1, end, reg_info); | ||
4513 | |||
4514 | /* Have to set this here in case we're checking a group which | ||
4515 | contains a group and a back reference to it. */ | ||
4516 | |||
4517 | if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) | ||
4518 | REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; | ||
4519 | |||
4520 | if (!ret) | ||
4521 | return false; | ||
4522 | break; | ||
4523 | |||
4524 | /* If this is an optimized succeed_n for zero times, make the jump. */ | ||
4525 | case jump: | ||
4526 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
4527 | if (mcnt >= 0) | ||
4528 | p1 += mcnt; | ||
4529 | else | ||
4530 | return false; | ||
4531 | break; | ||
4532 | |||
4533 | case succeed_n: | ||
4534 | /* Get to the number of times to succeed. */ | ||
4535 | p1 += 2; | ||
4536 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
4537 | |||
4538 | if (mcnt == 0) | ||
4539 | { | ||
4540 | p1 -= 4; | ||
4541 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
4542 | p1 += mcnt; | ||
4543 | } | ||
4544 | else | ||
4545 | return false; | ||
4546 | break; | ||
4547 | |||
4548 | case duplicate: | ||
4549 | if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) | ||
4550 | return false; | ||
4551 | break; | ||
4552 | |||
4553 | case set_number_at: | ||
4554 | p1 += 4; | ||
4555 | |||
4556 | default: | ||
4557 | /* All other opcodes mean we cannot match the empty string. */ | ||
4558 | return false; | ||
4559 | } | ||
4560 | |||
4561 | *p = p1; | ||
4562 | return true; | ||
4563 | } /* common_op_match_null_string_p */ | ||
4564 | |||
4565 | |||
4566 | /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN | ||
4567 | bytes; nonzero otherwise. */ | ||
4568 | |||
4569 | static int | ||
4570 | bcmp_translate( | ||
4571 | unsigned char *s1, | ||
4572 | unsigned char *s2, | ||
4573 | int len, | ||
4574 | char *translate | ||
4575 | ) | ||
4576 | { | ||
4577 | register unsigned char *p1 = s1, *p2 = s2; | ||
4578 | while (len) | ||
4579 | { | ||
4580 | if (translate[*p1++] != translate[*p2++]) return 1; | ||
4581 | len--; | ||
4582 | } | ||
4583 | return 0; | ||
4584 | } | ||
4585 | |||
4586 | /* Entry points for GNU code. */ | ||
4587 | |||
4588 | /* re_compile_pattern is the GNU regular expression compiler: it | ||
4589 | compiles PATTERN (of length SIZE) and puts the result in BUFP. | ||
4590 | Returns 0 if the pattern was valid, otherwise an error string. | ||
4591 | |||
4592 | Assumes the `allocated' (and perhaps `buffer') and `translate' fields | ||
4593 | are set in BUFP on entry. | ||
4594 | |||
4595 | We call regex_compile to do the actual compilation. */ | ||
4596 | |||
4597 | const char * | ||
4598 | re_compile_pattern (pattern, length, bufp) | ||
4599 | const char *pattern; | ||
4600 | int length; | ||
4601 | struct re_pattern_buffer *bufp; | ||
4602 | { | ||
4603 | reg_errcode_t ret; | ||
4604 | |||
4605 | /* GNU code is written to assume at least RE_NREGS registers will be set | ||
4606 | (and at least one extra will be -1). */ | ||
4607 | bufp->regs_allocated = REGS_UNALLOCATED; | ||
4608 | |||
4609 | /* And GNU code determines whether or not to get register information | ||
4610 | by passing null for the REGS argument to re_match, etc., not by | ||
4611 | setting no_sub. */ | ||
4612 | bufp->no_sub = 0; | ||
4613 | |||
4614 | /* Match anchors at newline. */ | ||
4615 | bufp->newline_anchor = 1; | ||
4616 | |||
4617 | ret = regex_compile (pattern, length, re_syntax_options, bufp); | ||
4618 | |||
4619 | return re_error_msg[(int) ret]; | ||
4620 | } | ||
4621 | |||
4622 | /* Entry points compatible with 4.2 BSD regex library. We don't define | ||
4623 | them if this is an Emacs or POSIX compilation. */ | ||
4624 | |||
4625 | #if !defined (emacs) && !defined (_POSIX_SOURCE) | ||
4626 | |||
4627 | /* BSD has one and only one pattern buffer. */ | ||
4628 | static struct re_pattern_buffer re_comp_buf; | ||
4629 | |||
4630 | char * | ||
4631 | re_comp (s) | ||
4632 | const char *s; | ||
4633 | { | ||
4634 | reg_errcode_t ret; | ||
4635 | |||
4636 | if (!s) | ||
4637 | { | ||
4638 | if (!re_comp_buf.buffer) | ||
4639 | return "No previous regular expression"; | ||
4640 | return 0; | ||
4641 | } | ||
4642 | |||
4643 | if (!re_comp_buf.buffer) | ||
4644 | { | ||
4645 | re_comp_buf.buffer = (unsigned char *) malloc (200); | ||
4646 | if (re_comp_buf.buffer == NULL) | ||
4647 | return "Memory exhausted"; | ||
4648 | re_comp_buf.allocated = 200; | ||
4649 | |||
4650 | re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); | ||
4651 | if (re_comp_buf.fastmap == NULL) | ||
4652 | return "Memory exhausted"; | ||
4653 | } | ||
4654 | |||
4655 | /* Since `re_exec' always passes NULL for the `regs' argument, we | ||
4656 | don't need to initialize the pattern buffer fields which affect it. */ | ||
4657 | |||
4658 | /* Match anchors at newlines. */ | ||
4659 | re_comp_buf.newline_anchor = 1; | ||
4660 | |||
4661 | ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); | ||
4662 | |||
4663 | /* Yes, we're discarding `const' here. */ | ||
4664 | return (char *) re_error_msg[(int) ret]; | ||
4665 | } | ||
4666 | |||
4667 | |||
4668 | int | ||
4669 | re_exec (s) | ||
4670 | const char *s; | ||
4671 | { | ||
4672 | const int len = strlen (s); | ||
4673 | return | ||
4674 | 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); | ||
4675 | } | ||
4676 | #endif /* not emacs and not _POSIX_SOURCE */ | ||
4677 | |||
4678 | /* POSIX.2 functions. Don't define these for Emacs. */ | ||
4679 | |||
4680 | #ifndef emacs | ||
4681 | |||
4682 | /* regcomp takes a regular expression as a string and compiles it. | ||
4683 | |||
4684 | PREG is a regex_t *. We do not expect any fields to be initialized, | ||
4685 | since POSIX says we shouldn't. Thus, we set | ||
4686 | |||
4687 | `buffer' to the compiled pattern; | ||
4688 | `used' to the length of the compiled pattern; | ||
4689 | `syntax' to RE_SYNTAX_POSIX_EXTENDED if the | ||
4690 | REG_EXTENDED bit in CFLAGS is set; otherwise, to | ||
4691 | RE_SYNTAX_POSIX_BASIC; | ||
4692 | `newline_anchor' to REG_NEWLINE being set in CFLAGS; | ||
4693 | `fastmap' and `fastmap_accurate' to zero; | ||
4694 | `re_nsub' to the number of subexpressions in PATTERN. | ||
4695 | |||
4696 | PATTERN is the address of the pattern string. | ||
4697 | |||
4698 | CFLAGS is a series of bits which affect compilation. | ||
4699 | |||
4700 | If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we | ||
4701 | use POSIX basic syntax. | ||
4702 | |||
4703 | If REG_NEWLINE is set, then . and [^...] don't match newline. | ||
4704 | Also, regexec will try a match beginning after every newline. | ||
4705 | |||
4706 | If REG_ICASE is set, then we considers upper- and lowercase | ||
4707 | versions of letters to be equivalent when matching. | ||
4708 | |||
4709 | If REG_NOSUB is set, then when PREG is passed to regexec, that | ||
4710 | routine will report only success or failure, and nothing about the | ||
4711 | registers. | ||
4712 | |||
4713 | It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for | ||
4714 | the return codes and their meanings.) */ | ||
4715 | |||
4716 | int | ||
4717 | regcomp (preg, pattern, cflags) | ||
4718 | regex_t *preg; | ||
4719 | const char *pattern; | ||
4720 | int cflags; | ||
4721 | { | ||
4722 | reg_errcode_t ret; | ||
4723 | unsigned syntax | ||
4724 | = (cflags & REG_EXTENDED) ? | ||
4725 | RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; | ||
4726 | |||
4727 | /* regex_compile will allocate the space for the compiled pattern. */ | ||
4728 | preg->buffer = 0; | ||
4729 | preg->allocated = 0; | ||
4730 | |||
4731 | /* Don't bother to use a fastmap when searching. This simplifies the | ||
4732 | REG_NEWLINE case: if we used a fastmap, we'd have to put all the | ||
4733 | characters after newlines into the fastmap. This way, we just try | ||
4734 | every character. */ | ||
4735 | preg->fastmap = 0; | ||
4736 | |||
4737 | if (cflags & REG_ICASE) | ||
4738 | { | ||
4739 | unsigned i; | ||
4740 | |||
4741 | preg->translate = (char *) malloc (CHAR_SET_SIZE); | ||
4742 | if (preg->translate == NULL) | ||
4743 | return (int) REG_ESPACE; | ||
4744 | |||
4745 | /* Map uppercase characters to corresponding lowercase ones. */ | ||
4746 | for (i = 0; i < CHAR_SET_SIZE; i++) | ||
4747 | preg->translate[i] = ISUPPER (i) ? tolower (i) : i; | ||
4748 | } | ||
4749 | else | ||
4750 | preg->translate = NULL; | ||
4751 | |||
4752 | /* If REG_NEWLINE is set, newlines are treated differently. */ | ||
4753 | if (cflags & REG_NEWLINE) | ||
4754 | { /* REG_NEWLINE implies neither . nor [^...] match newline. */ | ||
4755 | syntax &= ~RE_DOT_NEWLINE; | ||
4756 | syntax |= RE_HAT_LISTS_NOT_NEWLINE; | ||
4757 | /* It also changes the matching behavior. */ | ||
4758 | preg->newline_anchor = 1; | ||
4759 | } | ||
4760 | else | ||
4761 | preg->newline_anchor = 0; | ||
4762 | |||
4763 | preg->no_sub = !!(cflags & REG_NOSUB); | ||
4764 | |||
4765 | /* POSIX says a null character in the pattern terminates it, so we | ||
4766 | can use strlen here in compiling the pattern. */ | ||
4767 | ret = regex_compile (pattern, strlen (pattern), syntax, preg); | ||
4768 | |||
4769 | /* POSIX doesn't distinguish between an unmatched open-group and an | ||
4770 | unmatched close-group: both are REG_EPAREN. */ | ||
4771 | if (ret == REG_ERPAREN) ret = REG_EPAREN; | ||
4772 | |||
4773 | return (int) ret; | ||
4774 | } | ||
4775 | |||
4776 | |||
4777 | /* regexec searches for a given pattern, specified by PREG, in the | ||
4778 | string STRING. | ||
4779 | |||
4780 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to | ||
4781 | `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at | ||
4782 | least NMATCH elements, and we set them to the offsets of the | ||
4783 | corresponding matched substrings. | ||
4784 | |||
4785 | EFLAGS specifies `execution flags' which affect matching: if | ||
4786 | REG_NOTBOL is set, then ^ does not match at the beginning of the | ||
4787 | string; if REG_NOTEOL is set, then $ does not match at the end. | ||
4788 | |||
4789 | We return 0 if we find a match and REG_NOMATCH if not. */ | ||
4790 | |||
4791 | int | ||
4792 | regexec (preg, string, nmatch, pmatch, eflags) | ||
4793 | const regex_t *preg; | ||
4794 | const char *string; | ||
4795 | size_t nmatch; | ||
4796 | regmatch_t pmatch[]; | ||
4797 | int eflags; | ||
4798 | { | ||
4799 | int ret; | ||
4800 | struct re_registers regs; | ||
4801 | regex_t private_preg; | ||
4802 | int len = strlen (string); | ||
4803 | boolean want_reg_info = !preg->no_sub && nmatch > 0; | ||
4804 | |||
4805 | private_preg = *preg; | ||
4806 | |||
4807 | private_preg.not_bol = !!(eflags & REG_NOTBOL); | ||
4808 | private_preg.not_eol = !!(eflags & REG_NOTEOL); | ||
4809 | |||
4810 | /* The user has told us exactly how many registers to return | ||
4811 | information about, via `nmatch'. We have to pass that on to the | ||
4812 | matching routines. */ | ||
4813 | private_preg.regs_allocated = REGS_FIXED; | ||
4814 | |||
4815 | if (want_reg_info) | ||
4816 | { | ||
4817 | regs.num_regs = nmatch; | ||
4818 | regs.start = TALLOC (nmatch, regoff_t); | ||
4819 | regs.end = TALLOC (nmatch, regoff_t); | ||
4820 | if (regs.start == NULL || regs.end == NULL) | ||
4821 | return (int) REG_NOMATCH; | ||
4822 | } | ||
4823 | |||
4824 | /* Perform the searching operation. */ | ||
4825 | ret = re_search (&private_preg, string, len, | ||
4826 | /* start: */ 0, /* range: */ len, | ||
4827 | want_reg_info ? ®s : (struct re_registers *) 0); | ||
4828 | |||
4829 | /* Copy the register information to the POSIX structure. */ | ||
4830 | if (want_reg_info) | ||
4831 | { | ||
4832 | if (ret >= 0) | ||
4833 | { | ||
4834 | unsigned r; | ||
4835 | |||
4836 | for (r = 0; r < nmatch; r++) | ||
4837 | { | ||
4838 | pmatch[r].rm_so = regs.start[r]; | ||
4839 | pmatch[r].rm_eo = regs.end[r]; | ||
4840 | } | ||
4841 | } | ||
4842 | |||
4843 | /* If we needed the temporary register info, free the space now. */ | ||
4844 | free (regs.start); | ||
4845 | free (regs.end); | ||
4846 | } | ||
4847 | |||
4848 | /* We want zero return to mean success, unlike `re_search'. */ | ||
4849 | return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; | ||
4850 | } | ||
4851 | |||
4852 | |||
4853 | /* Returns a message corresponding to an error code, ERRCODE, returned | ||
4854 | from either regcomp or regexec. We don't use PREG here. */ | ||
4855 | |||
4856 | size_t | ||
4857 | regerror (errcode, preg, errbuf, errbuf_size) | ||
4858 | int errcode; | ||
4859 | const regex_t *preg; | ||
4860 | char *errbuf; | ||
4861 | size_t errbuf_size; | ||
4862 | { | ||
4863 | const char *msg; | ||
4864 | size_t msg_size; | ||
4865 | |||
4866 | if (errcode < 0 | ||
4867 | || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0]))) | ||
4868 | /* Only error codes returned by the rest of the code should be passed | ||
4869 | to this routine. If we are given anything else, or if other regex | ||
4870 | code generates an invalid error code, then the program has a bug. | ||
4871 | Dump core so we can fix it. */ | ||
4872 | abort (); | ||
4873 | |||
4874 | msg = re_error_msg[errcode]; | ||
4875 | |||
4876 | /* POSIX doesn't require that we do anything in this case, but why | ||
4877 | not be nice. */ | ||
4878 | if (! msg) | ||
4879 | msg = "Success"; | ||
4880 | |||
4881 | msg_size = strlen (msg) + 1; /* Includes the null. */ | ||
4882 | |||
4883 | if (errbuf_size != 0) | ||
4884 | { | ||
4885 | if (msg_size > errbuf_size) | ||
4886 | { | ||
4887 | strncpy (errbuf, msg, errbuf_size - 1); | ||
4888 | errbuf[errbuf_size - 1] = 0; | ||
4889 | } | ||
4890 | else | ||
4891 | strcpy (errbuf, msg); | ||
4892 | } | ||
4893 | |||
4894 | return msg_size; | ||
4895 | } | ||
4896 | |||
4897 | |||
4898 | /* Free dynamically allocated space used by PREG. */ | ||
4899 | |||
4900 | void | ||
4901 | regfree (preg) | ||
4902 | regex_t *preg; | ||
4903 | { | ||
4904 | if (preg->buffer != NULL) | ||
4905 | free (preg->buffer); | ||
4906 | preg->buffer = NULL; | ||
4907 | |||
4908 | preg->allocated = 0; | ||
4909 | preg->used = 0; | ||
4910 | |||
4911 | if (preg->fastmap != NULL) | ||
4912 | free (preg->fastmap); | ||
4913 | preg->fastmap = NULL; | ||
4914 | preg->fastmap_accurate = 0; | ||
4915 | |||
4916 | if (preg->translate != NULL) | ||
4917 | free (preg->translate); | ||
4918 | preg->translate = NULL; | ||
4919 | } | ||
4920 | |||
4921 | #endif /* not emacs */ | ||
4922 | |||
4923 | /* | ||
4924 | Local variables: | ||
4925 | make-backup-files: t | ||
4926 | version-control: t | ||
4927 | trim-versions-without-asking: nil | ||
4928 | End: | ||
4929 | */ | ||
diff --git a/win32/regex.h b/win32/regex.h new file mode 100644 index 000000000..6eb64f140 --- /dev/null +++ b/win32/regex.h | |||
@@ -0,0 +1,490 @@ | |||
1 | /* Definitions for data structures and routines for the regular | ||
2 | expression library, version 0.12. | ||
3 | |||
4 | Copyright (C) 1985, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify | ||
7 | it under the terms of the GNU General Public License as published by | ||
8 | the Free Software Foundation; either version 2, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
14 | GNU General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License | ||
17 | along with this program; if not, write to the Free Software | ||
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | ||
19 | |||
20 | #ifndef __REGEXP_LIBRARY_H__ | ||
21 | #define __REGEXP_LIBRARY_H__ | ||
22 | |||
23 | /* POSIX says that <sys/types.h> must be included (by the caller) before | ||
24 | <regex.h>. */ | ||
25 | |||
26 | #ifdef VMS | ||
27 | /* VMS doesn't have `size_t' in <sys/types.h>, even though POSIX says it | ||
28 | should be there. */ | ||
29 | #include <stddef.h> | ||
30 | #endif | ||
31 | |||
32 | |||
33 | /* The following bits are used to determine the regexp syntax we | ||
34 | recognize. The set/not-set meanings are chosen so that Emacs syntax | ||
35 | remains the value 0. The bits are given in alphabetical order, and | ||
36 | the definitions shifted by one from the previous bit; thus, when we | ||
37 | add or remove a bit, only one other definition need change. */ | ||
38 | typedef unsigned reg_syntax_t; | ||
39 | |||
40 | /* If this bit is not set, then \ inside a bracket expression is literal. | ||
41 | If set, then such a \ quotes the following character. */ | ||
42 | #define RE_BACKSLASH_ESCAPE_IN_LISTS (1) | ||
43 | |||
44 | /* If this bit is not set, then + and ? are operators, and \+ and \? are | ||
45 | literals. | ||
46 | If set, then \+ and \? are operators and + and ? are literals. */ | ||
47 | #define RE_BK_PLUS_QM (RE_BACKSLASH_ESCAPE_IN_LISTS << 1) | ||
48 | |||
49 | /* If this bit is set, then character classes are supported. They are: | ||
50 | [:alpha:], [:upper:], [:lower:], [:digit:], [:alnum:], [:xdigit:], | ||
51 | [:space:], [:print:], [:punct:], [:graph:], and [:cntrl:]. | ||
52 | If not set, then character classes are not supported. */ | ||
53 | #define RE_CHAR_CLASSES (RE_BK_PLUS_QM << 1) | ||
54 | |||
55 | /* If this bit is set, then ^ and $ are always anchors (outside bracket | ||
56 | expressions, of course). | ||
57 | If this bit is not set, then it depends: | ||
58 | ^ is an anchor if it is at the beginning of a regular | ||
59 | expression or after an open-group or an alternation operator; | ||
60 | $ is an anchor if it is at the end of a regular expression, or | ||
61 | before a close-group or an alternation operator. | ||
62 | |||
63 | This bit could be (re)combined with RE_CONTEXT_INDEP_OPS, because | ||
64 | POSIX draft 11.2 says that * etc. in leading positions is undefined. | ||
65 | We already implemented a previous draft which made those constructs | ||
66 | invalid, though, so we haven't changed the code back. */ | ||
67 | #define RE_CONTEXT_INDEP_ANCHORS (RE_CHAR_CLASSES << 1) | ||
68 | |||
69 | /* If this bit is set, then special characters are always special | ||
70 | regardless of where they are in the pattern. | ||
71 | If this bit is not set, then special characters are special only in | ||
72 | some contexts; otherwise they are ordinary. Specifically, | ||
73 | * + ? and intervals are only special when not after the beginning, | ||
74 | open-group, or alternation operator. */ | ||
75 | #define RE_CONTEXT_INDEP_OPS (RE_CONTEXT_INDEP_ANCHORS << 1) | ||
76 | |||
77 | /* If this bit is set, then *, +, ?, and { cannot be first in an re or | ||
78 | immediately after an alternation or begin-group operator. */ | ||
79 | #define RE_CONTEXT_INVALID_OPS (RE_CONTEXT_INDEP_OPS << 1) | ||
80 | |||
81 | /* If this bit is set, then . matches newline. | ||
82 | If not set, then it doesn't. */ | ||
83 | #define RE_DOT_NEWLINE (RE_CONTEXT_INVALID_OPS << 1) | ||
84 | |||
85 | /* If this bit is set, then . doesn't match NUL. | ||
86 | If not set, then it does. */ | ||
87 | #define RE_DOT_NOT_NULL (RE_DOT_NEWLINE << 1) | ||
88 | |||
89 | /* If this bit is set, nonmatching lists [^...] do not match newline. | ||
90 | If not set, they do. */ | ||
91 | #define RE_HAT_LISTS_NOT_NEWLINE (RE_DOT_NOT_NULL << 1) | ||
92 | |||
93 | /* If this bit is set, either \{...\} or {...} defines an | ||
94 | interval, depending on RE_NO_BK_BRACES. | ||
95 | If not set, \{, \}, {, and } are literals. */ | ||
96 | #define RE_INTERVALS (RE_HAT_LISTS_NOT_NEWLINE << 1) | ||
97 | |||
98 | /* If this bit is set, +, ? and | aren't recognized as operators. | ||
99 | If not set, they are. */ | ||
100 | #define RE_LIMITED_OPS (RE_INTERVALS << 1) | ||
101 | |||
102 | /* If this bit is set, newline is an alternation operator. | ||
103 | If not set, newline is literal. */ | ||
104 | #define RE_NEWLINE_ALT (RE_LIMITED_OPS << 1) | ||
105 | |||
106 | /* If this bit is set, then `{...}' defines an interval, and \{ and \} | ||
107 | are literals. | ||
108 | If not set, then `\{...\}' defines an interval. */ | ||
109 | #define RE_NO_BK_BRACES (RE_NEWLINE_ALT << 1) | ||
110 | |||
111 | /* If this bit is set, (...) defines a group, and \( and \) are literals. | ||
112 | If not set, \(...\) defines a group, and ( and ) are literals. */ | ||
113 | #define RE_NO_BK_PARENS (RE_NO_BK_BRACES << 1) | ||
114 | |||
115 | /* If this bit is set, then \<digit> matches <digit>. | ||
116 | If not set, then \<digit> is a back-reference. */ | ||
117 | #define RE_NO_BK_REFS (RE_NO_BK_PARENS << 1) | ||
118 | |||
119 | /* If this bit is set, then | is an alternation operator, and \| is literal. | ||
120 | If not set, then \| is an alternation operator, and | is literal. */ | ||
121 | #define RE_NO_BK_VBAR (RE_NO_BK_REFS << 1) | ||
122 | |||
123 | /* If this bit is set, then an ending range point collating higher | ||
124 | than the starting range point, as in [z-a], is invalid. | ||
125 | If not set, then when ending range point collates higher than the | ||
126 | starting range point, the range is ignored. */ | ||
127 | #define RE_NO_EMPTY_RANGES (RE_NO_BK_VBAR << 1) | ||
128 | |||
129 | /* If this bit is set, then an unmatched ) is ordinary. | ||
130 | If not set, then an unmatched ) is invalid. */ | ||
131 | #define RE_UNMATCHED_RIGHT_PAREN_ORD (RE_NO_EMPTY_RANGES << 1) | ||
132 | |||
133 | /* This global variable defines the particular regexp syntax to use (for | ||
134 | some interfaces). When a regexp is compiled, the syntax used is | ||
135 | stored in the pattern buffer, so changing this does not affect | ||
136 | already-compiled regexps. */ | ||
137 | extern reg_syntax_t re_syntax_options; | ||
138 | |||
139 | /* Define combinations of the above bits for the standard possibilities. | ||
140 | (The [[[ comments delimit what gets put into the Texinfo file, so | ||
141 | don't delete them!) */ | ||
142 | /* [[[begin syntaxes]]] */ | ||
143 | #define RE_SYNTAX_EMACS 0 | ||
144 | |||
145 | #define RE_SYNTAX_AWK \ | ||
146 | (RE_BACKSLASH_ESCAPE_IN_LISTS | RE_DOT_NOT_NULL \ | ||
147 | | RE_NO_BK_PARENS | RE_NO_BK_REFS \ | ||
148 | | RE_NO_BK_VBAR | RE_NO_EMPTY_RANGES \ | ||
149 | | RE_UNMATCHED_RIGHT_PAREN_ORD) | ||
150 | |||
151 | #define RE_SYNTAX_POSIX_AWK \ | ||
152 | (RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS) | ||
153 | |||
154 | #define RE_SYNTAX_GREP \ | ||
155 | (RE_BK_PLUS_QM | RE_CHAR_CLASSES \ | ||
156 | | RE_HAT_LISTS_NOT_NEWLINE | RE_INTERVALS \ | ||
157 | | RE_NEWLINE_ALT) | ||
158 | |||
159 | #define RE_SYNTAX_EGREP \ | ||
160 | (RE_CHAR_CLASSES | RE_CONTEXT_INDEP_ANCHORS \ | ||
161 | | RE_CONTEXT_INDEP_OPS | RE_HAT_LISTS_NOT_NEWLINE \ | ||
162 | | RE_NEWLINE_ALT | RE_NO_BK_PARENS \ | ||
163 | | RE_NO_BK_VBAR) | ||
164 | |||
165 | #define RE_SYNTAX_POSIX_EGREP \ | ||
166 | (RE_SYNTAX_EGREP | RE_INTERVALS | RE_NO_BK_BRACES) | ||
167 | |||
168 | /* P1003.2/D11.2, section 4.20.7.1, lines 5078ff. */ | ||
169 | #define RE_SYNTAX_ED RE_SYNTAX_POSIX_BASIC | ||
170 | |||
171 | #define RE_SYNTAX_SED RE_SYNTAX_POSIX_BASIC | ||
172 | |||
173 | /* Syntax bits common to both basic and extended POSIX regex syntax. */ | ||
174 | #define _RE_SYNTAX_POSIX_COMMON \ | ||
175 | (RE_CHAR_CLASSES | RE_DOT_NEWLINE | RE_DOT_NOT_NULL \ | ||
176 | | RE_INTERVALS | RE_NO_EMPTY_RANGES) | ||
177 | |||
178 | #define RE_SYNTAX_POSIX_BASIC \ | ||
179 | (_RE_SYNTAX_POSIX_COMMON | RE_BK_PLUS_QM) | ||
180 | |||
181 | /* Differs from ..._POSIX_BASIC only in that RE_BK_PLUS_QM becomes | ||
182 | RE_LIMITED_OPS, i.e., \? \+ \| are not recognized. Actually, this | ||
183 | isn't minimal, since other operators, such as \`, aren't disabled. */ | ||
184 | #define RE_SYNTAX_POSIX_MINIMAL_BASIC \ | ||
185 | (_RE_SYNTAX_POSIX_COMMON | RE_LIMITED_OPS) | ||
186 | |||
187 | #define RE_SYNTAX_POSIX_EXTENDED \ | ||
188 | (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \ | ||
189 | | RE_CONTEXT_INDEP_OPS | RE_NO_BK_BRACES \ | ||
190 | | RE_NO_BK_PARENS | RE_NO_BK_VBAR \ | ||
191 | | RE_UNMATCHED_RIGHT_PAREN_ORD) | ||
192 | |||
193 | /* Differs from ..._POSIX_EXTENDED in that RE_CONTEXT_INVALID_OPS | ||
194 | replaces RE_CONTEXT_INDEP_OPS and RE_NO_BK_REFS is added. */ | ||
195 | #define RE_SYNTAX_POSIX_MINIMAL_EXTENDED \ | ||
196 | (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \ | ||
197 | | RE_CONTEXT_INVALID_OPS | RE_NO_BK_BRACES \ | ||
198 | | RE_NO_BK_PARENS | RE_NO_BK_REFS \ | ||
199 | | RE_NO_BK_VBAR | RE_UNMATCHED_RIGHT_PAREN_ORD) | ||
200 | /* [[[end syntaxes]]] */ | ||
201 | |||
202 | /* Maximum number of duplicates an interval can allow. Some systems | ||
203 | (erroneously) define this in other header files, but we want our | ||
204 | value, so remove any previous define. */ | ||
205 | #ifdef RE_DUP_MAX | ||
206 | #undef RE_DUP_MAX | ||
207 | #endif | ||
208 | #define RE_DUP_MAX ((1 << 15) - 1) | ||
209 | |||
210 | |||
211 | /* POSIX `cflags' bits (i.e., information for `regcomp'). */ | ||
212 | |||
213 | /* If this bit is set, then use extended regular expression syntax. | ||
214 | If not set, then use basic regular expression syntax. */ | ||
215 | #define REG_EXTENDED 1 | ||
216 | |||
217 | /* If this bit is set, then ignore case when matching. | ||
218 | If not set, then case is significant. */ | ||
219 | #define REG_ICASE (REG_EXTENDED << 1) | ||
220 | |||
221 | /* If this bit is set, then anchors do not match at newline | ||
222 | characters in the string. | ||
223 | If not set, then anchors do match at newlines. */ | ||
224 | #define REG_NEWLINE (REG_ICASE << 1) | ||
225 | |||
226 | /* If this bit is set, then report only success or fail in regexec. | ||
227 | If not set, then returns differ between not matching and errors. */ | ||
228 | #define REG_NOSUB (REG_NEWLINE << 1) | ||
229 | |||
230 | |||
231 | /* POSIX `eflags' bits (i.e., information for regexec). */ | ||
232 | |||
233 | /* If this bit is set, then the beginning-of-line operator doesn't match | ||
234 | the beginning of the string (presumably because it's not the | ||
235 | beginning of a line). | ||
236 | If not set, then the beginning-of-line operator does match the | ||
237 | beginning of the string. */ | ||
238 | #define REG_NOTBOL 1 | ||
239 | |||
240 | /* Like REG_NOTBOL, except for the end-of-line. */ | ||
241 | #define REG_NOTEOL (1 << 1) | ||
242 | |||
243 | |||
244 | /* If any error codes are removed, changed, or added, update the | ||
245 | `re_error_msg' table in regex.c. */ | ||
246 | typedef enum | ||
247 | { | ||
248 | REG_NOERROR = 0, /* Success. */ | ||
249 | REG_NOMATCH, /* Didn't find a match (for regexec). */ | ||
250 | |||
251 | /* POSIX regcomp return error codes. (In the order listed in the | ||
252 | standard.) */ | ||
253 | REG_BADPAT, /* Invalid pattern. */ | ||
254 | REG_ECOLLATE, /* Not implemented. */ | ||
255 | REG_ECTYPE, /* Invalid character class name. */ | ||
256 | REG_EESCAPE, /* Trailing backslash. */ | ||
257 | REG_ESUBREG, /* Invalid back reference. */ | ||
258 | REG_EBRACK, /* Unmatched left bracket. */ | ||
259 | REG_EPAREN, /* Parenthesis imbalance. */ | ||
260 | REG_EBRACE, /* Unmatched \{. */ | ||
261 | REG_BADBR, /* Invalid contents of \{\}. */ | ||
262 | REG_ERANGE, /* Invalid range end. */ | ||
263 | REG_ESPACE, /* Ran out of memory. */ | ||
264 | REG_BADRPT, /* No preceding re for repetition op. */ | ||
265 | |||
266 | /* Error codes we've added. */ | ||
267 | REG_EEND, /* Premature end. */ | ||
268 | REG_ESIZE, /* Compiled pattern bigger than 2^16 bytes. */ | ||
269 | REG_ERPAREN /* Unmatched ) or \); not returned from regcomp. */ | ||
270 | } reg_errcode_t; | ||
271 | |||
272 | /* This data structure represents a compiled pattern. Before calling | ||
273 | the pattern compiler, the fields `buffer', `allocated', `fastmap', | ||
274 | `translate', and `no_sub' can be set. After the pattern has been | ||
275 | compiled, the `re_nsub' field is available. All other fields are | ||
276 | private to the regex routines. */ | ||
277 | |||
278 | struct re_pattern_buffer | ||
279 | { | ||
280 | /* [[[begin pattern_buffer]]] */ | ||
281 | /* Space that holds the compiled pattern. It is declared as | ||
282 | `unsigned char *' because its elements are | ||
283 | sometimes used as array indexes. */ | ||
284 | unsigned char *buffer; | ||
285 | |||
286 | /* Number of bytes to which `buffer' points. */ | ||
287 | unsigned long allocated; | ||
288 | |||
289 | /* Number of bytes actually used in `buffer'. */ | ||
290 | unsigned long used; | ||
291 | |||
292 | /* Syntax setting with which the pattern was compiled. */ | ||
293 | reg_syntax_t syntax; | ||
294 | |||
295 | /* Pointer to a fastmap, if any, otherwise zero. re_search uses | ||
296 | the fastmap, if there is one, to skip over impossible | ||
297 | starting points for matches. */ | ||
298 | char *fastmap; | ||
299 | |||
300 | /* Either a translate table to apply to all characters before | ||
301 | comparing them, or zero for no translation. The translation | ||
302 | is applied to a pattern when it is compiled and to a string | ||
303 | when it is matched. */ | ||
304 | char *translate; | ||
305 | |||
306 | /* Number of subexpressions found by the compiler. */ | ||
307 | size_t re_nsub; | ||
308 | |||
309 | /* Zero if this pattern cannot match the empty string, one else. | ||
310 | Well, in truth it's used only in `re_search_2', to see | ||
311 | whether or not we should use the fastmap, so we don't set | ||
312 | this absolutely perfectly; see `re_compile_fastmap' (the | ||
313 | `duplicate' case). */ | ||
314 | unsigned can_be_null : 1; | ||
315 | |||
316 | /* If REGS_UNALLOCATED, allocate space in the `regs' structure | ||
317 | for `max (RE_NREGS, re_nsub + 1)' groups. | ||
318 | If REGS_REALLOCATE, reallocate space if necessary. | ||
319 | If REGS_FIXED, use what's there. */ | ||
320 | #define REGS_UNALLOCATED 0 | ||
321 | #define REGS_REALLOCATE 1 | ||
322 | #define REGS_FIXED 2 | ||
323 | unsigned regs_allocated : 2; | ||
324 | |||
325 | /* Set to zero when `regex_compile' compiles a pattern; set to one | ||
326 | by `re_compile_fastmap' if it updates the fastmap. */ | ||
327 | unsigned fastmap_accurate : 1; | ||
328 | |||
329 | /* If set, `re_match_2' does not return information about | ||
330 | subexpressions. */ | ||
331 | unsigned no_sub : 1; | ||
332 | |||
333 | /* If set, a beginning-of-line anchor doesn't match at the | ||
334 | beginning of the string. */ | ||
335 | unsigned not_bol : 1; | ||
336 | |||
337 | /* Similarly for an end-of-line anchor. */ | ||
338 | unsigned not_eol : 1; | ||
339 | |||
340 | /* If true, an anchor at a newline matches. */ | ||
341 | unsigned newline_anchor : 1; | ||
342 | |||
343 | /* [[[end pattern_buffer]]] */ | ||
344 | }; | ||
345 | |||
346 | typedef struct re_pattern_buffer regex_t; | ||
347 | |||
348 | |||
349 | /* search.c (search_buffer) in Emacs needs this one opcode value. It is | ||
350 | defined both in `regex.c' and here. */ | ||
351 | #define RE_EXACTN_VALUE 1 | ||
352 | |||
353 | /* Type for byte offsets within the string. POSIX mandates this. */ | ||
354 | typedef int regoff_t; | ||
355 | |||
356 | |||
357 | /* This is the structure we store register match data in. See | ||
358 | regex.texinfo for a full description of what registers match. */ | ||
359 | struct re_registers | ||
360 | { | ||
361 | unsigned num_regs; | ||
362 | regoff_t *start; | ||
363 | regoff_t *end; | ||
364 | }; | ||
365 | |||
366 | |||
367 | /* If `regs_allocated' is REGS_UNALLOCATED in the pattern buffer, | ||
368 | `re_match_2' returns information about at least this many registers | ||
369 | the first time a `regs' structure is passed. */ | ||
370 | #ifndef RE_NREGS | ||
371 | #define RE_NREGS 30 | ||
372 | #endif | ||
373 | |||
374 | |||
375 | /* POSIX specification for registers. Aside from the different names than | ||
376 | `re_registers', POSIX uses an array of structures, instead of a | ||
377 | structure of arrays. */ | ||
378 | typedef struct | ||
379 | { | ||
380 | regoff_t rm_so; /* Byte offset from string's start to substring's start. */ | ||
381 | regoff_t rm_eo; /* Byte offset from string's start to substring's end. */ | ||
382 | } regmatch_t; | ||
383 | |||
384 | /* Declarations for routines. */ | ||
385 | |||
386 | /* To avoid duplicating every routine declaration -- once with a | ||
387 | prototype (if we are ANSI), and once without (if we aren't) -- we | ||
388 | use the following macro to declare argument types. This | ||
389 | unfortunately clutters up the declarations a bit, but I think it's | ||
390 | worth it. */ | ||
391 | |||
392 | #if __STDC__ | ||
393 | |||
394 | #define _RE_ARGS(args) args | ||
395 | |||
396 | #else /* not __STDC__ */ | ||
397 | |||
398 | #define _RE_ARGS(args) () | ||
399 | |||
400 | #endif /* not __STDC__ */ | ||
401 | |||
402 | /* Sets the current default syntax to SYNTAX, and return the old syntax. | ||
403 | You can also simply assign to the `re_syntax_options' variable. */ | ||
404 | extern reg_syntax_t re_set_syntax _RE_ARGS ((reg_syntax_t syntax)); | ||
405 | |||
406 | /* Compile the regular expression PATTERN, with length LENGTH | ||
407 | and syntax given by the global `re_syntax_options', into the buffer | ||
408 | BUFFER. Return NULL if successful, and an error string if not. */ | ||
409 | extern const char *re_compile_pattern | ||
410 | _RE_ARGS ((const char *pattern, int length, | ||
411 | struct re_pattern_buffer *buffer)); | ||
412 | |||
413 | |||
414 | /* Compile a fastmap for the compiled pattern in BUFFER; used to | ||
415 | accelerate searches. Return 0 if successful and -2 if was an | ||
416 | internal error. */ | ||
417 | extern int re_compile_fastmap _RE_ARGS ((struct re_pattern_buffer *buffer)); | ||
418 | |||
419 | |||
420 | /* Search in the string STRING (with length LENGTH) for the pattern | ||
421 | compiled into BUFFER. Start searching at position START, for RANGE | ||
422 | characters. Return the starting position of the match, -1 for no | ||
423 | match, or -2 for an internal error. Also return register | ||
424 | information in REGS (if REGS and BUFFER->no_sub are nonzero). */ | ||
425 | extern int re_search | ||
426 | _RE_ARGS ((struct re_pattern_buffer *buffer, const char *string, | ||
427 | int length, int start, int range, struct re_registers *regs)); | ||
428 | |||
429 | |||
430 | /* Like `re_search', but search in the concatenation of STRING1 and | ||
431 | STRING2. Also, stop searching at index START + STOP. */ | ||
432 | extern int re_search_2 | ||
433 | _RE_ARGS ((struct re_pattern_buffer *buffer, const char *string1, | ||
434 | int length1, const char *string2, int length2, | ||
435 | int start, int range, struct re_registers *regs, int stop)); | ||
436 | |||
437 | |||
438 | /* Like `re_search', but return how many characters in STRING the regexp | ||
439 | in BUFFER matched, starting at position START. */ | ||
440 | extern int re_match | ||
441 | _RE_ARGS ((struct re_pattern_buffer *buffer, const char *string, | ||
442 | int length, int start, struct re_registers *regs)); | ||
443 | |||
444 | |||
445 | /* Relates to `re_match' as `re_search_2' relates to `re_search'. */ | ||
446 | extern int re_match_2 | ||
447 | _RE_ARGS ((struct re_pattern_buffer *buffer, const char *string1, | ||
448 | int length1, const char *string2, int length2, | ||
449 | int start, struct re_registers *regs, int stop)); | ||
450 | |||
451 | |||
452 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | ||
453 | ENDS. Subsequent matches using BUFFER and REGS will use this memory | ||
454 | for recording register information. STARTS and ENDS must be | ||
455 | allocated with malloc, and must each be at least `NUM_REGS * sizeof | ||
456 | (regoff_t)' bytes long. | ||
457 | |||
458 | If NUM_REGS == 0, then subsequent matches should allocate their own | ||
459 | register data. | ||
460 | |||
461 | Unless this function is called, the first search or match using | ||
462 | PATTERN_BUFFER will allocate its own register data, without | ||
463 | freeing the old data. */ | ||
464 | extern void re_set_registers | ||
465 | _RE_ARGS ((struct re_pattern_buffer *buffer, struct re_registers *regs, | ||
466 | unsigned num_regs, regoff_t *starts, regoff_t *ends)); | ||
467 | |||
468 | /* 4.2 bsd compatibility. */ | ||
469 | extern char *re_comp _RE_ARGS ((const char *)); | ||
470 | extern int re_exec _RE_ARGS ((const char *)); | ||
471 | |||
472 | /* POSIX compatibility. */ | ||
473 | extern int regcomp _RE_ARGS ((regex_t *preg, const char *pattern, int cflags)); | ||
474 | extern int regexec | ||
475 | _RE_ARGS ((const regex_t *preg, const char *string, size_t nmatch, | ||
476 | regmatch_t pmatch[], int eflags)); | ||
477 | extern size_t regerror | ||
478 | _RE_ARGS ((int errcode, const regex_t *preg, char *errbuf, | ||
479 | size_t errbuf_size)); | ||
480 | extern void regfree _RE_ARGS ((regex_t *preg)); | ||
481 | |||
482 | #endif /* not __REGEXP_LIBRARY_H__ */ | ||
483 | |||
484 | /* | ||
485 | Local variables: | ||
486 | make-backup-files: t | ||
487 | version-control: t | ||
488 | trim-versions-without-asking: nil | ||
489 | End: | ||
490 | */ | ||