diff options
author | Johannes Schindelin <johannes.schindelin@gmx.de> | 2017-06-28 11:29:20 +0200 |
---|---|---|
committer | Johannes Schindelin <johannes.schindelin@gmx.de> | 2017-07-14 22:57:49 +0200 |
commit | dacee10ce244e3da9f2d1f0f43a3224ab9e5d26b (patch) | |
tree | 1a57e6afd73fae8732b05641a6235593385a7464 | |
parent | 8b66b26302cb1d5422605bd247f7df53e0d2bb26 (diff) | |
download | busybox-w32-dacee10ce244e3da9f2d1f0f43a3224ab9e5d26b.tar.gz busybox-w32-dacee10ce244e3da9f2d1f0f43a3224ab9e5d26b.tar.bz2 busybox-w32-dacee10ce244e3da9f2d1f0f43a3224ab9e5d26b.zip |
win32/regex: update to newest version in Git
In 909696f13 (win32: Import regex source, 2010-04-14), Git's
compat/regex/ was imported wholesale, with one change (to avoid
redefining _GNU_SOURCE).
For the record, the git.git commit mentioned in that commit message
refers to a transient commit made to git.git's `next` branch which is
rewound with every major Git version, therefore it is long gone. Also
for the record, the correct reference would be: 3632cfc2487 (Use
compatibility regex library for OSX/Darwin, 2008-09-07), i.e. the
compat/regex/ source code as of Git v1.6.0.2.
This commit updates the regex source code to that of Git v2.13.2, or
bd8f0055836 (regex: fix a SIZE_MAX macro redefinition warning,
2016-06-07) in git.git.
Instead of the original fixup to avoid redefining _GNU_SOURCE, we now
require these changes relative to Git's source code:
> diff --git a/win32/regex.c b/win32/regex.c
> index 5cb23e5d5..95e5d757a 100644
> --- a/win32/regex.c
> +++ b/win32/regex.c
> @@ -18,9 +18,11 @@
> Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
> 02110-1301 USA. */
>
> -#ifdef HAVE_CONFIG_H
> -#include "config.h"
> -#endif
> +#define HAVE_LIBINTL_H 0
> +#define ENABLE_NLS 0
> +#define HAVE_ALLOCA 0
> +#define NO_MBSUPPORT 1
> +#define GAWK 1
>
> /* Make sure no one compiles this code with a C++ compiler. */
> #ifdef __cplusplus
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
-rw-r--r-- | win32/regcomp.c | 3884 | ||||
-rw-r--r-- | win32/regex.c | 5009 | ||||
-rw-r--r-- | win32/regex.h | 462 | ||||
-rw-r--r-- | win32/regex_internal.c | 1744 | ||||
-rw-r--r-- | win32/regex_internal.h | 810 | ||||
-rw-r--r-- | win32/regexec.c | 4369 |
6 files changed, 11169 insertions, 5109 deletions
diff --git a/win32/regcomp.c b/win32/regcomp.c new file mode 100644 index 000000000..d8bde06f1 --- /dev/null +++ b/win32/regcomp.c | |||
@@ -0,0 +1,3884 @@ | |||
1 | /* Extended regular expression matching and search library. | ||
2 | Copyright (C) 2002-2007,2009,2010 Free Software Foundation, Inc. | ||
3 | This file is part of the GNU C Library. | ||
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | ||
5 | |||
6 | The GNU C Library is free software; you can redistribute it and/or | ||
7 | modify it under the terms of the GNU Lesser General Public | ||
8 | License as published by the Free Software Foundation; either | ||
9 | version 2.1 of the License, or (at your option) any later version. | ||
10 | |||
11 | The GNU C Library is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
14 | Lesser General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU Lesser General Public | ||
17 | License along with the GNU C Library; if not, write to the Free | ||
18 | Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | ||
19 | 02110-1301 USA. */ | ||
20 | |||
21 | static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern, | ||
22 | size_t length, reg_syntax_t syntax); | ||
23 | static void re_compile_fastmap_iter (regex_t *bufp, | ||
24 | const re_dfastate_t *init_state, | ||
25 | char *fastmap); | ||
26 | static reg_errcode_t init_dfa (re_dfa_t *dfa, size_t pat_len); | ||
27 | #ifdef RE_ENABLE_I18N | ||
28 | static void free_charset (re_charset_t *cset); | ||
29 | #endif /* RE_ENABLE_I18N */ | ||
30 | static void free_workarea_compile (regex_t *preg); | ||
31 | static reg_errcode_t create_initial_state (re_dfa_t *dfa); | ||
32 | #ifdef RE_ENABLE_I18N | ||
33 | static void optimize_utf8 (re_dfa_t *dfa); | ||
34 | #endif | ||
35 | static reg_errcode_t analyze (regex_t *preg); | ||
36 | static reg_errcode_t preorder (bin_tree_t *root, | ||
37 | reg_errcode_t (fn (void *, bin_tree_t *)), | ||
38 | void *extra); | ||
39 | static reg_errcode_t postorder (bin_tree_t *root, | ||
40 | reg_errcode_t (fn (void *, bin_tree_t *)), | ||
41 | void *extra); | ||
42 | static reg_errcode_t optimize_subexps (void *extra, bin_tree_t *node); | ||
43 | static reg_errcode_t lower_subexps (void *extra, bin_tree_t *node); | ||
44 | static bin_tree_t *lower_subexp (reg_errcode_t *err, regex_t *preg, | ||
45 | bin_tree_t *node); | ||
46 | static reg_errcode_t calc_first (void *extra, bin_tree_t *node); | ||
47 | static reg_errcode_t calc_next (void *extra, bin_tree_t *node); | ||
48 | static reg_errcode_t link_nfa_nodes (void *extra, bin_tree_t *node); | ||
49 | static int duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint); | ||
50 | static int search_duplicated_node (const re_dfa_t *dfa, int org_node, | ||
51 | unsigned int constraint); | ||
52 | static reg_errcode_t calc_eclosure (re_dfa_t *dfa); | ||
53 | static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, | ||
54 | int node, int root); | ||
55 | static reg_errcode_t calc_inveclosure (re_dfa_t *dfa); | ||
56 | static int fetch_number (re_string_t *input, re_token_t *token, | ||
57 | reg_syntax_t syntax); | ||
58 | static int peek_token (re_token_t *token, re_string_t *input, | ||
59 | reg_syntax_t syntax) internal_function; | ||
60 | static bin_tree_t *parse (re_string_t *regexp, regex_t *preg, | ||
61 | reg_syntax_t syntax, reg_errcode_t *err); | ||
62 | static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg, | ||
63 | re_token_t *token, reg_syntax_t syntax, | ||
64 | int nest, reg_errcode_t *err); | ||
65 | static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg, | ||
66 | re_token_t *token, reg_syntax_t syntax, | ||
67 | int nest, reg_errcode_t *err); | ||
68 | static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg, | ||
69 | re_token_t *token, reg_syntax_t syntax, | ||
70 | int nest, reg_errcode_t *err); | ||
71 | static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg, | ||
72 | re_token_t *token, reg_syntax_t syntax, | ||
73 | int nest, reg_errcode_t *err); | ||
74 | static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp, | ||
75 | re_dfa_t *dfa, re_token_t *token, | ||
76 | reg_syntax_t syntax, reg_errcode_t *err); | ||
77 | static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, | ||
78 | re_token_t *token, reg_syntax_t syntax, | ||
79 | reg_errcode_t *err); | ||
80 | static reg_errcode_t parse_bracket_element (bracket_elem_t *elem, | ||
81 | re_string_t *regexp, | ||
82 | re_token_t *token, int token_len, | ||
83 | re_dfa_t *dfa, | ||
84 | reg_syntax_t syntax, | ||
85 | int accept_hyphen); | ||
86 | static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem, | ||
87 | re_string_t *regexp, | ||
88 | re_token_t *token); | ||
89 | #ifdef RE_ENABLE_I18N | ||
90 | static reg_errcode_t build_equiv_class (bitset_t sbcset, | ||
91 | re_charset_t *mbcset, | ||
92 | int *equiv_class_alloc, | ||
93 | const unsigned char *name); | ||
94 | static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans, | ||
95 | bitset_t sbcset, | ||
96 | re_charset_t *mbcset, | ||
97 | int *char_class_alloc, | ||
98 | const char *class_name, | ||
99 | reg_syntax_t syntax); | ||
100 | #else /* not RE_ENABLE_I18N */ | ||
101 | static reg_errcode_t build_equiv_class (bitset_t sbcset, | ||
102 | const unsigned char *name); | ||
103 | static reg_errcode_t build_charclass (RE_TRANSLATE_TYPE trans, | ||
104 | bitset_t sbcset, | ||
105 | const char *class_name, | ||
106 | reg_syntax_t syntax); | ||
107 | #endif /* not RE_ENABLE_I18N */ | ||
108 | static bin_tree_t *build_charclass_op (re_dfa_t *dfa, | ||
109 | RE_TRANSLATE_TYPE trans, | ||
110 | const char *class_name, | ||
111 | const char *extra, | ||
112 | int non_match, reg_errcode_t *err); | ||
113 | static bin_tree_t *create_tree (re_dfa_t *dfa, | ||
114 | bin_tree_t *left, bin_tree_t *right, | ||
115 | re_token_type_t type); | ||
116 | static bin_tree_t *create_token_tree (re_dfa_t *dfa, | ||
117 | bin_tree_t *left, bin_tree_t *right, | ||
118 | const re_token_t *token); | ||
119 | static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa); | ||
120 | static void free_token (re_token_t *node); | ||
121 | static reg_errcode_t free_tree (void *extra, bin_tree_t *node); | ||
122 | static reg_errcode_t mark_opt_subexp (void *extra, bin_tree_t *node); | ||
123 | |||
124 | /* This table gives an error message for each of the error codes listed | ||
125 | in regex.h. Obviously the order here has to be same as there. | ||
126 | POSIX doesn't require that we do anything for REG_NOERROR, | ||
127 | but why not be nice? */ | ||
128 | |||
129 | const char __re_error_msgid[] attribute_hidden = | ||
130 | { | ||
131 | #define REG_NOERROR_IDX 0 | ||
132 | gettext_noop ("Success") /* REG_NOERROR */ | ||
133 | "\0" | ||
134 | #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success") | ||
135 | gettext_noop ("No match") /* REG_NOMATCH */ | ||
136 | "\0" | ||
137 | #define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match") | ||
138 | gettext_noop ("Invalid regular expression") /* REG_BADPAT */ | ||
139 | "\0" | ||
140 | #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression") | ||
141 | gettext_noop ("Invalid collation character") /* REG_ECOLLATE */ | ||
142 | "\0" | ||
143 | #define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character") | ||
144 | gettext_noop ("Invalid character class name") /* REG_ECTYPE */ | ||
145 | "\0" | ||
146 | #define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name") | ||
147 | gettext_noop ("Trailing backslash") /* REG_EESCAPE */ | ||
148 | "\0" | ||
149 | #define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash") | ||
150 | gettext_noop ("Invalid back reference") /* REG_ESUBREG */ | ||
151 | "\0" | ||
152 | #define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference") | ||
153 | gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */ | ||
154 | "\0" | ||
155 | #define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^") | ||
156 | gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */ | ||
157 | "\0" | ||
158 | #define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(") | ||
159 | gettext_noop ("Unmatched \\{") /* REG_EBRACE */ | ||
160 | "\0" | ||
161 | #define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{") | ||
162 | gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */ | ||
163 | "\0" | ||
164 | #define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}") | ||
165 | gettext_noop ("Invalid range end") /* REG_ERANGE */ | ||
166 | "\0" | ||
167 | #define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end") | ||
168 | gettext_noop ("Memory exhausted") /* REG_ESPACE */ | ||
169 | "\0" | ||
170 | #define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted") | ||
171 | gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */ | ||
172 | "\0" | ||
173 | #define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression") | ||
174 | gettext_noop ("Premature end of regular expression") /* REG_EEND */ | ||
175 | "\0" | ||
176 | #define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression") | ||
177 | gettext_noop ("Regular expression too big") /* REG_ESIZE */ | ||
178 | "\0" | ||
179 | #define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big") | ||
180 | gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */ | ||
181 | }; | ||
182 | |||
183 | const size_t __re_error_msgid_idx[] attribute_hidden = | ||
184 | { | ||
185 | REG_NOERROR_IDX, | ||
186 | REG_NOMATCH_IDX, | ||
187 | REG_BADPAT_IDX, | ||
188 | REG_ECOLLATE_IDX, | ||
189 | REG_ECTYPE_IDX, | ||
190 | REG_EESCAPE_IDX, | ||
191 | REG_ESUBREG_IDX, | ||
192 | REG_EBRACK_IDX, | ||
193 | REG_EPAREN_IDX, | ||
194 | REG_EBRACE_IDX, | ||
195 | REG_BADBR_IDX, | ||
196 | REG_ERANGE_IDX, | ||
197 | REG_ESPACE_IDX, | ||
198 | REG_BADRPT_IDX, | ||
199 | REG_EEND_IDX, | ||
200 | REG_ESIZE_IDX, | ||
201 | REG_ERPAREN_IDX | ||
202 | }; | ||
203 | |||
204 | /* Entry points for GNU code. */ | ||
205 | |||
206 | |||
207 | #ifdef ZOS_USS | ||
208 | |||
209 | /* For ZOS USS we must define btowc */ | ||
210 | |||
211 | wchar_t | ||
212 | btowc (int c) | ||
213 | { | ||
214 | wchar_t wtmp[2]; | ||
215 | char tmp[2]; | ||
216 | |||
217 | tmp[0] = c; | ||
218 | tmp[1] = 0; | ||
219 | |||
220 | mbtowc (wtmp, tmp, 1); | ||
221 | return wtmp[0]; | ||
222 | } | ||
223 | #endif | ||
224 | |||
225 | /* re_compile_pattern is the GNU regular expression compiler: it | ||
226 | compiles PATTERN (of length LENGTH) and puts the result in BUFP. | ||
227 | Returns 0 if the pattern was valid, otherwise an error string. | ||
228 | |||
229 | Assumes the `allocated' (and perhaps `buffer') and `translate' fields | ||
230 | are set in BUFP on entry. */ | ||
231 | |||
232 | const char * | ||
233 | re_compile_pattern (const char *pattern, | ||
234 | size_t length, | ||
235 | struct re_pattern_buffer *bufp) | ||
236 | { | ||
237 | reg_errcode_t ret; | ||
238 | |||
239 | /* And GNU code determines whether or not to get register information | ||
240 | by passing null for the REGS argument to re_match, etc., not by | ||
241 | setting no_sub, unless RE_NO_SUB is set. */ | ||
242 | bufp->no_sub = !!(re_syntax_options & RE_NO_SUB); | ||
243 | |||
244 | /* Match anchors at newline. */ | ||
245 | bufp->newline_anchor = 1; | ||
246 | |||
247 | ret = re_compile_internal (bufp, pattern, length, re_syntax_options); | ||
248 | |||
249 | if (!ret) | ||
250 | return NULL; | ||
251 | return gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); | ||
252 | } | ||
253 | #ifdef _LIBC | ||
254 | weak_alias (__re_compile_pattern, re_compile_pattern) | ||
255 | #endif | ||
256 | |||
257 | /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can | ||
258 | also be assigned to arbitrarily: each pattern buffer stores its own | ||
259 | syntax, so it can be changed between regex compilations. */ | ||
260 | /* This has no initializer because initialized variables in Emacs | ||
261 | become read-only after dumping. */ | ||
262 | reg_syntax_t re_syntax_options; | ||
263 | |||
264 | |||
265 | /* Specify the precise syntax of regexps for compilation. This provides | ||
266 | for compatibility for various utilities which historically have | ||
267 | different, incompatible syntaxes. | ||
268 | |||
269 | The argument SYNTAX is a bit mask comprised of the various bits | ||
270 | defined in regex.h. We return the old syntax. */ | ||
271 | |||
272 | reg_syntax_t | ||
273 | re_set_syntax (reg_syntax_t syntax) | ||
274 | { | ||
275 | reg_syntax_t ret = re_syntax_options; | ||
276 | |||
277 | re_syntax_options = syntax; | ||
278 | return ret; | ||
279 | } | ||
280 | #ifdef _LIBC | ||
281 | weak_alias (__re_set_syntax, re_set_syntax) | ||
282 | #endif | ||
283 | |||
284 | int | ||
285 | re_compile_fastmap (struct re_pattern_buffer *bufp) | ||
286 | { | ||
287 | re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; | ||
288 | char *fastmap = bufp->fastmap; | ||
289 | |||
290 | memset (fastmap, '\0', sizeof (char) * SBC_MAX); | ||
291 | re_compile_fastmap_iter (bufp, dfa->init_state, fastmap); | ||
292 | if (dfa->init_state != dfa->init_state_word) | ||
293 | re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap); | ||
294 | if (dfa->init_state != dfa->init_state_nl) | ||
295 | re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap); | ||
296 | if (dfa->init_state != dfa->init_state_begbuf) | ||
297 | re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap); | ||
298 | bufp->fastmap_accurate = 1; | ||
299 | return 0; | ||
300 | } | ||
301 | #ifdef _LIBC | ||
302 | weak_alias (__re_compile_fastmap, re_compile_fastmap) | ||
303 | #endif | ||
304 | |||
305 | static inline void | ||
306 | __attribute ((always_inline)) | ||
307 | re_set_fastmap (char *fastmap, int icase, int ch) | ||
308 | { | ||
309 | fastmap[ch] = 1; | ||
310 | if (icase) | ||
311 | fastmap[tolower (ch)] = 1; | ||
312 | } | ||
313 | |||
314 | /* Helper function for re_compile_fastmap. | ||
315 | Compile fastmap for the initial_state INIT_STATE. */ | ||
316 | |||
317 | static void | ||
318 | re_compile_fastmap_iter (regex_t *bufp, const re_dfastate_t *init_state, | ||
319 | char *fastmap) | ||
320 | { | ||
321 | volatile re_dfa_t *dfa = (re_dfa_t *) bufp->buffer; | ||
322 | int node_cnt; | ||
323 | int icase = (dfa->mb_cur_max == 1 && (bufp->syntax & RE_ICASE)); | ||
324 | for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt) | ||
325 | { | ||
326 | int node = init_state->nodes.elems[node_cnt]; | ||
327 | re_token_type_t type = dfa->nodes[node].type; | ||
328 | |||
329 | if (type == CHARACTER) | ||
330 | { | ||
331 | re_set_fastmap (fastmap, icase, dfa->nodes[node].opr.c); | ||
332 | #ifdef RE_ENABLE_I18N | ||
333 | if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1) | ||
334 | { | ||
335 | unsigned char *buf = re_malloc (unsigned char, dfa->mb_cur_max), *p; | ||
336 | wchar_t wc; | ||
337 | mbstate_t state; | ||
338 | |||
339 | p = buf; | ||
340 | *p++ = dfa->nodes[node].opr.c; | ||
341 | while (++node < dfa->nodes_len | ||
342 | && dfa->nodes[node].type == CHARACTER | ||
343 | && dfa->nodes[node].mb_partial) | ||
344 | *p++ = dfa->nodes[node].opr.c; | ||
345 | memset (&state, '\0', sizeof (state)); | ||
346 | if (__mbrtowc (&wc, (const char *) buf, p - buf, | ||
347 | &state) == p - buf | ||
348 | && (__wcrtomb ((char *) buf, towlower (wc), &state) | ||
349 | != (size_t) -1)) | ||
350 | re_set_fastmap (fastmap, 0, buf[0]); | ||
351 | re_free (buf); | ||
352 | } | ||
353 | #endif | ||
354 | } | ||
355 | else if (type == SIMPLE_BRACKET) | ||
356 | { | ||
357 | int i, ch; | ||
358 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | ||
359 | { | ||
360 | int j; | ||
361 | bitset_word_t w = dfa->nodes[node].opr.sbcset[i]; | ||
362 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | ||
363 | if (w & ((bitset_word_t) 1 << j)) | ||
364 | re_set_fastmap (fastmap, icase, ch); | ||
365 | } | ||
366 | } | ||
367 | #ifdef RE_ENABLE_I18N | ||
368 | else if (type == COMPLEX_BRACKET) | ||
369 | { | ||
370 | re_charset_t *cset = dfa->nodes[node].opr.mbcset; | ||
371 | int i; | ||
372 | |||
373 | # ifdef _LIBC | ||
374 | /* See if we have to try all bytes which start multiple collation | ||
375 | elements. | ||
376 | e.g. In da_DK, we want to catch 'a' since "aa" is a valid | ||
377 | collation element, and don't catch 'b' since 'b' is | ||
378 | the only collation element which starts from 'b' (and | ||
379 | it is caught by SIMPLE_BRACKET). */ | ||
380 | if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0 | ||
381 | && (cset->ncoll_syms || cset->nranges)) | ||
382 | { | ||
383 | const int32_t *table = (const int32_t *) | ||
384 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | ||
385 | for (i = 0; i < SBC_MAX; ++i) | ||
386 | if (table[i] < 0) | ||
387 | re_set_fastmap (fastmap, icase, i); | ||
388 | } | ||
389 | # endif /* _LIBC */ | ||
390 | |||
391 | /* See if we have to start the match at all multibyte characters, | ||
392 | i.e. where we would not find an invalid sequence. This only | ||
393 | applies to multibyte character sets; for single byte character | ||
394 | sets, the SIMPLE_BRACKET again suffices. */ | ||
395 | if (dfa->mb_cur_max > 1 | ||
396 | && (cset->nchar_classes || cset->non_match || cset->nranges | ||
397 | # ifdef _LIBC | ||
398 | || cset->nequiv_classes | ||
399 | # endif /* _LIBC */ | ||
400 | )) | ||
401 | { | ||
402 | unsigned char c = 0; | ||
403 | do | ||
404 | { | ||
405 | mbstate_t mbs; | ||
406 | memset (&mbs, 0, sizeof (mbs)); | ||
407 | if (__mbrtowc (NULL, (char *) &c, 1, &mbs) == (size_t) -2) | ||
408 | re_set_fastmap (fastmap, false, (int) c); | ||
409 | } | ||
410 | while (++c != 0); | ||
411 | } | ||
412 | |||
413 | else | ||
414 | { | ||
415 | /* ... Else catch all bytes which can start the mbchars. */ | ||
416 | for (i = 0; i < cset->nmbchars; ++i) | ||
417 | { | ||
418 | char buf[256]; | ||
419 | mbstate_t state; | ||
420 | memset (&state, '\0', sizeof (state)); | ||
421 | if (__wcrtomb (buf, cset->mbchars[i], &state) != (size_t) -1) | ||
422 | re_set_fastmap (fastmap, icase, *(unsigned char *) buf); | ||
423 | if ((bufp->syntax & RE_ICASE) && dfa->mb_cur_max > 1) | ||
424 | { | ||
425 | if (__wcrtomb (buf, towlower (cset->mbchars[i]), &state) | ||
426 | != (size_t) -1) | ||
427 | re_set_fastmap (fastmap, false, *(unsigned char *) buf); | ||
428 | } | ||
429 | } | ||
430 | } | ||
431 | } | ||
432 | #endif /* RE_ENABLE_I18N */ | ||
433 | else if (type == OP_PERIOD | ||
434 | #ifdef RE_ENABLE_I18N | ||
435 | || type == OP_UTF8_PERIOD | ||
436 | #endif /* RE_ENABLE_I18N */ | ||
437 | || type == END_OF_RE) | ||
438 | { | ||
439 | memset (fastmap, '\1', sizeof (char) * SBC_MAX); | ||
440 | if (type == END_OF_RE) | ||
441 | bufp->can_be_null = 1; | ||
442 | return; | ||
443 | } | ||
444 | } | ||
445 | } | ||
446 | |||
447 | /* Entry point for POSIX code. */ | ||
448 | /* regcomp takes a regular expression as a string and compiles it. | ||
449 | |||
450 | PREG is a regex_t *. We do not expect any fields to be initialized, | ||
451 | since POSIX says we shouldn't. Thus, we set | ||
452 | |||
453 | `buffer' to the compiled pattern; | ||
454 | `used' to the length of the compiled pattern; | ||
455 | `syntax' to RE_SYNTAX_POSIX_EXTENDED if the | ||
456 | REG_EXTENDED bit in CFLAGS is set; otherwise, to | ||
457 | RE_SYNTAX_POSIX_BASIC; | ||
458 | `newline_anchor' to REG_NEWLINE being set in CFLAGS; | ||
459 | `fastmap' to an allocated space for the fastmap; | ||
460 | `fastmap_accurate' to zero; | ||
461 | `re_nsub' to the number of subexpressions in PATTERN. | ||
462 | |||
463 | PATTERN is the address of the pattern string. | ||
464 | |||
465 | CFLAGS is a series of bits which affect compilation. | ||
466 | |||
467 | If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we | ||
468 | use POSIX basic syntax. | ||
469 | |||
470 | If REG_NEWLINE is set, then . and [^...] don't match newline. | ||
471 | Also, regexec will try a match beginning after every newline. | ||
472 | |||
473 | If REG_ICASE is set, then we considers upper- and lowercase | ||
474 | versions of letters to be equivalent when matching. | ||
475 | |||
476 | If REG_NOSUB is set, then when PREG is passed to regexec, that | ||
477 | routine will report only success or failure, and nothing about the | ||
478 | registers. | ||
479 | |||
480 | It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for | ||
481 | the return codes and their meanings.) */ | ||
482 | |||
483 | int | ||
484 | regcomp (regex_t *__restrict preg, | ||
485 | const char *__restrict pattern, | ||
486 | int cflags) | ||
487 | { | ||
488 | reg_errcode_t ret; | ||
489 | reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? RE_SYNTAX_POSIX_EXTENDED | ||
490 | : RE_SYNTAX_POSIX_BASIC); | ||
491 | |||
492 | preg->buffer = NULL; | ||
493 | preg->allocated = 0; | ||
494 | preg->used = 0; | ||
495 | |||
496 | /* Try to allocate space for the fastmap. */ | ||
497 | preg->fastmap = re_malloc (char, SBC_MAX); | ||
498 | if (BE (preg->fastmap == NULL, 0)) | ||
499 | return REG_ESPACE; | ||
500 | |||
501 | syntax |= (cflags & REG_ICASE) ? RE_ICASE : 0; | ||
502 | |||
503 | /* If REG_NEWLINE is set, newlines are treated differently. */ | ||
504 | if (cflags & REG_NEWLINE) | ||
505 | { /* REG_NEWLINE implies neither . nor [^...] match newline. */ | ||
506 | syntax &= ~RE_DOT_NEWLINE; | ||
507 | syntax |= RE_HAT_LISTS_NOT_NEWLINE; | ||
508 | /* It also changes the matching behavior. */ | ||
509 | preg->newline_anchor = 1; | ||
510 | } | ||
511 | else | ||
512 | preg->newline_anchor = 0; | ||
513 | preg->no_sub = !!(cflags & REG_NOSUB); | ||
514 | preg->translate = NULL; | ||
515 | |||
516 | ret = re_compile_internal (preg, pattern, strlen (pattern), syntax); | ||
517 | |||
518 | /* POSIX doesn't distinguish between an unmatched open-group and an | ||
519 | unmatched close-group: both are REG_EPAREN. */ | ||
520 | if (ret == REG_ERPAREN) | ||
521 | ret = REG_EPAREN; | ||
522 | |||
523 | /* We have already checked preg->fastmap != NULL. */ | ||
524 | if (BE (ret == REG_NOERROR, 1)) | ||
525 | /* Compute the fastmap now, since regexec cannot modify the pattern | ||
526 | buffer. This function never fails in this implementation. */ | ||
527 | (void) re_compile_fastmap (preg); | ||
528 | else | ||
529 | { | ||
530 | /* Some error occurred while compiling the expression. */ | ||
531 | re_free (preg->fastmap); | ||
532 | preg->fastmap = NULL; | ||
533 | } | ||
534 | |||
535 | return (int) ret; | ||
536 | } | ||
537 | #ifdef _LIBC | ||
538 | weak_alias (__regcomp, regcomp) | ||
539 | #endif | ||
540 | |||
541 | /* Returns a message corresponding to an error code, ERRCODE, returned | ||
542 | from either regcomp or regexec. We don't use PREG here. */ | ||
543 | |||
544 | size_t | ||
545 | regerror(int errcode, const regex_t *__restrict preg, | ||
546 | char *__restrict errbuf, size_t errbuf_size) | ||
547 | { | ||
548 | const char *msg; | ||
549 | size_t msg_size; | ||
550 | |||
551 | if (BE (errcode < 0 | ||
552 | || errcode >= (int) (sizeof (__re_error_msgid_idx) | ||
553 | / sizeof (__re_error_msgid_idx[0])), 0)) | ||
554 | /* Only error codes returned by the rest of the code should be passed | ||
555 | to this routine. If we are given anything else, or if other regex | ||
556 | code generates an invalid error code, then the program has a bug. | ||
557 | Dump core so we can fix it. */ | ||
558 | abort (); | ||
559 | |||
560 | msg = gettext (__re_error_msgid + __re_error_msgid_idx[errcode]); | ||
561 | |||
562 | msg_size = strlen (msg) + 1; /* Includes the null. */ | ||
563 | |||
564 | if (BE (errbuf_size != 0, 1)) | ||
565 | { | ||
566 | if (BE (msg_size > errbuf_size, 0)) | ||
567 | { | ||
568 | memcpy (errbuf, msg, errbuf_size - 1); | ||
569 | errbuf[errbuf_size - 1] = 0; | ||
570 | } | ||
571 | else | ||
572 | memcpy (errbuf, msg, msg_size); | ||
573 | } | ||
574 | |||
575 | return msg_size; | ||
576 | } | ||
577 | #ifdef _LIBC | ||
578 | weak_alias (__regerror, regerror) | ||
579 | #endif | ||
580 | |||
581 | |||
582 | #ifdef RE_ENABLE_I18N | ||
583 | /* This static array is used for the map to single-byte characters when | ||
584 | UTF-8 is used. Otherwise we would allocate memory just to initialize | ||
585 | it the same all the time. UTF-8 is the preferred encoding so this is | ||
586 | a worthwhile optimization. */ | ||
587 | #if __GNUC__ >= 3 | ||
588 | static const bitset_t utf8_sb_map = { | ||
589 | /* Set the first 128 bits. */ | ||
590 | [0 ... 0x80 / BITSET_WORD_BITS - 1] = BITSET_WORD_MAX | ||
591 | }; | ||
592 | #else /* ! (__GNUC__ >= 3) */ | ||
593 | static bitset_t utf8_sb_map; | ||
594 | #endif /* __GNUC__ >= 3 */ | ||
595 | #endif /* RE_ENABLE_I18N */ | ||
596 | |||
597 | |||
598 | static void | ||
599 | free_dfa_content (re_dfa_t *dfa) | ||
600 | { | ||
601 | int i, j; | ||
602 | |||
603 | if (dfa->nodes) | ||
604 | for (i = 0; i < dfa->nodes_len; ++i) | ||
605 | free_token (dfa->nodes + i); | ||
606 | re_free (dfa->nexts); | ||
607 | for (i = 0; i < dfa->nodes_len; ++i) | ||
608 | { | ||
609 | if (dfa->eclosures != NULL) | ||
610 | re_node_set_free (dfa->eclosures + i); | ||
611 | if (dfa->inveclosures != NULL) | ||
612 | re_node_set_free (dfa->inveclosures + i); | ||
613 | if (dfa->edests != NULL) | ||
614 | re_node_set_free (dfa->edests + i); | ||
615 | } | ||
616 | re_free (dfa->edests); | ||
617 | re_free (dfa->eclosures); | ||
618 | re_free (dfa->inveclosures); | ||
619 | re_free (dfa->nodes); | ||
620 | |||
621 | if (dfa->state_table) | ||
622 | for (i = 0; i <= dfa->state_hash_mask; ++i) | ||
623 | { | ||
624 | struct re_state_table_entry *entry = dfa->state_table + i; | ||
625 | for (j = 0; j < entry->num; ++j) | ||
626 | { | ||
627 | re_dfastate_t *state = entry->array[j]; | ||
628 | free_state (state); | ||
629 | } | ||
630 | re_free (entry->array); | ||
631 | } | ||
632 | re_free (dfa->state_table); | ||
633 | #ifdef RE_ENABLE_I18N | ||
634 | if (dfa->sb_char != utf8_sb_map) | ||
635 | re_free (dfa->sb_char); | ||
636 | #endif | ||
637 | re_free (dfa->subexp_map); | ||
638 | #ifdef DEBUG | ||
639 | re_free (dfa->re_str); | ||
640 | #endif | ||
641 | |||
642 | re_free (dfa); | ||
643 | } | ||
644 | |||
645 | |||
646 | /* Free dynamically allocated space used by PREG. */ | ||
647 | |||
648 | void | ||
649 | regfree (regex_t *preg) | ||
650 | { | ||
651 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
652 | if (BE (dfa != NULL, 1)) | ||
653 | free_dfa_content (dfa); | ||
654 | preg->buffer = NULL; | ||
655 | preg->allocated = 0; | ||
656 | |||
657 | re_free (preg->fastmap); | ||
658 | preg->fastmap = NULL; | ||
659 | |||
660 | re_free (preg->translate); | ||
661 | preg->translate = NULL; | ||
662 | } | ||
663 | #ifdef _LIBC | ||
664 | weak_alias (__regfree, regfree) | ||
665 | #endif | ||
666 | |||
667 | /* Entry points compatible with 4.2 BSD regex library. We don't define | ||
668 | them unless specifically requested. */ | ||
669 | |||
670 | #if defined _REGEX_RE_COMP || defined _LIBC | ||
671 | |||
672 | /* BSD has one and only one pattern buffer. */ | ||
673 | static struct re_pattern_buffer re_comp_buf; | ||
674 | |||
675 | char * | ||
676 | # ifdef _LIBC | ||
677 | /* Make these definitions weak in libc, so POSIX programs can redefine | ||
678 | these names if they don't use our functions, and still use | ||
679 | regcomp/regexec above without link errors. */ | ||
680 | weak_function | ||
681 | # endif | ||
682 | re_comp (s) | ||
683 | const char *s; | ||
684 | { | ||
685 | reg_errcode_t ret; | ||
686 | char *fastmap; | ||
687 | |||
688 | if (!s) | ||
689 | { | ||
690 | if (!re_comp_buf.buffer) | ||
691 | return gettext ("No previous regular expression"); | ||
692 | return 0; | ||
693 | } | ||
694 | |||
695 | if (re_comp_buf.buffer) | ||
696 | { | ||
697 | fastmap = re_comp_buf.fastmap; | ||
698 | re_comp_buf.fastmap = NULL; | ||
699 | __regfree (&re_comp_buf); | ||
700 | memset (&re_comp_buf, '\0', sizeof (re_comp_buf)); | ||
701 | re_comp_buf.fastmap = fastmap; | ||
702 | } | ||
703 | |||
704 | if (re_comp_buf.fastmap == NULL) | ||
705 | { | ||
706 | re_comp_buf.fastmap = (char *) malloc (SBC_MAX); | ||
707 | if (re_comp_buf.fastmap == NULL) | ||
708 | return (char *) gettext (__re_error_msgid | ||
709 | + __re_error_msgid_idx[(int) REG_ESPACE]); | ||
710 | } | ||
711 | |||
712 | /* Since `re_exec' always passes NULL for the `regs' argument, we | ||
713 | don't need to initialize the pattern buffer fields which affect it. */ | ||
714 | |||
715 | /* Match anchors at newlines. */ | ||
716 | re_comp_buf.newline_anchor = 1; | ||
717 | |||
718 | ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options); | ||
719 | |||
720 | if (!ret) | ||
721 | return NULL; | ||
722 | |||
723 | /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ | ||
724 | return (char *) gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); | ||
725 | } | ||
726 | |||
727 | #ifdef _LIBC | ||
728 | libc_freeres_fn (free_mem) | ||
729 | { | ||
730 | __regfree (&re_comp_buf); | ||
731 | } | ||
732 | #endif | ||
733 | |||
734 | #endif /* _REGEX_RE_COMP */ | ||
735 | |||
736 | /* Internal entry point. | ||
737 | Compile the regular expression PATTERN, whose length is LENGTH. | ||
738 | SYNTAX indicate regular expression's syntax. */ | ||
739 | |||
740 | static reg_errcode_t | ||
741 | re_compile_internal (regex_t *preg, const char * pattern, size_t length, | ||
742 | reg_syntax_t syntax) | ||
743 | { | ||
744 | reg_errcode_t err = REG_NOERROR; | ||
745 | re_dfa_t *dfa; | ||
746 | re_string_t regexp; | ||
747 | |||
748 | /* Initialize the pattern buffer. */ | ||
749 | preg->fastmap_accurate = 0; | ||
750 | preg->syntax = syntax; | ||
751 | preg->not_bol = preg->not_eol = 0; | ||
752 | preg->used = 0; | ||
753 | preg->re_nsub = 0; | ||
754 | preg->can_be_null = 0; | ||
755 | preg->regs_allocated = REGS_UNALLOCATED; | ||
756 | |||
757 | /* Initialize the dfa. */ | ||
758 | dfa = (re_dfa_t *) preg->buffer; | ||
759 | if (BE (preg->allocated < sizeof (re_dfa_t), 0)) | ||
760 | { | ||
761 | /* If zero allocated, but buffer is non-null, try to realloc | ||
762 | enough space. This loses if buffer's address is bogus, but | ||
763 | that is the user's responsibility. If ->buffer is NULL this | ||
764 | is a simple allocation. */ | ||
765 | dfa = re_realloc (preg->buffer, re_dfa_t, 1); | ||
766 | if (dfa == NULL) | ||
767 | return REG_ESPACE; | ||
768 | preg->allocated = sizeof (re_dfa_t); | ||
769 | preg->buffer = (unsigned char *) dfa; | ||
770 | } | ||
771 | preg->used = sizeof (re_dfa_t); | ||
772 | |||
773 | err = init_dfa (dfa, length); | ||
774 | if (BE (err != REG_NOERROR, 0)) | ||
775 | { | ||
776 | free_dfa_content (dfa); | ||
777 | preg->buffer = NULL; | ||
778 | preg->allocated = 0; | ||
779 | return err; | ||
780 | } | ||
781 | #ifdef DEBUG | ||
782 | /* Note: length+1 will not overflow since it is checked in init_dfa. */ | ||
783 | dfa->re_str = re_malloc (char, length + 1); | ||
784 | strncpy (dfa->re_str, pattern, length + 1); | ||
785 | #endif | ||
786 | |||
787 | __libc_lock_init (dfa->lock); | ||
788 | |||
789 | err = re_string_construct (®exp, pattern, length, preg->translate, | ||
790 | syntax & RE_ICASE, dfa); | ||
791 | if (BE (err != REG_NOERROR, 0)) | ||
792 | { | ||
793 | re_compile_internal_free_return: | ||
794 | free_workarea_compile (preg); | ||
795 | re_string_destruct (®exp); | ||
796 | free_dfa_content (dfa); | ||
797 | preg->buffer = NULL; | ||
798 | preg->allocated = 0; | ||
799 | return err; | ||
800 | } | ||
801 | |||
802 | /* Parse the regular expression, and build a structure tree. */ | ||
803 | preg->re_nsub = 0; | ||
804 | dfa->str_tree = parse (®exp, preg, syntax, &err); | ||
805 | if (BE (dfa->str_tree == NULL, 0)) | ||
806 | goto re_compile_internal_free_return; | ||
807 | |||
808 | /* Analyze the tree and create the nfa. */ | ||
809 | err = analyze (preg); | ||
810 | if (BE (err != REG_NOERROR, 0)) | ||
811 | goto re_compile_internal_free_return; | ||
812 | |||
813 | #ifdef RE_ENABLE_I18N | ||
814 | /* If possible, do searching in single byte encoding to speed things up. */ | ||
815 | if (dfa->is_utf8 && !(syntax & RE_ICASE) && preg->translate == NULL) | ||
816 | optimize_utf8 (dfa); | ||
817 | #endif | ||
818 | |||
819 | /* Then create the initial state of the dfa. */ | ||
820 | err = create_initial_state (dfa); | ||
821 | |||
822 | /* Release work areas. */ | ||
823 | free_workarea_compile (preg); | ||
824 | re_string_destruct (®exp); | ||
825 | |||
826 | if (BE (err != REG_NOERROR, 0)) | ||
827 | { | ||
828 | free_dfa_content (dfa); | ||
829 | preg->buffer = NULL; | ||
830 | preg->allocated = 0; | ||
831 | } | ||
832 | |||
833 | return err; | ||
834 | } | ||
835 | |||
836 | /* Initialize DFA. We use the length of the regular expression PAT_LEN | ||
837 | as the initial length of some arrays. */ | ||
838 | |||
839 | static reg_errcode_t | ||
840 | init_dfa (re_dfa_t *dfa, size_t pat_len) | ||
841 | { | ||
842 | unsigned int table_size; | ||
843 | #ifndef _LIBC | ||
844 | char *codeset_name; | ||
845 | #endif | ||
846 | |||
847 | memset (dfa, '\0', sizeof (re_dfa_t)); | ||
848 | |||
849 | /* Force allocation of str_tree_storage the first time. */ | ||
850 | dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; | ||
851 | |||
852 | /* Avoid overflows. */ | ||
853 | if (pat_len == SIZE_MAX) | ||
854 | return REG_ESPACE; | ||
855 | |||
856 | dfa->nodes_alloc = pat_len + 1; | ||
857 | dfa->nodes = re_malloc (re_token_t, dfa->nodes_alloc); | ||
858 | |||
859 | /* table_size = 2 ^ ceil(log pat_len) */ | ||
860 | for (table_size = 1; ; table_size <<= 1) | ||
861 | if (table_size > pat_len) | ||
862 | break; | ||
863 | |||
864 | dfa->state_table = calloc (sizeof (struct re_state_table_entry), table_size); | ||
865 | dfa->state_hash_mask = table_size - 1; | ||
866 | |||
867 | dfa->mb_cur_max = MB_CUR_MAX; | ||
868 | #ifdef _LIBC | ||
869 | if (dfa->mb_cur_max == 6 | ||
870 | && strcmp (_NL_CURRENT (LC_CTYPE, _NL_CTYPE_CODESET_NAME), "UTF-8") == 0) | ||
871 | dfa->is_utf8 = 1; | ||
872 | dfa->map_notascii = (_NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MAP_TO_NONASCII) | ||
873 | != 0); | ||
874 | #else | ||
875 | # ifdef HAVE_LANGINFO_CODESET | ||
876 | codeset_name = nl_langinfo (CODESET); | ||
877 | # else | ||
878 | codeset_name = getenv ("LC_ALL"); | ||
879 | if (codeset_name == NULL || codeset_name[0] == '\0') | ||
880 | codeset_name = getenv ("LC_CTYPE"); | ||
881 | if (codeset_name == NULL || codeset_name[0] == '\0') | ||
882 | codeset_name = getenv ("LANG"); | ||
883 | if (codeset_name == NULL) | ||
884 | codeset_name = ""; | ||
885 | else if (strchr (codeset_name, '.') != NULL) | ||
886 | codeset_name = strchr (codeset_name, '.') + 1; | ||
887 | # endif | ||
888 | |||
889 | /* strcasecmp isn't a standard interface. brute force check */ | ||
890 | #if 0 | ||
891 | if (strcasecmp (codeset_name, "UTF-8") == 0 | ||
892 | || strcasecmp (codeset_name, "UTF8") == 0) | ||
893 | dfa->is_utf8 = 1; | ||
894 | #else | ||
895 | if ( (codeset_name[0] == 'U' || codeset_name[0] == 'u') | ||
896 | && (codeset_name[1] == 'T' || codeset_name[1] == 't') | ||
897 | && (codeset_name[2] == 'F' || codeset_name[2] == 'f') | ||
898 | && (codeset_name[3] == '-' | ||
899 | ? codeset_name[4] == '8' && codeset_name[5] == '\0' | ||
900 | : codeset_name[3] == '8' && codeset_name[4] == '\0')) | ||
901 | dfa->is_utf8 = 1; | ||
902 | #endif | ||
903 | |||
904 | /* We check exhaustively in the loop below if this charset is a | ||
905 | superset of ASCII. */ | ||
906 | dfa->map_notascii = 0; | ||
907 | #endif | ||
908 | |||
909 | #ifdef RE_ENABLE_I18N | ||
910 | if (dfa->mb_cur_max > 1) | ||
911 | { | ||
912 | if (dfa->is_utf8) | ||
913 | { | ||
914 | #if !defined(__GNUC__) || __GNUC__ < 3 | ||
915 | static short utf8_sb_map_inited = 0; | ||
916 | |||
917 | if (! utf8_sb_map_inited) | ||
918 | { | ||
919 | int i; | ||
920 | |||
921 | utf8_sb_map_inited = 0; | ||
922 | for (i = 0; i <= 0x80 / BITSET_WORD_BITS - 1; i++) | ||
923 | utf8_sb_map[i] = BITSET_WORD_MAX; | ||
924 | } | ||
925 | #endif | ||
926 | dfa->sb_char = (re_bitset_ptr_t) utf8_sb_map; | ||
927 | } | ||
928 | else | ||
929 | { | ||
930 | int i, j, ch; | ||
931 | |||
932 | dfa->sb_char = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); | ||
933 | if (BE (dfa->sb_char == NULL, 0)) | ||
934 | return REG_ESPACE; | ||
935 | |||
936 | /* Set the bits corresponding to single byte chars. */ | ||
937 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | ||
938 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | ||
939 | { | ||
940 | wint_t wch = __btowc (ch); | ||
941 | if (wch != WEOF) | ||
942 | dfa->sb_char[i] |= (bitset_word_t) 1 << j; | ||
943 | # ifndef _LIBC | ||
944 | if (isascii (ch) && wch != ch) | ||
945 | dfa->map_notascii = 1; | ||
946 | # endif | ||
947 | } | ||
948 | } | ||
949 | } | ||
950 | #endif | ||
951 | |||
952 | if (BE (dfa->nodes == NULL || dfa->state_table == NULL, 0)) | ||
953 | return REG_ESPACE; | ||
954 | return REG_NOERROR; | ||
955 | } | ||
956 | |||
957 | /* Initialize WORD_CHAR table, which indicate which character is | ||
958 | "word". In this case "word" means that it is the word construction | ||
959 | character used by some operators like "\<", "\>", etc. */ | ||
960 | |||
961 | static void | ||
962 | internal_function | ||
963 | init_word_char (re_dfa_t *dfa) | ||
964 | { | ||
965 | int i, j, ch; | ||
966 | dfa->word_ops_used = 1; | ||
967 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | ||
968 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | ||
969 | if (isalnum (ch) || ch == '_') | ||
970 | dfa->word_char[i] |= (bitset_word_t) 1 << j; | ||
971 | } | ||
972 | |||
973 | /* Free the work area which are only used while compiling. */ | ||
974 | |||
975 | static void | ||
976 | free_workarea_compile (regex_t *preg) | ||
977 | { | ||
978 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
979 | bin_tree_storage_t *storage, *next; | ||
980 | for (storage = dfa->str_tree_storage; storage; storage = next) | ||
981 | { | ||
982 | next = storage->next; | ||
983 | re_free (storage); | ||
984 | } | ||
985 | dfa->str_tree_storage = NULL; | ||
986 | dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; | ||
987 | dfa->str_tree = NULL; | ||
988 | re_free (dfa->org_indices); | ||
989 | dfa->org_indices = NULL; | ||
990 | } | ||
991 | |||
992 | /* Create initial states for all contexts. */ | ||
993 | |||
994 | static reg_errcode_t | ||
995 | create_initial_state (re_dfa_t *dfa) | ||
996 | { | ||
997 | int first, i; | ||
998 | reg_errcode_t err; | ||
999 | re_node_set init_nodes; | ||
1000 | |||
1001 | /* Initial states have the epsilon closure of the node which is | ||
1002 | the first node of the regular expression. */ | ||
1003 | first = dfa->str_tree->first->node_idx; | ||
1004 | dfa->init_node = first; | ||
1005 | err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first); | ||
1006 | if (BE (err != REG_NOERROR, 0)) | ||
1007 | return err; | ||
1008 | |||
1009 | /* The back-references which are in initial states can epsilon transit, | ||
1010 | since in this case all of the subexpressions can be null. | ||
1011 | Then we add epsilon closures of the nodes which are the next nodes of | ||
1012 | the back-references. */ | ||
1013 | if (dfa->nbackref > 0) | ||
1014 | for (i = 0; i < init_nodes.nelem; ++i) | ||
1015 | { | ||
1016 | int node_idx = init_nodes.elems[i]; | ||
1017 | re_token_type_t type = dfa->nodes[node_idx].type; | ||
1018 | |||
1019 | int clexp_idx; | ||
1020 | if (type != OP_BACK_REF) | ||
1021 | continue; | ||
1022 | for (clexp_idx = 0; clexp_idx < init_nodes.nelem; ++clexp_idx) | ||
1023 | { | ||
1024 | re_token_t *clexp_node; | ||
1025 | clexp_node = dfa->nodes + init_nodes.elems[clexp_idx]; | ||
1026 | if (clexp_node->type == OP_CLOSE_SUBEXP | ||
1027 | && clexp_node->opr.idx == dfa->nodes[node_idx].opr.idx) | ||
1028 | break; | ||
1029 | } | ||
1030 | if (clexp_idx == init_nodes.nelem) | ||
1031 | continue; | ||
1032 | |||
1033 | if (type == OP_BACK_REF) | ||
1034 | { | ||
1035 | int dest_idx = dfa->edests[node_idx].elems[0]; | ||
1036 | if (!re_node_set_contains (&init_nodes, dest_idx)) | ||
1037 | { | ||
1038 | reg_errcode_t err = re_node_set_merge (&init_nodes, | ||
1039 | dfa->eclosures | ||
1040 | + dest_idx); | ||
1041 | if (err != REG_NOERROR) | ||
1042 | return err; | ||
1043 | i = 0; | ||
1044 | } | ||
1045 | } | ||
1046 | } | ||
1047 | |||
1048 | /* It must be the first time to invoke acquire_state. */ | ||
1049 | dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0); | ||
1050 | /* We don't check ERR here, since the initial state must not be NULL. */ | ||
1051 | if (BE (dfa->init_state == NULL, 0)) | ||
1052 | return err; | ||
1053 | if (dfa->init_state->has_constraint) | ||
1054 | { | ||
1055 | dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes, | ||
1056 | CONTEXT_WORD); | ||
1057 | dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes, | ||
1058 | CONTEXT_NEWLINE); | ||
1059 | dfa->init_state_begbuf = re_acquire_state_context (&err, dfa, | ||
1060 | &init_nodes, | ||
1061 | CONTEXT_NEWLINE | ||
1062 | | CONTEXT_BEGBUF); | ||
1063 | if (BE (dfa->init_state_word == NULL || dfa->init_state_nl == NULL | ||
1064 | || dfa->init_state_begbuf == NULL, 0)) | ||
1065 | return err; | ||
1066 | } | ||
1067 | else | ||
1068 | dfa->init_state_word = dfa->init_state_nl | ||
1069 | = dfa->init_state_begbuf = dfa->init_state; | ||
1070 | |||
1071 | re_node_set_free (&init_nodes); | ||
1072 | return REG_NOERROR; | ||
1073 | } | ||
1074 | |||
1075 | #ifdef RE_ENABLE_I18N | ||
1076 | /* If it is possible to do searching in single byte encoding instead of UTF-8 | ||
1077 | to speed things up, set dfa->mb_cur_max to 1, clear is_utf8 and change | ||
1078 | DFA nodes where needed. */ | ||
1079 | |||
1080 | static void | ||
1081 | optimize_utf8 (re_dfa_t *dfa) | ||
1082 | { | ||
1083 | int node, i, mb_chars = 0, has_period = 0; | ||
1084 | |||
1085 | for (node = 0; node < dfa->nodes_len; ++node) | ||
1086 | switch (dfa->nodes[node].type) | ||
1087 | { | ||
1088 | case CHARACTER: | ||
1089 | if (dfa->nodes[node].opr.c >= 0x80) | ||
1090 | mb_chars = 1; | ||
1091 | break; | ||
1092 | case ANCHOR: | ||
1093 | switch (dfa->nodes[node].opr.ctx_type) | ||
1094 | { | ||
1095 | case LINE_FIRST: | ||
1096 | case LINE_LAST: | ||
1097 | case BUF_FIRST: | ||
1098 | case BUF_LAST: | ||
1099 | break; | ||
1100 | default: | ||
1101 | /* Word anchors etc. cannot be handled. It's okay to test | ||
1102 | opr.ctx_type since constraints (for all DFA nodes) are | ||
1103 | created by ORing one or more opr.ctx_type values. */ | ||
1104 | return; | ||
1105 | } | ||
1106 | break; | ||
1107 | case OP_PERIOD: | ||
1108 | has_period = 1; | ||
1109 | break; | ||
1110 | case OP_BACK_REF: | ||
1111 | case OP_ALT: | ||
1112 | case END_OF_RE: | ||
1113 | case OP_DUP_ASTERISK: | ||
1114 | case OP_OPEN_SUBEXP: | ||
1115 | case OP_CLOSE_SUBEXP: | ||
1116 | break; | ||
1117 | case COMPLEX_BRACKET: | ||
1118 | return; | ||
1119 | case SIMPLE_BRACKET: | ||
1120 | /* Just double check. The non-ASCII range starts at 0x80. */ | ||
1121 | assert (0x80 % BITSET_WORD_BITS == 0); | ||
1122 | for (i = 0x80 / BITSET_WORD_BITS; i < BITSET_WORDS; ++i) | ||
1123 | if (dfa->nodes[node].opr.sbcset[i]) | ||
1124 | return; | ||
1125 | break; | ||
1126 | default: | ||
1127 | abort (); | ||
1128 | } | ||
1129 | |||
1130 | if (mb_chars || has_period) | ||
1131 | for (node = 0; node < dfa->nodes_len; ++node) | ||
1132 | { | ||
1133 | if (dfa->nodes[node].type == CHARACTER | ||
1134 | && dfa->nodes[node].opr.c >= 0x80) | ||
1135 | dfa->nodes[node].mb_partial = 0; | ||
1136 | else if (dfa->nodes[node].type == OP_PERIOD) | ||
1137 | dfa->nodes[node].type = OP_UTF8_PERIOD; | ||
1138 | } | ||
1139 | |||
1140 | /* The search can be in single byte locale. */ | ||
1141 | dfa->mb_cur_max = 1; | ||
1142 | dfa->is_utf8 = 0; | ||
1143 | dfa->has_mb_node = dfa->nbackref > 0 || has_period; | ||
1144 | } | ||
1145 | #endif | ||
1146 | |||
1147 | /* Analyze the structure tree, and calculate "first", "next", "edest", | ||
1148 | "eclosure", and "inveclosure". */ | ||
1149 | |||
1150 | static reg_errcode_t | ||
1151 | analyze (regex_t *preg) | ||
1152 | { | ||
1153 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
1154 | reg_errcode_t ret; | ||
1155 | |||
1156 | /* Allocate arrays. */ | ||
1157 | dfa->nexts = re_malloc (int, dfa->nodes_alloc); | ||
1158 | dfa->org_indices = re_malloc (int, dfa->nodes_alloc); | ||
1159 | dfa->edests = re_malloc (re_node_set, dfa->nodes_alloc); | ||
1160 | dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc); | ||
1161 | if (BE (dfa->nexts == NULL || dfa->org_indices == NULL || dfa->edests == NULL | ||
1162 | || dfa->eclosures == NULL, 0)) | ||
1163 | return REG_ESPACE; | ||
1164 | |||
1165 | dfa->subexp_map = re_malloc (int, preg->re_nsub); | ||
1166 | if (dfa->subexp_map != NULL) | ||
1167 | { | ||
1168 | int i; | ||
1169 | for (i = 0; i < preg->re_nsub; i++) | ||
1170 | dfa->subexp_map[i] = i; | ||
1171 | preorder (dfa->str_tree, optimize_subexps, dfa); | ||
1172 | for (i = 0; i < preg->re_nsub; i++) | ||
1173 | if (dfa->subexp_map[i] != i) | ||
1174 | break; | ||
1175 | if (i == preg->re_nsub) | ||
1176 | { | ||
1177 | free (dfa->subexp_map); | ||
1178 | dfa->subexp_map = NULL; | ||
1179 | } | ||
1180 | } | ||
1181 | |||
1182 | ret = postorder (dfa->str_tree, lower_subexps, preg); | ||
1183 | if (BE (ret != REG_NOERROR, 0)) | ||
1184 | return ret; | ||
1185 | ret = postorder (dfa->str_tree, calc_first, dfa); | ||
1186 | if (BE (ret != REG_NOERROR, 0)) | ||
1187 | return ret; | ||
1188 | preorder (dfa->str_tree, calc_next, dfa); | ||
1189 | ret = preorder (dfa->str_tree, link_nfa_nodes, dfa); | ||
1190 | if (BE (ret != REG_NOERROR, 0)) | ||
1191 | return ret; | ||
1192 | ret = calc_eclosure (dfa); | ||
1193 | if (BE (ret != REG_NOERROR, 0)) | ||
1194 | return ret; | ||
1195 | |||
1196 | /* We only need this during the prune_impossible_nodes pass in regexec.c; | ||
1197 | skip it if p_i_n will not run, as calc_inveclosure can be quadratic. */ | ||
1198 | if ((!preg->no_sub && preg->re_nsub > 0 && dfa->has_plural_match) | ||
1199 | || dfa->nbackref) | ||
1200 | { | ||
1201 | dfa->inveclosures = re_malloc (re_node_set, dfa->nodes_len); | ||
1202 | if (BE (dfa->inveclosures == NULL, 0)) | ||
1203 | return REG_ESPACE; | ||
1204 | ret = calc_inveclosure (dfa); | ||
1205 | } | ||
1206 | |||
1207 | return ret; | ||
1208 | } | ||
1209 | |||
1210 | /* Our parse trees are very unbalanced, so we cannot use a stack to | ||
1211 | implement parse tree visits. Instead, we use parent pointers and | ||
1212 | some hairy code in these two functions. */ | ||
1213 | static reg_errcode_t | ||
1214 | postorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), | ||
1215 | void *extra) | ||
1216 | { | ||
1217 | bin_tree_t *node, *prev; | ||
1218 | |||
1219 | for (node = root; ; ) | ||
1220 | { | ||
1221 | /* Descend down the tree, preferably to the left (or to the right | ||
1222 | if that's the only child). */ | ||
1223 | while (node->left || node->right) | ||
1224 | if (node->left) | ||
1225 | node = node->left; | ||
1226 | else | ||
1227 | node = node->right; | ||
1228 | |||
1229 | do | ||
1230 | { | ||
1231 | reg_errcode_t err = fn (extra, node); | ||
1232 | if (BE (err != REG_NOERROR, 0)) | ||
1233 | return err; | ||
1234 | if (node->parent == NULL) | ||
1235 | return REG_NOERROR; | ||
1236 | prev = node; | ||
1237 | node = node->parent; | ||
1238 | } | ||
1239 | /* Go up while we have a node that is reached from the right. */ | ||
1240 | while (node->right == prev || node->right == NULL); | ||
1241 | node = node->right; | ||
1242 | } | ||
1243 | } | ||
1244 | |||
1245 | static reg_errcode_t | ||
1246 | preorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), | ||
1247 | void *extra) | ||
1248 | { | ||
1249 | bin_tree_t *node; | ||
1250 | |||
1251 | for (node = root; ; ) | ||
1252 | { | ||
1253 | reg_errcode_t err = fn (extra, node); | ||
1254 | if (BE (err != REG_NOERROR, 0)) | ||
1255 | return err; | ||
1256 | |||
1257 | /* Go to the left node, or up and to the right. */ | ||
1258 | if (node->left) | ||
1259 | node = node->left; | ||
1260 | else | ||
1261 | { | ||
1262 | bin_tree_t *prev = NULL; | ||
1263 | while (node->right == prev || node->right == NULL) | ||
1264 | { | ||
1265 | prev = node; | ||
1266 | node = node->parent; | ||
1267 | if (!node) | ||
1268 | return REG_NOERROR; | ||
1269 | } | ||
1270 | node = node->right; | ||
1271 | } | ||
1272 | } | ||
1273 | } | ||
1274 | |||
1275 | /* Optimization pass: if a SUBEXP is entirely contained, strip it and tell | ||
1276 | re_search_internal to map the inner one's opr.idx to this one's. Adjust | ||
1277 | backreferences as well. Requires a preorder visit. */ | ||
1278 | static reg_errcode_t | ||
1279 | optimize_subexps (void *extra, bin_tree_t *node) | ||
1280 | { | ||
1281 | re_dfa_t *dfa = (re_dfa_t *) extra; | ||
1282 | |||
1283 | if (node->token.type == OP_BACK_REF && dfa->subexp_map) | ||
1284 | { | ||
1285 | int idx = node->token.opr.idx; | ||
1286 | node->token.opr.idx = dfa->subexp_map[idx]; | ||
1287 | dfa->used_bkref_map |= 1 << node->token.opr.idx; | ||
1288 | } | ||
1289 | |||
1290 | else if (node->token.type == SUBEXP | ||
1291 | && node->left && node->left->token.type == SUBEXP) | ||
1292 | { | ||
1293 | int other_idx = node->left->token.opr.idx; | ||
1294 | |||
1295 | node->left = node->left->left; | ||
1296 | if (node->left) | ||
1297 | node->left->parent = node; | ||
1298 | |||
1299 | dfa->subexp_map[other_idx] = dfa->subexp_map[node->token.opr.idx]; | ||
1300 | if (other_idx < BITSET_WORD_BITS) | ||
1301 | dfa->used_bkref_map &= ~((bitset_word_t) 1 << other_idx); | ||
1302 | } | ||
1303 | |||
1304 | return REG_NOERROR; | ||
1305 | } | ||
1306 | |||
1307 | /* Lowering pass: Turn each SUBEXP node into the appropriate concatenation | ||
1308 | of OP_OPEN_SUBEXP, the body of the SUBEXP (if any) and OP_CLOSE_SUBEXP. */ | ||
1309 | static reg_errcode_t | ||
1310 | lower_subexps (void *extra, bin_tree_t *node) | ||
1311 | { | ||
1312 | regex_t *preg = (regex_t *) extra; | ||
1313 | reg_errcode_t err = REG_NOERROR; | ||
1314 | |||
1315 | if (node->left && node->left->token.type == SUBEXP) | ||
1316 | { | ||
1317 | node->left = lower_subexp (&err, preg, node->left); | ||
1318 | if (node->left) | ||
1319 | node->left->parent = node; | ||
1320 | } | ||
1321 | if (node->right && node->right->token.type == SUBEXP) | ||
1322 | { | ||
1323 | node->right = lower_subexp (&err, preg, node->right); | ||
1324 | if (node->right) | ||
1325 | node->right->parent = node; | ||
1326 | } | ||
1327 | |||
1328 | return err; | ||
1329 | } | ||
1330 | |||
1331 | static bin_tree_t * | ||
1332 | lower_subexp (reg_errcode_t *err, regex_t *preg, bin_tree_t *node) | ||
1333 | { | ||
1334 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
1335 | bin_tree_t *body = node->left; | ||
1336 | bin_tree_t *op, *cls, *tree1, *tree; | ||
1337 | |||
1338 | if (preg->no_sub | ||
1339 | /* We do not optimize empty subexpressions, because otherwise we may | ||
1340 | have bad CONCAT nodes with NULL children. This is obviously not | ||
1341 | very common, so we do not lose much. An example that triggers | ||
1342 | this case is the sed "script" /\(\)/x. */ | ||
1343 | && node->left != NULL | ||
1344 | && (node->token.opr.idx >= BITSET_WORD_BITS | ||
1345 | || !(dfa->used_bkref_map | ||
1346 | & ((bitset_word_t) 1 << node->token.opr.idx)))) | ||
1347 | return node->left; | ||
1348 | |||
1349 | /* Convert the SUBEXP node to the concatenation of an | ||
1350 | OP_OPEN_SUBEXP, the contents, and an OP_CLOSE_SUBEXP. */ | ||
1351 | op = create_tree (dfa, NULL, NULL, OP_OPEN_SUBEXP); | ||
1352 | cls = create_tree (dfa, NULL, NULL, OP_CLOSE_SUBEXP); | ||
1353 | tree1 = body ? create_tree (dfa, body, cls, CONCAT) : cls; | ||
1354 | tree = create_tree (dfa, op, tree1, CONCAT); | ||
1355 | if (BE (tree == NULL || tree1 == NULL || op == NULL || cls == NULL, 0)) | ||
1356 | { | ||
1357 | *err = REG_ESPACE; | ||
1358 | return NULL; | ||
1359 | } | ||
1360 | |||
1361 | op->token.opr.idx = cls->token.opr.idx = node->token.opr.idx; | ||
1362 | op->token.opt_subexp = cls->token.opt_subexp = node->token.opt_subexp; | ||
1363 | return tree; | ||
1364 | } | ||
1365 | |||
1366 | /* Pass 1 in building the NFA: compute FIRST and create unlinked automaton | ||
1367 | nodes. Requires a postorder visit. */ | ||
1368 | static reg_errcode_t | ||
1369 | calc_first (void *extra, bin_tree_t *node) | ||
1370 | { | ||
1371 | re_dfa_t *dfa = (re_dfa_t *) extra; | ||
1372 | if (node->token.type == CONCAT) | ||
1373 | { | ||
1374 | node->first = node->left->first; | ||
1375 | node->node_idx = node->left->node_idx; | ||
1376 | } | ||
1377 | else | ||
1378 | { | ||
1379 | node->first = node; | ||
1380 | node->node_idx = re_dfa_add_node (dfa, node->token); | ||
1381 | if (BE (node->node_idx == -1, 0)) | ||
1382 | return REG_ESPACE; | ||
1383 | if (node->token.type == ANCHOR) | ||
1384 | dfa->nodes[node->node_idx].constraint = node->token.opr.ctx_type; | ||
1385 | } | ||
1386 | return REG_NOERROR; | ||
1387 | } | ||
1388 | |||
1389 | /* Pass 2: compute NEXT on the tree. Preorder visit. */ | ||
1390 | static reg_errcode_t | ||
1391 | calc_next (void *extra, bin_tree_t *node) | ||
1392 | { | ||
1393 | switch (node->token.type) | ||
1394 | { | ||
1395 | case OP_DUP_ASTERISK: | ||
1396 | node->left->next = node; | ||
1397 | break; | ||
1398 | case CONCAT: | ||
1399 | node->left->next = node->right->first; | ||
1400 | node->right->next = node->next; | ||
1401 | break; | ||
1402 | default: | ||
1403 | if (node->left) | ||
1404 | node->left->next = node->next; | ||
1405 | if (node->right) | ||
1406 | node->right->next = node->next; | ||
1407 | break; | ||
1408 | } | ||
1409 | return REG_NOERROR; | ||
1410 | } | ||
1411 | |||
1412 | /* Pass 3: link all DFA nodes to their NEXT node (any order will do). */ | ||
1413 | static reg_errcode_t | ||
1414 | link_nfa_nodes (void *extra, bin_tree_t *node) | ||
1415 | { | ||
1416 | re_dfa_t *dfa = (re_dfa_t *) extra; | ||
1417 | int idx = node->node_idx; | ||
1418 | reg_errcode_t err = REG_NOERROR; | ||
1419 | |||
1420 | switch (node->token.type) | ||
1421 | { | ||
1422 | case CONCAT: | ||
1423 | break; | ||
1424 | |||
1425 | case END_OF_RE: | ||
1426 | assert (node->next == NULL); | ||
1427 | break; | ||
1428 | |||
1429 | case OP_DUP_ASTERISK: | ||
1430 | case OP_ALT: | ||
1431 | { | ||
1432 | int left, right; | ||
1433 | dfa->has_plural_match = 1; | ||
1434 | if (node->left != NULL) | ||
1435 | left = node->left->first->node_idx; | ||
1436 | else | ||
1437 | left = node->next->node_idx; | ||
1438 | if (node->right != NULL) | ||
1439 | right = node->right->first->node_idx; | ||
1440 | else | ||
1441 | right = node->next->node_idx; | ||
1442 | assert (left > -1); | ||
1443 | assert (right > -1); | ||
1444 | err = re_node_set_init_2 (dfa->edests + idx, left, right); | ||
1445 | } | ||
1446 | break; | ||
1447 | |||
1448 | case ANCHOR: | ||
1449 | case OP_OPEN_SUBEXP: | ||
1450 | case OP_CLOSE_SUBEXP: | ||
1451 | err = re_node_set_init_1 (dfa->edests + idx, node->next->node_idx); | ||
1452 | break; | ||
1453 | |||
1454 | case OP_BACK_REF: | ||
1455 | dfa->nexts[idx] = node->next->node_idx; | ||
1456 | if (node->token.type == OP_BACK_REF) | ||
1457 | err = re_node_set_init_1 (dfa->edests + idx, dfa->nexts[idx]); | ||
1458 | break; | ||
1459 | |||
1460 | default: | ||
1461 | assert (!IS_EPSILON_NODE (node->token.type)); | ||
1462 | dfa->nexts[idx] = node->next->node_idx; | ||
1463 | break; | ||
1464 | } | ||
1465 | |||
1466 | return err; | ||
1467 | } | ||
1468 | |||
1469 | /* Duplicate the epsilon closure of the node ROOT_NODE. | ||
1470 | Note that duplicated nodes have constraint INIT_CONSTRAINT in addition | ||
1471 | to their own constraint. */ | ||
1472 | |||
1473 | static reg_errcode_t | ||
1474 | internal_function | ||
1475 | duplicate_node_closure (re_dfa_t *dfa, int top_org_node, int top_clone_node, | ||
1476 | int root_node, unsigned int init_constraint) | ||
1477 | { | ||
1478 | int org_node, clone_node, ret; | ||
1479 | unsigned int constraint = init_constraint; | ||
1480 | for (org_node = top_org_node, clone_node = top_clone_node;;) | ||
1481 | { | ||
1482 | int org_dest, clone_dest; | ||
1483 | if (dfa->nodes[org_node].type == OP_BACK_REF) | ||
1484 | { | ||
1485 | /* If the back reference epsilon-transit, its destination must | ||
1486 | also have the constraint. Then duplicate the epsilon closure | ||
1487 | of the destination of the back reference, and store it in | ||
1488 | edests of the back reference. */ | ||
1489 | org_dest = dfa->nexts[org_node]; | ||
1490 | re_node_set_empty (dfa->edests + clone_node); | ||
1491 | clone_dest = duplicate_node (dfa, org_dest, constraint); | ||
1492 | if (BE (clone_dest == -1, 0)) | ||
1493 | return REG_ESPACE; | ||
1494 | dfa->nexts[clone_node] = dfa->nexts[org_node]; | ||
1495 | ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
1496 | if (BE (ret < 0, 0)) | ||
1497 | return REG_ESPACE; | ||
1498 | } | ||
1499 | else if (dfa->edests[org_node].nelem == 0) | ||
1500 | { | ||
1501 | /* In case of the node can't epsilon-transit, don't duplicate the | ||
1502 | destination and store the original destination as the | ||
1503 | destination of the node. */ | ||
1504 | dfa->nexts[clone_node] = dfa->nexts[org_node]; | ||
1505 | break; | ||
1506 | } | ||
1507 | else if (dfa->edests[org_node].nelem == 1) | ||
1508 | { | ||
1509 | /* In case of the node can epsilon-transit, and it has only one | ||
1510 | destination. */ | ||
1511 | org_dest = dfa->edests[org_node].elems[0]; | ||
1512 | re_node_set_empty (dfa->edests + clone_node); | ||
1513 | /* If the node is root_node itself, it means the epsilon clsoure | ||
1514 | has a loop. Then tie it to the destination of the root_node. */ | ||
1515 | if (org_node == root_node && clone_node != org_node) | ||
1516 | { | ||
1517 | ret = re_node_set_insert (dfa->edests + clone_node, org_dest); | ||
1518 | if (BE (ret < 0, 0)) | ||
1519 | return REG_ESPACE; | ||
1520 | break; | ||
1521 | } | ||
1522 | /* In case of the node has another constraint, add it. */ | ||
1523 | constraint |= dfa->nodes[org_node].constraint; | ||
1524 | clone_dest = duplicate_node (dfa, org_dest, constraint); | ||
1525 | if (BE (clone_dest == -1, 0)) | ||
1526 | return REG_ESPACE; | ||
1527 | ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
1528 | if (BE (ret < 0, 0)) | ||
1529 | return REG_ESPACE; | ||
1530 | } | ||
1531 | else /* dfa->edests[org_node].nelem == 2 */ | ||
1532 | { | ||
1533 | /* In case of the node can epsilon-transit, and it has two | ||
1534 | destinations. In the bin_tree_t and DFA, that's '|' and '*'. */ | ||
1535 | org_dest = dfa->edests[org_node].elems[0]; | ||
1536 | re_node_set_empty (dfa->edests + clone_node); | ||
1537 | /* Search for a duplicated node which satisfies the constraint. */ | ||
1538 | clone_dest = search_duplicated_node (dfa, org_dest, constraint); | ||
1539 | if (clone_dest == -1) | ||
1540 | { | ||
1541 | /* There is no such duplicated node, create a new one. */ | ||
1542 | reg_errcode_t err; | ||
1543 | clone_dest = duplicate_node (dfa, org_dest, constraint); | ||
1544 | if (BE (clone_dest == -1, 0)) | ||
1545 | return REG_ESPACE; | ||
1546 | ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
1547 | if (BE (ret < 0, 0)) | ||
1548 | return REG_ESPACE; | ||
1549 | err = duplicate_node_closure (dfa, org_dest, clone_dest, | ||
1550 | root_node, constraint); | ||
1551 | if (BE (err != REG_NOERROR, 0)) | ||
1552 | return err; | ||
1553 | } | ||
1554 | else | ||
1555 | { | ||
1556 | /* There is a duplicated node which satisfies the constraint, | ||
1557 | use it to avoid infinite loop. */ | ||
1558 | ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
1559 | if (BE (ret < 0, 0)) | ||
1560 | return REG_ESPACE; | ||
1561 | } | ||
1562 | |||
1563 | org_dest = dfa->edests[org_node].elems[1]; | ||
1564 | clone_dest = duplicate_node (dfa, org_dest, constraint); | ||
1565 | if (BE (clone_dest == -1, 0)) | ||
1566 | return REG_ESPACE; | ||
1567 | ret = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
1568 | if (BE (ret < 0, 0)) | ||
1569 | return REG_ESPACE; | ||
1570 | } | ||
1571 | org_node = org_dest; | ||
1572 | clone_node = clone_dest; | ||
1573 | } | ||
1574 | return REG_NOERROR; | ||
1575 | } | ||
1576 | |||
1577 | /* Search for a node which is duplicated from the node ORG_NODE, and | ||
1578 | satisfies the constraint CONSTRAINT. */ | ||
1579 | |||
1580 | static int | ||
1581 | search_duplicated_node (const re_dfa_t *dfa, int org_node, | ||
1582 | unsigned int constraint) | ||
1583 | { | ||
1584 | int idx; | ||
1585 | for (idx = dfa->nodes_len - 1; dfa->nodes[idx].duplicated && idx > 0; --idx) | ||
1586 | { | ||
1587 | if (org_node == dfa->org_indices[idx] | ||
1588 | && constraint == dfa->nodes[idx].constraint) | ||
1589 | return idx; /* Found. */ | ||
1590 | } | ||
1591 | return -1; /* Not found. */ | ||
1592 | } | ||
1593 | |||
1594 | /* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT. | ||
1595 | Return the index of the new node, or -1 if insufficient storage is | ||
1596 | available. */ | ||
1597 | |||
1598 | static int | ||
1599 | duplicate_node (re_dfa_t *dfa, int org_idx, unsigned int constraint) | ||
1600 | { | ||
1601 | int dup_idx = re_dfa_add_node (dfa, dfa->nodes[org_idx]); | ||
1602 | if (BE (dup_idx != -1, 1)) | ||
1603 | { | ||
1604 | dfa->nodes[dup_idx].constraint = constraint; | ||
1605 | dfa->nodes[dup_idx].constraint |= dfa->nodes[org_idx].constraint; | ||
1606 | dfa->nodes[dup_idx].duplicated = 1; | ||
1607 | |||
1608 | /* Store the index of the original node. */ | ||
1609 | dfa->org_indices[dup_idx] = org_idx; | ||
1610 | } | ||
1611 | return dup_idx; | ||
1612 | } | ||
1613 | |||
1614 | static reg_errcode_t | ||
1615 | calc_inveclosure (re_dfa_t *dfa) | ||
1616 | { | ||
1617 | int src, idx, ret; | ||
1618 | for (idx = 0; idx < dfa->nodes_len; ++idx) | ||
1619 | re_node_set_init_empty (dfa->inveclosures + idx); | ||
1620 | |||
1621 | for (src = 0; src < dfa->nodes_len; ++src) | ||
1622 | { | ||
1623 | int *elems = dfa->eclosures[src].elems; | ||
1624 | for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx) | ||
1625 | { | ||
1626 | ret = re_node_set_insert_last (dfa->inveclosures + elems[idx], src); | ||
1627 | if (BE (ret == -1, 0)) | ||
1628 | return REG_ESPACE; | ||
1629 | } | ||
1630 | } | ||
1631 | |||
1632 | return REG_NOERROR; | ||
1633 | } | ||
1634 | |||
1635 | /* Calculate "eclosure" for all the node in DFA. */ | ||
1636 | |||
1637 | static reg_errcode_t | ||
1638 | calc_eclosure (re_dfa_t *dfa) | ||
1639 | { | ||
1640 | int node_idx, incomplete; | ||
1641 | #ifdef DEBUG | ||
1642 | assert (dfa->nodes_len > 0); | ||
1643 | #endif | ||
1644 | incomplete = 0; | ||
1645 | /* For each nodes, calculate epsilon closure. */ | ||
1646 | for (node_idx = 0; ; ++node_idx) | ||
1647 | { | ||
1648 | reg_errcode_t err; | ||
1649 | re_node_set eclosure_elem; | ||
1650 | if (node_idx == dfa->nodes_len) | ||
1651 | { | ||
1652 | if (!incomplete) | ||
1653 | break; | ||
1654 | incomplete = 0; | ||
1655 | node_idx = 0; | ||
1656 | } | ||
1657 | |||
1658 | #ifdef DEBUG | ||
1659 | assert (dfa->eclosures[node_idx].nelem != -1); | ||
1660 | #endif | ||
1661 | |||
1662 | /* If we have already calculated, skip it. */ | ||
1663 | if (dfa->eclosures[node_idx].nelem != 0) | ||
1664 | continue; | ||
1665 | /* Calculate epsilon closure of `node_idx'. */ | ||
1666 | err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, 1); | ||
1667 | if (BE (err != REG_NOERROR, 0)) | ||
1668 | return err; | ||
1669 | |||
1670 | if (dfa->eclosures[node_idx].nelem == 0) | ||
1671 | { | ||
1672 | incomplete = 1; | ||
1673 | re_node_set_free (&eclosure_elem); | ||
1674 | } | ||
1675 | } | ||
1676 | return REG_NOERROR; | ||
1677 | } | ||
1678 | |||
1679 | /* Calculate epsilon closure of NODE. */ | ||
1680 | |||
1681 | static reg_errcode_t | ||
1682 | calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, int node, int root) | ||
1683 | { | ||
1684 | reg_errcode_t err; | ||
1685 | int i; | ||
1686 | re_node_set eclosure; | ||
1687 | int ret; | ||
1688 | int incomplete = 0; | ||
1689 | err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1); | ||
1690 | if (BE (err != REG_NOERROR, 0)) | ||
1691 | return err; | ||
1692 | |||
1693 | /* This indicates that we are calculating this node now. | ||
1694 | We reference this value to avoid infinite loop. */ | ||
1695 | dfa->eclosures[node].nelem = -1; | ||
1696 | |||
1697 | /* If the current node has constraints, duplicate all nodes | ||
1698 | since they must inherit the constraints. */ | ||
1699 | if (dfa->nodes[node].constraint | ||
1700 | && dfa->edests[node].nelem | ||
1701 | && !dfa->nodes[dfa->edests[node].elems[0]].duplicated) | ||
1702 | { | ||
1703 | err = duplicate_node_closure (dfa, node, node, node, | ||
1704 | dfa->nodes[node].constraint); | ||
1705 | if (BE (err != REG_NOERROR, 0)) | ||
1706 | return err; | ||
1707 | } | ||
1708 | |||
1709 | /* Expand each epsilon destination nodes. */ | ||
1710 | if (IS_EPSILON_NODE(dfa->nodes[node].type)) | ||
1711 | for (i = 0; i < dfa->edests[node].nelem; ++i) | ||
1712 | { | ||
1713 | re_node_set eclosure_elem; | ||
1714 | int edest = dfa->edests[node].elems[i]; | ||
1715 | /* If calculating the epsilon closure of `edest' is in progress, | ||
1716 | return intermediate result. */ | ||
1717 | if (dfa->eclosures[edest].nelem == -1) | ||
1718 | { | ||
1719 | incomplete = 1; | ||
1720 | continue; | ||
1721 | } | ||
1722 | /* If we haven't calculated the epsilon closure of `edest' yet, | ||
1723 | calculate now. Otherwise use calculated epsilon closure. */ | ||
1724 | if (dfa->eclosures[edest].nelem == 0) | ||
1725 | { | ||
1726 | err = calc_eclosure_iter (&eclosure_elem, dfa, edest, 0); | ||
1727 | if (BE (err != REG_NOERROR, 0)) | ||
1728 | return err; | ||
1729 | } | ||
1730 | else | ||
1731 | eclosure_elem = dfa->eclosures[edest]; | ||
1732 | /* Merge the epsilon closure of `edest'. */ | ||
1733 | err = re_node_set_merge (&eclosure, &eclosure_elem); | ||
1734 | if (BE (err != REG_NOERROR, 0)) | ||
1735 | return err; | ||
1736 | /* If the epsilon closure of `edest' is incomplete, | ||
1737 | the epsilon closure of this node is also incomplete. */ | ||
1738 | if (dfa->eclosures[edest].nelem == 0) | ||
1739 | { | ||
1740 | incomplete = 1; | ||
1741 | re_node_set_free (&eclosure_elem); | ||
1742 | } | ||
1743 | } | ||
1744 | |||
1745 | /* An epsilon closure includes itself. */ | ||
1746 | ret = re_node_set_insert (&eclosure, node); | ||
1747 | if (BE (ret < 0, 0)) | ||
1748 | return REG_ESPACE; | ||
1749 | if (incomplete && !root) | ||
1750 | dfa->eclosures[node].nelem = 0; | ||
1751 | else | ||
1752 | dfa->eclosures[node] = eclosure; | ||
1753 | *new_set = eclosure; | ||
1754 | return REG_NOERROR; | ||
1755 | } | ||
1756 | |||
1757 | /* Functions for token which are used in the parser. */ | ||
1758 | |||
1759 | /* Fetch a token from INPUT. | ||
1760 | We must not use this function inside bracket expressions. */ | ||
1761 | |||
1762 | static void | ||
1763 | internal_function | ||
1764 | fetch_token (re_token_t *result, re_string_t *input, reg_syntax_t syntax) | ||
1765 | { | ||
1766 | re_string_skip_bytes (input, peek_token (result, input, syntax)); | ||
1767 | } | ||
1768 | |||
1769 | /* Peek a token from INPUT, and return the length of the token. | ||
1770 | We must not use this function inside bracket expressions. */ | ||
1771 | |||
1772 | static int | ||
1773 | internal_function | ||
1774 | peek_token (re_token_t *token, re_string_t *input, reg_syntax_t syntax) | ||
1775 | { | ||
1776 | unsigned char c; | ||
1777 | |||
1778 | if (re_string_eoi (input)) | ||
1779 | { | ||
1780 | token->type = END_OF_RE; | ||
1781 | return 0; | ||
1782 | } | ||
1783 | |||
1784 | c = re_string_peek_byte (input, 0); | ||
1785 | token->opr.c = c; | ||
1786 | |||
1787 | token->word_char = 0; | ||
1788 | #ifdef RE_ENABLE_I18N | ||
1789 | token->mb_partial = 0; | ||
1790 | if (input->mb_cur_max > 1 && | ||
1791 | !re_string_first_byte (input, re_string_cur_idx (input))) | ||
1792 | { | ||
1793 | token->type = CHARACTER; | ||
1794 | token->mb_partial = 1; | ||
1795 | return 1; | ||
1796 | } | ||
1797 | #endif | ||
1798 | if (c == '\\') | ||
1799 | { | ||
1800 | unsigned char c2; | ||
1801 | if (re_string_cur_idx (input) + 1 >= re_string_length (input)) | ||
1802 | { | ||
1803 | token->type = BACK_SLASH; | ||
1804 | return 1; | ||
1805 | } | ||
1806 | |||
1807 | c2 = re_string_peek_byte_case (input, 1); | ||
1808 | token->opr.c = c2; | ||
1809 | token->type = CHARACTER; | ||
1810 | #ifdef RE_ENABLE_I18N | ||
1811 | if (input->mb_cur_max > 1) | ||
1812 | { | ||
1813 | wint_t wc = re_string_wchar_at (input, | ||
1814 | re_string_cur_idx (input) + 1); | ||
1815 | token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; | ||
1816 | } | ||
1817 | else | ||
1818 | #endif | ||
1819 | token->word_char = IS_WORD_CHAR (c2) != 0; | ||
1820 | |||
1821 | switch (c2) | ||
1822 | { | ||
1823 | case '|': | ||
1824 | if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_NO_BK_VBAR)) | ||
1825 | token->type = OP_ALT; | ||
1826 | break; | ||
1827 | case '1': case '2': case '3': case '4': case '5': | ||
1828 | case '6': case '7': case '8': case '9': | ||
1829 | if (!(syntax & RE_NO_BK_REFS)) | ||
1830 | { | ||
1831 | token->type = OP_BACK_REF; | ||
1832 | token->opr.idx = c2 - '1'; | ||
1833 | } | ||
1834 | break; | ||
1835 | case '<': | ||
1836 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1837 | { | ||
1838 | token->type = ANCHOR; | ||
1839 | token->opr.ctx_type = WORD_FIRST; | ||
1840 | } | ||
1841 | break; | ||
1842 | case '>': | ||
1843 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1844 | { | ||
1845 | token->type = ANCHOR; | ||
1846 | token->opr.ctx_type = WORD_LAST; | ||
1847 | } | ||
1848 | break; | ||
1849 | case 'b': | ||
1850 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1851 | { | ||
1852 | token->type = ANCHOR; | ||
1853 | token->opr.ctx_type = WORD_DELIM; | ||
1854 | } | ||
1855 | break; | ||
1856 | case 'B': | ||
1857 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1858 | { | ||
1859 | token->type = ANCHOR; | ||
1860 | token->opr.ctx_type = NOT_WORD_DELIM; | ||
1861 | } | ||
1862 | break; | ||
1863 | case 'w': | ||
1864 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1865 | token->type = OP_WORD; | ||
1866 | break; | ||
1867 | case 'W': | ||
1868 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1869 | token->type = OP_NOTWORD; | ||
1870 | break; | ||
1871 | case 's': | ||
1872 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1873 | token->type = OP_SPACE; | ||
1874 | break; | ||
1875 | case 'S': | ||
1876 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1877 | token->type = OP_NOTSPACE; | ||
1878 | break; | ||
1879 | case '`': | ||
1880 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1881 | { | ||
1882 | token->type = ANCHOR; | ||
1883 | token->opr.ctx_type = BUF_FIRST; | ||
1884 | } | ||
1885 | break; | ||
1886 | case '\'': | ||
1887 | if (!(syntax & RE_NO_GNU_OPS)) | ||
1888 | { | ||
1889 | token->type = ANCHOR; | ||
1890 | token->opr.ctx_type = BUF_LAST; | ||
1891 | } | ||
1892 | break; | ||
1893 | case '(': | ||
1894 | if (!(syntax & RE_NO_BK_PARENS)) | ||
1895 | token->type = OP_OPEN_SUBEXP; | ||
1896 | break; | ||
1897 | case ')': | ||
1898 | if (!(syntax & RE_NO_BK_PARENS)) | ||
1899 | token->type = OP_CLOSE_SUBEXP; | ||
1900 | break; | ||
1901 | case '+': | ||
1902 | if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) | ||
1903 | token->type = OP_DUP_PLUS; | ||
1904 | break; | ||
1905 | case '?': | ||
1906 | if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_BK_PLUS_QM)) | ||
1907 | token->type = OP_DUP_QUESTION; | ||
1908 | break; | ||
1909 | case '{': | ||
1910 | if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) | ||
1911 | token->type = OP_OPEN_DUP_NUM; | ||
1912 | break; | ||
1913 | case '}': | ||
1914 | if ((syntax & RE_INTERVALS) && (!(syntax & RE_NO_BK_BRACES))) | ||
1915 | token->type = OP_CLOSE_DUP_NUM; | ||
1916 | break; | ||
1917 | default: | ||
1918 | break; | ||
1919 | } | ||
1920 | return 2; | ||
1921 | } | ||
1922 | |||
1923 | token->type = CHARACTER; | ||
1924 | #ifdef RE_ENABLE_I18N | ||
1925 | if (input->mb_cur_max > 1) | ||
1926 | { | ||
1927 | wint_t wc = re_string_wchar_at (input, re_string_cur_idx (input)); | ||
1928 | token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; | ||
1929 | } | ||
1930 | else | ||
1931 | #endif | ||
1932 | token->word_char = IS_WORD_CHAR (token->opr.c); | ||
1933 | |||
1934 | switch (c) | ||
1935 | { | ||
1936 | case '\n': | ||
1937 | if (syntax & RE_NEWLINE_ALT) | ||
1938 | token->type = OP_ALT; | ||
1939 | break; | ||
1940 | case '|': | ||
1941 | if (!(syntax & RE_LIMITED_OPS) && (syntax & RE_NO_BK_VBAR)) | ||
1942 | token->type = OP_ALT; | ||
1943 | break; | ||
1944 | case '*': | ||
1945 | token->type = OP_DUP_ASTERISK; | ||
1946 | break; | ||
1947 | case '+': | ||
1948 | if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) | ||
1949 | token->type = OP_DUP_PLUS; | ||
1950 | break; | ||
1951 | case '?': | ||
1952 | if (!(syntax & RE_LIMITED_OPS) && !(syntax & RE_BK_PLUS_QM)) | ||
1953 | token->type = OP_DUP_QUESTION; | ||
1954 | break; | ||
1955 | case '{': | ||
1956 | if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | ||
1957 | token->type = OP_OPEN_DUP_NUM; | ||
1958 | break; | ||
1959 | case '}': | ||
1960 | if ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | ||
1961 | token->type = OP_CLOSE_DUP_NUM; | ||
1962 | break; | ||
1963 | case '(': | ||
1964 | if (syntax & RE_NO_BK_PARENS) | ||
1965 | token->type = OP_OPEN_SUBEXP; | ||
1966 | break; | ||
1967 | case ')': | ||
1968 | if (syntax & RE_NO_BK_PARENS) | ||
1969 | token->type = OP_CLOSE_SUBEXP; | ||
1970 | break; | ||
1971 | case '[': | ||
1972 | token->type = OP_OPEN_BRACKET; | ||
1973 | break; | ||
1974 | case '.': | ||
1975 | token->type = OP_PERIOD; | ||
1976 | break; | ||
1977 | case '^': | ||
1978 | if (!(syntax & (RE_CONTEXT_INDEP_ANCHORS | RE_CARET_ANCHORS_HERE)) && | ||
1979 | re_string_cur_idx (input) != 0) | ||
1980 | { | ||
1981 | char prev = re_string_peek_byte (input, -1); | ||
1982 | if (!(syntax & RE_NEWLINE_ALT) || prev != '\n') | ||
1983 | break; | ||
1984 | } | ||
1985 | token->type = ANCHOR; | ||
1986 | token->opr.ctx_type = LINE_FIRST; | ||
1987 | break; | ||
1988 | case '$': | ||
1989 | if (!(syntax & RE_CONTEXT_INDEP_ANCHORS) && | ||
1990 | re_string_cur_idx (input) + 1 != re_string_length (input)) | ||
1991 | { | ||
1992 | re_token_t next; | ||
1993 | re_string_skip_bytes (input, 1); | ||
1994 | peek_token (&next, input, syntax); | ||
1995 | re_string_skip_bytes (input, -1); | ||
1996 | if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP) | ||
1997 | break; | ||
1998 | } | ||
1999 | token->type = ANCHOR; | ||
2000 | token->opr.ctx_type = LINE_LAST; | ||
2001 | break; | ||
2002 | default: | ||
2003 | break; | ||
2004 | } | ||
2005 | return 1; | ||
2006 | } | ||
2007 | |||
2008 | /* Peek a token from INPUT, and return the length of the token. | ||
2009 | We must not use this function out of bracket expressions. */ | ||
2010 | |||
2011 | static int | ||
2012 | internal_function | ||
2013 | peek_token_bracket (re_token_t *token, re_string_t *input, reg_syntax_t syntax) | ||
2014 | { | ||
2015 | unsigned char c; | ||
2016 | if (re_string_eoi (input)) | ||
2017 | { | ||
2018 | token->type = END_OF_RE; | ||
2019 | return 0; | ||
2020 | } | ||
2021 | c = re_string_peek_byte (input, 0); | ||
2022 | token->opr.c = c; | ||
2023 | |||
2024 | #ifdef RE_ENABLE_I18N | ||
2025 | if (input->mb_cur_max > 1 && | ||
2026 | !re_string_first_byte (input, re_string_cur_idx (input))) | ||
2027 | { | ||
2028 | token->type = CHARACTER; | ||
2029 | return 1; | ||
2030 | } | ||
2031 | #endif /* RE_ENABLE_I18N */ | ||
2032 | |||
2033 | if (c == '\\' && (syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) | ||
2034 | && re_string_cur_idx (input) + 1 < re_string_length (input)) | ||
2035 | { | ||
2036 | /* In this case, '\' escape a character. */ | ||
2037 | unsigned char c2; | ||
2038 | re_string_skip_bytes (input, 1); | ||
2039 | c2 = re_string_peek_byte (input, 0); | ||
2040 | token->opr.c = c2; | ||
2041 | token->type = CHARACTER; | ||
2042 | return 1; | ||
2043 | } | ||
2044 | if (c == '[') /* '[' is a special char in a bracket exps. */ | ||
2045 | { | ||
2046 | unsigned char c2; | ||
2047 | int token_len; | ||
2048 | if (re_string_cur_idx (input) + 1 < re_string_length (input)) | ||
2049 | c2 = re_string_peek_byte (input, 1); | ||
2050 | else | ||
2051 | c2 = 0; | ||
2052 | token->opr.c = c2; | ||
2053 | token_len = 2; | ||
2054 | switch (c2) | ||
2055 | { | ||
2056 | case '.': | ||
2057 | token->type = OP_OPEN_COLL_ELEM; | ||
2058 | break; | ||
2059 | case '=': | ||
2060 | token->type = OP_OPEN_EQUIV_CLASS; | ||
2061 | break; | ||
2062 | case ':': | ||
2063 | if (syntax & RE_CHAR_CLASSES) | ||
2064 | { | ||
2065 | token->type = OP_OPEN_CHAR_CLASS; | ||
2066 | break; | ||
2067 | } | ||
2068 | /* else fall through. */ | ||
2069 | default: | ||
2070 | token->type = CHARACTER; | ||
2071 | token->opr.c = c; | ||
2072 | token_len = 1; | ||
2073 | break; | ||
2074 | } | ||
2075 | return token_len; | ||
2076 | } | ||
2077 | switch (c) | ||
2078 | { | ||
2079 | case '-': | ||
2080 | token->type = OP_CHARSET_RANGE; | ||
2081 | break; | ||
2082 | case ']': | ||
2083 | token->type = OP_CLOSE_BRACKET; | ||
2084 | break; | ||
2085 | case '^': | ||
2086 | token->type = OP_NON_MATCH_LIST; | ||
2087 | break; | ||
2088 | default: | ||
2089 | token->type = CHARACTER; | ||
2090 | } | ||
2091 | return 1; | ||
2092 | } | ||
2093 | |||
2094 | /* Functions for parser. */ | ||
2095 | |||
2096 | /* Entry point of the parser. | ||
2097 | Parse the regular expression REGEXP and return the structure tree. | ||
2098 | If an error has occurred, ERR is set by error code, and return NULL. | ||
2099 | This function build the following tree, from regular expression <reg_exp>: | ||
2100 | CAT | ||
2101 | / \ | ||
2102 | / \ | ||
2103 | <reg_exp> EOR | ||
2104 | |||
2105 | CAT means concatenation. | ||
2106 | EOR means end of regular expression. */ | ||
2107 | |||
2108 | static bin_tree_t * | ||
2109 | parse (re_string_t *regexp, regex_t *preg, reg_syntax_t syntax, | ||
2110 | reg_errcode_t *err) | ||
2111 | { | ||
2112 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
2113 | bin_tree_t *tree, *eor, *root; | ||
2114 | re_token_t current_token; | ||
2115 | dfa->syntax = syntax; | ||
2116 | fetch_token (¤t_token, regexp, syntax | RE_CARET_ANCHORS_HERE); | ||
2117 | tree = parse_reg_exp (regexp, preg, ¤t_token, syntax, 0, err); | ||
2118 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2119 | return NULL; | ||
2120 | eor = create_tree (dfa, NULL, NULL, END_OF_RE); | ||
2121 | if (tree != NULL) | ||
2122 | root = create_tree (dfa, tree, eor, CONCAT); | ||
2123 | else | ||
2124 | root = eor; | ||
2125 | if (BE (eor == NULL || root == NULL, 0)) | ||
2126 | { | ||
2127 | *err = REG_ESPACE; | ||
2128 | return NULL; | ||
2129 | } | ||
2130 | return root; | ||
2131 | } | ||
2132 | |||
2133 | /* This function build the following tree, from regular expression | ||
2134 | <branch1>|<branch2>: | ||
2135 | ALT | ||
2136 | / \ | ||
2137 | / \ | ||
2138 | <branch1> <branch2> | ||
2139 | |||
2140 | ALT means alternative, which represents the operator `|'. */ | ||
2141 | |||
2142 | static bin_tree_t * | ||
2143 | parse_reg_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, | ||
2144 | reg_syntax_t syntax, int nest, reg_errcode_t *err) | ||
2145 | { | ||
2146 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
2147 | bin_tree_t *tree, *branch = NULL; | ||
2148 | tree = parse_branch (regexp, preg, token, syntax, nest, err); | ||
2149 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2150 | return NULL; | ||
2151 | |||
2152 | while (token->type == OP_ALT) | ||
2153 | { | ||
2154 | fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE); | ||
2155 | if (token->type != OP_ALT && token->type != END_OF_RE | ||
2156 | && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) | ||
2157 | { | ||
2158 | branch = parse_branch (regexp, preg, token, syntax, nest, err); | ||
2159 | if (BE (*err != REG_NOERROR && branch == NULL, 0)) | ||
2160 | return NULL; | ||
2161 | } | ||
2162 | else | ||
2163 | branch = NULL; | ||
2164 | tree = create_tree (dfa, tree, branch, OP_ALT); | ||
2165 | if (BE (tree == NULL, 0)) | ||
2166 | { | ||
2167 | *err = REG_ESPACE; | ||
2168 | return NULL; | ||
2169 | } | ||
2170 | } | ||
2171 | return tree; | ||
2172 | } | ||
2173 | |||
2174 | /* This function build the following tree, from regular expression | ||
2175 | <exp1><exp2>: | ||
2176 | CAT | ||
2177 | / \ | ||
2178 | / \ | ||
2179 | <exp1> <exp2> | ||
2180 | |||
2181 | CAT means concatenation. */ | ||
2182 | |||
2183 | static bin_tree_t * | ||
2184 | parse_branch (re_string_t *regexp, regex_t *preg, re_token_t *token, | ||
2185 | reg_syntax_t syntax, int nest, reg_errcode_t *err) | ||
2186 | { | ||
2187 | bin_tree_t *tree, *exp; | ||
2188 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
2189 | tree = parse_expression (regexp, preg, token, syntax, nest, err); | ||
2190 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2191 | return NULL; | ||
2192 | |||
2193 | while (token->type != OP_ALT && token->type != END_OF_RE | ||
2194 | && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) | ||
2195 | { | ||
2196 | exp = parse_expression (regexp, preg, token, syntax, nest, err); | ||
2197 | if (BE (*err != REG_NOERROR && exp == NULL, 0)) | ||
2198 | { | ||
2199 | return NULL; | ||
2200 | } | ||
2201 | if (tree != NULL && exp != NULL) | ||
2202 | { | ||
2203 | tree = create_tree (dfa, tree, exp, CONCAT); | ||
2204 | if (tree == NULL) | ||
2205 | { | ||
2206 | *err = REG_ESPACE; | ||
2207 | return NULL; | ||
2208 | } | ||
2209 | } | ||
2210 | else if (tree == NULL) | ||
2211 | tree = exp; | ||
2212 | /* Otherwise exp == NULL, we don't need to create new tree. */ | ||
2213 | } | ||
2214 | return tree; | ||
2215 | } | ||
2216 | |||
2217 | /* This function build the following tree, from regular expression a*: | ||
2218 | * | ||
2219 | | | ||
2220 | a | ||
2221 | */ | ||
2222 | |||
2223 | static bin_tree_t * | ||
2224 | parse_expression (re_string_t *regexp, regex_t *preg, re_token_t *token, | ||
2225 | reg_syntax_t syntax, int nest, reg_errcode_t *err) | ||
2226 | { | ||
2227 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
2228 | bin_tree_t *tree; | ||
2229 | switch (token->type) | ||
2230 | { | ||
2231 | case CHARACTER: | ||
2232 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
2233 | if (BE (tree == NULL, 0)) | ||
2234 | { | ||
2235 | *err = REG_ESPACE; | ||
2236 | return NULL; | ||
2237 | } | ||
2238 | #ifdef RE_ENABLE_I18N | ||
2239 | if (dfa->mb_cur_max > 1) | ||
2240 | { | ||
2241 | while (!re_string_eoi (regexp) | ||
2242 | && !re_string_first_byte (regexp, re_string_cur_idx (regexp))) | ||
2243 | { | ||
2244 | bin_tree_t *mbc_remain; | ||
2245 | fetch_token (token, regexp, syntax); | ||
2246 | mbc_remain = create_token_tree (dfa, NULL, NULL, token); | ||
2247 | tree = create_tree (dfa, tree, mbc_remain, CONCAT); | ||
2248 | if (BE (mbc_remain == NULL || tree == NULL, 0)) | ||
2249 | { | ||
2250 | *err = REG_ESPACE; | ||
2251 | return NULL; | ||
2252 | } | ||
2253 | } | ||
2254 | } | ||
2255 | #endif | ||
2256 | break; | ||
2257 | case OP_OPEN_SUBEXP: | ||
2258 | tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err); | ||
2259 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2260 | return NULL; | ||
2261 | break; | ||
2262 | case OP_OPEN_BRACKET: | ||
2263 | tree = parse_bracket_exp (regexp, dfa, token, syntax, err); | ||
2264 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2265 | return NULL; | ||
2266 | break; | ||
2267 | case OP_BACK_REF: | ||
2268 | if (!BE (dfa->completed_bkref_map & (1 << token->opr.idx), 1)) | ||
2269 | { | ||
2270 | *err = REG_ESUBREG; | ||
2271 | return NULL; | ||
2272 | } | ||
2273 | dfa->used_bkref_map |= 1 << token->opr.idx; | ||
2274 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
2275 | if (BE (tree == NULL, 0)) | ||
2276 | { | ||
2277 | *err = REG_ESPACE; | ||
2278 | return NULL; | ||
2279 | } | ||
2280 | ++dfa->nbackref; | ||
2281 | dfa->has_mb_node = 1; | ||
2282 | break; | ||
2283 | case OP_OPEN_DUP_NUM: | ||
2284 | if (syntax & RE_CONTEXT_INVALID_DUP) | ||
2285 | { | ||
2286 | *err = REG_BADRPT; | ||
2287 | return NULL; | ||
2288 | } | ||
2289 | /* FALLTHROUGH */ | ||
2290 | case OP_DUP_ASTERISK: | ||
2291 | case OP_DUP_PLUS: | ||
2292 | case OP_DUP_QUESTION: | ||
2293 | if (syntax & RE_CONTEXT_INVALID_OPS) | ||
2294 | { | ||
2295 | *err = REG_BADRPT; | ||
2296 | return NULL; | ||
2297 | } | ||
2298 | else if (syntax & RE_CONTEXT_INDEP_OPS) | ||
2299 | { | ||
2300 | fetch_token (token, regexp, syntax); | ||
2301 | return parse_expression (regexp, preg, token, syntax, nest, err); | ||
2302 | } | ||
2303 | /* else fall through */ | ||
2304 | case OP_CLOSE_SUBEXP: | ||
2305 | if ((token->type == OP_CLOSE_SUBEXP) && | ||
2306 | !(syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)) | ||
2307 | { | ||
2308 | *err = REG_ERPAREN; | ||
2309 | return NULL; | ||
2310 | } | ||
2311 | /* else fall through */ | ||
2312 | case OP_CLOSE_DUP_NUM: | ||
2313 | /* We treat it as a normal character. */ | ||
2314 | |||
2315 | /* Then we can these characters as normal characters. */ | ||
2316 | token->type = CHARACTER; | ||
2317 | /* mb_partial and word_char bits should be initialized already | ||
2318 | by peek_token. */ | ||
2319 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
2320 | if (BE (tree == NULL, 0)) | ||
2321 | { | ||
2322 | *err = REG_ESPACE; | ||
2323 | return NULL; | ||
2324 | } | ||
2325 | break; | ||
2326 | case ANCHOR: | ||
2327 | if ((token->opr.ctx_type | ||
2328 | & (WORD_DELIM | NOT_WORD_DELIM | WORD_FIRST | WORD_LAST)) | ||
2329 | && dfa->word_ops_used == 0) | ||
2330 | init_word_char (dfa); | ||
2331 | if (token->opr.ctx_type == WORD_DELIM | ||
2332 | || token->opr.ctx_type == NOT_WORD_DELIM) | ||
2333 | { | ||
2334 | bin_tree_t *tree_first, *tree_last; | ||
2335 | if (token->opr.ctx_type == WORD_DELIM) | ||
2336 | { | ||
2337 | token->opr.ctx_type = WORD_FIRST; | ||
2338 | tree_first = create_token_tree (dfa, NULL, NULL, token); | ||
2339 | token->opr.ctx_type = WORD_LAST; | ||
2340 | } | ||
2341 | else | ||
2342 | { | ||
2343 | token->opr.ctx_type = INSIDE_WORD; | ||
2344 | tree_first = create_token_tree (dfa, NULL, NULL, token); | ||
2345 | token->opr.ctx_type = INSIDE_NOTWORD; | ||
2346 | } | ||
2347 | tree_last = create_token_tree (dfa, NULL, NULL, token); | ||
2348 | tree = create_tree (dfa, tree_first, tree_last, OP_ALT); | ||
2349 | if (BE (tree_first == NULL || tree_last == NULL || tree == NULL, 0)) | ||
2350 | { | ||
2351 | *err = REG_ESPACE; | ||
2352 | return NULL; | ||
2353 | } | ||
2354 | } | ||
2355 | else | ||
2356 | { | ||
2357 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
2358 | if (BE (tree == NULL, 0)) | ||
2359 | { | ||
2360 | *err = REG_ESPACE; | ||
2361 | return NULL; | ||
2362 | } | ||
2363 | } | ||
2364 | /* We must return here, since ANCHORs can't be followed | ||
2365 | by repetition operators. | ||
2366 | eg. RE"^*" is invalid or "<ANCHOR(^)><CHAR(*)>", | ||
2367 | it must not be "<ANCHOR(^)><REPEAT(*)>". */ | ||
2368 | fetch_token (token, regexp, syntax); | ||
2369 | return tree; | ||
2370 | case OP_PERIOD: | ||
2371 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
2372 | if (BE (tree == NULL, 0)) | ||
2373 | { | ||
2374 | *err = REG_ESPACE; | ||
2375 | return NULL; | ||
2376 | } | ||
2377 | if (dfa->mb_cur_max > 1) | ||
2378 | dfa->has_mb_node = 1; | ||
2379 | break; | ||
2380 | case OP_WORD: | ||
2381 | case OP_NOTWORD: | ||
2382 | tree = build_charclass_op (dfa, regexp->trans, | ||
2383 | "alnum", | ||
2384 | "_", | ||
2385 | token->type == OP_NOTWORD, err); | ||
2386 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2387 | return NULL; | ||
2388 | break; | ||
2389 | case OP_SPACE: | ||
2390 | case OP_NOTSPACE: | ||
2391 | tree = build_charclass_op (dfa, regexp->trans, | ||
2392 | "space", | ||
2393 | "", | ||
2394 | token->type == OP_NOTSPACE, err); | ||
2395 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2396 | return NULL; | ||
2397 | break; | ||
2398 | case OP_ALT: | ||
2399 | case END_OF_RE: | ||
2400 | return NULL; | ||
2401 | case BACK_SLASH: | ||
2402 | *err = REG_EESCAPE; | ||
2403 | return NULL; | ||
2404 | default: | ||
2405 | /* Must not happen? */ | ||
2406 | #ifdef DEBUG | ||
2407 | assert (0); | ||
2408 | #endif | ||
2409 | return NULL; | ||
2410 | } | ||
2411 | fetch_token (token, regexp, syntax); | ||
2412 | |||
2413 | while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS | ||
2414 | || token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM) | ||
2415 | { | ||
2416 | tree = parse_dup_op (tree, regexp, dfa, token, syntax, err); | ||
2417 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
2418 | return NULL; | ||
2419 | /* In BRE consecutive duplications are not allowed. */ | ||
2420 | if ((syntax & RE_CONTEXT_INVALID_DUP) | ||
2421 | && (token->type == OP_DUP_ASTERISK | ||
2422 | || token->type == OP_OPEN_DUP_NUM)) | ||
2423 | { | ||
2424 | *err = REG_BADRPT; | ||
2425 | return NULL; | ||
2426 | } | ||
2427 | } | ||
2428 | |||
2429 | return tree; | ||
2430 | } | ||
2431 | |||
2432 | /* This function build the following tree, from regular expression | ||
2433 | (<reg_exp>): | ||
2434 | SUBEXP | ||
2435 | | | ||
2436 | <reg_exp> | ||
2437 | */ | ||
2438 | |||
2439 | static bin_tree_t * | ||
2440 | parse_sub_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, | ||
2441 | reg_syntax_t syntax, int nest, reg_errcode_t *err) | ||
2442 | { | ||
2443 | re_dfa_t *dfa = (re_dfa_t *) preg->buffer; | ||
2444 | bin_tree_t *tree; | ||
2445 | size_t cur_nsub; | ||
2446 | cur_nsub = preg->re_nsub++; | ||
2447 | |||
2448 | fetch_token (token, regexp, syntax | RE_CARET_ANCHORS_HERE); | ||
2449 | |||
2450 | /* The subexpression may be a null string. */ | ||
2451 | if (token->type == OP_CLOSE_SUBEXP) | ||
2452 | tree = NULL; | ||
2453 | else | ||
2454 | { | ||
2455 | tree = parse_reg_exp (regexp, preg, token, syntax, nest, err); | ||
2456 | if (BE (*err == REG_NOERROR && token->type != OP_CLOSE_SUBEXP, 0)) | ||
2457 | *err = REG_EPAREN; | ||
2458 | if (BE (*err != REG_NOERROR, 0)) | ||
2459 | return NULL; | ||
2460 | } | ||
2461 | |||
2462 | if (cur_nsub <= '9' - '1') | ||
2463 | dfa->completed_bkref_map |= 1 << cur_nsub; | ||
2464 | |||
2465 | tree = create_tree (dfa, tree, NULL, SUBEXP); | ||
2466 | if (BE (tree == NULL, 0)) | ||
2467 | { | ||
2468 | *err = REG_ESPACE; | ||
2469 | return NULL; | ||
2470 | } | ||
2471 | tree->token.opr.idx = cur_nsub; | ||
2472 | return tree; | ||
2473 | } | ||
2474 | |||
2475 | /* This function parse repetition operators like "*", "+", "{1,3}" etc. */ | ||
2476 | |||
2477 | static bin_tree_t * | ||
2478 | parse_dup_op (bin_tree_t *elem, re_string_t *regexp, re_dfa_t *dfa, | ||
2479 | re_token_t *token, reg_syntax_t syntax, reg_errcode_t *err) | ||
2480 | { | ||
2481 | bin_tree_t *tree = NULL, *old_tree = NULL; | ||
2482 | int i, start, end, start_idx = re_string_cur_idx (regexp); | ||
2483 | #ifndef RE_TOKEN_INIT_BUG | ||
2484 | re_token_t start_token = *token; | ||
2485 | #else | ||
2486 | re_token_t start_token; | ||
2487 | |||
2488 | memcpy ((void *) &start_token, (void *) token, sizeof start_token); | ||
2489 | #endif | ||
2490 | |||
2491 | if (token->type == OP_OPEN_DUP_NUM) | ||
2492 | { | ||
2493 | end = 0; | ||
2494 | start = fetch_number (regexp, token, syntax); | ||
2495 | if (start == -1) | ||
2496 | { | ||
2497 | if (token->type == CHARACTER && token->opr.c == ',') | ||
2498 | start = 0; /* We treat "{,m}" as "{0,m}". */ | ||
2499 | else | ||
2500 | { | ||
2501 | *err = REG_BADBR; /* <re>{} is invalid. */ | ||
2502 | return NULL; | ||
2503 | } | ||
2504 | } | ||
2505 | if (BE (start != -2, 1)) | ||
2506 | { | ||
2507 | /* We treat "{n}" as "{n,n}". */ | ||
2508 | end = ((token->type == OP_CLOSE_DUP_NUM) ? start | ||
2509 | : ((token->type == CHARACTER && token->opr.c == ',') | ||
2510 | ? fetch_number (regexp, token, syntax) : -2)); | ||
2511 | } | ||
2512 | if (BE (start == -2 || end == -2, 0)) | ||
2513 | { | ||
2514 | /* Invalid sequence. */ | ||
2515 | if (BE (!(syntax & RE_INVALID_INTERVAL_ORD), 0)) | ||
2516 | { | ||
2517 | if (token->type == END_OF_RE) | ||
2518 | *err = REG_EBRACE; | ||
2519 | else | ||
2520 | *err = REG_BADBR; | ||
2521 | |||
2522 | return NULL; | ||
2523 | } | ||
2524 | |||
2525 | /* If the syntax bit is set, rollback. */ | ||
2526 | re_string_set_index (regexp, start_idx); | ||
2527 | *token = start_token; | ||
2528 | token->type = CHARACTER; | ||
2529 | /* mb_partial and word_char bits should be already initialized by | ||
2530 | peek_token. */ | ||
2531 | return elem; | ||
2532 | } | ||
2533 | |||
2534 | if (BE ((end != -1 && start > end) || token->type != OP_CLOSE_DUP_NUM, 0)) | ||
2535 | { | ||
2536 | /* First number greater than second. */ | ||
2537 | *err = REG_BADBR; | ||
2538 | return NULL; | ||
2539 | } | ||
2540 | } | ||
2541 | else | ||
2542 | { | ||
2543 | start = (token->type == OP_DUP_PLUS) ? 1 : 0; | ||
2544 | end = (token->type == OP_DUP_QUESTION) ? 1 : -1; | ||
2545 | } | ||
2546 | |||
2547 | fetch_token (token, regexp, syntax); | ||
2548 | |||
2549 | if (BE (elem == NULL, 0)) | ||
2550 | return NULL; | ||
2551 | if (BE (start == 0 && end == 0, 0)) | ||
2552 | { | ||
2553 | postorder (elem, free_tree, NULL); | ||
2554 | return NULL; | ||
2555 | } | ||
2556 | |||
2557 | /* Extract "<re>{n,m}" to "<re><re>...<re><re>{0,<m-n>}". */ | ||
2558 | if (BE (start > 0, 0)) | ||
2559 | { | ||
2560 | tree = elem; | ||
2561 | for (i = 2; i <= start; ++i) | ||
2562 | { | ||
2563 | elem = duplicate_tree (elem, dfa); | ||
2564 | tree = create_tree (dfa, tree, elem, CONCAT); | ||
2565 | if (BE (elem == NULL || tree == NULL, 0)) | ||
2566 | goto parse_dup_op_espace; | ||
2567 | } | ||
2568 | |||
2569 | if (start == end) | ||
2570 | return tree; | ||
2571 | |||
2572 | /* Duplicate ELEM before it is marked optional. */ | ||
2573 | elem = duplicate_tree (elem, dfa); | ||
2574 | old_tree = tree; | ||
2575 | } | ||
2576 | else | ||
2577 | old_tree = NULL; | ||
2578 | |||
2579 | if (elem->token.type == SUBEXP) | ||
2580 | postorder (elem, mark_opt_subexp, (void *) (intptr_t) elem->token.opr.idx); | ||
2581 | |||
2582 | tree = create_tree (dfa, elem, NULL, (end == -1 ? OP_DUP_ASTERISK : OP_ALT)); | ||
2583 | if (BE (tree == NULL, 0)) | ||
2584 | goto parse_dup_op_espace; | ||
2585 | |||
2586 | /* This loop is actually executed only when end != -1, | ||
2587 | to rewrite <re>{0,n} as (<re>(<re>...<re>?)?)?... We have | ||
2588 | already created the start+1-th copy. */ | ||
2589 | for (i = start + 2; i <= end; ++i) | ||
2590 | { | ||
2591 | elem = duplicate_tree (elem, dfa); | ||
2592 | tree = create_tree (dfa, tree, elem, CONCAT); | ||
2593 | if (BE (elem == NULL || tree == NULL, 0)) | ||
2594 | goto parse_dup_op_espace; | ||
2595 | |||
2596 | tree = create_tree (dfa, tree, NULL, OP_ALT); | ||
2597 | if (BE (tree == NULL, 0)) | ||
2598 | goto parse_dup_op_espace; | ||
2599 | } | ||
2600 | |||
2601 | if (old_tree) | ||
2602 | tree = create_tree (dfa, old_tree, tree, CONCAT); | ||
2603 | |||
2604 | return tree; | ||
2605 | |||
2606 | parse_dup_op_espace: | ||
2607 | *err = REG_ESPACE; | ||
2608 | return NULL; | ||
2609 | } | ||
2610 | |||
2611 | /* Size of the names for collating symbol/equivalence_class/character_class. | ||
2612 | I'm not sure, but maybe enough. */ | ||
2613 | #define BRACKET_NAME_BUF_SIZE 32 | ||
2614 | |||
2615 | #ifndef _LIBC | ||
2616 | /* Local function for parse_bracket_exp only used in case of NOT _LIBC. | ||
2617 | Build the range expression which starts from START_ELEM, and ends | ||
2618 | at END_ELEM. The result are written to MBCSET and SBCSET. | ||
2619 | RANGE_ALLOC is the allocated size of mbcset->range_starts, and | ||
2620 | mbcset->range_ends, is a pointer argument since we may | ||
2621 | update it. */ | ||
2622 | |||
2623 | static reg_errcode_t | ||
2624 | internal_function | ||
2625 | # ifdef RE_ENABLE_I18N | ||
2626 | build_range_exp (bitset_t sbcset, re_charset_t *mbcset, int *range_alloc, | ||
2627 | bracket_elem_t *start_elem, bracket_elem_t *end_elem) | ||
2628 | # else /* not RE_ENABLE_I18N */ | ||
2629 | build_range_exp (bitset_t sbcset, bracket_elem_t *start_elem, | ||
2630 | bracket_elem_t *end_elem) | ||
2631 | # endif /* not RE_ENABLE_I18N */ | ||
2632 | { | ||
2633 | unsigned int start_ch, end_ch; | ||
2634 | /* Equivalence Classes and Character Classes can't be a range start/end. */ | ||
2635 | if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS | ||
2636 | || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, | ||
2637 | 0)) | ||
2638 | return REG_ERANGE; | ||
2639 | |||
2640 | /* We can handle no multi character collating elements without libc | ||
2641 | support. */ | ||
2642 | if (BE ((start_elem->type == COLL_SYM | ||
2643 | && strlen ((char *) start_elem->opr.name) > 1) | ||
2644 | || (end_elem->type == COLL_SYM | ||
2645 | && strlen ((char *) end_elem->opr.name) > 1), 0)) | ||
2646 | return REG_ECOLLATE; | ||
2647 | |||
2648 | # ifdef RE_ENABLE_I18N | ||
2649 | { | ||
2650 | wchar_t wc; | ||
2651 | wint_t start_wc; | ||
2652 | wint_t end_wc; | ||
2653 | wchar_t cmp_buf[6] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; | ||
2654 | |||
2655 | start_ch = ((start_elem->type == SB_CHAR) ? start_elem->opr.ch | ||
2656 | : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] | ||
2657 | : 0)); | ||
2658 | end_ch = ((end_elem->type == SB_CHAR) ? end_elem->opr.ch | ||
2659 | : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] | ||
2660 | : 0)); | ||
2661 | #ifdef GAWK | ||
2662 | /* | ||
2663 | * Fedora Core 2, maybe others, have broken `btowc' that returns -1 | ||
2664 | * for any value > 127. Sigh. Note that `start_ch' and `end_ch' are | ||
2665 | * unsigned, so we don't have sign extension problems. | ||
2666 | */ | ||
2667 | start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM) | ||
2668 | ? start_ch : start_elem->opr.wch); | ||
2669 | end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM) | ||
2670 | ? end_ch : end_elem->opr.wch); | ||
2671 | #else | ||
2672 | start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM) | ||
2673 | ? __btowc (start_ch) : start_elem->opr.wch); | ||
2674 | end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM) | ||
2675 | ? __btowc (end_ch) : end_elem->opr.wch); | ||
2676 | #endif | ||
2677 | if (start_wc == WEOF || end_wc == WEOF) | ||
2678 | return REG_ECOLLATE; | ||
2679 | cmp_buf[0] = start_wc; | ||
2680 | cmp_buf[4] = end_wc; | ||
2681 | if (wcscoll (cmp_buf, cmp_buf + 4) > 0) | ||
2682 | return REG_ERANGE; | ||
2683 | |||
2684 | /* Got valid collation sequence values, add them as a new entry. | ||
2685 | However, for !_LIBC we have no collation elements: if the | ||
2686 | character set is single byte, the single byte character set | ||
2687 | that we build below suffices. parse_bracket_exp passes | ||
2688 | no MBCSET if dfa->mb_cur_max == 1. */ | ||
2689 | if (mbcset) | ||
2690 | { | ||
2691 | /* Check the space of the arrays. */ | ||
2692 | if (BE (*range_alloc == mbcset->nranges, 0)) | ||
2693 | { | ||
2694 | /* There is not enough space, need realloc. */ | ||
2695 | wchar_t *new_array_start, *new_array_end; | ||
2696 | int new_nranges; | ||
2697 | |||
2698 | /* +1 in case of mbcset->nranges is 0. */ | ||
2699 | new_nranges = 2 * mbcset->nranges + 1; | ||
2700 | /* Use realloc since mbcset->range_starts and mbcset->range_ends | ||
2701 | are NULL if *range_alloc == 0. */ | ||
2702 | new_array_start = re_realloc (mbcset->range_starts, wchar_t, | ||
2703 | new_nranges); | ||
2704 | new_array_end = re_realloc (mbcset->range_ends, wchar_t, | ||
2705 | new_nranges); | ||
2706 | |||
2707 | if (BE (new_array_start == NULL || new_array_end == NULL, 0)) | ||
2708 | return REG_ESPACE; | ||
2709 | |||
2710 | mbcset->range_starts = new_array_start; | ||
2711 | mbcset->range_ends = new_array_end; | ||
2712 | *range_alloc = new_nranges; | ||
2713 | } | ||
2714 | |||
2715 | mbcset->range_starts[mbcset->nranges] = start_wc; | ||
2716 | mbcset->range_ends[mbcset->nranges++] = end_wc; | ||
2717 | } | ||
2718 | |||
2719 | /* Build the table for single byte characters. */ | ||
2720 | for (wc = 0; wc < SBC_MAX; ++wc) | ||
2721 | { | ||
2722 | cmp_buf[2] = wc; | ||
2723 | if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 | ||
2724 | && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) | ||
2725 | bitset_set (sbcset, wc); | ||
2726 | } | ||
2727 | } | ||
2728 | # else /* not RE_ENABLE_I18N */ | ||
2729 | { | ||
2730 | unsigned int ch; | ||
2731 | start_ch = ((start_elem->type == SB_CHAR ) ? start_elem->opr.ch | ||
2732 | : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] | ||
2733 | : 0)); | ||
2734 | end_ch = ((end_elem->type == SB_CHAR ) ? end_elem->opr.ch | ||
2735 | : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] | ||
2736 | : 0)); | ||
2737 | if (start_ch > end_ch) | ||
2738 | return REG_ERANGE; | ||
2739 | /* Build the table for single byte characters. */ | ||
2740 | for (ch = 0; ch < SBC_MAX; ++ch) | ||
2741 | if (start_ch <= ch && ch <= end_ch) | ||
2742 | bitset_set (sbcset, ch); | ||
2743 | } | ||
2744 | # endif /* not RE_ENABLE_I18N */ | ||
2745 | return REG_NOERROR; | ||
2746 | } | ||
2747 | #endif /* not _LIBC */ | ||
2748 | |||
2749 | #ifndef _LIBC | ||
2750 | /* Helper function for parse_bracket_exp only used in case of NOT _LIBC.. | ||
2751 | Build the collating element which is represented by NAME. | ||
2752 | The result are written to MBCSET and SBCSET. | ||
2753 | COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a | ||
2754 | pointer argument since we may update it. */ | ||
2755 | |||
2756 | static reg_errcode_t | ||
2757 | internal_function | ||
2758 | # ifdef RE_ENABLE_I18N | ||
2759 | build_collating_symbol (bitset_t sbcset, re_charset_t *mbcset, | ||
2760 | int *coll_sym_alloc, const unsigned char *name) | ||
2761 | # else /* not RE_ENABLE_I18N */ | ||
2762 | build_collating_symbol (bitset_t sbcset, const unsigned char *name) | ||
2763 | # endif /* not RE_ENABLE_I18N */ | ||
2764 | { | ||
2765 | size_t name_len = strlen ((const char *) name); | ||
2766 | if (BE (name_len != 1, 0)) | ||
2767 | return REG_ECOLLATE; | ||
2768 | else | ||
2769 | { | ||
2770 | bitset_set (sbcset, name[0]); | ||
2771 | return REG_NOERROR; | ||
2772 | } | ||
2773 | } | ||
2774 | #endif /* not _LIBC */ | ||
2775 | |||
2776 | /* This function parse bracket expression like "[abc]", "[a-c]", | ||
2777 | "[[.a-a.]]" etc. */ | ||
2778 | |||
2779 | static bin_tree_t * | ||
2780 | parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, re_token_t *token, | ||
2781 | reg_syntax_t syntax, reg_errcode_t *err) | ||
2782 | { | ||
2783 | #ifdef _LIBC | ||
2784 | const unsigned char *collseqmb; | ||
2785 | const char *collseqwc; | ||
2786 | uint32_t nrules; | ||
2787 | int32_t table_size; | ||
2788 | const int32_t *symb_table; | ||
2789 | const unsigned char *extra; | ||
2790 | |||
2791 | /* Local function for parse_bracket_exp used in _LIBC environment. | ||
2792 | Seek the collating symbol entry correspondings to NAME. | ||
2793 | Return the index of the symbol in the SYMB_TABLE. */ | ||
2794 | |||
2795 | auto inline int32_t | ||
2796 | __attribute ((always_inline)) | ||
2797 | seek_collating_symbol_entry (name, name_len) | ||
2798 | const unsigned char *name; | ||
2799 | size_t name_len; | ||
2800 | { | ||
2801 | int32_t hash = elem_hash ((const char *) name, name_len); | ||
2802 | int32_t elem = hash % table_size; | ||
2803 | if (symb_table[2 * elem] != 0) | ||
2804 | { | ||
2805 | int32_t second = hash % (table_size - 2) + 1; | ||
2806 | |||
2807 | do | ||
2808 | { | ||
2809 | /* First compare the hashing value. */ | ||
2810 | if (symb_table[2 * elem] == hash | ||
2811 | /* Compare the length of the name. */ | ||
2812 | && name_len == extra[symb_table[2 * elem + 1]] | ||
2813 | /* Compare the name. */ | ||
2814 | && memcmp (name, &extra[symb_table[2 * elem + 1] + 1], | ||
2815 | name_len) == 0) | ||
2816 | { | ||
2817 | /* Yep, this is the entry. */ | ||
2818 | break; | ||
2819 | } | ||
2820 | |||
2821 | /* Next entry. */ | ||
2822 | elem += second; | ||
2823 | } | ||
2824 | while (symb_table[2 * elem] != 0); | ||
2825 | } | ||
2826 | return elem; | ||
2827 | } | ||
2828 | |||
2829 | /* Local function for parse_bracket_exp used in _LIBC environment. | ||
2830 | Look up the collation sequence value of BR_ELEM. | ||
2831 | Return the value if succeeded, UINT_MAX otherwise. */ | ||
2832 | |||
2833 | auto inline unsigned int | ||
2834 | __attribute ((always_inline)) | ||
2835 | lookup_collation_sequence_value (br_elem) | ||
2836 | bracket_elem_t *br_elem; | ||
2837 | { | ||
2838 | if (br_elem->type == SB_CHAR) | ||
2839 | { | ||
2840 | /* | ||
2841 | if (MB_CUR_MAX == 1) | ||
2842 | */ | ||
2843 | if (nrules == 0) | ||
2844 | return collseqmb[br_elem->opr.ch]; | ||
2845 | else | ||
2846 | { | ||
2847 | wint_t wc = __btowc (br_elem->opr.ch); | ||
2848 | return __collseq_table_lookup (collseqwc, wc); | ||
2849 | } | ||
2850 | } | ||
2851 | else if (br_elem->type == MB_CHAR) | ||
2852 | { | ||
2853 | if (nrules != 0) | ||
2854 | return __collseq_table_lookup (collseqwc, br_elem->opr.wch); | ||
2855 | } | ||
2856 | else if (br_elem->type == COLL_SYM) | ||
2857 | { | ||
2858 | size_t sym_name_len = strlen ((char *) br_elem->opr.name); | ||
2859 | if (nrules != 0) | ||
2860 | { | ||
2861 | int32_t elem, idx; | ||
2862 | elem = seek_collating_symbol_entry (br_elem->opr.name, | ||
2863 | sym_name_len); | ||
2864 | if (symb_table[2 * elem] != 0) | ||
2865 | { | ||
2866 | /* We found the entry. */ | ||
2867 | idx = symb_table[2 * elem + 1]; | ||
2868 | /* Skip the name of collating element name. */ | ||
2869 | idx += 1 + extra[idx]; | ||
2870 | /* Skip the byte sequence of the collating element. */ | ||
2871 | idx += 1 + extra[idx]; | ||
2872 | /* Adjust for the alignment. */ | ||
2873 | idx = (idx + 3) & ~3; | ||
2874 | /* Skip the multibyte collation sequence value. */ | ||
2875 | idx += sizeof (unsigned int); | ||
2876 | /* Skip the wide char sequence of the collating element. */ | ||
2877 | idx += sizeof (unsigned int) * | ||
2878 | (1 + *(unsigned int *) (extra + idx)); | ||
2879 | /* Return the collation sequence value. */ | ||
2880 | return *(unsigned int *) (extra + idx); | ||
2881 | } | ||
2882 | else if (symb_table[2 * elem] == 0 && sym_name_len == 1) | ||
2883 | { | ||
2884 | /* No valid character. Match it as a single byte | ||
2885 | character. */ | ||
2886 | return collseqmb[br_elem->opr.name[0]]; | ||
2887 | } | ||
2888 | } | ||
2889 | else if (sym_name_len == 1) | ||
2890 | return collseqmb[br_elem->opr.name[0]]; | ||
2891 | } | ||
2892 | return UINT_MAX; | ||
2893 | } | ||
2894 | |||
2895 | /* Local function for parse_bracket_exp used in _LIBC environment. | ||
2896 | Build the range expression which starts from START_ELEM, and ends | ||
2897 | at END_ELEM. The result are written to MBCSET and SBCSET. | ||
2898 | RANGE_ALLOC is the allocated size of mbcset->range_starts, and | ||
2899 | mbcset->range_ends, is a pointer argument since we may | ||
2900 | update it. */ | ||
2901 | |||
2902 | auto inline reg_errcode_t | ||
2903 | __attribute ((always_inline)) | ||
2904 | build_range_exp (sbcset, mbcset, range_alloc, start_elem, end_elem) | ||
2905 | re_charset_t *mbcset; | ||
2906 | int *range_alloc; | ||
2907 | bitset_t sbcset; | ||
2908 | bracket_elem_t *start_elem, *end_elem; | ||
2909 | { | ||
2910 | unsigned int ch; | ||
2911 | uint32_t start_collseq; | ||
2912 | uint32_t end_collseq; | ||
2913 | |||
2914 | /* Equivalence Classes and Character Classes can't be a range | ||
2915 | start/end. */ | ||
2916 | if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS | ||
2917 | || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, | ||
2918 | 0)) | ||
2919 | return REG_ERANGE; | ||
2920 | |||
2921 | start_collseq = lookup_collation_sequence_value (start_elem); | ||
2922 | end_collseq = lookup_collation_sequence_value (end_elem); | ||
2923 | /* Check start/end collation sequence values. */ | ||
2924 | if (BE (start_collseq == UINT_MAX || end_collseq == UINT_MAX, 0)) | ||
2925 | return REG_ECOLLATE; | ||
2926 | if (BE ((syntax & RE_NO_EMPTY_RANGES) && start_collseq > end_collseq, 0)) | ||
2927 | return REG_ERANGE; | ||
2928 | |||
2929 | /* Got valid collation sequence values, add them as a new entry. | ||
2930 | However, if we have no collation elements, and the character set | ||
2931 | is single byte, the single byte character set that we | ||
2932 | build below suffices. */ | ||
2933 | if (nrules > 0 || dfa->mb_cur_max > 1) | ||
2934 | { | ||
2935 | /* Check the space of the arrays. */ | ||
2936 | if (BE (*range_alloc == mbcset->nranges, 0)) | ||
2937 | { | ||
2938 | /* There is not enough space, need realloc. */ | ||
2939 | uint32_t *new_array_start; | ||
2940 | uint32_t *new_array_end; | ||
2941 | int new_nranges; | ||
2942 | |||
2943 | /* +1 in case of mbcset->nranges is 0. */ | ||
2944 | new_nranges = 2 * mbcset->nranges + 1; | ||
2945 | new_array_start = re_realloc (mbcset->range_starts, uint32_t, | ||
2946 | new_nranges); | ||
2947 | new_array_end = re_realloc (mbcset->range_ends, uint32_t, | ||
2948 | new_nranges); | ||
2949 | |||
2950 | if (BE (new_array_start == NULL || new_array_end == NULL, 0)) | ||
2951 | return REG_ESPACE; | ||
2952 | |||
2953 | mbcset->range_starts = new_array_start; | ||
2954 | mbcset->range_ends = new_array_end; | ||
2955 | *range_alloc = new_nranges; | ||
2956 | } | ||
2957 | |||
2958 | mbcset->range_starts[mbcset->nranges] = start_collseq; | ||
2959 | mbcset->range_ends[mbcset->nranges++] = end_collseq; | ||
2960 | } | ||
2961 | |||
2962 | /* Build the table for single byte characters. */ | ||
2963 | for (ch = 0; ch < SBC_MAX; ch++) | ||
2964 | { | ||
2965 | uint32_t ch_collseq; | ||
2966 | /* | ||
2967 | if (MB_CUR_MAX == 1) | ||
2968 | */ | ||
2969 | if (nrules == 0) | ||
2970 | ch_collseq = collseqmb[ch]; | ||
2971 | else | ||
2972 | ch_collseq = __collseq_table_lookup (collseqwc, __btowc (ch)); | ||
2973 | if (start_collseq <= ch_collseq && ch_collseq <= end_collseq) | ||
2974 | bitset_set (sbcset, ch); | ||
2975 | } | ||
2976 | return REG_NOERROR; | ||
2977 | } | ||
2978 | |||
2979 | /* Local function for parse_bracket_exp used in _LIBC environment. | ||
2980 | Build the collating element which is represented by NAME. | ||
2981 | The result are written to MBCSET and SBCSET. | ||
2982 | COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a | ||
2983 | pointer argument since we may update it. */ | ||
2984 | |||
2985 | auto inline reg_errcode_t | ||
2986 | __attribute ((always_inline)) | ||
2987 | build_collating_symbol (sbcset, mbcset, coll_sym_alloc, name) | ||
2988 | re_charset_t *mbcset; | ||
2989 | int *coll_sym_alloc; | ||
2990 | bitset_t sbcset; | ||
2991 | const unsigned char *name; | ||
2992 | { | ||
2993 | int32_t elem, idx; | ||
2994 | size_t name_len = strlen ((const char *) name); | ||
2995 | if (nrules != 0) | ||
2996 | { | ||
2997 | elem = seek_collating_symbol_entry (name, name_len); | ||
2998 | if (symb_table[2 * elem] != 0) | ||
2999 | { | ||
3000 | /* We found the entry. */ | ||
3001 | idx = symb_table[2 * elem + 1]; | ||
3002 | /* Skip the name of collating element name. */ | ||
3003 | idx += 1 + extra[idx]; | ||
3004 | } | ||
3005 | else if (symb_table[2 * elem] == 0 && name_len == 1) | ||
3006 | { | ||
3007 | /* No valid character, treat it as a normal | ||
3008 | character. */ | ||
3009 | bitset_set (sbcset, name[0]); | ||
3010 | return REG_NOERROR; | ||
3011 | } | ||
3012 | else | ||
3013 | return REG_ECOLLATE; | ||
3014 | |||
3015 | /* Got valid collation sequence, add it as a new entry. */ | ||
3016 | /* Check the space of the arrays. */ | ||
3017 | if (BE (*coll_sym_alloc == mbcset->ncoll_syms, 0)) | ||
3018 | { | ||
3019 | /* Not enough, realloc it. */ | ||
3020 | /* +1 in case of mbcset->ncoll_syms is 0. */ | ||
3021 | int new_coll_sym_alloc = 2 * mbcset->ncoll_syms + 1; | ||
3022 | /* Use realloc since mbcset->coll_syms is NULL | ||
3023 | if *alloc == 0. */ | ||
3024 | int32_t *new_coll_syms = re_realloc (mbcset->coll_syms, int32_t, | ||
3025 | new_coll_sym_alloc); | ||
3026 | if (BE (new_coll_syms == NULL, 0)) | ||
3027 | return REG_ESPACE; | ||
3028 | mbcset->coll_syms = new_coll_syms; | ||
3029 | *coll_sym_alloc = new_coll_sym_alloc; | ||
3030 | } | ||
3031 | mbcset->coll_syms[mbcset->ncoll_syms++] = idx; | ||
3032 | return REG_NOERROR; | ||
3033 | } | ||
3034 | else | ||
3035 | { | ||
3036 | if (BE (name_len != 1, 0)) | ||
3037 | return REG_ECOLLATE; | ||
3038 | else | ||
3039 | { | ||
3040 | bitset_set (sbcset, name[0]); | ||
3041 | return REG_NOERROR; | ||
3042 | } | ||
3043 | } | ||
3044 | } | ||
3045 | #endif | ||
3046 | |||
3047 | re_token_t br_token; | ||
3048 | re_bitset_ptr_t sbcset; | ||
3049 | #ifdef RE_ENABLE_I18N | ||
3050 | re_charset_t *mbcset; | ||
3051 | int coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0; | ||
3052 | int equiv_class_alloc = 0, char_class_alloc = 0; | ||
3053 | #endif /* not RE_ENABLE_I18N */ | ||
3054 | int non_match = 0; | ||
3055 | bin_tree_t *work_tree; | ||
3056 | int token_len; | ||
3057 | int first_round = 1; | ||
3058 | #ifdef _LIBC | ||
3059 | collseqmb = (const unsigned char *) | ||
3060 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); | ||
3061 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
3062 | if (nrules) | ||
3063 | { | ||
3064 | /* | ||
3065 | if (MB_CUR_MAX > 1) | ||
3066 | */ | ||
3067 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); | ||
3068 | table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB); | ||
3069 | symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE, | ||
3070 | _NL_COLLATE_SYMB_TABLEMB); | ||
3071 | extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | ||
3072 | _NL_COLLATE_SYMB_EXTRAMB); | ||
3073 | } | ||
3074 | #endif | ||
3075 | sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); | ||
3076 | #ifdef RE_ENABLE_I18N | ||
3077 | mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1); | ||
3078 | #endif /* RE_ENABLE_I18N */ | ||
3079 | #ifdef RE_ENABLE_I18N | ||
3080 | if (BE (sbcset == NULL || mbcset == NULL, 0)) | ||
3081 | #else | ||
3082 | if (BE (sbcset == NULL, 0)) | ||
3083 | #endif /* RE_ENABLE_I18N */ | ||
3084 | { | ||
3085 | *err = REG_ESPACE; | ||
3086 | return NULL; | ||
3087 | } | ||
3088 | |||
3089 | token_len = peek_token_bracket (token, regexp, syntax); | ||
3090 | if (BE (token->type == END_OF_RE, 0)) | ||
3091 | { | ||
3092 | *err = REG_BADPAT; | ||
3093 | goto parse_bracket_exp_free_return; | ||
3094 | } | ||
3095 | if (token->type == OP_NON_MATCH_LIST) | ||
3096 | { | ||
3097 | #ifdef RE_ENABLE_I18N | ||
3098 | mbcset->non_match = 1; | ||
3099 | #endif /* not RE_ENABLE_I18N */ | ||
3100 | non_match = 1; | ||
3101 | if (syntax & RE_HAT_LISTS_NOT_NEWLINE) | ||
3102 | bitset_set (sbcset, '\n'); | ||
3103 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ | ||
3104 | token_len = peek_token_bracket (token, regexp, syntax); | ||
3105 | if (BE (token->type == END_OF_RE, 0)) | ||
3106 | { | ||
3107 | *err = REG_BADPAT; | ||
3108 | goto parse_bracket_exp_free_return; | ||
3109 | } | ||
3110 | } | ||
3111 | |||
3112 | /* We treat the first ']' as a normal character. */ | ||
3113 | if (token->type == OP_CLOSE_BRACKET) | ||
3114 | token->type = CHARACTER; | ||
3115 | |||
3116 | while (1) | ||
3117 | { | ||
3118 | bracket_elem_t start_elem, end_elem; | ||
3119 | unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE]; | ||
3120 | unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE]; | ||
3121 | reg_errcode_t ret; | ||
3122 | int token_len2 = 0, is_range_exp = 0; | ||
3123 | re_token_t token2; | ||
3124 | |||
3125 | start_elem.opr.name = start_name_buf; | ||
3126 | ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa, | ||
3127 | syntax, first_round); | ||
3128 | if (BE (ret != REG_NOERROR, 0)) | ||
3129 | { | ||
3130 | *err = ret; | ||
3131 | goto parse_bracket_exp_free_return; | ||
3132 | } | ||
3133 | first_round = 0; | ||
3134 | |||
3135 | /* Get information about the next token. We need it in any case. */ | ||
3136 | token_len = peek_token_bracket (token, regexp, syntax); | ||
3137 | |||
3138 | /* Do not check for ranges if we know they are not allowed. */ | ||
3139 | if (start_elem.type != CHAR_CLASS && start_elem.type != EQUIV_CLASS) | ||
3140 | { | ||
3141 | if (BE (token->type == END_OF_RE, 0)) | ||
3142 | { | ||
3143 | *err = REG_EBRACK; | ||
3144 | goto parse_bracket_exp_free_return; | ||
3145 | } | ||
3146 | if (token->type == OP_CHARSET_RANGE) | ||
3147 | { | ||
3148 | re_string_skip_bytes (regexp, token_len); /* Skip '-'. */ | ||
3149 | token_len2 = peek_token_bracket (&token2, regexp, syntax); | ||
3150 | if (BE (token2.type == END_OF_RE, 0)) | ||
3151 | { | ||
3152 | *err = REG_EBRACK; | ||
3153 | goto parse_bracket_exp_free_return; | ||
3154 | } | ||
3155 | if (token2.type == OP_CLOSE_BRACKET) | ||
3156 | { | ||
3157 | /* We treat the last '-' as a normal character. */ | ||
3158 | re_string_skip_bytes (regexp, -token_len); | ||
3159 | token->type = CHARACTER; | ||
3160 | } | ||
3161 | else | ||
3162 | is_range_exp = 1; | ||
3163 | } | ||
3164 | } | ||
3165 | |||
3166 | if (is_range_exp == 1) | ||
3167 | { | ||
3168 | end_elem.opr.name = end_name_buf; | ||
3169 | ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2, | ||
3170 | dfa, syntax, 1); | ||
3171 | if (BE (ret != REG_NOERROR, 0)) | ||
3172 | { | ||
3173 | *err = ret; | ||
3174 | goto parse_bracket_exp_free_return; | ||
3175 | } | ||
3176 | |||
3177 | token_len = peek_token_bracket (token, regexp, syntax); | ||
3178 | |||
3179 | #ifdef _LIBC | ||
3180 | *err = build_range_exp (sbcset, mbcset, &range_alloc, | ||
3181 | &start_elem, &end_elem); | ||
3182 | #else | ||
3183 | # ifdef RE_ENABLE_I18N | ||
3184 | *err = build_range_exp (sbcset, | ||
3185 | dfa->mb_cur_max > 1 ? mbcset : NULL, | ||
3186 | &range_alloc, &start_elem, &end_elem); | ||
3187 | # else | ||
3188 | *err = build_range_exp (sbcset, &start_elem, &end_elem); | ||
3189 | # endif | ||
3190 | #endif /* RE_ENABLE_I18N */ | ||
3191 | if (BE (*err != REG_NOERROR, 0)) | ||
3192 | goto parse_bracket_exp_free_return; | ||
3193 | } | ||
3194 | else | ||
3195 | { | ||
3196 | switch (start_elem.type) | ||
3197 | { | ||
3198 | case SB_CHAR: | ||
3199 | bitset_set (sbcset, start_elem.opr.ch); | ||
3200 | break; | ||
3201 | #ifdef RE_ENABLE_I18N | ||
3202 | case MB_CHAR: | ||
3203 | /* Check whether the array has enough space. */ | ||
3204 | if (BE (mbchar_alloc == mbcset->nmbchars, 0)) | ||
3205 | { | ||
3206 | wchar_t *new_mbchars; | ||
3207 | /* Not enough, realloc it. */ | ||
3208 | /* +1 in case of mbcset->nmbchars is 0. */ | ||
3209 | mbchar_alloc = 2 * mbcset->nmbchars + 1; | ||
3210 | /* Use realloc since array is NULL if *alloc == 0. */ | ||
3211 | new_mbchars = re_realloc (mbcset->mbchars, wchar_t, | ||
3212 | mbchar_alloc); | ||
3213 | if (BE (new_mbchars == NULL, 0)) | ||
3214 | goto parse_bracket_exp_espace; | ||
3215 | mbcset->mbchars = new_mbchars; | ||
3216 | } | ||
3217 | mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch; | ||
3218 | break; | ||
3219 | #endif /* RE_ENABLE_I18N */ | ||
3220 | case EQUIV_CLASS: | ||
3221 | *err = build_equiv_class (sbcset, | ||
3222 | #ifdef RE_ENABLE_I18N | ||
3223 | mbcset, &equiv_class_alloc, | ||
3224 | #endif /* RE_ENABLE_I18N */ | ||
3225 | start_elem.opr.name); | ||
3226 | if (BE (*err != REG_NOERROR, 0)) | ||
3227 | goto parse_bracket_exp_free_return; | ||
3228 | break; | ||
3229 | case COLL_SYM: | ||
3230 | *err = build_collating_symbol (sbcset, | ||
3231 | #ifdef RE_ENABLE_I18N | ||
3232 | mbcset, &coll_sym_alloc, | ||
3233 | #endif /* RE_ENABLE_I18N */ | ||
3234 | start_elem.opr.name); | ||
3235 | if (BE (*err != REG_NOERROR, 0)) | ||
3236 | goto parse_bracket_exp_free_return; | ||
3237 | break; | ||
3238 | case CHAR_CLASS: | ||
3239 | *err = build_charclass (regexp->trans, sbcset, | ||
3240 | #ifdef RE_ENABLE_I18N | ||
3241 | mbcset, &char_class_alloc, | ||
3242 | #endif /* RE_ENABLE_I18N */ | ||
3243 | (const char *) start_elem.opr.name, syntax); | ||
3244 | if (BE (*err != REG_NOERROR, 0)) | ||
3245 | goto parse_bracket_exp_free_return; | ||
3246 | break; | ||
3247 | default: | ||
3248 | assert (0); | ||
3249 | break; | ||
3250 | } | ||
3251 | } | ||
3252 | if (BE (token->type == END_OF_RE, 0)) | ||
3253 | { | ||
3254 | *err = REG_EBRACK; | ||
3255 | goto parse_bracket_exp_free_return; | ||
3256 | } | ||
3257 | if (token->type == OP_CLOSE_BRACKET) | ||
3258 | break; | ||
3259 | } | ||
3260 | |||
3261 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ | ||
3262 | |||
3263 | /* If it is non-matching list. */ | ||
3264 | if (non_match) | ||
3265 | bitset_not (sbcset); | ||
3266 | |||
3267 | #ifdef RE_ENABLE_I18N | ||
3268 | /* Ensure only single byte characters are set. */ | ||
3269 | if (dfa->mb_cur_max > 1) | ||
3270 | bitset_mask (sbcset, dfa->sb_char); | ||
3271 | |||
3272 | if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes | ||
3273 | || mbcset->nranges || (dfa->mb_cur_max > 1 && (mbcset->nchar_classes | ||
3274 | || mbcset->non_match))) | ||
3275 | { | ||
3276 | bin_tree_t *mbc_tree; | ||
3277 | int sbc_idx; | ||
3278 | /* Build a tree for complex bracket. */ | ||
3279 | dfa->has_mb_node = 1; | ||
3280 | br_token.type = COMPLEX_BRACKET; | ||
3281 | br_token.opr.mbcset = mbcset; | ||
3282 | mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
3283 | if (BE (mbc_tree == NULL, 0)) | ||
3284 | goto parse_bracket_exp_espace; | ||
3285 | for (sbc_idx = 0; sbc_idx < BITSET_WORDS; ++sbc_idx) | ||
3286 | if (sbcset[sbc_idx]) | ||
3287 | break; | ||
3288 | /* If there are no bits set in sbcset, there is no point | ||
3289 | of having both SIMPLE_BRACKET and COMPLEX_BRACKET. */ | ||
3290 | if (sbc_idx < BITSET_WORDS) | ||
3291 | { | ||
3292 | /* Build a tree for simple bracket. */ | ||
3293 | br_token.type = SIMPLE_BRACKET; | ||
3294 | br_token.opr.sbcset = sbcset; | ||
3295 | work_tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
3296 | if (BE (work_tree == NULL, 0)) | ||
3297 | goto parse_bracket_exp_espace; | ||
3298 | |||
3299 | /* Then join them by ALT node. */ | ||
3300 | work_tree = create_tree (dfa, work_tree, mbc_tree, OP_ALT); | ||
3301 | if (BE (work_tree == NULL, 0)) | ||
3302 | goto parse_bracket_exp_espace; | ||
3303 | } | ||
3304 | else | ||
3305 | { | ||
3306 | re_free (sbcset); | ||
3307 | work_tree = mbc_tree; | ||
3308 | } | ||
3309 | } | ||
3310 | else | ||
3311 | #endif /* not RE_ENABLE_I18N */ | ||
3312 | { | ||
3313 | #ifdef RE_ENABLE_I18N | ||
3314 | free_charset (mbcset); | ||
3315 | #endif | ||
3316 | /* Build a tree for simple bracket. */ | ||
3317 | br_token.type = SIMPLE_BRACKET; | ||
3318 | br_token.opr.sbcset = sbcset; | ||
3319 | work_tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
3320 | if (BE (work_tree == NULL, 0)) | ||
3321 | goto parse_bracket_exp_espace; | ||
3322 | } | ||
3323 | return work_tree; | ||
3324 | |||
3325 | parse_bracket_exp_espace: | ||
3326 | *err = REG_ESPACE; | ||
3327 | parse_bracket_exp_free_return: | ||
3328 | re_free (sbcset); | ||
3329 | #ifdef RE_ENABLE_I18N | ||
3330 | free_charset (mbcset); | ||
3331 | #endif /* RE_ENABLE_I18N */ | ||
3332 | return NULL; | ||
3333 | } | ||
3334 | |||
3335 | /* Parse an element in the bracket expression. */ | ||
3336 | |||
3337 | static reg_errcode_t | ||
3338 | parse_bracket_element (bracket_elem_t *elem, re_string_t *regexp, | ||
3339 | re_token_t *token, int token_len, re_dfa_t *dfa, | ||
3340 | reg_syntax_t syntax, int accept_hyphen) | ||
3341 | { | ||
3342 | #ifdef RE_ENABLE_I18N | ||
3343 | int cur_char_size; | ||
3344 | cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp)); | ||
3345 | if (cur_char_size > 1) | ||
3346 | { | ||
3347 | elem->type = MB_CHAR; | ||
3348 | elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp)); | ||
3349 | re_string_skip_bytes (regexp, cur_char_size); | ||
3350 | return REG_NOERROR; | ||
3351 | } | ||
3352 | #endif /* RE_ENABLE_I18N */ | ||
3353 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ | ||
3354 | if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS | ||
3355 | || token->type == OP_OPEN_EQUIV_CLASS) | ||
3356 | return parse_bracket_symbol (elem, regexp, token); | ||
3357 | if (BE (token->type == OP_CHARSET_RANGE, 0) && !accept_hyphen) | ||
3358 | { | ||
3359 | /* A '-' must only appear as anything but a range indicator before | ||
3360 | the closing bracket. Everything else is an error. */ | ||
3361 | re_token_t token2; | ||
3362 | (void) peek_token_bracket (&token2, regexp, syntax); | ||
3363 | if (token2.type != OP_CLOSE_BRACKET) | ||
3364 | /* The actual error value is not standardized since this whole | ||
3365 | case is undefined. But ERANGE makes good sense. */ | ||
3366 | return REG_ERANGE; | ||
3367 | } | ||
3368 | elem->type = SB_CHAR; | ||
3369 | elem->opr.ch = token->opr.c; | ||
3370 | return REG_NOERROR; | ||
3371 | } | ||
3372 | |||
3373 | /* Parse a bracket symbol in the bracket expression. Bracket symbols are | ||
3374 | such as [:<character_class>:], [.<collating_element>.], and | ||
3375 | [=<equivalent_class>=]. */ | ||
3376 | |||
3377 | static reg_errcode_t | ||
3378 | parse_bracket_symbol (bracket_elem_t *elem, re_string_t *regexp, | ||
3379 | re_token_t *token) | ||
3380 | { | ||
3381 | unsigned char ch, delim = token->opr.c; | ||
3382 | int i = 0; | ||
3383 | if (re_string_eoi(regexp)) | ||
3384 | return REG_EBRACK; | ||
3385 | for (;; ++i) | ||
3386 | { | ||
3387 | if (i >= BRACKET_NAME_BUF_SIZE) | ||
3388 | return REG_EBRACK; | ||
3389 | if (token->type == OP_OPEN_CHAR_CLASS) | ||
3390 | ch = re_string_fetch_byte_case (regexp); | ||
3391 | else | ||
3392 | ch = re_string_fetch_byte (regexp); | ||
3393 | if (re_string_eoi(regexp)) | ||
3394 | return REG_EBRACK; | ||
3395 | if (ch == delim && re_string_peek_byte (regexp, 0) == ']') | ||
3396 | break; | ||
3397 | elem->opr.name[i] = ch; | ||
3398 | } | ||
3399 | re_string_skip_bytes (regexp, 1); | ||
3400 | elem->opr.name[i] = '\0'; | ||
3401 | switch (token->type) | ||
3402 | { | ||
3403 | case OP_OPEN_COLL_ELEM: | ||
3404 | elem->type = COLL_SYM; | ||
3405 | break; | ||
3406 | case OP_OPEN_EQUIV_CLASS: | ||
3407 | elem->type = EQUIV_CLASS; | ||
3408 | break; | ||
3409 | case OP_OPEN_CHAR_CLASS: | ||
3410 | elem->type = CHAR_CLASS; | ||
3411 | break; | ||
3412 | default: | ||
3413 | break; | ||
3414 | } | ||
3415 | return REG_NOERROR; | ||
3416 | } | ||
3417 | |||
3418 | /* Helper function for parse_bracket_exp. | ||
3419 | Build the equivalence class which is represented by NAME. | ||
3420 | The result are written to MBCSET and SBCSET. | ||
3421 | EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes, | ||
3422 | is a pointer argument since we may update it. */ | ||
3423 | |||
3424 | static reg_errcode_t | ||
3425 | #ifdef RE_ENABLE_I18N | ||
3426 | build_equiv_class (bitset_t sbcset, re_charset_t *mbcset, | ||
3427 | int *equiv_class_alloc, const unsigned char *name) | ||
3428 | #else /* not RE_ENABLE_I18N */ | ||
3429 | build_equiv_class (bitset_t sbcset, const unsigned char *name) | ||
3430 | #endif /* not RE_ENABLE_I18N */ | ||
3431 | { | ||
3432 | #ifdef _LIBC | ||
3433 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
3434 | if (nrules != 0) | ||
3435 | { | ||
3436 | const int32_t *table, *indirect; | ||
3437 | const unsigned char *weights, *extra, *cp; | ||
3438 | unsigned char char_buf[2]; | ||
3439 | int32_t idx1, idx2; | ||
3440 | unsigned int ch; | ||
3441 | size_t len; | ||
3442 | /* This #include defines a local function! */ | ||
3443 | # include <locale/weight.h> | ||
3444 | /* Calculate the index for equivalence class. */ | ||
3445 | cp = name; | ||
3446 | table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | ||
3447 | weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | ||
3448 | _NL_COLLATE_WEIGHTMB); | ||
3449 | extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | ||
3450 | _NL_COLLATE_EXTRAMB); | ||
3451 | indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE, | ||
3452 | _NL_COLLATE_INDIRECTMB); | ||
3453 | idx1 = findidx (&cp); | ||
3454 | if (BE (idx1 == 0 || cp < name + strlen ((const char *) name), 0)) | ||
3455 | /* This isn't a valid character. */ | ||
3456 | return REG_ECOLLATE; | ||
3457 | |||
3458 | /* Build single byte matcing table for this equivalence class. */ | ||
3459 | char_buf[1] = (unsigned char) '\0'; | ||
3460 | len = weights[idx1 & 0xffffff]; | ||
3461 | for (ch = 0; ch < SBC_MAX; ++ch) | ||
3462 | { | ||
3463 | char_buf[0] = ch; | ||
3464 | cp = char_buf; | ||
3465 | idx2 = findidx (&cp); | ||
3466 | /* | ||
3467 | idx2 = table[ch]; | ||
3468 | */ | ||
3469 | if (idx2 == 0) | ||
3470 | /* This isn't a valid character. */ | ||
3471 | continue; | ||
3472 | /* Compare only if the length matches and the collation rule | ||
3473 | index is the same. */ | ||
3474 | if (len == weights[idx2 & 0xffffff] && (idx1 >> 24) == (idx2 >> 24)) | ||
3475 | { | ||
3476 | int cnt = 0; | ||
3477 | |||
3478 | while (cnt <= len && | ||
3479 | weights[(idx1 & 0xffffff) + 1 + cnt] | ||
3480 | == weights[(idx2 & 0xffffff) + 1 + cnt]) | ||
3481 | ++cnt; | ||
3482 | |||
3483 | if (cnt > len) | ||
3484 | bitset_set (sbcset, ch); | ||
3485 | } | ||
3486 | } | ||
3487 | /* Check whether the array has enough space. */ | ||
3488 | if (BE (*equiv_class_alloc == mbcset->nequiv_classes, 0)) | ||
3489 | { | ||
3490 | /* Not enough, realloc it. */ | ||
3491 | /* +1 in case of mbcset->nequiv_classes is 0. */ | ||
3492 | int new_equiv_class_alloc = 2 * mbcset->nequiv_classes + 1; | ||
3493 | /* Use realloc since the array is NULL if *alloc == 0. */ | ||
3494 | int32_t *new_equiv_classes = re_realloc (mbcset->equiv_classes, | ||
3495 | int32_t, | ||
3496 | new_equiv_class_alloc); | ||
3497 | if (BE (new_equiv_classes == NULL, 0)) | ||
3498 | return REG_ESPACE; | ||
3499 | mbcset->equiv_classes = new_equiv_classes; | ||
3500 | *equiv_class_alloc = new_equiv_class_alloc; | ||
3501 | } | ||
3502 | mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1; | ||
3503 | } | ||
3504 | else | ||
3505 | #endif /* _LIBC */ | ||
3506 | { | ||
3507 | if (BE (strlen ((const char *) name) != 1, 0)) | ||
3508 | return REG_ECOLLATE; | ||
3509 | bitset_set (sbcset, *name); | ||
3510 | } | ||
3511 | return REG_NOERROR; | ||
3512 | } | ||
3513 | |||
3514 | /* Helper function for parse_bracket_exp. | ||
3515 | Build the character class which is represented by NAME. | ||
3516 | The result are written to MBCSET and SBCSET. | ||
3517 | CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes, | ||
3518 | is a pointer argument since we may update it. */ | ||
3519 | |||
3520 | static reg_errcode_t | ||
3521 | #ifdef RE_ENABLE_I18N | ||
3522 | build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset, | ||
3523 | re_charset_t *mbcset, int *char_class_alloc, | ||
3524 | const char *class_name, reg_syntax_t syntax) | ||
3525 | #else /* not RE_ENABLE_I18N */ | ||
3526 | build_charclass (RE_TRANSLATE_TYPE trans, bitset_t sbcset, | ||
3527 | const char *class_name, reg_syntax_t syntax) | ||
3528 | #endif /* not RE_ENABLE_I18N */ | ||
3529 | { | ||
3530 | int i; | ||
3531 | |||
3532 | /* In case of REG_ICASE "upper" and "lower" match the both of | ||
3533 | upper and lower cases. */ | ||
3534 | if ((syntax & RE_ICASE) | ||
3535 | && (strcmp (class_name, "upper") == 0 || strcmp (class_name, "lower") == 0)) | ||
3536 | class_name = "alpha"; | ||
3537 | |||
3538 | #ifdef RE_ENABLE_I18N | ||
3539 | /* Check the space of the arrays. */ | ||
3540 | if (BE (*char_class_alloc == mbcset->nchar_classes, 0)) | ||
3541 | { | ||
3542 | /* Not enough, realloc it. */ | ||
3543 | /* +1 in case of mbcset->nchar_classes is 0. */ | ||
3544 | int new_char_class_alloc = 2 * mbcset->nchar_classes + 1; | ||
3545 | /* Use realloc since array is NULL if *alloc == 0. */ | ||
3546 | wctype_t *new_char_classes = re_realloc (mbcset->char_classes, wctype_t, | ||
3547 | new_char_class_alloc); | ||
3548 | if (BE (new_char_classes == NULL, 0)) | ||
3549 | return REG_ESPACE; | ||
3550 | mbcset->char_classes = new_char_classes; | ||
3551 | *char_class_alloc = new_char_class_alloc; | ||
3552 | } | ||
3553 | mbcset->char_classes[mbcset->nchar_classes++] = __wctype (class_name); | ||
3554 | #endif /* RE_ENABLE_I18N */ | ||
3555 | |||
3556 | #define BUILD_CHARCLASS_LOOP(ctype_func) \ | ||
3557 | do { \ | ||
3558 | if (BE (trans != NULL, 0)) \ | ||
3559 | { \ | ||
3560 | for (i = 0; i < SBC_MAX; ++i) \ | ||
3561 | if (ctype_func (i)) \ | ||
3562 | bitset_set (sbcset, trans[i]); \ | ||
3563 | } \ | ||
3564 | else \ | ||
3565 | { \ | ||
3566 | for (i = 0; i < SBC_MAX; ++i) \ | ||
3567 | if (ctype_func (i)) \ | ||
3568 | bitset_set (sbcset, i); \ | ||
3569 | } \ | ||
3570 | } while (0) | ||
3571 | |||
3572 | if (strcmp (class_name, "alnum") == 0) | ||
3573 | BUILD_CHARCLASS_LOOP (isalnum); | ||
3574 | else if (strcmp (class_name, "cntrl") == 0) | ||
3575 | BUILD_CHARCLASS_LOOP (iscntrl); | ||
3576 | else if (strcmp (class_name, "lower") == 0) | ||
3577 | BUILD_CHARCLASS_LOOP (islower); | ||
3578 | else if (strcmp (class_name, "space") == 0) | ||
3579 | BUILD_CHARCLASS_LOOP (isspace); | ||
3580 | else if (strcmp (class_name, "alpha") == 0) | ||
3581 | BUILD_CHARCLASS_LOOP (isalpha); | ||
3582 | else if (strcmp (class_name, "digit") == 0) | ||
3583 | BUILD_CHARCLASS_LOOP (isdigit); | ||
3584 | else if (strcmp (class_name, "print") == 0) | ||
3585 | BUILD_CHARCLASS_LOOP (isprint); | ||
3586 | else if (strcmp (class_name, "upper") == 0) | ||
3587 | BUILD_CHARCLASS_LOOP (isupper); | ||
3588 | else if (strcmp (class_name, "blank") == 0) | ||
3589 | #ifndef GAWK | ||
3590 | BUILD_CHARCLASS_LOOP (isblank); | ||
3591 | #else | ||
3592 | /* see comments above */ | ||
3593 | BUILD_CHARCLASS_LOOP (is_blank); | ||
3594 | #endif | ||
3595 | else if (strcmp (class_name, "graph") == 0) | ||
3596 | BUILD_CHARCLASS_LOOP (isgraph); | ||
3597 | else if (strcmp (class_name, "punct") == 0) | ||
3598 | BUILD_CHARCLASS_LOOP (ispunct); | ||
3599 | else if (strcmp (class_name, "xdigit") == 0) | ||
3600 | BUILD_CHARCLASS_LOOP (isxdigit); | ||
3601 | else | ||
3602 | return REG_ECTYPE; | ||
3603 | |||
3604 | return REG_NOERROR; | ||
3605 | } | ||
3606 | |||
3607 | static bin_tree_t * | ||
3608 | build_charclass_op (re_dfa_t *dfa, RE_TRANSLATE_TYPE trans, | ||
3609 | const char *class_name, | ||
3610 | const char *extra, int non_match, | ||
3611 | reg_errcode_t *err) | ||
3612 | { | ||
3613 | re_bitset_ptr_t sbcset; | ||
3614 | #ifdef RE_ENABLE_I18N | ||
3615 | re_charset_t *mbcset; | ||
3616 | int alloc = 0; | ||
3617 | #endif /* not RE_ENABLE_I18N */ | ||
3618 | reg_errcode_t ret; | ||
3619 | re_token_t br_token; | ||
3620 | bin_tree_t *tree; | ||
3621 | |||
3622 | sbcset = (re_bitset_ptr_t) calloc (sizeof (bitset_t), 1); | ||
3623 | #ifdef RE_ENABLE_I18N | ||
3624 | mbcset = (re_charset_t *) calloc (sizeof (re_charset_t), 1); | ||
3625 | #endif /* RE_ENABLE_I18N */ | ||
3626 | |||
3627 | #ifdef RE_ENABLE_I18N | ||
3628 | if (BE (sbcset == NULL || mbcset == NULL, 0)) | ||
3629 | #else /* not RE_ENABLE_I18N */ | ||
3630 | if (BE (sbcset == NULL, 0)) | ||
3631 | #endif /* not RE_ENABLE_I18N */ | ||
3632 | { | ||
3633 | *err = REG_ESPACE; | ||
3634 | return NULL; | ||
3635 | } | ||
3636 | |||
3637 | if (non_match) | ||
3638 | { | ||
3639 | #ifdef RE_ENABLE_I18N | ||
3640 | mbcset->non_match = 1; | ||
3641 | #endif /* not RE_ENABLE_I18N */ | ||
3642 | } | ||
3643 | |||
3644 | /* We don't care the syntax in this case. */ | ||
3645 | ret = build_charclass (trans, sbcset, | ||
3646 | #ifdef RE_ENABLE_I18N | ||
3647 | mbcset, &alloc, | ||
3648 | #endif /* RE_ENABLE_I18N */ | ||
3649 | class_name, 0); | ||
3650 | |||
3651 | if (BE (ret != REG_NOERROR, 0)) | ||
3652 | { | ||
3653 | re_free (sbcset); | ||
3654 | #ifdef RE_ENABLE_I18N | ||
3655 | free_charset (mbcset); | ||
3656 | #endif /* RE_ENABLE_I18N */ | ||
3657 | *err = ret; | ||
3658 | return NULL; | ||
3659 | } | ||
3660 | /* \w match '_' also. */ | ||
3661 | for (; *extra; extra++) | ||
3662 | bitset_set (sbcset, *extra); | ||
3663 | |||
3664 | /* If it is non-matching list. */ | ||
3665 | if (non_match) | ||
3666 | bitset_not (sbcset); | ||
3667 | |||
3668 | #ifdef RE_ENABLE_I18N | ||
3669 | /* Ensure only single byte characters are set. */ | ||
3670 | if (dfa->mb_cur_max > 1) | ||
3671 | bitset_mask (sbcset, dfa->sb_char); | ||
3672 | #endif | ||
3673 | |||
3674 | /* Build a tree for simple bracket. */ | ||
3675 | br_token.type = SIMPLE_BRACKET; | ||
3676 | br_token.opr.sbcset = sbcset; | ||
3677 | tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
3678 | if (BE (tree == NULL, 0)) | ||
3679 | goto build_word_op_espace; | ||
3680 | |||
3681 | #ifdef RE_ENABLE_I18N | ||
3682 | if (dfa->mb_cur_max > 1) | ||
3683 | { | ||
3684 | bin_tree_t *mbc_tree; | ||
3685 | /* Build a tree for complex bracket. */ | ||
3686 | br_token.type = COMPLEX_BRACKET; | ||
3687 | br_token.opr.mbcset = mbcset; | ||
3688 | dfa->has_mb_node = 1; | ||
3689 | mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
3690 | if (BE (mbc_tree == NULL, 0)) | ||
3691 | goto build_word_op_espace; | ||
3692 | /* Then join them by ALT node. */ | ||
3693 | tree = create_tree (dfa, tree, mbc_tree, OP_ALT); | ||
3694 | if (BE (mbc_tree != NULL, 1)) | ||
3695 | return tree; | ||
3696 | } | ||
3697 | else | ||
3698 | { | ||
3699 | free_charset (mbcset); | ||
3700 | return tree; | ||
3701 | } | ||
3702 | #else /* not RE_ENABLE_I18N */ | ||
3703 | return tree; | ||
3704 | #endif /* not RE_ENABLE_I18N */ | ||
3705 | |||
3706 | build_word_op_espace: | ||
3707 | re_free (sbcset); | ||
3708 | #ifdef RE_ENABLE_I18N | ||
3709 | free_charset (mbcset); | ||
3710 | #endif /* RE_ENABLE_I18N */ | ||
3711 | *err = REG_ESPACE; | ||
3712 | return NULL; | ||
3713 | } | ||
3714 | |||
3715 | /* This is intended for the expressions like "a{1,3}". | ||
3716 | Fetch a number from `input', and return the number. | ||
3717 | Return -1, if the number field is empty like "{,1}". | ||
3718 | Return -2, if an error has occurred. */ | ||
3719 | |||
3720 | static int | ||
3721 | fetch_number (re_string_t *input, re_token_t *token, reg_syntax_t syntax) | ||
3722 | { | ||
3723 | int num = -1; | ||
3724 | unsigned char c; | ||
3725 | while (1) | ||
3726 | { | ||
3727 | fetch_token (token, input, syntax); | ||
3728 | c = token->opr.c; | ||
3729 | if (BE (token->type == END_OF_RE, 0)) | ||
3730 | return -2; | ||
3731 | if (token->type == OP_CLOSE_DUP_NUM || c == ',') | ||
3732 | break; | ||
3733 | num = ((token->type != CHARACTER || c < '0' || '9' < c || num == -2) | ||
3734 | ? -2 : ((num == -1) ? c - '0' : num * 10 + c - '0')); | ||
3735 | num = (num > RE_DUP_MAX) ? -2 : num; | ||
3736 | } | ||
3737 | return num; | ||
3738 | } | ||
3739 | |||
3740 | #ifdef RE_ENABLE_I18N | ||
3741 | static void | ||
3742 | free_charset (re_charset_t *cset) | ||
3743 | { | ||
3744 | re_free (cset->mbchars); | ||
3745 | # ifdef _LIBC | ||
3746 | re_free (cset->coll_syms); | ||
3747 | re_free (cset->equiv_classes); | ||
3748 | re_free (cset->range_starts); | ||
3749 | re_free (cset->range_ends); | ||
3750 | # endif | ||
3751 | re_free (cset->char_classes); | ||
3752 | re_free (cset); | ||
3753 | } | ||
3754 | #endif /* RE_ENABLE_I18N */ | ||
3755 | |||
3756 | /* Functions for binary tree operation. */ | ||
3757 | |||
3758 | /* Create a tree node. */ | ||
3759 | |||
3760 | static bin_tree_t * | ||
3761 | create_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, | ||
3762 | re_token_type_t type) | ||
3763 | { | ||
3764 | re_token_t t; | ||
3765 | t.type = type; | ||
3766 | return create_token_tree (dfa, left, right, &t); | ||
3767 | } | ||
3768 | |||
3769 | static bin_tree_t * | ||
3770 | create_token_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, | ||
3771 | const re_token_t *token) | ||
3772 | { | ||
3773 | bin_tree_t *tree; | ||
3774 | if (BE (dfa->str_tree_storage_idx == BIN_TREE_STORAGE_SIZE, 0)) | ||
3775 | { | ||
3776 | bin_tree_storage_t *storage = re_malloc (bin_tree_storage_t, 1); | ||
3777 | |||
3778 | if (storage == NULL) | ||
3779 | return NULL; | ||
3780 | storage->next = dfa->str_tree_storage; | ||
3781 | dfa->str_tree_storage = storage; | ||
3782 | dfa->str_tree_storage_idx = 0; | ||
3783 | } | ||
3784 | tree = &dfa->str_tree_storage->data[dfa->str_tree_storage_idx++]; | ||
3785 | |||
3786 | tree->parent = NULL; | ||
3787 | tree->left = left; | ||
3788 | tree->right = right; | ||
3789 | tree->token = *token; | ||
3790 | tree->token.duplicated = 0; | ||
3791 | tree->token.opt_subexp = 0; | ||
3792 | tree->first = NULL; | ||
3793 | tree->next = NULL; | ||
3794 | tree->node_idx = -1; | ||
3795 | |||
3796 | if (left != NULL) | ||
3797 | left->parent = tree; | ||
3798 | if (right != NULL) | ||
3799 | right->parent = tree; | ||
3800 | return tree; | ||
3801 | } | ||
3802 | |||
3803 | /* Mark the tree SRC as an optional subexpression. | ||
3804 | To be called from preorder or postorder. */ | ||
3805 | |||
3806 | static reg_errcode_t | ||
3807 | mark_opt_subexp (void *extra, bin_tree_t *node) | ||
3808 | { | ||
3809 | int idx = (int) (intptr_t) extra; | ||
3810 | if (node->token.type == SUBEXP && node->token.opr.idx == idx) | ||
3811 | node->token.opt_subexp = 1; | ||
3812 | |||
3813 | return REG_NOERROR; | ||
3814 | } | ||
3815 | |||
3816 | /* Free the allocated memory inside NODE. */ | ||
3817 | |||
3818 | static void | ||
3819 | free_token (re_token_t *node) | ||
3820 | { | ||
3821 | #ifdef RE_ENABLE_I18N | ||
3822 | if (node->type == COMPLEX_BRACKET && node->duplicated == 0) | ||
3823 | free_charset (node->opr.mbcset); | ||
3824 | else | ||
3825 | #endif /* RE_ENABLE_I18N */ | ||
3826 | if (node->type == SIMPLE_BRACKET && node->duplicated == 0) | ||
3827 | re_free (node->opr.sbcset); | ||
3828 | } | ||
3829 | |||
3830 | /* Worker function for tree walking. Free the allocated memory inside NODE | ||
3831 | and its children. */ | ||
3832 | |||
3833 | static reg_errcode_t | ||
3834 | free_tree (void *extra, bin_tree_t *node) | ||
3835 | { | ||
3836 | free_token (&node->token); | ||
3837 | return REG_NOERROR; | ||
3838 | } | ||
3839 | |||
3840 | |||
3841 | /* Duplicate the node SRC, and return new node. This is a preorder | ||
3842 | visit similar to the one implemented by the generic visitor, but | ||
3843 | we need more infrastructure to maintain two parallel trees --- so, | ||
3844 | it's easier to duplicate. */ | ||
3845 | |||
3846 | static bin_tree_t * | ||
3847 | duplicate_tree (const bin_tree_t *root, re_dfa_t *dfa) | ||
3848 | { | ||
3849 | const bin_tree_t *node; | ||
3850 | bin_tree_t *dup_root; | ||
3851 | bin_tree_t **p_new = &dup_root, *dup_node = root->parent; | ||
3852 | |||
3853 | for (node = root; ; ) | ||
3854 | { | ||
3855 | /* Create a new tree and link it back to the current parent. */ | ||
3856 | *p_new = create_token_tree (dfa, NULL, NULL, &node->token); | ||
3857 | if (*p_new == NULL) | ||
3858 | return NULL; | ||
3859 | (*p_new)->parent = dup_node; | ||
3860 | (*p_new)->token.duplicated = 1; | ||
3861 | dup_node = *p_new; | ||
3862 | |||
3863 | /* Go to the left node, or up and to the right. */ | ||
3864 | if (node->left) | ||
3865 | { | ||
3866 | node = node->left; | ||
3867 | p_new = &dup_node->left; | ||
3868 | } | ||
3869 | else | ||
3870 | { | ||
3871 | const bin_tree_t *prev = NULL; | ||
3872 | while (node->right == prev || node->right == NULL) | ||
3873 | { | ||
3874 | prev = node; | ||
3875 | node = node->parent; | ||
3876 | dup_node = dup_node->parent; | ||
3877 | if (!node) | ||
3878 | return dup_root; | ||
3879 | } | ||
3880 | node = node->right; | ||
3881 | p_new = &dup_node->right; | ||
3882 | } | ||
3883 | } | ||
3884 | } | ||
diff --git a/win32/regex.c b/win32/regex.c index 2cca16934..95e5d757a 100644 --- a/win32/regex.c +++ b/win32/regex.c | |||
@@ -1,4929 +1,90 @@ | |||
1 | /* Extended regular expression matching and search library, | 1 | /* Extended regular expression matching and search library. |
2 | version 0.12. | 2 | Copyright (C) 2002, 2003, 2005 Free Software Foundation, Inc. |
3 | (Implements POSIX draft P10003.2/D11.2, except for | 3 | This file is part of the GNU C Library. |
4 | internationalization features.) | 4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. |
5 | 5 | ||
6 | Copyright (C) 1993 Free Software Foundation, Inc. | 6 | The GNU C Library is free software; you can redistribute it and/or |
7 | modify it under the terms of the GNU Lesser General Public | ||
8 | License as published by the Free Software Foundation; either | ||
9 | version 2.1 of the License, or (at your option) any later version. | ||
7 | 10 | ||
8 | This program is free software; you can redistribute it and/or modify | 11 | The GNU C Library is distributed in the hope that it will be useful, |
9 | it under the terms of the GNU General Public License as published by | ||
10 | the Free Software Foundation; either version 2, or (at your option) | ||
11 | any later version. | ||
12 | |||
13 | This program is distributed in the hope that it will be useful, | ||
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
16 | GNU General Public License for more details. | 14 | Lesser General Public License for more details. |
17 | 15 | ||
18 | You should have received a copy of the GNU General Public License | 16 | You should have received a copy of the GNU Lesser General Public |
19 | along with this program; if not, write to the Free Software | 17 | License along with the GNU C Library; if not, write to the Free |
20 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | 18 | Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA |
21 | 19 | 02110-1301 USA. */ | |
22 | /* AIX requires this to be the first thing in the file. */ | 20 | |
23 | #if defined (_AIX) && !defined (REGEX_MALLOC) | 21 | #define HAVE_LIBINTL_H 0 |
24 | #pragma alloca | 22 | #define ENABLE_NLS 0 |
25 | #endif | 23 | #define HAVE_ALLOCA 0 |
26 | 24 | #define NO_MBSUPPORT 1 | |
27 | #ifndef _GNU_SOURCE | 25 | #define GAWK 1 |
28 | #define _GNU_SOURCE | 26 | |
29 | #endif | 27 | /* Make sure no one compiles this code with a C++ compiler. */ |
30 | 28 | #ifdef __cplusplus | |
31 | /* We need this for `regex.h', and perhaps for the Emacs include files. */ | 29 | # error "This is C code, use a C compiler" |
32 | #include <sys/types.h> | 30 | #endif |
33 | 31 | ||
34 | /* We used to test for `BSTRING' here, but only GCC and Emacs define | 32 | #ifdef _LIBC |
35 | `BSTRING', as far as I know, and neither of them use this code. */ | 33 | /* We have to keep the namespace clean. */ |
36 | #include <string.h> | 34 | # define regfree(preg) __regfree (preg) |
37 | #ifndef bcmp | 35 | # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef) |
38 | #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n)) | 36 | # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags) |
39 | #endif | 37 | # define regerror(errcode, preg, errbuf, errbuf_size) \ |
40 | #ifndef bcopy | 38 | __regerror(errcode, preg, errbuf, errbuf_size) |
41 | #define bcopy(s, d, n) memcpy ((d), (s), (n)) | 39 | # define re_set_registers(bu, re, nu, st, en) \ |
42 | #endif | 40 | __re_set_registers (bu, re, nu, st, en) |
43 | #ifndef bzero | 41 | # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \ |
44 | #define bzero(s, n) memset ((s), 0, (n)) | 42 | __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) |
45 | #endif | 43 | # define re_match(bufp, string, size, pos, regs) \ |
46 | 44 | __re_match (bufp, string, size, pos, regs) | |
47 | #include <stdlib.h> | 45 | # define re_search(bufp, string, size, startpos, range, regs) \ |
48 | 46 | __re_search (bufp, string, size, startpos, range, regs) | |
49 | 47 | # define re_compile_pattern(pattern, length, bufp) \ | |
50 | /* Define the syntax stuff for \<, \>, etc. */ | 48 | __re_compile_pattern (pattern, length, bufp) |
51 | 49 | # define re_set_syntax(syntax) __re_set_syntax (syntax) | |
52 | /* This must be nonzero for the wordchar and notwordchar pattern | 50 | # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \ |
53 | commands in re_match_2. */ | 51 | __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop) |
54 | #ifndef Sword | 52 | # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp) |
55 | #define Sword 1 | 53 | |
56 | #endif | 54 | # include "../locale/localeinfo.h" |
57 | 55 | #endif | |
58 | #ifdef SYNTAX_TABLE | 56 | |
59 | 57 | #if defined (_MSC_VER) | |
60 | extern char *re_syntax_table; | 58 | #include <stdio.h> /* for size_t */ |
61 | 59 | #endif | |
62 | #else /* not SYNTAX_TABLE */ | 60 | |
63 | 61 | /* On some systems, limits.h sets RE_DUP_MAX to a lower value than | |
64 | /* How many characters in the character set. */ | 62 | GNU regex allows. Include it before <regex.h>, which correctly |
65 | #define CHAR_SET_SIZE 256 | 63 | #undefs RE_DUP_MAX and sets it to the right value. */ |
66 | 64 | #include <limits.h> | |
67 | static char re_syntax_table[CHAR_SET_SIZE]; | 65 | #include <stdint.h> |
68 | 66 | ||
69 | static void | 67 | #ifdef GAWK |
70 | init_syntax_once () | 68 | #undef alloca |
71 | { | 69 | #define alloca alloca_is_bad_you_should_never_use_it |
72 | register int c; | 70 | #endif |
73 | static int done = 0; | 71 | #include <regex.h> |
74 | 72 | #include "regex_internal.h" | |
75 | if (done) | 73 | |
76 | return; | 74 | #include "regex_internal.c" |
77 | 75 | #ifdef GAWK | |
78 | bzero (re_syntax_table, sizeof re_syntax_table); | 76 | #define bool int |
79 | 77 | #define true (1) | |
80 | for (c = 'a'; c <= 'z'; c++) | 78 | #define false (0) |
81 | re_syntax_table[c] = Sword; | 79 | #endif |
82 | 80 | #include "regcomp.c" | |
83 | for (c = 'A'; c <= 'Z'; c++) | 81 | #include "regexec.c" |
84 | re_syntax_table[c] = Sword; | 82 | |
85 | 83 | /* Binary backward compatibility. */ | |
86 | for (c = '0'; c <= '9'; c++) | 84 | #if _LIBC |
87 | re_syntax_table[c] = Sword; | 85 | # include <shlib-compat.h> |
88 | 86 | # if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3) | |
89 | re_syntax_table['_'] = Sword; | 87 | link_warning (re_max_failures, "the 're_max_failures' variable is obsolete and will go away.") |
90 | |||
91 | done = 1; | ||
92 | } | ||
93 | |||
94 | #endif /* not SYNTAX_TABLE */ | ||
95 | |||
96 | #define SYNTAX(c) re_syntax_table[c] | ||
97 | |||
98 | |||
99 | /* Get the interface, including the syntax bits. */ | ||
100 | #include "regex.h" | ||
101 | |||
102 | /* isalpha etc. are used for the character classes. */ | ||
103 | #include <ctype.h> | ||
104 | |||
105 | #ifndef isascii | ||
106 | #define isascii(c) 1 | ||
107 | #endif | ||
108 | |||
109 | #ifdef isblank | ||
110 | #define ISBLANK(c) (isascii (c) && isblank (c)) | ||
111 | #else | ||
112 | #define ISBLANK(c) ((c) == ' ' || (c) == '\t') | ||
113 | #endif | ||
114 | #ifdef isgraph | ||
115 | #define ISGRAPH(c) (isascii (c) && isgraph (c)) | ||
116 | #else | ||
117 | #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c)) | ||
118 | #endif | ||
119 | |||
120 | #define ISPRINT(c) (isascii (c) && isprint (c)) | ||
121 | #define ISDIGIT(c) (isascii (c) && isdigit (c)) | ||
122 | #define ISALNUM(c) (isascii (c) && isalnum (c)) | ||
123 | #define ISALPHA(c) (isascii (c) && isalpha (c)) | ||
124 | #define ISCNTRL(c) (isascii (c) && iscntrl (c)) | ||
125 | #define ISLOWER(c) (isascii (c) && islower (c)) | ||
126 | #define ISPUNCT(c) (isascii (c) && ispunct (c)) | ||
127 | #define ISSPACE(c) (isascii (c) && isspace (c)) | ||
128 | #define ISUPPER(c) (isascii (c) && isupper (c)) | ||
129 | #define ISXDIGIT(c) (isascii (c) && isxdigit (c)) | ||
130 | |||
131 | #ifndef NULL | ||
132 | #define NULL 0 | ||
133 | #endif | ||
134 | |||
135 | /* We remove any previous definition of `SIGN_EXTEND_CHAR', | ||
136 | since ours (we hope) works properly with all combinations of | ||
137 | machines, compilers, `char' and `unsigned char' argument types. | ||
138 | (Per Bothner suggested the basic approach.) */ | ||
139 | #undef SIGN_EXTEND_CHAR | ||
140 | #if __STDC__ | ||
141 | #define SIGN_EXTEND_CHAR(c) ((signed char) (c)) | ||
142 | #else /* not __STDC__ */ | ||
143 | /* As in Harbison and Steele. */ | ||
144 | #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) | ||
145 | #endif | ||
146 | |||
147 | /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we | ||
148 | use `alloca' instead of `malloc'. This is because using malloc in | ||
149 | re_search* or re_match* could cause memory leaks when C-g is used in | ||
150 | Emacs; also, malloc is slower and causes storage fragmentation. On | ||
151 | the other hand, malloc is more portable, and easier to debug. | ||
152 | |||
153 | Because we sometimes use alloca, some routines have to be macros, | ||
154 | not functions -- `alloca'-allocated space disappears at the end of the | ||
155 | function it is called in. */ | ||
156 | |||
157 | #ifdef REGEX_MALLOC | ||
158 | |||
159 | #define REGEX_ALLOCATE malloc | ||
160 | #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) | ||
161 | |||
162 | #else /* not REGEX_MALLOC */ | ||
163 | |||
164 | /* Emacs already defines alloca, sometimes. */ | ||
165 | #ifndef alloca | ||
166 | |||
167 | /* Make alloca work the best possible way. */ | ||
168 | #ifdef __GNUC__ | ||
169 | #define alloca __builtin_alloca | ||
170 | #else /* not __GNUC__ */ | ||
171 | #if HAVE_ALLOCA_H | ||
172 | #include <alloca.h> | ||
173 | #else /* not __GNUC__ or HAVE_ALLOCA_H */ | ||
174 | #ifndef _AIX /* Already did AIX, up at the top. */ | ||
175 | char *alloca (); | ||
176 | #endif /* not _AIX */ | ||
177 | #endif /* not HAVE_ALLOCA_H */ | ||
178 | #endif /* not __GNUC__ */ | ||
179 | |||
180 | #endif /* not alloca */ | ||
181 | |||
182 | #define REGEX_ALLOCATE alloca | ||
183 | |||
184 | /* Assumes a `char *destination' variable. */ | ||
185 | #define REGEX_REALLOCATE(source, osize, nsize) \ | ||
186 | (destination = (char *) alloca (nsize), \ | ||
187 | bcopy (source, destination, osize), \ | ||
188 | destination) | ||
189 | |||
190 | #endif /* not REGEX_MALLOC */ | ||
191 | |||
192 | |||
193 | /* True if `size1' is non-NULL and PTR is pointing anywhere inside | ||
194 | `string1' or just past its end. This works if PTR is NULL, which is | ||
195 | a good thing. */ | ||
196 | #define FIRST_STRING_P(ptr) \ | ||
197 | (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) | ||
198 | |||
199 | /* (Re)Allocate N items of type T using malloc, or fail. */ | ||
200 | #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) | ||
201 | #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) | ||
202 | #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) | ||
203 | |||
204 | #define BYTEWIDTH 8 /* In bits. */ | ||
205 | |||
206 | #define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) | ||
207 | |||
208 | #define MAX(a, b) ((a) > (b) ? (a) : (b)) | ||
209 | #define MIN(a, b) ((a) < (b) ? (a) : (b)) | ||
210 | |||
211 | typedef char boolean; | ||
212 | #define false 0 | ||
213 | #define true 1 | ||
214 | |||
215 | /* These are the command codes that appear in compiled regular | ||
216 | expressions. Some opcodes are followed by argument bytes. A | ||
217 | command code can specify any interpretation whatsoever for its | ||
218 | arguments. Zero bytes may appear in the compiled regular expression. | ||
219 | |||
220 | The value of `exactn' is needed in search.c (search_buffer) in Emacs. | ||
221 | So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of | ||
222 | `exactn' we use here must also be 1. */ | ||
223 | |||
224 | typedef enum | ||
225 | { | ||
226 | no_op = 0, | ||
227 | |||
228 | /* Followed by one byte giving n, then by n literal bytes. */ | ||
229 | exactn = 1, | ||
230 | |||
231 | /* Matches any (more or less) character. */ | ||
232 | anychar, | ||
233 | |||
234 | /* Matches any one char belonging to specified set. First | ||
235 | following byte is number of bitmap bytes. Then come bytes | ||
236 | for a bitmap saying which chars are in. Bits in each byte | ||
237 | are ordered low-bit-first. A character is in the set if its | ||
238 | bit is 1. A character too large to have a bit in the map is | ||
239 | automatically not in the set. */ | ||
240 | charset, | ||
241 | |||
242 | /* Same parameters as charset, but match any character that is | ||
243 | not one of those specified. */ | ||
244 | charset_not, | ||
245 | |||
246 | /* Start remembering the text that is matched, for storing in a | ||
247 | register. Followed by one byte with the register number, in | ||
248 | the range 0 to one less than the pattern buffer's re_nsub | ||
249 | field. Then followed by one byte with the number of groups | ||
250 | inner to this one. (This last has to be part of the | ||
251 | start_memory only because we need it in the on_failure_jump | ||
252 | of re_match_2.) */ | ||
253 | start_memory, | ||
254 | |||
255 | /* Stop remembering the text that is matched and store it in a | ||
256 | memory register. Followed by one byte with the register | ||
257 | number, in the range 0 to one less than `re_nsub' in the | ||
258 | pattern buffer, and one byte with the number of inner groups, | ||
259 | just like `start_memory'. (We need the number of inner | ||
260 | groups here because we don't have any easy way of finding the | ||
261 | corresponding start_memory when we're at a stop_memory.) */ | ||
262 | stop_memory, | ||
263 | |||
264 | /* Match a duplicate of something remembered. Followed by one | ||
265 | byte containing the register number. */ | ||
266 | duplicate, | ||
267 | |||
268 | /* Fail unless at beginning of line. */ | ||
269 | begline, | ||
270 | |||
271 | /* Fail unless at end of line. */ | ||
272 | endline, | ||
273 | |||
274 | /* Succeeds if at beginning of buffer (if emacs) or at beginning | ||
275 | of string to be matched (if not). */ | ||
276 | begbuf, | ||
277 | |||
278 | /* Analogously, for end of buffer/string. */ | ||
279 | endbuf, | ||
280 | |||
281 | /* Followed by two byte relative address to which to jump. */ | ||
282 | jump, | ||
283 | |||
284 | /* Same as jump, but marks the end of an alternative. */ | ||
285 | jump_past_alt, | ||
286 | |||
287 | /* Followed by two-byte relative address of place to resume at | ||
288 | in case of failure. */ | ||
289 | on_failure_jump, | ||
290 | |||
291 | /* Like on_failure_jump, but pushes a placeholder instead of the | ||
292 | current string position when executed. */ | ||
293 | on_failure_keep_string_jump, | ||
294 | |||
295 | /* Throw away latest failure point and then jump to following | ||
296 | two-byte relative address. */ | ||
297 | pop_failure_jump, | ||
298 | |||
299 | /* Change to pop_failure_jump if know won't have to backtrack to | ||
300 | match; otherwise change to jump. This is used to jump | ||
301 | back to the beginning of a repeat. If what follows this jump | ||
302 | clearly won't match what the repeat does, such that we can be | ||
303 | sure that there is no use backtracking out of repetitions | ||
304 | already matched, then we change it to a pop_failure_jump. | ||
305 | Followed by two-byte address. */ | ||
306 | maybe_pop_jump, | ||
307 | |||
308 | /* Jump to following two-byte address, and push a dummy failure | ||
309 | point. This failure point will be thrown away if an attempt | ||
310 | is made to use it for a failure. A `+' construct makes this | ||
311 | before the first repeat. Also used as an intermediary kind | ||
312 | of jump when compiling an alternative. */ | ||
313 | dummy_failure_jump, | ||
314 | |||
315 | /* Push a dummy failure point and continue. Used at the end of | ||
316 | alternatives. */ | ||
317 | push_dummy_failure, | ||
318 | |||
319 | /* Followed by two-byte relative address and two-byte number n. | ||
320 | After matching N times, jump to the address upon failure. */ | ||
321 | succeed_n, | ||
322 | |||
323 | /* Followed by two-byte relative address, and two-byte number n. | ||
324 | Jump to the address N times, then fail. */ | ||
325 | jump_n, | ||
326 | |||
327 | /* Set the following two-byte relative address to the | ||
328 | subsequent two-byte number. The address *includes* the two | ||
329 | bytes of number. */ | ||
330 | set_number_at, | ||
331 | |||
332 | wordchar, /* Matches any word-constituent character. */ | ||
333 | notwordchar, /* Matches any char that is not a word-constituent. */ | ||
334 | |||
335 | wordbeg, /* Succeeds if at word beginning. */ | ||
336 | wordend, /* Succeeds if at word end. */ | ||
337 | |||
338 | wordbound, /* Succeeds if at a word boundary. */ | ||
339 | notwordbound /* Succeeds if not at a word boundary. */ | ||
340 | |||
341 | #ifdef emacs | ||
342 | ,before_dot, /* Succeeds if before point. */ | ||
343 | at_dot, /* Succeeds if at point. */ | ||
344 | after_dot, /* Succeeds if after point. */ | ||
345 | |||
346 | /* Matches any character whose syntax is specified. Followed by | ||
347 | a byte which contains a syntax code, e.g., Sword. */ | ||
348 | syntaxspec, | ||
349 | |||
350 | /* Matches any character whose syntax is not that specified. */ | ||
351 | notsyntaxspec | ||
352 | #endif /* emacs */ | ||
353 | } re_opcode_t; | ||
354 | |||
355 | /* Common operations on the compiled pattern. */ | ||
356 | |||
357 | /* Store NUMBER in two contiguous bytes starting at DESTINATION. */ | ||
358 | |||
359 | #define STORE_NUMBER(destination, number) \ | ||
360 | do { \ | ||
361 | (destination)[0] = (number) & 0377; \ | ||
362 | (destination)[1] = (number) >> 8; \ | ||
363 | } while (0) | ||
364 | |||
365 | /* Same as STORE_NUMBER, except increment DESTINATION to | ||
366 | the byte after where the number is stored. Therefore, DESTINATION | ||
367 | must be an lvalue. */ | ||
368 | |||
369 | #define STORE_NUMBER_AND_INCR(destination, number) \ | ||
370 | do { \ | ||
371 | STORE_NUMBER (destination, number); \ | ||
372 | (destination) += 2; \ | ||
373 | } while (0) | ||
374 | |||
375 | /* Put into DESTINATION a number stored in two contiguous bytes starting | ||
376 | at SOURCE. */ | ||
377 | |||
378 | #define EXTRACT_NUMBER(destination, source) \ | ||
379 | do { \ | ||
380 | (destination) = *(source) & 0377; \ | ||
381 | (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ | ||
382 | } while (0) | ||
383 | |||
384 | #ifdef DEBUG | ||
385 | static void | ||
386 | extract_number (dest, source) | ||
387 | int *dest; | ||
388 | unsigned char *source; | ||
389 | { | ||
390 | int temp = SIGN_EXTEND_CHAR (*(source + 1)); | ||
391 | *dest = *source & 0377; | ||
392 | *dest += temp << 8; | ||
393 | } | ||
394 | |||
395 | #ifndef EXTRACT_MACROS /* To debug the macros. */ | ||
396 | #undef EXTRACT_NUMBER | ||
397 | #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) | ||
398 | #endif /* not EXTRACT_MACROS */ | ||
399 | |||
400 | #endif /* DEBUG */ | ||
401 | |||
402 | /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. | ||
403 | SOURCE must be an lvalue. */ | ||
404 | |||
405 | #define EXTRACT_NUMBER_AND_INCR(destination, source) \ | ||
406 | do { \ | ||
407 | EXTRACT_NUMBER (destination, source); \ | ||
408 | (source) += 2; \ | ||
409 | } while (0) | ||
410 | |||
411 | #ifdef DEBUG | ||
412 | static void | ||
413 | extract_number_and_incr (destination, source) | ||
414 | int *destination; | ||
415 | unsigned char **source; | ||
416 | { | ||
417 | extract_number (destination, *source); | ||
418 | *source += 2; | ||
419 | } | ||
420 | |||
421 | #ifndef EXTRACT_MACROS | ||
422 | #undef EXTRACT_NUMBER_AND_INCR | ||
423 | #define EXTRACT_NUMBER_AND_INCR(dest, src) \ | ||
424 | extract_number_and_incr (&dest, &src) | ||
425 | #endif /* not EXTRACT_MACROS */ | ||
426 | |||
427 | #endif /* DEBUG */ | ||
428 | |||
429 | /* If DEBUG is defined, Regex prints many voluminous messages about what | ||
430 | it is doing (if the variable `debug' is nonzero). If linked with the | ||
431 | main program in `iregex.c', you can enter patterns and strings | ||
432 | interactively. And if linked with the main program in `main.c' and | ||
433 | the other test files, you can run the already-written tests. */ | ||
434 | |||
435 | #ifdef DEBUG | ||
436 | |||
437 | /* We use standard I/O for debugging. */ | ||
438 | #include <stdio.h> | ||
439 | |||
440 | /* It is useful to test things that ``must'' be true when debugging. */ | ||
441 | #include <assert.h> | ||
442 | |||
443 | static int debug = 0; | ||
444 | |||
445 | #define DEBUG_STATEMENT(e) e | ||
446 | #define DEBUG_PRINT1(x) if (debug) printf (x) | ||
447 | #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) | ||
448 | #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) | ||
449 | #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) | ||
450 | #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ | ||
451 | if (debug) print_partial_compiled_pattern (s, e) | ||
452 | #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ | ||
453 | if (debug) print_double_string (w, s1, sz1, s2, sz2) | ||
454 | |||
455 | |||
456 | extern void printchar (); | ||
457 | |||
458 | /* Print the fastmap in human-readable form. */ | ||
459 | |||
460 | void | ||
461 | print_fastmap (fastmap) | ||
462 | char *fastmap; | ||
463 | { | ||
464 | unsigned was_a_range = 0; | ||
465 | unsigned i = 0; | ||
466 | |||
467 | while (i < (1 << BYTEWIDTH)) | ||
468 | { | ||
469 | if (fastmap[i++]) | ||
470 | { | ||
471 | was_a_range = 0; | ||
472 | printchar (i - 1); | ||
473 | while (i < (1 << BYTEWIDTH) && fastmap[i]) | ||
474 | { | ||
475 | was_a_range = 1; | ||
476 | i++; | ||
477 | } | ||
478 | if (was_a_range) | ||
479 | { | ||
480 | printf ("-"); | ||
481 | printchar (i - 1); | ||
482 | } | ||
483 | } | ||
484 | } | ||
485 | putchar ('\n'); | ||
486 | } | ||
487 | |||
488 | |||
489 | /* Print a compiled pattern string in human-readable form, starting at | ||
490 | the START pointer into it and ending just before the pointer END. */ | ||
491 | |||
492 | void | ||
493 | print_partial_compiled_pattern (start, end) | ||
494 | unsigned char *start; | ||
495 | unsigned char *end; | ||
496 | { | ||
497 | int mcnt, mcnt2; | ||
498 | unsigned char *p = start; | ||
499 | unsigned char *pend = end; | ||
500 | |||
501 | if (start == NULL) | ||
502 | { | ||
503 | printf ("(null)\n"); | ||
504 | return; | ||
505 | } | ||
506 | |||
507 | /* Loop over pattern commands. */ | ||
508 | while (p < pend) | ||
509 | { | ||
510 | switch ((re_opcode_t) *p++) | ||
511 | { | ||
512 | case no_op: | ||
513 | printf ("/no_op"); | ||
514 | break; | ||
515 | |||
516 | case exactn: | ||
517 | mcnt = *p++; | ||
518 | printf ("/exactn/%d", mcnt); | ||
519 | do | ||
520 | { | ||
521 | putchar ('/'); | ||
522 | printchar (*p++); | ||
523 | } | ||
524 | while (--mcnt); | ||
525 | break; | ||
526 | |||
527 | case start_memory: | ||
528 | mcnt = *p++; | ||
529 | printf ("/start_memory/%d/%d", mcnt, *p++); | ||
530 | break; | ||
531 | |||
532 | case stop_memory: | ||
533 | mcnt = *p++; | ||
534 | printf ("/stop_memory/%d/%d", mcnt, *p++); | ||
535 | break; | ||
536 | |||
537 | case duplicate: | ||
538 | printf ("/duplicate/%d", *p++); | ||
539 | break; | ||
540 | |||
541 | case anychar: | ||
542 | printf ("/anychar"); | ||
543 | break; | ||
544 | |||
545 | case charset: | ||
546 | case charset_not: | ||
547 | { | ||
548 | register int c; | ||
549 | |||
550 | printf ("/charset%s", | ||
551 | (re_opcode_t) *(p - 1) == charset_not ? "_not" : ""); | ||
552 | |||
553 | assert (p + *p < pend); | ||
554 | |||
555 | for (c = 0; c < *p; c++) | ||
556 | { | ||
557 | unsigned bit; | ||
558 | unsigned char map_byte = p[1 + c]; | ||
559 | |||
560 | putchar ('/'); | ||
561 | |||
562 | for (bit = 0; bit < BYTEWIDTH; bit++) | ||
563 | if (map_byte & (1 << bit)) | ||
564 | printchar (c * BYTEWIDTH + bit); | ||
565 | } | ||
566 | p += 1 + *p; | ||
567 | break; | ||
568 | } | ||
569 | |||
570 | case begline: | ||
571 | printf ("/begline"); | ||
572 | break; | ||
573 | |||
574 | case endline: | ||
575 | printf ("/endline"); | ||
576 | break; | ||
577 | |||
578 | case on_failure_jump: | ||
579 | extract_number_and_incr (&mcnt, &p); | ||
580 | printf ("/on_failure_jump/0/%d", mcnt); | ||
581 | break; | ||
582 | |||
583 | case on_failure_keep_string_jump: | ||
584 | extract_number_and_incr (&mcnt, &p); | ||
585 | printf ("/on_failure_keep_string_jump/0/%d", mcnt); | ||
586 | break; | ||
587 | |||
588 | case dummy_failure_jump: | ||
589 | extract_number_and_incr (&mcnt, &p); | ||
590 | printf ("/dummy_failure_jump/0/%d", mcnt); | ||
591 | break; | ||
592 | |||
593 | case push_dummy_failure: | ||
594 | printf ("/push_dummy_failure"); | ||
595 | break; | ||
596 | |||
597 | case maybe_pop_jump: | ||
598 | extract_number_and_incr (&mcnt, &p); | ||
599 | printf ("/maybe_pop_jump/0/%d", mcnt); | ||
600 | break; | ||
601 | |||
602 | case pop_failure_jump: | ||
603 | extract_number_and_incr (&mcnt, &p); | ||
604 | printf ("/pop_failure_jump/0/%d", mcnt); | ||
605 | break; | ||
606 | |||
607 | case jump_past_alt: | ||
608 | extract_number_and_incr (&mcnt, &p); | ||
609 | printf ("/jump_past_alt/0/%d", mcnt); | ||
610 | break; | ||
611 | |||
612 | case jump: | ||
613 | extract_number_and_incr (&mcnt, &p); | ||
614 | printf ("/jump/0/%d", mcnt); | ||
615 | break; | ||
616 | |||
617 | case succeed_n: | ||
618 | extract_number_and_incr (&mcnt, &p); | ||
619 | extract_number_and_incr (&mcnt2, &p); | ||
620 | printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2); | ||
621 | break; | ||
622 | |||
623 | case jump_n: | ||
624 | extract_number_and_incr (&mcnt, &p); | ||
625 | extract_number_and_incr (&mcnt2, &p); | ||
626 | printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2); | ||
627 | break; | ||
628 | |||
629 | case set_number_at: | ||
630 | extract_number_and_incr (&mcnt, &p); | ||
631 | extract_number_and_incr (&mcnt2, &p); | ||
632 | printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2); | ||
633 | break; | ||
634 | |||
635 | case wordbound: | ||
636 | printf ("/wordbound"); | ||
637 | break; | ||
638 | |||
639 | case notwordbound: | ||
640 | printf ("/notwordbound"); | ||
641 | break; | ||
642 | |||
643 | case wordbeg: | ||
644 | printf ("/wordbeg"); | ||
645 | break; | ||
646 | |||
647 | case wordend: | ||
648 | printf ("/wordend"); | ||
649 | |||
650 | #ifdef emacs | ||
651 | case before_dot: | ||
652 | printf ("/before_dot"); | ||
653 | break; | ||
654 | |||
655 | case at_dot: | ||
656 | printf ("/at_dot"); | ||
657 | break; | ||
658 | |||
659 | case after_dot: | ||
660 | printf ("/after_dot"); | ||
661 | break; | ||
662 | |||
663 | case syntaxspec: | ||
664 | printf ("/syntaxspec"); | ||
665 | mcnt = *p++; | ||
666 | printf ("/%d", mcnt); | ||
667 | break; | ||
668 | |||
669 | case notsyntaxspec: | ||
670 | printf ("/notsyntaxspec"); | ||
671 | mcnt = *p++; | ||
672 | printf ("/%d", mcnt); | ||
673 | break; | ||
674 | #endif /* emacs */ | ||
675 | |||
676 | case wordchar: | ||
677 | printf ("/wordchar"); | ||
678 | break; | ||
679 | |||
680 | case notwordchar: | ||
681 | printf ("/notwordchar"); | ||
682 | break; | ||
683 | |||
684 | case begbuf: | ||
685 | printf ("/begbuf"); | ||
686 | break; | ||
687 | |||
688 | case endbuf: | ||
689 | printf ("/endbuf"); | ||
690 | break; | ||
691 | |||
692 | default: | ||
693 | printf ("?%d", *(p-1)); | ||
694 | } | ||
695 | } | ||
696 | printf ("/\n"); | ||
697 | } | ||
698 | |||
699 | |||
700 | void | ||
701 | print_compiled_pattern (bufp) | ||
702 | struct re_pattern_buffer *bufp; | ||
703 | { | ||
704 | unsigned char *buffer = bufp->buffer; | ||
705 | |||
706 | print_partial_compiled_pattern (buffer, buffer + bufp->used); | ||
707 | printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated); | ||
708 | |||
709 | if (bufp->fastmap_accurate && bufp->fastmap) | ||
710 | { | ||
711 | printf ("fastmap: "); | ||
712 | print_fastmap (bufp->fastmap); | ||
713 | } | ||
714 | |||
715 | printf ("re_nsub: %d\t", bufp->re_nsub); | ||
716 | printf ("regs_alloc: %d\t", bufp->regs_allocated); | ||
717 | printf ("can_be_null: %d\t", bufp->can_be_null); | ||
718 | printf ("newline_anchor: %d\n", bufp->newline_anchor); | ||
719 | printf ("no_sub: %d\t", bufp->no_sub); | ||
720 | printf ("not_bol: %d\t", bufp->not_bol); | ||
721 | printf ("not_eol: %d\t", bufp->not_eol); | ||
722 | printf ("syntax: %d\n", bufp->syntax); | ||
723 | /* Perhaps we should print the translate table? */ | ||
724 | } | ||
725 | |||
726 | |||
727 | void | ||
728 | print_double_string (where, string1, size1, string2, size2) | ||
729 | const char *where; | ||
730 | const char *string1; | ||
731 | const char *string2; | ||
732 | int size1; | ||
733 | int size2; | ||
734 | { | ||
735 | unsigned this_char; | ||
736 | |||
737 | if (where == NULL) | ||
738 | printf ("(null)"); | ||
739 | else | ||
740 | { | ||
741 | if (FIRST_STRING_P (where)) | ||
742 | { | ||
743 | for (this_char = where - string1; this_char < size1; this_char++) | ||
744 | printchar (string1[this_char]); | ||
745 | |||
746 | where = string2; | ||
747 | } | ||
748 | |||
749 | for (this_char = where - string2; this_char < size2; this_char++) | ||
750 | printchar (string2[this_char]); | ||
751 | } | ||
752 | } | ||
753 | |||
754 | #else /* not DEBUG */ | ||
755 | |||
756 | #undef assert | ||
757 | #define assert(e) | ||
758 | |||
759 | #define DEBUG_STATEMENT(e) | ||
760 | #define DEBUG_PRINT1(x) | ||
761 | #define DEBUG_PRINT2(x1, x2) | ||
762 | #define DEBUG_PRINT3(x1, x2, x3) | ||
763 | #define DEBUG_PRINT4(x1, x2, x3, x4) | ||
764 | #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) | ||
765 | #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) | ||
766 | |||
767 | #endif /* not DEBUG */ | ||
768 | |||
769 | /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can | ||
770 | also be assigned to arbitrarily: each pattern buffer stores its own | ||
771 | syntax, so it can be changed between regex compilations. */ | ||
772 | reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS; | ||
773 | |||
774 | |||
775 | /* Specify the precise syntax of regexps for compilation. This provides | ||
776 | for compatibility for various utilities which historically have | ||
777 | different, incompatible syntaxes. | ||
778 | |||
779 | The argument SYNTAX is a bit mask comprised of the various bits | ||
780 | defined in regex.h. We return the old syntax. */ | ||
781 | |||
782 | reg_syntax_t | ||
783 | re_set_syntax (syntax) | ||
784 | reg_syntax_t syntax; | ||
785 | { | ||
786 | reg_syntax_t ret = re_syntax_options; | ||
787 | |||
788 | re_syntax_options = syntax; | ||
789 | return ret; | ||
790 | } | ||
791 | |||
792 | /* This table gives an error message for each of the error codes listed | ||
793 | in regex.h. Obviously the order here has to be same as there. */ | ||
794 | |||
795 | static const char *re_error_msg[] = | ||
796 | { NULL, /* REG_NOERROR */ | ||
797 | "No match", /* REG_NOMATCH */ | ||
798 | "Invalid regular expression", /* REG_BADPAT */ | ||
799 | "Invalid collation character", /* REG_ECOLLATE */ | ||
800 | "Invalid character class name", /* REG_ECTYPE */ | ||
801 | "Trailing backslash", /* REG_EESCAPE */ | ||
802 | "Invalid back reference", /* REG_ESUBREG */ | ||
803 | "Unmatched [ or [^", /* REG_EBRACK */ | ||
804 | "Unmatched ( or \\(", /* REG_EPAREN */ | ||
805 | "Unmatched \\{", /* REG_EBRACE */ | ||
806 | "Invalid content of \\{\\}", /* REG_BADBR */ | ||
807 | "Invalid range end", /* REG_ERANGE */ | ||
808 | "Memory exhausted", /* REG_ESPACE */ | ||
809 | "Invalid preceding regular expression", /* REG_BADRPT */ | ||
810 | "Premature end of regular expression", /* REG_EEND */ | ||
811 | "Regular expression too big", /* REG_ESIZE */ | ||
812 | "Unmatched ) or \\)", /* REG_ERPAREN */ | ||
813 | }; | ||
814 | |||
815 | /* Subroutine declarations and macros for regex_compile. */ | ||
816 | |||
817 | static void store_op1 (), store_op2 (); | ||
818 | static void insert_op1 (), insert_op2 (); | ||
819 | static boolean at_begline_loc_p (), at_endline_loc_p (); | ||
820 | static boolean group_in_compile_stack (); | ||
821 | static reg_errcode_t compile_range (); | ||
822 | |||
823 | /* Fetch the next character in the uncompiled pattern---translating it | ||
824 | if necessary. Also cast from a signed character in the constant | ||
825 | string passed to us by the user to an unsigned char that we can use | ||
826 | as an array index (in, e.g., `translate'). */ | ||
827 | #define PATFETCH(c) \ | ||
828 | do {if (p == pend) return REG_EEND; \ | ||
829 | c = (unsigned char) *p++; \ | ||
830 | if (translate) c = translate[c]; \ | ||
831 | } while (0) | ||
832 | |||
833 | /* Fetch the next character in the uncompiled pattern, with no | ||
834 | translation. */ | ||
835 | #define PATFETCH_RAW(c) \ | ||
836 | do {if (p == pend) return REG_EEND; \ | ||
837 | c = (unsigned char) *p++; \ | ||
838 | } while (0) | ||
839 | |||
840 | /* Go backwards one character in the pattern. */ | ||
841 | #define PATUNFETCH p-- | ||
842 | |||
843 | |||
844 | /* If `translate' is non-null, return translate[D], else just D. We | ||
845 | cast the subscript to translate because some data is declared as | ||
846 | `char *', to avoid warnings when a string constant is passed. But | ||
847 | when we use a character as a subscript we must make it unsigned. */ | ||
848 | #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d)) | ||
849 | |||
850 | |||
851 | /* Macros for outputting the compiled pattern into `buffer'. */ | ||
852 | |||
853 | /* If the buffer isn't allocated when it comes in, use this. */ | ||
854 | #define INIT_BUF_SIZE 32 | ||
855 | |||
856 | /* Make sure we have at least N more bytes of space in buffer. */ | ||
857 | #define GET_BUFFER_SPACE(n) \ | ||
858 | while (b - bufp->buffer + (n) > bufp->allocated) \ | ||
859 | EXTEND_BUFFER () | ||
860 | |||
861 | /* Make sure we have one more byte of buffer space and then add C to it. */ | ||
862 | #define BUF_PUSH(c) \ | ||
863 | do { \ | ||
864 | GET_BUFFER_SPACE (1); \ | ||
865 | *b++ = (unsigned char) (c); \ | ||
866 | } while (0) | ||
867 | |||
868 | |||
869 | /* Ensure we have two more bytes of buffer space and then append C1 and C2. */ | ||
870 | #define BUF_PUSH_2(c1, c2) \ | ||
871 | do { \ | ||
872 | GET_BUFFER_SPACE (2); \ | ||
873 | *b++ = (unsigned char) (c1); \ | ||
874 | *b++ = (unsigned char) (c2); \ | ||
875 | } while (0) | ||
876 | |||
877 | |||
878 | /* As with BUF_PUSH_2, except for three bytes. */ | ||
879 | #define BUF_PUSH_3(c1, c2, c3) \ | ||
880 | do { \ | ||
881 | GET_BUFFER_SPACE (3); \ | ||
882 | *b++ = (unsigned char) (c1); \ | ||
883 | *b++ = (unsigned char) (c2); \ | ||
884 | *b++ = (unsigned char) (c3); \ | ||
885 | } while (0) | ||
886 | |||
887 | |||
888 | /* Store a jump with opcode OP at LOC to location TO. We store a | ||
889 | relative address offset by the three bytes the jump itself occupies. */ | ||
890 | #define STORE_JUMP(op, loc, to) \ | ||
891 | store_op1 (op, loc, (to) - (loc) - 3) | ||
892 | |||
893 | /* Likewise, for a two-argument jump. */ | ||
894 | #define STORE_JUMP2(op, loc, to, arg) \ | ||
895 | store_op2 (op, loc, (to) - (loc) - 3, arg) | ||
896 | |||
897 | /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ | ||
898 | #define INSERT_JUMP(op, loc, to) \ | ||
899 | insert_op1 (op, loc, (to) - (loc) - 3, b) | ||
900 | |||
901 | /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ | ||
902 | #define INSERT_JUMP2(op, loc, to, arg) \ | ||
903 | insert_op2 (op, loc, (to) - (loc) - 3, arg, b) | ||
904 | |||
905 | |||
906 | /* This is not an arbitrary limit: the arguments which represent offsets | ||
907 | into the pattern are two bytes long. So if 2^16 bytes turns out to | ||
908 | be too small, many things would have to change. */ | ||
909 | #define MAX_BUF_SIZE (1L << 16) | ||
910 | |||
911 | |||
912 | /* Extend the buffer by twice its current size via realloc and | ||
913 | reset the pointers that pointed into the old block to point to the | ||
914 | correct places in the new one. If extending the buffer results in it | ||
915 | being larger than MAX_BUF_SIZE, then flag memory exhausted. */ | ||
916 | #define EXTEND_BUFFER() \ | ||
917 | do { \ | ||
918 | unsigned char *old_buffer = bufp->buffer; \ | ||
919 | if (bufp->allocated == MAX_BUF_SIZE) \ | ||
920 | return REG_ESIZE; \ | ||
921 | bufp->allocated <<= 1; \ | ||
922 | if (bufp->allocated > MAX_BUF_SIZE) \ | ||
923 | bufp->allocated = MAX_BUF_SIZE; \ | ||
924 | bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ | ||
925 | if (bufp->buffer == NULL) \ | ||
926 | return REG_ESPACE; \ | ||
927 | /* If the buffer moved, move all the pointers into it. */ \ | ||
928 | if (old_buffer != bufp->buffer) \ | ||
929 | { \ | ||
930 | b = (b - old_buffer) + bufp->buffer; \ | ||
931 | begalt = (begalt - old_buffer) + bufp->buffer; \ | ||
932 | if (fixup_alt_jump) \ | ||
933 | fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ | ||
934 | if (laststart) \ | ||
935 | laststart = (laststart - old_buffer) + bufp->buffer; \ | ||
936 | if (pending_exact) \ | ||
937 | pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ | ||
938 | } \ | ||
939 | } while (0) | ||
940 | |||
941 | |||
942 | /* Since we have one byte reserved for the register number argument to | ||
943 | {start,stop}_memory, the maximum number of groups we can report | ||
944 | things about is what fits in that byte. */ | ||
945 | #define MAX_REGNUM 255 | ||
946 | |||
947 | /* But patterns can have more than `MAX_REGNUM' registers. We just | ||
948 | ignore the excess. */ | ||
949 | typedef unsigned regnum_t; | ||
950 | |||
951 | |||
952 | /* Macros for the compile stack. */ | ||
953 | |||
954 | /* Since offsets can go either forwards or backwards, this type needs to | ||
955 | be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ | ||
956 | typedef int pattern_offset_t; | ||
957 | |||
958 | typedef struct | ||
959 | { | ||
960 | pattern_offset_t begalt_offset; | ||
961 | pattern_offset_t fixup_alt_jump; | ||
962 | pattern_offset_t inner_group_offset; | ||
963 | pattern_offset_t laststart_offset; | ||
964 | regnum_t regnum; | ||
965 | } compile_stack_elt_t; | ||
966 | |||
967 | |||
968 | typedef struct | ||
969 | { | ||
970 | compile_stack_elt_t *stack; | ||
971 | unsigned size; | ||
972 | unsigned avail; /* Offset of next open position. */ | ||
973 | } compile_stack_type; | ||
974 | |||
975 | |||
976 | #define INIT_COMPILE_STACK_SIZE 32 | ||
977 | |||
978 | #define COMPILE_STACK_EMPTY (compile_stack.avail == 0) | ||
979 | #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) | ||
980 | |||
981 | /* The next available element. */ | ||
982 | #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) | ||
983 | |||
984 | |||
985 | /* Set the bit for character C in a list. */ | ||
986 | #define SET_LIST_BIT(c) \ | ||
987 | (b[((unsigned char) (c)) / BYTEWIDTH] \ | ||
988 | |= 1 << (((unsigned char) c) % BYTEWIDTH)) | ||
989 | |||
990 | |||
991 | /* Get the next unsigned number in the uncompiled pattern. */ | ||
992 | #define GET_UNSIGNED_NUMBER(num) \ | ||
993 | { if (p != pend) \ | ||
994 | { \ | ||
995 | PATFETCH (c); \ | ||
996 | while (ISDIGIT (c)) \ | ||
997 | { \ | ||
998 | if (num < 0) \ | ||
999 | num = 0; \ | ||
1000 | num = num * 10 + c - '0'; \ | ||
1001 | if (p == pend) \ | ||
1002 | break; \ | ||
1003 | PATFETCH (c); \ | ||
1004 | } \ | ||
1005 | } \ | ||
1006 | } | ||
1007 | |||
1008 | #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ | ||
1009 | |||
1010 | #define IS_CHAR_CLASS(string) \ | ||
1011 | (STREQ (string, "alpha") || STREQ (string, "upper") \ | ||
1012 | || STREQ (string, "lower") || STREQ (string, "digit") \ | ||
1013 | || STREQ (string, "alnum") || STREQ (string, "xdigit") \ | ||
1014 | || STREQ (string, "space") || STREQ (string, "print") \ | ||
1015 | || STREQ (string, "punct") || STREQ (string, "graph") \ | ||
1016 | || STREQ (string, "cntrl") || STREQ (string, "blank")) | ||
1017 | |||
1018 | /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. | ||
1019 | Returns one of error codes defined in `regex.h', or zero for success. | ||
1020 | |||
1021 | Assumes the `allocated' (and perhaps `buffer') and `translate' | ||
1022 | fields are set in BUFP on entry. | ||
1023 | |||
1024 | If it succeeds, results are put in BUFP (if it returns an error, the | ||
1025 | contents of BUFP are undefined): | ||
1026 | `buffer' is the compiled pattern; | ||
1027 | `syntax' is set to SYNTAX; | ||
1028 | `used' is set to the length of the compiled pattern; | ||
1029 | `fastmap_accurate' is zero; | ||
1030 | `re_nsub' is the number of subexpressions in PATTERN; | ||
1031 | `not_bol' and `not_eol' are zero; | ||
1032 | |||
1033 | The `fastmap' and `newline_anchor' fields are neither | ||
1034 | examined nor set. */ | ||
1035 | |||
1036 | static reg_errcode_t | ||
1037 | regex_compile (pattern, size, syntax, bufp) | ||
1038 | const char *pattern; | ||
1039 | int size; | ||
1040 | reg_syntax_t syntax; | ||
1041 | struct re_pattern_buffer *bufp; | ||
1042 | { | ||
1043 | /* We fetch characters from PATTERN here. Even though PATTERN is | ||
1044 | `char *' (i.e., signed), we declare these variables as unsigned, so | ||
1045 | they can be reliably used as array indices. */ | ||
1046 | register unsigned char c, c1; | ||
1047 | |||
1048 | /* A random tempory spot in PATTERN. */ | ||
1049 | const char *p1; | ||
1050 | |||
1051 | /* Points to the end of the buffer, where we should append. */ | ||
1052 | register unsigned char *b; | ||
1053 | |||
1054 | /* Keeps track of unclosed groups. */ | ||
1055 | compile_stack_type compile_stack; | ||
1056 | |||
1057 | /* Points to the current (ending) position in the pattern. */ | ||
1058 | const char *p = pattern; | ||
1059 | const char *pend = pattern + size; | ||
1060 | |||
1061 | /* How to translate the characters in the pattern. */ | ||
1062 | char *translate = bufp->translate; | ||
1063 | |||
1064 | /* Address of the count-byte of the most recently inserted `exactn' | ||
1065 | command. This makes it possible to tell if a new exact-match | ||
1066 | character can be added to that command or if the character requires | ||
1067 | a new `exactn' command. */ | ||
1068 | unsigned char *pending_exact = 0; | ||
1069 | |||
1070 | /* Address of start of the most recently finished expression. | ||
1071 | This tells, e.g., postfix * where to find the start of its | ||
1072 | operand. Reset at the beginning of groups and alternatives. */ | ||
1073 | unsigned char *laststart = 0; | ||
1074 | |||
1075 | /* Address of beginning of regexp, or inside of last group. */ | ||
1076 | unsigned char *begalt; | ||
1077 | |||
1078 | /* Place in the uncompiled pattern (i.e., the {) to | ||
1079 | which to go back if the interval is invalid. */ | ||
1080 | const char *beg_interval; | ||
1081 | |||
1082 | /* Address of the place where a forward jump should go to the end of | ||
1083 | the containing expression. Each alternative of an `or' -- except the | ||
1084 | last -- ends with a forward jump of this sort. */ | ||
1085 | unsigned char *fixup_alt_jump = 0; | ||
1086 | |||
1087 | /* Counts open-groups as they are encountered. Remembered for the | ||
1088 | matching close-group on the compile stack, so the same register | ||
1089 | number is put in the stop_memory as the start_memory. */ | ||
1090 | regnum_t regnum = 0; | ||
1091 | |||
1092 | #ifdef DEBUG | ||
1093 | DEBUG_PRINT1 ("\nCompiling pattern: "); | ||
1094 | if (debug) | ||
1095 | { | ||
1096 | unsigned debug_count; | ||
1097 | |||
1098 | for (debug_count = 0; debug_count < size; debug_count++) | ||
1099 | printchar (pattern[debug_count]); | ||
1100 | putchar ('\n'); | ||
1101 | } | ||
1102 | #endif /* DEBUG */ | ||
1103 | |||
1104 | /* Initialize the compile stack. */ | ||
1105 | compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); | ||
1106 | if (compile_stack.stack == NULL) | ||
1107 | return REG_ESPACE; | ||
1108 | |||
1109 | compile_stack.size = INIT_COMPILE_STACK_SIZE; | ||
1110 | compile_stack.avail = 0; | ||
1111 | |||
1112 | /* Initialize the pattern buffer. */ | ||
1113 | bufp->syntax = syntax; | ||
1114 | bufp->fastmap_accurate = 0; | ||
1115 | bufp->not_bol = bufp->not_eol = 0; | ||
1116 | |||
1117 | /* Set `used' to zero, so that if we return an error, the pattern | ||
1118 | printer (for debugging) will think there's no pattern. We reset it | ||
1119 | at the end. */ | ||
1120 | bufp->used = 0; | ||
1121 | |||
1122 | /* Always count groups, whether or not bufp->no_sub is set. */ | ||
1123 | bufp->re_nsub = 0; | ||
1124 | |||
1125 | #if !defined (emacs) && !defined (SYNTAX_TABLE) | ||
1126 | /* Initialize the syntax table. */ | ||
1127 | init_syntax_once (); | ||
1128 | #endif | ||
1129 | |||
1130 | if (bufp->allocated == 0) | ||
1131 | { | ||
1132 | if (bufp->buffer) | ||
1133 | { /* If zero allocated, but buffer is non-null, try to realloc | ||
1134 | enough space. This loses if buffer's address is bogus, but | ||
1135 | that is the user's responsibility. */ | ||
1136 | RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); | ||
1137 | } | ||
1138 | else | ||
1139 | { /* Caller did not allocate a buffer. Do it for them. */ | ||
1140 | bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); | ||
1141 | } | ||
1142 | if (!bufp->buffer) return REG_ESPACE; | ||
1143 | |||
1144 | bufp->allocated = INIT_BUF_SIZE; | ||
1145 | } | ||
1146 | |||
1147 | begalt = b = bufp->buffer; | ||
1148 | |||
1149 | /* Loop through the uncompiled pattern until we're at the end. */ | ||
1150 | while (p != pend) | ||
1151 | { | ||
1152 | PATFETCH (c); | ||
1153 | |||
1154 | switch (c) | ||
1155 | { | ||
1156 | case '^': | ||
1157 | { | ||
1158 | if ( /* If at start of pattern, it's an operator. */ | ||
1159 | p == pattern + 1 | ||
1160 | /* If context independent, it's an operator. */ | ||
1161 | || syntax & RE_CONTEXT_INDEP_ANCHORS | ||
1162 | /* Otherwise, depends on what's come before. */ | ||
1163 | || at_begline_loc_p (pattern, p, syntax)) | ||
1164 | BUF_PUSH (begline); | ||
1165 | else | ||
1166 | goto normal_char; | ||
1167 | } | ||
1168 | break; | ||
1169 | |||
1170 | |||
1171 | case '$': | ||
1172 | { | ||
1173 | if ( /* If at end of pattern, it's an operator. */ | ||
1174 | p == pend | ||
1175 | /* If context independent, it's an operator. */ | ||
1176 | || syntax & RE_CONTEXT_INDEP_ANCHORS | ||
1177 | /* Otherwise, depends on what's next. */ | ||
1178 | || at_endline_loc_p (p, pend, syntax)) | ||
1179 | BUF_PUSH (endline); | ||
1180 | else | ||
1181 | goto normal_char; | ||
1182 | } | ||
1183 | break; | ||
1184 | |||
1185 | |||
1186 | case '+': | ||
1187 | case '?': | ||
1188 | if ((syntax & RE_BK_PLUS_QM) | ||
1189 | || (syntax & RE_LIMITED_OPS)) | ||
1190 | goto normal_char; | ||
1191 | handle_plus: | ||
1192 | case '*': | ||
1193 | /* If there is no previous pattern... */ | ||
1194 | if (!laststart) | ||
1195 | { | ||
1196 | if (syntax & RE_CONTEXT_INVALID_OPS) | ||
1197 | return REG_BADRPT; | ||
1198 | else if (!(syntax & RE_CONTEXT_INDEP_OPS)) | ||
1199 | goto normal_char; | ||
1200 | } | ||
1201 | |||
1202 | { | ||
1203 | /* Are we optimizing this jump? */ | ||
1204 | boolean keep_string_p = false; | ||
1205 | |||
1206 | /* 1 means zero (many) matches is allowed. */ | ||
1207 | char zero_times_ok = 0, many_times_ok = 0; | ||
1208 | |||
1209 | /* If there is a sequence of repetition chars, collapse it | ||
1210 | down to just one (the right one). We can't combine | ||
1211 | interval operators with these because of, e.g., `a{2}*', | ||
1212 | which should only match an even number of `a's. */ | ||
1213 | |||
1214 | for (;;) | ||
1215 | { | ||
1216 | zero_times_ok |= c != '+'; | ||
1217 | many_times_ok |= c != '?'; | ||
1218 | |||
1219 | if (p == pend) | ||
1220 | break; | ||
1221 | |||
1222 | PATFETCH (c); | ||
1223 | |||
1224 | if (c == '*' | ||
1225 | || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) | ||
1226 | ; | ||
1227 | |||
1228 | else if (syntax & RE_BK_PLUS_QM && c == '\\') | ||
1229 | { | ||
1230 | if (p == pend) return REG_EESCAPE; | ||
1231 | |||
1232 | PATFETCH (c1); | ||
1233 | if (!(c1 == '+' || c1 == '?')) | ||
1234 | { | ||
1235 | PATUNFETCH; | ||
1236 | PATUNFETCH; | ||
1237 | break; | ||
1238 | } | ||
1239 | |||
1240 | c = c1; | ||
1241 | } | ||
1242 | else | ||
1243 | { | ||
1244 | PATUNFETCH; | ||
1245 | break; | ||
1246 | } | ||
1247 | |||
1248 | /* If we get here, we found another repeat character. */ | ||
1249 | } | ||
1250 | |||
1251 | /* Star, etc. applied to an empty pattern is equivalent | ||
1252 | to an empty pattern. */ | ||
1253 | if (!laststart) | ||
1254 | break; | ||
1255 | |||
1256 | /* Now we know whether or not zero matches is allowed | ||
1257 | and also whether or not two or more matches is allowed. */ | ||
1258 | if (many_times_ok) | ||
1259 | { /* More than one repetition is allowed, so put in at the | ||
1260 | end a backward relative jump from `b' to before the next | ||
1261 | jump we're going to put in below (which jumps from | ||
1262 | laststart to after this jump). | ||
1263 | |||
1264 | But if we are at the `*' in the exact sequence `.*\n', | ||
1265 | insert an unconditional jump backwards to the ., | ||
1266 | instead of the beginning of the loop. This way we only | ||
1267 | push a failure point once, instead of every time | ||
1268 | through the loop. */ | ||
1269 | assert (p - 1 > pattern); | ||
1270 | |||
1271 | /* Allocate the space for the jump. */ | ||
1272 | GET_BUFFER_SPACE (3); | ||
1273 | |||
1274 | /* We know we are not at the first character of the pattern, | ||
1275 | because laststart was nonzero. And we've already | ||
1276 | incremented `p', by the way, to be the character after | ||
1277 | the `*'. Do we have to do something analogous here | ||
1278 | for null bytes, because of RE_DOT_NOT_NULL? */ | ||
1279 | if (TRANSLATE (*(p - 2)) == TRANSLATE ('.') | ||
1280 | && zero_times_ok | ||
1281 | && p < pend && TRANSLATE (*p) == TRANSLATE ('\n') | ||
1282 | && !(syntax & RE_DOT_NEWLINE)) | ||
1283 | { /* We have .*\n. */ | ||
1284 | STORE_JUMP (jump, b, laststart); | ||
1285 | keep_string_p = true; | ||
1286 | } | ||
1287 | else | ||
1288 | /* Anything else. */ | ||
1289 | STORE_JUMP (maybe_pop_jump, b, laststart - 3); | ||
1290 | |||
1291 | /* We've added more stuff to the buffer. */ | ||
1292 | b += 3; | ||
1293 | } | ||
1294 | |||
1295 | /* On failure, jump from laststart to b + 3, which will be the | ||
1296 | end of the buffer after this jump is inserted. */ | ||
1297 | GET_BUFFER_SPACE (3); | ||
1298 | INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump | ||
1299 | : on_failure_jump, | ||
1300 | laststart, b + 3); | ||
1301 | pending_exact = 0; | ||
1302 | b += 3; | ||
1303 | |||
1304 | if (!zero_times_ok) | ||
1305 | { | ||
1306 | /* At least one repetition is required, so insert a | ||
1307 | `dummy_failure_jump' before the initial | ||
1308 | `on_failure_jump' instruction of the loop. This | ||
1309 | effects a skip over that instruction the first time | ||
1310 | we hit that loop. */ | ||
1311 | GET_BUFFER_SPACE (3); | ||
1312 | INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6); | ||
1313 | b += 3; | ||
1314 | } | ||
1315 | } | ||
1316 | break; | ||
1317 | |||
1318 | |||
1319 | case '.': | ||
1320 | laststart = b; | ||
1321 | BUF_PUSH (anychar); | ||
1322 | break; | ||
1323 | |||
1324 | |||
1325 | case '[': | ||
1326 | { | ||
1327 | boolean had_char_class = false; | ||
1328 | |||
1329 | if (p == pend) return REG_EBRACK; | ||
1330 | |||
1331 | /* Ensure that we have enough space to push a charset: the | ||
1332 | opcode, the length count, and the bitset; 34 bytes in all. */ | ||
1333 | GET_BUFFER_SPACE (34); | ||
1334 | |||
1335 | laststart = b; | ||
1336 | |||
1337 | /* We test `*p == '^' twice, instead of using an if | ||
1338 | statement, so we only need one BUF_PUSH. */ | ||
1339 | BUF_PUSH (*p == '^' ? charset_not : charset); | ||
1340 | if (*p == '^') | ||
1341 | p++; | ||
1342 | |||
1343 | /* Remember the first position in the bracket expression. */ | ||
1344 | p1 = p; | ||
1345 | |||
1346 | /* Push the number of bytes in the bitmap. */ | ||
1347 | BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); | ||
1348 | |||
1349 | /* Clear the whole map. */ | ||
1350 | bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); | ||
1351 | |||
1352 | /* charset_not matches newline according to a syntax bit. */ | ||
1353 | if ((re_opcode_t) b[-2] == charset_not | ||
1354 | && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) | ||
1355 | SET_LIST_BIT ('\n'); | ||
1356 | |||
1357 | /* Read in characters and ranges, setting map bits. */ | ||
1358 | for (;;) | ||
1359 | { | ||
1360 | if (p == pend) return REG_EBRACK; | ||
1361 | |||
1362 | PATFETCH (c); | ||
1363 | |||
1364 | /* \ might escape characters inside [...] and [^...]. */ | ||
1365 | if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') | ||
1366 | { | ||
1367 | if (p == pend) return REG_EESCAPE; | ||
1368 | |||
1369 | PATFETCH (c1); | ||
1370 | SET_LIST_BIT (c1); | ||
1371 | continue; | ||
1372 | } | ||
1373 | |||
1374 | /* Could be the end of the bracket expression. If it's | ||
1375 | not (i.e., when the bracket expression is `[]' so | ||
1376 | far), the ']' character bit gets set way below. */ | ||
1377 | if (c == ']' && p != p1 + 1) | ||
1378 | break; | ||
1379 | |||
1380 | /* Look ahead to see if it's a range when the last thing | ||
1381 | was a character class. */ | ||
1382 | if (had_char_class && c == '-' && *p != ']') | ||
1383 | return REG_ERANGE; | ||
1384 | |||
1385 | /* Look ahead to see if it's a range when the last thing | ||
1386 | was a character: if this is a hyphen not at the | ||
1387 | beginning or the end of a list, then it's the range | ||
1388 | operator. */ | ||
1389 | if (c == '-' | ||
1390 | && !(p - 2 >= pattern && p[-2] == '[') | ||
1391 | && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') | ||
1392 | && *p != ']') | ||
1393 | { | ||
1394 | reg_errcode_t ret | ||
1395 | = compile_range (&p, pend, translate, syntax, b); | ||
1396 | if (ret != REG_NOERROR) return ret; | ||
1397 | } | ||
1398 | |||
1399 | else if (p[0] == '-' && p[1] != ']') | ||
1400 | { /* This handles ranges made up of characters only. */ | ||
1401 | reg_errcode_t ret; | ||
1402 | |||
1403 | /* Move past the `-'. */ | ||
1404 | PATFETCH (c1); | ||
1405 | |||
1406 | ret = compile_range (&p, pend, translate, syntax, b); | ||
1407 | if (ret != REG_NOERROR) return ret; | ||
1408 | } | ||
1409 | |||
1410 | /* See if we're at the beginning of a possible character | ||
1411 | class. */ | ||
1412 | |||
1413 | else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') | ||
1414 | { /* Leave room for the null. */ | ||
1415 | char str[CHAR_CLASS_MAX_LENGTH + 1]; | ||
1416 | |||
1417 | PATFETCH (c); | ||
1418 | c1 = 0; | ||
1419 | |||
1420 | /* If pattern is `[[:'. */ | ||
1421 | if (p == pend) return REG_EBRACK; | ||
1422 | |||
1423 | for (;;) | ||
1424 | { | ||
1425 | PATFETCH (c); | ||
1426 | if (c == ':' || c == ']' || p == pend | ||
1427 | || c1 == CHAR_CLASS_MAX_LENGTH) | ||
1428 | break; | ||
1429 | str[c1++] = c; | ||
1430 | } | ||
1431 | str[c1] = '\0'; | ||
1432 | |||
1433 | /* If isn't a word bracketed by `[:' and:`]': | ||
1434 | undo the ending character, the letters, and leave | ||
1435 | the leading `:' and `[' (but set bits for them). */ | ||
1436 | if (c == ':' && *p == ']') | ||
1437 | { | ||
1438 | int ch; | ||
1439 | boolean is_alnum = STREQ (str, "alnum"); | ||
1440 | boolean is_alpha = STREQ (str, "alpha"); | ||
1441 | boolean is_blank = STREQ (str, "blank"); | ||
1442 | boolean is_cntrl = STREQ (str, "cntrl"); | ||
1443 | boolean is_digit = STREQ (str, "digit"); | ||
1444 | boolean is_graph = STREQ (str, "graph"); | ||
1445 | boolean is_lower = STREQ (str, "lower"); | ||
1446 | boolean is_print = STREQ (str, "print"); | ||
1447 | boolean is_punct = STREQ (str, "punct"); | ||
1448 | boolean is_space = STREQ (str, "space"); | ||
1449 | boolean is_upper = STREQ (str, "upper"); | ||
1450 | boolean is_xdigit = STREQ (str, "xdigit"); | ||
1451 | |||
1452 | if (!IS_CHAR_CLASS (str)) return REG_ECTYPE; | ||
1453 | |||
1454 | /* Throw away the ] at the end of the character | ||
1455 | class. */ | ||
1456 | PATFETCH (c); | ||
1457 | |||
1458 | if (p == pend) return REG_EBRACK; | ||
1459 | |||
1460 | for (ch = 0; ch < 1 << BYTEWIDTH; ch++) | ||
1461 | { | ||
1462 | if ( (is_alnum && ISALNUM (ch)) | ||
1463 | || (is_alpha && ISALPHA (ch)) | ||
1464 | || (is_blank && ISBLANK (ch)) | ||
1465 | || (is_cntrl && ISCNTRL (ch)) | ||
1466 | || (is_digit && ISDIGIT (ch)) | ||
1467 | || (is_graph && ISGRAPH (ch)) | ||
1468 | || (is_lower && ISLOWER (ch)) | ||
1469 | || (is_print && ISPRINT (ch)) | ||
1470 | || (is_punct && ISPUNCT (ch)) | ||
1471 | || (is_space && ISSPACE (ch)) | ||
1472 | || (is_upper && ISUPPER (ch)) | ||
1473 | || (is_xdigit && ISXDIGIT (ch))) | ||
1474 | SET_LIST_BIT (ch); | ||
1475 | } | ||
1476 | had_char_class = true; | ||
1477 | } | ||
1478 | else | ||
1479 | { | ||
1480 | c1++; | ||
1481 | while (c1--) | ||
1482 | PATUNFETCH; | ||
1483 | SET_LIST_BIT ('['); | ||
1484 | SET_LIST_BIT (':'); | ||
1485 | had_char_class = false; | ||
1486 | } | ||
1487 | } | ||
1488 | else | ||
1489 | { | ||
1490 | had_char_class = false; | ||
1491 | SET_LIST_BIT (c); | ||
1492 | } | ||
1493 | } | ||
1494 | |||
1495 | /* Discard any (non)matching list bytes that are all 0 at the | ||
1496 | end of the map. Decrease the map-length byte too. */ | ||
1497 | while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) | ||
1498 | b[-1]--; | ||
1499 | b += b[-1]; | ||
1500 | } | ||
1501 | break; | ||
1502 | |||
1503 | |||
1504 | case '(': | ||
1505 | if (syntax & RE_NO_BK_PARENS) | ||
1506 | goto handle_open; | ||
1507 | else | ||
1508 | goto normal_char; | ||
1509 | |||
1510 | |||
1511 | case ')': | ||
1512 | if (syntax & RE_NO_BK_PARENS) | ||
1513 | goto handle_close; | ||
1514 | else | ||
1515 | goto normal_char; | ||
1516 | |||
1517 | |||
1518 | case '\n': | ||
1519 | if (syntax & RE_NEWLINE_ALT) | ||
1520 | goto handle_alt; | ||
1521 | else | ||
1522 | goto normal_char; | ||
1523 | |||
1524 | |||
1525 | case '|': | ||
1526 | if (syntax & RE_NO_BK_VBAR) | ||
1527 | goto handle_alt; | ||
1528 | else | ||
1529 | goto normal_char; | ||
1530 | |||
1531 | |||
1532 | case '{': | ||
1533 | if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) | ||
1534 | goto handle_interval; | ||
1535 | else | ||
1536 | goto normal_char; | ||
1537 | |||
1538 | |||
1539 | case '\\': | ||
1540 | if (p == pend) return REG_EESCAPE; | ||
1541 | |||
1542 | /* Do not translate the character after the \, so that we can | ||
1543 | distinguish, e.g., \B from \b, even if we normally would | ||
1544 | translate, e.g., B to b. */ | ||
1545 | PATFETCH_RAW (c); | ||
1546 | |||
1547 | switch (c) | ||
1548 | { | ||
1549 | case '(': | ||
1550 | if (syntax & RE_NO_BK_PARENS) | ||
1551 | goto normal_backslash; | ||
1552 | |||
1553 | handle_open: | ||
1554 | bufp->re_nsub++; | ||
1555 | regnum++; | ||
1556 | |||
1557 | if (COMPILE_STACK_FULL) | ||
1558 | { | ||
1559 | RETALLOC (compile_stack.stack, compile_stack.size << 1, | ||
1560 | compile_stack_elt_t); | ||
1561 | if (compile_stack.stack == NULL) return REG_ESPACE; | ||
1562 | |||
1563 | compile_stack.size <<= 1; | ||
1564 | } | ||
1565 | |||
1566 | /* These are the values to restore when we hit end of this | ||
1567 | group. They are all relative offsets, so that if the | ||
1568 | whole pattern moves because of realloc, they will still | ||
1569 | be valid. */ | ||
1570 | COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; | ||
1571 | COMPILE_STACK_TOP.fixup_alt_jump | ||
1572 | = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; | ||
1573 | COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; | ||
1574 | COMPILE_STACK_TOP.regnum = regnum; | ||
1575 | |||
1576 | /* We will eventually replace the 0 with the number of | ||
1577 | groups inner to this one. But do not push a | ||
1578 | start_memory for groups beyond the last one we can | ||
1579 | represent in the compiled pattern. */ | ||
1580 | if (regnum <= MAX_REGNUM) | ||
1581 | { | ||
1582 | COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2; | ||
1583 | BUF_PUSH_3 (start_memory, regnum, 0); | ||
1584 | } | ||
1585 | |||
1586 | compile_stack.avail++; | ||
1587 | |||
1588 | fixup_alt_jump = 0; | ||
1589 | laststart = 0; | ||
1590 | begalt = b; | ||
1591 | /* If we've reached MAX_REGNUM groups, then this open | ||
1592 | won't actually generate any code, so we'll have to | ||
1593 | clear pending_exact explicitly. */ | ||
1594 | pending_exact = 0; | ||
1595 | break; | ||
1596 | |||
1597 | |||
1598 | case ')': | ||
1599 | if (syntax & RE_NO_BK_PARENS) goto normal_backslash; | ||
1600 | |||
1601 | if (COMPILE_STACK_EMPTY) | ||
1602 | { | ||
1603 | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | ||
1604 | goto normal_backslash; | ||
1605 | else | ||
1606 | return REG_ERPAREN; | ||
1607 | } | ||
1608 | |||
1609 | handle_close: | ||
1610 | if (fixup_alt_jump) | ||
1611 | { /* Push a dummy failure point at the end of the | ||
1612 | alternative for a possible future | ||
1613 | `pop_failure_jump' to pop. See comments at | ||
1614 | `push_dummy_failure' in `re_match_2'. */ | ||
1615 | BUF_PUSH (push_dummy_failure); | ||
1616 | |||
1617 | /* We allocated space for this jump when we assigned | ||
1618 | to `fixup_alt_jump', in the `handle_alt' case below. */ | ||
1619 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); | ||
1620 | } | ||
1621 | |||
1622 | /* See similar code for backslashed left paren above. */ | ||
1623 | if (COMPILE_STACK_EMPTY) | ||
1624 | { | ||
1625 | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) | ||
1626 | goto normal_char; | ||
1627 | else | ||
1628 | return REG_ERPAREN; | ||
1629 | } | ||
1630 | |||
1631 | /* Since we just checked for an empty stack above, this | ||
1632 | ``can't happen''. */ | ||
1633 | assert (compile_stack.avail != 0); | ||
1634 | { | ||
1635 | /* We don't just want to restore into `regnum', because | ||
1636 | later groups should continue to be numbered higher, | ||
1637 | as in `(ab)c(de)' -- the second group is #2. */ | ||
1638 | regnum_t this_group_regnum; | ||
1639 | |||
1640 | compile_stack.avail--; | ||
1641 | begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; | ||
1642 | fixup_alt_jump | ||
1643 | = COMPILE_STACK_TOP.fixup_alt_jump | ||
1644 | ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 | ||
1645 | : 0; | ||
1646 | laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; | ||
1647 | this_group_regnum = COMPILE_STACK_TOP.regnum; | ||
1648 | /* If we've reached MAX_REGNUM groups, then this open | ||
1649 | won't actually generate any code, so we'll have to | ||
1650 | clear pending_exact explicitly. */ | ||
1651 | pending_exact = 0; | ||
1652 | |||
1653 | /* We're at the end of the group, so now we know how many | ||
1654 | groups were inside this one. */ | ||
1655 | if (this_group_regnum <= MAX_REGNUM) | ||
1656 | { | ||
1657 | unsigned char *inner_group_loc | ||
1658 | = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset; | ||
1659 | |||
1660 | *inner_group_loc = regnum - this_group_regnum; | ||
1661 | BUF_PUSH_3 (stop_memory, this_group_regnum, | ||
1662 | regnum - this_group_regnum); | ||
1663 | } | ||
1664 | } | ||
1665 | break; | ||
1666 | |||
1667 | |||
1668 | case '|': /* `\|'. */ | ||
1669 | if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) | ||
1670 | goto normal_backslash; | ||
1671 | handle_alt: | ||
1672 | if (syntax & RE_LIMITED_OPS) | ||
1673 | goto normal_char; | ||
1674 | |||
1675 | /* Insert before the previous alternative a jump which | ||
1676 | jumps to this alternative if the former fails. */ | ||
1677 | GET_BUFFER_SPACE (3); | ||
1678 | INSERT_JUMP (on_failure_jump, begalt, b + 6); | ||
1679 | pending_exact = 0; | ||
1680 | b += 3; | ||
1681 | |||
1682 | /* The alternative before this one has a jump after it | ||
1683 | which gets executed if it gets matched. Adjust that | ||
1684 | jump so it will jump to this alternative's analogous | ||
1685 | jump (put in below, which in turn will jump to the next | ||
1686 | (if any) alternative's such jump, etc.). The last such | ||
1687 | jump jumps to the correct final destination. A picture: | ||
1688 | _____ _____ | ||
1689 | | | | | | ||
1690 | | v | v | ||
1691 | a | b | c | ||
1692 | |||
1693 | If we are at `b', then fixup_alt_jump right now points to a | ||
1694 | three-byte space after `a'. We'll put in the jump, set | ||
1695 | fixup_alt_jump to right after `b', and leave behind three | ||
1696 | bytes which we'll fill in when we get to after `c'. */ | ||
1697 | |||
1698 | if (fixup_alt_jump) | ||
1699 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b); | ||
1700 | |||
1701 | /* Mark and leave space for a jump after this alternative, | ||
1702 | to be filled in later either by next alternative or | ||
1703 | when know we're at the end of a series of alternatives. */ | ||
1704 | fixup_alt_jump = b; | ||
1705 | GET_BUFFER_SPACE (3); | ||
1706 | b += 3; | ||
1707 | |||
1708 | laststart = 0; | ||
1709 | begalt = b; | ||
1710 | break; | ||
1711 | |||
1712 | |||
1713 | case '{': | ||
1714 | /* If \{ is a literal. */ | ||
1715 | if (!(syntax & RE_INTERVALS) | ||
1716 | /* If we're at `\{' and it's not the open-interval | ||
1717 | operator. */ | ||
1718 | || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) | ||
1719 | || (p - 2 == pattern && p == pend)) | ||
1720 | goto normal_backslash; | ||
1721 | |||
1722 | handle_interval: | ||
1723 | { | ||
1724 | /* If got here, then the syntax allows intervals. */ | ||
1725 | |||
1726 | /* At least (most) this many matches must be made. */ | ||
1727 | int lower_bound = -1, upper_bound = -1; | ||
1728 | |||
1729 | beg_interval = p - 1; | ||
1730 | |||
1731 | if (p == pend) | ||
1732 | { | ||
1733 | if (syntax & RE_NO_BK_BRACES) | ||
1734 | goto unfetch_interval; | ||
1735 | else | ||
1736 | return REG_EBRACE; | ||
1737 | } | ||
1738 | |||
1739 | GET_UNSIGNED_NUMBER (lower_bound); | ||
1740 | |||
1741 | if (c == ',') | ||
1742 | { | ||
1743 | GET_UNSIGNED_NUMBER (upper_bound); | ||
1744 | if (upper_bound < 0) upper_bound = RE_DUP_MAX; | ||
1745 | } | ||
1746 | else | ||
1747 | /* Interval such as `{1}' => match exactly once. */ | ||
1748 | upper_bound = lower_bound; | ||
1749 | |||
1750 | if (lower_bound < 0 || upper_bound > RE_DUP_MAX | ||
1751 | || lower_bound > upper_bound) | ||
1752 | { | ||
1753 | if (syntax & RE_NO_BK_BRACES) | ||
1754 | goto unfetch_interval; | ||
1755 | else | ||
1756 | return REG_BADBR; | ||
1757 | } | ||
1758 | |||
1759 | if (!(syntax & RE_NO_BK_BRACES)) | ||
1760 | { | ||
1761 | if (c != '\\') return REG_EBRACE; | ||
1762 | |||
1763 | PATFETCH (c); | ||
1764 | } | ||
1765 | |||
1766 | if (c != '}') | ||
1767 | { | ||
1768 | if (syntax & RE_NO_BK_BRACES) | ||
1769 | goto unfetch_interval; | ||
1770 | else | ||
1771 | return REG_BADBR; | ||
1772 | } | ||
1773 | |||
1774 | /* We just parsed a valid interval. */ | ||
1775 | |||
1776 | /* If it's invalid to have no preceding re. */ | ||
1777 | if (!laststart) | ||
1778 | { | ||
1779 | if (syntax & RE_CONTEXT_INVALID_OPS) | ||
1780 | return REG_BADRPT; | ||
1781 | else if (syntax & RE_CONTEXT_INDEP_OPS) | ||
1782 | laststart = b; | ||
1783 | else | ||
1784 | goto unfetch_interval; | ||
1785 | } | ||
1786 | |||
1787 | /* If the upper bound is zero, don't want to succeed at | ||
1788 | all; jump from `laststart' to `b + 3', which will be | ||
1789 | the end of the buffer after we insert the jump. */ | ||
1790 | if (upper_bound == 0) | ||
1791 | { | ||
1792 | GET_BUFFER_SPACE (3); | ||
1793 | INSERT_JUMP (jump, laststart, b + 3); | ||
1794 | b += 3; | ||
1795 | } | ||
1796 | |||
1797 | /* Otherwise, we have a nontrivial interval. When | ||
1798 | we're all done, the pattern will look like: | ||
1799 | set_number_at <jump count> <upper bound> | ||
1800 | set_number_at <succeed_n count> <lower bound> | ||
1801 | succeed_n <after jump addr> <succed_n count> | ||
1802 | <body of loop> | ||
1803 | jump_n <succeed_n addr> <jump count> | ||
1804 | (The upper bound and `jump_n' are omitted if | ||
1805 | `upper_bound' is 1, though.) */ | ||
1806 | else | ||
1807 | { /* If the upper bound is > 1, we need to insert | ||
1808 | more at the end of the loop. */ | ||
1809 | unsigned nbytes = 10 + (upper_bound > 1) * 10; | ||
1810 | |||
1811 | GET_BUFFER_SPACE (nbytes); | ||
1812 | |||
1813 | /* Initialize lower bound of the `succeed_n', even | ||
1814 | though it will be set during matching by its | ||
1815 | attendant `set_number_at' (inserted next), | ||
1816 | because `re_compile_fastmap' needs to know. | ||
1817 | Jump to the `jump_n' we might insert below. */ | ||
1818 | INSERT_JUMP2 (succeed_n, laststart, | ||
1819 | b + 5 + (upper_bound > 1) * 5, | ||
1820 | lower_bound); | ||
1821 | b += 5; | ||
1822 | |||
1823 | /* Code to initialize the lower bound. Insert | ||
1824 | before the `succeed_n'. The `5' is the last two | ||
1825 | bytes of this `set_number_at', plus 3 bytes of | ||
1826 | the following `succeed_n'. */ | ||
1827 | insert_op2 (set_number_at, laststart, 5, lower_bound, b); | ||
1828 | b += 5; | ||
1829 | |||
1830 | if (upper_bound > 1) | ||
1831 | { /* More than one repetition is allowed, so | ||
1832 | append a backward jump to the `succeed_n' | ||
1833 | that starts this interval. | ||
1834 | |||
1835 | When we've reached this during matching, | ||
1836 | we'll have matched the interval once, so | ||
1837 | jump back only `upper_bound - 1' times. */ | ||
1838 | STORE_JUMP2 (jump_n, b, laststart + 5, | ||
1839 | upper_bound - 1); | ||
1840 | b += 5; | ||
1841 | |||
1842 | /* The location we want to set is the second | ||
1843 | parameter of the `jump_n'; that is `b-2' as | ||
1844 | an absolute address. `laststart' will be | ||
1845 | the `set_number_at' we're about to insert; | ||
1846 | `laststart+3' the number to set, the source | ||
1847 | for the relative address. But we are | ||
1848 | inserting into the middle of the pattern -- | ||
1849 | so everything is getting moved up by 5. | ||
1850 | Conclusion: (b - 2) - (laststart + 3) + 5, | ||
1851 | i.e., b - laststart. | ||
1852 | |||
1853 | We insert this at the beginning of the loop | ||
1854 | so that if we fail during matching, we'll | ||
1855 | reinitialize the bounds. */ | ||
1856 | insert_op2 (set_number_at, laststart, b - laststart, | ||
1857 | upper_bound - 1, b); | ||
1858 | b += 5; | ||
1859 | } | ||
1860 | } | ||
1861 | pending_exact = 0; | ||
1862 | beg_interval = NULL; | ||
1863 | } | ||
1864 | break; | ||
1865 | |||
1866 | unfetch_interval: | ||
1867 | /* If an invalid interval, match the characters as literals. */ | ||
1868 | assert (beg_interval); | ||
1869 | p = beg_interval; | ||
1870 | beg_interval = NULL; | ||
1871 | |||
1872 | /* normal_char and normal_backslash need `c'. */ | ||
1873 | PATFETCH (c); | ||
1874 | |||
1875 | if (!(syntax & RE_NO_BK_BRACES)) | ||
1876 | { | ||
1877 | if (p > pattern && p[-1] == '\\') | ||
1878 | goto normal_backslash; | ||
1879 | } | ||
1880 | goto normal_char; | ||
1881 | |||
1882 | #ifdef emacs | ||
1883 | /* There is no way to specify the before_dot and after_dot | ||
1884 | operators. rms says this is ok. --karl */ | ||
1885 | case '=': | ||
1886 | BUF_PUSH (at_dot); | ||
1887 | break; | ||
1888 | |||
1889 | case 's': | ||
1890 | laststart = b; | ||
1891 | PATFETCH (c); | ||
1892 | BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); | ||
1893 | break; | ||
1894 | |||
1895 | case 'S': | ||
1896 | laststart = b; | ||
1897 | PATFETCH (c); | ||
1898 | BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); | ||
1899 | break; | ||
1900 | #endif /* emacs */ | ||
1901 | |||
1902 | |||
1903 | case 'w': | ||
1904 | laststart = b; | ||
1905 | BUF_PUSH (wordchar); | ||
1906 | break; | ||
1907 | |||
1908 | |||
1909 | case 'W': | ||
1910 | laststart = b; | ||
1911 | BUF_PUSH (notwordchar); | ||
1912 | break; | ||
1913 | |||
1914 | |||
1915 | case '<': | ||
1916 | BUF_PUSH (wordbeg); | ||
1917 | break; | ||
1918 | |||
1919 | case '>': | ||
1920 | BUF_PUSH (wordend); | ||
1921 | break; | ||
1922 | |||
1923 | case 'b': | ||
1924 | BUF_PUSH (wordbound); | ||
1925 | break; | ||
1926 | |||
1927 | case 'B': | ||
1928 | BUF_PUSH (notwordbound); | ||
1929 | break; | ||
1930 | |||
1931 | case '`': | ||
1932 | BUF_PUSH (begbuf); | ||
1933 | break; | ||
1934 | |||
1935 | case '\'': | ||
1936 | BUF_PUSH (endbuf); | ||
1937 | break; | ||
1938 | |||
1939 | case '1': case '2': case '3': case '4': case '5': | ||
1940 | case '6': case '7': case '8': case '9': | ||
1941 | if (syntax & RE_NO_BK_REFS) | ||
1942 | goto normal_char; | ||
1943 | |||
1944 | c1 = c - '0'; | ||
1945 | |||
1946 | if (c1 > regnum) | ||
1947 | return REG_ESUBREG; | ||
1948 | |||
1949 | /* Can't back reference to a subexpression if inside of it. */ | ||
1950 | if (group_in_compile_stack (compile_stack, c1)) | ||
1951 | goto normal_char; | ||
1952 | |||
1953 | laststart = b; | ||
1954 | BUF_PUSH_2 (duplicate, c1); | ||
1955 | break; | ||
1956 | |||
1957 | |||
1958 | case '+': | ||
1959 | case '?': | ||
1960 | if (syntax & RE_BK_PLUS_QM) | ||
1961 | goto handle_plus; | ||
1962 | else | ||
1963 | goto normal_backslash; | ||
1964 | |||
1965 | default: | ||
1966 | normal_backslash: | ||
1967 | /* You might think it would be useful for \ to mean | ||
1968 | not to translate; but if we don't translate it | ||
1969 | it will never match anything. */ | ||
1970 | c = TRANSLATE (c); | ||
1971 | goto normal_char; | ||
1972 | } | ||
1973 | break; | ||
1974 | |||
1975 | |||
1976 | default: | ||
1977 | /* Expects the character in `c'. */ | ||
1978 | normal_char: | ||
1979 | /* If no exactn currently being built. */ | ||
1980 | if (!pending_exact | ||
1981 | |||
1982 | /* If last exactn not at current position. */ | ||
1983 | || pending_exact + *pending_exact + 1 != b | ||
1984 | |||
1985 | /* We have only one byte following the exactn for the count. */ | ||
1986 | || *pending_exact == (1 << BYTEWIDTH) - 1 | ||
1987 | |||
1988 | /* If followed by a repetition operator. */ | ||
1989 | || *p == '*' || *p == '^' | ||
1990 | || ((syntax & RE_BK_PLUS_QM) | ||
1991 | ? *p == '\\' && (p[1] == '+' || p[1] == '?') | ||
1992 | : (*p == '+' || *p == '?')) | ||
1993 | || ((syntax & RE_INTERVALS) | ||
1994 | && ((syntax & RE_NO_BK_BRACES) | ||
1995 | ? *p == '{' | ||
1996 | : (p[0] == '\\' && p[1] == '{')))) | ||
1997 | { | ||
1998 | /* Start building a new exactn. */ | ||
1999 | |||
2000 | laststart = b; | ||
2001 | |||
2002 | BUF_PUSH_2 (exactn, 0); | ||
2003 | pending_exact = b - 1; | ||
2004 | } | ||
2005 | |||
2006 | BUF_PUSH (c); | ||
2007 | (*pending_exact)++; | ||
2008 | break; | ||
2009 | } /* switch (c) */ | ||
2010 | } /* while p != pend */ | ||
2011 | |||
2012 | |||
2013 | /* Through the pattern now. */ | ||
2014 | |||
2015 | if (fixup_alt_jump) | ||
2016 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b); | ||
2017 | |||
2018 | if (!COMPILE_STACK_EMPTY) | ||
2019 | return REG_EPAREN; | ||
2020 | |||
2021 | free (compile_stack.stack); | ||
2022 | |||
2023 | /* We have succeeded; set the length of the buffer. */ | ||
2024 | bufp->used = b - bufp->buffer; | ||
2025 | |||
2026 | #ifdef DEBUG | ||
2027 | if (debug) | ||
2028 | { | ||
2029 | DEBUG_PRINT1 ("\nCompiled pattern: "); | ||
2030 | print_compiled_pattern (bufp); | ||
2031 | } | ||
2032 | #endif /* DEBUG */ | ||
2033 | |||
2034 | return REG_NOERROR; | ||
2035 | } /* regex_compile */ | ||
2036 | |||
2037 | /* Subroutines for `regex_compile'. */ | ||
2038 | |||
2039 | /* Store OP at LOC followed by two-byte integer parameter ARG. */ | ||
2040 | |||
2041 | static void | ||
2042 | store_op1 (op, loc, arg) | ||
2043 | re_opcode_t op; | ||
2044 | unsigned char *loc; | ||
2045 | int arg; | ||
2046 | { | ||
2047 | *loc = (unsigned char) op; | ||
2048 | STORE_NUMBER (loc + 1, arg); | ||
2049 | } | ||
2050 | |||
2051 | |||
2052 | /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ | ||
2053 | |||
2054 | static void | ||
2055 | store_op2 (op, loc, arg1, arg2) | ||
2056 | re_opcode_t op; | ||
2057 | unsigned char *loc; | ||
2058 | int arg1, arg2; | ||
2059 | { | ||
2060 | *loc = (unsigned char) op; | ||
2061 | STORE_NUMBER (loc + 1, arg1); | ||
2062 | STORE_NUMBER (loc + 3, arg2); | ||
2063 | } | ||
2064 | |||
2065 | |||
2066 | /* Copy the bytes from LOC to END to open up three bytes of space at LOC | ||
2067 | for OP followed by two-byte integer parameter ARG. */ | ||
2068 | |||
2069 | static void | ||
2070 | insert_op1 (op, loc, arg, end) | ||
2071 | re_opcode_t op; | ||
2072 | unsigned char *loc; | ||
2073 | int arg; | ||
2074 | unsigned char *end; | ||
2075 | { | ||
2076 | register unsigned char *pfrom = end; | ||
2077 | register unsigned char *pto = end + 3; | ||
2078 | |||
2079 | while (pfrom != loc) | ||
2080 | *--pto = *--pfrom; | ||
2081 | |||
2082 | store_op1 (op, loc, arg); | ||
2083 | } | ||
2084 | |||
2085 | |||
2086 | /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ | ||
2087 | |||
2088 | static void | ||
2089 | insert_op2 (op, loc, arg1, arg2, end) | ||
2090 | re_opcode_t op; | ||
2091 | unsigned char *loc; | ||
2092 | int arg1, arg2; | ||
2093 | unsigned char *end; | ||
2094 | { | ||
2095 | register unsigned char *pfrom = end; | ||
2096 | register unsigned char *pto = end + 5; | ||
2097 | |||
2098 | while (pfrom != loc) | ||
2099 | *--pto = *--pfrom; | ||
2100 | |||
2101 | store_op2 (op, loc, arg1, arg2); | ||
2102 | } | ||
2103 | |||
2104 | |||
2105 | /* P points to just after a ^ in PATTERN. Return true if that ^ comes | ||
2106 | after an alternative or a begin-subexpression. We assume there is at | ||
2107 | least one character before the ^. */ | ||
2108 | |||
2109 | static boolean | ||
2110 | at_begline_loc_p (pattern, p, syntax) | ||
2111 | const char *pattern, *p; | ||
2112 | reg_syntax_t syntax; | ||
2113 | { | ||
2114 | const char *prev = p - 2; | ||
2115 | boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; | ||
2116 | |||
2117 | return | ||
2118 | /* After a subexpression? */ | ||
2119 | (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) | ||
2120 | /* After an alternative? */ | ||
2121 | || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); | ||
2122 | } | ||
2123 | |||
2124 | |||
2125 | /* The dual of at_begline_loc_p. This one is for $. We assume there is | ||
2126 | at least one character after the $, i.e., `P < PEND'. */ | ||
2127 | |||
2128 | static boolean | ||
2129 | at_endline_loc_p (p, pend, syntax) | ||
2130 | const char *p, *pend; | ||
2131 | int syntax; | ||
2132 | { | ||
2133 | const char *next = p; | ||
2134 | boolean next_backslash = *next == '\\'; | ||
2135 | const char *next_next = p + 1 < pend ? p + 1 : NULL; | ||
2136 | |||
2137 | return | ||
2138 | /* Before a subexpression? */ | ||
2139 | (syntax & RE_NO_BK_PARENS ? *next == ')' | ||
2140 | : next_backslash && next_next && *next_next == ')') | ||
2141 | /* Before an alternative? */ | ||
2142 | || (syntax & RE_NO_BK_VBAR ? *next == '|' | ||
2143 | : next_backslash && next_next && *next_next == '|'); | ||
2144 | } | ||
2145 | |||
2146 | |||
2147 | /* Returns true if REGNUM is in one of COMPILE_STACK's elements and | ||
2148 | false if it's not. */ | ||
2149 | |||
2150 | static boolean | ||
2151 | group_in_compile_stack (compile_stack, regnum) | ||
2152 | compile_stack_type compile_stack; | ||
2153 | regnum_t regnum; | ||
2154 | { | ||
2155 | int this_element; | ||
2156 | |||
2157 | for (this_element = compile_stack.avail - 1; | ||
2158 | this_element >= 0; | ||
2159 | this_element--) | ||
2160 | if (compile_stack.stack[this_element].regnum == regnum) | ||
2161 | return true; | ||
2162 | |||
2163 | return false; | ||
2164 | } | ||
2165 | |||
2166 | |||
2167 | /* Read the ending character of a range (in a bracket expression) from the | ||
2168 | uncompiled pattern *P_PTR (which ends at PEND). We assume the | ||
2169 | starting character is in `P[-2]'. (`P[-1]' is the character `-'.) | ||
2170 | Then we set the translation of all bits between the starting and | ||
2171 | ending characters (inclusive) in the compiled pattern B. | ||
2172 | |||
2173 | Return an error code. | ||
2174 | |||
2175 | We use these short variable names so we can use the same macros as | ||
2176 | `regex_compile' itself. */ | ||
2177 | |||
2178 | static reg_errcode_t | ||
2179 | compile_range (p_ptr, pend, translate, syntax, b) | ||
2180 | const char **p_ptr, *pend; | ||
2181 | char *translate; | ||
2182 | reg_syntax_t syntax; | ||
2183 | unsigned char *b; | ||
2184 | { | ||
2185 | unsigned this_char; | ||
2186 | |||
2187 | const char *p = *p_ptr; | ||
2188 | int range_start, range_end; | ||
2189 | |||
2190 | if (p == pend) | ||
2191 | return REG_ERANGE; | ||
2192 | |||
2193 | /* Even though the pattern is a signed `char *', we need to fetch | ||
2194 | with unsigned char *'s; if the high bit of the pattern character | ||
2195 | is set, the range endpoints will be negative if we fetch using a | ||
2196 | signed char *. | ||
2197 | |||
2198 | We also want to fetch the endpoints without translating them; the | ||
2199 | appropriate translation is done in the bit-setting loop below. */ | ||
2200 | range_start = ((unsigned char *) p)[-2]; | ||
2201 | range_end = ((unsigned char *) p)[0]; | ||
2202 | |||
2203 | /* Have to increment the pointer into the pattern string, so the | ||
2204 | caller isn't still at the ending character. */ | ||
2205 | (*p_ptr)++; | ||
2206 | |||
2207 | /* If the start is after the end, the range is empty. */ | ||
2208 | if (range_start > range_end) | ||
2209 | return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; | ||
2210 | |||
2211 | /* Here we see why `this_char' has to be larger than an `unsigned | ||
2212 | char' -- the range is inclusive, so if `range_end' == 0xff | ||
2213 | (assuming 8-bit characters), we would otherwise go into an infinite | ||
2214 | loop, since all characters <= 0xff. */ | ||
2215 | for (this_char = range_start; this_char <= range_end; this_char++) | ||
2216 | { | ||
2217 | SET_LIST_BIT (TRANSLATE (this_char)); | ||
2218 | } | ||
2219 | |||
2220 | return REG_NOERROR; | ||
2221 | } | ||
2222 | |||
2223 | /* Failure stack declarations and macros; both re_compile_fastmap and | ||
2224 | re_match_2 use a failure stack. These have to be macros because of | ||
2225 | REGEX_ALLOCATE. */ | ||
2226 | |||
2227 | |||
2228 | /* Number of failure points for which to initially allocate space | ||
2229 | when matching. If this number is exceeded, we allocate more | ||
2230 | space, so it is not a hard limit. */ | ||
2231 | #ifndef INIT_FAILURE_ALLOC | ||
2232 | #define INIT_FAILURE_ALLOC 5 | ||
2233 | #endif | ||
2234 | |||
2235 | /* Roughly the maximum number of failure points on the stack. Would be | ||
2236 | exactly that if always used MAX_FAILURE_SPACE each time we failed. | ||
2237 | This is a variable only so users of regex can assign to it; we never | ||
2238 | change it ourselves. */ | ||
2239 | int re_max_failures = 2000; | 88 | int re_max_failures = 2000; |
2240 | 89 | # endif | |
2241 | typedef const unsigned char *fail_stack_elt_t; | ||
2242 | |||
2243 | typedef struct | ||
2244 | { | ||
2245 | fail_stack_elt_t *stack; | ||
2246 | unsigned size; | ||
2247 | unsigned avail; /* Offset of next open position. */ | ||
2248 | } fail_stack_type; | ||
2249 | |||
2250 | #define FAIL_STACK_EMPTY() (fail_stack.avail == 0) | ||
2251 | #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) | ||
2252 | #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) | ||
2253 | #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail]) | ||
2254 | |||
2255 | |||
2256 | /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */ | ||
2257 | |||
2258 | #define INIT_FAIL_STACK() \ | ||
2259 | do { \ | ||
2260 | fail_stack.stack = (fail_stack_elt_t *) \ | ||
2261 | REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \ | ||
2262 | \ | ||
2263 | if (fail_stack.stack == NULL) \ | ||
2264 | return -2; \ | ||
2265 | \ | ||
2266 | fail_stack.size = INIT_FAILURE_ALLOC; \ | ||
2267 | fail_stack.avail = 0; \ | ||
2268 | } while (0) | ||
2269 | |||
2270 | |||
2271 | /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. | ||
2272 | |||
2273 | Return 1 if succeeds, and 0 if either ran out of memory | ||
2274 | allocating space for it or it was already too large. | ||
2275 | |||
2276 | REGEX_REALLOCATE requires `destination' be declared. */ | ||
2277 | |||
2278 | #define DOUBLE_FAIL_STACK(fail_stack) \ | ||
2279 | ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \ | ||
2280 | ? 0 \ | ||
2281 | : ((fail_stack).stack = (fail_stack_elt_t *) \ | ||
2282 | REGEX_REALLOCATE ((fail_stack).stack, \ | ||
2283 | (fail_stack).size * sizeof (fail_stack_elt_t), \ | ||
2284 | ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ | ||
2285 | \ | ||
2286 | (fail_stack).stack == NULL \ | ||
2287 | ? 0 \ | ||
2288 | : ((fail_stack).size <<= 1, \ | ||
2289 | 1))) | ||
2290 | |||
2291 | |||
2292 | /* Push PATTERN_OP on FAIL_STACK. | ||
2293 | |||
2294 | Return 1 if was able to do so and 0 if ran out of memory allocating | ||
2295 | space to do so. */ | ||
2296 | #define PUSH_PATTERN_OP(pattern_op, fail_stack) \ | ||
2297 | ((FAIL_STACK_FULL () \ | ||
2298 | && !DOUBLE_FAIL_STACK (fail_stack)) \ | ||
2299 | ? 0 \ | ||
2300 | : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \ | ||
2301 | 1)) | ||
2302 | |||
2303 | /* This pushes an item onto the failure stack. Must be a four-byte | ||
2304 | value. Assumes the variable `fail_stack'. Probably should only | ||
2305 | be called from within `PUSH_FAILURE_POINT'. */ | ||
2306 | #define PUSH_FAILURE_ITEM(item) \ | ||
2307 | fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item | ||
2308 | |||
2309 | /* The complement operation. Assumes `fail_stack' is nonempty. */ | ||
2310 | #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail] | ||
2311 | |||
2312 | /* Used to omit pushing failure point id's when we're not debugging. */ | ||
2313 | #ifdef DEBUG | ||
2314 | #define DEBUG_PUSH PUSH_FAILURE_ITEM | ||
2315 | #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM () | ||
2316 | #else | ||
2317 | #define DEBUG_PUSH(item) | ||
2318 | #define DEBUG_POP(item_addr) | ||
2319 | #endif | ||
2320 | |||
2321 | |||
2322 | /* Push the information about the state we will need | ||
2323 | if we ever fail back to it. | ||
2324 | |||
2325 | Requires variables fail_stack, regstart, regend, reg_info, and | ||
2326 | num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be | ||
2327 | declared. | ||
2328 | |||
2329 | Does `return FAILURE_CODE' if runs out of memory. */ | ||
2330 | |||
2331 | #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ | ||
2332 | do { \ | ||
2333 | char *destination; \ | ||
2334 | /* Must be int, so when we don't save any registers, the arithmetic \ | ||
2335 | of 0 + -1 isn't done as unsigned. */ \ | ||
2336 | int this_reg; \ | ||
2337 | \ | ||
2338 | DEBUG_STATEMENT (failure_id++); \ | ||
2339 | DEBUG_STATEMENT (nfailure_points_pushed++); \ | ||
2340 | DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ | ||
2341 | DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ | ||
2342 | DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ | ||
2343 | \ | ||
2344 | DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ | ||
2345 | DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ | ||
2346 | \ | ||
2347 | /* Ensure we have enough space allocated for what we will push. */ \ | ||
2348 | while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ | ||
2349 | { \ | ||
2350 | if (!DOUBLE_FAIL_STACK (fail_stack)) \ | ||
2351 | return failure_code; \ | ||
2352 | \ | ||
2353 | DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ | ||
2354 | (fail_stack).size); \ | ||
2355 | DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ | ||
2356 | } \ | ||
2357 | \ | ||
2358 | /* Push the info, starting with the registers. */ \ | ||
2359 | DEBUG_PRINT1 ("\n"); \ | ||
2360 | \ | ||
2361 | for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ | ||
2362 | this_reg++) \ | ||
2363 | { \ | ||
2364 | DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \ | ||
2365 | DEBUG_STATEMENT (num_regs_pushed++); \ | ||
2366 | \ | ||
2367 | DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ | ||
2368 | PUSH_FAILURE_ITEM (regstart[this_reg]); \ | ||
2369 | \ | ||
2370 | DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ | ||
2371 | PUSH_FAILURE_ITEM (regend[this_reg]); \ | ||
2372 | \ | ||
2373 | DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \ | ||
2374 | DEBUG_PRINT2 (" match_null=%d", \ | ||
2375 | REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ | ||
2376 | DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ | ||
2377 | DEBUG_PRINT2 (" matched_something=%d", \ | ||
2378 | MATCHED_SOMETHING (reg_info[this_reg])); \ | ||
2379 | DEBUG_PRINT2 (" ever_matched=%d", \ | ||
2380 | EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ | ||
2381 | DEBUG_PRINT1 ("\n"); \ | ||
2382 | PUSH_FAILURE_ITEM (reg_info[this_reg].word); \ | ||
2383 | } \ | ||
2384 | \ | ||
2385 | DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\ | ||
2386 | PUSH_FAILURE_ITEM (lowest_active_reg); \ | ||
2387 | \ | ||
2388 | DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\ | ||
2389 | PUSH_FAILURE_ITEM (highest_active_reg); \ | ||
2390 | \ | ||
2391 | DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ | ||
2392 | DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ | ||
2393 | PUSH_FAILURE_ITEM (pattern_place); \ | ||
2394 | \ | ||
2395 | DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ | ||
2396 | DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ | ||
2397 | size2); \ | ||
2398 | DEBUG_PRINT1 ("'\n"); \ | ||
2399 | PUSH_FAILURE_ITEM (string_place); \ | ||
2400 | \ | ||
2401 | DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ | ||
2402 | DEBUG_PUSH (failure_id); \ | ||
2403 | } while (0) | ||
2404 | |||
2405 | /* This is the number of items that are pushed and popped on the stack | ||
2406 | for each register. */ | ||
2407 | #define NUM_REG_ITEMS 3 | ||
2408 | |||
2409 | /* Individual items aside from the registers. */ | ||
2410 | #ifdef DEBUG | ||
2411 | #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ | ||
2412 | #else | ||
2413 | #define NUM_NONREG_ITEMS 4 | ||
2414 | #endif | ||
2415 | |||
2416 | /* We push at most this many items on the stack. */ | ||
2417 | #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS) | ||
2418 | |||
2419 | /* We actually push this many items. */ | ||
2420 | #define NUM_FAILURE_ITEMS \ | ||
2421 | ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \ | ||
2422 | + NUM_NONREG_ITEMS) | ||
2423 | |||
2424 | /* How many items can still be added to the stack without overflowing it. */ | ||
2425 | #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) | ||
2426 | |||
2427 | |||
2428 | /* Pops what PUSH_FAIL_STACK pushes. | ||
2429 | |||
2430 | We restore into the parameters, all of which should be lvalues: | ||
2431 | STR -- the saved data position. | ||
2432 | PAT -- the saved pattern position. | ||
2433 | LOW_REG, HIGH_REG -- the highest and lowest active registers. | ||
2434 | REGSTART, REGEND -- arrays of string positions. | ||
2435 | REG_INFO -- array of information about each subexpression. | ||
2436 | |||
2437 | Also assumes the variables `fail_stack' and (if debugging), `bufp', | ||
2438 | `pend', `string1', `size1', `string2', and `size2'. */ | ||
2439 | |||
2440 | #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ | ||
2441 | { \ | ||
2442 | DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ | ||
2443 | int this_reg; \ | ||
2444 | const unsigned char *string_temp; \ | ||
2445 | \ | ||
2446 | assert (!FAIL_STACK_EMPTY ()); \ | ||
2447 | \ | ||
2448 | /* Remove failure points and point to how many regs pushed. */ \ | ||
2449 | DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ | ||
2450 | DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ | ||
2451 | DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ | ||
2452 | \ | ||
2453 | assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ | ||
2454 | \ | ||
2455 | DEBUG_POP (&failure_id); \ | ||
2456 | DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ | ||
2457 | \ | ||
2458 | /* If the saved string location is NULL, it came from an \ | ||
2459 | on_failure_keep_string_jump opcode, and we want to throw away the \ | ||
2460 | saved NULL, thus retaining our current position in the string. */ \ | ||
2461 | string_temp = POP_FAILURE_ITEM (); \ | ||
2462 | if (string_temp != NULL) \ | ||
2463 | str = (const char *) string_temp; \ | ||
2464 | \ | ||
2465 | DEBUG_PRINT2 (" Popping string 0x%x: `", str); \ | ||
2466 | DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ | ||
2467 | DEBUG_PRINT1 ("'\n"); \ | ||
2468 | \ | ||
2469 | pat = (unsigned char *) POP_FAILURE_ITEM (); \ | ||
2470 | DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \ | ||
2471 | DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ | ||
2472 | \ | ||
2473 | /* Restore register info. */ \ | ||
2474 | high_reg = (unsigned) POP_FAILURE_ITEM (); \ | ||
2475 | DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \ | ||
2476 | \ | ||
2477 | low_reg = (unsigned) POP_FAILURE_ITEM (); \ | ||
2478 | DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ | ||
2479 | \ | ||
2480 | for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ | ||
2481 | { \ | ||
2482 | DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ | ||
2483 | \ | ||
2484 | reg_info[this_reg].word = POP_FAILURE_ITEM (); \ | ||
2485 | DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ | ||
2486 | \ | ||
2487 | regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \ | ||
2488 | DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ | ||
2489 | \ | ||
2490 | regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \ | ||
2491 | DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ | ||
2492 | } \ | ||
2493 | \ | ||
2494 | DEBUG_STATEMENT (nfailure_points_popped++); \ | ||
2495 | } /* POP_FAILURE_POINT */ | ||
2496 | |||
2497 | /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in | ||
2498 | BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible | ||
2499 | characters can start a string that matches the pattern. This fastmap | ||
2500 | is used by re_search to skip quickly over impossible starting points. | ||
2501 | |||
2502 | The caller must supply the address of a (1 << BYTEWIDTH)-byte data | ||
2503 | area as BUFP->fastmap. | ||
2504 | |||
2505 | We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in | ||
2506 | the pattern buffer. | ||
2507 | |||
2508 | Returns 0 if we succeed, -2 if an internal error. */ | ||
2509 | |||
2510 | int | ||
2511 | re_compile_fastmap (bufp) | ||
2512 | struct re_pattern_buffer *bufp; | ||
2513 | { | ||
2514 | int j, k; | ||
2515 | fail_stack_type fail_stack; | ||
2516 | #ifndef REGEX_MALLOC | ||
2517 | char *destination; | ||
2518 | #endif | ||
2519 | /* We don't push any register information onto the failure stack. */ | ||
2520 | unsigned num_regs = 0; | ||
2521 | |||
2522 | register char *fastmap = bufp->fastmap; | ||
2523 | unsigned char *pattern = bufp->buffer; | ||
2524 | unsigned long size = bufp->used; | ||
2525 | const unsigned char *p = pattern; | ||
2526 | register unsigned char *pend = pattern + size; | ||
2527 | |||
2528 | /* Assume that each path through the pattern can be null until | ||
2529 | proven otherwise. We set this false at the bottom of switch | ||
2530 | statement, to which we get only if a particular path doesn't | ||
2531 | match the empty string. */ | ||
2532 | boolean path_can_be_null = true; | ||
2533 | |||
2534 | /* We aren't doing a `succeed_n' to begin with. */ | ||
2535 | boolean succeed_n_p = false; | ||
2536 | |||
2537 | assert (fastmap != NULL && p != NULL); | ||
2538 | |||
2539 | INIT_FAIL_STACK (); | ||
2540 | bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ | ||
2541 | bufp->fastmap_accurate = 1; /* It will be when we're done. */ | ||
2542 | bufp->can_be_null = 0; | ||
2543 | |||
2544 | while (p != pend || !FAIL_STACK_EMPTY ()) | ||
2545 | { | ||
2546 | if (p == pend) | ||
2547 | { | ||
2548 | bufp->can_be_null |= path_can_be_null; | ||
2549 | |||
2550 | /* Reset for next path. */ | ||
2551 | path_can_be_null = true; | ||
2552 | |||
2553 | p = fail_stack.stack[--fail_stack.avail]; | ||
2554 | } | ||
2555 | |||
2556 | /* We should never be about to go beyond the end of the pattern. */ | ||
2557 | assert (p < pend); | ||
2558 | |||
2559 | #ifdef SWITCH_ENUM_BUG | ||
2560 | switch ((int) ((re_opcode_t) *p++)) | ||
2561 | #else | ||
2562 | switch ((re_opcode_t) *p++) | ||
2563 | #endif | ||
2564 | { | ||
2565 | |||
2566 | /* I guess the idea here is to simply not bother with a fastmap | ||
2567 | if a backreference is used, since it's too hard to figure out | ||
2568 | the fastmap for the corresponding group. Setting | ||
2569 | `can_be_null' stops `re_search_2' from using the fastmap, so | ||
2570 | that is all we do. */ | ||
2571 | case duplicate: | ||
2572 | bufp->can_be_null = 1; | ||
2573 | return 0; | ||
2574 | |||
2575 | |||
2576 | /* Following are the cases which match a character. These end | ||
2577 | with `break'. */ | ||
2578 | |||
2579 | case exactn: | ||
2580 | fastmap[p[1]] = 1; | ||
2581 | break; | ||
2582 | |||
2583 | |||
2584 | case charset: | ||
2585 | for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | ||
2586 | if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) | ||
2587 | fastmap[j] = 1; | ||
2588 | break; | ||
2589 | |||
2590 | |||
2591 | case charset_not: | ||
2592 | /* Chars beyond end of map must be allowed. */ | ||
2593 | for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) | ||
2594 | fastmap[j] = 1; | ||
2595 | |||
2596 | for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) | ||
2597 | if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) | ||
2598 | fastmap[j] = 1; | ||
2599 | break; | ||
2600 | |||
2601 | |||
2602 | case wordchar: | ||
2603 | for (j = 0; j < (1 << BYTEWIDTH); j++) | ||
2604 | if (SYNTAX (j) == Sword) | ||
2605 | fastmap[j] = 1; | ||
2606 | break; | ||
2607 | |||
2608 | |||
2609 | case notwordchar: | ||
2610 | for (j = 0; j < (1 << BYTEWIDTH); j++) | ||
2611 | if (SYNTAX (j) != Sword) | ||
2612 | fastmap[j] = 1; | ||
2613 | break; | ||
2614 | |||
2615 | |||
2616 | case anychar: | ||
2617 | /* `.' matches anything ... */ | ||
2618 | for (j = 0; j < (1 << BYTEWIDTH); j++) | ||
2619 | fastmap[j] = 1; | ||
2620 | |||
2621 | /* ... except perhaps newline. */ | ||
2622 | if (!(bufp->syntax & RE_DOT_NEWLINE)) | ||
2623 | fastmap['\n'] = 0; | ||
2624 | |||
2625 | /* Return if we have already set `can_be_null'; if we have, | ||
2626 | then the fastmap is irrelevant. Something's wrong here. */ | ||
2627 | else if (bufp->can_be_null) | ||
2628 | return 0; | ||
2629 | |||
2630 | /* Otherwise, have to check alternative paths. */ | ||
2631 | break; | ||
2632 | |||
2633 | |||
2634 | #ifdef emacs | ||
2635 | case syntaxspec: | ||
2636 | k = *p++; | ||
2637 | for (j = 0; j < (1 << BYTEWIDTH); j++) | ||
2638 | if (SYNTAX (j) == (enum syntaxcode) k) | ||
2639 | fastmap[j] = 1; | ||
2640 | break; | ||
2641 | |||
2642 | |||
2643 | case notsyntaxspec: | ||
2644 | k = *p++; | ||
2645 | for (j = 0; j < (1 << BYTEWIDTH); j++) | ||
2646 | if (SYNTAX (j) != (enum syntaxcode) k) | ||
2647 | fastmap[j] = 1; | ||
2648 | break; | ||
2649 | |||
2650 | |||
2651 | /* All cases after this match the empty string. These end with | ||
2652 | `continue'. */ | ||
2653 | |||
2654 | |||
2655 | case before_dot: | ||
2656 | case at_dot: | ||
2657 | case after_dot: | ||
2658 | continue; | ||
2659 | #endif /* not emacs */ | ||
2660 | |||
2661 | |||
2662 | case no_op: | ||
2663 | case begline: | ||
2664 | case endline: | ||
2665 | case begbuf: | ||
2666 | case endbuf: | ||
2667 | case wordbound: | ||
2668 | case notwordbound: | ||
2669 | case wordbeg: | ||
2670 | case wordend: | ||
2671 | case push_dummy_failure: | ||
2672 | continue; | ||
2673 | |||
2674 | |||
2675 | case jump_n: | ||
2676 | case pop_failure_jump: | ||
2677 | case maybe_pop_jump: | ||
2678 | case jump: | ||
2679 | case jump_past_alt: | ||
2680 | case dummy_failure_jump: | ||
2681 | EXTRACT_NUMBER_AND_INCR (j, p); | ||
2682 | p += j; | ||
2683 | if (j > 0) | ||
2684 | continue; | ||
2685 | |||
2686 | /* Jump backward implies we just went through the body of a | ||
2687 | loop and matched nothing. Opcode jumped to should be | ||
2688 | `on_failure_jump' or `succeed_n'. Just treat it like an | ||
2689 | ordinary jump. For a * loop, it has pushed its failure | ||
2690 | point already; if so, discard that as redundant. */ | ||
2691 | if ((re_opcode_t) *p != on_failure_jump | ||
2692 | && (re_opcode_t) *p != succeed_n) | ||
2693 | continue; | ||
2694 | |||
2695 | p++; | ||
2696 | EXTRACT_NUMBER_AND_INCR (j, p); | ||
2697 | p += j; | ||
2698 | |||
2699 | /* If what's on the stack is where we are now, pop it. */ | ||
2700 | if (!FAIL_STACK_EMPTY () | ||
2701 | && fail_stack.stack[fail_stack.avail - 1] == p) | ||
2702 | fail_stack.avail--; | ||
2703 | |||
2704 | continue; | ||
2705 | |||
2706 | |||
2707 | case on_failure_jump: | ||
2708 | case on_failure_keep_string_jump: | ||
2709 | handle_on_failure_jump: | ||
2710 | EXTRACT_NUMBER_AND_INCR (j, p); | ||
2711 | |||
2712 | /* For some patterns, e.g., `(a?)?', `p+j' here points to the | ||
2713 | end of the pattern. We don't want to push such a point, | ||
2714 | since when we restore it above, entering the switch will | ||
2715 | increment `p' past the end of the pattern. We don't need | ||
2716 | to push such a point since we obviously won't find any more | ||
2717 | fastmap entries beyond `pend'. Such a pattern can match | ||
2718 | the null string, though. */ | ||
2719 | if (p + j < pend) | ||
2720 | { | ||
2721 | if (!PUSH_PATTERN_OP (p + j, fail_stack)) | ||
2722 | return -2; | ||
2723 | } | ||
2724 | else | ||
2725 | bufp->can_be_null = 1; | ||
2726 | |||
2727 | if (succeed_n_p) | ||
2728 | { | ||
2729 | EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ | ||
2730 | succeed_n_p = false; | ||
2731 | } | ||
2732 | |||
2733 | continue; | ||
2734 | |||
2735 | |||
2736 | case succeed_n: | ||
2737 | /* Get to the number of times to succeed. */ | ||
2738 | p += 2; | ||
2739 | |||
2740 | /* Increment p past the n for when k != 0. */ | ||
2741 | EXTRACT_NUMBER_AND_INCR (k, p); | ||
2742 | if (k == 0) | ||
2743 | { | ||
2744 | p -= 4; | ||
2745 | succeed_n_p = true; /* Spaghetti code alert. */ | ||
2746 | goto handle_on_failure_jump; | ||
2747 | } | ||
2748 | continue; | ||
2749 | |||
2750 | |||
2751 | case set_number_at: | ||
2752 | p += 4; | ||
2753 | continue; | ||
2754 | |||
2755 | |||
2756 | case start_memory: | ||
2757 | case stop_memory: | ||
2758 | p += 2; | ||
2759 | continue; | ||
2760 | |||
2761 | |||
2762 | default: | ||
2763 | abort (); /* We have listed all the cases. */ | ||
2764 | } /* switch *p++ */ | ||
2765 | |||
2766 | /* Getting here means we have found the possible starting | ||
2767 | characters for one path of the pattern -- and that the empty | ||
2768 | string does not match. We need not follow this path further. | ||
2769 | Instead, look at the next alternative (remembered on the | ||
2770 | stack), or quit if no more. The test at the top of the loop | ||
2771 | does these things. */ | ||
2772 | path_can_be_null = false; | ||
2773 | p = pend; | ||
2774 | } /* while p */ | ||
2775 | |||
2776 | /* Set `can_be_null' for the last path (also the first path, if the | ||
2777 | pattern is empty). */ | ||
2778 | bufp->can_be_null |= path_can_be_null; | ||
2779 | return 0; | ||
2780 | } /* re_compile_fastmap */ | ||
2781 | |||
2782 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | ||
2783 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use | ||
2784 | this memory for recording register information. STARTS and ENDS | ||
2785 | must be allocated using the malloc library routine, and must each | ||
2786 | be at least NUM_REGS * sizeof (regoff_t) bytes long. | ||
2787 | |||
2788 | If NUM_REGS == 0, then subsequent matches should allocate their own | ||
2789 | register data. | ||
2790 | |||
2791 | Unless this function is called, the first search or match using | ||
2792 | PATTERN_BUFFER will allocate its own register data, without | ||
2793 | freeing the old data. */ | ||
2794 | |||
2795 | void | ||
2796 | re_set_registers (bufp, regs, num_regs, starts, ends) | ||
2797 | struct re_pattern_buffer *bufp; | ||
2798 | struct re_registers *regs; | ||
2799 | unsigned num_regs; | ||
2800 | regoff_t *starts, *ends; | ||
2801 | { | ||
2802 | if (num_regs) | ||
2803 | { | ||
2804 | bufp->regs_allocated = REGS_REALLOCATE; | ||
2805 | regs->num_regs = num_regs; | ||
2806 | regs->start = starts; | ||
2807 | regs->end = ends; | ||
2808 | } | ||
2809 | else | ||
2810 | { | ||
2811 | bufp->regs_allocated = REGS_UNALLOCATED; | ||
2812 | regs->num_regs = 0; | ||
2813 | regs->start = regs->end = (regoff_t) 0; | ||
2814 | } | ||
2815 | } | ||
2816 | |||
2817 | /* Searching routines. */ | ||
2818 | |||
2819 | /* Like re_search_2, below, but only one string is specified, and | ||
2820 | doesn't let you say where to stop matching. */ | ||
2821 | |||
2822 | int | ||
2823 | re_search (bufp, string, size, startpos, range, regs) | ||
2824 | struct re_pattern_buffer *bufp; | ||
2825 | const char *string; | ||
2826 | int size, startpos, range; | ||
2827 | struct re_registers *regs; | ||
2828 | { | ||
2829 | return re_search_2 (bufp, NULL, 0, string, size, startpos, range, | ||
2830 | regs, size); | ||
2831 | } | ||
2832 | |||
2833 | |||
2834 | /* Using the compiled pattern in BUFP->buffer, first tries to match the | ||
2835 | virtual concatenation of STRING1 and STRING2, starting first at index | ||
2836 | STARTPOS, then at STARTPOS + 1, and so on. | ||
2837 | |||
2838 | STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. | ||
2839 | |||
2840 | RANGE is how far to scan while trying to match. RANGE = 0 means try | ||
2841 | only at STARTPOS; in general, the last start tried is STARTPOS + | ||
2842 | RANGE. | ||
2843 | |||
2844 | In REGS, return the indices of the virtual concatenation of STRING1 | ||
2845 | and STRING2 that matched the entire BUFP->buffer and its contained | ||
2846 | subexpressions. | ||
2847 | |||
2848 | Do not consider matching one past the index STOP in the virtual | ||
2849 | concatenation of STRING1 and STRING2. | ||
2850 | |||
2851 | We return either the position in the strings at which the match was | ||
2852 | found, -1 if no match, or -2 if error (such as failure | ||
2853 | stack overflow). */ | ||
2854 | |||
2855 | int | ||
2856 | re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop) | ||
2857 | struct re_pattern_buffer *bufp; | ||
2858 | const char *string1, *string2; | ||
2859 | int size1, size2; | ||
2860 | int startpos; | ||
2861 | int range; | ||
2862 | struct re_registers *regs; | ||
2863 | int stop; | ||
2864 | { | ||
2865 | int val; | ||
2866 | register char *fastmap = bufp->fastmap; | ||
2867 | register char *translate = bufp->translate; | ||
2868 | int total_size = size1 + size2; | ||
2869 | int endpos = startpos + range; | ||
2870 | |||
2871 | /* Check for out-of-range STARTPOS. */ | ||
2872 | if (startpos < 0 || startpos > total_size) | ||
2873 | return -1; | ||
2874 | |||
2875 | /* Fix up RANGE if it might eventually take us outside | ||
2876 | the virtual concatenation of STRING1 and STRING2. */ | ||
2877 | if (endpos < -1) | ||
2878 | range = -1 - startpos; | ||
2879 | else if (endpos > total_size) | ||
2880 | range = total_size - startpos; | ||
2881 | |||
2882 | /* If the search isn't to be a backwards one, don't waste time in a | ||
2883 | search for a pattern that must be anchored. */ | ||
2884 | if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) | ||
2885 | { | ||
2886 | if (startpos > 0) | ||
2887 | return -1; | ||
2888 | else | ||
2889 | range = 1; | ||
2890 | } | ||
2891 | |||
2892 | /* Update the fastmap now if not correct already. */ | ||
2893 | if (fastmap && !bufp->fastmap_accurate) | ||
2894 | if (re_compile_fastmap (bufp) == -2) | ||
2895 | return -2; | ||
2896 | |||
2897 | /* Loop through the string, looking for a place to start matching. */ | ||
2898 | for (;;) | ||
2899 | { | ||
2900 | /* If a fastmap is supplied, skip quickly over characters that | ||
2901 | cannot be the start of a match. If the pattern can match the | ||
2902 | null string, however, we don't need to skip characters; we want | ||
2903 | the first null string. */ | ||
2904 | if (fastmap && startpos < total_size && !bufp->can_be_null) | ||
2905 | { | ||
2906 | if (range > 0) /* Searching forwards. */ | ||
2907 | { | ||
2908 | register const char *d; | ||
2909 | register int lim = 0; | ||
2910 | int irange = range; | ||
2911 | |||
2912 | if (startpos < size1 && startpos + range >= size1) | ||
2913 | lim = range - (size1 - startpos); | ||
2914 | |||
2915 | d = (startpos >= size1 ? string2 - size1 : string1) + startpos; | ||
2916 | |||
2917 | /* Written out as an if-else to avoid testing `translate' | ||
2918 | inside the loop. */ | ||
2919 | if (translate) | ||
2920 | while (range > lim | ||
2921 | && !fastmap[(unsigned char) | ||
2922 | translate[(unsigned char) *d++]]) | ||
2923 | range--; | ||
2924 | else | ||
2925 | while (range > lim && !fastmap[(unsigned char) *d++]) | ||
2926 | range--; | ||
2927 | |||
2928 | startpos += irange - range; | ||
2929 | } | ||
2930 | else /* Searching backwards. */ | ||
2931 | { | ||
2932 | register char c = (size1 == 0 || startpos >= size1 | ||
2933 | ? string2[startpos - size1] | ||
2934 | : string1[startpos]); | ||
2935 | |||
2936 | if (!fastmap[(unsigned char) TRANSLATE (c)]) | ||
2937 | goto advance; | ||
2938 | } | ||
2939 | } | ||
2940 | |||
2941 | /* If can't match the null string, and that's all we have left, fail. */ | ||
2942 | if (range >= 0 && startpos == total_size && fastmap | ||
2943 | && !bufp->can_be_null) | ||
2944 | return -1; | ||
2945 | |||
2946 | val = re_match_2 (bufp, string1, size1, string2, size2, | ||
2947 | startpos, regs, stop); | ||
2948 | if (val >= 0) | ||
2949 | return startpos; | ||
2950 | |||
2951 | if (val == -2) | ||
2952 | return -2; | ||
2953 | |||
2954 | advance: | ||
2955 | if (!range) | ||
2956 | break; | ||
2957 | else if (range > 0) | ||
2958 | { | ||
2959 | range--; | ||
2960 | startpos++; | ||
2961 | } | ||
2962 | else | ||
2963 | { | ||
2964 | range++; | ||
2965 | startpos--; | ||
2966 | } | ||
2967 | } | ||
2968 | return -1; | ||
2969 | } /* re_search_2 */ | ||
2970 | |||
2971 | /* Declarations and macros for re_match_2. */ | ||
2972 | |||
2973 | static int bcmp_translate (); | ||
2974 | static boolean alt_match_null_string_p (), | ||
2975 | common_op_match_null_string_p (), | ||
2976 | group_match_null_string_p (); | ||
2977 | |||
2978 | /* Structure for per-register (a.k.a. per-group) information. | ||
2979 | This must not be longer than one word, because we push this value | ||
2980 | onto the failure stack. Other register information, such as the | ||
2981 | starting and ending positions (which are addresses), and the list of | ||
2982 | inner groups (which is a bits list) are maintained in separate | ||
2983 | variables. | ||
2984 | |||
2985 | We are making a (strictly speaking) nonportable assumption here: that | ||
2986 | the compiler will pack our bit fields into something that fits into | ||
2987 | the type of `word', i.e., is something that fits into one item on the | ||
2988 | failure stack. */ | ||
2989 | typedef union | ||
2990 | { | ||
2991 | fail_stack_elt_t word; | ||
2992 | struct | ||
2993 | { | ||
2994 | /* This field is one if this group can match the empty string, | ||
2995 | zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ | ||
2996 | #define MATCH_NULL_UNSET_VALUE 3 | ||
2997 | unsigned match_null_string_p : 2; | ||
2998 | unsigned is_active : 1; | ||
2999 | unsigned matched_something : 1; | ||
3000 | unsigned ever_matched_something : 1; | ||
3001 | } bits; | ||
3002 | } register_info_type; | ||
3003 | |||
3004 | #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) | ||
3005 | #define IS_ACTIVE(R) ((R).bits.is_active) | ||
3006 | #define MATCHED_SOMETHING(R) ((R).bits.matched_something) | ||
3007 | #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) | ||
3008 | |||
3009 | |||
3010 | /* Call this when have matched a real character; it sets `matched' flags | ||
3011 | for the subexpressions which we are currently inside. Also records | ||
3012 | that those subexprs have matched. */ | ||
3013 | #define SET_REGS_MATCHED() \ | ||
3014 | do \ | ||
3015 | { \ | ||
3016 | unsigned r; \ | ||
3017 | for (r = lowest_active_reg; r <= highest_active_reg; r++) \ | ||
3018 | { \ | ||
3019 | MATCHED_SOMETHING (reg_info[r]) \ | ||
3020 | = EVER_MATCHED_SOMETHING (reg_info[r]) \ | ||
3021 | = 1; \ | ||
3022 | } \ | ||
3023 | } \ | ||
3024 | while (0) | ||
3025 | |||
3026 | |||
3027 | /* This converts PTR, a pointer into one of the search strings `string1' | ||
3028 | and `string2' into an offset from the beginning of that string. */ | ||
3029 | #define POINTER_TO_OFFSET(ptr) \ | ||
3030 | (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1) | ||
3031 | |||
3032 | /* Registers are set to a sentinel when they haven't yet matched. */ | ||
3033 | #define REG_UNSET_VALUE ((char *) -1) | ||
3034 | #define REG_UNSET(e) ((e) == REG_UNSET_VALUE) | ||
3035 | |||
3036 | |||
3037 | /* Macros for dealing with the split strings in re_match_2. */ | ||
3038 | |||
3039 | #define MATCHING_IN_FIRST_STRING (dend == end_match_1) | ||
3040 | |||
3041 | /* Call before fetching a character with *d. This switches over to | ||
3042 | string2 if necessary. */ | ||
3043 | #define PREFETCH() \ | ||
3044 | while (d == dend) \ | ||
3045 | { \ | ||
3046 | /* End of string2 => fail. */ \ | ||
3047 | if (dend == end_match_2) \ | ||
3048 | goto fail; \ | ||
3049 | /* End of string1 => advance to string2. */ \ | ||
3050 | d = string2; \ | ||
3051 | dend = end_match_2; \ | ||
3052 | } | ||
3053 | |||
3054 | |||
3055 | /* Test if at very beginning or at very end of the virtual concatenation | ||
3056 | of `string1' and `string2'. If only one string, it's `string2'. */ | ||
3057 | #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) | ||
3058 | #define AT_STRINGS_END(d) ((d) == end2) | ||
3059 | |||
3060 | |||
3061 | /* Test if D points to a character which is word-constituent. We have | ||
3062 | two special cases to check for: if past the end of string1, look at | ||
3063 | the first character in string2; and if before the beginning of | ||
3064 | string2, look at the last character in string1. */ | ||
3065 | #define WORDCHAR_P(d) \ | ||
3066 | (SYNTAX ((d) == end1 ? *string2 \ | ||
3067 | : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ | ||
3068 | == Sword) | ||
3069 | |||
3070 | /* Test if the character before D and the one at D differ with respect | ||
3071 | to being word-constituent. */ | ||
3072 | #define AT_WORD_BOUNDARY(d) \ | ||
3073 | (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \ | ||
3074 | || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) | ||
3075 | |||
3076 | |||
3077 | /* Free everything we malloc. */ | ||
3078 | #ifdef REGEX_MALLOC | ||
3079 | #define FREE_VAR(var) if (var) free (var); var = NULL | ||
3080 | #define FREE_VARIABLES() \ | ||
3081 | do { \ | ||
3082 | FREE_VAR (fail_stack.stack); \ | ||
3083 | FREE_VAR (regstart); \ | ||
3084 | FREE_VAR (regend); \ | ||
3085 | FREE_VAR (old_regstart); \ | ||
3086 | FREE_VAR (old_regend); \ | ||
3087 | FREE_VAR (best_regstart); \ | ||
3088 | FREE_VAR (best_regend); \ | ||
3089 | FREE_VAR (reg_info); \ | ||
3090 | FREE_VAR (reg_dummy); \ | ||
3091 | FREE_VAR (reg_info_dummy); \ | ||
3092 | } while (0) | ||
3093 | #else /* not REGEX_MALLOC */ | ||
3094 | /* Some MIPS systems (at least) want this to free alloca'd storage. */ | ||
3095 | #define FREE_VARIABLES() alloca (0) | ||
3096 | #endif /* not REGEX_MALLOC */ | ||
3097 | |||
3098 | |||
3099 | /* These values must meet several constraints. They must not be valid | ||
3100 | register values; since we have a limit of 255 registers (because | ||
3101 | we use only one byte in the pattern for the register number), we can | ||
3102 | use numbers larger than 255. They must differ by 1, because of | ||
3103 | NUM_FAILURE_ITEMS above. And the value for the lowest register must | ||
3104 | be larger than the value for the highest register, so we do not try | ||
3105 | to actually save any registers when none are active. */ | ||
3106 | #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) | ||
3107 | #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) | ||
3108 | |||
3109 | /* Matching routines. */ | ||
3110 | |||
3111 | #ifndef emacs /* Emacs never uses this. */ | ||
3112 | /* re_match is like re_match_2 except it takes only a single string. */ | ||
3113 | |||
3114 | int | ||
3115 | re_match (bufp, string, size, pos, regs) | ||
3116 | struct re_pattern_buffer *bufp; | ||
3117 | const char *string; | ||
3118 | int size, pos; | ||
3119 | struct re_registers *regs; | ||
3120 | { | ||
3121 | return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size); | ||
3122 | } | ||
3123 | #endif /* not emacs */ | ||
3124 | |||
3125 | |||
3126 | /* re_match_2 matches the compiled pattern in BUFP against the | ||
3127 | the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 | ||
3128 | and SIZE2, respectively). We start matching at POS, and stop | ||
3129 | matching at STOP. | ||
3130 | |||
3131 | If REGS is non-null and the `no_sub' field of BUFP is nonzero, we | ||
3132 | store offsets for the substring each group matched in REGS. See the | ||
3133 | documentation for exactly how many groups we fill. | ||
3134 | |||
3135 | We return -1 if no match, -2 if an internal error (such as the | ||
3136 | failure stack overflowing). Otherwise, we return the length of the | ||
3137 | matched substring. */ | ||
3138 | |||
3139 | int | ||
3140 | re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) | ||
3141 | struct re_pattern_buffer *bufp; | ||
3142 | const char *string1, *string2; | ||
3143 | int size1, size2; | ||
3144 | int pos; | ||
3145 | struct re_registers *regs; | ||
3146 | int stop; | ||
3147 | { | ||
3148 | /* General temporaries. */ | ||
3149 | int mcnt; | ||
3150 | unsigned char *p1; | ||
3151 | |||
3152 | /* Just past the end of the corresponding string. */ | ||
3153 | const char *end1, *end2; | ||
3154 | |||
3155 | /* Pointers into string1 and string2, just past the last characters in | ||
3156 | each to consider matching. */ | ||
3157 | const char *end_match_1, *end_match_2; | ||
3158 | |||
3159 | /* Where we are in the data, and the end of the current string. */ | ||
3160 | const char *d, *dend; | ||
3161 | |||
3162 | /* Where we are in the pattern, and the end of the pattern. */ | ||
3163 | unsigned char *p = bufp->buffer; | ||
3164 | register unsigned char *pend = p + bufp->used; | ||
3165 | |||
3166 | /* We use this to map every character in the string. */ | ||
3167 | char *translate = bufp->translate; | ||
3168 | |||
3169 | /* Failure point stack. Each place that can handle a failure further | ||
3170 | down the line pushes a failure point on this stack. It consists of | ||
3171 | restart, regend, and reg_info for all registers corresponding to | ||
3172 | the subexpressions we're currently inside, plus the number of such | ||
3173 | registers, and, finally, two char *'s. The first char * is where | ||
3174 | to resume scanning the pattern; the second one is where to resume | ||
3175 | scanning the strings. If the latter is zero, the failure point is | ||
3176 | a ``dummy''; if a failure happens and the failure point is a dummy, | ||
3177 | it gets discarded and the next next one is tried. */ | ||
3178 | fail_stack_type fail_stack; | ||
3179 | #ifdef DEBUG | ||
3180 | static unsigned failure_id = 0; | ||
3181 | unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; | ||
3182 | #endif | 90 | #endif |
3183 | |||
3184 | /* We fill all the registers internally, independent of what we | ||
3185 | return, for use in backreferences. The number here includes | ||
3186 | an element for register zero. */ | ||
3187 | unsigned num_regs = bufp->re_nsub + 1; | ||
3188 | |||
3189 | /* The currently active registers. */ | ||
3190 | unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG; | ||
3191 | unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG; | ||
3192 | |||
3193 | /* Information on the contents of registers. These are pointers into | ||
3194 | the input strings; they record just what was matched (on this | ||
3195 | attempt) by a subexpression part of the pattern, that is, the | ||
3196 | regnum-th regstart pointer points to where in the pattern we began | ||
3197 | matching and the regnum-th regend points to right after where we | ||
3198 | stopped matching the regnum-th subexpression. (The zeroth register | ||
3199 | keeps track of what the whole pattern matches.) */ | ||
3200 | const char **regstart = NULL, **regend = NULL; | ||
3201 | |||
3202 | /* If a group that's operated upon by a repetition operator fails to | ||
3203 | match anything, then the register for its start will need to be | ||
3204 | restored because it will have been set to wherever in the string we | ||
3205 | are when we last see its open-group operator. Similarly for a | ||
3206 | register's end. */ | ||
3207 | const char **old_regstart = NULL, **old_regend = NULL; | ||
3208 | |||
3209 | /* The is_active field of reg_info helps us keep track of which (possibly | ||
3210 | nested) subexpressions we are currently in. The matched_something | ||
3211 | field of reg_info[reg_num] helps us tell whether or not we have | ||
3212 | matched any of the pattern so far this time through the reg_num-th | ||
3213 | subexpression. These two fields get reset each time through any | ||
3214 | loop their register is in. */ | ||
3215 | register_info_type *reg_info = NULL; | ||
3216 | |||
3217 | /* The following record the register info as found in the above | ||
3218 | variables when we find a match better than any we've seen before. | ||
3219 | This happens as we backtrack through the failure points, which in | ||
3220 | turn happens only if we have not yet matched the entire string. */ | ||
3221 | unsigned best_regs_set = false; | ||
3222 | const char **best_regstart = NULL, **best_regend = NULL; | ||
3223 | |||
3224 | /* Logically, this is `best_regend[0]'. But we don't want to have to | ||
3225 | allocate space for that if we're not allocating space for anything | ||
3226 | else (see below). Also, we never need info about register 0 for | ||
3227 | any of the other register vectors, and it seems rather a kludge to | ||
3228 | treat `best_regend' differently than the rest. So we keep track of | ||
3229 | the end of the best match so far in a separate variable. We | ||
3230 | initialize this to NULL so that when we backtrack the first time | ||
3231 | and need to test it, it's not garbage. */ | ||
3232 | const char *match_end = NULL; | ||
3233 | |||
3234 | /* Used when we pop values we don't care about. */ | ||
3235 | const char **reg_dummy = NULL; | ||
3236 | register_info_type *reg_info_dummy = NULL; | ||
3237 | |||
3238 | #ifdef DEBUG | ||
3239 | /* Counts the total number of registers pushed. */ | ||
3240 | unsigned num_regs_pushed = 0; | ||
3241 | #endif | ||
3242 | |||
3243 | DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); | ||
3244 | |||
3245 | INIT_FAIL_STACK (); | ||
3246 | |||
3247 | /* Do not bother to initialize all the register variables if there are | ||
3248 | no groups in the pattern, as it takes a fair amount of time. If | ||
3249 | there are groups, we include space for register 0 (the whole | ||
3250 | pattern), even though we never use it, since it simplifies the | ||
3251 | array indexing. We should fix this. */ | ||
3252 | if (bufp->re_nsub) | ||
3253 | { | ||
3254 | regstart = REGEX_TALLOC (num_regs, const char *); | ||
3255 | regend = REGEX_TALLOC (num_regs, const char *); | ||
3256 | old_regstart = REGEX_TALLOC (num_regs, const char *); | ||
3257 | old_regend = REGEX_TALLOC (num_regs, const char *); | ||
3258 | best_regstart = REGEX_TALLOC (num_regs, const char *); | ||
3259 | best_regend = REGEX_TALLOC (num_regs, const char *); | ||
3260 | reg_info = REGEX_TALLOC (num_regs, register_info_type); | ||
3261 | reg_dummy = REGEX_TALLOC (num_regs, const char *); | ||
3262 | reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); | ||
3263 | |||
3264 | if (!(regstart && regend && old_regstart && old_regend && reg_info | ||
3265 | && best_regstart && best_regend && reg_dummy && reg_info_dummy)) | ||
3266 | { | ||
3267 | FREE_VARIABLES (); | ||
3268 | return -2; | ||
3269 | } | ||
3270 | } | ||
3271 | #ifdef REGEX_MALLOC | ||
3272 | else | ||
3273 | { | ||
3274 | /* We must initialize all our variables to NULL, so that | ||
3275 | `FREE_VARIABLES' doesn't try to free them. */ | ||
3276 | regstart = regend = old_regstart = old_regend = best_regstart | ||
3277 | = best_regend = reg_dummy = NULL; | ||
3278 | reg_info = reg_info_dummy = (register_info_type *) NULL; | ||
3279 | } | ||
3280 | #endif /* REGEX_MALLOC */ | ||
3281 | |||
3282 | /* The starting position is bogus. */ | ||
3283 | if (pos < 0 || pos > size1 + size2) | ||
3284 | { | ||
3285 | FREE_VARIABLES (); | ||
3286 | return -1; | ||
3287 | } | ||
3288 | |||
3289 | /* Initialize subexpression text positions to -1 to mark ones that no | ||
3290 | start_memory/stop_memory has been seen for. Also initialize the | ||
3291 | register information struct. */ | ||
3292 | for (mcnt = 1; mcnt < num_regs; mcnt++) | ||
3293 | { | ||
3294 | regstart[mcnt] = regend[mcnt] | ||
3295 | = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; | ||
3296 | |||
3297 | REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; | ||
3298 | IS_ACTIVE (reg_info[mcnt]) = 0; | ||
3299 | MATCHED_SOMETHING (reg_info[mcnt]) = 0; | ||
3300 | EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; | ||
3301 | } | ||
3302 | |||
3303 | /* We move `string1' into `string2' if the latter's empty -- but not if | ||
3304 | `string1' is null. */ | ||
3305 | if (size2 == 0 && string1 != NULL) | ||
3306 | { | ||
3307 | string2 = string1; | ||
3308 | size2 = size1; | ||
3309 | string1 = 0; | ||
3310 | size1 = 0; | ||
3311 | } | ||
3312 | end1 = string1 + size1; | ||
3313 | end2 = string2 + size2; | ||
3314 | |||
3315 | /* Compute where to stop matching, within the two strings. */ | ||
3316 | if (stop <= size1) | ||
3317 | { | ||
3318 | end_match_1 = string1 + stop; | ||
3319 | end_match_2 = string2; | ||
3320 | } | ||
3321 | else | ||
3322 | { | ||
3323 | end_match_1 = end1; | ||
3324 | end_match_2 = string2 + stop - size1; | ||
3325 | } | ||
3326 | |||
3327 | /* `p' scans through the pattern as `d' scans through the data. | ||
3328 | `dend' is the end of the input string that `d' points within. `d' | ||
3329 | is advanced into the following input string whenever necessary, but | ||
3330 | this happens before fetching; therefore, at the beginning of the | ||
3331 | loop, `d' can be pointing at the end of a string, but it cannot | ||
3332 | equal `string2'. */ | ||
3333 | if (size1 > 0 && pos <= size1) | ||
3334 | { | ||
3335 | d = string1 + pos; | ||
3336 | dend = end_match_1; | ||
3337 | } | ||
3338 | else | ||
3339 | { | ||
3340 | d = string2 + pos - size1; | ||
3341 | dend = end_match_2; | ||
3342 | } | ||
3343 | |||
3344 | DEBUG_PRINT1 ("The compiled pattern is: "); | ||
3345 | DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); | ||
3346 | DEBUG_PRINT1 ("The string to match is: `"); | ||
3347 | DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); | ||
3348 | DEBUG_PRINT1 ("'\n"); | ||
3349 | |||
3350 | /* This loops over pattern commands. It exits by returning from the | ||
3351 | function if the match is complete, or it drops through if the match | ||
3352 | fails at this starting point in the input data. */ | ||
3353 | for (;;) | ||
3354 | { | ||
3355 | DEBUG_PRINT2 ("\n0x%x: ", p); | ||
3356 | |||
3357 | if (p == pend) | ||
3358 | { /* End of pattern means we might have succeeded. */ | ||
3359 | DEBUG_PRINT1 ("end of pattern ... "); | ||
3360 | |||
3361 | /* If we haven't matched the entire string, and we want the | ||
3362 | longest match, try backtracking. */ | ||
3363 | if (d != end_match_2) | ||
3364 | { | ||
3365 | DEBUG_PRINT1 ("backtracking.\n"); | ||
3366 | |||
3367 | if (!FAIL_STACK_EMPTY ()) | ||
3368 | { /* More failure points to try. */ | ||
3369 | boolean same_str_p = (FIRST_STRING_P (match_end) | ||
3370 | == MATCHING_IN_FIRST_STRING); | ||
3371 | |||
3372 | /* If exceeds best match so far, save it. */ | ||
3373 | if (!best_regs_set | ||
3374 | || (same_str_p && d > match_end) | ||
3375 | || (!same_str_p && !MATCHING_IN_FIRST_STRING)) | ||
3376 | { | ||
3377 | best_regs_set = true; | ||
3378 | match_end = d; | ||
3379 | |||
3380 | DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); | ||
3381 | |||
3382 | for (mcnt = 1; mcnt < num_regs; mcnt++) | ||
3383 | { | ||
3384 | best_regstart[mcnt] = regstart[mcnt]; | ||
3385 | best_regend[mcnt] = regend[mcnt]; | ||
3386 | } | ||
3387 | } | ||
3388 | goto fail; | ||
3389 | } | ||
3390 | |||
3391 | /* If no failure points, don't restore garbage. */ | ||
3392 | else if (best_regs_set) | ||
3393 | { | ||
3394 | restore_best_regs: | ||
3395 | /* Restore best match. It may happen that `dend == | ||
3396 | end_match_1' while the restored d is in string2. | ||
3397 | For example, the pattern `x.*y.*z' against the | ||
3398 | strings `x-' and `y-z-', if the two strings are | ||
3399 | not consecutive in memory. */ | ||
3400 | DEBUG_PRINT1 ("Restoring best registers.\n"); | ||
3401 | |||
3402 | d = match_end; | ||
3403 | dend = ((d >= string1 && d <= end1) | ||
3404 | ? end_match_1 : end_match_2); | ||
3405 | |||
3406 | for (mcnt = 1; mcnt < num_regs; mcnt++) | ||
3407 | { | ||
3408 | regstart[mcnt] = best_regstart[mcnt]; | ||
3409 | regend[mcnt] = best_regend[mcnt]; | ||
3410 | } | ||
3411 | } | ||
3412 | } /* d != end_match_2 */ | ||
3413 | |||
3414 | DEBUG_PRINT1 ("Accepting match.\n"); | ||
3415 | |||
3416 | /* If caller wants register contents data back, do it. */ | ||
3417 | if (regs && !bufp->no_sub) | ||
3418 | { | ||
3419 | /* Have the register data arrays been allocated? */ | ||
3420 | if (bufp->regs_allocated == REGS_UNALLOCATED) | ||
3421 | { /* No. So allocate them with malloc. We need one | ||
3422 | extra element beyond `num_regs' for the `-1' marker | ||
3423 | GNU code uses. */ | ||
3424 | regs->num_regs = MAX (RE_NREGS, num_regs + 1); | ||
3425 | regs->start = TALLOC (regs->num_regs, regoff_t); | ||
3426 | regs->end = TALLOC (regs->num_regs, regoff_t); | ||
3427 | if (regs->start == NULL || regs->end == NULL) | ||
3428 | return -2; | ||
3429 | bufp->regs_allocated = REGS_REALLOCATE; | ||
3430 | } | ||
3431 | else if (bufp->regs_allocated == REGS_REALLOCATE) | ||
3432 | { /* Yes. If we need more elements than were already | ||
3433 | allocated, reallocate them. If we need fewer, just | ||
3434 | leave it alone. */ | ||
3435 | if (regs->num_regs < num_regs + 1) | ||
3436 | { | ||
3437 | regs->num_regs = num_regs + 1; | ||
3438 | RETALLOC (regs->start, regs->num_regs, regoff_t); | ||
3439 | RETALLOC (regs->end, regs->num_regs, regoff_t); | ||
3440 | if (regs->start == NULL || regs->end == NULL) | ||
3441 | return -2; | ||
3442 | } | ||
3443 | } | ||
3444 | else | ||
3445 | assert (bufp->regs_allocated == REGS_FIXED); | ||
3446 | |||
3447 | /* Convert the pointer data in `regstart' and `regend' to | ||
3448 | indices. Register zero has to be set differently, | ||
3449 | since we haven't kept track of any info for it. */ | ||
3450 | if (regs->num_regs > 0) | ||
3451 | { | ||
3452 | regs->start[0] = pos; | ||
3453 | regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1 | ||
3454 | : d - string2 + size1); | ||
3455 | } | ||
3456 | |||
3457 | /* Go through the first `min (num_regs, regs->num_regs)' | ||
3458 | registers, since that is all we initialized. */ | ||
3459 | for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++) | ||
3460 | { | ||
3461 | if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) | ||
3462 | regs->start[mcnt] = regs->end[mcnt] = -1; | ||
3463 | else | ||
3464 | { | ||
3465 | regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]); | ||
3466 | regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]); | ||
3467 | } | ||
3468 | } | ||
3469 | |||
3470 | /* If the regs structure we return has more elements than | ||
3471 | were in the pattern, set the extra elements to -1. If | ||
3472 | we (re)allocated the registers, this is the case, | ||
3473 | because we always allocate enough to have at least one | ||
3474 | -1 at the end. */ | ||
3475 | for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) | ||
3476 | regs->start[mcnt] = regs->end[mcnt] = -1; | ||
3477 | } /* regs && !bufp->no_sub */ | ||
3478 | |||
3479 | FREE_VARIABLES (); | ||
3480 | DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", | ||
3481 | nfailure_points_pushed, nfailure_points_popped, | ||
3482 | nfailure_points_pushed - nfailure_points_popped); | ||
3483 | DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); | ||
3484 | |||
3485 | mcnt = d - pos - (MATCHING_IN_FIRST_STRING | ||
3486 | ? string1 | ||
3487 | : string2 - size1); | ||
3488 | |||
3489 | DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); | ||
3490 | |||
3491 | return mcnt; | ||
3492 | } | ||
3493 | |||
3494 | /* Otherwise match next pattern command. */ | ||
3495 | #ifdef SWITCH_ENUM_BUG | ||
3496 | switch ((int) ((re_opcode_t) *p++)) | ||
3497 | #else | ||
3498 | switch ((re_opcode_t) *p++) | ||
3499 | #endif | ||
3500 | { | ||
3501 | /* Ignore these. Used to ignore the n of succeed_n's which | ||
3502 | currently have n == 0. */ | ||
3503 | case no_op: | ||
3504 | DEBUG_PRINT1 ("EXECUTING no_op.\n"); | ||
3505 | break; | ||
3506 | |||
3507 | |||
3508 | /* Match the next n pattern characters exactly. The following | ||
3509 | byte in the pattern defines n, and the n bytes after that | ||
3510 | are the characters to match. */ | ||
3511 | case exactn: | ||
3512 | mcnt = *p++; | ||
3513 | DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); | ||
3514 | |||
3515 | /* This is written out as an if-else so we don't waste time | ||
3516 | testing `translate' inside the loop. */ | ||
3517 | if (translate) | ||
3518 | { | ||
3519 | do | ||
3520 | { | ||
3521 | PREFETCH (); | ||
3522 | if (translate[(unsigned char) *d++] != (char) *p++) | ||
3523 | goto fail; | ||
3524 | } | ||
3525 | while (--mcnt); | ||
3526 | } | ||
3527 | else | ||
3528 | { | ||
3529 | do | ||
3530 | { | ||
3531 | PREFETCH (); | ||
3532 | if (*d++ != (char) *p++) goto fail; | ||
3533 | } | ||
3534 | while (--mcnt); | ||
3535 | } | ||
3536 | SET_REGS_MATCHED (); | ||
3537 | break; | ||
3538 | |||
3539 | |||
3540 | /* Match any character except possibly a newline or a null. */ | ||
3541 | case anychar: | ||
3542 | DEBUG_PRINT1 ("EXECUTING anychar.\n"); | ||
3543 | |||
3544 | PREFETCH (); | ||
3545 | |||
3546 | if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n') | ||
3547 | || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000')) | ||
3548 | goto fail; | ||
3549 | |||
3550 | SET_REGS_MATCHED (); | ||
3551 | DEBUG_PRINT2 (" Matched `%d'.\n", *d); | ||
3552 | d++; | ||
3553 | break; | ||
3554 | |||
3555 | |||
3556 | case charset: | ||
3557 | case charset_not: | ||
3558 | { | ||
3559 | register unsigned char c; | ||
3560 | boolean not = (re_opcode_t) *(p - 1) == charset_not; | ||
3561 | |||
3562 | DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); | ||
3563 | |||
3564 | PREFETCH (); | ||
3565 | c = TRANSLATE (*d); /* The character to match. */ | ||
3566 | |||
3567 | /* Cast to `unsigned' instead of `unsigned char' in case the | ||
3568 | bit list is a full 32 bytes long. */ | ||
3569 | if (c < (unsigned) (*p * BYTEWIDTH) | ||
3570 | && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) | ||
3571 | not = !not; | ||
3572 | |||
3573 | p += 1 + *p; | ||
3574 | |||
3575 | if (!not) goto fail; | ||
3576 | |||
3577 | SET_REGS_MATCHED (); | ||
3578 | d++; | ||
3579 | break; | ||
3580 | } | ||
3581 | |||
3582 | |||
3583 | /* The beginning of a group is represented by start_memory. | ||
3584 | The arguments are the register number in the next byte, and the | ||
3585 | number of groups inner to this one in the next. The text | ||
3586 | matched within the group is recorded (in the internal | ||
3587 | registers data structure) under the register number. */ | ||
3588 | case start_memory: | ||
3589 | DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); | ||
3590 | |||
3591 | /* Find out if this group can match the empty string. */ | ||
3592 | p1 = p; /* To send to group_match_null_string_p. */ | ||
3593 | |||
3594 | if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) | ||
3595 | REG_MATCH_NULL_STRING_P (reg_info[*p]) | ||
3596 | = group_match_null_string_p (&p1, pend, reg_info); | ||
3597 | |||
3598 | /* Save the position in the string where we were the last time | ||
3599 | we were at this open-group operator in case the group is | ||
3600 | operated upon by a repetition operator, e.g., with `(a*)*b' | ||
3601 | against `ab'; then we want to ignore where we are now in | ||
3602 | the string in case this attempt to match fails. */ | ||
3603 | old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | ||
3604 | ? REG_UNSET (regstart[*p]) ? d : regstart[*p] | ||
3605 | : regstart[*p]; | ||
3606 | DEBUG_PRINT2 (" old_regstart: %d\n", | ||
3607 | POINTER_TO_OFFSET (old_regstart[*p])); | ||
3608 | |||
3609 | regstart[*p] = d; | ||
3610 | DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); | ||
3611 | |||
3612 | IS_ACTIVE (reg_info[*p]) = 1; | ||
3613 | MATCHED_SOMETHING (reg_info[*p]) = 0; | ||
3614 | |||
3615 | /* This is the new highest active register. */ | ||
3616 | highest_active_reg = *p; | ||
3617 | |||
3618 | /* If nothing was active before, this is the new lowest active | ||
3619 | register. */ | ||
3620 | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | ||
3621 | lowest_active_reg = *p; | ||
3622 | |||
3623 | /* Move past the register number and inner group count. */ | ||
3624 | p += 2; | ||
3625 | break; | ||
3626 | |||
3627 | |||
3628 | /* The stop_memory opcode represents the end of a group. Its | ||
3629 | arguments are the same as start_memory's: the register | ||
3630 | number, and the number of inner groups. */ | ||
3631 | case stop_memory: | ||
3632 | DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); | ||
3633 | |||
3634 | /* We need to save the string position the last time we were at | ||
3635 | this close-group operator in case the group is operated | ||
3636 | upon by a repetition operator, e.g., with `((a*)*(b*)*)*' | ||
3637 | against `aba'; then we want to ignore where we are now in | ||
3638 | the string in case this attempt to match fails. */ | ||
3639 | old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) | ||
3640 | ? REG_UNSET (regend[*p]) ? d : regend[*p] | ||
3641 | : regend[*p]; | ||
3642 | DEBUG_PRINT2 (" old_regend: %d\n", | ||
3643 | POINTER_TO_OFFSET (old_regend[*p])); | ||
3644 | |||
3645 | regend[*p] = d; | ||
3646 | DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); | ||
3647 | |||
3648 | /* This register isn't active anymore. */ | ||
3649 | IS_ACTIVE (reg_info[*p]) = 0; | ||
3650 | |||
3651 | /* If this was the only register active, nothing is active | ||
3652 | anymore. */ | ||
3653 | if (lowest_active_reg == highest_active_reg) | ||
3654 | { | ||
3655 | lowest_active_reg = NO_LOWEST_ACTIVE_REG; | ||
3656 | highest_active_reg = NO_HIGHEST_ACTIVE_REG; | ||
3657 | } | ||
3658 | else | ||
3659 | { /* We must scan for the new highest active register, since | ||
3660 | it isn't necessarily one less than now: consider | ||
3661 | (a(b)c(d(e)f)g). When group 3 ends, after the f), the | ||
3662 | new highest active register is 1. */ | ||
3663 | unsigned char r = *p - 1; | ||
3664 | while (r > 0 && !IS_ACTIVE (reg_info[r])) | ||
3665 | r--; | ||
3666 | |||
3667 | /* If we end up at register zero, that means that we saved | ||
3668 | the registers as the result of an `on_failure_jump', not | ||
3669 | a `start_memory', and we jumped to past the innermost | ||
3670 | `stop_memory'. For example, in ((.)*) we save | ||
3671 | registers 1 and 2 as a result of the *, but when we pop | ||
3672 | back to the second ), we are at the stop_memory 1. | ||
3673 | Thus, nothing is active. */ | ||
3674 | if (r == 0) | ||
3675 | { | ||
3676 | lowest_active_reg = NO_LOWEST_ACTIVE_REG; | ||
3677 | highest_active_reg = NO_HIGHEST_ACTIVE_REG; | ||
3678 | } | ||
3679 | else | ||
3680 | highest_active_reg = r; | ||
3681 | } | ||
3682 | |||
3683 | /* If just failed to match something this time around with a | ||
3684 | group that's operated on by a repetition operator, try to | ||
3685 | force exit from the ``loop'', and restore the register | ||
3686 | information for this group that we had before trying this | ||
3687 | last match. */ | ||
3688 | if ((!MATCHED_SOMETHING (reg_info[*p]) | ||
3689 | || (re_opcode_t) p[-3] == start_memory) | ||
3690 | && (p + 2) < pend) | ||
3691 | { | ||
3692 | boolean is_a_jump_n = false; | ||
3693 | |||
3694 | p1 = p + 2; | ||
3695 | mcnt = 0; | ||
3696 | switch ((re_opcode_t) *p1++) | ||
3697 | { | ||
3698 | case jump_n: | ||
3699 | is_a_jump_n = true; | ||
3700 | case pop_failure_jump: | ||
3701 | case maybe_pop_jump: | ||
3702 | case jump: | ||
3703 | case dummy_failure_jump: | ||
3704 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
3705 | if (is_a_jump_n) | ||
3706 | p1 += 2; | ||
3707 | break; | ||
3708 | |||
3709 | default: | ||
3710 | /* do nothing */ ; | ||
3711 | } | ||
3712 | p1 += mcnt; | ||
3713 | |||
3714 | /* If the next operation is a jump backwards in the pattern | ||
3715 | to an on_failure_jump right before the start_memory | ||
3716 | corresponding to this stop_memory, exit from the loop | ||
3717 | by forcing a failure after pushing on the stack the | ||
3718 | on_failure_jump's jump in the pattern, and d. */ | ||
3719 | if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump | ||
3720 | && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) | ||
3721 | { | ||
3722 | /* If this group ever matched anything, then restore | ||
3723 | what its registers were before trying this last | ||
3724 | failed match, e.g., with `(a*)*b' against `ab' for | ||
3725 | regstart[1], and, e.g., with `((a*)*(b*)*)*' | ||
3726 | against `aba' for regend[3]. | ||
3727 | |||
3728 | Also restore the registers for inner groups for, | ||
3729 | e.g., `((a*)(b*))*' against `aba' (register 3 would | ||
3730 | otherwise get trashed). */ | ||
3731 | |||
3732 | if (EVER_MATCHED_SOMETHING (reg_info[*p])) | ||
3733 | { | ||
3734 | unsigned r; | ||
3735 | |||
3736 | EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; | ||
3737 | |||
3738 | /* Restore this and inner groups' (if any) registers. */ | ||
3739 | for (r = *p; r < *p + *(p + 1); r++) | ||
3740 | { | ||
3741 | regstart[r] = old_regstart[r]; | ||
3742 | |||
3743 | /* xx why this test? */ | ||
3744 | if ((int) old_regend[r] >= (int) regstart[r]) | ||
3745 | regend[r] = old_regend[r]; | ||
3746 | } | ||
3747 | } | ||
3748 | p1++; | ||
3749 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
3750 | PUSH_FAILURE_POINT (p1 + mcnt, d, -2); | ||
3751 | |||
3752 | goto fail; | ||
3753 | } | ||
3754 | } | ||
3755 | |||
3756 | /* Move past the register number and the inner group count. */ | ||
3757 | p += 2; | ||
3758 | break; | ||
3759 | |||
3760 | |||
3761 | /* \<digit> has been turned into a `duplicate' command which is | ||
3762 | followed by the numeric value of <digit> as the register number. */ | ||
3763 | case duplicate: | ||
3764 | { | ||
3765 | register const char *d2, *dend2; | ||
3766 | int regno = *p++; /* Get which register to match against. */ | ||
3767 | DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); | ||
3768 | |||
3769 | /* Can't back reference a group which we've never matched. */ | ||
3770 | if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) | ||
3771 | goto fail; | ||
3772 | |||
3773 | /* Where in input to try to start matching. */ | ||
3774 | d2 = regstart[regno]; | ||
3775 | |||
3776 | /* Where to stop matching; if both the place to start and | ||
3777 | the place to stop matching are in the same string, then | ||
3778 | set to the place to stop, otherwise, for now have to use | ||
3779 | the end of the first string. */ | ||
3780 | |||
3781 | dend2 = ((FIRST_STRING_P (regstart[regno]) | ||
3782 | == FIRST_STRING_P (regend[regno])) | ||
3783 | ? regend[regno] : end_match_1); | ||
3784 | for (;;) | ||
3785 | { | ||
3786 | /* If necessary, advance to next segment in register | ||
3787 | contents. */ | ||
3788 | while (d2 == dend2) | ||
3789 | { | ||
3790 | if (dend2 == end_match_2) break; | ||
3791 | if (dend2 == regend[regno]) break; | ||
3792 | |||
3793 | /* End of string1 => advance to string2. */ | ||
3794 | d2 = string2; | ||
3795 | dend2 = regend[regno]; | ||
3796 | } | ||
3797 | /* At end of register contents => success */ | ||
3798 | if (d2 == dend2) break; | ||
3799 | |||
3800 | /* If necessary, advance to next segment in data. */ | ||
3801 | PREFETCH (); | ||
3802 | |||
3803 | /* How many characters left in this segment to match. */ | ||
3804 | mcnt = dend - d; | ||
3805 | |||
3806 | /* Want how many consecutive characters we can match in | ||
3807 | one shot, so, if necessary, adjust the count. */ | ||
3808 | if (mcnt > dend2 - d2) | ||
3809 | mcnt = dend2 - d2; | ||
3810 | |||
3811 | /* Compare that many; failure if mismatch, else move | ||
3812 | past them. */ | ||
3813 | if (translate | ||
3814 | ? bcmp_translate (d, d2, mcnt, translate) | ||
3815 | : bcmp (d, d2, mcnt)) | ||
3816 | goto fail; | ||
3817 | d += mcnt, d2 += mcnt; | ||
3818 | } | ||
3819 | } | ||
3820 | break; | ||
3821 | |||
3822 | |||
3823 | /* begline matches the empty string at the beginning of the string | ||
3824 | (unless `not_bol' is set in `bufp'), and, if | ||
3825 | `newline_anchor' is set, after newlines. */ | ||
3826 | case begline: | ||
3827 | DEBUG_PRINT1 ("EXECUTING begline.\n"); | ||
3828 | |||
3829 | if (AT_STRINGS_BEG (d)) | ||
3830 | { | ||
3831 | if (!bufp->not_bol) break; | ||
3832 | } | ||
3833 | else if (d[-1] == '\n' && bufp->newline_anchor) | ||
3834 | { | ||
3835 | break; | ||
3836 | } | ||
3837 | /* In all other cases, we fail. */ | ||
3838 | goto fail; | ||
3839 | |||
3840 | |||
3841 | /* endline is the dual of begline. */ | ||
3842 | case endline: | ||
3843 | DEBUG_PRINT1 ("EXECUTING endline.\n"); | ||
3844 | |||
3845 | if (AT_STRINGS_END (d)) | ||
3846 | { | ||
3847 | if (!bufp->not_eol) break; | ||
3848 | } | ||
3849 | |||
3850 | /* We have to ``prefetch'' the next character. */ | ||
3851 | else if ((d == end1 ? *string2 : *d) == '\n' | ||
3852 | && bufp->newline_anchor) | ||
3853 | { | ||
3854 | break; | ||
3855 | } | ||
3856 | goto fail; | ||
3857 | |||
3858 | |||
3859 | /* Match at the very beginning of the data. */ | ||
3860 | case begbuf: | ||
3861 | DEBUG_PRINT1 ("EXECUTING begbuf.\n"); | ||
3862 | if (AT_STRINGS_BEG (d)) | ||
3863 | break; | ||
3864 | goto fail; | ||
3865 | |||
3866 | |||
3867 | /* Match at the very end of the data. */ | ||
3868 | case endbuf: | ||
3869 | DEBUG_PRINT1 ("EXECUTING endbuf.\n"); | ||
3870 | if (AT_STRINGS_END (d)) | ||
3871 | break; | ||
3872 | goto fail; | ||
3873 | |||
3874 | |||
3875 | /* on_failure_keep_string_jump is used to optimize `.*\n'. It | ||
3876 | pushes NULL as the value for the string on the stack. Then | ||
3877 | `pop_failure_point' will keep the current value for the | ||
3878 | string, instead of restoring it. To see why, consider | ||
3879 | matching `foo\nbar' against `.*\n'. The .* matches the foo; | ||
3880 | then the . fails against the \n. But the next thing we want | ||
3881 | to do is match the \n against the \n; if we restored the | ||
3882 | string value, we would be back at the foo. | ||
3883 | |||
3884 | Because this is used only in specific cases, we don't need to | ||
3885 | check all the things that `on_failure_jump' does, to make | ||
3886 | sure the right things get saved on the stack. Hence we don't | ||
3887 | share its code. The only reason to push anything on the | ||
3888 | stack at all is that otherwise we would have to change | ||
3889 | `anychar's code to do something besides goto fail in this | ||
3890 | case; that seems worse than this. */ | ||
3891 | case on_failure_keep_string_jump: | ||
3892 | DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); | ||
3893 | |||
3894 | EXTRACT_NUMBER_AND_INCR (mcnt, p); | ||
3895 | DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); | ||
3896 | |||
3897 | PUSH_FAILURE_POINT (p + mcnt, NULL, -2); | ||
3898 | break; | ||
3899 | |||
3900 | |||
3901 | /* Uses of on_failure_jump: | ||
3902 | |||
3903 | Each alternative starts with an on_failure_jump that points | ||
3904 | to the beginning of the next alternative. Each alternative | ||
3905 | except the last ends with a jump that in effect jumps past | ||
3906 | the rest of the alternatives. (They really jump to the | ||
3907 | ending jump of the following alternative, because tensioning | ||
3908 | these jumps is a hassle.) | ||
3909 | |||
3910 | Repeats start with an on_failure_jump that points past both | ||
3911 | the repetition text and either the following jump or | ||
3912 | pop_failure_jump back to this on_failure_jump. */ | ||
3913 | case on_failure_jump: | ||
3914 | on_failure: | ||
3915 | DEBUG_PRINT1 ("EXECUTING on_failure_jump"); | ||
3916 | |||
3917 | EXTRACT_NUMBER_AND_INCR (mcnt, p); | ||
3918 | DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); | ||
3919 | |||
3920 | /* If this on_failure_jump comes right before a group (i.e., | ||
3921 | the original * applied to a group), save the information | ||
3922 | for that group and all inner ones, so that if we fail back | ||
3923 | to this point, the group's information will be correct. | ||
3924 | For example, in \(a*\)*\1, we need the preceding group, | ||
3925 | and in \(\(a*\)b*\)\2, we need the inner group. */ | ||
3926 | |||
3927 | /* We can't use `p' to check ahead because we push | ||
3928 | a failure point to `p + mcnt' after we do this. */ | ||
3929 | p1 = p; | ||
3930 | |||
3931 | /* We need to skip no_op's before we look for the | ||
3932 | start_memory in case this on_failure_jump is happening as | ||
3933 | the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 | ||
3934 | against aba. */ | ||
3935 | while (p1 < pend && (re_opcode_t) *p1 == no_op) | ||
3936 | p1++; | ||
3937 | |||
3938 | if (p1 < pend && (re_opcode_t) *p1 == start_memory) | ||
3939 | { | ||
3940 | /* We have a new highest active register now. This will | ||
3941 | get reset at the start_memory we are about to get to, | ||
3942 | but we will have saved all the registers relevant to | ||
3943 | this repetition op, as described above. */ | ||
3944 | highest_active_reg = *(p1 + 1) + *(p1 + 2); | ||
3945 | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) | ||
3946 | lowest_active_reg = *(p1 + 1); | ||
3947 | } | ||
3948 | |||
3949 | DEBUG_PRINT1 (":\n"); | ||
3950 | PUSH_FAILURE_POINT (p + mcnt, d, -2); | ||
3951 | break; | ||
3952 | |||
3953 | |||
3954 | /* A smart repeat ends with `maybe_pop_jump'. | ||
3955 | We change it to either `pop_failure_jump' or `jump'. */ | ||
3956 | case maybe_pop_jump: | ||
3957 | EXTRACT_NUMBER_AND_INCR (mcnt, p); | ||
3958 | DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); | ||
3959 | { | ||
3960 | register unsigned char *p2 = p; | ||
3961 | |||
3962 | /* Compare the beginning of the repeat with what in the | ||
3963 | pattern follows its end. If we can establish that there | ||
3964 | is nothing that they would both match, i.e., that we | ||
3965 | would have to backtrack because of (as in, e.g., `a*a') | ||
3966 | then we can change to pop_failure_jump, because we'll | ||
3967 | never have to backtrack. | ||
3968 | |||
3969 | This is not true in the case of alternatives: in | ||
3970 | `(a|ab)*' we do need to backtrack to the `ab' alternative | ||
3971 | (e.g., if the string was `ab'). But instead of trying to | ||
3972 | detect that here, the alternative has put on a dummy | ||
3973 | failure point which is what we will end up popping. */ | ||
3974 | |||
3975 | /* Skip over open/close-group commands. */ | ||
3976 | while (p2 + 2 < pend | ||
3977 | && ((re_opcode_t) *p2 == stop_memory | ||
3978 | || (re_opcode_t) *p2 == start_memory)) | ||
3979 | p2 += 3; /* Skip over args, too. */ | ||
3980 | |||
3981 | /* If we're at the end of the pattern, we can change. */ | ||
3982 | if (p2 == pend) | ||
3983 | { | ||
3984 | /* Consider what happens when matching ":\(.*\)" | ||
3985 | against ":/". I don't really understand this code | ||
3986 | yet. */ | ||
3987 | p[-3] = (unsigned char) pop_failure_jump; | ||
3988 | DEBUG_PRINT1 | ||
3989 | (" End of pattern: change to `pop_failure_jump'.\n"); | ||
3990 | } | ||
3991 | |||
3992 | else if ((re_opcode_t) *p2 == exactn | ||
3993 | || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) | ||
3994 | { | ||
3995 | register unsigned char c | ||
3996 | = *p2 == (unsigned char) endline ? '\n' : p2[2]; | ||
3997 | p1 = p + mcnt; | ||
3998 | |||
3999 | /* p1[0] ... p1[2] are the `on_failure_jump' corresponding | ||
4000 | to the `maybe_finalize_jump' of this case. Examine what | ||
4001 | follows. */ | ||
4002 | if ((re_opcode_t) p1[3] == exactn && p1[5] != c) | ||
4003 | { | ||
4004 | p[-3] = (unsigned char) pop_failure_jump; | ||
4005 | DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", | ||
4006 | c, p1[5]); | ||
4007 | } | ||
4008 | |||
4009 | else if ((re_opcode_t) p1[3] == charset | ||
4010 | || (re_opcode_t) p1[3] == charset_not) | ||
4011 | { | ||
4012 | int not = (re_opcode_t) p1[3] == charset_not; | ||
4013 | |||
4014 | if (c < (unsigned char) (p1[4] * BYTEWIDTH) | ||
4015 | && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) | ||
4016 | not = !not; | ||
4017 | |||
4018 | /* `not' is equal to 1 if c would match, which means | ||
4019 | that we can't change to pop_failure_jump. */ | ||
4020 | if (!not) | ||
4021 | { | ||
4022 | p[-3] = (unsigned char) pop_failure_jump; | ||
4023 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | ||
4024 | } | ||
4025 | } | ||
4026 | } | ||
4027 | } | ||
4028 | p -= 2; /* Point at relative address again. */ | ||
4029 | if ((re_opcode_t) p[-1] != pop_failure_jump) | ||
4030 | { | ||
4031 | p[-1] = (unsigned char) jump; | ||
4032 | DEBUG_PRINT1 (" Match => jump.\n"); | ||
4033 | goto unconditional_jump; | ||
4034 | } | ||
4035 | /* Note fall through. */ | ||
4036 | |||
4037 | |||
4038 | /* The end of a simple repeat has a pop_failure_jump back to | ||
4039 | its matching on_failure_jump, where the latter will push a | ||
4040 | failure point. The pop_failure_jump takes off failure | ||
4041 | points put on by this pop_failure_jump's matching | ||
4042 | on_failure_jump; we got through the pattern to here from the | ||
4043 | matching on_failure_jump, so didn't fail. */ | ||
4044 | case pop_failure_jump: | ||
4045 | { | ||
4046 | /* We need to pass separate storage for the lowest and | ||
4047 | highest registers, even though we don't care about the | ||
4048 | actual values. Otherwise, we will restore only one | ||
4049 | register from the stack, since lowest will == highest in | ||
4050 | `pop_failure_point'. */ | ||
4051 | unsigned dummy_low_reg, dummy_high_reg; | ||
4052 | unsigned char *pdummy; | ||
4053 | const char *sdummy; | ||
4054 | |||
4055 | DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); | ||
4056 | POP_FAILURE_POINT (sdummy, pdummy, | ||
4057 | dummy_low_reg, dummy_high_reg, | ||
4058 | reg_dummy, reg_dummy, reg_info_dummy); | ||
4059 | } | ||
4060 | /* Note fall through. */ | ||
4061 | |||
4062 | |||
4063 | /* Unconditionally jump (without popping any failure points). */ | ||
4064 | case jump: | ||
4065 | unconditional_jump: | ||
4066 | EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ | ||
4067 | DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); | ||
4068 | p += mcnt; /* Do the jump. */ | ||
4069 | DEBUG_PRINT2 ("(to 0x%x).\n", p); | ||
4070 | break; | ||
4071 | |||
4072 | |||
4073 | /* We need this opcode so we can detect where alternatives end | ||
4074 | in `group_match_null_string_p' et al. */ | ||
4075 | case jump_past_alt: | ||
4076 | DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); | ||
4077 | goto unconditional_jump; | ||
4078 | |||
4079 | |||
4080 | /* Normally, the on_failure_jump pushes a failure point, which | ||
4081 | then gets popped at pop_failure_jump. We will end up at | ||
4082 | pop_failure_jump, also, and with a pattern of, say, `a+', we | ||
4083 | are skipping over the on_failure_jump, so we have to push | ||
4084 | something meaningless for pop_failure_jump to pop. */ | ||
4085 | case dummy_failure_jump: | ||
4086 | DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); | ||
4087 | /* It doesn't matter what we push for the string here. What | ||
4088 | the code at `fail' tests is the value for the pattern. */ | ||
4089 | PUSH_FAILURE_POINT (0, 0, -2); | ||
4090 | goto unconditional_jump; | ||
4091 | |||
4092 | |||
4093 | /* At the end of an alternative, we need to push a dummy failure | ||
4094 | point in case we are followed by a `pop_failure_jump', because | ||
4095 | we don't want the failure point for the alternative to be | ||
4096 | popped. For example, matching `(a|ab)*' against `aab' | ||
4097 | requires that we match the `ab' alternative. */ | ||
4098 | case push_dummy_failure: | ||
4099 | DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); | ||
4100 | /* See comments just above at `dummy_failure_jump' about the | ||
4101 | two zeroes. */ | ||
4102 | PUSH_FAILURE_POINT (0, 0, -2); | ||
4103 | break; | ||
4104 | |||
4105 | /* Have to succeed matching what follows at least n times. | ||
4106 | After that, handle like `on_failure_jump'. */ | ||
4107 | case succeed_n: | ||
4108 | EXTRACT_NUMBER (mcnt, p + 2); | ||
4109 | DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); | ||
4110 | |||
4111 | assert (mcnt >= 0); | ||
4112 | /* Originally, this is how many times we HAVE to succeed. */ | ||
4113 | if (mcnt > 0) | ||
4114 | { | ||
4115 | mcnt--; | ||
4116 | p += 2; | ||
4117 | STORE_NUMBER_AND_INCR (p, mcnt); | ||
4118 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt); | ||
4119 | } | ||
4120 | else if (mcnt == 0) | ||
4121 | { | ||
4122 | DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2); | ||
4123 | p[2] = (unsigned char) no_op; | ||
4124 | p[3] = (unsigned char) no_op; | ||
4125 | goto on_failure; | ||
4126 | } | ||
4127 | break; | ||
4128 | |||
4129 | case jump_n: | ||
4130 | EXTRACT_NUMBER (mcnt, p + 2); | ||
4131 | DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); | ||
4132 | |||
4133 | /* Originally, this is how many times we CAN jump. */ | ||
4134 | if (mcnt) | ||
4135 | { | ||
4136 | mcnt--; | ||
4137 | STORE_NUMBER (p + 2, mcnt); | ||
4138 | goto unconditional_jump; | ||
4139 | } | ||
4140 | /* If don't have to jump any more, skip over the rest of command. */ | ||
4141 | else | ||
4142 | p += 4; | ||
4143 | break; | ||
4144 | |||
4145 | case set_number_at: | ||
4146 | { | ||
4147 | DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); | ||
4148 | |||
4149 | EXTRACT_NUMBER_AND_INCR (mcnt, p); | ||
4150 | p1 = p + mcnt; | ||
4151 | EXTRACT_NUMBER_AND_INCR (mcnt, p); | ||
4152 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); | ||
4153 | STORE_NUMBER (p1, mcnt); | ||
4154 | break; | ||
4155 | } | ||
4156 | |||
4157 | case wordbound: | ||
4158 | DEBUG_PRINT1 ("EXECUTING wordbound.\n"); | ||
4159 | if (AT_WORD_BOUNDARY (d)) | ||
4160 | break; | ||
4161 | goto fail; | ||
4162 | |||
4163 | case notwordbound: | ||
4164 | DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); | ||
4165 | if (AT_WORD_BOUNDARY (d)) | ||
4166 | goto fail; | ||
4167 | break; | ||
4168 | |||
4169 | case wordbeg: | ||
4170 | DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); | ||
4171 | if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) | ||
4172 | break; | ||
4173 | goto fail; | ||
4174 | |||
4175 | case wordend: | ||
4176 | DEBUG_PRINT1 ("EXECUTING wordend.\n"); | ||
4177 | if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) | ||
4178 | && (!WORDCHAR_P (d) || AT_STRINGS_END (d))) | ||
4179 | break; | ||
4180 | goto fail; | ||
4181 | |||
4182 | #ifdef emacs | ||
4183 | #ifdef emacs19 | ||
4184 | case before_dot: | ||
4185 | DEBUG_PRINT1 ("EXECUTING before_dot.\n"); | ||
4186 | if (PTR_CHAR_POS ((unsigned char *) d) >= point) | ||
4187 | goto fail; | ||
4188 | break; | ||
4189 | |||
4190 | case at_dot: | ||
4191 | DEBUG_PRINT1 ("EXECUTING at_dot.\n"); | ||
4192 | if (PTR_CHAR_POS ((unsigned char *) d) != point) | ||
4193 | goto fail; | ||
4194 | break; | ||
4195 | |||
4196 | case after_dot: | ||
4197 | DEBUG_PRINT1 ("EXECUTING after_dot.\n"); | ||
4198 | if (PTR_CHAR_POS ((unsigned char *) d) <= point) | ||
4199 | goto fail; | ||
4200 | break; | ||
4201 | #else /* not emacs19 */ | ||
4202 | case at_dot: | ||
4203 | DEBUG_PRINT1 ("EXECUTING at_dot.\n"); | ||
4204 | if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point) | ||
4205 | goto fail; | ||
4206 | break; | ||
4207 | #endif /* not emacs19 */ | ||
4208 | |||
4209 | case syntaxspec: | ||
4210 | DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); | ||
4211 | mcnt = *p++; | ||
4212 | goto matchsyntax; | ||
4213 | |||
4214 | case wordchar: | ||
4215 | DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); | ||
4216 | mcnt = (int) Sword; | ||
4217 | matchsyntax: | ||
4218 | PREFETCH (); | ||
4219 | if (SYNTAX (*d++) != (enum syntaxcode) mcnt) | ||
4220 | goto fail; | ||
4221 | SET_REGS_MATCHED (); | ||
4222 | break; | ||
4223 | |||
4224 | case notsyntaxspec: | ||
4225 | DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); | ||
4226 | mcnt = *p++; | ||
4227 | goto matchnotsyntax; | ||
4228 | |||
4229 | case notwordchar: | ||
4230 | DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); | ||
4231 | mcnt = (int) Sword; | ||
4232 | matchnotsyntax: | ||
4233 | PREFETCH (); | ||
4234 | if (SYNTAX (*d++) == (enum syntaxcode) mcnt) | ||
4235 | goto fail; | ||
4236 | SET_REGS_MATCHED (); | ||
4237 | break; | ||
4238 | |||
4239 | #else /* not emacs */ | ||
4240 | case wordchar: | ||
4241 | DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); | ||
4242 | PREFETCH (); | ||
4243 | if (!WORDCHAR_P (d)) | ||
4244 | goto fail; | ||
4245 | SET_REGS_MATCHED (); | ||
4246 | d++; | ||
4247 | break; | ||
4248 | |||
4249 | case notwordchar: | ||
4250 | DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); | ||
4251 | PREFETCH (); | ||
4252 | if (WORDCHAR_P (d)) | ||
4253 | goto fail; | ||
4254 | SET_REGS_MATCHED (); | ||
4255 | d++; | ||
4256 | break; | ||
4257 | #endif /* not emacs */ | ||
4258 | |||
4259 | default: | ||
4260 | abort (); | ||
4261 | } | ||
4262 | continue; /* Successfully executed one pattern command; keep going. */ | ||
4263 | |||
4264 | |||
4265 | /* We goto here if a matching operation fails. */ | ||
4266 | fail: | ||
4267 | if (!FAIL_STACK_EMPTY ()) | ||
4268 | { /* A restart point is known. Restore to that state. */ | ||
4269 | DEBUG_PRINT1 ("\nFAIL:\n"); | ||
4270 | POP_FAILURE_POINT (d, p, | ||
4271 | lowest_active_reg, highest_active_reg, | ||
4272 | regstart, regend, reg_info); | ||
4273 | |||
4274 | /* If this failure point is a dummy, try the next one. */ | ||
4275 | if (!p) | ||
4276 | goto fail; | ||
4277 | |||
4278 | /* If we failed to the end of the pattern, don't examine *p. */ | ||
4279 | assert (p <= pend); | ||
4280 | if (p < pend) | ||
4281 | { | ||
4282 | boolean is_a_jump_n = false; | ||
4283 | |||
4284 | /* If failed to a backwards jump that's part of a repetition | ||
4285 | loop, need to pop this failure point and use the next one. */ | ||
4286 | switch ((re_opcode_t) *p) | ||
4287 | { | ||
4288 | case jump_n: | ||
4289 | is_a_jump_n = true; | ||
4290 | case maybe_pop_jump: | ||
4291 | case pop_failure_jump: | ||
4292 | case jump: | ||
4293 | p1 = p + 1; | ||
4294 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
4295 | p1 += mcnt; | ||
4296 | |||
4297 | if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) | ||
4298 | || (!is_a_jump_n | ||
4299 | && (re_opcode_t) *p1 == on_failure_jump)) | ||
4300 | goto fail; | ||
4301 | break; | ||
4302 | default: | ||
4303 | /* do nothing */ ; | ||
4304 | } | ||
4305 | } | ||
4306 | |||
4307 | if (d >= string1 && d <= end1) | ||
4308 | dend = end_match_1; | ||
4309 | } | ||
4310 | else | ||
4311 | break; /* Matching at this starting point really fails. */ | ||
4312 | } /* for (;;) */ | ||
4313 | |||
4314 | if (best_regs_set) | ||
4315 | goto restore_best_regs; | ||
4316 | |||
4317 | FREE_VARIABLES (); | ||
4318 | |||
4319 | return -1; /* Failure to match. */ | ||
4320 | } /* re_match_2 */ | ||
4321 | |||
4322 | /* Subroutine definitions for re_match_2. */ | ||
4323 | |||
4324 | |||
4325 | /* We are passed P pointing to a register number after a start_memory. | ||
4326 | |||
4327 | Return true if the pattern up to the corresponding stop_memory can | ||
4328 | match the empty string, and false otherwise. | ||
4329 | |||
4330 | If we find the matching stop_memory, sets P to point to one past its number. | ||
4331 | Otherwise, sets P to an undefined byte less than or equal to END. | ||
4332 | |||
4333 | We don't handle duplicates properly (yet). */ | ||
4334 | |||
4335 | static boolean | ||
4336 | group_match_null_string_p (p, end, reg_info) | ||
4337 | unsigned char **p, *end; | ||
4338 | register_info_type *reg_info; | ||
4339 | { | ||
4340 | int mcnt; | ||
4341 | /* Point to after the args to the start_memory. */ | ||
4342 | unsigned char *p1 = *p + 2; | ||
4343 | |||
4344 | while (p1 < end) | ||
4345 | { | ||
4346 | /* Skip over opcodes that can match nothing, and return true or | ||
4347 | false, as appropriate, when we get to one that can't, or to the | ||
4348 | matching stop_memory. */ | ||
4349 | |||
4350 | switch ((re_opcode_t) *p1) | ||
4351 | { | ||
4352 | /* Could be either a loop or a series of alternatives. */ | ||
4353 | case on_failure_jump: | ||
4354 | p1++; | ||
4355 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
4356 | |||
4357 | /* If the next operation is not a jump backwards in the | ||
4358 | pattern. */ | ||
4359 | |||
4360 | if (mcnt >= 0) | ||
4361 | { | ||
4362 | /* Go through the on_failure_jumps of the alternatives, | ||
4363 | seeing if any of the alternatives cannot match nothing. | ||
4364 | The last alternative starts with only a jump, | ||
4365 | whereas the rest start with on_failure_jump and end | ||
4366 | with a jump, e.g., here is the pattern for `a|b|c': | ||
4367 | |||
4368 | /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 | ||
4369 | /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 | ||
4370 | /exactn/1/c | ||
4371 | |||
4372 | So, we have to first go through the first (n-1) | ||
4373 | alternatives and then deal with the last one separately. */ | ||
4374 | |||
4375 | |||
4376 | /* Deal with the first (n-1) alternatives, which start | ||
4377 | with an on_failure_jump (see above) that jumps to right | ||
4378 | past a jump_past_alt. */ | ||
4379 | |||
4380 | while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) | ||
4381 | { | ||
4382 | /* `mcnt' holds how many bytes long the alternative | ||
4383 | is, including the ending `jump_past_alt' and | ||
4384 | its number. */ | ||
4385 | |||
4386 | if (!alt_match_null_string_p (p1, p1 + mcnt - 3, | ||
4387 | reg_info)) | ||
4388 | return false; | ||
4389 | |||
4390 | /* Move to right after this alternative, including the | ||
4391 | jump_past_alt. */ | ||
4392 | p1 += mcnt; | ||
4393 | |||
4394 | /* Break if it's the beginning of an n-th alternative | ||
4395 | that doesn't begin with an on_failure_jump. */ | ||
4396 | if ((re_opcode_t) *p1 != on_failure_jump) | ||
4397 | break; | ||
4398 | |||
4399 | /* Still have to check that it's not an n-th | ||
4400 | alternative that starts with an on_failure_jump. */ | ||
4401 | p1++; | ||
4402 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
4403 | if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) | ||
4404 | { | ||
4405 | /* Get to the beginning of the n-th alternative. */ | ||
4406 | p1 -= 3; | ||
4407 | break; | ||
4408 | } | ||
4409 | } | ||
4410 | |||
4411 | /* Deal with the last alternative: go back and get number | ||
4412 | of the `jump_past_alt' just before it. `mcnt' contains | ||
4413 | the length of the alternative. */ | ||
4414 | EXTRACT_NUMBER (mcnt, p1 - 2); | ||
4415 | |||
4416 | if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) | ||
4417 | return false; | ||
4418 | |||
4419 | p1 += mcnt; /* Get past the n-th alternative. */ | ||
4420 | } /* if mcnt > 0 */ | ||
4421 | break; | ||
4422 | |||
4423 | |||
4424 | case stop_memory: | ||
4425 | assert (p1[1] == **p); | ||
4426 | *p = p1 + 2; | ||
4427 | return true; | ||
4428 | |||
4429 | |||
4430 | default: | ||
4431 | if (!common_op_match_null_string_p (&p1, end, reg_info)) | ||
4432 | return false; | ||
4433 | } | ||
4434 | } /* while p1 < end */ | ||
4435 | |||
4436 | return false; | ||
4437 | } /* group_match_null_string_p */ | ||
4438 | |||
4439 | |||
4440 | /* Similar to group_match_null_string_p, but doesn't deal with alternatives: | ||
4441 | It expects P to be the first byte of a single alternative and END one | ||
4442 | byte past the last. The alternative can contain groups. */ | ||
4443 | |||
4444 | static boolean | ||
4445 | alt_match_null_string_p (p, end, reg_info) | ||
4446 | unsigned char *p, *end; | ||
4447 | register_info_type *reg_info; | ||
4448 | { | ||
4449 | int mcnt; | ||
4450 | unsigned char *p1 = p; | ||
4451 | |||
4452 | while (p1 < end) | ||
4453 | { | ||
4454 | /* Skip over opcodes that can match nothing, and break when we get | ||
4455 | to one that can't. */ | ||
4456 | |||
4457 | switch ((re_opcode_t) *p1) | ||
4458 | { | ||
4459 | /* It's a loop. */ | ||
4460 | case on_failure_jump: | ||
4461 | p1++; | ||
4462 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
4463 | p1 += mcnt; | ||
4464 | break; | ||
4465 | |||
4466 | default: | ||
4467 | if (!common_op_match_null_string_p (&p1, end, reg_info)) | ||
4468 | return false; | ||
4469 | } | ||
4470 | } /* while p1 < end */ | ||
4471 | |||
4472 | return true; | ||
4473 | } /* alt_match_null_string_p */ | ||
4474 | |||
4475 | |||
4476 | /* Deals with the ops common to group_match_null_string_p and | ||
4477 | alt_match_null_string_p. | ||
4478 | |||
4479 | Sets P to one after the op and its arguments, if any. */ | ||
4480 | |||
4481 | static boolean | ||
4482 | common_op_match_null_string_p (p, end, reg_info) | ||
4483 | unsigned char **p, *end; | ||
4484 | register_info_type *reg_info; | ||
4485 | { | ||
4486 | int mcnt; | ||
4487 | boolean ret; | ||
4488 | int reg_no; | ||
4489 | unsigned char *p1 = *p; | ||
4490 | |||
4491 | switch ((re_opcode_t) *p1++) | ||
4492 | { | ||
4493 | case no_op: | ||
4494 | case begline: | ||
4495 | case endline: | ||
4496 | case begbuf: | ||
4497 | case endbuf: | ||
4498 | case wordbeg: | ||
4499 | case wordend: | ||
4500 | case wordbound: | ||
4501 | case notwordbound: | ||
4502 | #ifdef emacs | ||
4503 | case before_dot: | ||
4504 | case at_dot: | ||
4505 | case after_dot: | ||
4506 | #endif | ||
4507 | break; | ||
4508 | |||
4509 | case start_memory: | ||
4510 | reg_no = *p1; | ||
4511 | assert (reg_no > 0 && reg_no <= MAX_REGNUM); | ||
4512 | ret = group_match_null_string_p (&p1, end, reg_info); | ||
4513 | |||
4514 | /* Have to set this here in case we're checking a group which | ||
4515 | contains a group and a back reference to it. */ | ||
4516 | |||
4517 | if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) | ||
4518 | REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; | ||
4519 | |||
4520 | if (!ret) | ||
4521 | return false; | ||
4522 | break; | ||
4523 | |||
4524 | /* If this is an optimized succeed_n for zero times, make the jump. */ | ||
4525 | case jump: | ||
4526 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
4527 | if (mcnt >= 0) | ||
4528 | p1 += mcnt; | ||
4529 | else | ||
4530 | return false; | ||
4531 | break; | ||
4532 | |||
4533 | case succeed_n: | ||
4534 | /* Get to the number of times to succeed. */ | ||
4535 | p1 += 2; | ||
4536 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
4537 | |||
4538 | if (mcnt == 0) | ||
4539 | { | ||
4540 | p1 -= 4; | ||
4541 | EXTRACT_NUMBER_AND_INCR (mcnt, p1); | ||
4542 | p1 += mcnt; | ||
4543 | } | ||
4544 | else | ||
4545 | return false; | ||
4546 | break; | ||
4547 | |||
4548 | case duplicate: | ||
4549 | if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) | ||
4550 | return false; | ||
4551 | break; | ||
4552 | |||
4553 | case set_number_at: | ||
4554 | p1 += 4; | ||
4555 | |||
4556 | default: | ||
4557 | /* All other opcodes mean we cannot match the empty string. */ | ||
4558 | return false; | ||
4559 | } | ||
4560 | |||
4561 | *p = p1; | ||
4562 | return true; | ||
4563 | } /* common_op_match_null_string_p */ | ||
4564 | |||
4565 | |||
4566 | /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN | ||
4567 | bytes; nonzero otherwise. */ | ||
4568 | |||
4569 | static int | ||
4570 | bcmp_translate( | ||
4571 | unsigned char *s1, | ||
4572 | unsigned char *s2, | ||
4573 | int len, | ||
4574 | char *translate | ||
4575 | ) | ||
4576 | { | ||
4577 | register unsigned char *p1 = s1, *p2 = s2; | ||
4578 | while (len) | ||
4579 | { | ||
4580 | if (translate[*p1++] != translate[*p2++]) return 1; | ||
4581 | len--; | ||
4582 | } | ||
4583 | return 0; | ||
4584 | } | ||
4585 | |||
4586 | /* Entry points for GNU code. */ | ||
4587 | |||
4588 | /* re_compile_pattern is the GNU regular expression compiler: it | ||
4589 | compiles PATTERN (of length SIZE) and puts the result in BUFP. | ||
4590 | Returns 0 if the pattern was valid, otherwise an error string. | ||
4591 | |||
4592 | Assumes the `allocated' (and perhaps `buffer') and `translate' fields | ||
4593 | are set in BUFP on entry. | ||
4594 | |||
4595 | We call regex_compile to do the actual compilation. */ | ||
4596 | |||
4597 | const char * | ||
4598 | re_compile_pattern (pattern, length, bufp) | ||
4599 | const char *pattern; | ||
4600 | int length; | ||
4601 | struct re_pattern_buffer *bufp; | ||
4602 | { | ||
4603 | reg_errcode_t ret; | ||
4604 | |||
4605 | /* GNU code is written to assume at least RE_NREGS registers will be set | ||
4606 | (and at least one extra will be -1). */ | ||
4607 | bufp->regs_allocated = REGS_UNALLOCATED; | ||
4608 | |||
4609 | /* And GNU code determines whether or not to get register information | ||
4610 | by passing null for the REGS argument to re_match, etc., not by | ||
4611 | setting no_sub. */ | ||
4612 | bufp->no_sub = 0; | ||
4613 | |||
4614 | /* Match anchors at newline. */ | ||
4615 | bufp->newline_anchor = 1; | ||
4616 | |||
4617 | ret = regex_compile (pattern, length, re_syntax_options, bufp); | ||
4618 | |||
4619 | return re_error_msg[(int) ret]; | ||
4620 | } | ||
4621 | |||
4622 | /* Entry points compatible with 4.2 BSD regex library. We don't define | ||
4623 | them if this is an Emacs or POSIX compilation. */ | ||
4624 | |||
4625 | #if !defined (emacs) && !defined (_POSIX_SOURCE) | ||
4626 | |||
4627 | /* BSD has one and only one pattern buffer. */ | ||
4628 | static struct re_pattern_buffer re_comp_buf; | ||
4629 | |||
4630 | char * | ||
4631 | re_comp (s) | ||
4632 | const char *s; | ||
4633 | { | ||
4634 | reg_errcode_t ret; | ||
4635 | |||
4636 | if (!s) | ||
4637 | { | ||
4638 | if (!re_comp_buf.buffer) | ||
4639 | return "No previous regular expression"; | ||
4640 | return 0; | ||
4641 | } | ||
4642 | |||
4643 | if (!re_comp_buf.buffer) | ||
4644 | { | ||
4645 | re_comp_buf.buffer = (unsigned char *) malloc (200); | ||
4646 | if (re_comp_buf.buffer == NULL) | ||
4647 | return "Memory exhausted"; | ||
4648 | re_comp_buf.allocated = 200; | ||
4649 | |||
4650 | re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); | ||
4651 | if (re_comp_buf.fastmap == NULL) | ||
4652 | return "Memory exhausted"; | ||
4653 | } | ||
4654 | |||
4655 | /* Since `re_exec' always passes NULL for the `regs' argument, we | ||
4656 | don't need to initialize the pattern buffer fields which affect it. */ | ||
4657 | |||
4658 | /* Match anchors at newlines. */ | ||
4659 | re_comp_buf.newline_anchor = 1; | ||
4660 | |||
4661 | ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); | ||
4662 | |||
4663 | /* Yes, we're discarding `const' here. */ | ||
4664 | return (char *) re_error_msg[(int) ret]; | ||
4665 | } | ||
4666 | |||
4667 | |||
4668 | int | ||
4669 | re_exec (s) | ||
4670 | const char *s; | ||
4671 | { | ||
4672 | const int len = strlen (s); | ||
4673 | return | ||
4674 | 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); | ||
4675 | } | ||
4676 | #endif /* not emacs and not _POSIX_SOURCE */ | ||
4677 | |||
4678 | /* POSIX.2 functions. Don't define these for Emacs. */ | ||
4679 | |||
4680 | #ifndef emacs | ||
4681 | |||
4682 | /* regcomp takes a regular expression as a string and compiles it. | ||
4683 | |||
4684 | PREG is a regex_t *. We do not expect any fields to be initialized, | ||
4685 | since POSIX says we shouldn't. Thus, we set | ||
4686 | |||
4687 | `buffer' to the compiled pattern; | ||
4688 | `used' to the length of the compiled pattern; | ||
4689 | `syntax' to RE_SYNTAX_POSIX_EXTENDED if the | ||
4690 | REG_EXTENDED bit in CFLAGS is set; otherwise, to | ||
4691 | RE_SYNTAX_POSIX_BASIC; | ||
4692 | `newline_anchor' to REG_NEWLINE being set in CFLAGS; | ||
4693 | `fastmap' and `fastmap_accurate' to zero; | ||
4694 | `re_nsub' to the number of subexpressions in PATTERN. | ||
4695 | |||
4696 | PATTERN is the address of the pattern string. | ||
4697 | |||
4698 | CFLAGS is a series of bits which affect compilation. | ||
4699 | |||
4700 | If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we | ||
4701 | use POSIX basic syntax. | ||
4702 | |||
4703 | If REG_NEWLINE is set, then . and [^...] don't match newline. | ||
4704 | Also, regexec will try a match beginning after every newline. | ||
4705 | |||
4706 | If REG_ICASE is set, then we considers upper- and lowercase | ||
4707 | versions of letters to be equivalent when matching. | ||
4708 | |||
4709 | If REG_NOSUB is set, then when PREG is passed to regexec, that | ||
4710 | routine will report only success or failure, and nothing about the | ||
4711 | registers. | ||
4712 | |||
4713 | It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for | ||
4714 | the return codes and their meanings.) */ | ||
4715 | |||
4716 | int | ||
4717 | regcomp (preg, pattern, cflags) | ||
4718 | regex_t *preg; | ||
4719 | const char *pattern; | ||
4720 | int cflags; | ||
4721 | { | ||
4722 | reg_errcode_t ret; | ||
4723 | unsigned syntax | ||
4724 | = (cflags & REG_EXTENDED) ? | ||
4725 | RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; | ||
4726 | |||
4727 | /* regex_compile will allocate the space for the compiled pattern. */ | ||
4728 | preg->buffer = 0; | ||
4729 | preg->allocated = 0; | ||
4730 | |||
4731 | /* Don't bother to use a fastmap when searching. This simplifies the | ||
4732 | REG_NEWLINE case: if we used a fastmap, we'd have to put all the | ||
4733 | characters after newlines into the fastmap. This way, we just try | ||
4734 | every character. */ | ||
4735 | preg->fastmap = 0; | ||
4736 | |||
4737 | if (cflags & REG_ICASE) | ||
4738 | { | ||
4739 | unsigned i; | ||
4740 | |||
4741 | preg->translate = (char *) malloc (CHAR_SET_SIZE); | ||
4742 | if (preg->translate == NULL) | ||
4743 | return (int) REG_ESPACE; | ||
4744 | |||
4745 | /* Map uppercase characters to corresponding lowercase ones. */ | ||
4746 | for (i = 0; i < CHAR_SET_SIZE; i++) | ||
4747 | preg->translate[i] = ISUPPER (i) ? tolower (i) : i; | ||
4748 | } | ||
4749 | else | ||
4750 | preg->translate = NULL; | ||
4751 | |||
4752 | /* If REG_NEWLINE is set, newlines are treated differently. */ | ||
4753 | if (cflags & REG_NEWLINE) | ||
4754 | { /* REG_NEWLINE implies neither . nor [^...] match newline. */ | ||
4755 | syntax &= ~RE_DOT_NEWLINE; | ||
4756 | syntax |= RE_HAT_LISTS_NOT_NEWLINE; | ||
4757 | /* It also changes the matching behavior. */ | ||
4758 | preg->newline_anchor = 1; | ||
4759 | } | ||
4760 | else | ||
4761 | preg->newline_anchor = 0; | ||
4762 | |||
4763 | preg->no_sub = !!(cflags & REG_NOSUB); | ||
4764 | |||
4765 | /* POSIX says a null character in the pattern terminates it, so we | ||
4766 | can use strlen here in compiling the pattern. */ | ||
4767 | ret = regex_compile (pattern, strlen (pattern), syntax, preg); | ||
4768 | |||
4769 | /* POSIX doesn't distinguish between an unmatched open-group and an | ||
4770 | unmatched close-group: both are REG_EPAREN. */ | ||
4771 | if (ret == REG_ERPAREN) ret = REG_EPAREN; | ||
4772 | |||
4773 | return (int) ret; | ||
4774 | } | ||
4775 | |||
4776 | |||
4777 | /* regexec searches for a given pattern, specified by PREG, in the | ||
4778 | string STRING. | ||
4779 | |||
4780 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to | ||
4781 | `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at | ||
4782 | least NMATCH elements, and we set them to the offsets of the | ||
4783 | corresponding matched substrings. | ||
4784 | |||
4785 | EFLAGS specifies `execution flags' which affect matching: if | ||
4786 | REG_NOTBOL is set, then ^ does not match at the beginning of the | ||
4787 | string; if REG_NOTEOL is set, then $ does not match at the end. | ||
4788 | |||
4789 | We return 0 if we find a match and REG_NOMATCH if not. */ | ||
4790 | |||
4791 | int | ||
4792 | regexec (preg, string, nmatch, pmatch, eflags) | ||
4793 | const regex_t *preg; | ||
4794 | const char *string; | ||
4795 | size_t nmatch; | ||
4796 | regmatch_t pmatch[]; | ||
4797 | int eflags; | ||
4798 | { | ||
4799 | int ret; | ||
4800 | struct re_registers regs; | ||
4801 | regex_t private_preg; | ||
4802 | int len = strlen (string); | ||
4803 | boolean want_reg_info = !preg->no_sub && nmatch > 0; | ||
4804 | |||
4805 | private_preg = *preg; | ||
4806 | |||
4807 | private_preg.not_bol = !!(eflags & REG_NOTBOL); | ||
4808 | private_preg.not_eol = !!(eflags & REG_NOTEOL); | ||
4809 | |||
4810 | /* The user has told us exactly how many registers to return | ||
4811 | information about, via `nmatch'. We have to pass that on to the | ||
4812 | matching routines. */ | ||
4813 | private_preg.regs_allocated = REGS_FIXED; | ||
4814 | |||
4815 | if (want_reg_info) | ||
4816 | { | ||
4817 | regs.num_regs = nmatch; | ||
4818 | regs.start = TALLOC (nmatch, regoff_t); | ||
4819 | regs.end = TALLOC (nmatch, regoff_t); | ||
4820 | if (regs.start == NULL || regs.end == NULL) | ||
4821 | return (int) REG_NOMATCH; | ||
4822 | } | ||
4823 | |||
4824 | /* Perform the searching operation. */ | ||
4825 | ret = re_search (&private_preg, string, len, | ||
4826 | /* start: */ 0, /* range: */ len, | ||
4827 | want_reg_info ? ®s : (struct re_registers *) 0); | ||
4828 | |||
4829 | /* Copy the register information to the POSIX structure. */ | ||
4830 | if (want_reg_info) | ||
4831 | { | ||
4832 | if (ret >= 0) | ||
4833 | { | ||
4834 | unsigned r; | ||
4835 | |||
4836 | for (r = 0; r < nmatch; r++) | ||
4837 | { | ||
4838 | pmatch[r].rm_so = regs.start[r]; | ||
4839 | pmatch[r].rm_eo = regs.end[r]; | ||
4840 | } | ||
4841 | } | ||
4842 | |||
4843 | /* If we needed the temporary register info, free the space now. */ | ||
4844 | free (regs.start); | ||
4845 | free (regs.end); | ||
4846 | } | ||
4847 | |||
4848 | /* We want zero return to mean success, unlike `re_search'. */ | ||
4849 | return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; | ||
4850 | } | ||
4851 | |||
4852 | |||
4853 | /* Returns a message corresponding to an error code, ERRCODE, returned | ||
4854 | from either regcomp or regexec. We don't use PREG here. */ | ||
4855 | |||
4856 | size_t | ||
4857 | regerror (errcode, preg, errbuf, errbuf_size) | ||
4858 | int errcode; | ||
4859 | const regex_t *preg; | ||
4860 | char *errbuf; | ||
4861 | size_t errbuf_size; | ||
4862 | { | ||
4863 | const char *msg; | ||
4864 | size_t msg_size; | ||
4865 | |||
4866 | if (errcode < 0 | ||
4867 | || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0]))) | ||
4868 | /* Only error codes returned by the rest of the code should be passed | ||
4869 | to this routine. If we are given anything else, or if other regex | ||
4870 | code generates an invalid error code, then the program has a bug. | ||
4871 | Dump core so we can fix it. */ | ||
4872 | abort (); | ||
4873 | |||
4874 | msg = re_error_msg[errcode]; | ||
4875 | |||
4876 | /* POSIX doesn't require that we do anything in this case, but why | ||
4877 | not be nice. */ | ||
4878 | if (! msg) | ||
4879 | msg = "Success"; | ||
4880 | |||
4881 | msg_size = strlen (msg) + 1; /* Includes the null. */ | ||
4882 | |||
4883 | if (errbuf_size != 0) | ||
4884 | { | ||
4885 | if (msg_size > errbuf_size) | ||
4886 | { | ||
4887 | strncpy (errbuf, msg, errbuf_size - 1); | ||
4888 | errbuf[errbuf_size - 1] = 0; | ||
4889 | } | ||
4890 | else | ||
4891 | strcpy (errbuf, msg); | ||
4892 | } | ||
4893 | |||
4894 | return msg_size; | ||
4895 | } | ||
4896 | |||
4897 | |||
4898 | /* Free dynamically allocated space used by PREG. */ | ||
4899 | |||
4900 | void | ||
4901 | regfree (preg) | ||
4902 | regex_t *preg; | ||
4903 | { | ||
4904 | if (preg->buffer != NULL) | ||
4905 | free (preg->buffer); | ||
4906 | preg->buffer = NULL; | ||
4907 | |||
4908 | preg->allocated = 0; | ||
4909 | preg->used = 0; | ||
4910 | |||
4911 | if (preg->fastmap != NULL) | ||
4912 | free (preg->fastmap); | ||
4913 | preg->fastmap = NULL; | ||
4914 | preg->fastmap_accurate = 0; | ||
4915 | |||
4916 | if (preg->translate != NULL) | ||
4917 | free (preg->translate); | ||
4918 | preg->translate = NULL; | ||
4919 | } | ||
4920 | |||
4921 | #endif /* not emacs */ | ||
4922 | |||
4923 | /* | ||
4924 | Local variables: | ||
4925 | make-backup-files: t | ||
4926 | version-control: t | ||
4927 | trim-versions-without-asking: nil | ||
4928 | End: | ||
4929 | */ | ||
diff --git a/win32/regex.h b/win32/regex.h index 6eb64f140..61c968387 100644 --- a/win32/regex.h +++ b/win32/regex.h | |||
@@ -1,70 +1,90 @@ | |||
1 | /* Definitions for data structures and routines for the regular | 1 | #include <stdio.h> |
2 | expression library, version 0.12. | 2 | #include <stddef.h> |
3 | 3 | ||
4 | Copyright (C) 1985, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc. | 4 | /* Definitions for data structures and routines for the regular |
5 | expression library. | ||
6 | Copyright (C) 1985,1989-93,1995-98,2000,2001,2002,2003,2005,2006,2008 | ||
7 | Free Software Foundation, Inc. | ||
8 | This file is part of the GNU C Library. | ||
5 | 9 | ||
6 | This program is free software; you can redistribute it and/or modify | 10 | The GNU C Library is free software; you can redistribute it and/or |
7 | it under the terms of the GNU General Public License as published by | 11 | modify it under the terms of the GNU Lesser General Public |
8 | the Free Software Foundation; either version 2, or (at your option) | 12 | License as published by the Free Software Foundation; either |
9 | any later version. | 13 | version 2.1 of the License, or (at your option) any later version. |
10 | 14 | ||
11 | This program is distributed in the hope that it will be useful, | 15 | The GNU C Library is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 16 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 | GNU General Public License for more details. | 18 | Lesser General Public License for more details. |
15 | |||
16 | You should have received a copy of the GNU General Public License | ||
17 | along with this program; if not, write to the Free Software | ||
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | ||
19 | 19 | ||
20 | #ifndef __REGEXP_LIBRARY_H__ | 20 | You should have received a copy of the GNU Lesser General Public |
21 | #define __REGEXP_LIBRARY_H__ | 21 | License along with the GNU C Library; if not, write to the Free |
22 | Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | ||
23 | 02110-1301 USA. */ | ||
22 | 24 | ||
23 | /* POSIX says that <sys/types.h> must be included (by the caller) before | 25 | #ifndef _REGEX_H |
24 | <regex.h>. */ | 26 | #define _REGEX_H 1 |
25 | 27 | ||
26 | #ifdef VMS | 28 | #ifdef HAVE_STDDEF_H |
27 | /* VMS doesn't have `size_t' in <sys/types.h>, even though POSIX says it | ||
28 | should be there. */ | ||
29 | #include <stddef.h> | 29 | #include <stddef.h> |
30 | #endif | 30 | #endif |
31 | 31 | ||
32 | #ifdef HAVE_SYS_TYPES_H | ||
33 | #include <sys/types.h> | ||
34 | #endif | ||
35 | |||
36 | #ifndef _LIBC | ||
37 | #define __USE_GNU 1 | ||
38 | #endif | ||
39 | |||
40 | /* Allow the use in C++ code. */ | ||
41 | #ifdef __cplusplus | ||
42 | extern "C" { | ||
43 | #endif | ||
44 | |||
45 | /* The following two types have to be signed and unsigned integer type | ||
46 | wide enough to hold a value of a pointer. For most ANSI compilers | ||
47 | ptrdiff_t and size_t should be likely OK. Still size of these two | ||
48 | types is 2 for Microsoft C. Ugh... */ | ||
49 | typedef long int s_reg_t; | ||
50 | typedef unsigned long int active_reg_t; | ||
32 | 51 | ||
33 | /* The following bits are used to determine the regexp syntax we | 52 | /* The following bits are used to determine the regexp syntax we |
34 | recognize. The set/not-set meanings are chosen so that Emacs syntax | 53 | recognize. The set/not-set meanings are chosen so that Emacs syntax |
35 | remains the value 0. The bits are given in alphabetical order, and | 54 | remains the value 0. The bits are given in alphabetical order, and |
36 | the definitions shifted by one from the previous bit; thus, when we | 55 | the definitions shifted by one from the previous bit; thus, when we |
37 | add or remove a bit, only one other definition need change. */ | 56 | add or remove a bit, only one other definition need change. */ |
38 | typedef unsigned reg_syntax_t; | 57 | typedef unsigned long int reg_syntax_t; |
39 | 58 | ||
59 | #ifdef __USE_GNU | ||
40 | /* If this bit is not set, then \ inside a bracket expression is literal. | 60 | /* If this bit is not set, then \ inside a bracket expression is literal. |
41 | If set, then such a \ quotes the following character. */ | 61 | If set, then such a \ quotes the following character. */ |
42 | #define RE_BACKSLASH_ESCAPE_IN_LISTS (1) | 62 | # define RE_BACKSLASH_ESCAPE_IN_LISTS ((unsigned long int) 1) |
43 | 63 | ||
44 | /* If this bit is not set, then + and ? are operators, and \+ and \? are | 64 | /* If this bit is not set, then + and ? are operators, and \+ and \? are |
45 | literals. | 65 | literals. |
46 | If set, then \+ and \? are operators and + and ? are literals. */ | 66 | If set, then \+ and \? are operators and + and ? are literals. */ |
47 | #define RE_BK_PLUS_QM (RE_BACKSLASH_ESCAPE_IN_LISTS << 1) | 67 | # define RE_BK_PLUS_QM (RE_BACKSLASH_ESCAPE_IN_LISTS << 1) |
48 | 68 | ||
49 | /* If this bit is set, then character classes are supported. They are: | 69 | /* If this bit is set, then character classes are supported. They are: |
50 | [:alpha:], [:upper:], [:lower:], [:digit:], [:alnum:], [:xdigit:], | 70 | [:alpha:], [:upper:], [:lower:], [:digit:], [:alnum:], [:xdigit:], |
51 | [:space:], [:print:], [:punct:], [:graph:], and [:cntrl:]. | 71 | [:space:], [:print:], [:punct:], [:graph:], and [:cntrl:]. |
52 | If not set, then character classes are not supported. */ | 72 | If not set, then character classes are not supported. */ |
53 | #define RE_CHAR_CLASSES (RE_BK_PLUS_QM << 1) | 73 | # define RE_CHAR_CLASSES (RE_BK_PLUS_QM << 1) |
54 | 74 | ||
55 | /* If this bit is set, then ^ and $ are always anchors (outside bracket | 75 | /* If this bit is set, then ^ and $ are always anchors (outside bracket |
56 | expressions, of course). | 76 | expressions, of course). |
57 | If this bit is not set, then it depends: | 77 | If this bit is not set, then it depends: |
58 | ^ is an anchor if it is at the beginning of a regular | 78 | ^ is an anchor if it is at the beginning of a regular |
59 | expression or after an open-group or an alternation operator; | 79 | expression or after an open-group or an alternation operator; |
60 | $ is an anchor if it is at the end of a regular expression, or | 80 | $ is an anchor if it is at the end of a regular expression, or |
61 | before a close-group or an alternation operator. | 81 | before a close-group or an alternation operator. |
62 | 82 | ||
63 | This bit could be (re)combined with RE_CONTEXT_INDEP_OPS, because | 83 | This bit could be (re)combined with RE_CONTEXT_INDEP_OPS, because |
64 | POSIX draft 11.2 says that * etc. in leading positions is undefined. | 84 | POSIX draft 11.2 says that * etc. in leading positions is undefined. |
65 | We already implemented a previous draft which made those constructs | 85 | We already implemented a previous draft which made those constructs |
66 | invalid, though, so we haven't changed the code back. */ | 86 | invalid, though, so we haven't changed the code back. */ |
67 | #define RE_CONTEXT_INDEP_ANCHORS (RE_CHAR_CLASSES << 1) | 87 | # define RE_CONTEXT_INDEP_ANCHORS (RE_CHAR_CLASSES << 1) |
68 | 88 | ||
69 | /* If this bit is set, then special characters are always special | 89 | /* If this bit is set, then special characters are always special |
70 | regardless of where they are in the pattern. | 90 | regardless of where they are in the pattern. |
@@ -72,63 +92,94 @@ typedef unsigned reg_syntax_t; | |||
72 | some contexts; otherwise they are ordinary. Specifically, | 92 | some contexts; otherwise they are ordinary. Specifically, |
73 | * + ? and intervals are only special when not after the beginning, | 93 | * + ? and intervals are only special when not after the beginning, |
74 | open-group, or alternation operator. */ | 94 | open-group, or alternation operator. */ |
75 | #define RE_CONTEXT_INDEP_OPS (RE_CONTEXT_INDEP_ANCHORS << 1) | 95 | # define RE_CONTEXT_INDEP_OPS (RE_CONTEXT_INDEP_ANCHORS << 1) |
76 | 96 | ||
77 | /* If this bit is set, then *, +, ?, and { cannot be first in an re or | 97 | /* If this bit is set, then *, +, ?, and { cannot be first in an re or |
78 | immediately after an alternation or begin-group operator. */ | 98 | immediately after an alternation or begin-group operator. */ |
79 | #define RE_CONTEXT_INVALID_OPS (RE_CONTEXT_INDEP_OPS << 1) | 99 | # define RE_CONTEXT_INVALID_OPS (RE_CONTEXT_INDEP_OPS << 1) |
80 | 100 | ||
81 | /* If this bit is set, then . matches newline. | 101 | /* If this bit is set, then . matches newline. |
82 | If not set, then it doesn't. */ | 102 | If not set, then it doesn't. */ |
83 | #define RE_DOT_NEWLINE (RE_CONTEXT_INVALID_OPS << 1) | 103 | # define RE_DOT_NEWLINE (RE_CONTEXT_INVALID_OPS << 1) |
84 | 104 | ||
85 | /* If this bit is set, then . doesn't match NUL. | 105 | /* If this bit is set, then . doesn't match NUL. |
86 | If not set, then it does. */ | 106 | If not set, then it does. */ |
87 | #define RE_DOT_NOT_NULL (RE_DOT_NEWLINE << 1) | 107 | # define RE_DOT_NOT_NULL (RE_DOT_NEWLINE << 1) |
88 | 108 | ||
89 | /* If this bit is set, nonmatching lists [^...] do not match newline. | 109 | /* If this bit is set, nonmatching lists [^...] do not match newline. |
90 | If not set, they do. */ | 110 | If not set, they do. */ |
91 | #define RE_HAT_LISTS_NOT_NEWLINE (RE_DOT_NOT_NULL << 1) | 111 | # define RE_HAT_LISTS_NOT_NEWLINE (RE_DOT_NOT_NULL << 1) |
92 | 112 | ||
93 | /* If this bit is set, either \{...\} or {...} defines an | 113 | /* If this bit is set, either \{...\} or {...} defines an |
94 | interval, depending on RE_NO_BK_BRACES. | 114 | interval, depending on RE_NO_BK_BRACES. |
95 | If not set, \{, \}, {, and } are literals. */ | 115 | If not set, \{, \}, {, and } are literals. */ |
96 | #define RE_INTERVALS (RE_HAT_LISTS_NOT_NEWLINE << 1) | 116 | # define RE_INTERVALS (RE_HAT_LISTS_NOT_NEWLINE << 1) |
97 | 117 | ||
98 | /* If this bit is set, +, ? and | aren't recognized as operators. | 118 | /* If this bit is set, +, ? and | aren't recognized as operators. |
99 | If not set, they are. */ | 119 | If not set, they are. */ |
100 | #define RE_LIMITED_OPS (RE_INTERVALS << 1) | 120 | # define RE_LIMITED_OPS (RE_INTERVALS << 1) |
101 | 121 | ||
102 | /* If this bit is set, newline is an alternation operator. | 122 | /* If this bit is set, newline is an alternation operator. |
103 | If not set, newline is literal. */ | 123 | If not set, newline is literal. */ |
104 | #define RE_NEWLINE_ALT (RE_LIMITED_OPS << 1) | 124 | # define RE_NEWLINE_ALT (RE_LIMITED_OPS << 1) |
105 | 125 | ||
106 | /* If this bit is set, then `{...}' defines an interval, and \{ and \} | 126 | /* If this bit is set, then `{...}' defines an interval, and \{ and \} |
107 | are literals. | 127 | are literals. |
108 | If not set, then `\{...\}' defines an interval. */ | 128 | If not set, then `\{...\}' defines an interval. */ |
109 | #define RE_NO_BK_BRACES (RE_NEWLINE_ALT << 1) | 129 | # define RE_NO_BK_BRACES (RE_NEWLINE_ALT << 1) |
110 | 130 | ||
111 | /* If this bit is set, (...) defines a group, and \( and \) are literals. | 131 | /* If this bit is set, (...) defines a group, and \( and \) are literals. |
112 | If not set, \(...\) defines a group, and ( and ) are literals. */ | 132 | If not set, \(...\) defines a group, and ( and ) are literals. */ |
113 | #define RE_NO_BK_PARENS (RE_NO_BK_BRACES << 1) | 133 | # define RE_NO_BK_PARENS (RE_NO_BK_BRACES << 1) |
114 | 134 | ||
115 | /* If this bit is set, then \<digit> matches <digit>. | 135 | /* If this bit is set, then \<digit> matches <digit>. |
116 | If not set, then \<digit> is a back-reference. */ | 136 | If not set, then \<digit> is a back-reference. */ |
117 | #define RE_NO_BK_REFS (RE_NO_BK_PARENS << 1) | 137 | # define RE_NO_BK_REFS (RE_NO_BK_PARENS << 1) |
118 | 138 | ||
119 | /* If this bit is set, then | is an alternation operator, and \| is literal. | 139 | /* If this bit is set, then | is an alternation operator, and \| is literal. |
120 | If not set, then \| is an alternation operator, and | is literal. */ | 140 | If not set, then \| is an alternation operator, and | is literal. */ |
121 | #define RE_NO_BK_VBAR (RE_NO_BK_REFS << 1) | 141 | # define RE_NO_BK_VBAR (RE_NO_BK_REFS << 1) |
122 | 142 | ||
123 | /* If this bit is set, then an ending range point collating higher | 143 | /* If this bit is set, then an ending range point collating higher |
124 | than the starting range point, as in [z-a], is invalid. | 144 | than the starting range point, as in [z-a], is invalid. |
125 | If not set, then when ending range point collates higher than the | 145 | If not set, then when ending range point collates higher than the |
126 | starting range point, the range is ignored. */ | 146 | starting range point, the range is ignored. */ |
127 | #define RE_NO_EMPTY_RANGES (RE_NO_BK_VBAR << 1) | 147 | # define RE_NO_EMPTY_RANGES (RE_NO_BK_VBAR << 1) |
128 | 148 | ||
129 | /* If this bit is set, then an unmatched ) is ordinary. | 149 | /* If this bit is set, then an unmatched ) is ordinary. |
130 | If not set, then an unmatched ) is invalid. */ | 150 | If not set, then an unmatched ) is invalid. */ |
131 | #define RE_UNMATCHED_RIGHT_PAREN_ORD (RE_NO_EMPTY_RANGES << 1) | 151 | # define RE_UNMATCHED_RIGHT_PAREN_ORD (RE_NO_EMPTY_RANGES << 1) |
152 | |||
153 | /* If this bit is set, succeed as soon as we match the whole pattern, | ||
154 | without further backtracking. */ | ||
155 | # define RE_NO_POSIX_BACKTRACKING (RE_UNMATCHED_RIGHT_PAREN_ORD << 1) | ||
156 | |||
157 | /* If this bit is set, do not process the GNU regex operators. | ||
158 | If not set, then the GNU regex operators are recognized. */ | ||
159 | # define RE_NO_GNU_OPS (RE_NO_POSIX_BACKTRACKING << 1) | ||
160 | |||
161 | /* If this bit is set, a syntactically invalid interval is treated as | ||
162 | a string of ordinary characters. For example, the ERE 'a{1' is | ||
163 | treated as 'a\{1'. */ | ||
164 | # define RE_INVALID_INTERVAL_ORD (RE_NO_GNU_OPS << 1) | ||
165 | |||
166 | /* If this bit is set, then ignore case when matching. | ||
167 | If not set, then case is significant. */ | ||
168 | # define RE_ICASE (RE_INVALID_INTERVAL_ORD << 1) | ||
169 | |||
170 | /* This bit is used internally like RE_CONTEXT_INDEP_ANCHORS but only | ||
171 | for ^, because it is difficult to scan the regex backwards to find | ||
172 | whether ^ should be special. */ | ||
173 | # define RE_CARET_ANCHORS_HERE (RE_ICASE << 1) | ||
174 | |||
175 | /* If this bit is set, then \{ cannot be first in an bre or | ||
176 | immediately after an alternation or begin-group operator. */ | ||
177 | # define RE_CONTEXT_INVALID_DUP (RE_CARET_ANCHORS_HERE << 1) | ||
178 | |||
179 | /* If this bit is set, then no_sub will be set to 1 during | ||
180 | re_compile_pattern. */ | ||
181 | #define RE_NO_SUB (RE_CONTEXT_INVALID_DUP << 1) | ||
182 | #endif | ||
132 | 183 | ||
133 | /* This global variable defines the particular regexp syntax to use (for | 184 | /* This global variable defines the particular regexp syntax to use (for |
134 | some interfaces). When a regexp is compiled, the syntax used is | 185 | some interfaces). When a regexp is compiled, the syntax used is |
@@ -136,6 +187,7 @@ typedef unsigned reg_syntax_t; | |||
136 | already-compiled regexps. */ | 187 | already-compiled regexps. */ |
137 | extern reg_syntax_t re_syntax_options; | 188 | extern reg_syntax_t re_syntax_options; |
138 | 189 | ||
190 | #ifdef __USE_GNU | ||
139 | /* Define combinations of the above bits for the standard possibilities. | 191 | /* Define combinations of the above bits for the standard possibilities. |
140 | (The [[[ comments delimit what gets put into the Texinfo file, so | 192 | (The [[[ comments delimit what gets put into the Texinfo file, so |
141 | don't delete them!) */ | 193 | don't delete them!) */ |
@@ -143,13 +195,22 @@ extern reg_syntax_t re_syntax_options; | |||
143 | #define RE_SYNTAX_EMACS 0 | 195 | #define RE_SYNTAX_EMACS 0 |
144 | 196 | ||
145 | #define RE_SYNTAX_AWK \ | 197 | #define RE_SYNTAX_AWK \ |
146 | (RE_BACKSLASH_ESCAPE_IN_LISTS | RE_DOT_NOT_NULL \ | 198 | (RE_BACKSLASH_ESCAPE_IN_LISTS | RE_DOT_NOT_NULL \ |
147 | | RE_NO_BK_PARENS | RE_NO_BK_REFS \ | 199 | | RE_NO_BK_PARENS | RE_NO_BK_REFS \ |
148 | | RE_NO_BK_VBAR | RE_NO_EMPTY_RANGES \ | 200 | | RE_NO_BK_VBAR | RE_NO_EMPTY_RANGES \ |
149 | | RE_UNMATCHED_RIGHT_PAREN_ORD) | 201 | | RE_DOT_NEWLINE | RE_CONTEXT_INDEP_ANCHORS \ |
150 | 202 | | RE_UNMATCHED_RIGHT_PAREN_ORD | RE_NO_GNU_OPS) | |
151 | #define RE_SYNTAX_POSIX_AWK \ | 203 | |
152 | (RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS) | 204 | #define RE_SYNTAX_GNU_AWK \ |
205 | ((RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS \ | ||
206 | | RE_INVALID_INTERVAL_ORD) \ | ||
207 | & ~(RE_DOT_NOT_NULL | RE_CONTEXT_INDEP_OPS \ | ||
208 | | RE_CONTEXT_INVALID_OPS )) | ||
209 | |||
210 | #define RE_SYNTAX_POSIX_AWK \ | ||
211 | (RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS \ | ||
212 | | RE_INTERVALS | RE_NO_GNU_OPS \ | ||
213 | | RE_INVALID_INTERVAL_ORD) | ||
153 | 214 | ||
154 | #define RE_SYNTAX_GREP \ | 215 | #define RE_SYNTAX_GREP \ |
155 | (RE_BK_PLUS_QM | RE_CHAR_CLASSES \ | 216 | (RE_BK_PLUS_QM | RE_CHAR_CLASSES \ |
@@ -163,7 +224,8 @@ extern reg_syntax_t re_syntax_options; | |||
163 | | RE_NO_BK_VBAR) | 224 | | RE_NO_BK_VBAR) |
164 | 225 | ||
165 | #define RE_SYNTAX_POSIX_EGREP \ | 226 | #define RE_SYNTAX_POSIX_EGREP \ |
166 | (RE_SYNTAX_EGREP | RE_INTERVALS | RE_NO_BK_BRACES) | 227 | (RE_SYNTAX_EGREP | RE_INTERVALS | RE_NO_BK_BRACES \ |
228 | | RE_INVALID_INTERVAL_ORD) | ||
167 | 229 | ||
168 | /* P1003.2/D11.2, section 4.20.7.1, lines 5078ff. */ | 230 | /* P1003.2/D11.2, section 4.20.7.1, lines 5078ff. */ |
169 | #define RE_SYNTAX_ED RE_SYNTAX_POSIX_BASIC | 231 | #define RE_SYNTAX_ED RE_SYNTAX_POSIX_BASIC |
@@ -176,7 +238,7 @@ extern reg_syntax_t re_syntax_options; | |||
176 | | RE_INTERVALS | RE_NO_EMPTY_RANGES) | 238 | | RE_INTERVALS | RE_NO_EMPTY_RANGES) |
177 | 239 | ||
178 | #define RE_SYNTAX_POSIX_BASIC \ | 240 | #define RE_SYNTAX_POSIX_BASIC \ |
179 | (_RE_SYNTAX_POSIX_COMMON | RE_BK_PLUS_QM) | 241 | (_RE_SYNTAX_POSIX_COMMON | RE_BK_PLUS_QM | RE_CONTEXT_INVALID_DUP) |
180 | 242 | ||
181 | /* Differs from ..._POSIX_BASIC only in that RE_BK_PLUS_QM becomes | 243 | /* Differs from ..._POSIX_BASIC only in that RE_BK_PLUS_QM becomes |
182 | RE_LIMITED_OPS, i.e., \? \+ \| are not recognized. Actually, this | 244 | RE_LIMITED_OPS, i.e., \? \+ \| are not recognized. Actually, this |
@@ -185,13 +247,13 @@ extern reg_syntax_t re_syntax_options; | |||
185 | (_RE_SYNTAX_POSIX_COMMON | RE_LIMITED_OPS) | 247 | (_RE_SYNTAX_POSIX_COMMON | RE_LIMITED_OPS) |
186 | 248 | ||
187 | #define RE_SYNTAX_POSIX_EXTENDED \ | 249 | #define RE_SYNTAX_POSIX_EXTENDED \ |
188 | (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \ | 250 | (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \ |
189 | | RE_CONTEXT_INDEP_OPS | RE_NO_BK_BRACES \ | 251 | | RE_CONTEXT_INDEP_OPS | RE_NO_BK_BRACES \ |
190 | | RE_NO_BK_PARENS | RE_NO_BK_VBAR \ | 252 | | RE_NO_BK_PARENS | RE_NO_BK_VBAR \ |
191 | | RE_UNMATCHED_RIGHT_PAREN_ORD) | 253 | | RE_CONTEXT_INVALID_OPS | RE_UNMATCHED_RIGHT_PAREN_ORD) |
192 | 254 | ||
193 | /* Differs from ..._POSIX_EXTENDED in that RE_CONTEXT_INVALID_OPS | 255 | /* Differs from ..._POSIX_EXTENDED in that RE_CONTEXT_INDEP_OPS is |
194 | replaces RE_CONTEXT_INDEP_OPS and RE_NO_BK_REFS is added. */ | 256 | removed and RE_NO_BK_REFS is added. */ |
195 | #define RE_SYNTAX_POSIX_MINIMAL_EXTENDED \ | 257 | #define RE_SYNTAX_POSIX_MINIMAL_EXTENDED \ |
196 | (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \ | 258 | (_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \ |
197 | | RE_CONTEXT_INVALID_OPS | RE_NO_BK_BRACES \ | 259 | | RE_CONTEXT_INVALID_OPS | RE_NO_BK_BRACES \ |
@@ -202,10 +264,12 @@ extern reg_syntax_t re_syntax_options; | |||
202 | /* Maximum number of duplicates an interval can allow. Some systems | 264 | /* Maximum number of duplicates an interval can allow. Some systems |
203 | (erroneously) define this in other header files, but we want our | 265 | (erroneously) define this in other header files, but we want our |
204 | value, so remove any previous define. */ | 266 | value, so remove any previous define. */ |
205 | #ifdef RE_DUP_MAX | 267 | # ifdef RE_DUP_MAX |
206 | #undef RE_DUP_MAX | 268 | # undef RE_DUP_MAX |
269 | # endif | ||
270 | /* If sizeof(int) == 2, then ((1 << 15) - 1) overflows. */ | ||
271 | # define RE_DUP_MAX (0x7fff) | ||
207 | #endif | 272 | #endif |
208 | #define RE_DUP_MAX ((1 << 15) - 1) | ||
209 | 273 | ||
210 | 274 | ||
211 | /* POSIX `cflags' bits (i.e., information for `regcomp'). */ | 275 | /* POSIX `cflags' bits (i.e., information for `regcomp'). */ |
@@ -240,18 +304,26 @@ extern reg_syntax_t re_syntax_options; | |||
240 | /* Like REG_NOTBOL, except for the end-of-line. */ | 304 | /* Like REG_NOTBOL, except for the end-of-line. */ |
241 | #define REG_NOTEOL (1 << 1) | 305 | #define REG_NOTEOL (1 << 1) |
242 | 306 | ||
307 | /* Use PMATCH[0] to delimit the start and end of the search in the | ||
308 | buffer. */ | ||
309 | #define REG_STARTEND (1 << 2) | ||
310 | |||
243 | 311 | ||
244 | /* If any error codes are removed, changed, or added, update the | 312 | /* If any error codes are removed, changed, or added, update the |
245 | `re_error_msg' table in regex.c. */ | 313 | `re_error_msg' table in regex.c. */ |
246 | typedef enum | 314 | typedef enum |
247 | { | 315 | { |
316 | #if defined _XOPEN_SOURCE || defined __USE_XOPEN2K | ||
317 | REG_ENOSYS = -1, /* This will never happen for this implementation. */ | ||
318 | #endif | ||
319 | |||
248 | REG_NOERROR = 0, /* Success. */ | 320 | REG_NOERROR = 0, /* Success. */ |
249 | REG_NOMATCH, /* Didn't find a match (for regexec). */ | 321 | REG_NOMATCH, /* Didn't find a match (for regexec). */ |
250 | 322 | ||
251 | /* POSIX regcomp return error codes. (In the order listed in the | 323 | /* POSIX regcomp return error codes. (In the order listed in the |
252 | standard.) */ | 324 | standard.) */ |
253 | REG_BADPAT, /* Invalid pattern. */ | 325 | REG_BADPAT, /* Invalid pattern. */ |
254 | REG_ECOLLATE, /* Not implemented. */ | 326 | REG_ECOLLATE, /* Inalid collating element. */ |
255 | REG_ECTYPE, /* Invalid character class name. */ | 327 | REG_ECTYPE, /* Invalid character class name. */ |
256 | REG_EESCAPE, /* Trailing backslash. */ | 328 | REG_EESCAPE, /* Trailing backslash. */ |
257 | REG_ESUBREG, /* Invalid back reference. */ | 329 | REG_ESUBREG, /* Invalid back reference. */ |
@@ -275,85 +347,92 @@ typedef enum | |||
275 | compiled, the `re_nsub' field is available. All other fields are | 347 | compiled, the `re_nsub' field is available. All other fields are |
276 | private to the regex routines. */ | 348 | private to the regex routines. */ |
277 | 349 | ||
350 | #ifndef RE_TRANSLATE_TYPE | ||
351 | # define __RE_TRANSLATE_TYPE unsigned char * | ||
352 | # ifdef __USE_GNU | ||
353 | # define RE_TRANSLATE_TYPE __RE_TRANSLATE_TYPE | ||
354 | # endif | ||
355 | #endif | ||
356 | |||
357 | #ifdef __USE_GNU | ||
358 | # define __REPB_PREFIX(name) name | ||
359 | #else | ||
360 | # define __REPB_PREFIX(name) __##name | ||
361 | #endif | ||
362 | |||
278 | struct re_pattern_buffer | 363 | struct re_pattern_buffer |
279 | { | 364 | { |
280 | /* [[[begin pattern_buffer]]] */ | 365 | /* Space that holds the compiled pattern. It is declared as |
281 | /* Space that holds the compiled pattern. It is declared as | 366 | `unsigned char *' because its elements are sometimes used as |
282 | `unsigned char *' because its elements are | 367 | array indexes. */ |
283 | sometimes used as array indexes. */ | 368 | unsigned char *__REPB_PREFIX(buffer); |
284 | unsigned char *buffer; | ||
285 | 369 | ||
286 | /* Number of bytes to which `buffer' points. */ | 370 | /* Number of bytes to which `buffer' points. */ |
287 | unsigned long allocated; | 371 | unsigned long int __REPB_PREFIX(allocated); |
288 | 372 | ||
289 | /* Number of bytes actually used in `buffer'. */ | 373 | /* Number of bytes actually used in `buffer'. */ |
290 | unsigned long used; | 374 | unsigned long int __REPB_PREFIX(used); |
291 | 375 | ||
292 | /* Syntax setting with which the pattern was compiled. */ | 376 | /* Syntax setting with which the pattern was compiled. */ |
293 | reg_syntax_t syntax; | 377 | reg_syntax_t __REPB_PREFIX(syntax); |
294 | 378 | ||
295 | /* Pointer to a fastmap, if any, otherwise zero. re_search uses | 379 | /* Pointer to a fastmap, if any, otherwise zero. re_search uses the |
296 | the fastmap, if there is one, to skip over impossible | 380 | fastmap, if there is one, to skip over impossible starting points |
297 | starting points for matches. */ | 381 | for matches. */ |
298 | char *fastmap; | 382 | char *__REPB_PREFIX(fastmap); |
299 | 383 | ||
300 | /* Either a translate table to apply to all characters before | 384 | /* Either a translate table to apply to all characters before |
301 | comparing them, or zero for no translation. The translation | 385 | comparing them, or zero for no translation. The translation is |
302 | is applied to a pattern when it is compiled and to a string | 386 | applied to a pattern when it is compiled and to a string when it |
303 | when it is matched. */ | 387 | is matched. */ |
304 | char *translate; | 388 | __RE_TRANSLATE_TYPE __REPB_PREFIX(translate); |
305 | 389 | ||
306 | /* Number of subexpressions found by the compiler. */ | 390 | /* Number of subexpressions found by the compiler. */ |
307 | size_t re_nsub; | 391 | size_t re_nsub; |
308 | 392 | ||
309 | /* Zero if this pattern cannot match the empty string, one else. | 393 | /* Zero if this pattern cannot match the empty string, one else. |
310 | Well, in truth it's used only in `re_search_2', to see | 394 | Well, in truth it's used only in `re_search_2', to see whether or |
311 | whether or not we should use the fastmap, so we don't set | 395 | not we should use the fastmap, so we don't set this absolutely |
312 | this absolutely perfectly; see `re_compile_fastmap' (the | 396 | perfectly; see `re_compile_fastmap' (the `duplicate' case). */ |
313 | `duplicate' case). */ | 397 | unsigned __REPB_PREFIX(can_be_null) : 1; |
314 | unsigned can_be_null : 1; | 398 | |
315 | 399 | /* If REGS_UNALLOCATED, allocate space in the `regs' structure | |
316 | /* If REGS_UNALLOCATED, allocate space in the `regs' structure | 400 | for `max (RE_NREGS, re_nsub + 1)' groups. |
317 | for `max (RE_NREGS, re_nsub + 1)' groups. | 401 | If REGS_REALLOCATE, reallocate space if necessary. |
318 | If REGS_REALLOCATE, reallocate space if necessary. | 402 | If REGS_FIXED, use what's there. */ |
319 | If REGS_FIXED, use what's there. */ | 403 | #ifdef __USE_GNU |
320 | #define REGS_UNALLOCATED 0 | 404 | # define REGS_UNALLOCATED 0 |
321 | #define REGS_REALLOCATE 1 | 405 | # define REGS_REALLOCATE 1 |
322 | #define REGS_FIXED 2 | 406 | # define REGS_FIXED 2 |
323 | unsigned regs_allocated : 2; | 407 | #endif |
324 | 408 | unsigned __REPB_PREFIX(regs_allocated) : 2; | |
325 | /* Set to zero when `regex_compile' compiles a pattern; set to one | ||
326 | by `re_compile_fastmap' if it updates the fastmap. */ | ||
327 | unsigned fastmap_accurate : 1; | ||
328 | |||
329 | /* If set, `re_match_2' does not return information about | ||
330 | subexpressions. */ | ||
331 | unsigned no_sub : 1; | ||
332 | |||
333 | /* If set, a beginning-of-line anchor doesn't match at the | ||
334 | beginning of the string. */ | ||
335 | unsigned not_bol : 1; | ||
336 | |||
337 | /* Similarly for an end-of-line anchor. */ | ||
338 | unsigned not_eol : 1; | ||
339 | |||
340 | /* If true, an anchor at a newline matches. */ | ||
341 | unsigned newline_anchor : 1; | ||
342 | |||
343 | /* [[[end pattern_buffer]]] */ | ||
344 | }; | ||
345 | 409 | ||
346 | typedef struct re_pattern_buffer regex_t; | 410 | /* Set to zero when `regex_compile' compiles a pattern; set to one |
411 | by `re_compile_fastmap' if it updates the fastmap. */ | ||
412 | unsigned __REPB_PREFIX(fastmap_accurate) : 1; | ||
413 | |||
414 | /* If set, `re_match_2' does not return information about | ||
415 | subexpressions. */ | ||
416 | unsigned __REPB_PREFIX(no_sub) : 1; | ||
417 | |||
418 | /* If set, a beginning-of-line anchor doesn't match at the beginning | ||
419 | of the string. */ | ||
420 | unsigned __REPB_PREFIX(not_bol) : 1; | ||
421 | |||
422 | /* Similarly for an end-of-line anchor. */ | ||
423 | unsigned __REPB_PREFIX(not_eol) : 1; | ||
347 | 424 | ||
425 | /* If true, an anchor at a newline matches. */ | ||
426 | unsigned __REPB_PREFIX(newline_anchor) : 1; | ||
427 | }; | ||
348 | 428 | ||
349 | /* search.c (search_buffer) in Emacs needs this one opcode value. It is | 429 | typedef struct re_pattern_buffer regex_t; |
350 | defined both in `regex.c' and here. */ | ||
351 | #define RE_EXACTN_VALUE 1 | ||
352 | 430 | ||
353 | /* Type for byte offsets within the string. POSIX mandates this. */ | 431 | /* Type for byte offsets within the string. POSIX mandates this. */ |
354 | typedef int regoff_t; | 432 | typedef int regoff_t; |
355 | 433 | ||
356 | 434 | ||
435 | #ifdef __USE_GNU | ||
357 | /* This is the structure we store register match data in. See | 436 | /* This is the structure we store register match data in. See |
358 | regex.texinfo for a full description of what registers match. */ | 437 | regex.texinfo for a full description of what registers match. */ |
359 | struct re_registers | 438 | struct re_registers |
@@ -367,8 +446,9 @@ struct re_registers | |||
367 | /* If `regs_allocated' is REGS_UNALLOCATED in the pattern buffer, | 446 | /* If `regs_allocated' is REGS_UNALLOCATED in the pattern buffer, |
368 | `re_match_2' returns information about at least this many registers | 447 | `re_match_2' returns information about at least this many registers |
369 | the first time a `regs' structure is passed. */ | 448 | the first time a `regs' structure is passed. */ |
370 | #ifndef RE_NREGS | 449 | # ifndef RE_NREGS |
371 | #define RE_NREGS 30 | 450 | # define RE_NREGS 30 |
451 | # endif | ||
372 | #endif | 452 | #endif |
373 | 453 | ||
374 | 454 | ||
@@ -383,38 +463,22 @@ typedef struct | |||
383 | 463 | ||
384 | /* Declarations for routines. */ | 464 | /* Declarations for routines. */ |
385 | 465 | ||
386 | /* To avoid duplicating every routine declaration -- once with a | 466 | #ifdef __USE_GNU |
387 | prototype (if we are ANSI), and once without (if we aren't) -- we | ||
388 | use the following macro to declare argument types. This | ||
389 | unfortunately clutters up the declarations a bit, but I think it's | ||
390 | worth it. */ | ||
391 | |||
392 | #if __STDC__ | ||
393 | |||
394 | #define _RE_ARGS(args) args | ||
395 | |||
396 | #else /* not __STDC__ */ | ||
397 | |||
398 | #define _RE_ARGS(args) () | ||
399 | |||
400 | #endif /* not __STDC__ */ | ||
401 | |||
402 | /* Sets the current default syntax to SYNTAX, and return the old syntax. | 467 | /* Sets the current default syntax to SYNTAX, and return the old syntax. |
403 | You can also simply assign to the `re_syntax_options' variable. */ | 468 | You can also simply assign to the `re_syntax_options' variable. */ |
404 | extern reg_syntax_t re_set_syntax _RE_ARGS ((reg_syntax_t syntax)); | 469 | extern reg_syntax_t re_set_syntax (reg_syntax_t __syntax); |
405 | 470 | ||
406 | /* Compile the regular expression PATTERN, with length LENGTH | 471 | /* Compile the regular expression PATTERN, with length LENGTH |
407 | and syntax given by the global `re_syntax_options', into the buffer | 472 | and syntax given by the global `re_syntax_options', into the buffer |
408 | BUFFER. Return NULL if successful, and an error string if not. */ | 473 | BUFFER. Return NULL if successful, and an error string if not. */ |
409 | extern const char *re_compile_pattern | 474 | extern const char *re_compile_pattern (const char *__pattern, size_t __length, |
410 | _RE_ARGS ((const char *pattern, int length, | 475 | struct re_pattern_buffer *__buffer); |
411 | struct re_pattern_buffer *buffer)); | ||
412 | 476 | ||
413 | 477 | ||
414 | /* Compile a fastmap for the compiled pattern in BUFFER; used to | 478 | /* Compile a fastmap for the compiled pattern in BUFFER; used to |
415 | accelerate searches. Return 0 if successful and -2 if was an | 479 | accelerate searches. Return 0 if successful and -2 if was an |
416 | internal error. */ | 480 | internal error. */ |
417 | extern int re_compile_fastmap _RE_ARGS ((struct re_pattern_buffer *buffer)); | 481 | extern int re_compile_fastmap (struct re_pattern_buffer *__buffer); |
418 | 482 | ||
419 | 483 | ||
420 | /* Search in the string STRING (with length LENGTH) for the pattern | 484 | /* Search in the string STRING (with length LENGTH) for the pattern |
@@ -422,31 +486,30 @@ extern int re_compile_fastmap _RE_ARGS ((struct re_pattern_buffer *buffer)); | |||
422 | characters. Return the starting position of the match, -1 for no | 486 | characters. Return the starting position of the match, -1 for no |
423 | match, or -2 for an internal error. Also return register | 487 | match, or -2 for an internal error. Also return register |
424 | information in REGS (if REGS and BUFFER->no_sub are nonzero). */ | 488 | information in REGS (if REGS and BUFFER->no_sub are nonzero). */ |
425 | extern int re_search | 489 | extern int re_search (struct re_pattern_buffer *__buffer, const char *__cstring, |
426 | _RE_ARGS ((struct re_pattern_buffer *buffer, const char *string, | 490 | int __length, int __start, int __range, |
427 | int length, int start, int range, struct re_registers *regs)); | 491 | struct re_registers *__regs); |
428 | 492 | ||
429 | 493 | ||
430 | /* Like `re_search', but search in the concatenation of STRING1 and | 494 | /* Like `re_search', but search in the concatenation of STRING1 and |
431 | STRING2. Also, stop searching at index START + STOP. */ | 495 | STRING2. Also, stop searching at index START + STOP. */ |
432 | extern int re_search_2 | 496 | extern int re_search_2 (struct re_pattern_buffer *__buffer, |
433 | _RE_ARGS ((struct re_pattern_buffer *buffer, const char *string1, | 497 | const char *__string1, int __length1, |
434 | int length1, const char *string2, int length2, | 498 | const char *__string2, int __length2, int __start, |
435 | int start, int range, struct re_registers *regs, int stop)); | 499 | int __range, struct re_registers *__regs, int __stop); |
436 | 500 | ||
437 | 501 | ||
438 | /* Like `re_search', but return how many characters in STRING the regexp | 502 | /* Like `re_search', but return how many characters in STRING the regexp |
439 | in BUFFER matched, starting at position START. */ | 503 | in BUFFER matched, starting at position START. */ |
440 | extern int re_match | 504 | extern int re_match (struct re_pattern_buffer *__buffer, const char *__cstring, |
441 | _RE_ARGS ((struct re_pattern_buffer *buffer, const char *string, | 505 | int __length, int __start, struct re_registers *__regs); |
442 | int length, int start, struct re_registers *regs)); | ||
443 | 506 | ||
444 | 507 | ||
445 | /* Relates to `re_match' as `re_search_2' relates to `re_search'. */ | 508 | /* Relates to `re_match' as `re_search_2' relates to `re_search'. */ |
446 | extern int re_match_2 | 509 | extern int re_match_2 (struct re_pattern_buffer *__buffer, |
447 | _RE_ARGS ((struct re_pattern_buffer *buffer, const char *string1, | 510 | const char *__string1, int __length1, |
448 | int length1, const char *string2, int length2, | 511 | const char *__string2, int __length2, int __start, |
449 | int start, struct re_registers *regs, int stop)); | 512 | struct re_registers *__regs, int __stop); |
450 | 513 | ||
451 | 514 | ||
452 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | 515 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and |
@@ -461,30 +524,59 @@ extern int re_match_2 | |||
461 | Unless this function is called, the first search or match using | 524 | Unless this function is called, the first search or match using |
462 | PATTERN_BUFFER will allocate its own register data, without | 525 | PATTERN_BUFFER will allocate its own register data, without |
463 | freeing the old data. */ | 526 | freeing the old data. */ |
464 | extern void re_set_registers | 527 | extern void re_set_registers (struct re_pattern_buffer *__buffer, |
465 | _RE_ARGS ((struct re_pattern_buffer *buffer, struct re_registers *regs, | 528 | struct re_registers *__regs, |
466 | unsigned num_regs, regoff_t *starts, regoff_t *ends)); | 529 | unsigned int __num_regs, |
467 | 530 | regoff_t *__starts, regoff_t *__ends); | |
531 | #endif /* Use GNU */ | ||
532 | |||
533 | #if defined _REGEX_RE_COMP || (defined _LIBC && defined __USE_BSD) | ||
534 | # ifndef _CRAY | ||
468 | /* 4.2 bsd compatibility. */ | 535 | /* 4.2 bsd compatibility. */ |
469 | extern char *re_comp _RE_ARGS ((const char *)); | 536 | extern char *re_comp (const char *); |
470 | extern int re_exec _RE_ARGS ((const char *)); | 537 | extern int re_exec (const char *); |
538 | # endif | ||
539 | #endif | ||
540 | |||
541 | /* GCC 2.95 and later have "__restrict"; C99 compilers have | ||
542 | "restrict", and "configure" may have defined "restrict". */ | ||
543 | #ifndef __restrict | ||
544 | # if ! (2 < __GNUC__ || (2 == __GNUC__ && 95 <= __GNUC_MINOR__)) | ||
545 | # if defined restrict || 199901L <= __STDC_VERSION__ | ||
546 | # define __restrict restrict | ||
547 | # else | ||
548 | # define __restrict | ||
549 | # endif | ||
550 | # endif | ||
551 | #endif | ||
552 | /* gcc 3.1 and up support the [restrict] syntax. */ | ||
553 | #ifndef __restrict_arr | ||
554 | # if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) \ | ||
555 | && !defined __GNUG__ | ||
556 | # define __restrict_arr __restrict | ||
557 | # else | ||
558 | # define __restrict_arr | ||
559 | # endif | ||
560 | #endif | ||
471 | 561 | ||
472 | /* POSIX compatibility. */ | 562 | /* POSIX compatibility. */ |
473 | extern int regcomp _RE_ARGS ((regex_t *preg, const char *pattern, int cflags)); | 563 | extern int regcomp (regex_t *__restrict __preg, |
474 | extern int regexec | 564 | const char *__restrict __pattern, |
475 | _RE_ARGS ((const regex_t *preg, const char *string, size_t nmatch, | 565 | int __cflags); |
476 | regmatch_t pmatch[], int eflags)); | 566 | |
477 | extern size_t regerror | 567 | extern int regexec (const regex_t *__restrict __preg, |
478 | _RE_ARGS ((int errcode, const regex_t *preg, char *errbuf, | 568 | const char *__restrict __cstring, size_t __nmatch, |
479 | size_t errbuf_size)); | 569 | regmatch_t __pmatch[__restrict_arr], |
480 | extern void regfree _RE_ARGS ((regex_t *preg)); | 570 | int __eflags); |
481 | 571 | ||
482 | #endif /* not __REGEXP_LIBRARY_H__ */ | 572 | extern size_t regerror (int __errcode, const regex_t *__restrict __preg, |
483 | 573 | char *__restrict __errbuf, size_t __errbuf_size); | |
484 | /* | 574 | |
485 | Local variables: | 575 | extern void regfree (regex_t *__preg); |
486 | make-backup-files: t | 576 | |
487 | version-control: t | 577 | |
488 | trim-versions-without-asking: nil | 578 | #ifdef __cplusplus |
489 | End: | 579 | } |
490 | */ | 580 | #endif /* C++ */ |
581 | |||
582 | #endif /* regex.h */ | ||
diff --git a/win32/regex_internal.c b/win32/regex_internal.c new file mode 100644 index 000000000..d4121f2f4 --- /dev/null +++ b/win32/regex_internal.c | |||
@@ -0,0 +1,1744 @@ | |||
1 | /* Extended regular expression matching and search library. | ||
2 | Copyright (C) 2002-2006, 2010 Free Software Foundation, Inc. | ||
3 | This file is part of the GNU C Library. | ||
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | ||
5 | |||
6 | The GNU C Library is free software; you can redistribute it and/or | ||
7 | modify it under the terms of the GNU Lesser General Public | ||
8 | License as published by the Free Software Foundation; either | ||
9 | version 2.1 of the License, or (at your option) any later version. | ||
10 | |||
11 | The GNU C Library is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
14 | Lesser General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU Lesser General Public | ||
17 | License along with the GNU C Library; if not, write to the Free | ||
18 | Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | ||
19 | 02110-1301 USA. */ | ||
20 | |||
21 | static void re_string_construct_common (const char *str, int len, | ||
22 | re_string_t *pstr, | ||
23 | RE_TRANSLATE_TYPE trans, int icase, | ||
24 | const re_dfa_t *dfa) internal_function; | ||
25 | static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa, | ||
26 | const re_node_set *nodes, | ||
27 | unsigned int hash) internal_function; | ||
28 | static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa, | ||
29 | const re_node_set *nodes, | ||
30 | unsigned int context, | ||
31 | unsigned int hash) internal_function; | ||
32 | |||
33 | #ifdef GAWK | ||
34 | #undef MAX /* safety */ | ||
35 | static int | ||
36 | MAX(size_t a, size_t b) | ||
37 | { | ||
38 | return (a > b ? a : b); | ||
39 | } | ||
40 | #endif | ||
41 | |||
42 | /* Functions for string operation. */ | ||
43 | |||
44 | /* This function allocate the buffers. It is necessary to call | ||
45 | re_string_reconstruct before using the object. */ | ||
46 | |||
47 | static reg_errcode_t | ||
48 | internal_function | ||
49 | re_string_allocate (re_string_t *pstr, const char *str, int len, int init_len, | ||
50 | RE_TRANSLATE_TYPE trans, int icase, const re_dfa_t *dfa) | ||
51 | { | ||
52 | reg_errcode_t ret; | ||
53 | int init_buf_len; | ||
54 | |||
55 | /* Ensure at least one character fits into the buffers. */ | ||
56 | if (init_len < dfa->mb_cur_max) | ||
57 | init_len = dfa->mb_cur_max; | ||
58 | init_buf_len = (len + 1 < init_len) ? len + 1: init_len; | ||
59 | re_string_construct_common (str, len, pstr, trans, icase, dfa); | ||
60 | |||
61 | ret = re_string_realloc_buffers (pstr, init_buf_len); | ||
62 | if (BE (ret != REG_NOERROR, 0)) | ||
63 | return ret; | ||
64 | |||
65 | pstr->word_char = dfa->word_char; | ||
66 | pstr->word_ops_used = dfa->word_ops_used; | ||
67 | pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; | ||
68 | pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len; | ||
69 | pstr->valid_raw_len = pstr->valid_len; | ||
70 | return REG_NOERROR; | ||
71 | } | ||
72 | |||
73 | /* This function allocate the buffers, and initialize them. */ | ||
74 | |||
75 | static reg_errcode_t | ||
76 | internal_function | ||
77 | re_string_construct (re_string_t *pstr, const char *str, int len, | ||
78 | RE_TRANSLATE_TYPE trans, int icase, const re_dfa_t *dfa) | ||
79 | { | ||
80 | reg_errcode_t ret; | ||
81 | memset (pstr, '\0', sizeof (re_string_t)); | ||
82 | re_string_construct_common (str, len, pstr, trans, icase, dfa); | ||
83 | |||
84 | if (len > 0) | ||
85 | { | ||
86 | ret = re_string_realloc_buffers (pstr, len + 1); | ||
87 | if (BE (ret != REG_NOERROR, 0)) | ||
88 | return ret; | ||
89 | } | ||
90 | pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; | ||
91 | |||
92 | if (icase) | ||
93 | { | ||
94 | #ifdef RE_ENABLE_I18N | ||
95 | if (dfa->mb_cur_max > 1) | ||
96 | { | ||
97 | while (1) | ||
98 | { | ||
99 | ret = build_wcs_upper_buffer (pstr); | ||
100 | if (BE (ret != REG_NOERROR, 0)) | ||
101 | return ret; | ||
102 | if (pstr->valid_raw_len >= len) | ||
103 | break; | ||
104 | if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max) | ||
105 | break; | ||
106 | ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); | ||
107 | if (BE (ret != REG_NOERROR, 0)) | ||
108 | return ret; | ||
109 | } | ||
110 | } | ||
111 | else | ||
112 | #endif /* RE_ENABLE_I18N */ | ||
113 | build_upper_buffer (pstr); | ||
114 | } | ||
115 | else | ||
116 | { | ||
117 | #ifdef RE_ENABLE_I18N | ||
118 | if (dfa->mb_cur_max > 1) | ||
119 | build_wcs_buffer (pstr); | ||
120 | else | ||
121 | #endif /* RE_ENABLE_I18N */ | ||
122 | { | ||
123 | if (trans != NULL) | ||
124 | re_string_translate_buffer (pstr); | ||
125 | else | ||
126 | { | ||
127 | pstr->valid_len = pstr->bufs_len; | ||
128 | pstr->valid_raw_len = pstr->bufs_len; | ||
129 | } | ||
130 | } | ||
131 | } | ||
132 | |||
133 | return REG_NOERROR; | ||
134 | } | ||
135 | |||
136 | /* Helper functions for re_string_allocate, and re_string_construct. */ | ||
137 | |||
138 | static reg_errcode_t | ||
139 | internal_function | ||
140 | re_string_realloc_buffers (re_string_t *pstr, int new_buf_len) | ||
141 | { | ||
142 | #ifdef RE_ENABLE_I18N | ||
143 | if (pstr->mb_cur_max > 1) | ||
144 | { | ||
145 | wint_t *new_wcs; | ||
146 | |||
147 | /* Avoid overflow in realloc. */ | ||
148 | const size_t max_object_size = MAX (sizeof (wint_t), sizeof (int)); | ||
149 | if (BE (SIZE_MAX / max_object_size < new_buf_len, 0)) | ||
150 | return REG_ESPACE; | ||
151 | |||
152 | new_wcs = re_realloc (pstr->wcs, wint_t, new_buf_len); | ||
153 | if (BE (new_wcs == NULL, 0)) | ||
154 | return REG_ESPACE; | ||
155 | pstr->wcs = new_wcs; | ||
156 | if (pstr->offsets != NULL) | ||
157 | { | ||
158 | int *new_offsets = re_realloc (pstr->offsets, int, new_buf_len); | ||
159 | if (BE (new_offsets == NULL, 0)) | ||
160 | return REG_ESPACE; | ||
161 | pstr->offsets = new_offsets; | ||
162 | } | ||
163 | } | ||
164 | #endif /* RE_ENABLE_I18N */ | ||
165 | if (pstr->mbs_allocated) | ||
166 | { | ||
167 | unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char, | ||
168 | new_buf_len); | ||
169 | if (BE (new_mbs == NULL, 0)) | ||
170 | return REG_ESPACE; | ||
171 | pstr->mbs = new_mbs; | ||
172 | } | ||
173 | pstr->bufs_len = new_buf_len; | ||
174 | return REG_NOERROR; | ||
175 | } | ||
176 | |||
177 | |||
178 | static void | ||
179 | internal_function | ||
180 | re_string_construct_common (const char *str, int len, re_string_t *pstr, | ||
181 | RE_TRANSLATE_TYPE trans, int icase, | ||
182 | const re_dfa_t *dfa) | ||
183 | { | ||
184 | pstr->raw_mbs = (const unsigned char *) str; | ||
185 | pstr->len = len; | ||
186 | pstr->raw_len = len; | ||
187 | pstr->trans = trans; | ||
188 | pstr->icase = icase ? 1 : 0; | ||
189 | pstr->mbs_allocated = (trans != NULL || icase); | ||
190 | pstr->mb_cur_max = dfa->mb_cur_max; | ||
191 | pstr->is_utf8 = dfa->is_utf8; | ||
192 | pstr->map_notascii = dfa->map_notascii; | ||
193 | pstr->stop = pstr->len; | ||
194 | pstr->raw_stop = pstr->stop; | ||
195 | } | ||
196 | |||
197 | #ifdef RE_ENABLE_I18N | ||
198 | |||
199 | /* Build wide character buffer PSTR->WCS. | ||
200 | If the byte sequence of the string are: | ||
201 | <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3> | ||
202 | Then wide character buffer will be: | ||
203 | <wc1> , WEOF , <wc2> , WEOF , <wc3> | ||
204 | We use WEOF for padding, they indicate that the position isn't | ||
205 | a first byte of a multibyte character. | ||
206 | |||
207 | Note that this function assumes PSTR->VALID_LEN elements are already | ||
208 | built and starts from PSTR->VALID_LEN. */ | ||
209 | |||
210 | static void | ||
211 | internal_function | ||
212 | build_wcs_buffer (re_string_t *pstr) | ||
213 | { | ||
214 | #ifdef _LIBC | ||
215 | unsigned char buf[MB_LEN_MAX]; | ||
216 | assert (MB_LEN_MAX >= pstr->mb_cur_max); | ||
217 | #else | ||
218 | unsigned char buf[64]; | ||
219 | #endif | ||
220 | mbstate_t prev_st; | ||
221 | int byte_idx, end_idx, remain_len; | ||
222 | size_t mbclen; | ||
223 | |||
224 | /* Build the buffers from pstr->valid_len to either pstr->len or | ||
225 | pstr->bufs_len. */ | ||
226 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | ||
227 | for (byte_idx = pstr->valid_len; byte_idx < end_idx;) | ||
228 | { | ||
229 | wchar_t wc; | ||
230 | const char *p; | ||
231 | |||
232 | remain_len = end_idx - byte_idx; | ||
233 | prev_st = pstr->cur_state; | ||
234 | /* Apply the translation if we need. */ | ||
235 | if (BE (pstr->trans != NULL, 0)) | ||
236 | { | ||
237 | int i, ch; | ||
238 | |||
239 | for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) | ||
240 | { | ||
241 | ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i]; | ||
242 | buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch]; | ||
243 | } | ||
244 | p = (const char *) buf; | ||
245 | } | ||
246 | else | ||
247 | p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx; | ||
248 | mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); | ||
249 | if (BE (mbclen == (size_t) -2, 0)) | ||
250 | { | ||
251 | /* The buffer doesn't have enough space, finish to build. */ | ||
252 | pstr->cur_state = prev_st; | ||
253 | break; | ||
254 | } | ||
255 | else if (BE (mbclen == (size_t) -1 || mbclen == 0, 0)) | ||
256 | { | ||
257 | /* We treat these cases as a singlebyte character. */ | ||
258 | mbclen = 1; | ||
259 | wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; | ||
260 | if (BE (pstr->trans != NULL, 0)) | ||
261 | wc = pstr->trans[wc]; | ||
262 | pstr->cur_state = prev_st; | ||
263 | } | ||
264 | |||
265 | /* Write wide character and padding. */ | ||
266 | pstr->wcs[byte_idx++] = wc; | ||
267 | /* Write paddings. */ | ||
268 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) | ||
269 | pstr->wcs[byte_idx++] = WEOF; | ||
270 | } | ||
271 | pstr->valid_len = byte_idx; | ||
272 | pstr->valid_raw_len = byte_idx; | ||
273 | } | ||
274 | |||
275 | /* Build wide character buffer PSTR->WCS like build_wcs_buffer, | ||
276 | but for REG_ICASE. */ | ||
277 | |||
278 | static reg_errcode_t | ||
279 | internal_function | ||
280 | build_wcs_upper_buffer (re_string_t *pstr) | ||
281 | { | ||
282 | mbstate_t prev_st; | ||
283 | int src_idx, byte_idx, end_idx, remain_len; | ||
284 | size_t mbclen; | ||
285 | #ifdef _LIBC | ||
286 | char buf[MB_LEN_MAX]; | ||
287 | assert (MB_LEN_MAX >= pstr->mb_cur_max); | ||
288 | #else | ||
289 | char buf[64]; | ||
290 | #endif | ||
291 | |||
292 | byte_idx = pstr->valid_len; | ||
293 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | ||
294 | |||
295 | /* The following optimization assumes that ASCII characters can be | ||
296 | mapped to wide characters with a simple cast. */ | ||
297 | if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed) | ||
298 | { | ||
299 | while (byte_idx < end_idx) | ||
300 | { | ||
301 | wchar_t wc; | ||
302 | |||
303 | if (isascii (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]) | ||
304 | && mbsinit (&pstr->cur_state)) | ||
305 | { | ||
306 | /* In case of a singlebyte character. */ | ||
307 | pstr->mbs[byte_idx] | ||
308 | = toupper (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]); | ||
309 | /* The next step uses the assumption that wchar_t is encoded | ||
310 | ASCII-safe: all ASCII values can be converted like this. */ | ||
311 | pstr->wcs[byte_idx] = (wchar_t) pstr->mbs[byte_idx]; | ||
312 | ++byte_idx; | ||
313 | continue; | ||
314 | } | ||
315 | |||
316 | remain_len = end_idx - byte_idx; | ||
317 | prev_st = pstr->cur_state; | ||
318 | mbclen = __mbrtowc (&wc, | ||
319 | ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx | ||
320 | + byte_idx), remain_len, &pstr->cur_state); | ||
321 | if (BE (mbclen + 2 > 2, 1)) | ||
322 | { | ||
323 | wchar_t wcu = wc; | ||
324 | if (iswlower (wc)) | ||
325 | { | ||
326 | size_t mbcdlen; | ||
327 | |||
328 | wcu = towupper (wc); | ||
329 | mbcdlen = wcrtomb (buf, wcu, &prev_st); | ||
330 | if (BE (mbclen == mbcdlen, 1)) | ||
331 | memcpy (pstr->mbs + byte_idx, buf, mbclen); | ||
332 | else | ||
333 | { | ||
334 | src_idx = byte_idx; | ||
335 | goto offsets_needed; | ||
336 | } | ||
337 | } | ||
338 | else | ||
339 | memcpy (pstr->mbs + byte_idx, | ||
340 | pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen); | ||
341 | pstr->wcs[byte_idx++] = wcu; | ||
342 | /* Write paddings. */ | ||
343 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) | ||
344 | pstr->wcs[byte_idx++] = WEOF; | ||
345 | } | ||
346 | else if (mbclen == (size_t) -1 || mbclen == 0) | ||
347 | { | ||
348 | /* It is an invalid character or '\0'. Just use the byte. */ | ||
349 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; | ||
350 | pstr->mbs[byte_idx] = ch; | ||
351 | /* And also cast it to wide char. */ | ||
352 | pstr->wcs[byte_idx++] = (wchar_t) ch; | ||
353 | if (BE (mbclen == (size_t) -1, 0)) | ||
354 | pstr->cur_state = prev_st; | ||
355 | } | ||
356 | else | ||
357 | { | ||
358 | /* The buffer doesn't have enough space, finish to build. */ | ||
359 | pstr->cur_state = prev_st; | ||
360 | break; | ||
361 | } | ||
362 | } | ||
363 | pstr->valid_len = byte_idx; | ||
364 | pstr->valid_raw_len = byte_idx; | ||
365 | return REG_NOERROR; | ||
366 | } | ||
367 | else | ||
368 | for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;) | ||
369 | { | ||
370 | wchar_t wc; | ||
371 | const char *p; | ||
372 | offsets_needed: | ||
373 | remain_len = end_idx - byte_idx; | ||
374 | prev_st = pstr->cur_state; | ||
375 | if (BE (pstr->trans != NULL, 0)) | ||
376 | { | ||
377 | int i, ch; | ||
378 | |||
379 | for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) | ||
380 | { | ||
381 | ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i]; | ||
382 | buf[i] = pstr->trans[ch]; | ||
383 | } | ||
384 | p = (const char *) buf; | ||
385 | } | ||
386 | else | ||
387 | p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx; | ||
388 | mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); | ||
389 | if (BE (mbclen + 2 > 2, 1)) | ||
390 | { | ||
391 | wchar_t wcu = wc; | ||
392 | if (iswlower (wc)) | ||
393 | { | ||
394 | size_t mbcdlen; | ||
395 | |||
396 | wcu = towupper (wc); | ||
397 | mbcdlen = wcrtomb ((char *) buf, wcu, &prev_st); | ||
398 | if (BE (mbclen == mbcdlen, 1)) | ||
399 | memcpy (pstr->mbs + byte_idx, buf, mbclen); | ||
400 | else if (mbcdlen != (size_t) -1) | ||
401 | { | ||
402 | size_t i; | ||
403 | |||
404 | if (byte_idx + mbcdlen > pstr->bufs_len) | ||
405 | { | ||
406 | pstr->cur_state = prev_st; | ||
407 | break; | ||
408 | } | ||
409 | |||
410 | if (pstr->offsets == NULL) | ||
411 | { | ||
412 | pstr->offsets = re_malloc (int, pstr->bufs_len); | ||
413 | |||
414 | if (pstr->offsets == NULL) | ||
415 | return REG_ESPACE; | ||
416 | } | ||
417 | if (!pstr->offsets_needed) | ||
418 | { | ||
419 | for (i = 0; i < (size_t) byte_idx; ++i) | ||
420 | pstr->offsets[i] = i; | ||
421 | pstr->offsets_needed = 1; | ||
422 | } | ||
423 | |||
424 | memcpy (pstr->mbs + byte_idx, buf, mbcdlen); | ||
425 | pstr->wcs[byte_idx] = wcu; | ||
426 | pstr->offsets[byte_idx] = src_idx; | ||
427 | for (i = 1; i < mbcdlen; ++i) | ||
428 | { | ||
429 | pstr->offsets[byte_idx + i] | ||
430 | = src_idx + (i < mbclen ? i : mbclen - 1); | ||
431 | pstr->wcs[byte_idx + i] = WEOF; | ||
432 | } | ||
433 | pstr->len += mbcdlen - mbclen; | ||
434 | if (pstr->raw_stop > src_idx) | ||
435 | pstr->stop += mbcdlen - mbclen; | ||
436 | end_idx = (pstr->bufs_len > pstr->len) | ||
437 | ? pstr->len : pstr->bufs_len; | ||
438 | byte_idx += mbcdlen; | ||
439 | src_idx += mbclen; | ||
440 | continue; | ||
441 | } | ||
442 | else | ||
443 | memcpy (pstr->mbs + byte_idx, p, mbclen); | ||
444 | } | ||
445 | else | ||
446 | memcpy (pstr->mbs + byte_idx, p, mbclen); | ||
447 | |||
448 | if (BE (pstr->offsets_needed != 0, 0)) | ||
449 | { | ||
450 | size_t i; | ||
451 | for (i = 0; i < mbclen; ++i) | ||
452 | pstr->offsets[byte_idx + i] = src_idx + i; | ||
453 | } | ||
454 | src_idx += mbclen; | ||
455 | |||
456 | pstr->wcs[byte_idx++] = wcu; | ||
457 | /* Write paddings. */ | ||
458 | for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) | ||
459 | pstr->wcs[byte_idx++] = WEOF; | ||
460 | } | ||
461 | else if (mbclen == (size_t) -1 || mbclen == 0) | ||
462 | { | ||
463 | /* It is an invalid character or '\0'. Just use the byte. */ | ||
464 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx]; | ||
465 | |||
466 | if (BE (pstr->trans != NULL, 0)) | ||
467 | ch = pstr->trans [ch]; | ||
468 | pstr->mbs[byte_idx] = ch; | ||
469 | |||
470 | if (BE (pstr->offsets_needed != 0, 0)) | ||
471 | pstr->offsets[byte_idx] = src_idx; | ||
472 | ++src_idx; | ||
473 | |||
474 | /* And also cast it to wide char. */ | ||
475 | pstr->wcs[byte_idx++] = (wchar_t) ch; | ||
476 | if (BE (mbclen == (size_t) -1, 0)) | ||
477 | pstr->cur_state = prev_st; | ||
478 | } | ||
479 | else | ||
480 | { | ||
481 | /* The buffer doesn't have enough space, finish to build. */ | ||
482 | pstr->cur_state = prev_st; | ||
483 | break; | ||
484 | } | ||
485 | } | ||
486 | pstr->valid_len = byte_idx; | ||
487 | pstr->valid_raw_len = src_idx; | ||
488 | return REG_NOERROR; | ||
489 | } | ||
490 | |||
491 | /* Skip characters until the index becomes greater than NEW_RAW_IDX. | ||
492 | Return the index. */ | ||
493 | |||
494 | static int | ||
495 | internal_function | ||
496 | re_string_skip_chars (re_string_t *pstr, int new_raw_idx, wint_t *last_wc) | ||
497 | { | ||
498 | mbstate_t prev_st; | ||
499 | int rawbuf_idx; | ||
500 | size_t mbclen; | ||
501 | wint_t wc = WEOF; | ||
502 | |||
503 | /* Skip the characters which are not necessary to check. */ | ||
504 | for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len; | ||
505 | rawbuf_idx < new_raw_idx;) | ||
506 | { | ||
507 | wchar_t wc2; | ||
508 | int remain_len = pstr->len - rawbuf_idx; | ||
509 | prev_st = pstr->cur_state; | ||
510 | mbclen = __mbrtowc (&wc2, (const char *) pstr->raw_mbs + rawbuf_idx, | ||
511 | remain_len, &pstr->cur_state); | ||
512 | if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0)) | ||
513 | { | ||
514 | /* We treat these cases as a single byte character. */ | ||
515 | if (mbclen == 0 || remain_len == 0) | ||
516 | wc = L'\0'; | ||
517 | else | ||
518 | wc = *(unsigned char *) (pstr->raw_mbs + rawbuf_idx); | ||
519 | mbclen = 1; | ||
520 | pstr->cur_state = prev_st; | ||
521 | } | ||
522 | else | ||
523 | wc = (wint_t) wc2; | ||
524 | /* Then proceed the next character. */ | ||
525 | rawbuf_idx += mbclen; | ||
526 | } | ||
527 | *last_wc = (wint_t) wc; | ||
528 | return rawbuf_idx; | ||
529 | } | ||
530 | #endif /* RE_ENABLE_I18N */ | ||
531 | |||
532 | /* Build the buffer PSTR->MBS, and apply the translation if we need. | ||
533 | This function is used in case of REG_ICASE. */ | ||
534 | |||
535 | static void | ||
536 | internal_function | ||
537 | build_upper_buffer (re_string_t *pstr) | ||
538 | { | ||
539 | int char_idx, end_idx; | ||
540 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | ||
541 | |||
542 | for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx) | ||
543 | { | ||
544 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx]; | ||
545 | if (BE (pstr->trans != NULL, 0)) | ||
546 | ch = pstr->trans[ch]; | ||
547 | if (islower (ch)) | ||
548 | pstr->mbs[char_idx] = toupper (ch); | ||
549 | else | ||
550 | pstr->mbs[char_idx] = ch; | ||
551 | } | ||
552 | pstr->valid_len = char_idx; | ||
553 | pstr->valid_raw_len = char_idx; | ||
554 | } | ||
555 | |||
556 | /* Apply TRANS to the buffer in PSTR. */ | ||
557 | |||
558 | static void | ||
559 | internal_function | ||
560 | re_string_translate_buffer (re_string_t *pstr) | ||
561 | { | ||
562 | int buf_idx, end_idx; | ||
563 | end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; | ||
564 | |||
565 | for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx) | ||
566 | { | ||
567 | int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx]; | ||
568 | pstr->mbs[buf_idx] = pstr->trans[ch]; | ||
569 | } | ||
570 | |||
571 | pstr->valid_len = buf_idx; | ||
572 | pstr->valid_raw_len = buf_idx; | ||
573 | } | ||
574 | |||
575 | /* This function re-construct the buffers. | ||
576 | Concretely, convert to wide character in case of pstr->mb_cur_max > 1, | ||
577 | convert to upper case in case of REG_ICASE, apply translation. */ | ||
578 | |||
579 | static reg_errcode_t | ||
580 | internal_function | ||
581 | re_string_reconstruct (re_string_t *pstr, int idx, int eflags) | ||
582 | { | ||
583 | int offset = idx - pstr->raw_mbs_idx; | ||
584 | if (BE (offset < 0, 0)) | ||
585 | { | ||
586 | /* Reset buffer. */ | ||
587 | #ifdef RE_ENABLE_I18N | ||
588 | if (pstr->mb_cur_max > 1) | ||
589 | memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); | ||
590 | #endif /* RE_ENABLE_I18N */ | ||
591 | pstr->len = pstr->raw_len; | ||
592 | pstr->stop = pstr->raw_stop; | ||
593 | pstr->valid_len = 0; | ||
594 | pstr->raw_mbs_idx = 0; | ||
595 | pstr->valid_raw_len = 0; | ||
596 | pstr->offsets_needed = 0; | ||
597 | pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF | ||
598 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF); | ||
599 | if (!pstr->mbs_allocated) | ||
600 | pstr->mbs = (unsigned char *) pstr->raw_mbs; | ||
601 | offset = idx; | ||
602 | } | ||
603 | |||
604 | if (BE (offset != 0, 1)) | ||
605 | { | ||
606 | /* Should the already checked characters be kept? */ | ||
607 | if (BE (offset < pstr->valid_raw_len, 1)) | ||
608 | { | ||
609 | /* Yes, move them to the front of the buffer. */ | ||
610 | #ifdef RE_ENABLE_I18N | ||
611 | if (BE (pstr->offsets_needed, 0)) | ||
612 | { | ||
613 | int low = 0, high = pstr->valid_len, mid; | ||
614 | do | ||
615 | { | ||
616 | mid = (high + low) / 2; | ||
617 | if (pstr->offsets[mid] > offset) | ||
618 | high = mid; | ||
619 | else if (pstr->offsets[mid] < offset) | ||
620 | low = mid + 1; | ||
621 | else | ||
622 | break; | ||
623 | } | ||
624 | while (low < high); | ||
625 | if (pstr->offsets[mid] < offset) | ||
626 | ++mid; | ||
627 | pstr->tip_context = re_string_context_at (pstr, mid - 1, | ||
628 | eflags); | ||
629 | /* This can be quite complicated, so handle specially | ||
630 | only the common and easy case where the character with | ||
631 | different length representation of lower and upper | ||
632 | case is present at or after offset. */ | ||
633 | if (pstr->valid_len > offset | ||
634 | && mid == offset && pstr->offsets[mid] == offset) | ||
635 | { | ||
636 | memmove (pstr->wcs, pstr->wcs + offset, | ||
637 | (pstr->valid_len - offset) * sizeof (wint_t)); | ||
638 | memmove (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset); | ||
639 | pstr->valid_len -= offset; | ||
640 | pstr->valid_raw_len -= offset; | ||
641 | for (low = 0; low < pstr->valid_len; low++) | ||
642 | pstr->offsets[low] = pstr->offsets[low + offset] - offset; | ||
643 | } | ||
644 | else | ||
645 | { | ||
646 | /* Otherwise, just find out how long the partial multibyte | ||
647 | character at offset is and fill it with WEOF/255. */ | ||
648 | pstr->len = pstr->raw_len - idx + offset; | ||
649 | pstr->stop = pstr->raw_stop - idx + offset; | ||
650 | pstr->offsets_needed = 0; | ||
651 | while (mid > 0 && pstr->offsets[mid - 1] == offset) | ||
652 | --mid; | ||
653 | while (mid < pstr->valid_len) | ||
654 | if (pstr->wcs[mid] != WEOF) | ||
655 | break; | ||
656 | else | ||
657 | ++mid; | ||
658 | if (mid == pstr->valid_len) | ||
659 | pstr->valid_len = 0; | ||
660 | else | ||
661 | { | ||
662 | pstr->valid_len = pstr->offsets[mid] - offset; | ||
663 | if (pstr->valid_len) | ||
664 | { | ||
665 | for (low = 0; low < pstr->valid_len; ++low) | ||
666 | pstr->wcs[low] = WEOF; | ||
667 | memset (pstr->mbs, 255, pstr->valid_len); | ||
668 | } | ||
669 | } | ||
670 | pstr->valid_raw_len = pstr->valid_len; | ||
671 | } | ||
672 | } | ||
673 | else | ||
674 | #endif | ||
675 | { | ||
676 | pstr->tip_context = re_string_context_at (pstr, offset - 1, | ||
677 | eflags); | ||
678 | #ifdef RE_ENABLE_I18N | ||
679 | if (pstr->mb_cur_max > 1) | ||
680 | memmove (pstr->wcs, pstr->wcs + offset, | ||
681 | (pstr->valid_len - offset) * sizeof (wint_t)); | ||
682 | #endif /* RE_ENABLE_I18N */ | ||
683 | if (BE (pstr->mbs_allocated, 0)) | ||
684 | memmove (pstr->mbs, pstr->mbs + offset, | ||
685 | pstr->valid_len - offset); | ||
686 | pstr->valid_len -= offset; | ||
687 | pstr->valid_raw_len -= offset; | ||
688 | #if DEBUG | ||
689 | assert (pstr->valid_len > 0); | ||
690 | #endif | ||
691 | } | ||
692 | } | ||
693 | else | ||
694 | { | ||
695 | #ifdef RE_ENABLE_I18N | ||
696 | /* No, skip all characters until IDX. */ | ||
697 | int prev_valid_len = pstr->valid_len; | ||
698 | |||
699 | if (BE (pstr->offsets_needed, 0)) | ||
700 | { | ||
701 | pstr->len = pstr->raw_len - idx + offset; | ||
702 | pstr->stop = pstr->raw_stop - idx + offset; | ||
703 | pstr->offsets_needed = 0; | ||
704 | } | ||
705 | #endif | ||
706 | pstr->valid_len = 0; | ||
707 | #ifdef RE_ENABLE_I18N | ||
708 | if (pstr->mb_cur_max > 1) | ||
709 | { | ||
710 | int wcs_idx; | ||
711 | wint_t wc = WEOF; | ||
712 | |||
713 | if (pstr->is_utf8) | ||
714 | { | ||
715 | const unsigned char *raw, *p, *end; | ||
716 | |||
717 | /* Special case UTF-8. Multi-byte chars start with any | ||
718 | byte other than 0x80 - 0xbf. */ | ||
719 | raw = pstr->raw_mbs + pstr->raw_mbs_idx; | ||
720 | end = raw + (offset - pstr->mb_cur_max); | ||
721 | if (end < pstr->raw_mbs) | ||
722 | end = pstr->raw_mbs; | ||
723 | p = raw + offset - 1; | ||
724 | #ifdef _LIBC | ||
725 | /* We know the wchar_t encoding is UCS4, so for the simple | ||
726 | case, ASCII characters, skip the conversion step. */ | ||
727 | if (isascii (*p) && BE (pstr->trans == NULL, 1)) | ||
728 | { | ||
729 | memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); | ||
730 | /* pstr->valid_len = 0; */ | ||
731 | wc = (wchar_t) *p; | ||
732 | } | ||
733 | else | ||
734 | #endif | ||
735 | for (; p >= end; --p) | ||
736 | if ((*p & 0xc0) != 0x80) | ||
737 | { | ||
738 | mbstate_t cur_state; | ||
739 | wchar_t wc2; | ||
740 | int mlen = raw + pstr->len - p; | ||
741 | unsigned char buf[6]; | ||
742 | size_t mbclen; | ||
743 | |||
744 | if (BE (pstr->trans != NULL, 0)) | ||
745 | { | ||
746 | int i = mlen < 6 ? mlen : 6; | ||
747 | while (--i >= 0) | ||
748 | buf[i] = pstr->trans[p[i]]; | ||
749 | } | ||
750 | /* XXX Don't use mbrtowc, we know which conversion | ||
751 | to use (UTF-8 -> UCS4). */ | ||
752 | memset (&cur_state, 0, sizeof (cur_state)); | ||
753 | mbclen = __mbrtowc (&wc2, (const char *) p, mlen, | ||
754 | &cur_state); | ||
755 | if (raw + offset - p <= mbclen | ||
756 | && mbclen < (size_t) -2) | ||
757 | { | ||
758 | memset (&pstr->cur_state, '\0', | ||
759 | sizeof (mbstate_t)); | ||
760 | pstr->valid_len = mbclen - (raw + offset - p); | ||
761 | wc = wc2; | ||
762 | } | ||
763 | break; | ||
764 | } | ||
765 | } | ||
766 | |||
767 | if (wc == WEOF) | ||
768 | pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx; | ||
769 | if (wc == WEOF) | ||
770 | pstr->tip_context | ||
771 | = re_string_context_at (pstr, prev_valid_len - 1, eflags); | ||
772 | else | ||
773 | pstr->tip_context = ((BE (pstr->word_ops_used != 0, 0) | ||
774 | && IS_WIDE_WORD_CHAR (wc)) | ||
775 | ? CONTEXT_WORD | ||
776 | : ((IS_WIDE_NEWLINE (wc) | ||
777 | && pstr->newline_anchor) | ||
778 | ? CONTEXT_NEWLINE : 0)); | ||
779 | if (BE (pstr->valid_len, 0)) | ||
780 | { | ||
781 | for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx) | ||
782 | pstr->wcs[wcs_idx] = WEOF; | ||
783 | if (pstr->mbs_allocated) | ||
784 | memset (pstr->mbs, 255, pstr->valid_len); | ||
785 | } | ||
786 | pstr->valid_raw_len = pstr->valid_len; | ||
787 | } | ||
788 | else | ||
789 | #endif /* RE_ENABLE_I18N */ | ||
790 | { | ||
791 | int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1]; | ||
792 | pstr->valid_raw_len = 0; | ||
793 | if (pstr->trans) | ||
794 | c = pstr->trans[c]; | ||
795 | pstr->tip_context = (bitset_contain (pstr->word_char, c) | ||
796 | ? CONTEXT_WORD | ||
797 | : ((IS_NEWLINE (c) && pstr->newline_anchor) | ||
798 | ? CONTEXT_NEWLINE : 0)); | ||
799 | } | ||
800 | } | ||
801 | if (!BE (pstr->mbs_allocated, 0)) | ||
802 | pstr->mbs += offset; | ||
803 | } | ||
804 | pstr->raw_mbs_idx = idx; | ||
805 | pstr->len -= offset; | ||
806 | pstr->stop -= offset; | ||
807 | |||
808 | /* Then build the buffers. */ | ||
809 | #ifdef RE_ENABLE_I18N | ||
810 | if (pstr->mb_cur_max > 1) | ||
811 | { | ||
812 | if (pstr->icase) | ||
813 | { | ||
814 | reg_errcode_t ret = build_wcs_upper_buffer (pstr); | ||
815 | if (BE (ret != REG_NOERROR, 0)) | ||
816 | return ret; | ||
817 | } | ||
818 | else | ||
819 | build_wcs_buffer (pstr); | ||
820 | } | ||
821 | else | ||
822 | #endif /* RE_ENABLE_I18N */ | ||
823 | if (BE (pstr->mbs_allocated, 0)) | ||
824 | { | ||
825 | if (pstr->icase) | ||
826 | build_upper_buffer (pstr); | ||
827 | else if (pstr->trans != NULL) | ||
828 | re_string_translate_buffer (pstr); | ||
829 | } | ||
830 | else | ||
831 | pstr->valid_len = pstr->len; | ||
832 | |||
833 | pstr->cur_idx = 0; | ||
834 | return REG_NOERROR; | ||
835 | } | ||
836 | |||
837 | static unsigned char | ||
838 | internal_function __attribute ((pure)) | ||
839 | re_string_peek_byte_case (const re_string_t *pstr, int idx) | ||
840 | { | ||
841 | int ch, off; | ||
842 | |||
843 | /* Handle the common (easiest) cases first. */ | ||
844 | if (BE (!pstr->mbs_allocated, 1)) | ||
845 | return re_string_peek_byte (pstr, idx); | ||
846 | |||
847 | #ifdef RE_ENABLE_I18N | ||
848 | if (pstr->mb_cur_max > 1 | ||
849 | && ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx)) | ||
850 | return re_string_peek_byte (pstr, idx); | ||
851 | #endif | ||
852 | |||
853 | off = pstr->cur_idx + idx; | ||
854 | #ifdef RE_ENABLE_I18N | ||
855 | if (pstr->offsets_needed) | ||
856 | off = pstr->offsets[off]; | ||
857 | #endif | ||
858 | |||
859 | ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; | ||
860 | |||
861 | #ifdef RE_ENABLE_I18N | ||
862 | /* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I | ||
863 | this function returns CAPITAL LETTER I instead of first byte of | ||
864 | DOTLESS SMALL LETTER I. The latter would confuse the parser, | ||
865 | since peek_byte_case doesn't advance cur_idx in any way. */ | ||
866 | if (pstr->offsets_needed && !isascii (ch)) | ||
867 | return re_string_peek_byte (pstr, idx); | ||
868 | #endif | ||
869 | |||
870 | return ch; | ||
871 | } | ||
872 | |||
873 | static unsigned char | ||
874 | internal_function __attribute ((pure)) | ||
875 | re_string_fetch_byte_case (re_string_t *pstr) | ||
876 | { | ||
877 | if (BE (!pstr->mbs_allocated, 1)) | ||
878 | return re_string_fetch_byte (pstr); | ||
879 | |||
880 | #ifdef RE_ENABLE_I18N | ||
881 | if (pstr->offsets_needed) | ||
882 | { | ||
883 | int off, ch; | ||
884 | |||
885 | /* For tr_TR.UTF-8 [[:islower:]] there is | ||
886 | [[: CAPITAL LETTER I WITH DOT lower:]] in mbs. Skip | ||
887 | in that case the whole multi-byte character and return | ||
888 | the original letter. On the other side, with | ||
889 | [[: DOTLESS SMALL LETTER I return [[:I, as doing | ||
890 | anything else would complicate things too much. */ | ||
891 | |||
892 | if (!re_string_first_byte (pstr, pstr->cur_idx)) | ||
893 | return re_string_fetch_byte (pstr); | ||
894 | |||
895 | off = pstr->offsets[pstr->cur_idx]; | ||
896 | ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; | ||
897 | |||
898 | if (! isascii (ch)) | ||
899 | return re_string_fetch_byte (pstr); | ||
900 | |||
901 | re_string_skip_bytes (pstr, | ||
902 | re_string_char_size_at (pstr, pstr->cur_idx)); | ||
903 | return ch; | ||
904 | } | ||
905 | #endif | ||
906 | |||
907 | return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++]; | ||
908 | } | ||
909 | |||
910 | static void | ||
911 | internal_function | ||
912 | re_string_destruct (re_string_t *pstr) | ||
913 | { | ||
914 | #ifdef RE_ENABLE_I18N | ||
915 | re_free (pstr->wcs); | ||
916 | re_free (pstr->offsets); | ||
917 | #endif /* RE_ENABLE_I18N */ | ||
918 | if (pstr->mbs_allocated) | ||
919 | re_free (pstr->mbs); | ||
920 | } | ||
921 | |||
922 | /* Return the context at IDX in INPUT. */ | ||
923 | |||
924 | static unsigned int | ||
925 | internal_function | ||
926 | re_string_context_at (const re_string_t *input, int idx, int eflags) | ||
927 | { | ||
928 | int c; | ||
929 | if (BE (idx < 0, 0)) | ||
930 | /* In this case, we use the value stored in input->tip_context, | ||
931 | since we can't know the character in input->mbs[-1] here. */ | ||
932 | return input->tip_context; | ||
933 | if (BE (idx == input->len, 0)) | ||
934 | return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF | ||
935 | : CONTEXT_NEWLINE | CONTEXT_ENDBUF); | ||
936 | #ifdef RE_ENABLE_I18N | ||
937 | if (input->mb_cur_max > 1) | ||
938 | { | ||
939 | wint_t wc; | ||
940 | int wc_idx = idx; | ||
941 | while(input->wcs[wc_idx] == WEOF) | ||
942 | { | ||
943 | #ifdef DEBUG | ||
944 | /* It must not happen. */ | ||
945 | assert (wc_idx >= 0); | ||
946 | #endif | ||
947 | --wc_idx; | ||
948 | if (wc_idx < 0) | ||
949 | return input->tip_context; | ||
950 | } | ||
951 | wc = input->wcs[wc_idx]; | ||
952 | if (BE (input->word_ops_used != 0, 0) && IS_WIDE_WORD_CHAR (wc)) | ||
953 | return CONTEXT_WORD; | ||
954 | return (IS_WIDE_NEWLINE (wc) && input->newline_anchor | ||
955 | ? CONTEXT_NEWLINE : 0); | ||
956 | } | ||
957 | else | ||
958 | #endif | ||
959 | { | ||
960 | c = re_string_byte_at (input, idx); | ||
961 | if (bitset_contain (input->word_char, c)) | ||
962 | return CONTEXT_WORD; | ||
963 | return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0; | ||
964 | } | ||
965 | } | ||
966 | |||
967 | /* Functions for set operation. */ | ||
968 | |||
969 | static reg_errcode_t | ||
970 | internal_function | ||
971 | re_node_set_alloc (re_node_set *set, int size) | ||
972 | { | ||
973 | /* | ||
974 | * ADR: valgrind says size can be 0, which then doesn't | ||
975 | * free the block of size 0. Harumph. This seems | ||
976 | * to work ok, though. | ||
977 | */ | ||
978 | if (size == 0) | ||
979 | { | ||
980 | memset(set, 0, sizeof(*set)); | ||
981 | return REG_NOERROR; | ||
982 | } | ||
983 | set->alloc = size; | ||
984 | set->nelem = 0; | ||
985 | set->elems = re_malloc (int, size); | ||
986 | if (BE (set->elems == NULL, 0)) | ||
987 | return REG_ESPACE; | ||
988 | return REG_NOERROR; | ||
989 | } | ||
990 | |||
991 | static reg_errcode_t | ||
992 | internal_function | ||
993 | re_node_set_init_1 (re_node_set *set, int elem) | ||
994 | { | ||
995 | set->alloc = 1; | ||
996 | set->nelem = 1; | ||
997 | set->elems = re_malloc (int, 1); | ||
998 | if (BE (set->elems == NULL, 0)) | ||
999 | { | ||
1000 | set->alloc = set->nelem = 0; | ||
1001 | return REG_ESPACE; | ||
1002 | } | ||
1003 | set->elems[0] = elem; | ||
1004 | return REG_NOERROR; | ||
1005 | } | ||
1006 | |||
1007 | static reg_errcode_t | ||
1008 | internal_function | ||
1009 | re_node_set_init_2 (re_node_set *set, int elem1, int elem2) | ||
1010 | { | ||
1011 | set->alloc = 2; | ||
1012 | set->elems = re_malloc (int, 2); | ||
1013 | if (BE (set->elems == NULL, 0)) | ||
1014 | return REG_ESPACE; | ||
1015 | if (elem1 == elem2) | ||
1016 | { | ||
1017 | set->nelem = 1; | ||
1018 | set->elems[0] = elem1; | ||
1019 | } | ||
1020 | else | ||
1021 | { | ||
1022 | set->nelem = 2; | ||
1023 | if (elem1 < elem2) | ||
1024 | { | ||
1025 | set->elems[0] = elem1; | ||
1026 | set->elems[1] = elem2; | ||
1027 | } | ||
1028 | else | ||
1029 | { | ||
1030 | set->elems[0] = elem2; | ||
1031 | set->elems[1] = elem1; | ||
1032 | } | ||
1033 | } | ||
1034 | return REG_NOERROR; | ||
1035 | } | ||
1036 | |||
1037 | static reg_errcode_t | ||
1038 | internal_function | ||
1039 | re_node_set_init_copy (re_node_set *dest, const re_node_set *src) | ||
1040 | { | ||
1041 | dest->nelem = src->nelem; | ||
1042 | if (src->nelem > 0) | ||
1043 | { | ||
1044 | dest->alloc = dest->nelem; | ||
1045 | dest->elems = re_malloc (int, dest->alloc); | ||
1046 | if (BE (dest->elems == NULL, 0)) | ||
1047 | { | ||
1048 | dest->alloc = dest->nelem = 0; | ||
1049 | return REG_ESPACE; | ||
1050 | } | ||
1051 | memcpy (dest->elems, src->elems, src->nelem * sizeof (int)); | ||
1052 | } | ||
1053 | else | ||
1054 | re_node_set_init_empty (dest); | ||
1055 | return REG_NOERROR; | ||
1056 | } | ||
1057 | |||
1058 | /* Calculate the intersection of the sets SRC1 and SRC2. And merge it to | ||
1059 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. | ||
1060 | Note: We assume dest->elems is NULL, when dest->alloc is 0. */ | ||
1061 | |||
1062 | static reg_errcode_t | ||
1063 | internal_function | ||
1064 | re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1, | ||
1065 | const re_node_set *src2) | ||
1066 | { | ||
1067 | int i1, i2, is, id, delta, sbase; | ||
1068 | if (src1->nelem == 0 || src2->nelem == 0) | ||
1069 | return REG_NOERROR; | ||
1070 | |||
1071 | /* We need dest->nelem + 2 * elems_in_intersection; this is a | ||
1072 | conservative estimate. */ | ||
1073 | if (src1->nelem + src2->nelem + dest->nelem > dest->alloc) | ||
1074 | { | ||
1075 | int new_alloc = src1->nelem + src2->nelem + dest->alloc; | ||
1076 | int *new_elems = re_realloc (dest->elems, int, new_alloc); | ||
1077 | if (BE (new_elems == NULL, 0)) | ||
1078 | return REG_ESPACE; | ||
1079 | dest->elems = new_elems; | ||
1080 | dest->alloc = new_alloc; | ||
1081 | } | ||
1082 | |||
1083 | /* Find the items in the intersection of SRC1 and SRC2, and copy | ||
1084 | into the top of DEST those that are not already in DEST itself. */ | ||
1085 | sbase = dest->nelem + src1->nelem + src2->nelem; | ||
1086 | i1 = src1->nelem - 1; | ||
1087 | i2 = src2->nelem - 1; | ||
1088 | id = dest->nelem - 1; | ||
1089 | for (;;) | ||
1090 | { | ||
1091 | if (src1->elems[i1] == src2->elems[i2]) | ||
1092 | { | ||
1093 | /* Try to find the item in DEST. Maybe we could binary search? */ | ||
1094 | while (id >= 0 && dest->elems[id] > src1->elems[i1]) | ||
1095 | --id; | ||
1096 | |||
1097 | if (id < 0 || dest->elems[id] != src1->elems[i1]) | ||
1098 | dest->elems[--sbase] = src1->elems[i1]; | ||
1099 | |||
1100 | if (--i1 < 0 || --i2 < 0) | ||
1101 | break; | ||
1102 | } | ||
1103 | |||
1104 | /* Lower the highest of the two items. */ | ||
1105 | else if (src1->elems[i1] < src2->elems[i2]) | ||
1106 | { | ||
1107 | if (--i2 < 0) | ||
1108 | break; | ||
1109 | } | ||
1110 | else | ||
1111 | { | ||
1112 | if (--i1 < 0) | ||
1113 | break; | ||
1114 | } | ||
1115 | } | ||
1116 | |||
1117 | id = dest->nelem - 1; | ||
1118 | is = dest->nelem + src1->nelem + src2->nelem - 1; | ||
1119 | delta = is - sbase + 1; | ||
1120 | |||
1121 | /* Now copy. When DELTA becomes zero, the remaining | ||
1122 | DEST elements are already in place; this is more or | ||
1123 | less the same loop that is in re_node_set_merge. */ | ||
1124 | dest->nelem += delta; | ||
1125 | if (delta > 0 && id >= 0) | ||
1126 | for (;;) | ||
1127 | { | ||
1128 | if (dest->elems[is] > dest->elems[id]) | ||
1129 | { | ||
1130 | /* Copy from the top. */ | ||
1131 | dest->elems[id + delta--] = dest->elems[is--]; | ||
1132 | if (delta == 0) | ||
1133 | break; | ||
1134 | } | ||
1135 | else | ||
1136 | { | ||
1137 | /* Slide from the bottom. */ | ||
1138 | dest->elems[id + delta] = dest->elems[id]; | ||
1139 | if (--id < 0) | ||
1140 | break; | ||
1141 | } | ||
1142 | } | ||
1143 | |||
1144 | /* Copy remaining SRC elements. */ | ||
1145 | memcpy (dest->elems, dest->elems + sbase, delta * sizeof (int)); | ||
1146 | |||
1147 | return REG_NOERROR; | ||
1148 | } | ||
1149 | |||
1150 | /* Calculate the union set of the sets SRC1 and SRC2. And store it to | ||
1151 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ | ||
1152 | |||
1153 | static reg_errcode_t | ||
1154 | internal_function | ||
1155 | re_node_set_init_union (re_node_set *dest, const re_node_set *src1, | ||
1156 | const re_node_set *src2) | ||
1157 | { | ||
1158 | int i1, i2, id; | ||
1159 | if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0) | ||
1160 | { | ||
1161 | dest->alloc = src1->nelem + src2->nelem; | ||
1162 | dest->elems = re_malloc (int, dest->alloc); | ||
1163 | if (BE (dest->elems == NULL, 0)) | ||
1164 | return REG_ESPACE; | ||
1165 | } | ||
1166 | else | ||
1167 | { | ||
1168 | if (src1 != NULL && src1->nelem > 0) | ||
1169 | return re_node_set_init_copy (dest, src1); | ||
1170 | else if (src2 != NULL && src2->nelem > 0) | ||
1171 | return re_node_set_init_copy (dest, src2); | ||
1172 | else | ||
1173 | re_node_set_init_empty (dest); | ||
1174 | return REG_NOERROR; | ||
1175 | } | ||
1176 | for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;) | ||
1177 | { | ||
1178 | if (src1->elems[i1] > src2->elems[i2]) | ||
1179 | { | ||
1180 | dest->elems[id++] = src2->elems[i2++]; | ||
1181 | continue; | ||
1182 | } | ||
1183 | if (src1->elems[i1] == src2->elems[i2]) | ||
1184 | ++i2; | ||
1185 | dest->elems[id++] = src1->elems[i1++]; | ||
1186 | } | ||
1187 | if (i1 < src1->nelem) | ||
1188 | { | ||
1189 | memcpy (dest->elems + id, src1->elems + i1, | ||
1190 | (src1->nelem - i1) * sizeof (int)); | ||
1191 | id += src1->nelem - i1; | ||
1192 | } | ||
1193 | else if (i2 < src2->nelem) | ||
1194 | { | ||
1195 | memcpy (dest->elems + id, src2->elems + i2, | ||
1196 | (src2->nelem - i2) * sizeof (int)); | ||
1197 | id += src2->nelem - i2; | ||
1198 | } | ||
1199 | dest->nelem = id; | ||
1200 | return REG_NOERROR; | ||
1201 | } | ||
1202 | |||
1203 | /* Calculate the union set of the sets DEST and SRC. And store it to | ||
1204 | DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ | ||
1205 | |||
1206 | static reg_errcode_t | ||
1207 | internal_function | ||
1208 | re_node_set_merge (re_node_set *dest, const re_node_set *src) | ||
1209 | { | ||
1210 | int is, id, sbase, delta; | ||
1211 | if (src == NULL || src->nelem == 0) | ||
1212 | return REG_NOERROR; | ||
1213 | if (dest->alloc < 2 * src->nelem + dest->nelem) | ||
1214 | { | ||
1215 | int new_alloc = 2 * (src->nelem + dest->alloc); | ||
1216 | int *new_buffer = re_realloc (dest->elems, int, new_alloc); | ||
1217 | if (BE (new_buffer == NULL, 0)) | ||
1218 | return REG_ESPACE; | ||
1219 | dest->elems = new_buffer; | ||
1220 | dest->alloc = new_alloc; | ||
1221 | } | ||
1222 | |||
1223 | if (BE (dest->nelem == 0, 0)) | ||
1224 | { | ||
1225 | dest->nelem = src->nelem; | ||
1226 | memcpy (dest->elems, src->elems, src->nelem * sizeof (int)); | ||
1227 | return REG_NOERROR; | ||
1228 | } | ||
1229 | |||
1230 | /* Copy into the top of DEST the items of SRC that are not | ||
1231 | found in DEST. Maybe we could binary search in DEST? */ | ||
1232 | for (sbase = dest->nelem + 2 * src->nelem, | ||
1233 | is = src->nelem - 1, id = dest->nelem - 1; is >= 0 && id >= 0; ) | ||
1234 | { | ||
1235 | if (dest->elems[id] == src->elems[is]) | ||
1236 | is--, id--; | ||
1237 | else if (dest->elems[id] < src->elems[is]) | ||
1238 | dest->elems[--sbase] = src->elems[is--]; | ||
1239 | else /* if (dest->elems[id] > src->elems[is]) */ | ||
1240 | --id; | ||
1241 | } | ||
1242 | |||
1243 | if (is >= 0) | ||
1244 | { | ||
1245 | /* If DEST is exhausted, the remaining items of SRC must be unique. */ | ||
1246 | sbase -= is + 1; | ||
1247 | memcpy (dest->elems + sbase, src->elems, (is + 1) * sizeof (int)); | ||
1248 | } | ||
1249 | |||
1250 | id = dest->nelem - 1; | ||
1251 | is = dest->nelem + 2 * src->nelem - 1; | ||
1252 | delta = is - sbase + 1; | ||
1253 | if (delta == 0) | ||
1254 | return REG_NOERROR; | ||
1255 | |||
1256 | /* Now copy. When DELTA becomes zero, the remaining | ||
1257 | DEST elements are already in place. */ | ||
1258 | dest->nelem += delta; | ||
1259 | for (;;) | ||
1260 | { | ||
1261 | if (dest->elems[is] > dest->elems[id]) | ||
1262 | { | ||
1263 | /* Copy from the top. */ | ||
1264 | dest->elems[id + delta--] = dest->elems[is--]; | ||
1265 | if (delta == 0) | ||
1266 | break; | ||
1267 | } | ||
1268 | else | ||
1269 | { | ||
1270 | /* Slide from the bottom. */ | ||
1271 | dest->elems[id + delta] = dest->elems[id]; | ||
1272 | if (--id < 0) | ||
1273 | { | ||
1274 | /* Copy remaining SRC elements. */ | ||
1275 | memcpy (dest->elems, dest->elems + sbase, | ||
1276 | delta * sizeof (int)); | ||
1277 | break; | ||
1278 | } | ||
1279 | } | ||
1280 | } | ||
1281 | |||
1282 | return REG_NOERROR; | ||
1283 | } | ||
1284 | |||
1285 | /* Insert the new element ELEM to the re_node_set* SET. | ||
1286 | SET should not already have ELEM. | ||
1287 | return -1 if an error has occurred, return 1 otherwise. */ | ||
1288 | |||
1289 | static int | ||
1290 | internal_function | ||
1291 | re_node_set_insert (re_node_set *set, int elem) | ||
1292 | { | ||
1293 | int idx; | ||
1294 | /* In case the set is empty. */ | ||
1295 | if (set->alloc == 0) | ||
1296 | { | ||
1297 | if (BE (re_node_set_init_1 (set, elem) == REG_NOERROR, 1)) | ||
1298 | return 1; | ||
1299 | else | ||
1300 | return -1; | ||
1301 | } | ||
1302 | |||
1303 | if (BE (set->nelem, 0) == 0) | ||
1304 | { | ||
1305 | /* We already guaranteed above that set->alloc != 0. */ | ||
1306 | set->elems[0] = elem; | ||
1307 | ++set->nelem; | ||
1308 | return 1; | ||
1309 | } | ||
1310 | |||
1311 | /* Realloc if we need. */ | ||
1312 | if (set->alloc == set->nelem) | ||
1313 | { | ||
1314 | int *new_elems; | ||
1315 | set->alloc = set->alloc * 2; | ||
1316 | new_elems = re_realloc (set->elems, int, set->alloc); | ||
1317 | if (BE (new_elems == NULL, 0)) | ||
1318 | return -1; | ||
1319 | set->elems = new_elems; | ||
1320 | } | ||
1321 | |||
1322 | /* Move the elements which follows the new element. Test the | ||
1323 | first element separately to skip a check in the inner loop. */ | ||
1324 | if (elem < set->elems[0]) | ||
1325 | { | ||
1326 | idx = 0; | ||
1327 | for (idx = set->nelem; idx > 0; idx--) | ||
1328 | set->elems[idx] = set->elems[idx - 1]; | ||
1329 | } | ||
1330 | else | ||
1331 | { | ||
1332 | for (idx = set->nelem; set->elems[idx - 1] > elem; idx--) | ||
1333 | set->elems[idx] = set->elems[idx - 1]; | ||
1334 | } | ||
1335 | |||
1336 | /* Insert the new element. */ | ||
1337 | set->elems[idx] = elem; | ||
1338 | ++set->nelem; | ||
1339 | return 1; | ||
1340 | } | ||
1341 | |||
1342 | /* Insert the new element ELEM to the re_node_set* SET. | ||
1343 | SET should not already have any element greater than or equal to ELEM. | ||
1344 | Return -1 if an error has occurred, return 1 otherwise. */ | ||
1345 | |||
1346 | static int | ||
1347 | internal_function | ||
1348 | re_node_set_insert_last (re_node_set *set, int elem) | ||
1349 | { | ||
1350 | /* Realloc if we need. */ | ||
1351 | if (set->alloc == set->nelem) | ||
1352 | { | ||
1353 | int *new_elems; | ||
1354 | set->alloc = (set->alloc + 1) * 2; | ||
1355 | new_elems = re_realloc (set->elems, int, set->alloc); | ||
1356 | if (BE (new_elems == NULL, 0)) | ||
1357 | return -1; | ||
1358 | set->elems = new_elems; | ||
1359 | } | ||
1360 | |||
1361 | /* Insert the new element. */ | ||
1362 | set->elems[set->nelem++] = elem; | ||
1363 | return 1; | ||
1364 | } | ||
1365 | |||
1366 | /* Compare two node sets SET1 and SET2. | ||
1367 | return 1 if SET1 and SET2 are equivalent, return 0 otherwise. */ | ||
1368 | |||
1369 | static int | ||
1370 | internal_function __attribute ((pure)) | ||
1371 | re_node_set_compare (const re_node_set *set1, const re_node_set *set2) | ||
1372 | { | ||
1373 | int i; | ||
1374 | if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem) | ||
1375 | return 0; | ||
1376 | for (i = set1->nelem ; --i >= 0 ; ) | ||
1377 | if (set1->elems[i] != set2->elems[i]) | ||
1378 | return 0; | ||
1379 | return 1; | ||
1380 | } | ||
1381 | |||
1382 | /* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise. */ | ||
1383 | |||
1384 | static int | ||
1385 | internal_function __attribute ((pure)) | ||
1386 | re_node_set_contains (const re_node_set *set, int elem) | ||
1387 | { | ||
1388 | unsigned int idx, right, mid; | ||
1389 | if (set->nelem <= 0) | ||
1390 | return 0; | ||
1391 | |||
1392 | /* Binary search the element. */ | ||
1393 | idx = 0; | ||
1394 | right = set->nelem - 1; | ||
1395 | while (idx < right) | ||
1396 | { | ||
1397 | mid = (idx + right) / 2; | ||
1398 | if (set->elems[mid] < elem) | ||
1399 | idx = mid + 1; | ||
1400 | else | ||
1401 | right = mid; | ||
1402 | } | ||
1403 | return set->elems[idx] == elem ? idx + 1 : 0; | ||
1404 | } | ||
1405 | |||
1406 | static void | ||
1407 | internal_function | ||
1408 | re_node_set_remove_at (re_node_set *set, int idx) | ||
1409 | { | ||
1410 | if (idx < 0 || idx >= set->nelem) | ||
1411 | return; | ||
1412 | --set->nelem; | ||
1413 | for (; idx < set->nelem; idx++) | ||
1414 | set->elems[idx] = set->elems[idx + 1]; | ||
1415 | } | ||
1416 | |||
1417 | |||
1418 | /* Add the token TOKEN to dfa->nodes, and return the index of the token. | ||
1419 | Or return -1, if an error has occurred. */ | ||
1420 | |||
1421 | static int | ||
1422 | internal_function | ||
1423 | re_dfa_add_node (re_dfa_t *dfa, re_token_t token) | ||
1424 | { | ||
1425 | if (BE (dfa->nodes_len >= dfa->nodes_alloc, 0)) | ||
1426 | { | ||
1427 | size_t new_nodes_alloc = dfa->nodes_alloc * 2; | ||
1428 | int *new_nexts, *new_indices; | ||
1429 | re_node_set *new_edests, *new_eclosures; | ||
1430 | re_token_t *new_nodes; | ||
1431 | |||
1432 | /* Avoid overflows in realloc. */ | ||
1433 | const size_t max_object_size = MAX (sizeof (re_token_t), | ||
1434 | MAX (sizeof (re_node_set), | ||
1435 | sizeof (int))); | ||
1436 | if (BE (SIZE_MAX / max_object_size < new_nodes_alloc, 0)) | ||
1437 | return -1; | ||
1438 | |||
1439 | new_nodes = re_realloc (dfa->nodes, re_token_t, new_nodes_alloc); | ||
1440 | if (BE (new_nodes == NULL, 0)) | ||
1441 | return -1; | ||
1442 | dfa->nodes = new_nodes; | ||
1443 | new_nexts = re_realloc (dfa->nexts, int, new_nodes_alloc); | ||
1444 | new_indices = re_realloc (dfa->org_indices, int, new_nodes_alloc); | ||
1445 | new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc); | ||
1446 | new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc); | ||
1447 | if (BE (new_nexts == NULL || new_indices == NULL | ||
1448 | || new_edests == NULL || new_eclosures == NULL, 0)) | ||
1449 | return -1; | ||
1450 | dfa->nexts = new_nexts; | ||
1451 | dfa->org_indices = new_indices; | ||
1452 | dfa->edests = new_edests; | ||
1453 | dfa->eclosures = new_eclosures; | ||
1454 | dfa->nodes_alloc = new_nodes_alloc; | ||
1455 | } | ||
1456 | dfa->nodes[dfa->nodes_len] = token; | ||
1457 | dfa->nodes[dfa->nodes_len].constraint = 0; | ||
1458 | #ifdef RE_ENABLE_I18N | ||
1459 | dfa->nodes[dfa->nodes_len].accept_mb = | ||
1460 | (token.type == OP_PERIOD && dfa->mb_cur_max > 1) || token.type == COMPLEX_BRACKET; | ||
1461 | #endif | ||
1462 | dfa->nexts[dfa->nodes_len] = -1; | ||
1463 | re_node_set_init_empty (dfa->edests + dfa->nodes_len); | ||
1464 | re_node_set_init_empty (dfa->eclosures + dfa->nodes_len); | ||
1465 | return dfa->nodes_len++; | ||
1466 | } | ||
1467 | |||
1468 | static inline unsigned int | ||
1469 | internal_function | ||
1470 | calc_state_hash (const re_node_set *nodes, unsigned int context) | ||
1471 | { | ||
1472 | unsigned int hash = nodes->nelem + context; | ||
1473 | int i; | ||
1474 | for (i = 0 ; i < nodes->nelem ; i++) | ||
1475 | hash += nodes->elems[i]; | ||
1476 | return hash; | ||
1477 | } | ||
1478 | |||
1479 | /* Search for the state whose node_set is equivalent to NODES. | ||
1480 | Return the pointer to the state, if we found it in the DFA. | ||
1481 | Otherwise create the new one and return it. In case of an error | ||
1482 | return NULL and set the error code in ERR. | ||
1483 | Note: - We assume NULL as the invalid state, then it is possible that | ||
1484 | return value is NULL and ERR is REG_NOERROR. | ||
1485 | - We never return non-NULL value in case of any errors, it is for | ||
1486 | optimization. */ | ||
1487 | |||
1488 | static re_dfastate_t * | ||
1489 | internal_function | ||
1490 | re_acquire_state (reg_errcode_t *err, const re_dfa_t *dfa, | ||
1491 | const re_node_set *nodes) | ||
1492 | { | ||
1493 | unsigned int hash; | ||
1494 | re_dfastate_t *new_state; | ||
1495 | struct re_state_table_entry *spot; | ||
1496 | int i; | ||
1497 | if (BE (nodes->nelem == 0, 0)) | ||
1498 | { | ||
1499 | *err = REG_NOERROR; | ||
1500 | return NULL; | ||
1501 | } | ||
1502 | hash = calc_state_hash (nodes, 0); | ||
1503 | spot = dfa->state_table + (hash & dfa->state_hash_mask); | ||
1504 | |||
1505 | for (i = 0 ; i < spot->num ; i++) | ||
1506 | { | ||
1507 | re_dfastate_t *state = spot->array[i]; | ||
1508 | if (hash != state->hash) | ||
1509 | continue; | ||
1510 | if (re_node_set_compare (&state->nodes, nodes)) | ||
1511 | return state; | ||
1512 | } | ||
1513 | |||
1514 | /* There are no appropriate state in the dfa, create the new one. */ | ||
1515 | new_state = create_ci_newstate (dfa, nodes, hash); | ||
1516 | if (BE (new_state == NULL, 0)) | ||
1517 | *err = REG_ESPACE; | ||
1518 | |||
1519 | return new_state; | ||
1520 | } | ||
1521 | |||
1522 | /* Search for the state whose node_set is equivalent to NODES and | ||
1523 | whose context is equivalent to CONTEXT. | ||
1524 | Return the pointer to the state, if we found it in the DFA. | ||
1525 | Otherwise create the new one and return it. In case of an error | ||
1526 | return NULL and set the error code in ERR. | ||
1527 | Note: - We assume NULL as the invalid state, then it is possible that | ||
1528 | return value is NULL and ERR is REG_NOERROR. | ||
1529 | - We never return non-NULL value in case of any errors, it is for | ||
1530 | optimization. */ | ||
1531 | |||
1532 | static re_dfastate_t * | ||
1533 | internal_function | ||
1534 | re_acquire_state_context (reg_errcode_t *err, const re_dfa_t *dfa, | ||
1535 | const re_node_set *nodes, unsigned int context) | ||
1536 | { | ||
1537 | unsigned int hash; | ||
1538 | re_dfastate_t *new_state; | ||
1539 | struct re_state_table_entry *spot; | ||
1540 | int i; | ||
1541 | if (nodes->nelem == 0) | ||
1542 | { | ||
1543 | *err = REG_NOERROR; | ||
1544 | return NULL; | ||
1545 | } | ||
1546 | hash = calc_state_hash (nodes, context); | ||
1547 | spot = dfa->state_table + (hash & dfa->state_hash_mask); | ||
1548 | |||
1549 | for (i = 0 ; i < spot->num ; i++) | ||
1550 | { | ||
1551 | re_dfastate_t *state = spot->array[i]; | ||
1552 | if (state->hash == hash | ||
1553 | && state->context == context | ||
1554 | && re_node_set_compare (state->entrance_nodes, nodes)) | ||
1555 | return state; | ||
1556 | } | ||
1557 | /* There are no appropriate state in `dfa', create the new one. */ | ||
1558 | new_state = create_cd_newstate (dfa, nodes, context, hash); | ||
1559 | if (BE (new_state == NULL, 0)) | ||
1560 | *err = REG_ESPACE; | ||
1561 | |||
1562 | return new_state; | ||
1563 | } | ||
1564 | |||
1565 | /* Finish initialization of the new state NEWSTATE, and using its hash value | ||
1566 | HASH put in the appropriate bucket of DFA's state table. Return value | ||
1567 | indicates the error code if failed. */ | ||
1568 | |||
1569 | static reg_errcode_t | ||
1570 | register_state (const re_dfa_t *dfa, re_dfastate_t *newstate, | ||
1571 | unsigned int hash) | ||
1572 | { | ||
1573 | struct re_state_table_entry *spot; | ||
1574 | reg_errcode_t err; | ||
1575 | int i; | ||
1576 | |||
1577 | newstate->hash = hash; | ||
1578 | err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem); | ||
1579 | if (BE (err != REG_NOERROR, 0)) | ||
1580 | return REG_ESPACE; | ||
1581 | for (i = 0; i < newstate->nodes.nelem; i++) | ||
1582 | { | ||
1583 | int elem = newstate->nodes.elems[i]; | ||
1584 | if (!IS_EPSILON_NODE (dfa->nodes[elem].type)) | ||
1585 | if (re_node_set_insert_last (&newstate->non_eps_nodes, elem) < 0) | ||
1586 | return REG_ESPACE; | ||
1587 | } | ||
1588 | |||
1589 | spot = dfa->state_table + (hash & dfa->state_hash_mask); | ||
1590 | if (BE (spot->alloc <= spot->num, 0)) | ||
1591 | { | ||
1592 | int new_alloc = 2 * spot->num + 2; | ||
1593 | re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *, | ||
1594 | new_alloc); | ||
1595 | if (BE (new_array == NULL, 0)) | ||
1596 | return REG_ESPACE; | ||
1597 | spot->array = new_array; | ||
1598 | spot->alloc = new_alloc; | ||
1599 | } | ||
1600 | spot->array[spot->num++] = newstate; | ||
1601 | return REG_NOERROR; | ||
1602 | } | ||
1603 | |||
1604 | static void | ||
1605 | free_state (re_dfastate_t *state) | ||
1606 | { | ||
1607 | re_node_set_free (&state->non_eps_nodes); | ||
1608 | re_node_set_free (&state->inveclosure); | ||
1609 | if (state->entrance_nodes != &state->nodes) | ||
1610 | { | ||
1611 | re_node_set_free (state->entrance_nodes); | ||
1612 | re_free (state->entrance_nodes); | ||
1613 | } | ||
1614 | re_node_set_free (&state->nodes); | ||
1615 | re_free (state->word_trtable); | ||
1616 | re_free (state->trtable); | ||
1617 | re_free (state); | ||
1618 | } | ||
1619 | |||
1620 | /* Create the new state which is independ of contexts. | ||
1621 | Return the new state if succeeded, otherwise return NULL. */ | ||
1622 | |||
1623 | static re_dfastate_t * | ||
1624 | internal_function | ||
1625 | create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes, | ||
1626 | unsigned int hash) | ||
1627 | { | ||
1628 | int i; | ||
1629 | reg_errcode_t err; | ||
1630 | re_dfastate_t *newstate; | ||
1631 | |||
1632 | newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); | ||
1633 | if (BE (newstate == NULL, 0)) | ||
1634 | return NULL; | ||
1635 | err = re_node_set_init_copy (&newstate->nodes, nodes); | ||
1636 | if (BE (err != REG_NOERROR, 0)) | ||
1637 | { | ||
1638 | re_free (newstate); | ||
1639 | return NULL; | ||
1640 | } | ||
1641 | |||
1642 | newstate->entrance_nodes = &newstate->nodes; | ||
1643 | for (i = 0 ; i < nodes->nelem ; i++) | ||
1644 | { | ||
1645 | re_token_t *node = dfa->nodes + nodes->elems[i]; | ||
1646 | re_token_type_t type = node->type; | ||
1647 | if (type == CHARACTER && !node->constraint) | ||
1648 | continue; | ||
1649 | #ifdef RE_ENABLE_I18N | ||
1650 | newstate->accept_mb |= node->accept_mb; | ||
1651 | #endif /* RE_ENABLE_I18N */ | ||
1652 | |||
1653 | /* If the state has the halt node, the state is a halt state. */ | ||
1654 | if (type == END_OF_RE) | ||
1655 | newstate->halt = 1; | ||
1656 | else if (type == OP_BACK_REF) | ||
1657 | newstate->has_backref = 1; | ||
1658 | else if (type == ANCHOR || node->constraint) | ||
1659 | newstate->has_constraint = 1; | ||
1660 | } | ||
1661 | err = register_state (dfa, newstate, hash); | ||
1662 | if (BE (err != REG_NOERROR, 0)) | ||
1663 | { | ||
1664 | free_state (newstate); | ||
1665 | newstate = NULL; | ||
1666 | } | ||
1667 | return newstate; | ||
1668 | } | ||
1669 | |||
1670 | /* Create the new state which is depend on the context CONTEXT. | ||
1671 | Return the new state if succeeded, otherwise return NULL. */ | ||
1672 | |||
1673 | static re_dfastate_t * | ||
1674 | internal_function | ||
1675 | create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes, | ||
1676 | unsigned int context, unsigned int hash) | ||
1677 | { | ||
1678 | int i, nctx_nodes = 0; | ||
1679 | reg_errcode_t err; | ||
1680 | re_dfastate_t *newstate; | ||
1681 | |||
1682 | newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); | ||
1683 | if (BE (newstate == NULL, 0)) | ||
1684 | return NULL; | ||
1685 | err = re_node_set_init_copy (&newstate->nodes, nodes); | ||
1686 | if (BE (err != REG_NOERROR, 0)) | ||
1687 | { | ||
1688 | re_free (newstate); | ||
1689 | return NULL; | ||
1690 | } | ||
1691 | |||
1692 | newstate->context = context; | ||
1693 | newstate->entrance_nodes = &newstate->nodes; | ||
1694 | |||
1695 | for (i = 0 ; i < nodes->nelem ; i++) | ||
1696 | { | ||
1697 | re_token_t *node = dfa->nodes + nodes->elems[i]; | ||
1698 | re_token_type_t type = node->type; | ||
1699 | unsigned int constraint = node->constraint; | ||
1700 | |||
1701 | if (type == CHARACTER && !constraint) | ||
1702 | continue; | ||
1703 | #ifdef RE_ENABLE_I18N | ||
1704 | newstate->accept_mb |= node->accept_mb; | ||
1705 | #endif /* RE_ENABLE_I18N */ | ||
1706 | |||
1707 | /* If the state has the halt node, the state is a halt state. */ | ||
1708 | if (type == END_OF_RE) | ||
1709 | newstate->halt = 1; | ||
1710 | else if (type == OP_BACK_REF) | ||
1711 | newstate->has_backref = 1; | ||
1712 | |||
1713 | if (constraint) | ||
1714 | { | ||
1715 | if (newstate->entrance_nodes == &newstate->nodes) | ||
1716 | { | ||
1717 | newstate->entrance_nodes = re_malloc (re_node_set, 1); | ||
1718 | if (BE (newstate->entrance_nodes == NULL, 0)) | ||
1719 | { | ||
1720 | free_state (newstate); | ||
1721 | return NULL; | ||
1722 | } | ||
1723 | if (re_node_set_init_copy (newstate->entrance_nodes, nodes) | ||
1724 | != REG_NOERROR) | ||
1725 | return NULL; | ||
1726 | nctx_nodes = 0; | ||
1727 | newstate->has_constraint = 1; | ||
1728 | } | ||
1729 | |||
1730 | if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context)) | ||
1731 | { | ||
1732 | re_node_set_remove_at (&newstate->nodes, i - nctx_nodes); | ||
1733 | ++nctx_nodes; | ||
1734 | } | ||
1735 | } | ||
1736 | } | ||
1737 | err = register_state (dfa, newstate, hash); | ||
1738 | if (BE (err != REG_NOERROR, 0)) | ||
1739 | { | ||
1740 | free_state (newstate); | ||
1741 | newstate = NULL; | ||
1742 | } | ||
1743 | return newstate; | ||
1744 | } | ||
diff --git a/win32/regex_internal.h b/win32/regex_internal.h new file mode 100644 index 000000000..4184d7f5a --- /dev/null +++ b/win32/regex_internal.h | |||
@@ -0,0 +1,810 @@ | |||
1 | /* Extended regular expression matching and search library. | ||
2 | Copyright (C) 2002-2005, 2007, 2008, 2010 Free Software Foundation, Inc. | ||
3 | This file is part of the GNU C Library. | ||
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | ||
5 | |||
6 | The GNU C Library is free software; you can redistribute it and/or | ||
7 | modify it under the terms of the GNU Lesser General Public | ||
8 | License as published by the Free Software Foundation; either | ||
9 | version 2.1 of the License, or (at your option) any later version. | ||
10 | |||
11 | The GNU C Library is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
14 | Lesser General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU Lesser General Public | ||
17 | License along with the GNU C Library; if not, write to the Free | ||
18 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA | ||
19 | 02111-1307 USA. */ | ||
20 | |||
21 | #ifndef _REGEX_INTERNAL_H | ||
22 | #define _REGEX_INTERNAL_H 1 | ||
23 | |||
24 | #include <assert.h> | ||
25 | #include <ctype.h> | ||
26 | #include <stdio.h> | ||
27 | #include <stdlib.h> | ||
28 | #include <string.h> | ||
29 | |||
30 | #if defined HAVE_LANGINFO_H || defined HAVE_LANGINFO_CODESET || defined _LIBC | ||
31 | # include <langinfo.h> | ||
32 | #endif | ||
33 | #if defined HAVE_LOCALE_H || defined _LIBC | ||
34 | # include <locale.h> | ||
35 | #endif | ||
36 | #if defined HAVE_WCHAR_H || defined _LIBC | ||
37 | # include <wchar.h> | ||
38 | #endif /* HAVE_WCHAR_H || _LIBC */ | ||
39 | #if defined HAVE_WCTYPE_H || defined _LIBC | ||
40 | # include <wctype.h> | ||
41 | #endif /* HAVE_WCTYPE_H || _LIBC */ | ||
42 | #if defined HAVE_STDBOOL_H || defined _LIBC | ||
43 | # include <stdbool.h> | ||
44 | #endif /* HAVE_STDBOOL_H || _LIBC */ | ||
45 | #if !defined(ZOS_USS) | ||
46 | #if defined HAVE_STDINT_H || defined _LIBC | ||
47 | # include <stdint.h> | ||
48 | #endif /* HAVE_STDINT_H || _LIBC */ | ||
49 | #endif /* !ZOS_USS */ | ||
50 | #if defined _LIBC | ||
51 | # include <bits/libc-lock.h> | ||
52 | #else | ||
53 | # define __libc_lock_define(CLASS,NAME) | ||
54 | # define __libc_lock_init(NAME) do { } while (0) | ||
55 | # define __libc_lock_lock(NAME) do { } while (0) | ||
56 | # define __libc_lock_unlock(NAME) do { } while (0) | ||
57 | #endif | ||
58 | |||
59 | #ifndef GAWK | ||
60 | /* In case that the system doesn't have isblank(). */ | ||
61 | #if !defined _LIBC && !defined HAVE_ISBLANK && !defined isblank | ||
62 | # define isblank(ch) ((ch) == ' ' || (ch) == '\t') | ||
63 | #endif | ||
64 | #else /* GAWK */ | ||
65 | /* | ||
66 | * This is a freaking mess. On glibc systems you have to define | ||
67 | * a magic constant to get isblank() out of <ctype.h>, since it's | ||
68 | * a C99 function. To heck with all that and borrow a page from | ||
69 | * dfa.c's book. | ||
70 | */ | ||
71 | |||
72 | static int | ||
73 | is_blank (int c) | ||
74 | { | ||
75 | return (c == ' ' || c == '\t'); | ||
76 | } | ||
77 | #endif /* GAWK */ | ||
78 | |||
79 | #ifdef _LIBC | ||
80 | # ifndef _RE_DEFINE_LOCALE_FUNCTIONS | ||
81 | # define _RE_DEFINE_LOCALE_FUNCTIONS 1 | ||
82 | # include <locale/localeinfo.h> | ||
83 | # include <locale/elem-hash.h> | ||
84 | # include <locale/coll-lookup.h> | ||
85 | # endif | ||
86 | #endif | ||
87 | |||
88 | /* This is for other GNU distributions with internationalized messages. */ | ||
89 | #if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC | ||
90 | # include <libintl.h> | ||
91 | # ifdef _LIBC | ||
92 | # undef gettext | ||
93 | # define gettext(msgid) \ | ||
94 | INTUSE(__dcgettext) (_libc_intl_domainname, msgid, LC_MESSAGES) | ||
95 | # endif | ||
96 | #else | ||
97 | # define gettext(msgid) (msgid) | ||
98 | #endif | ||
99 | |||
100 | #ifndef gettext_noop | ||
101 | /* This define is so xgettext can find the internationalizable | ||
102 | strings. */ | ||
103 | # define gettext_noop(String) String | ||
104 | #endif | ||
105 | |||
106 | /* For loser systems without the definition. */ | ||
107 | #ifndef SIZE_MAX | ||
108 | # define SIZE_MAX ((size_t) -1) | ||
109 | #endif | ||
110 | |||
111 | #ifndef NO_MBSUPPORT | ||
112 | #include "mbsupport.h" /* gawk */ | ||
113 | #endif | ||
114 | #ifndef MB_CUR_MAX | ||
115 | #define MB_CUR_MAX 1 | ||
116 | #endif | ||
117 | |||
118 | #if (defined MBS_SUPPORT) || _LIBC | ||
119 | # define RE_ENABLE_I18N | ||
120 | #endif | ||
121 | |||
122 | #if __GNUC__ >= 3 | ||
123 | # define BE(expr, val) __builtin_expect (expr, val) | ||
124 | #else | ||
125 | # define BE(expr, val) (expr) | ||
126 | # ifdef inline | ||
127 | # undef inline | ||
128 | # endif | ||
129 | # define inline | ||
130 | #endif | ||
131 | |||
132 | /* Number of single byte character. */ | ||
133 | #define SBC_MAX 256 | ||
134 | |||
135 | #define COLL_ELEM_LEN_MAX 8 | ||
136 | |||
137 | /* The character which represents newline. */ | ||
138 | #define NEWLINE_CHAR '\n' | ||
139 | #define WIDE_NEWLINE_CHAR L'\n' | ||
140 | |||
141 | /* Rename to standard API for using out of glibc. */ | ||
142 | #ifndef _LIBC | ||
143 | # ifdef __wctype | ||
144 | # undef __wctype | ||
145 | # endif | ||
146 | # define __wctype wctype | ||
147 | # ifdef __iswctype | ||
148 | # undef __iswctype | ||
149 | # endif | ||
150 | # define __iswctype iswctype | ||
151 | # define __btowc btowc | ||
152 | # define __mbrtowc mbrtowc | ||
153 | #undef __mempcpy /* GAWK */ | ||
154 | # define __mempcpy mempcpy | ||
155 | # define __wcrtomb wcrtomb | ||
156 | # define __regfree regfree | ||
157 | # define attribute_hidden | ||
158 | #endif /* not _LIBC */ | ||
159 | |||
160 | #ifdef __GNUC__ | ||
161 | # define __attribute(arg) __attribute__ (arg) | ||
162 | #else | ||
163 | # define __attribute(arg) | ||
164 | #endif | ||
165 | |||
166 | extern const char __re_error_msgid[] attribute_hidden; | ||
167 | extern const size_t __re_error_msgid_idx[] attribute_hidden; | ||
168 | |||
169 | /* An integer used to represent a set of bits. It must be unsigned, | ||
170 | and must be at least as wide as unsigned int. */ | ||
171 | typedef unsigned long int bitset_word_t; | ||
172 | /* All bits set in a bitset_word_t. */ | ||
173 | #define BITSET_WORD_MAX ULONG_MAX | ||
174 | /* Number of bits in a bitset_word_t. */ | ||
175 | #define BITSET_WORD_BITS (sizeof (bitset_word_t) * CHAR_BIT) | ||
176 | /* Number of bitset_word_t in a bit_set. */ | ||
177 | #define BITSET_WORDS (SBC_MAX / BITSET_WORD_BITS) | ||
178 | typedef bitset_word_t bitset_t[BITSET_WORDS]; | ||
179 | typedef bitset_word_t *re_bitset_ptr_t; | ||
180 | typedef const bitset_word_t *re_const_bitset_ptr_t; | ||
181 | |||
182 | #define bitset_set(set,i) \ | ||
183 | (set[i / BITSET_WORD_BITS] |= (bitset_word_t) 1 << i % BITSET_WORD_BITS) | ||
184 | #define bitset_clear(set,i) \ | ||
185 | (set[i / BITSET_WORD_BITS] &= ~((bitset_word_t) 1 << i % BITSET_WORD_BITS)) | ||
186 | #define bitset_contain(set,i) \ | ||
187 | (set[i / BITSET_WORD_BITS] & ((bitset_word_t) 1 << i % BITSET_WORD_BITS)) | ||
188 | #define bitset_empty(set) memset (set, '\0', sizeof (bitset_t)) | ||
189 | #define bitset_set_all(set) memset (set, '\xff', sizeof (bitset_t)) | ||
190 | #define bitset_copy(dest,src) memcpy (dest, src, sizeof (bitset_t)) | ||
191 | |||
192 | #define PREV_WORD_CONSTRAINT 0x0001 | ||
193 | #define PREV_NOTWORD_CONSTRAINT 0x0002 | ||
194 | #define NEXT_WORD_CONSTRAINT 0x0004 | ||
195 | #define NEXT_NOTWORD_CONSTRAINT 0x0008 | ||
196 | #define PREV_NEWLINE_CONSTRAINT 0x0010 | ||
197 | #define NEXT_NEWLINE_CONSTRAINT 0x0020 | ||
198 | #define PREV_BEGBUF_CONSTRAINT 0x0040 | ||
199 | #define NEXT_ENDBUF_CONSTRAINT 0x0080 | ||
200 | #define WORD_DELIM_CONSTRAINT 0x0100 | ||
201 | #define NOT_WORD_DELIM_CONSTRAINT 0x0200 | ||
202 | |||
203 | typedef enum | ||
204 | { | ||
205 | INSIDE_WORD = PREV_WORD_CONSTRAINT | NEXT_WORD_CONSTRAINT, | ||
206 | WORD_FIRST = PREV_NOTWORD_CONSTRAINT | NEXT_WORD_CONSTRAINT, | ||
207 | WORD_LAST = PREV_WORD_CONSTRAINT | NEXT_NOTWORD_CONSTRAINT, | ||
208 | INSIDE_NOTWORD = PREV_NOTWORD_CONSTRAINT | NEXT_NOTWORD_CONSTRAINT, | ||
209 | LINE_FIRST = PREV_NEWLINE_CONSTRAINT, | ||
210 | LINE_LAST = NEXT_NEWLINE_CONSTRAINT, | ||
211 | BUF_FIRST = PREV_BEGBUF_CONSTRAINT, | ||
212 | BUF_LAST = NEXT_ENDBUF_CONSTRAINT, | ||
213 | WORD_DELIM = WORD_DELIM_CONSTRAINT, | ||
214 | NOT_WORD_DELIM = NOT_WORD_DELIM_CONSTRAINT | ||
215 | } re_context_type; | ||
216 | |||
217 | typedef struct | ||
218 | { | ||
219 | int alloc; | ||
220 | int nelem; | ||
221 | int *elems; | ||
222 | } re_node_set; | ||
223 | |||
224 | typedef enum | ||
225 | { | ||
226 | NON_TYPE = 0, | ||
227 | |||
228 | /* Node type, These are used by token, node, tree. */ | ||
229 | CHARACTER = 1, | ||
230 | END_OF_RE = 2, | ||
231 | SIMPLE_BRACKET = 3, | ||
232 | OP_BACK_REF = 4, | ||
233 | OP_PERIOD = 5, | ||
234 | #ifdef RE_ENABLE_I18N | ||
235 | COMPLEX_BRACKET = 6, | ||
236 | OP_UTF8_PERIOD = 7, | ||
237 | #endif /* RE_ENABLE_I18N */ | ||
238 | |||
239 | /* We define EPSILON_BIT as a macro so that OP_OPEN_SUBEXP is used | ||
240 | when the debugger shows values of this enum type. */ | ||
241 | #define EPSILON_BIT 8 | ||
242 | OP_OPEN_SUBEXP = EPSILON_BIT | 0, | ||
243 | OP_CLOSE_SUBEXP = EPSILON_BIT | 1, | ||
244 | OP_ALT = EPSILON_BIT | 2, | ||
245 | OP_DUP_ASTERISK = EPSILON_BIT | 3, | ||
246 | ANCHOR = EPSILON_BIT | 4, | ||
247 | |||
248 | /* Tree type, these are used only by tree. */ | ||
249 | CONCAT = 16, | ||
250 | SUBEXP = 17, | ||
251 | |||
252 | /* Token type, these are used only by token. */ | ||
253 | OP_DUP_PLUS = 18, | ||
254 | OP_DUP_QUESTION, | ||
255 | OP_OPEN_BRACKET, | ||
256 | OP_CLOSE_BRACKET, | ||
257 | OP_CHARSET_RANGE, | ||
258 | OP_OPEN_DUP_NUM, | ||
259 | OP_CLOSE_DUP_NUM, | ||
260 | OP_NON_MATCH_LIST, | ||
261 | OP_OPEN_COLL_ELEM, | ||
262 | OP_CLOSE_COLL_ELEM, | ||
263 | OP_OPEN_EQUIV_CLASS, | ||
264 | OP_CLOSE_EQUIV_CLASS, | ||
265 | OP_OPEN_CHAR_CLASS, | ||
266 | OP_CLOSE_CHAR_CLASS, | ||
267 | OP_WORD, | ||
268 | OP_NOTWORD, | ||
269 | OP_SPACE, | ||
270 | OP_NOTSPACE, | ||
271 | BACK_SLASH | ||
272 | |||
273 | } re_token_type_t; | ||
274 | |||
275 | #ifdef RE_ENABLE_I18N | ||
276 | typedef struct | ||
277 | { | ||
278 | /* Multibyte characters. */ | ||
279 | wchar_t *mbchars; | ||
280 | |||
281 | /* Collating symbols. */ | ||
282 | # ifdef _LIBC | ||
283 | int32_t *coll_syms; | ||
284 | # endif | ||
285 | |||
286 | /* Equivalence classes. */ | ||
287 | # ifdef _LIBC | ||
288 | int32_t *equiv_classes; | ||
289 | # endif | ||
290 | |||
291 | /* Range expressions. */ | ||
292 | # ifdef _LIBC | ||
293 | uint32_t *range_starts; | ||
294 | uint32_t *range_ends; | ||
295 | # else /* not _LIBC */ | ||
296 | wchar_t *range_starts; | ||
297 | wchar_t *range_ends; | ||
298 | # endif /* not _LIBC */ | ||
299 | |||
300 | /* Character classes. */ | ||
301 | wctype_t *char_classes; | ||
302 | |||
303 | /* If this character set is the non-matching list. */ | ||
304 | unsigned int non_match : 1; | ||
305 | |||
306 | /* # of multibyte characters. */ | ||
307 | int nmbchars; | ||
308 | |||
309 | /* # of collating symbols. */ | ||
310 | int ncoll_syms; | ||
311 | |||
312 | /* # of equivalence classes. */ | ||
313 | int nequiv_classes; | ||
314 | |||
315 | /* # of range expressions. */ | ||
316 | int nranges; | ||
317 | |||
318 | /* # of character classes. */ | ||
319 | int nchar_classes; | ||
320 | } re_charset_t; | ||
321 | #endif /* RE_ENABLE_I18N */ | ||
322 | |||
323 | typedef struct | ||
324 | { | ||
325 | union | ||
326 | { | ||
327 | unsigned char c; /* for CHARACTER */ | ||
328 | re_bitset_ptr_t sbcset; /* for SIMPLE_BRACKET */ | ||
329 | #ifdef RE_ENABLE_I18N | ||
330 | re_charset_t *mbcset; /* for COMPLEX_BRACKET */ | ||
331 | #endif /* RE_ENABLE_I18N */ | ||
332 | int idx; /* for BACK_REF */ | ||
333 | re_context_type ctx_type; /* for ANCHOR */ | ||
334 | } opr; | ||
335 | #if __GNUC__ >= 2 | ||
336 | re_token_type_t type : 8; | ||
337 | #else | ||
338 | re_token_type_t type; | ||
339 | #endif | ||
340 | unsigned int constraint : 10; /* context constraint */ | ||
341 | unsigned int duplicated : 1; | ||
342 | unsigned int opt_subexp : 1; | ||
343 | #ifdef RE_ENABLE_I18N | ||
344 | unsigned int accept_mb : 1; | ||
345 | /* These 2 bits can be moved into the union if needed (e.g. if running out | ||
346 | of bits; move opr.c to opr.c.c and move the flags to opr.c.flags). */ | ||
347 | unsigned int mb_partial : 1; | ||
348 | #endif | ||
349 | unsigned int word_char : 1; | ||
350 | } re_token_t; | ||
351 | |||
352 | #define IS_EPSILON_NODE(type) ((type) & EPSILON_BIT) | ||
353 | |||
354 | struct re_string_t | ||
355 | { | ||
356 | /* Indicate the raw buffer which is the original string passed as an | ||
357 | argument of regexec(), re_search(), etc.. */ | ||
358 | const unsigned char *raw_mbs; | ||
359 | /* Store the multibyte string. In case of "case insensitive mode" like | ||
360 | REG_ICASE, upper cases of the string are stored, otherwise MBS points | ||
361 | the same address that RAW_MBS points. */ | ||
362 | unsigned char *mbs; | ||
363 | #ifdef RE_ENABLE_I18N | ||
364 | /* Store the wide character string which is corresponding to MBS. */ | ||
365 | wint_t *wcs; | ||
366 | int *offsets; | ||
367 | mbstate_t cur_state; | ||
368 | #endif | ||
369 | /* Index in RAW_MBS. Each character mbs[i] corresponds to | ||
370 | raw_mbs[raw_mbs_idx + i]. */ | ||
371 | int raw_mbs_idx; | ||
372 | /* The length of the valid characters in the buffers. */ | ||
373 | int valid_len; | ||
374 | /* The corresponding number of bytes in raw_mbs array. */ | ||
375 | int valid_raw_len; | ||
376 | /* The length of the buffers MBS and WCS. */ | ||
377 | int bufs_len; | ||
378 | /* The index in MBS, which is updated by re_string_fetch_byte. */ | ||
379 | int cur_idx; | ||
380 | /* length of RAW_MBS array. */ | ||
381 | int raw_len; | ||
382 | /* This is RAW_LEN - RAW_MBS_IDX + VALID_LEN - VALID_RAW_LEN. */ | ||
383 | int len; | ||
384 | /* End of the buffer may be shorter than its length in the cases such | ||
385 | as re_match_2, re_search_2. Then, we use STOP for end of the buffer | ||
386 | instead of LEN. */ | ||
387 | int raw_stop; | ||
388 | /* This is RAW_STOP - RAW_MBS_IDX adjusted through OFFSETS. */ | ||
389 | int stop; | ||
390 | |||
391 | /* The context of mbs[0]. We store the context independently, since | ||
392 | the context of mbs[0] may be different from raw_mbs[0], which is | ||
393 | the beginning of the input string. */ | ||
394 | unsigned int tip_context; | ||
395 | /* The translation passed as a part of an argument of re_compile_pattern. */ | ||
396 | RE_TRANSLATE_TYPE trans; | ||
397 | /* Copy of re_dfa_t's word_char. */ | ||
398 | re_const_bitset_ptr_t word_char; | ||
399 | /* 1 if REG_ICASE. */ | ||
400 | unsigned char icase; | ||
401 | unsigned char is_utf8; | ||
402 | unsigned char map_notascii; | ||
403 | unsigned char mbs_allocated; | ||
404 | unsigned char offsets_needed; | ||
405 | unsigned char newline_anchor; | ||
406 | unsigned char word_ops_used; | ||
407 | int mb_cur_max; | ||
408 | }; | ||
409 | typedef struct re_string_t re_string_t; | ||
410 | |||
411 | |||
412 | struct re_dfa_t; | ||
413 | typedef struct re_dfa_t re_dfa_t; | ||
414 | |||
415 | #ifndef _LIBC | ||
416 | # ifdef __i386__ | ||
417 | # define internal_function __attribute ((regparm (3), stdcall)) | ||
418 | # else | ||
419 | # define internal_function | ||
420 | # endif | ||
421 | #endif | ||
422 | |||
423 | #ifndef NOT_IN_libc | ||
424 | static reg_errcode_t re_string_realloc_buffers (re_string_t *pstr, | ||
425 | int new_buf_len) | ||
426 | internal_function; | ||
427 | # ifdef RE_ENABLE_I18N | ||
428 | static void build_wcs_buffer (re_string_t *pstr) internal_function; | ||
429 | static reg_errcode_t build_wcs_upper_buffer (re_string_t *pstr) | ||
430 | internal_function; | ||
431 | # endif /* RE_ENABLE_I18N */ | ||
432 | static void build_upper_buffer (re_string_t *pstr) internal_function; | ||
433 | static void re_string_translate_buffer (re_string_t *pstr) internal_function; | ||
434 | static unsigned int re_string_context_at (const re_string_t *input, int idx, | ||
435 | int eflags) | ||
436 | internal_function __attribute ((pure)); | ||
437 | #endif | ||
438 | #define re_string_peek_byte(pstr, offset) \ | ||
439 | ((pstr)->mbs[(pstr)->cur_idx + offset]) | ||
440 | #define re_string_fetch_byte(pstr) \ | ||
441 | ((pstr)->mbs[(pstr)->cur_idx++]) | ||
442 | #define re_string_first_byte(pstr, idx) \ | ||
443 | ((idx) == (pstr)->valid_len || (pstr)->wcs[idx] != WEOF) | ||
444 | #define re_string_is_single_byte_char(pstr, idx) \ | ||
445 | ((pstr)->wcs[idx] != WEOF && ((pstr)->valid_len == (idx) + 1 \ | ||
446 | || (pstr)->wcs[(idx) + 1] != WEOF)) | ||
447 | #define re_string_eoi(pstr) ((pstr)->stop <= (pstr)->cur_idx) | ||
448 | #define re_string_cur_idx(pstr) ((pstr)->cur_idx) | ||
449 | #define re_string_get_buffer(pstr) ((pstr)->mbs) | ||
450 | #define re_string_length(pstr) ((pstr)->len) | ||
451 | #define re_string_byte_at(pstr,idx) ((pstr)->mbs[idx]) | ||
452 | #define re_string_skip_bytes(pstr,idx) ((pstr)->cur_idx += (idx)) | ||
453 | #define re_string_set_index(pstr,idx) ((pstr)->cur_idx = (idx)) | ||
454 | |||
455 | #ifndef _LIBC | ||
456 | # if HAVE_ALLOCA | ||
457 | # if (_MSC_VER) | ||
458 | # include <malloc.h> | ||
459 | # define __libc_use_alloca(n) 0 | ||
460 | # else | ||
461 | # include <alloca.h> | ||
462 | /* The OS usually guarantees only one guard page at the bottom of the stack, | ||
463 | and a page size can be as small as 4096 bytes. So we cannot safely | ||
464 | allocate anything larger than 4096 bytes. Also care for the possibility | ||
465 | of a few compiler-allocated temporary stack slots. */ | ||
466 | # define __libc_use_alloca(n) ((n) < 4032) | ||
467 | # endif | ||
468 | # else | ||
469 | /* alloca is implemented with malloc, so just use malloc. */ | ||
470 | # define __libc_use_alloca(n) 0 | ||
471 | # endif | ||
472 | #endif | ||
473 | |||
474 | #define re_malloc(t,n) ((t *) malloc ((n) * sizeof (t))) | ||
475 | /* SunOS 4.1.x realloc doesn't accept null pointers: pre-Standard C. Sigh. */ | ||
476 | #define re_realloc(p,t,n) ((p != NULL) ? (t *) realloc (p,(n)*sizeof(t)) : (t *) calloc(n,sizeof(t))) | ||
477 | #define re_free(p) free (p) | ||
478 | |||
479 | struct bin_tree_t | ||
480 | { | ||
481 | struct bin_tree_t *parent; | ||
482 | struct bin_tree_t *left; | ||
483 | struct bin_tree_t *right; | ||
484 | struct bin_tree_t *first; | ||
485 | struct bin_tree_t *next; | ||
486 | |||
487 | re_token_t token; | ||
488 | |||
489 | /* `node_idx' is the index in dfa->nodes, if `type' == 0. | ||
490 | Otherwise `type' indicate the type of this node. */ | ||
491 | int node_idx; | ||
492 | }; | ||
493 | typedef struct bin_tree_t bin_tree_t; | ||
494 | |||
495 | #define BIN_TREE_STORAGE_SIZE \ | ||
496 | ((1024 - sizeof (void *)) / sizeof (bin_tree_t)) | ||
497 | |||
498 | struct bin_tree_storage_t | ||
499 | { | ||
500 | struct bin_tree_storage_t *next; | ||
501 | bin_tree_t data[BIN_TREE_STORAGE_SIZE]; | ||
502 | }; | ||
503 | typedef struct bin_tree_storage_t bin_tree_storage_t; | ||
504 | |||
505 | #define CONTEXT_WORD 1 | ||
506 | #define CONTEXT_NEWLINE (CONTEXT_WORD << 1) | ||
507 | #define CONTEXT_BEGBUF (CONTEXT_NEWLINE << 1) | ||
508 | #define CONTEXT_ENDBUF (CONTEXT_BEGBUF << 1) | ||
509 | |||
510 | #define IS_WORD_CONTEXT(c) ((c) & CONTEXT_WORD) | ||
511 | #define IS_NEWLINE_CONTEXT(c) ((c) & CONTEXT_NEWLINE) | ||
512 | #define IS_BEGBUF_CONTEXT(c) ((c) & CONTEXT_BEGBUF) | ||
513 | #define IS_ENDBUF_CONTEXT(c) ((c) & CONTEXT_ENDBUF) | ||
514 | #define IS_ORDINARY_CONTEXT(c) ((c) == 0) | ||
515 | |||
516 | #define IS_WORD_CHAR(ch) (isalnum (ch) || (ch) == '_') | ||
517 | #define IS_NEWLINE(ch) ((ch) == NEWLINE_CHAR) | ||
518 | #define IS_WIDE_WORD_CHAR(ch) (iswalnum (ch) || (ch) == L'_') | ||
519 | #define IS_WIDE_NEWLINE(ch) ((ch) == WIDE_NEWLINE_CHAR) | ||
520 | |||
521 | #define NOT_SATISFY_PREV_CONSTRAINT(constraint,context) \ | ||
522 | ((((constraint) & PREV_WORD_CONSTRAINT) && !IS_WORD_CONTEXT (context)) \ | ||
523 | || ((constraint & PREV_NOTWORD_CONSTRAINT) && IS_WORD_CONTEXT (context)) \ | ||
524 | || ((constraint & PREV_NEWLINE_CONSTRAINT) && !IS_NEWLINE_CONTEXT (context))\ | ||
525 | || ((constraint & PREV_BEGBUF_CONSTRAINT) && !IS_BEGBUF_CONTEXT (context))) | ||
526 | |||
527 | #define NOT_SATISFY_NEXT_CONSTRAINT(constraint,context) \ | ||
528 | ((((constraint) & NEXT_WORD_CONSTRAINT) && !IS_WORD_CONTEXT (context)) \ | ||
529 | || (((constraint) & NEXT_NOTWORD_CONSTRAINT) && IS_WORD_CONTEXT (context)) \ | ||
530 | || (((constraint) & NEXT_NEWLINE_CONSTRAINT) && !IS_NEWLINE_CONTEXT (context)) \ | ||
531 | || (((constraint) & NEXT_ENDBUF_CONSTRAINT) && !IS_ENDBUF_CONTEXT (context))) | ||
532 | |||
533 | struct re_dfastate_t | ||
534 | { | ||
535 | unsigned int hash; | ||
536 | re_node_set nodes; | ||
537 | re_node_set non_eps_nodes; | ||
538 | re_node_set inveclosure; | ||
539 | re_node_set *entrance_nodes; | ||
540 | struct re_dfastate_t **trtable, **word_trtable; | ||
541 | unsigned int context : 4; | ||
542 | unsigned int halt : 1; | ||
543 | /* If this state can accept `multi byte'. | ||
544 | Note that we refer to multibyte characters, and multi character | ||
545 | collating elements as `multi byte'. */ | ||
546 | unsigned int accept_mb : 1; | ||
547 | /* If this state has backreference node(s). */ | ||
548 | unsigned int has_backref : 1; | ||
549 | unsigned int has_constraint : 1; | ||
550 | }; | ||
551 | typedef struct re_dfastate_t re_dfastate_t; | ||
552 | |||
553 | struct re_state_table_entry | ||
554 | { | ||
555 | int num; | ||
556 | int alloc; | ||
557 | re_dfastate_t **array; | ||
558 | }; | ||
559 | |||
560 | /* Array type used in re_sub_match_last_t and re_sub_match_top_t. */ | ||
561 | |||
562 | typedef struct | ||
563 | { | ||
564 | int next_idx; | ||
565 | int alloc; | ||
566 | re_dfastate_t **array; | ||
567 | } state_array_t; | ||
568 | |||
569 | /* Store information about the node NODE whose type is OP_CLOSE_SUBEXP. */ | ||
570 | |||
571 | typedef struct | ||
572 | { | ||
573 | int node; | ||
574 | int str_idx; /* The position NODE match at. */ | ||
575 | state_array_t path; | ||
576 | } re_sub_match_last_t; | ||
577 | |||
578 | /* Store information about the node NODE whose type is OP_OPEN_SUBEXP. | ||
579 | And information about the node, whose type is OP_CLOSE_SUBEXP, | ||
580 | corresponding to NODE is stored in LASTS. */ | ||
581 | |||
582 | typedef struct | ||
583 | { | ||
584 | int str_idx; | ||
585 | int node; | ||
586 | state_array_t *path; | ||
587 | int alasts; /* Allocation size of LASTS. */ | ||
588 | int nlasts; /* The number of LASTS. */ | ||
589 | re_sub_match_last_t **lasts; | ||
590 | } re_sub_match_top_t; | ||
591 | |||
592 | struct re_backref_cache_entry | ||
593 | { | ||
594 | int node; | ||
595 | int str_idx; | ||
596 | int subexp_from; | ||
597 | int subexp_to; | ||
598 | char more; | ||
599 | char unused; | ||
600 | unsigned short int eps_reachable_subexps_map; | ||
601 | }; | ||
602 | |||
603 | typedef struct | ||
604 | { | ||
605 | /* The string object corresponding to the input string. */ | ||
606 | re_string_t input; | ||
607 | #if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L) | ||
608 | const re_dfa_t *const dfa; | ||
609 | #else | ||
610 | const re_dfa_t *dfa; | ||
611 | #endif | ||
612 | /* EFLAGS of the argument of regexec. */ | ||
613 | int eflags; | ||
614 | /* Where the matching ends. */ | ||
615 | int match_last; | ||
616 | int last_node; | ||
617 | /* The state log used by the matcher. */ | ||
618 | re_dfastate_t **state_log; | ||
619 | int state_log_top; | ||
620 | /* Back reference cache. */ | ||
621 | int nbkref_ents; | ||
622 | int abkref_ents; | ||
623 | struct re_backref_cache_entry *bkref_ents; | ||
624 | int max_mb_elem_len; | ||
625 | int nsub_tops; | ||
626 | int asub_tops; | ||
627 | re_sub_match_top_t **sub_tops; | ||
628 | } re_match_context_t; | ||
629 | |||
630 | typedef struct | ||
631 | { | ||
632 | re_dfastate_t **sifted_states; | ||
633 | re_dfastate_t **limited_states; | ||
634 | int last_node; | ||
635 | int last_str_idx; | ||
636 | re_node_set limits; | ||
637 | } re_sift_context_t; | ||
638 | |||
639 | struct re_fail_stack_ent_t | ||
640 | { | ||
641 | int idx; | ||
642 | int node; | ||
643 | regmatch_t *regs; | ||
644 | re_node_set eps_via_nodes; | ||
645 | }; | ||
646 | |||
647 | struct re_fail_stack_t | ||
648 | { | ||
649 | int num; | ||
650 | int alloc; | ||
651 | struct re_fail_stack_ent_t *stack; | ||
652 | }; | ||
653 | |||
654 | struct re_dfa_t | ||
655 | { | ||
656 | re_token_t *nodes; | ||
657 | size_t nodes_alloc; | ||
658 | size_t nodes_len; | ||
659 | int *nexts; | ||
660 | int *org_indices; | ||
661 | re_node_set *edests; | ||
662 | re_node_set *eclosures; | ||
663 | re_node_set *inveclosures; | ||
664 | struct re_state_table_entry *state_table; | ||
665 | re_dfastate_t *init_state; | ||
666 | re_dfastate_t *init_state_word; | ||
667 | re_dfastate_t *init_state_nl; | ||
668 | re_dfastate_t *init_state_begbuf; | ||
669 | bin_tree_t *str_tree; | ||
670 | bin_tree_storage_t *str_tree_storage; | ||
671 | re_bitset_ptr_t sb_char; | ||
672 | int str_tree_storage_idx; | ||
673 | |||
674 | /* number of subexpressions `re_nsub' is in regex_t. */ | ||
675 | unsigned int state_hash_mask; | ||
676 | int init_node; | ||
677 | int nbackref; /* The number of backreference in this dfa. */ | ||
678 | |||
679 | /* Bitmap expressing which backreference is used. */ | ||
680 | bitset_word_t used_bkref_map; | ||
681 | bitset_word_t completed_bkref_map; | ||
682 | |||
683 | unsigned int has_plural_match : 1; | ||
684 | /* If this dfa has "multibyte node", which is a backreference or | ||
685 | a node which can accept multibyte character or multi character | ||
686 | collating element. */ | ||
687 | unsigned int has_mb_node : 1; | ||
688 | unsigned int is_utf8 : 1; | ||
689 | unsigned int map_notascii : 1; | ||
690 | unsigned int word_ops_used : 1; | ||
691 | int mb_cur_max; | ||
692 | bitset_t word_char; | ||
693 | reg_syntax_t syntax; | ||
694 | int *subexp_map; | ||
695 | #ifdef DEBUG | ||
696 | char* re_str; | ||
697 | #endif | ||
698 | #if defined _LIBC | ||
699 | __libc_lock_define (, lock) | ||
700 | #endif | ||
701 | }; | ||
702 | |||
703 | #define re_node_set_init_empty(set) memset (set, '\0', sizeof (re_node_set)) | ||
704 | #define re_node_set_remove(set,id) \ | ||
705 | (re_node_set_remove_at (set, re_node_set_contains (set, id) - 1)) | ||
706 | #define re_node_set_empty(p) ((p)->nelem = 0) | ||
707 | #define re_node_set_free(set) re_free ((set)->elems) | ||
708 | |||
709 | |||
710 | typedef enum | ||
711 | { | ||
712 | SB_CHAR, | ||
713 | MB_CHAR, | ||
714 | EQUIV_CLASS, | ||
715 | COLL_SYM, | ||
716 | CHAR_CLASS | ||
717 | } bracket_elem_type; | ||
718 | |||
719 | typedef struct | ||
720 | { | ||
721 | bracket_elem_type type; | ||
722 | union | ||
723 | { | ||
724 | unsigned char ch; | ||
725 | unsigned char *name; | ||
726 | wchar_t wch; | ||
727 | } opr; | ||
728 | } bracket_elem_t; | ||
729 | |||
730 | |||
731 | /* Inline functions for bitset operation. */ | ||
732 | static inline void | ||
733 | bitset_not (bitset_t set) | ||
734 | { | ||
735 | int bitset_i; | ||
736 | for (bitset_i = 0; bitset_i < BITSET_WORDS; ++bitset_i) | ||
737 | set[bitset_i] = ~set[bitset_i]; | ||
738 | } | ||
739 | |||
740 | static inline void | ||
741 | bitset_merge (bitset_t dest, const bitset_t src) | ||
742 | { | ||
743 | int bitset_i; | ||
744 | for (bitset_i = 0; bitset_i < BITSET_WORDS; ++bitset_i) | ||
745 | dest[bitset_i] |= src[bitset_i]; | ||
746 | } | ||
747 | |||
748 | static inline void | ||
749 | bitset_mask (bitset_t dest, const bitset_t src) | ||
750 | { | ||
751 | int bitset_i; | ||
752 | for (bitset_i = 0; bitset_i < BITSET_WORDS; ++bitset_i) | ||
753 | dest[bitset_i] &= src[bitset_i]; | ||
754 | } | ||
755 | |||
756 | #ifdef RE_ENABLE_I18N | ||
757 | /* Inline functions for re_string. */ | ||
758 | static inline int | ||
759 | internal_function __attribute ((pure)) | ||
760 | re_string_char_size_at (const re_string_t *pstr, int idx) | ||
761 | { | ||
762 | int byte_idx; | ||
763 | if (pstr->mb_cur_max == 1) | ||
764 | return 1; | ||
765 | for (byte_idx = 1; idx + byte_idx < pstr->valid_len; ++byte_idx) | ||
766 | if (pstr->wcs[idx + byte_idx] != WEOF) | ||
767 | break; | ||
768 | return byte_idx; | ||
769 | } | ||
770 | |||
771 | static inline wint_t | ||
772 | internal_function __attribute ((pure)) | ||
773 | re_string_wchar_at (const re_string_t *pstr, int idx) | ||
774 | { | ||
775 | if (pstr->mb_cur_max == 1) | ||
776 | return (wint_t) pstr->mbs[idx]; | ||
777 | return (wint_t) pstr->wcs[idx]; | ||
778 | } | ||
779 | |||
780 | # ifndef NOT_IN_libc | ||
781 | static int | ||
782 | internal_function __attribute ((pure)) | ||
783 | re_string_elem_size_at (const re_string_t *pstr, int idx) | ||
784 | { | ||
785 | # ifdef _LIBC | ||
786 | const unsigned char *p, *extra; | ||
787 | const int32_t *table, *indirect; | ||
788 | int32_t tmp; | ||
789 | # include <locale/weight.h> | ||
790 | uint_fast32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
791 | |||
792 | if (nrules != 0) | ||
793 | { | ||
794 | table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | ||
795 | extra = (const unsigned char *) | ||
796 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); | ||
797 | indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE, | ||
798 | _NL_COLLATE_INDIRECTMB); | ||
799 | p = pstr->mbs + idx; | ||
800 | tmp = findidx (&p); | ||
801 | return p - pstr->mbs - idx; | ||
802 | } | ||
803 | else | ||
804 | # endif /* _LIBC */ | ||
805 | return 1; | ||
806 | } | ||
807 | # endif | ||
808 | #endif /* RE_ENABLE_I18N */ | ||
809 | |||
810 | #endif /* _REGEX_INTERNAL_H */ | ||
diff --git a/win32/regexec.c b/win32/regexec.c new file mode 100644 index 000000000..eb5e1d443 --- /dev/null +++ b/win32/regexec.c | |||
@@ -0,0 +1,4369 @@ | |||
1 | /* Extended regular expression matching and search library. | ||
2 | Copyright (C) 2002-2005, 2007, 2009, 2010 Free Software Foundation, Inc. | ||
3 | This file is part of the GNU C Library. | ||
4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | ||
5 | |||
6 | The GNU C Library is free software; you can redistribute it and/or | ||
7 | modify it under the terms of the GNU Lesser General Public | ||
8 | License as published by the Free Software Foundation; either | ||
9 | version 2.1 of the License, or (at your option) any later version. | ||
10 | |||
11 | The GNU C Library is distributed in the hope that it will be useful, | ||
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
14 | Lesser General Public License for more details. | ||
15 | |||
16 | You should have received a copy of the GNU Lesser General Public | ||
17 | License along with the GNU C Library; if not, write to the Free | ||
18 | Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | ||
19 | 02110-1301 USA. */ | ||
20 | |||
21 | static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags, | ||
22 | int n) internal_function; | ||
23 | static void match_ctx_clean (re_match_context_t *mctx) internal_function; | ||
24 | static void match_ctx_free (re_match_context_t *cache) internal_function; | ||
25 | static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, int node, | ||
26 | int str_idx, int from, int to) | ||
27 | internal_function; | ||
28 | static int search_cur_bkref_entry (const re_match_context_t *mctx, int str_idx) | ||
29 | internal_function; | ||
30 | static reg_errcode_t match_ctx_add_subtop (re_match_context_t *mctx, int node, | ||
31 | int str_idx) internal_function; | ||
32 | static re_sub_match_last_t * match_ctx_add_sublast (re_sub_match_top_t *subtop, | ||
33 | int node, int str_idx) | ||
34 | internal_function; | ||
35 | static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, | ||
36 | re_dfastate_t **limited_sts, int last_node, | ||
37 | int last_str_idx) | ||
38 | internal_function; | ||
39 | static reg_errcode_t re_search_internal (const regex_t *preg, | ||
40 | const char *string, int length, | ||
41 | int start, int range, int stop, | ||
42 | size_t nmatch, regmatch_t pmatch[], | ||
43 | int eflags); | ||
44 | static int re_search_2_stub (struct re_pattern_buffer *bufp, | ||
45 | const char *string1, int length1, | ||
46 | const char *string2, int length2, | ||
47 | int start, int range, struct re_registers *regs, | ||
48 | int stop, int ret_len); | ||
49 | static int re_search_stub (struct re_pattern_buffer *bufp, | ||
50 | const char *string, int length, int start, | ||
51 | int range, int stop, struct re_registers *regs, | ||
52 | int ret_len); | ||
53 | static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, | ||
54 | int nregs, int regs_allocated); | ||
55 | static reg_errcode_t prune_impossible_nodes (re_match_context_t *mctx); | ||
56 | static int check_matching (re_match_context_t *mctx, int fl_longest_match, | ||
57 | int *p_match_first) internal_function; | ||
58 | static int check_halt_state_context (const re_match_context_t *mctx, | ||
59 | const re_dfastate_t *state, int idx) | ||
60 | internal_function; | ||
61 | static void update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, | ||
62 | regmatch_t *prev_idx_match, int cur_node, | ||
63 | int cur_idx, int nmatch) internal_function; | ||
64 | static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs, | ||
65 | int str_idx, int dest_node, int nregs, | ||
66 | regmatch_t *regs, | ||
67 | re_node_set *eps_via_nodes) | ||
68 | internal_function; | ||
69 | static reg_errcode_t set_regs (const regex_t *preg, | ||
70 | const re_match_context_t *mctx, | ||
71 | size_t nmatch, regmatch_t *pmatch, | ||
72 | int fl_backtrack) internal_function; | ||
73 | static reg_errcode_t free_fail_stack_return (struct re_fail_stack_t *fs) | ||
74 | internal_function; | ||
75 | |||
76 | #ifdef RE_ENABLE_I18N | ||
77 | static int sift_states_iter_mb (const re_match_context_t *mctx, | ||
78 | re_sift_context_t *sctx, | ||
79 | int node_idx, int str_idx, int max_str_idx) | ||
80 | internal_function; | ||
81 | #endif /* RE_ENABLE_I18N */ | ||
82 | static reg_errcode_t sift_states_backward (const re_match_context_t *mctx, | ||
83 | re_sift_context_t *sctx) | ||
84 | internal_function; | ||
85 | static reg_errcode_t build_sifted_states (const re_match_context_t *mctx, | ||
86 | re_sift_context_t *sctx, int str_idx, | ||
87 | re_node_set *cur_dest) | ||
88 | internal_function; | ||
89 | static reg_errcode_t update_cur_sifted_state (const re_match_context_t *mctx, | ||
90 | re_sift_context_t *sctx, | ||
91 | int str_idx, | ||
92 | re_node_set *dest_nodes) | ||
93 | internal_function; | ||
94 | static reg_errcode_t add_epsilon_src_nodes (const re_dfa_t *dfa, | ||
95 | re_node_set *dest_nodes, | ||
96 | const re_node_set *candidates) | ||
97 | internal_function; | ||
98 | static int check_dst_limits (const re_match_context_t *mctx, | ||
99 | re_node_set *limits, | ||
100 | int dst_node, int dst_idx, int src_node, | ||
101 | int src_idx) internal_function; | ||
102 | static int check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, | ||
103 | int boundaries, int subexp_idx, | ||
104 | int from_node, int bkref_idx) | ||
105 | internal_function; | ||
106 | static int check_dst_limits_calc_pos (const re_match_context_t *mctx, | ||
107 | int limit, int subexp_idx, | ||
108 | int node, int str_idx, | ||
109 | int bkref_idx) internal_function; | ||
110 | static reg_errcode_t check_subexp_limits (const re_dfa_t *dfa, | ||
111 | re_node_set *dest_nodes, | ||
112 | const re_node_set *candidates, | ||
113 | re_node_set *limits, | ||
114 | struct re_backref_cache_entry *bkref_ents, | ||
115 | int str_idx) internal_function; | ||
116 | static reg_errcode_t sift_states_bkref (const re_match_context_t *mctx, | ||
117 | re_sift_context_t *sctx, | ||
118 | int str_idx, const re_node_set *candidates) | ||
119 | internal_function; | ||
120 | static reg_errcode_t merge_state_array (const re_dfa_t *dfa, | ||
121 | re_dfastate_t **dst, | ||
122 | re_dfastate_t **src, int num) | ||
123 | internal_function; | ||
124 | static re_dfastate_t *find_recover_state (reg_errcode_t *err, | ||
125 | re_match_context_t *mctx) internal_function; | ||
126 | static re_dfastate_t *transit_state (reg_errcode_t *err, | ||
127 | re_match_context_t *mctx, | ||
128 | re_dfastate_t *state) internal_function; | ||
129 | static re_dfastate_t *merge_state_with_log (reg_errcode_t *err, | ||
130 | re_match_context_t *mctx, | ||
131 | re_dfastate_t *next_state) | ||
132 | internal_function; | ||
133 | static reg_errcode_t check_subexp_matching_top (re_match_context_t *mctx, | ||
134 | re_node_set *cur_nodes, | ||
135 | int str_idx) internal_function; | ||
136 | #if 0 | ||
137 | static re_dfastate_t *transit_state_sb (reg_errcode_t *err, | ||
138 | re_match_context_t *mctx, | ||
139 | re_dfastate_t *pstate) | ||
140 | internal_function; | ||
141 | #endif | ||
142 | #ifdef RE_ENABLE_I18N | ||
143 | static reg_errcode_t transit_state_mb (re_match_context_t *mctx, | ||
144 | re_dfastate_t *pstate) | ||
145 | internal_function; | ||
146 | #endif /* RE_ENABLE_I18N */ | ||
147 | static reg_errcode_t transit_state_bkref (re_match_context_t *mctx, | ||
148 | const re_node_set *nodes) | ||
149 | internal_function; | ||
150 | static reg_errcode_t get_subexp (re_match_context_t *mctx, | ||
151 | int bkref_node, int bkref_str_idx) | ||
152 | internal_function; | ||
153 | static reg_errcode_t get_subexp_sub (re_match_context_t *mctx, | ||
154 | const re_sub_match_top_t *sub_top, | ||
155 | re_sub_match_last_t *sub_last, | ||
156 | int bkref_node, int bkref_str) | ||
157 | internal_function; | ||
158 | static int find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, | ||
159 | int subexp_idx, int type) internal_function; | ||
160 | static reg_errcode_t check_arrival (re_match_context_t *mctx, | ||
161 | state_array_t *path, int top_node, | ||
162 | int top_str, int last_node, int last_str, | ||
163 | int type) internal_function; | ||
164 | static reg_errcode_t check_arrival_add_next_nodes (re_match_context_t *mctx, | ||
165 | int str_idx, | ||
166 | re_node_set *cur_nodes, | ||
167 | re_node_set *next_nodes) | ||
168 | internal_function; | ||
169 | static reg_errcode_t check_arrival_expand_ecl (const re_dfa_t *dfa, | ||
170 | re_node_set *cur_nodes, | ||
171 | int ex_subexp, int type) | ||
172 | internal_function; | ||
173 | static reg_errcode_t check_arrival_expand_ecl_sub (const re_dfa_t *dfa, | ||
174 | re_node_set *dst_nodes, | ||
175 | int target, int ex_subexp, | ||
176 | int type) internal_function; | ||
177 | static reg_errcode_t expand_bkref_cache (re_match_context_t *mctx, | ||
178 | re_node_set *cur_nodes, int cur_str, | ||
179 | int subexp_num, int type) | ||
180 | internal_function; | ||
181 | static int build_trtable (const re_dfa_t *dfa, | ||
182 | re_dfastate_t *state) internal_function; | ||
183 | #ifdef RE_ENABLE_I18N | ||
184 | static int check_node_accept_bytes (const re_dfa_t *dfa, int node_idx, | ||
185 | const re_string_t *input, int idx) | ||
186 | internal_function; | ||
187 | # ifdef _LIBC | ||
188 | static unsigned int find_collation_sequence_value (const unsigned char *mbs, | ||
189 | size_t name_len) | ||
190 | internal_function; | ||
191 | # endif /* _LIBC */ | ||
192 | #endif /* RE_ENABLE_I18N */ | ||
193 | static int group_nodes_into_DFAstates (const re_dfa_t *dfa, | ||
194 | const re_dfastate_t *state, | ||
195 | re_node_set *states_node, | ||
196 | bitset_t *states_ch) internal_function; | ||
197 | static int check_node_accept (const re_match_context_t *mctx, | ||
198 | const re_token_t *node, int idx) | ||
199 | internal_function; | ||
200 | static reg_errcode_t extend_buffers (re_match_context_t *mctx) | ||
201 | internal_function; | ||
202 | |||
203 | /* Entry point for POSIX code. */ | ||
204 | |||
205 | /* regexec searches for a given pattern, specified by PREG, in the | ||
206 | string STRING. | ||
207 | |||
208 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to | ||
209 | `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at | ||
210 | least NMATCH elements, and we set them to the offsets of the | ||
211 | corresponding matched substrings. | ||
212 | |||
213 | EFLAGS specifies `execution flags' which affect matching: if | ||
214 | REG_NOTBOL is set, then ^ does not match at the beginning of the | ||
215 | string; if REG_NOTEOL is set, then $ does not match at the end. | ||
216 | |||
217 | We return 0 if we find a match and REG_NOMATCH if not. */ | ||
218 | |||
219 | int | ||
220 | regexec ( | ||
221 | const regex_t *__restrict preg, | ||
222 | const char *__restrict string, | ||
223 | size_t nmatch, | ||
224 | regmatch_t pmatch[], | ||
225 | int eflags) | ||
226 | { | ||
227 | reg_errcode_t err; | ||
228 | int start, length; | ||
229 | |||
230 | if (eflags & ~(REG_NOTBOL | REG_NOTEOL | REG_STARTEND)) | ||
231 | return REG_BADPAT; | ||
232 | |||
233 | if (eflags & REG_STARTEND) | ||
234 | { | ||
235 | start = pmatch[0].rm_so; | ||
236 | length = pmatch[0].rm_eo; | ||
237 | } | ||
238 | else | ||
239 | { | ||
240 | start = 0; | ||
241 | length = strlen (string); | ||
242 | } | ||
243 | |||
244 | __libc_lock_lock (dfa->lock); | ||
245 | if (preg->no_sub) | ||
246 | err = re_search_internal (preg, string, length, start, length - start, | ||
247 | length, 0, NULL, eflags); | ||
248 | else | ||
249 | err = re_search_internal (preg, string, length, start, length - start, | ||
250 | length, nmatch, pmatch, eflags); | ||
251 | __libc_lock_unlock (dfa->lock); | ||
252 | return err != REG_NOERROR; | ||
253 | } | ||
254 | |||
255 | #ifdef _LIBC | ||
256 | # include <shlib-compat.h> | ||
257 | versioned_symbol (libc, __regexec, regexec, GLIBC_2_3_4); | ||
258 | |||
259 | # if SHLIB_COMPAT (libc, GLIBC_2_0, GLIBC_2_3_4) | ||
260 | __typeof__ (__regexec) __compat_regexec; | ||
261 | |||
262 | int | ||
263 | attribute_compat_text_section | ||
264 | __compat_regexec (const regex_t *__restrict preg, | ||
265 | const char *__restrict string, size_t nmatch, | ||
266 | regmatch_t pmatch[], int eflags) | ||
267 | { | ||
268 | return regexec (preg, string, nmatch, pmatch, | ||
269 | eflags & (REG_NOTBOL | REG_NOTEOL)); | ||
270 | } | ||
271 | compat_symbol (libc, __compat_regexec, regexec, GLIBC_2_0); | ||
272 | # endif | ||
273 | #endif | ||
274 | |||
275 | /* Entry points for GNU code. */ | ||
276 | |||
277 | /* re_match, re_search, re_match_2, re_search_2 | ||
278 | |||
279 | The former two functions operate on STRING with length LENGTH, | ||
280 | while the later two operate on concatenation of STRING1 and STRING2 | ||
281 | with lengths LENGTH1 and LENGTH2, respectively. | ||
282 | |||
283 | re_match() matches the compiled pattern in BUFP against the string, | ||
284 | starting at index START. | ||
285 | |||
286 | re_search() first tries matching at index START, then it tries to match | ||
287 | starting from index START + 1, and so on. The last start position tried | ||
288 | is START + RANGE. (Thus RANGE = 0 forces re_search to operate the same | ||
289 | way as re_match().) | ||
290 | |||
291 | The parameter STOP of re_{match,search}_2 specifies that no match exceeding | ||
292 | the first STOP characters of the concatenation of the strings should be | ||
293 | concerned. | ||
294 | |||
295 | If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match | ||
296 | and all groups is stroed in REGS. (For the "_2" variants, the offsets are | ||
297 | computed relative to the concatenation, not relative to the individual | ||
298 | strings.) | ||
299 | |||
300 | On success, re_match* functions return the length of the match, re_search* | ||
301 | return the position of the start of the match. Return value -1 means no | ||
302 | match was found and -2 indicates an internal error. */ | ||
303 | |||
304 | int | ||
305 | re_match (struct re_pattern_buffer *bufp, | ||
306 | const char *string, | ||
307 | int length, | ||
308 | int start, | ||
309 | struct re_registers *regs) | ||
310 | { | ||
311 | return re_search_stub (bufp, string, length, start, 0, length, regs, 1); | ||
312 | } | ||
313 | #ifdef _LIBC | ||
314 | weak_alias (__re_match, re_match) | ||
315 | #endif | ||
316 | |||
317 | int | ||
318 | re_search (struct re_pattern_buffer *bufp, | ||
319 | const char *string, | ||
320 | int length, int start, int range, | ||
321 | struct re_registers *regs) | ||
322 | { | ||
323 | return re_search_stub (bufp, string, length, start, range, length, regs, 0); | ||
324 | } | ||
325 | #ifdef _LIBC | ||
326 | weak_alias (__re_search, re_search) | ||
327 | #endif | ||
328 | |||
329 | int | ||
330 | re_match_2 (struct re_pattern_buffer *bufp, | ||
331 | const char *string1, int length1, | ||
332 | const char *string2, int length2, int start, | ||
333 | struct re_registers *regs, int stop) | ||
334 | { | ||
335 | return re_search_2_stub (bufp, string1, length1, string2, length2, | ||
336 | start, 0, regs, stop, 1); | ||
337 | } | ||
338 | #ifdef _LIBC | ||
339 | weak_alias (__re_match_2, re_match_2) | ||
340 | #endif | ||
341 | |||
342 | int | ||
343 | re_search_2 (struct re_pattern_buffer *bufp, | ||
344 | const char *string1, int length1, | ||
345 | const char *string2, int length2, int start, | ||
346 | int range, struct re_registers *regs, int stop) | ||
347 | { | ||
348 | return re_search_2_stub (bufp, string1, length1, string2, length2, | ||
349 | start, range, regs, stop, 0); | ||
350 | } | ||
351 | #ifdef _LIBC | ||
352 | weak_alias (__re_search_2, re_search_2) | ||
353 | #endif | ||
354 | |||
355 | static int | ||
356 | re_search_2_stub (struct re_pattern_buffer *bufp, | ||
357 | const char *string1, int length1, | ||
358 | const char *string2, int length2, int start, | ||
359 | int range, struct re_registers *regs, | ||
360 | int stop, int ret_len) | ||
361 | { | ||
362 | const char *str; | ||
363 | int rval; | ||
364 | int len = length1 + length2; | ||
365 | int free_str = 0; | ||
366 | |||
367 | if (BE (length1 < 0 || length2 < 0 || stop < 0, 0)) | ||
368 | return -2; | ||
369 | |||
370 | /* Concatenate the strings. */ | ||
371 | if (length2 > 0) | ||
372 | if (length1 > 0) | ||
373 | { | ||
374 | char *s = re_malloc (char, len); | ||
375 | |||
376 | if (BE (s == NULL, 0)) | ||
377 | return -2; | ||
378 | memcpy (s, string1, length1); | ||
379 | memcpy (s + length1, string2, length2); | ||
380 | str = s; | ||
381 | free_str = 1; | ||
382 | } | ||
383 | else | ||
384 | str = string2; | ||
385 | else | ||
386 | str = string1; | ||
387 | |||
388 | rval = re_search_stub (bufp, str, len, start, range, stop, regs, ret_len); | ||
389 | if (free_str) | ||
390 | re_free ((char *) str); | ||
391 | return rval; | ||
392 | } | ||
393 | |||
394 | /* The parameters have the same meaning as those of re_search. | ||
395 | Additional parameters: | ||
396 | If RET_LEN is nonzero the length of the match is returned (re_match style); | ||
397 | otherwise the position of the match is returned. */ | ||
398 | |||
399 | static int | ||
400 | re_search_stub (struct re_pattern_buffer *bufp, | ||
401 | const char *string, int length, int start, | ||
402 | int range, int stop, | ||
403 | struct re_registers *regs, int ret_len) | ||
404 | { | ||
405 | reg_errcode_t result; | ||
406 | regmatch_t *pmatch; | ||
407 | int nregs, rval; | ||
408 | int eflags = 0; | ||
409 | |||
410 | /* Check for out-of-range. */ | ||
411 | if (BE (start < 0 || start > length, 0)) | ||
412 | return -1; | ||
413 | if (BE (start + range > length, 0)) | ||
414 | range = length - start; | ||
415 | else if (BE (start + range < 0, 0)) | ||
416 | range = -start; | ||
417 | |||
418 | __libc_lock_lock (dfa->lock); | ||
419 | |||
420 | eflags |= (bufp->not_bol) ? REG_NOTBOL : 0; | ||
421 | eflags |= (bufp->not_eol) ? REG_NOTEOL : 0; | ||
422 | |||
423 | /* Compile fastmap if we haven't yet. */ | ||
424 | if (range > 0 && bufp->fastmap != NULL && !bufp->fastmap_accurate) | ||
425 | re_compile_fastmap (bufp); | ||
426 | |||
427 | if (BE (bufp->no_sub, 0)) | ||
428 | regs = NULL; | ||
429 | |||
430 | /* We need at least 1 register. */ | ||
431 | if (regs == NULL) | ||
432 | nregs = 1; | ||
433 | else if (BE (bufp->regs_allocated == REGS_FIXED && | ||
434 | regs->num_regs < bufp->re_nsub + 1, 0)) | ||
435 | { | ||
436 | nregs = regs->num_regs; | ||
437 | if (BE (nregs < 1, 0)) | ||
438 | { | ||
439 | /* Nothing can be copied to regs. */ | ||
440 | regs = NULL; | ||
441 | nregs = 1; | ||
442 | } | ||
443 | } | ||
444 | else | ||
445 | nregs = bufp->re_nsub + 1; | ||
446 | pmatch = re_malloc (regmatch_t, nregs); | ||
447 | if (BE (pmatch == NULL, 0)) | ||
448 | { | ||
449 | rval = -2; | ||
450 | goto out; | ||
451 | } | ||
452 | |||
453 | result = re_search_internal (bufp, string, length, start, range, stop, | ||
454 | nregs, pmatch, eflags); | ||
455 | |||
456 | rval = 0; | ||
457 | |||
458 | /* I hope we needn't fill their regs with -1's when no match was found. */ | ||
459 | if (result != REG_NOERROR) | ||
460 | rval = -1; | ||
461 | else if (regs != NULL) | ||
462 | { | ||
463 | /* If caller wants register contents data back, copy them. */ | ||
464 | bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs, | ||
465 | bufp->regs_allocated); | ||
466 | if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0)) | ||
467 | rval = -2; | ||
468 | } | ||
469 | |||
470 | if (BE (rval == 0, 1)) | ||
471 | { | ||
472 | if (ret_len) | ||
473 | { | ||
474 | assert (pmatch[0].rm_so == start); | ||
475 | rval = pmatch[0].rm_eo - start; | ||
476 | } | ||
477 | else | ||
478 | rval = pmatch[0].rm_so; | ||
479 | } | ||
480 | re_free (pmatch); | ||
481 | out: | ||
482 | __libc_lock_unlock (dfa->lock); | ||
483 | return rval; | ||
484 | } | ||
485 | |||
486 | static unsigned | ||
487 | re_copy_regs (struct re_registers *regs, | ||
488 | regmatch_t *pmatch, | ||
489 | int nregs, int regs_allocated) | ||
490 | { | ||
491 | int rval = REGS_REALLOCATE; | ||
492 | int i; | ||
493 | int need_regs = nregs + 1; | ||
494 | /* We need one extra element beyond `num_regs' for the `-1' marker GNU code | ||
495 | uses. */ | ||
496 | |||
497 | /* Have the register data arrays been allocated? */ | ||
498 | if (regs_allocated == REGS_UNALLOCATED) | ||
499 | { /* No. So allocate them with malloc. */ | ||
500 | regs->start = re_malloc (regoff_t, need_regs); | ||
501 | if (BE (regs->start == NULL, 0)) | ||
502 | return REGS_UNALLOCATED; | ||
503 | regs->end = re_malloc (regoff_t, need_regs); | ||
504 | if (BE (regs->end == NULL, 0)) | ||
505 | { | ||
506 | re_free (regs->start); | ||
507 | return REGS_UNALLOCATED; | ||
508 | } | ||
509 | regs->num_regs = need_regs; | ||
510 | } | ||
511 | else if (regs_allocated == REGS_REALLOCATE) | ||
512 | { /* Yes. If we need more elements than were already | ||
513 | allocated, reallocate them. If we need fewer, just | ||
514 | leave it alone. */ | ||
515 | if (BE (need_regs > regs->num_regs, 0)) | ||
516 | { | ||
517 | regoff_t *new_start = re_realloc (regs->start, regoff_t, need_regs); | ||
518 | regoff_t *new_end; | ||
519 | if (BE (new_start == NULL, 0)) | ||
520 | return REGS_UNALLOCATED; | ||
521 | new_end = re_realloc (regs->end, regoff_t, need_regs); | ||
522 | if (BE (new_end == NULL, 0)) | ||
523 | { | ||
524 | re_free (new_start); | ||
525 | return REGS_UNALLOCATED; | ||
526 | } | ||
527 | regs->start = new_start; | ||
528 | regs->end = new_end; | ||
529 | regs->num_regs = need_regs; | ||
530 | } | ||
531 | } | ||
532 | else | ||
533 | { | ||
534 | assert (regs_allocated == REGS_FIXED); | ||
535 | /* This function may not be called with REGS_FIXED and nregs too big. */ | ||
536 | assert (regs->num_regs >= nregs); | ||
537 | rval = REGS_FIXED; | ||
538 | } | ||
539 | |||
540 | /* Copy the regs. */ | ||
541 | for (i = 0; i < nregs; ++i) | ||
542 | { | ||
543 | regs->start[i] = pmatch[i].rm_so; | ||
544 | regs->end[i] = pmatch[i].rm_eo; | ||
545 | } | ||
546 | for ( ; i < regs->num_regs; ++i) | ||
547 | regs->start[i] = regs->end[i] = -1; | ||
548 | |||
549 | return rval; | ||
550 | } | ||
551 | |||
552 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | ||
553 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use | ||
554 | this memory for recording register information. STARTS and ENDS | ||
555 | must be allocated using the malloc library routine, and must each | ||
556 | be at least NUM_REGS * sizeof (regoff_t) bytes long. | ||
557 | |||
558 | If NUM_REGS == 0, then subsequent matches should allocate their own | ||
559 | register data. | ||
560 | |||
561 | Unless this function is called, the first search or match using | ||
562 | PATTERN_BUFFER will allocate its own register data, without | ||
563 | freeing the old data. */ | ||
564 | |||
565 | void | ||
566 | re_set_registers (struct re_pattern_buffer *bufp, | ||
567 | struct re_registers *regs, | ||
568 | unsigned num_regs, | ||
569 | regoff_t *starts, | ||
570 | regoff_t *ends) | ||
571 | { | ||
572 | if (num_regs) | ||
573 | { | ||
574 | bufp->regs_allocated = REGS_REALLOCATE; | ||
575 | regs->num_regs = num_regs; | ||
576 | regs->start = starts; | ||
577 | regs->end = ends; | ||
578 | } | ||
579 | else | ||
580 | { | ||
581 | bufp->regs_allocated = REGS_UNALLOCATED; | ||
582 | regs->num_regs = 0; | ||
583 | regs->start = regs->end = (regoff_t *) 0; | ||
584 | } | ||
585 | } | ||
586 | #ifdef _LIBC | ||
587 | weak_alias (__re_set_registers, re_set_registers) | ||
588 | #endif | ||
589 | |||
590 | /* Entry points compatible with 4.2 BSD regex library. We don't define | ||
591 | them unless specifically requested. */ | ||
592 | |||
593 | #if defined _REGEX_RE_COMP || defined _LIBC | ||
594 | int | ||
595 | # ifdef _LIBC | ||
596 | weak_function | ||
597 | # endif | ||
598 | re_exec (s) | ||
599 | const char *s; | ||
600 | { | ||
601 | return 0 == regexec (&re_comp_buf, s, 0, NULL, 0); | ||
602 | } | ||
603 | #endif /* _REGEX_RE_COMP */ | ||
604 | |||
605 | /* Internal entry point. */ | ||
606 | |||
607 | /* Searches for a compiled pattern PREG in the string STRING, whose | ||
608 | length is LENGTH. NMATCH, PMATCH, and EFLAGS have the same | ||
609 | mingings with regexec. START, and RANGE have the same meanings | ||
610 | with re_search. | ||
611 | Return REG_NOERROR if we find a match, and REG_NOMATCH if not, | ||
612 | otherwise return the error code. | ||
613 | Note: We assume front end functions already check ranges. | ||
614 | (START + RANGE >= 0 && START + RANGE <= LENGTH) */ | ||
615 | |||
616 | static reg_errcode_t | ||
617 | re_search_internal (const regex_t *preg, | ||
618 | const char *string, | ||
619 | int length, int start, int range, int stop, | ||
620 | size_t nmatch, regmatch_t pmatch[], | ||
621 | int eflags) | ||
622 | { | ||
623 | reg_errcode_t err; | ||
624 | const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer; | ||
625 | int left_lim, right_lim, incr; | ||
626 | int fl_longest_match, match_first, match_kind, match_last = -1; | ||
627 | int extra_nmatch; | ||
628 | int sb, ch; | ||
629 | #if defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L) | ||
630 | re_match_context_t mctx = { .dfa = dfa }; | ||
631 | #else | ||
632 | re_match_context_t mctx; | ||
633 | #endif | ||
634 | char *fastmap = (preg->fastmap != NULL && preg->fastmap_accurate | ||
635 | && range && !preg->can_be_null) ? preg->fastmap : NULL; | ||
636 | RE_TRANSLATE_TYPE t = preg->translate; | ||
637 | |||
638 | #if !(defined _LIBC || (defined __STDC_VERSION__ && __STDC_VERSION__ >= 199901L)) | ||
639 | memset (&mctx, '\0', sizeof (re_match_context_t)); | ||
640 | mctx.dfa = dfa; | ||
641 | #endif | ||
642 | |||
643 | extra_nmatch = (nmatch > preg->re_nsub) ? nmatch - (preg->re_nsub + 1) : 0; | ||
644 | nmatch -= extra_nmatch; | ||
645 | |||
646 | /* Check if the DFA haven't been compiled. */ | ||
647 | if (BE (preg->used == 0 || dfa->init_state == NULL | ||
648 | || dfa->init_state_word == NULL || dfa->init_state_nl == NULL | ||
649 | || dfa->init_state_begbuf == NULL, 0)) | ||
650 | return REG_NOMATCH; | ||
651 | |||
652 | #ifdef DEBUG | ||
653 | /* We assume front-end functions already check them. */ | ||
654 | assert (start + range >= 0 && start + range <= length); | ||
655 | #endif | ||
656 | |||
657 | /* If initial states with non-begbuf contexts have no elements, | ||
658 | the regex must be anchored. If preg->newline_anchor is set, | ||
659 | we'll never use init_state_nl, so do not check it. */ | ||
660 | if (dfa->init_state->nodes.nelem == 0 | ||
661 | && dfa->init_state_word->nodes.nelem == 0 | ||
662 | && (dfa->init_state_nl->nodes.nelem == 0 | ||
663 | || !preg->newline_anchor)) | ||
664 | { | ||
665 | if (start != 0 && start + range != 0) | ||
666 | return REG_NOMATCH; | ||
667 | start = range = 0; | ||
668 | } | ||
669 | |||
670 | /* We must check the longest matching, if nmatch > 0. */ | ||
671 | fl_longest_match = (nmatch != 0 || dfa->nbackref); | ||
672 | |||
673 | err = re_string_allocate (&mctx.input, string, length, dfa->nodes_len + 1, | ||
674 | preg->translate, preg->syntax & RE_ICASE, dfa); | ||
675 | if (BE (err != REG_NOERROR, 0)) | ||
676 | goto free_return; | ||
677 | mctx.input.stop = stop; | ||
678 | mctx.input.raw_stop = stop; | ||
679 | mctx.input.newline_anchor = preg->newline_anchor; | ||
680 | |||
681 | err = match_ctx_init (&mctx, eflags, dfa->nbackref * 2); | ||
682 | if (BE (err != REG_NOERROR, 0)) | ||
683 | goto free_return; | ||
684 | |||
685 | /* We will log all the DFA states through which the dfa pass, | ||
686 | if nmatch > 1, or this dfa has "multibyte node", which is a | ||
687 | back-reference or a node which can accept multibyte character or | ||
688 | multi character collating element. */ | ||
689 | if (nmatch > 1 || dfa->has_mb_node) | ||
690 | { | ||
691 | /* Avoid overflow. */ | ||
692 | if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= mctx.input.bufs_len, 0)) | ||
693 | { | ||
694 | err = REG_ESPACE; | ||
695 | goto free_return; | ||
696 | } | ||
697 | |||
698 | mctx.state_log = re_malloc (re_dfastate_t *, mctx.input.bufs_len + 1); | ||
699 | if (BE (mctx.state_log == NULL, 0)) | ||
700 | { | ||
701 | err = REG_ESPACE; | ||
702 | goto free_return; | ||
703 | } | ||
704 | } | ||
705 | else | ||
706 | mctx.state_log = NULL; | ||
707 | |||
708 | match_first = start; | ||
709 | mctx.input.tip_context = (eflags & REG_NOTBOL) ? CONTEXT_BEGBUF | ||
710 | : CONTEXT_NEWLINE | CONTEXT_BEGBUF; | ||
711 | |||
712 | /* Check incrementally whether of not the input string match. */ | ||
713 | incr = (range < 0) ? -1 : 1; | ||
714 | left_lim = (range < 0) ? start + range : start; | ||
715 | right_lim = (range < 0) ? start : start + range; | ||
716 | sb = dfa->mb_cur_max == 1; | ||
717 | match_kind = | ||
718 | (fastmap | ||
719 | ? ((sb || !(preg->syntax & RE_ICASE || t) ? 4 : 0) | ||
720 | | (range >= 0 ? 2 : 0) | ||
721 | | (t != NULL ? 1 : 0)) | ||
722 | : 8); | ||
723 | |||
724 | for (;; match_first += incr) | ||
725 | { | ||
726 | err = REG_NOMATCH; | ||
727 | if (match_first < left_lim || right_lim < match_first) | ||
728 | goto free_return; | ||
729 | |||
730 | /* Advance as rapidly as possible through the string, until we | ||
731 | find a plausible place to start matching. This may be done | ||
732 | with varying efficiency, so there are various possibilities: | ||
733 | only the most common of them are specialized, in order to | ||
734 | save on code size. We use a switch statement for speed. */ | ||
735 | switch (match_kind) | ||
736 | { | ||
737 | case 8: | ||
738 | /* No fastmap. */ | ||
739 | break; | ||
740 | |||
741 | case 7: | ||
742 | /* Fastmap with single-byte translation, match forward. */ | ||
743 | while (BE (match_first < right_lim, 1) | ||
744 | && !fastmap[t[(unsigned char) string[match_first]]]) | ||
745 | ++match_first; | ||
746 | goto forward_match_found_start_or_reached_end; | ||
747 | |||
748 | case 6: | ||
749 | /* Fastmap without translation, match forward. */ | ||
750 | while (BE (match_first < right_lim, 1) | ||
751 | && !fastmap[(unsigned char) string[match_first]]) | ||
752 | ++match_first; | ||
753 | |||
754 | forward_match_found_start_or_reached_end: | ||
755 | if (BE (match_first == right_lim, 0)) | ||
756 | { | ||
757 | ch = match_first >= length | ||
758 | ? 0 : (unsigned char) string[match_first]; | ||
759 | if (!fastmap[t ? t[ch] : ch]) | ||
760 | goto free_return; | ||
761 | } | ||
762 | break; | ||
763 | |||
764 | case 4: | ||
765 | case 5: | ||
766 | /* Fastmap without multi-byte translation, match backwards. */ | ||
767 | while (match_first >= left_lim) | ||
768 | { | ||
769 | ch = match_first >= length | ||
770 | ? 0 : (unsigned char) string[match_first]; | ||
771 | if (fastmap[t ? t[ch] : ch]) | ||
772 | break; | ||
773 | --match_first; | ||
774 | } | ||
775 | if (match_first < left_lim) | ||
776 | goto free_return; | ||
777 | break; | ||
778 | |||
779 | default: | ||
780 | /* In this case, we can't determine easily the current byte, | ||
781 | since it might be a component byte of a multibyte | ||
782 | character. Then we use the constructed buffer instead. */ | ||
783 | for (;;) | ||
784 | { | ||
785 | /* If MATCH_FIRST is out of the valid range, reconstruct the | ||
786 | buffers. */ | ||
787 | unsigned int offset = match_first - mctx.input.raw_mbs_idx; | ||
788 | if (BE (offset >= (unsigned int) mctx.input.valid_raw_len, 0)) | ||
789 | { | ||
790 | err = re_string_reconstruct (&mctx.input, match_first, | ||
791 | eflags); | ||
792 | if (BE (err != REG_NOERROR, 0)) | ||
793 | goto free_return; | ||
794 | |||
795 | offset = match_first - mctx.input.raw_mbs_idx; | ||
796 | } | ||
797 | /* If MATCH_FIRST is out of the buffer, leave it as '\0'. | ||
798 | Note that MATCH_FIRST must not be smaller than 0. */ | ||
799 | ch = (match_first >= length | ||
800 | ? 0 : re_string_byte_at (&mctx.input, offset)); | ||
801 | if (fastmap[ch]) | ||
802 | break; | ||
803 | match_first += incr; | ||
804 | if (match_first < left_lim || match_first > right_lim) | ||
805 | { | ||
806 | err = REG_NOMATCH; | ||
807 | goto free_return; | ||
808 | } | ||
809 | } | ||
810 | break; | ||
811 | } | ||
812 | |||
813 | /* Reconstruct the buffers so that the matcher can assume that | ||
814 | the matching starts from the beginning of the buffer. */ | ||
815 | err = re_string_reconstruct (&mctx.input, match_first, eflags); | ||
816 | if (BE (err != REG_NOERROR, 0)) | ||
817 | goto free_return; | ||
818 | |||
819 | #ifdef RE_ENABLE_I18N | ||
820 | /* Don't consider this char as a possible match start if it part, | ||
821 | yet isn't the head, of a multibyte character. */ | ||
822 | if (!sb && !re_string_first_byte (&mctx.input, 0)) | ||
823 | continue; | ||
824 | #endif | ||
825 | |||
826 | /* It seems to be appropriate one, then use the matcher. */ | ||
827 | /* We assume that the matching starts from 0. */ | ||
828 | mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0; | ||
829 | match_last = check_matching (&mctx, fl_longest_match, | ||
830 | range >= 0 ? &match_first : NULL); | ||
831 | if (match_last != -1) | ||
832 | { | ||
833 | if (BE (match_last == -2, 0)) | ||
834 | { | ||
835 | err = REG_ESPACE; | ||
836 | goto free_return; | ||
837 | } | ||
838 | else | ||
839 | { | ||
840 | mctx.match_last = match_last; | ||
841 | if ((!preg->no_sub && nmatch > 1) || dfa->nbackref) | ||
842 | { | ||
843 | re_dfastate_t *pstate = mctx.state_log[match_last]; | ||
844 | mctx.last_node = check_halt_state_context (&mctx, pstate, | ||
845 | match_last); | ||
846 | } | ||
847 | if ((!preg->no_sub && nmatch > 1 && dfa->has_plural_match) | ||
848 | || dfa->nbackref) | ||
849 | { | ||
850 | err = prune_impossible_nodes (&mctx); | ||
851 | if (err == REG_NOERROR) | ||
852 | break; | ||
853 | if (BE (err != REG_NOMATCH, 0)) | ||
854 | goto free_return; | ||
855 | match_last = -1; | ||
856 | } | ||
857 | else | ||
858 | break; /* We found a match. */ | ||
859 | } | ||
860 | } | ||
861 | |||
862 | match_ctx_clean (&mctx); | ||
863 | } | ||
864 | |||
865 | #ifdef DEBUG | ||
866 | assert (match_last != -1); | ||
867 | assert (err == REG_NOERROR); | ||
868 | #endif | ||
869 | |||
870 | /* Set pmatch[] if we need. */ | ||
871 | if (nmatch > 0) | ||
872 | { | ||
873 | int reg_idx; | ||
874 | |||
875 | /* Initialize registers. */ | ||
876 | for (reg_idx = 1; reg_idx < nmatch; ++reg_idx) | ||
877 | pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1; | ||
878 | |||
879 | /* Set the points where matching start/end. */ | ||
880 | pmatch[0].rm_so = 0; | ||
881 | pmatch[0].rm_eo = mctx.match_last; | ||
882 | |||
883 | if (!preg->no_sub && nmatch > 1) | ||
884 | { | ||
885 | err = set_regs (preg, &mctx, nmatch, pmatch, | ||
886 | dfa->has_plural_match && dfa->nbackref > 0); | ||
887 | if (BE (err != REG_NOERROR, 0)) | ||
888 | goto free_return; | ||
889 | } | ||
890 | |||
891 | /* At last, add the offset to the each registers, since we slided | ||
892 | the buffers so that we could assume that the matching starts | ||
893 | from 0. */ | ||
894 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) | ||
895 | if (pmatch[reg_idx].rm_so != -1) | ||
896 | { | ||
897 | #ifdef RE_ENABLE_I18N | ||
898 | if (BE (mctx.input.offsets_needed != 0, 0)) | ||
899 | { | ||
900 | pmatch[reg_idx].rm_so = | ||
901 | (pmatch[reg_idx].rm_so == mctx.input.valid_len | ||
902 | ? mctx.input.valid_raw_len | ||
903 | : mctx.input.offsets[pmatch[reg_idx].rm_so]); | ||
904 | pmatch[reg_idx].rm_eo = | ||
905 | (pmatch[reg_idx].rm_eo == mctx.input.valid_len | ||
906 | ? mctx.input.valid_raw_len | ||
907 | : mctx.input.offsets[pmatch[reg_idx].rm_eo]); | ||
908 | } | ||
909 | #else | ||
910 | assert (mctx.input.offsets_needed == 0); | ||
911 | #endif | ||
912 | pmatch[reg_idx].rm_so += match_first; | ||
913 | pmatch[reg_idx].rm_eo += match_first; | ||
914 | } | ||
915 | for (reg_idx = 0; reg_idx < extra_nmatch; ++reg_idx) | ||
916 | { | ||
917 | pmatch[nmatch + reg_idx].rm_so = -1; | ||
918 | pmatch[nmatch + reg_idx].rm_eo = -1; | ||
919 | } | ||
920 | |||
921 | if (dfa->subexp_map) | ||
922 | for (reg_idx = 0; reg_idx + 1 < nmatch; reg_idx++) | ||
923 | if (dfa->subexp_map[reg_idx] != reg_idx) | ||
924 | { | ||
925 | pmatch[reg_idx + 1].rm_so | ||
926 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_so; | ||
927 | pmatch[reg_idx + 1].rm_eo | ||
928 | = pmatch[dfa->subexp_map[reg_idx] + 1].rm_eo; | ||
929 | } | ||
930 | } | ||
931 | |||
932 | free_return: | ||
933 | re_free (mctx.state_log); | ||
934 | if (dfa->nbackref) | ||
935 | match_ctx_free (&mctx); | ||
936 | re_string_destruct (&mctx.input); | ||
937 | return err; | ||
938 | } | ||
939 | |||
940 | static reg_errcode_t | ||
941 | prune_impossible_nodes (re_match_context_t *mctx) | ||
942 | { | ||
943 | const re_dfa_t *const dfa = mctx->dfa; | ||
944 | int halt_node, match_last; | ||
945 | reg_errcode_t ret; | ||
946 | re_dfastate_t **sifted_states; | ||
947 | re_dfastate_t **lim_states = NULL; | ||
948 | re_sift_context_t sctx; | ||
949 | #ifdef DEBUG | ||
950 | assert (mctx->state_log != NULL); | ||
951 | #endif | ||
952 | match_last = mctx->match_last; | ||
953 | halt_node = mctx->last_node; | ||
954 | |||
955 | /* Avoid overflow. */ | ||
956 | if (BE (SIZE_MAX / sizeof (re_dfastate_t *) <= match_last, 0)) | ||
957 | return REG_ESPACE; | ||
958 | |||
959 | sifted_states = re_malloc (re_dfastate_t *, match_last + 1); | ||
960 | if (BE (sifted_states == NULL, 0)) | ||
961 | { | ||
962 | ret = REG_ESPACE; | ||
963 | goto free_return; | ||
964 | } | ||
965 | if (dfa->nbackref) | ||
966 | { | ||
967 | lim_states = re_malloc (re_dfastate_t *, match_last + 1); | ||
968 | if (BE (lim_states == NULL, 0)) | ||
969 | { | ||
970 | ret = REG_ESPACE; | ||
971 | goto free_return; | ||
972 | } | ||
973 | while (1) | ||
974 | { | ||
975 | memset (lim_states, '\0', | ||
976 | sizeof (re_dfastate_t *) * (match_last + 1)); | ||
977 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, | ||
978 | match_last); | ||
979 | ret = sift_states_backward (mctx, &sctx); | ||
980 | re_node_set_free (&sctx.limits); | ||
981 | if (BE (ret != REG_NOERROR, 0)) | ||
982 | goto free_return; | ||
983 | if (sifted_states[0] != NULL || lim_states[0] != NULL) | ||
984 | break; | ||
985 | do | ||
986 | { | ||
987 | --match_last; | ||
988 | if (match_last < 0) | ||
989 | { | ||
990 | ret = REG_NOMATCH; | ||
991 | goto free_return; | ||
992 | } | ||
993 | } while (mctx->state_log[match_last] == NULL | ||
994 | || !mctx->state_log[match_last]->halt); | ||
995 | halt_node = check_halt_state_context (mctx, | ||
996 | mctx->state_log[match_last], | ||
997 | match_last); | ||
998 | } | ||
999 | ret = merge_state_array (dfa, sifted_states, lim_states, | ||
1000 | match_last + 1); | ||
1001 | re_free (lim_states); | ||
1002 | lim_states = NULL; | ||
1003 | if (BE (ret != REG_NOERROR, 0)) | ||
1004 | goto free_return; | ||
1005 | } | ||
1006 | else | ||
1007 | { | ||
1008 | sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, match_last); | ||
1009 | ret = sift_states_backward (mctx, &sctx); | ||
1010 | re_node_set_free (&sctx.limits); | ||
1011 | if (BE (ret != REG_NOERROR, 0)) | ||
1012 | goto free_return; | ||
1013 | if (sifted_states[0] == NULL) | ||
1014 | { | ||
1015 | ret = REG_NOMATCH; | ||
1016 | goto free_return; | ||
1017 | } | ||
1018 | } | ||
1019 | re_free (mctx->state_log); | ||
1020 | mctx->state_log = sifted_states; | ||
1021 | sifted_states = NULL; | ||
1022 | mctx->last_node = halt_node; | ||
1023 | mctx->match_last = match_last; | ||
1024 | ret = REG_NOERROR; | ||
1025 | free_return: | ||
1026 | re_free (sifted_states); | ||
1027 | re_free (lim_states); | ||
1028 | return ret; | ||
1029 | } | ||
1030 | |||
1031 | /* Acquire an initial state and return it. | ||
1032 | We must select appropriate initial state depending on the context, | ||
1033 | since initial states may have constraints like "\<", "^", etc.. */ | ||
1034 | |||
1035 | static inline re_dfastate_t * | ||
1036 | __attribute ((always_inline)) internal_function | ||
1037 | acquire_init_state_context (reg_errcode_t *err, const re_match_context_t *mctx, | ||
1038 | int idx) | ||
1039 | { | ||
1040 | const re_dfa_t *const dfa = mctx->dfa; | ||
1041 | if (dfa->init_state->has_constraint) | ||
1042 | { | ||
1043 | unsigned int context; | ||
1044 | context = re_string_context_at (&mctx->input, idx - 1, mctx->eflags); | ||
1045 | if (IS_WORD_CONTEXT (context)) | ||
1046 | return dfa->init_state_word; | ||
1047 | else if (IS_ORDINARY_CONTEXT (context)) | ||
1048 | return dfa->init_state; | ||
1049 | else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context)) | ||
1050 | return dfa->init_state_begbuf; | ||
1051 | else if (IS_NEWLINE_CONTEXT (context)) | ||
1052 | return dfa->init_state_nl; | ||
1053 | else if (IS_BEGBUF_CONTEXT (context)) | ||
1054 | { | ||
1055 | /* It is relatively rare case, then calculate on demand. */ | ||
1056 | return re_acquire_state_context (err, dfa, | ||
1057 | dfa->init_state->entrance_nodes, | ||
1058 | context); | ||
1059 | } | ||
1060 | else | ||
1061 | /* Must not happen? */ | ||
1062 | return dfa->init_state; | ||
1063 | } | ||
1064 | else | ||
1065 | return dfa->init_state; | ||
1066 | } | ||
1067 | |||
1068 | /* Check whether the regular expression match input string INPUT or not, | ||
1069 | and return the index where the matching end, return -1 if not match, | ||
1070 | or return -2 in case of an error. | ||
1071 | FL_LONGEST_MATCH means we want the POSIX longest matching. | ||
1072 | If P_MATCH_FIRST is not NULL, and the match fails, it is set to the | ||
1073 | next place where we may want to try matching. | ||
1074 | Note that the matcher assume that the matching starts from the current | ||
1075 | index of the buffer. */ | ||
1076 | |||
1077 | static int | ||
1078 | internal_function | ||
1079 | check_matching (re_match_context_t *mctx, int fl_longest_match, | ||
1080 | int *p_match_first) | ||
1081 | { | ||
1082 | const re_dfa_t *const dfa = mctx->dfa; | ||
1083 | reg_errcode_t err; | ||
1084 | int match = 0; | ||
1085 | int match_last = -1; | ||
1086 | int cur_str_idx = re_string_cur_idx (&mctx->input); | ||
1087 | re_dfastate_t *cur_state; | ||
1088 | int at_init_state = p_match_first != NULL; | ||
1089 | int next_start_idx = cur_str_idx; | ||
1090 | |||
1091 | err = REG_NOERROR; | ||
1092 | cur_state = acquire_init_state_context (&err, mctx, cur_str_idx); | ||
1093 | /* An initial state must not be NULL (invalid). */ | ||
1094 | if (BE (cur_state == NULL, 0)) | ||
1095 | { | ||
1096 | assert (err == REG_ESPACE); | ||
1097 | return -2; | ||
1098 | } | ||
1099 | |||
1100 | if (mctx->state_log != NULL) | ||
1101 | { | ||
1102 | mctx->state_log[cur_str_idx] = cur_state; | ||
1103 | |||
1104 | /* Check OP_OPEN_SUBEXP in the initial state in case that we use them | ||
1105 | later. E.g. Processing back references. */ | ||
1106 | if (BE (dfa->nbackref, 0)) | ||
1107 | { | ||
1108 | at_init_state = 0; | ||
1109 | err = check_subexp_matching_top (mctx, &cur_state->nodes, 0); | ||
1110 | if (BE (err != REG_NOERROR, 0)) | ||
1111 | return err; | ||
1112 | |||
1113 | if (cur_state->has_backref) | ||
1114 | { | ||
1115 | err = transit_state_bkref (mctx, &cur_state->nodes); | ||
1116 | if (BE (err != REG_NOERROR, 0)) | ||
1117 | return err; | ||
1118 | } | ||
1119 | } | ||
1120 | } | ||
1121 | |||
1122 | /* If the RE accepts NULL string. */ | ||
1123 | if (BE (cur_state->halt, 0)) | ||
1124 | { | ||
1125 | if (!cur_state->has_constraint | ||
1126 | || check_halt_state_context (mctx, cur_state, cur_str_idx)) | ||
1127 | { | ||
1128 | if (!fl_longest_match) | ||
1129 | return cur_str_idx; | ||
1130 | else | ||
1131 | { | ||
1132 | match_last = cur_str_idx; | ||
1133 | match = 1; | ||
1134 | } | ||
1135 | } | ||
1136 | } | ||
1137 | |||
1138 | while (!re_string_eoi (&mctx->input)) | ||
1139 | { | ||
1140 | re_dfastate_t *old_state = cur_state; | ||
1141 | int next_char_idx = re_string_cur_idx (&mctx->input) + 1; | ||
1142 | |||
1143 | if (BE (next_char_idx >= mctx->input.bufs_len, 0) | ||
1144 | || (BE (next_char_idx >= mctx->input.valid_len, 0) | ||
1145 | && mctx->input.valid_len < mctx->input.len)) | ||
1146 | { | ||
1147 | err = extend_buffers (mctx); | ||
1148 | if (BE (err != REG_NOERROR, 0)) | ||
1149 | { | ||
1150 | assert (err == REG_ESPACE); | ||
1151 | return -2; | ||
1152 | } | ||
1153 | } | ||
1154 | |||
1155 | cur_state = transit_state (&err, mctx, cur_state); | ||
1156 | if (mctx->state_log != NULL) | ||
1157 | cur_state = merge_state_with_log (&err, mctx, cur_state); | ||
1158 | |||
1159 | if (cur_state == NULL) | ||
1160 | { | ||
1161 | /* Reached the invalid state or an error. Try to recover a valid | ||
1162 | state using the state log, if available and if we have not | ||
1163 | already found a valid (even if not the longest) match. */ | ||
1164 | if (BE (err != REG_NOERROR, 0)) | ||
1165 | return -2; | ||
1166 | |||
1167 | if (mctx->state_log == NULL | ||
1168 | || (match && !fl_longest_match) | ||
1169 | || (cur_state = find_recover_state (&err, mctx)) == NULL) | ||
1170 | break; | ||
1171 | } | ||
1172 | |||
1173 | if (BE (at_init_state, 0)) | ||
1174 | { | ||
1175 | if (old_state == cur_state) | ||
1176 | next_start_idx = next_char_idx; | ||
1177 | else | ||
1178 | at_init_state = 0; | ||
1179 | } | ||
1180 | |||
1181 | if (cur_state->halt) | ||
1182 | { | ||
1183 | /* Reached a halt state. | ||
1184 | Check the halt state can satisfy the current context. */ | ||
1185 | if (!cur_state->has_constraint | ||
1186 | || check_halt_state_context (mctx, cur_state, | ||
1187 | re_string_cur_idx (&mctx->input))) | ||
1188 | { | ||
1189 | /* We found an appropriate halt state. */ | ||
1190 | match_last = re_string_cur_idx (&mctx->input); | ||
1191 | match = 1; | ||
1192 | |||
1193 | /* We found a match, do not modify match_first below. */ | ||
1194 | p_match_first = NULL; | ||
1195 | if (!fl_longest_match) | ||
1196 | break; | ||
1197 | } | ||
1198 | } | ||
1199 | } | ||
1200 | |||
1201 | if (p_match_first) | ||
1202 | *p_match_first += next_start_idx; | ||
1203 | |||
1204 | return match_last; | ||
1205 | } | ||
1206 | |||
1207 | /* Check NODE match the current context. */ | ||
1208 | |||
1209 | static int | ||
1210 | internal_function | ||
1211 | check_halt_node_context (const re_dfa_t *dfa, int node, unsigned int context) | ||
1212 | { | ||
1213 | re_token_type_t type = dfa->nodes[node].type; | ||
1214 | unsigned int constraint = dfa->nodes[node].constraint; | ||
1215 | if (type != END_OF_RE) | ||
1216 | return 0; | ||
1217 | if (!constraint) | ||
1218 | return 1; | ||
1219 | if (NOT_SATISFY_NEXT_CONSTRAINT (constraint, context)) | ||
1220 | return 0; | ||
1221 | return 1; | ||
1222 | } | ||
1223 | |||
1224 | /* Check the halt state STATE match the current context. | ||
1225 | Return 0 if not match, if the node, STATE has, is a halt node and | ||
1226 | match the context, return the node. */ | ||
1227 | |||
1228 | static int | ||
1229 | internal_function | ||
1230 | check_halt_state_context (const re_match_context_t *mctx, | ||
1231 | const re_dfastate_t *state, int idx) | ||
1232 | { | ||
1233 | int i; | ||
1234 | unsigned int context; | ||
1235 | #ifdef DEBUG | ||
1236 | assert (state->halt); | ||
1237 | #endif | ||
1238 | context = re_string_context_at (&mctx->input, idx, mctx->eflags); | ||
1239 | for (i = 0; i < state->nodes.nelem; ++i) | ||
1240 | if (check_halt_node_context (mctx->dfa, state->nodes.elems[i], context)) | ||
1241 | return state->nodes.elems[i]; | ||
1242 | return 0; | ||
1243 | } | ||
1244 | |||
1245 | /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA | ||
1246 | corresponding to the DFA). | ||
1247 | Return the destination node, and update EPS_VIA_NODES, return -1 in case | ||
1248 | of errors. */ | ||
1249 | |||
1250 | static int | ||
1251 | internal_function | ||
1252 | proceed_next_node (const re_match_context_t *mctx, int nregs, regmatch_t *regs, | ||
1253 | int *pidx, int node, re_node_set *eps_via_nodes, | ||
1254 | struct re_fail_stack_t *fs) | ||
1255 | { | ||
1256 | const re_dfa_t *const dfa = mctx->dfa; | ||
1257 | int i, err; | ||
1258 | if (IS_EPSILON_NODE (dfa->nodes[node].type)) | ||
1259 | { | ||
1260 | re_node_set *cur_nodes = &mctx->state_log[*pidx]->nodes; | ||
1261 | re_node_set *edests = &dfa->edests[node]; | ||
1262 | int dest_node; | ||
1263 | err = re_node_set_insert (eps_via_nodes, node); | ||
1264 | if (BE (err < 0, 0)) | ||
1265 | return -2; | ||
1266 | /* Pick up a valid destination, or return -1 if none is found. */ | ||
1267 | for (dest_node = -1, i = 0; i < edests->nelem; ++i) | ||
1268 | { | ||
1269 | int candidate = edests->elems[i]; | ||
1270 | if (!re_node_set_contains (cur_nodes, candidate)) | ||
1271 | continue; | ||
1272 | if (dest_node == -1) | ||
1273 | dest_node = candidate; | ||
1274 | |||
1275 | else | ||
1276 | { | ||
1277 | /* In order to avoid infinite loop like "(a*)*", return the second | ||
1278 | epsilon-transition if the first was already considered. */ | ||
1279 | if (re_node_set_contains (eps_via_nodes, dest_node)) | ||
1280 | return candidate; | ||
1281 | |||
1282 | /* Otherwise, push the second epsilon-transition on the fail stack. */ | ||
1283 | else if (fs != NULL | ||
1284 | && push_fail_stack (fs, *pidx, candidate, nregs, regs, | ||
1285 | eps_via_nodes)) | ||
1286 | return -2; | ||
1287 | |||
1288 | /* We know we are going to exit. */ | ||
1289 | break; | ||
1290 | } | ||
1291 | } | ||
1292 | return dest_node; | ||
1293 | } | ||
1294 | else | ||
1295 | { | ||
1296 | int naccepted = 0; | ||
1297 | re_token_type_t type = dfa->nodes[node].type; | ||
1298 | |||
1299 | #ifdef RE_ENABLE_I18N | ||
1300 | if (dfa->nodes[node].accept_mb) | ||
1301 | naccepted = check_node_accept_bytes (dfa, node, &mctx->input, *pidx); | ||
1302 | else | ||
1303 | #endif /* RE_ENABLE_I18N */ | ||
1304 | if (type == OP_BACK_REF) | ||
1305 | { | ||
1306 | int subexp_idx = dfa->nodes[node].opr.idx + 1; | ||
1307 | naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so; | ||
1308 | if (fs != NULL) | ||
1309 | { | ||
1310 | if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1) | ||
1311 | return -1; | ||
1312 | else if (naccepted) | ||
1313 | { | ||
1314 | char *buf = (char *) re_string_get_buffer (&mctx->input); | ||
1315 | if (memcmp (buf + regs[subexp_idx].rm_so, buf + *pidx, | ||
1316 | naccepted) != 0) | ||
1317 | return -1; | ||
1318 | } | ||
1319 | } | ||
1320 | |||
1321 | if (naccepted == 0) | ||
1322 | { | ||
1323 | int dest_node; | ||
1324 | err = re_node_set_insert (eps_via_nodes, node); | ||
1325 | if (BE (err < 0, 0)) | ||
1326 | return -2; | ||
1327 | dest_node = dfa->edests[node].elems[0]; | ||
1328 | if (re_node_set_contains (&mctx->state_log[*pidx]->nodes, | ||
1329 | dest_node)) | ||
1330 | return dest_node; | ||
1331 | } | ||
1332 | } | ||
1333 | |||
1334 | if (naccepted != 0 | ||
1335 | || check_node_accept (mctx, dfa->nodes + node, *pidx)) | ||
1336 | { | ||
1337 | int dest_node = dfa->nexts[node]; | ||
1338 | *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted; | ||
1339 | if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL | ||
1340 | || !re_node_set_contains (&mctx->state_log[*pidx]->nodes, | ||
1341 | dest_node))) | ||
1342 | return -1; | ||
1343 | re_node_set_empty (eps_via_nodes); | ||
1344 | return dest_node; | ||
1345 | } | ||
1346 | } | ||
1347 | return -1; | ||
1348 | } | ||
1349 | |||
1350 | static reg_errcode_t | ||
1351 | internal_function | ||
1352 | push_fail_stack (struct re_fail_stack_t *fs, int str_idx, int dest_node, | ||
1353 | int nregs, regmatch_t *regs, re_node_set *eps_via_nodes) | ||
1354 | { | ||
1355 | reg_errcode_t err; | ||
1356 | int num = fs->num++; | ||
1357 | if (fs->num == fs->alloc) | ||
1358 | { | ||
1359 | struct re_fail_stack_ent_t *new_array; | ||
1360 | new_array = realloc (fs->stack, (sizeof (struct re_fail_stack_ent_t) | ||
1361 | * fs->alloc * 2)); | ||
1362 | if (new_array == NULL) | ||
1363 | return REG_ESPACE; | ||
1364 | fs->alloc *= 2; | ||
1365 | fs->stack = new_array; | ||
1366 | } | ||
1367 | fs->stack[num].idx = str_idx; | ||
1368 | fs->stack[num].node = dest_node; | ||
1369 | fs->stack[num].regs = re_malloc (regmatch_t, nregs); | ||
1370 | if (fs->stack[num].regs == NULL) | ||
1371 | return REG_ESPACE; | ||
1372 | memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs); | ||
1373 | err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes); | ||
1374 | return err; | ||
1375 | } | ||
1376 | |||
1377 | static int | ||
1378 | internal_function | ||
1379 | pop_fail_stack (struct re_fail_stack_t *fs, int *pidx, int nregs, | ||
1380 | regmatch_t *regs, re_node_set *eps_via_nodes) | ||
1381 | { | ||
1382 | int num = --fs->num; | ||
1383 | assert (num >= 0); | ||
1384 | *pidx = fs->stack[num].idx; | ||
1385 | memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs); | ||
1386 | re_node_set_free (eps_via_nodes); | ||
1387 | re_free (fs->stack[num].regs); | ||
1388 | *eps_via_nodes = fs->stack[num].eps_via_nodes; | ||
1389 | return fs->stack[num].node; | ||
1390 | } | ||
1391 | |||
1392 | /* Set the positions where the subexpressions are starts/ends to registers | ||
1393 | PMATCH. | ||
1394 | Note: We assume that pmatch[0] is already set, and | ||
1395 | pmatch[i].rm_so == pmatch[i].rm_eo == -1 for 0 < i < nmatch. */ | ||
1396 | |||
1397 | static reg_errcode_t | ||
1398 | internal_function | ||
1399 | set_regs (const regex_t *preg, const re_match_context_t *mctx, size_t nmatch, | ||
1400 | regmatch_t *pmatch, int fl_backtrack) | ||
1401 | { | ||
1402 | const re_dfa_t *dfa = (const re_dfa_t *) preg->buffer; | ||
1403 | int idx, cur_node; | ||
1404 | re_node_set eps_via_nodes; | ||
1405 | struct re_fail_stack_t *fs; | ||
1406 | struct re_fail_stack_t fs_body = { 0, 2, NULL }; | ||
1407 | regmatch_t *prev_idx_match; | ||
1408 | int prev_idx_match_malloced = 0; | ||
1409 | |||
1410 | #ifdef DEBUG | ||
1411 | assert (nmatch > 1); | ||
1412 | assert (mctx->state_log != NULL); | ||
1413 | #endif | ||
1414 | if (fl_backtrack) | ||
1415 | { | ||
1416 | fs = &fs_body; | ||
1417 | fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc); | ||
1418 | if (fs->stack == NULL) | ||
1419 | return REG_ESPACE; | ||
1420 | } | ||
1421 | else | ||
1422 | fs = NULL; | ||
1423 | |||
1424 | cur_node = dfa->init_node; | ||
1425 | re_node_set_init_empty (&eps_via_nodes); | ||
1426 | |||
1427 | #ifdef HAVE_ALLOCA | ||
1428 | if (__libc_use_alloca (nmatch * sizeof (regmatch_t))) | ||
1429 | prev_idx_match = (regmatch_t *) alloca (nmatch * sizeof (regmatch_t)); | ||
1430 | else | ||
1431 | #endif | ||
1432 | { | ||
1433 | prev_idx_match = re_malloc (regmatch_t, nmatch); | ||
1434 | if (prev_idx_match == NULL) | ||
1435 | { | ||
1436 | free_fail_stack_return (fs); | ||
1437 | return REG_ESPACE; | ||
1438 | } | ||
1439 | prev_idx_match_malloced = 1; | ||
1440 | } | ||
1441 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); | ||
1442 | |||
1443 | for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;) | ||
1444 | { | ||
1445 | update_regs (dfa, pmatch, prev_idx_match, cur_node, idx, nmatch); | ||
1446 | |||
1447 | if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node) | ||
1448 | { | ||
1449 | int reg_idx; | ||
1450 | if (fs) | ||
1451 | { | ||
1452 | for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) | ||
1453 | if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1) | ||
1454 | break; | ||
1455 | if (reg_idx == nmatch) | ||
1456 | { | ||
1457 | re_node_set_free (&eps_via_nodes); | ||
1458 | if (prev_idx_match_malloced) | ||
1459 | re_free (prev_idx_match); | ||
1460 | return free_fail_stack_return (fs); | ||
1461 | } | ||
1462 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, | ||
1463 | &eps_via_nodes); | ||
1464 | } | ||
1465 | else | ||
1466 | { | ||
1467 | re_node_set_free (&eps_via_nodes); | ||
1468 | if (prev_idx_match_malloced) | ||
1469 | re_free (prev_idx_match); | ||
1470 | return REG_NOERROR; | ||
1471 | } | ||
1472 | } | ||
1473 | |||
1474 | /* Proceed to next node. */ | ||
1475 | cur_node = proceed_next_node (mctx, nmatch, pmatch, &idx, cur_node, | ||
1476 | &eps_via_nodes, fs); | ||
1477 | |||
1478 | if (BE (cur_node < 0, 0)) | ||
1479 | { | ||
1480 | if (BE (cur_node == -2, 0)) | ||
1481 | { | ||
1482 | re_node_set_free (&eps_via_nodes); | ||
1483 | if (prev_idx_match_malloced) | ||
1484 | re_free (prev_idx_match); | ||
1485 | free_fail_stack_return (fs); | ||
1486 | return REG_ESPACE; | ||
1487 | } | ||
1488 | if (fs) | ||
1489 | cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, | ||
1490 | &eps_via_nodes); | ||
1491 | else | ||
1492 | { | ||
1493 | re_node_set_free (&eps_via_nodes); | ||
1494 | if (prev_idx_match_malloced) | ||
1495 | re_free (prev_idx_match); | ||
1496 | return REG_NOMATCH; | ||
1497 | } | ||
1498 | } | ||
1499 | } | ||
1500 | re_node_set_free (&eps_via_nodes); | ||
1501 | if (prev_idx_match_malloced) | ||
1502 | re_free (prev_idx_match); | ||
1503 | return free_fail_stack_return (fs); | ||
1504 | } | ||
1505 | |||
1506 | static reg_errcode_t | ||
1507 | internal_function | ||
1508 | free_fail_stack_return (struct re_fail_stack_t *fs) | ||
1509 | { | ||
1510 | if (fs) | ||
1511 | { | ||
1512 | int fs_idx; | ||
1513 | for (fs_idx = 0; fs_idx < fs->num; ++fs_idx) | ||
1514 | { | ||
1515 | re_node_set_free (&fs->stack[fs_idx].eps_via_nodes); | ||
1516 | re_free (fs->stack[fs_idx].regs); | ||
1517 | } | ||
1518 | re_free (fs->stack); | ||
1519 | } | ||
1520 | return REG_NOERROR; | ||
1521 | } | ||
1522 | |||
1523 | static void | ||
1524 | internal_function | ||
1525 | update_regs (const re_dfa_t *dfa, regmatch_t *pmatch, | ||
1526 | regmatch_t *prev_idx_match, int cur_node, int cur_idx, int nmatch) | ||
1527 | { | ||
1528 | int type = dfa->nodes[cur_node].type; | ||
1529 | if (type == OP_OPEN_SUBEXP) | ||
1530 | { | ||
1531 | int reg_num = dfa->nodes[cur_node].opr.idx + 1; | ||
1532 | |||
1533 | /* We are at the first node of this sub expression. */ | ||
1534 | if (reg_num < nmatch) | ||
1535 | { | ||
1536 | pmatch[reg_num].rm_so = cur_idx; | ||
1537 | pmatch[reg_num].rm_eo = -1; | ||
1538 | } | ||
1539 | } | ||
1540 | else if (type == OP_CLOSE_SUBEXP) | ||
1541 | { | ||
1542 | int reg_num = dfa->nodes[cur_node].opr.idx + 1; | ||
1543 | if (reg_num < nmatch) | ||
1544 | { | ||
1545 | /* We are at the last node of this sub expression. */ | ||
1546 | if (pmatch[reg_num].rm_so < cur_idx) | ||
1547 | { | ||
1548 | pmatch[reg_num].rm_eo = cur_idx; | ||
1549 | /* This is a non-empty match or we are not inside an optional | ||
1550 | subexpression. Accept this right away. */ | ||
1551 | memcpy (prev_idx_match, pmatch, sizeof (regmatch_t) * nmatch); | ||
1552 | } | ||
1553 | else | ||
1554 | { | ||
1555 | if (dfa->nodes[cur_node].opt_subexp | ||
1556 | && prev_idx_match[reg_num].rm_so != -1) | ||
1557 | /* We transited through an empty match for an optional | ||
1558 | subexpression, like (a?)*, and this is not the subexp's | ||
1559 | first match. Copy back the old content of the registers | ||
1560 | so that matches of an inner subexpression are undone as | ||
1561 | well, like in ((a?))*. */ | ||
1562 | memcpy (pmatch, prev_idx_match, sizeof (regmatch_t) * nmatch); | ||
1563 | else | ||
1564 | /* We completed a subexpression, but it may be part of | ||
1565 | an optional one, so do not update PREV_IDX_MATCH. */ | ||
1566 | pmatch[reg_num].rm_eo = cur_idx; | ||
1567 | } | ||
1568 | } | ||
1569 | } | ||
1570 | } | ||
1571 | |||
1572 | /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0 | ||
1573 | and sift the nodes in each states according to the following rules. | ||
1574 | Updated state_log will be wrote to STATE_LOG. | ||
1575 | |||
1576 | Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if... | ||
1577 | 1. When STR_IDX == MATCH_LAST(the last index in the state_log): | ||
1578 | If `a' isn't the LAST_NODE and `a' can't epsilon transit to | ||
1579 | the LAST_NODE, we throw away the node `a'. | ||
1580 | 2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts | ||
1581 | string `s' and transit to `b': | ||
1582 | i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw | ||
1583 | away the node `a'. | ||
1584 | ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is | ||
1585 | thrown away, we throw away the node `a'. | ||
1586 | 3. When 0 <= STR_IDX < MATCH_LAST and 'a' epsilon transit to 'b': | ||
1587 | i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the | ||
1588 | node `a'. | ||
1589 | ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is thrown away, | ||
1590 | we throw away the node `a'. */ | ||
1591 | |||
1592 | #define STATE_NODE_CONTAINS(state,node) \ | ||
1593 | ((state) != NULL && re_node_set_contains (&(state)->nodes, node)) | ||
1594 | |||
1595 | static reg_errcode_t | ||
1596 | internal_function | ||
1597 | sift_states_backward (const re_match_context_t *mctx, re_sift_context_t *sctx) | ||
1598 | { | ||
1599 | reg_errcode_t err; | ||
1600 | int null_cnt = 0; | ||
1601 | int str_idx = sctx->last_str_idx; | ||
1602 | re_node_set cur_dest; | ||
1603 | |||
1604 | #ifdef DEBUG | ||
1605 | assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL); | ||
1606 | #endif | ||
1607 | |||
1608 | /* Build sifted state_log[str_idx]. It has the nodes which can epsilon | ||
1609 | transit to the last_node and the last_node itself. */ | ||
1610 | err = re_node_set_init_1 (&cur_dest, sctx->last_node); | ||
1611 | if (BE (err != REG_NOERROR, 0)) | ||
1612 | return err; | ||
1613 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); | ||
1614 | if (BE (err != REG_NOERROR, 0)) | ||
1615 | goto free_return; | ||
1616 | |||
1617 | /* Then check each states in the state_log. */ | ||
1618 | while (str_idx > 0) | ||
1619 | { | ||
1620 | /* Update counters. */ | ||
1621 | null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0; | ||
1622 | if (null_cnt > mctx->max_mb_elem_len) | ||
1623 | { | ||
1624 | memset (sctx->sifted_states, '\0', | ||
1625 | sizeof (re_dfastate_t *) * str_idx); | ||
1626 | re_node_set_free (&cur_dest); | ||
1627 | return REG_NOERROR; | ||
1628 | } | ||
1629 | re_node_set_empty (&cur_dest); | ||
1630 | --str_idx; | ||
1631 | |||
1632 | if (mctx->state_log[str_idx]) | ||
1633 | { | ||
1634 | err = build_sifted_states (mctx, sctx, str_idx, &cur_dest); | ||
1635 | if (BE (err != REG_NOERROR, 0)) | ||
1636 | goto free_return; | ||
1637 | } | ||
1638 | |||
1639 | /* Add all the nodes which satisfy the following conditions: | ||
1640 | - It can epsilon transit to a node in CUR_DEST. | ||
1641 | - It is in CUR_SRC. | ||
1642 | And update state_log. */ | ||
1643 | err = update_cur_sifted_state (mctx, sctx, str_idx, &cur_dest); | ||
1644 | if (BE (err != REG_NOERROR, 0)) | ||
1645 | goto free_return; | ||
1646 | } | ||
1647 | err = REG_NOERROR; | ||
1648 | free_return: | ||
1649 | re_node_set_free (&cur_dest); | ||
1650 | return err; | ||
1651 | } | ||
1652 | |||
1653 | static reg_errcode_t | ||
1654 | internal_function | ||
1655 | build_sifted_states (const re_match_context_t *mctx, re_sift_context_t *sctx, | ||
1656 | int str_idx, re_node_set *cur_dest) | ||
1657 | { | ||
1658 | const re_dfa_t *const dfa = mctx->dfa; | ||
1659 | const re_node_set *cur_src = &mctx->state_log[str_idx]->non_eps_nodes; | ||
1660 | int i; | ||
1661 | |||
1662 | /* Then build the next sifted state. | ||
1663 | We build the next sifted state on `cur_dest', and update | ||
1664 | `sifted_states[str_idx]' with `cur_dest'. | ||
1665 | Note: | ||
1666 | `cur_dest' is the sifted state from `state_log[str_idx + 1]'. | ||
1667 | `cur_src' points the node_set of the old `state_log[str_idx]' | ||
1668 | (with the epsilon nodes pre-filtered out). */ | ||
1669 | for (i = 0; i < cur_src->nelem; i++) | ||
1670 | { | ||
1671 | int prev_node = cur_src->elems[i]; | ||
1672 | int naccepted = 0; | ||
1673 | int ret; | ||
1674 | |||
1675 | #ifdef DEBUG | ||
1676 | re_token_type_t type = dfa->nodes[prev_node].type; | ||
1677 | assert (!IS_EPSILON_NODE (type)); | ||
1678 | #endif | ||
1679 | #ifdef RE_ENABLE_I18N | ||
1680 | /* If the node may accept `multi byte'. */ | ||
1681 | if (dfa->nodes[prev_node].accept_mb) | ||
1682 | naccepted = sift_states_iter_mb (mctx, sctx, prev_node, | ||
1683 | str_idx, sctx->last_str_idx); | ||
1684 | #endif /* RE_ENABLE_I18N */ | ||
1685 | |||
1686 | /* We don't check backreferences here. | ||
1687 | See update_cur_sifted_state(). */ | ||
1688 | if (!naccepted | ||
1689 | && check_node_accept (mctx, dfa->nodes + prev_node, str_idx) | ||
1690 | && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1], | ||
1691 | dfa->nexts[prev_node])) | ||
1692 | naccepted = 1; | ||
1693 | |||
1694 | if (naccepted == 0) | ||
1695 | continue; | ||
1696 | |||
1697 | if (sctx->limits.nelem) | ||
1698 | { | ||
1699 | int to_idx = str_idx + naccepted; | ||
1700 | if (check_dst_limits (mctx, &sctx->limits, | ||
1701 | dfa->nexts[prev_node], to_idx, | ||
1702 | prev_node, str_idx)) | ||
1703 | continue; | ||
1704 | } | ||
1705 | ret = re_node_set_insert (cur_dest, prev_node); | ||
1706 | if (BE (ret == -1, 0)) | ||
1707 | return REG_ESPACE; | ||
1708 | } | ||
1709 | |||
1710 | return REG_NOERROR; | ||
1711 | } | ||
1712 | |||
1713 | /* Helper functions. */ | ||
1714 | |||
1715 | static reg_errcode_t | ||
1716 | internal_function | ||
1717 | clean_state_log_if_needed (re_match_context_t *mctx, int next_state_log_idx) | ||
1718 | { | ||
1719 | int top = mctx->state_log_top; | ||
1720 | |||
1721 | if (next_state_log_idx >= mctx->input.bufs_len | ||
1722 | || (next_state_log_idx >= mctx->input.valid_len | ||
1723 | && mctx->input.valid_len < mctx->input.len)) | ||
1724 | { | ||
1725 | reg_errcode_t err; | ||
1726 | err = extend_buffers (mctx); | ||
1727 | if (BE (err != REG_NOERROR, 0)) | ||
1728 | return err; | ||
1729 | } | ||
1730 | |||
1731 | if (top < next_state_log_idx) | ||
1732 | { | ||
1733 | memset (mctx->state_log + top + 1, '\0', | ||
1734 | sizeof (re_dfastate_t *) * (next_state_log_idx - top)); | ||
1735 | mctx->state_log_top = next_state_log_idx; | ||
1736 | } | ||
1737 | return REG_NOERROR; | ||
1738 | } | ||
1739 | |||
1740 | static reg_errcode_t | ||
1741 | internal_function | ||
1742 | merge_state_array (const re_dfa_t *dfa, re_dfastate_t **dst, | ||
1743 | re_dfastate_t **src, int num) | ||
1744 | { | ||
1745 | int st_idx; | ||
1746 | reg_errcode_t err; | ||
1747 | for (st_idx = 0; st_idx < num; ++st_idx) | ||
1748 | { | ||
1749 | if (dst[st_idx] == NULL) | ||
1750 | dst[st_idx] = src[st_idx]; | ||
1751 | else if (src[st_idx] != NULL) | ||
1752 | { | ||
1753 | re_node_set merged_set; | ||
1754 | err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes, | ||
1755 | &src[st_idx]->nodes); | ||
1756 | if (BE (err != REG_NOERROR, 0)) | ||
1757 | return err; | ||
1758 | dst[st_idx] = re_acquire_state (&err, dfa, &merged_set); | ||
1759 | re_node_set_free (&merged_set); | ||
1760 | if (BE (err != REG_NOERROR, 0)) | ||
1761 | return err; | ||
1762 | } | ||
1763 | } | ||
1764 | return REG_NOERROR; | ||
1765 | } | ||
1766 | |||
1767 | static reg_errcode_t | ||
1768 | internal_function | ||
1769 | update_cur_sifted_state (const re_match_context_t *mctx, | ||
1770 | re_sift_context_t *sctx, int str_idx, | ||
1771 | re_node_set *dest_nodes) | ||
1772 | { | ||
1773 | const re_dfa_t *const dfa = mctx->dfa; | ||
1774 | reg_errcode_t err = REG_NOERROR; | ||
1775 | const re_node_set *candidates; | ||
1776 | candidates = ((mctx->state_log[str_idx] == NULL) ? NULL | ||
1777 | : &mctx->state_log[str_idx]->nodes); | ||
1778 | |||
1779 | if (dest_nodes->nelem == 0) | ||
1780 | sctx->sifted_states[str_idx] = NULL; | ||
1781 | else | ||
1782 | { | ||
1783 | if (candidates) | ||
1784 | { | ||
1785 | /* At first, add the nodes which can epsilon transit to a node in | ||
1786 | DEST_NODE. */ | ||
1787 | err = add_epsilon_src_nodes (dfa, dest_nodes, candidates); | ||
1788 | if (BE (err != REG_NOERROR, 0)) | ||
1789 | return err; | ||
1790 | |||
1791 | /* Then, check the limitations in the current sift_context. */ | ||
1792 | if (sctx->limits.nelem) | ||
1793 | { | ||
1794 | err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits, | ||
1795 | mctx->bkref_ents, str_idx); | ||
1796 | if (BE (err != REG_NOERROR, 0)) | ||
1797 | return err; | ||
1798 | } | ||
1799 | } | ||
1800 | |||
1801 | sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes); | ||
1802 | if (BE (err != REG_NOERROR, 0)) | ||
1803 | return err; | ||
1804 | } | ||
1805 | |||
1806 | if (candidates && mctx->state_log[str_idx]->has_backref) | ||
1807 | { | ||
1808 | err = sift_states_bkref (mctx, sctx, str_idx, candidates); | ||
1809 | if (BE (err != REG_NOERROR, 0)) | ||
1810 | return err; | ||
1811 | } | ||
1812 | return REG_NOERROR; | ||
1813 | } | ||
1814 | |||
1815 | static reg_errcode_t | ||
1816 | internal_function | ||
1817 | add_epsilon_src_nodes (const re_dfa_t *dfa, re_node_set *dest_nodes, | ||
1818 | const re_node_set *candidates) | ||
1819 | { | ||
1820 | reg_errcode_t err = REG_NOERROR; | ||
1821 | int i; | ||
1822 | |||
1823 | re_dfastate_t *state = re_acquire_state (&err, dfa, dest_nodes); | ||
1824 | if (BE (err != REG_NOERROR, 0)) | ||
1825 | return err; | ||
1826 | |||
1827 | if (!state->inveclosure.alloc) | ||
1828 | { | ||
1829 | err = re_node_set_alloc (&state->inveclosure, dest_nodes->nelem); | ||
1830 | if (BE (err != REG_NOERROR, 0)) | ||
1831 | return REG_ESPACE; | ||
1832 | for (i = 0; i < dest_nodes->nelem; i++) | ||
1833 | { | ||
1834 | err = re_node_set_merge (&state->inveclosure, | ||
1835 | dfa->inveclosures + dest_nodes->elems[i]); | ||
1836 | if (BE (err != REG_NOERROR, 0)) | ||
1837 | return REG_ESPACE; | ||
1838 | } | ||
1839 | } | ||
1840 | return re_node_set_add_intersect (dest_nodes, candidates, | ||
1841 | &state->inveclosure); | ||
1842 | } | ||
1843 | |||
1844 | static reg_errcode_t | ||
1845 | internal_function | ||
1846 | sub_epsilon_src_nodes (const re_dfa_t *dfa, int node, re_node_set *dest_nodes, | ||
1847 | const re_node_set *candidates) | ||
1848 | { | ||
1849 | int ecl_idx; | ||
1850 | reg_errcode_t err; | ||
1851 | re_node_set *inv_eclosure = dfa->inveclosures + node; | ||
1852 | re_node_set except_nodes; | ||
1853 | re_node_set_init_empty (&except_nodes); | ||
1854 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) | ||
1855 | { | ||
1856 | int cur_node = inv_eclosure->elems[ecl_idx]; | ||
1857 | if (cur_node == node) | ||
1858 | continue; | ||
1859 | if (IS_EPSILON_NODE (dfa->nodes[cur_node].type)) | ||
1860 | { | ||
1861 | int edst1 = dfa->edests[cur_node].elems[0]; | ||
1862 | int edst2 = ((dfa->edests[cur_node].nelem > 1) | ||
1863 | ? dfa->edests[cur_node].elems[1] : -1); | ||
1864 | if ((!re_node_set_contains (inv_eclosure, edst1) | ||
1865 | && re_node_set_contains (dest_nodes, edst1)) | ||
1866 | || (edst2 > 0 | ||
1867 | && !re_node_set_contains (inv_eclosure, edst2) | ||
1868 | && re_node_set_contains (dest_nodes, edst2))) | ||
1869 | { | ||
1870 | err = re_node_set_add_intersect (&except_nodes, candidates, | ||
1871 | dfa->inveclosures + cur_node); | ||
1872 | if (BE (err != REG_NOERROR, 0)) | ||
1873 | { | ||
1874 | re_node_set_free (&except_nodes); | ||
1875 | return err; | ||
1876 | } | ||
1877 | } | ||
1878 | } | ||
1879 | } | ||
1880 | for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) | ||
1881 | { | ||
1882 | int cur_node = inv_eclosure->elems[ecl_idx]; | ||
1883 | if (!re_node_set_contains (&except_nodes, cur_node)) | ||
1884 | { | ||
1885 | int idx = re_node_set_contains (dest_nodes, cur_node) - 1; | ||
1886 | re_node_set_remove_at (dest_nodes, idx); | ||
1887 | } | ||
1888 | } | ||
1889 | re_node_set_free (&except_nodes); | ||
1890 | return REG_NOERROR; | ||
1891 | } | ||
1892 | |||
1893 | static int | ||
1894 | internal_function | ||
1895 | check_dst_limits (const re_match_context_t *mctx, re_node_set *limits, | ||
1896 | int dst_node, int dst_idx, int src_node, int src_idx) | ||
1897 | { | ||
1898 | const re_dfa_t *const dfa = mctx->dfa; | ||
1899 | int lim_idx, src_pos, dst_pos; | ||
1900 | |||
1901 | int dst_bkref_idx = search_cur_bkref_entry (mctx, dst_idx); | ||
1902 | int src_bkref_idx = search_cur_bkref_entry (mctx, src_idx); | ||
1903 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) | ||
1904 | { | ||
1905 | int subexp_idx; | ||
1906 | struct re_backref_cache_entry *ent; | ||
1907 | ent = mctx->bkref_ents + limits->elems[lim_idx]; | ||
1908 | subexp_idx = dfa->nodes[ent->node].opr.idx; | ||
1909 | |||
1910 | dst_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], | ||
1911 | subexp_idx, dst_node, dst_idx, | ||
1912 | dst_bkref_idx); | ||
1913 | src_pos = check_dst_limits_calc_pos (mctx, limits->elems[lim_idx], | ||
1914 | subexp_idx, src_node, src_idx, | ||
1915 | src_bkref_idx); | ||
1916 | |||
1917 | /* In case of: | ||
1918 | <src> <dst> ( <subexp> ) | ||
1919 | ( <subexp> ) <src> <dst> | ||
1920 | ( <subexp1> <src> <subexp2> <dst> <subexp3> ) */ | ||
1921 | if (src_pos == dst_pos) | ||
1922 | continue; /* This is unrelated limitation. */ | ||
1923 | else | ||
1924 | return 1; | ||
1925 | } | ||
1926 | return 0; | ||
1927 | } | ||
1928 | |||
1929 | static int | ||
1930 | internal_function | ||
1931 | check_dst_limits_calc_pos_1 (const re_match_context_t *mctx, int boundaries, | ||
1932 | int subexp_idx, int from_node, int bkref_idx) | ||
1933 | { | ||
1934 | const re_dfa_t *const dfa = mctx->dfa; | ||
1935 | const re_node_set *eclosures = dfa->eclosures + from_node; | ||
1936 | int node_idx; | ||
1937 | |||
1938 | /* Else, we are on the boundary: examine the nodes on the epsilon | ||
1939 | closure. */ | ||
1940 | for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx) | ||
1941 | { | ||
1942 | int node = eclosures->elems[node_idx]; | ||
1943 | switch (dfa->nodes[node].type) | ||
1944 | { | ||
1945 | case OP_BACK_REF: | ||
1946 | if (bkref_idx != -1) | ||
1947 | { | ||
1948 | struct re_backref_cache_entry *ent = mctx->bkref_ents + bkref_idx; | ||
1949 | do | ||
1950 | { | ||
1951 | int dst, cpos; | ||
1952 | |||
1953 | if (ent->node != node) | ||
1954 | continue; | ||
1955 | |||
1956 | if (subexp_idx < BITSET_WORD_BITS | ||
1957 | && !(ent->eps_reachable_subexps_map | ||
1958 | & ((bitset_word_t) 1 << subexp_idx))) | ||
1959 | continue; | ||
1960 | |||
1961 | /* Recurse trying to reach the OP_OPEN_SUBEXP and | ||
1962 | OP_CLOSE_SUBEXP cases below. But, if the | ||
1963 | destination node is the same node as the source | ||
1964 | node, don't recurse because it would cause an | ||
1965 | infinite loop: a regex that exhibits this behavior | ||
1966 | is ()\1*\1* */ | ||
1967 | dst = dfa->edests[node].elems[0]; | ||
1968 | if (dst == from_node) | ||
1969 | { | ||
1970 | if (boundaries & 1) | ||
1971 | return -1; | ||
1972 | else /* if (boundaries & 2) */ | ||
1973 | return 0; | ||
1974 | } | ||
1975 | |||
1976 | cpos = | ||
1977 | check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, | ||
1978 | dst, bkref_idx); | ||
1979 | if (cpos == -1 /* && (boundaries & 1) */) | ||
1980 | return -1; | ||
1981 | if (cpos == 0 && (boundaries & 2)) | ||
1982 | return 0; | ||
1983 | |||
1984 | if (subexp_idx < BITSET_WORD_BITS) | ||
1985 | ent->eps_reachable_subexps_map | ||
1986 | &= ~((bitset_word_t) 1 << subexp_idx); | ||
1987 | } | ||
1988 | while (ent++->more); | ||
1989 | } | ||
1990 | break; | ||
1991 | |||
1992 | case OP_OPEN_SUBEXP: | ||
1993 | if ((boundaries & 1) && subexp_idx == dfa->nodes[node].opr.idx) | ||
1994 | return -1; | ||
1995 | break; | ||
1996 | |||
1997 | case OP_CLOSE_SUBEXP: | ||
1998 | if ((boundaries & 2) && subexp_idx == dfa->nodes[node].opr.idx) | ||
1999 | return 0; | ||
2000 | break; | ||
2001 | |||
2002 | default: | ||
2003 | break; | ||
2004 | } | ||
2005 | } | ||
2006 | |||
2007 | return (boundaries & 2) ? 1 : 0; | ||
2008 | } | ||
2009 | |||
2010 | static int | ||
2011 | internal_function | ||
2012 | check_dst_limits_calc_pos (const re_match_context_t *mctx, int limit, | ||
2013 | int subexp_idx, int from_node, int str_idx, | ||
2014 | int bkref_idx) | ||
2015 | { | ||
2016 | struct re_backref_cache_entry *lim = mctx->bkref_ents + limit; | ||
2017 | int boundaries; | ||
2018 | |||
2019 | /* If we are outside the range of the subexpression, return -1 or 1. */ | ||
2020 | if (str_idx < lim->subexp_from) | ||
2021 | return -1; | ||
2022 | |||
2023 | if (lim->subexp_to < str_idx) | ||
2024 | return 1; | ||
2025 | |||
2026 | /* If we are within the subexpression, return 0. */ | ||
2027 | boundaries = (str_idx == lim->subexp_from); | ||
2028 | boundaries |= (str_idx == lim->subexp_to) << 1; | ||
2029 | if (boundaries == 0) | ||
2030 | return 0; | ||
2031 | |||
2032 | /* Else, examine epsilon closure. */ | ||
2033 | return check_dst_limits_calc_pos_1 (mctx, boundaries, subexp_idx, | ||
2034 | from_node, bkref_idx); | ||
2035 | } | ||
2036 | |||
2037 | /* Check the limitations of sub expressions LIMITS, and remove the nodes | ||
2038 | which are against limitations from DEST_NODES. */ | ||
2039 | |||
2040 | static reg_errcode_t | ||
2041 | internal_function | ||
2042 | check_subexp_limits (const re_dfa_t *dfa, re_node_set *dest_nodes, | ||
2043 | const re_node_set *candidates, re_node_set *limits, | ||
2044 | struct re_backref_cache_entry *bkref_ents, int str_idx) | ||
2045 | { | ||
2046 | reg_errcode_t err; | ||
2047 | int node_idx, lim_idx; | ||
2048 | |||
2049 | for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) | ||
2050 | { | ||
2051 | int subexp_idx; | ||
2052 | struct re_backref_cache_entry *ent; | ||
2053 | ent = bkref_ents + limits->elems[lim_idx]; | ||
2054 | |||
2055 | if (str_idx <= ent->subexp_from || ent->str_idx < str_idx) | ||
2056 | continue; /* This is unrelated limitation. */ | ||
2057 | |||
2058 | subexp_idx = dfa->nodes[ent->node].opr.idx; | ||
2059 | if (ent->subexp_to == str_idx) | ||
2060 | { | ||
2061 | int ops_node = -1; | ||
2062 | int cls_node = -1; | ||
2063 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | ||
2064 | { | ||
2065 | int node = dest_nodes->elems[node_idx]; | ||
2066 | re_token_type_t type = dfa->nodes[node].type; | ||
2067 | if (type == OP_OPEN_SUBEXP | ||
2068 | && subexp_idx == dfa->nodes[node].opr.idx) | ||
2069 | ops_node = node; | ||
2070 | else if (type == OP_CLOSE_SUBEXP | ||
2071 | && subexp_idx == dfa->nodes[node].opr.idx) | ||
2072 | cls_node = node; | ||
2073 | } | ||
2074 | |||
2075 | /* Check the limitation of the open subexpression. */ | ||
2076 | /* Note that (ent->subexp_to = str_idx != ent->subexp_from). */ | ||
2077 | if (ops_node >= 0) | ||
2078 | { | ||
2079 | err = sub_epsilon_src_nodes (dfa, ops_node, dest_nodes, | ||
2080 | candidates); | ||
2081 | if (BE (err != REG_NOERROR, 0)) | ||
2082 | return err; | ||
2083 | } | ||
2084 | |||
2085 | /* Check the limitation of the close subexpression. */ | ||
2086 | if (cls_node >= 0) | ||
2087 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | ||
2088 | { | ||
2089 | int node = dest_nodes->elems[node_idx]; | ||
2090 | if (!re_node_set_contains (dfa->inveclosures + node, | ||
2091 | cls_node) | ||
2092 | && !re_node_set_contains (dfa->eclosures + node, | ||
2093 | cls_node)) | ||
2094 | { | ||
2095 | /* It is against this limitation. | ||
2096 | Remove it form the current sifted state. */ | ||
2097 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, | ||
2098 | candidates); | ||
2099 | if (BE (err != REG_NOERROR, 0)) | ||
2100 | return err; | ||
2101 | --node_idx; | ||
2102 | } | ||
2103 | } | ||
2104 | } | ||
2105 | else /* (ent->subexp_to != str_idx) */ | ||
2106 | { | ||
2107 | for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) | ||
2108 | { | ||
2109 | int node = dest_nodes->elems[node_idx]; | ||
2110 | re_token_type_t type = dfa->nodes[node].type; | ||
2111 | if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP) | ||
2112 | { | ||
2113 | if (subexp_idx != dfa->nodes[node].opr.idx) | ||
2114 | continue; | ||
2115 | /* It is against this limitation. | ||
2116 | Remove it form the current sifted state. */ | ||
2117 | err = sub_epsilon_src_nodes (dfa, node, dest_nodes, | ||
2118 | candidates); | ||
2119 | if (BE (err != REG_NOERROR, 0)) | ||
2120 | return err; | ||
2121 | } | ||
2122 | } | ||
2123 | } | ||
2124 | } | ||
2125 | return REG_NOERROR; | ||
2126 | } | ||
2127 | |||
2128 | static reg_errcode_t | ||
2129 | internal_function | ||
2130 | sift_states_bkref (const re_match_context_t *mctx, re_sift_context_t *sctx, | ||
2131 | int str_idx, const re_node_set *candidates) | ||
2132 | { | ||
2133 | const re_dfa_t *const dfa = mctx->dfa; | ||
2134 | reg_errcode_t err; | ||
2135 | int node_idx, node; | ||
2136 | re_sift_context_t local_sctx; | ||
2137 | int first_idx = search_cur_bkref_entry (mctx, str_idx); | ||
2138 | |||
2139 | if (first_idx == -1) | ||
2140 | return REG_NOERROR; | ||
2141 | |||
2142 | local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized. */ | ||
2143 | |||
2144 | for (node_idx = 0; node_idx < candidates->nelem; ++node_idx) | ||
2145 | { | ||
2146 | int enabled_idx; | ||
2147 | re_token_type_t type; | ||
2148 | struct re_backref_cache_entry *entry; | ||
2149 | node = candidates->elems[node_idx]; | ||
2150 | type = dfa->nodes[node].type; | ||
2151 | /* Avoid infinite loop for the REs like "()\1+". */ | ||
2152 | if (node == sctx->last_node && str_idx == sctx->last_str_idx) | ||
2153 | continue; | ||
2154 | if (type != OP_BACK_REF) | ||
2155 | continue; | ||
2156 | |||
2157 | entry = mctx->bkref_ents + first_idx; | ||
2158 | enabled_idx = first_idx; | ||
2159 | do | ||
2160 | { | ||
2161 | int subexp_len; | ||
2162 | int to_idx; | ||
2163 | int dst_node; | ||
2164 | int ret; | ||
2165 | re_dfastate_t *cur_state; | ||
2166 | |||
2167 | if (entry->node != node) | ||
2168 | continue; | ||
2169 | subexp_len = entry->subexp_to - entry->subexp_from; | ||
2170 | to_idx = str_idx + subexp_len; | ||
2171 | dst_node = (subexp_len ? dfa->nexts[node] | ||
2172 | : dfa->edests[node].elems[0]); | ||
2173 | |||
2174 | if (to_idx > sctx->last_str_idx | ||
2175 | || sctx->sifted_states[to_idx] == NULL | ||
2176 | || !STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dst_node) | ||
2177 | || check_dst_limits (mctx, &sctx->limits, node, | ||
2178 | str_idx, dst_node, to_idx)) | ||
2179 | continue; | ||
2180 | |||
2181 | if (local_sctx.sifted_states == NULL) | ||
2182 | { | ||
2183 | local_sctx = *sctx; | ||
2184 | err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits); | ||
2185 | if (BE (err != REG_NOERROR, 0)) | ||
2186 | goto free_return; | ||
2187 | } | ||
2188 | local_sctx.last_node = node; | ||
2189 | local_sctx.last_str_idx = str_idx; | ||
2190 | ret = re_node_set_insert (&local_sctx.limits, enabled_idx); | ||
2191 | if (BE (ret < 0, 0)) | ||
2192 | { | ||
2193 | err = REG_ESPACE; | ||
2194 | goto free_return; | ||
2195 | } | ||
2196 | cur_state = local_sctx.sifted_states[str_idx]; | ||
2197 | err = sift_states_backward (mctx, &local_sctx); | ||
2198 | if (BE (err != REG_NOERROR, 0)) | ||
2199 | goto free_return; | ||
2200 | if (sctx->limited_states != NULL) | ||
2201 | { | ||
2202 | err = merge_state_array (dfa, sctx->limited_states, | ||
2203 | local_sctx.sifted_states, | ||
2204 | str_idx + 1); | ||
2205 | if (BE (err != REG_NOERROR, 0)) | ||
2206 | goto free_return; | ||
2207 | } | ||
2208 | local_sctx.sifted_states[str_idx] = cur_state; | ||
2209 | re_node_set_remove (&local_sctx.limits, enabled_idx); | ||
2210 | |||
2211 | /* mctx->bkref_ents may have changed, reload the pointer. */ | ||
2212 | entry = mctx->bkref_ents + enabled_idx; | ||
2213 | } | ||
2214 | while (enabled_idx++, entry++->more); | ||
2215 | } | ||
2216 | err = REG_NOERROR; | ||
2217 | free_return: | ||
2218 | if (local_sctx.sifted_states != NULL) | ||
2219 | { | ||
2220 | re_node_set_free (&local_sctx.limits); | ||
2221 | } | ||
2222 | |||
2223 | return err; | ||
2224 | } | ||
2225 | |||
2226 | |||
2227 | #ifdef RE_ENABLE_I18N | ||
2228 | static int | ||
2229 | internal_function | ||
2230 | sift_states_iter_mb (const re_match_context_t *mctx, re_sift_context_t *sctx, | ||
2231 | int node_idx, int str_idx, int max_str_idx) | ||
2232 | { | ||
2233 | const re_dfa_t *const dfa = mctx->dfa; | ||
2234 | int naccepted; | ||
2235 | /* Check the node can accept `multi byte'. */ | ||
2236 | naccepted = check_node_accept_bytes (dfa, node_idx, &mctx->input, str_idx); | ||
2237 | if (naccepted > 0 && str_idx + naccepted <= max_str_idx && | ||
2238 | !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted], | ||
2239 | dfa->nexts[node_idx])) | ||
2240 | /* The node can't accept the `multi byte', or the | ||
2241 | destination was already thrown away, then the node | ||
2242 | couldn't accept the current input `multi byte'. */ | ||
2243 | naccepted = 0; | ||
2244 | /* Otherwise, it is sure that the node could accept | ||
2245 | `naccepted' bytes input. */ | ||
2246 | return naccepted; | ||
2247 | } | ||
2248 | #endif /* RE_ENABLE_I18N */ | ||
2249 | |||
2250 | |||
2251 | /* Functions for state transition. */ | ||
2252 | |||
2253 | /* Return the next state to which the current state STATE will transit by | ||
2254 | accepting the current input byte, and update STATE_LOG if necessary. | ||
2255 | If STATE can accept a multibyte char/collating element/back reference | ||
2256 | update the destination of STATE_LOG. */ | ||
2257 | |||
2258 | static re_dfastate_t * | ||
2259 | internal_function | ||
2260 | transit_state (reg_errcode_t *err, re_match_context_t *mctx, | ||
2261 | re_dfastate_t *state) | ||
2262 | { | ||
2263 | re_dfastate_t **trtable; | ||
2264 | unsigned char ch; | ||
2265 | |||
2266 | #ifdef RE_ENABLE_I18N | ||
2267 | /* If the current state can accept multibyte. */ | ||
2268 | if (BE (state->accept_mb, 0)) | ||
2269 | { | ||
2270 | *err = transit_state_mb (mctx, state); | ||
2271 | if (BE (*err != REG_NOERROR, 0)) | ||
2272 | return NULL; | ||
2273 | } | ||
2274 | #endif /* RE_ENABLE_I18N */ | ||
2275 | |||
2276 | /* Then decide the next state with the single byte. */ | ||
2277 | #if 0 | ||
2278 | if (0) | ||
2279 | /* don't use transition table */ | ||
2280 | return transit_state_sb (err, mctx, state); | ||
2281 | #endif | ||
2282 | |||
2283 | /* Use transition table */ | ||
2284 | ch = re_string_fetch_byte (&mctx->input); | ||
2285 | for (;;) | ||
2286 | { | ||
2287 | trtable = state->trtable; | ||
2288 | if (BE (trtable != NULL, 1)) | ||
2289 | return trtable[ch]; | ||
2290 | |||
2291 | trtable = state->word_trtable; | ||
2292 | if (BE (trtable != NULL, 1)) | ||
2293 | { | ||
2294 | unsigned int context; | ||
2295 | context | ||
2296 | = re_string_context_at (&mctx->input, | ||
2297 | re_string_cur_idx (&mctx->input) - 1, | ||
2298 | mctx->eflags); | ||
2299 | if (IS_WORD_CONTEXT (context)) | ||
2300 | return trtable[ch + SBC_MAX]; | ||
2301 | else | ||
2302 | return trtable[ch]; | ||
2303 | } | ||
2304 | |||
2305 | if (!build_trtable (mctx->dfa, state)) | ||
2306 | { | ||
2307 | *err = REG_ESPACE; | ||
2308 | return NULL; | ||
2309 | } | ||
2310 | |||
2311 | /* Retry, we now have a transition table. */ | ||
2312 | } | ||
2313 | } | ||
2314 | |||
2315 | /* Update the state_log if we need */ | ||
2316 | static re_dfastate_t * | ||
2317 | internal_function | ||
2318 | merge_state_with_log (reg_errcode_t *err, re_match_context_t *mctx, | ||
2319 | re_dfastate_t *next_state) | ||
2320 | { | ||
2321 | const re_dfa_t *const dfa = mctx->dfa; | ||
2322 | int cur_idx = re_string_cur_idx (&mctx->input); | ||
2323 | |||
2324 | if (cur_idx > mctx->state_log_top) | ||
2325 | { | ||
2326 | mctx->state_log[cur_idx] = next_state; | ||
2327 | mctx->state_log_top = cur_idx; | ||
2328 | } | ||
2329 | else if (mctx->state_log[cur_idx] == NULL) | ||
2330 | { | ||
2331 | mctx->state_log[cur_idx] = next_state; | ||
2332 | } | ||
2333 | else | ||
2334 | { | ||
2335 | re_dfastate_t *pstate; | ||
2336 | unsigned int context; | ||
2337 | re_node_set next_nodes, *log_nodes, *table_nodes = NULL; | ||
2338 | /* If (state_log[cur_idx] != 0), it implies that cur_idx is | ||
2339 | the destination of a multibyte char/collating element/ | ||
2340 | back reference. Then the next state is the union set of | ||
2341 | these destinations and the results of the transition table. */ | ||
2342 | pstate = mctx->state_log[cur_idx]; | ||
2343 | log_nodes = pstate->entrance_nodes; | ||
2344 | if (next_state != NULL) | ||
2345 | { | ||
2346 | table_nodes = next_state->entrance_nodes; | ||
2347 | *err = re_node_set_init_union (&next_nodes, table_nodes, | ||
2348 | log_nodes); | ||
2349 | if (BE (*err != REG_NOERROR, 0)) | ||
2350 | return NULL; | ||
2351 | } | ||
2352 | else | ||
2353 | next_nodes = *log_nodes; | ||
2354 | /* Note: We already add the nodes of the initial state, | ||
2355 | then we don't need to add them here. */ | ||
2356 | |||
2357 | context = re_string_context_at (&mctx->input, | ||
2358 | re_string_cur_idx (&mctx->input) - 1, | ||
2359 | mctx->eflags); | ||
2360 | next_state = mctx->state_log[cur_idx] | ||
2361 | = re_acquire_state_context (err, dfa, &next_nodes, context); | ||
2362 | /* We don't need to check errors here, since the return value of | ||
2363 | this function is next_state and ERR is already set. */ | ||
2364 | |||
2365 | if (table_nodes != NULL) | ||
2366 | re_node_set_free (&next_nodes); | ||
2367 | } | ||
2368 | |||
2369 | if (BE (dfa->nbackref, 0) && next_state != NULL) | ||
2370 | { | ||
2371 | /* Check OP_OPEN_SUBEXP in the current state in case that we use them | ||
2372 | later. We must check them here, since the back references in the | ||
2373 | next state might use them. */ | ||
2374 | *err = check_subexp_matching_top (mctx, &next_state->nodes, | ||
2375 | cur_idx); | ||
2376 | if (BE (*err != REG_NOERROR, 0)) | ||
2377 | return NULL; | ||
2378 | |||
2379 | /* If the next state has back references. */ | ||
2380 | if (next_state->has_backref) | ||
2381 | { | ||
2382 | *err = transit_state_bkref (mctx, &next_state->nodes); | ||
2383 | if (BE (*err != REG_NOERROR, 0)) | ||
2384 | return NULL; | ||
2385 | next_state = mctx->state_log[cur_idx]; | ||
2386 | } | ||
2387 | } | ||
2388 | |||
2389 | return next_state; | ||
2390 | } | ||
2391 | |||
2392 | /* Skip bytes in the input that correspond to part of a | ||
2393 | multi-byte match, then look in the log for a state | ||
2394 | from which to restart matching. */ | ||
2395 | static re_dfastate_t * | ||
2396 | internal_function | ||
2397 | find_recover_state (reg_errcode_t *err, re_match_context_t *mctx) | ||
2398 | { | ||
2399 | re_dfastate_t *cur_state; | ||
2400 | do | ||
2401 | { | ||
2402 | int max = mctx->state_log_top; | ||
2403 | int cur_str_idx = re_string_cur_idx (&mctx->input); | ||
2404 | |||
2405 | do | ||
2406 | { | ||
2407 | if (++cur_str_idx > max) | ||
2408 | return NULL; | ||
2409 | re_string_skip_bytes (&mctx->input, 1); | ||
2410 | } | ||
2411 | while (mctx->state_log[cur_str_idx] == NULL); | ||
2412 | |||
2413 | cur_state = merge_state_with_log (err, mctx, NULL); | ||
2414 | } | ||
2415 | while (*err == REG_NOERROR && cur_state == NULL); | ||
2416 | return cur_state; | ||
2417 | } | ||
2418 | |||
2419 | /* Helper functions for transit_state. */ | ||
2420 | |||
2421 | /* From the node set CUR_NODES, pick up the nodes whose types are | ||
2422 | OP_OPEN_SUBEXP and which have corresponding back references in the regular | ||
2423 | expression. And register them to use them later for evaluating the | ||
2424 | correspoding back references. */ | ||
2425 | |||
2426 | static reg_errcode_t | ||
2427 | internal_function | ||
2428 | check_subexp_matching_top (re_match_context_t *mctx, re_node_set *cur_nodes, | ||
2429 | int str_idx) | ||
2430 | { | ||
2431 | const re_dfa_t *const dfa = mctx->dfa; | ||
2432 | int node_idx; | ||
2433 | reg_errcode_t err; | ||
2434 | |||
2435 | /* TODO: This isn't efficient. | ||
2436 | Because there might be more than one nodes whose types are | ||
2437 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all | ||
2438 | nodes. | ||
2439 | E.g. RE: (a){2} */ | ||
2440 | for (node_idx = 0; node_idx < cur_nodes->nelem; ++node_idx) | ||
2441 | { | ||
2442 | int node = cur_nodes->elems[node_idx]; | ||
2443 | if (dfa->nodes[node].type == OP_OPEN_SUBEXP | ||
2444 | && dfa->nodes[node].opr.idx < BITSET_WORD_BITS | ||
2445 | && (dfa->used_bkref_map | ||
2446 | & ((bitset_word_t) 1 << dfa->nodes[node].opr.idx))) | ||
2447 | { | ||
2448 | err = match_ctx_add_subtop (mctx, node, str_idx); | ||
2449 | if (BE (err != REG_NOERROR, 0)) | ||
2450 | return err; | ||
2451 | } | ||
2452 | } | ||
2453 | return REG_NOERROR; | ||
2454 | } | ||
2455 | |||
2456 | #if 0 | ||
2457 | /* Return the next state to which the current state STATE will transit by | ||
2458 | accepting the current input byte. */ | ||
2459 | |||
2460 | static re_dfastate_t * | ||
2461 | transit_state_sb (reg_errcode_t *err, re_match_context_t *mctx, | ||
2462 | re_dfastate_t *state) | ||
2463 | { | ||
2464 | const re_dfa_t *const dfa = mctx->dfa; | ||
2465 | re_node_set next_nodes; | ||
2466 | re_dfastate_t *next_state; | ||
2467 | int node_cnt, cur_str_idx = re_string_cur_idx (&mctx->input); | ||
2468 | unsigned int context; | ||
2469 | |||
2470 | *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1); | ||
2471 | if (BE (*err != REG_NOERROR, 0)) | ||
2472 | return NULL; | ||
2473 | for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt) | ||
2474 | { | ||
2475 | int cur_node = state->nodes.elems[node_cnt]; | ||
2476 | if (check_node_accept (mctx, dfa->nodes + cur_node, cur_str_idx)) | ||
2477 | { | ||
2478 | *err = re_node_set_merge (&next_nodes, | ||
2479 | dfa->eclosures + dfa->nexts[cur_node]); | ||
2480 | if (BE (*err != REG_NOERROR, 0)) | ||
2481 | { | ||
2482 | re_node_set_free (&next_nodes); | ||
2483 | return NULL; | ||
2484 | } | ||
2485 | } | ||
2486 | } | ||
2487 | context = re_string_context_at (&mctx->input, cur_str_idx, mctx->eflags); | ||
2488 | next_state = re_acquire_state_context (err, dfa, &next_nodes, context); | ||
2489 | /* We don't need to check errors here, since the return value of | ||
2490 | this function is next_state and ERR is already set. */ | ||
2491 | |||
2492 | re_node_set_free (&next_nodes); | ||
2493 | re_string_skip_bytes (&mctx->input, 1); | ||
2494 | return next_state; | ||
2495 | } | ||
2496 | #endif | ||
2497 | |||
2498 | #ifdef RE_ENABLE_I18N | ||
2499 | static reg_errcode_t | ||
2500 | internal_function | ||
2501 | transit_state_mb (re_match_context_t *mctx, re_dfastate_t *pstate) | ||
2502 | { | ||
2503 | const re_dfa_t *const dfa = mctx->dfa; | ||
2504 | reg_errcode_t err; | ||
2505 | int i; | ||
2506 | |||
2507 | for (i = 0; i < pstate->nodes.nelem; ++i) | ||
2508 | { | ||
2509 | re_node_set dest_nodes, *new_nodes; | ||
2510 | int cur_node_idx = pstate->nodes.elems[i]; | ||
2511 | int naccepted, dest_idx; | ||
2512 | unsigned int context; | ||
2513 | re_dfastate_t *dest_state; | ||
2514 | |||
2515 | if (!dfa->nodes[cur_node_idx].accept_mb) | ||
2516 | continue; | ||
2517 | |||
2518 | if (dfa->nodes[cur_node_idx].constraint) | ||
2519 | { | ||
2520 | context = re_string_context_at (&mctx->input, | ||
2521 | re_string_cur_idx (&mctx->input), | ||
2522 | mctx->eflags); | ||
2523 | if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint, | ||
2524 | context)) | ||
2525 | continue; | ||
2526 | } | ||
2527 | |||
2528 | /* How many bytes the node can accept? */ | ||
2529 | naccepted = check_node_accept_bytes (dfa, cur_node_idx, &mctx->input, | ||
2530 | re_string_cur_idx (&mctx->input)); | ||
2531 | if (naccepted == 0) | ||
2532 | continue; | ||
2533 | |||
2534 | /* The node can accepts `naccepted' bytes. */ | ||
2535 | dest_idx = re_string_cur_idx (&mctx->input) + naccepted; | ||
2536 | mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted | ||
2537 | : mctx->max_mb_elem_len); | ||
2538 | err = clean_state_log_if_needed (mctx, dest_idx); | ||
2539 | if (BE (err != REG_NOERROR, 0)) | ||
2540 | return err; | ||
2541 | #ifdef DEBUG | ||
2542 | assert (dfa->nexts[cur_node_idx] != -1); | ||
2543 | #endif | ||
2544 | new_nodes = dfa->eclosures + dfa->nexts[cur_node_idx]; | ||
2545 | |||
2546 | dest_state = mctx->state_log[dest_idx]; | ||
2547 | if (dest_state == NULL) | ||
2548 | dest_nodes = *new_nodes; | ||
2549 | else | ||
2550 | { | ||
2551 | err = re_node_set_init_union (&dest_nodes, | ||
2552 | dest_state->entrance_nodes, new_nodes); | ||
2553 | if (BE (err != REG_NOERROR, 0)) | ||
2554 | return err; | ||
2555 | } | ||
2556 | context = re_string_context_at (&mctx->input, dest_idx - 1, | ||
2557 | mctx->eflags); | ||
2558 | mctx->state_log[dest_idx] | ||
2559 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); | ||
2560 | if (dest_state != NULL) | ||
2561 | re_node_set_free (&dest_nodes); | ||
2562 | if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0)) | ||
2563 | return err; | ||
2564 | } | ||
2565 | return REG_NOERROR; | ||
2566 | } | ||
2567 | #endif /* RE_ENABLE_I18N */ | ||
2568 | |||
2569 | static reg_errcode_t | ||
2570 | internal_function | ||
2571 | transit_state_bkref (re_match_context_t *mctx, const re_node_set *nodes) | ||
2572 | { | ||
2573 | const re_dfa_t *const dfa = mctx->dfa; | ||
2574 | reg_errcode_t err; | ||
2575 | int i; | ||
2576 | int cur_str_idx = re_string_cur_idx (&mctx->input); | ||
2577 | |||
2578 | for (i = 0; i < nodes->nelem; ++i) | ||
2579 | { | ||
2580 | int dest_str_idx, prev_nelem, bkc_idx; | ||
2581 | int node_idx = nodes->elems[i]; | ||
2582 | unsigned int context; | ||
2583 | const re_token_t *node = dfa->nodes + node_idx; | ||
2584 | re_node_set *new_dest_nodes; | ||
2585 | |||
2586 | /* Check whether `node' is a backreference or not. */ | ||
2587 | if (node->type != OP_BACK_REF) | ||
2588 | continue; | ||
2589 | |||
2590 | if (node->constraint) | ||
2591 | { | ||
2592 | context = re_string_context_at (&mctx->input, cur_str_idx, | ||
2593 | mctx->eflags); | ||
2594 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) | ||
2595 | continue; | ||
2596 | } | ||
2597 | |||
2598 | /* `node' is a backreference. | ||
2599 | Check the substring which the substring matched. */ | ||
2600 | bkc_idx = mctx->nbkref_ents; | ||
2601 | err = get_subexp (mctx, node_idx, cur_str_idx); | ||
2602 | if (BE (err != REG_NOERROR, 0)) | ||
2603 | goto free_return; | ||
2604 | |||
2605 | /* And add the epsilon closures (which is `new_dest_nodes') of | ||
2606 | the backreference to appropriate state_log. */ | ||
2607 | #ifdef DEBUG | ||
2608 | assert (dfa->nexts[node_idx] != -1); | ||
2609 | #endif | ||
2610 | for (; bkc_idx < mctx->nbkref_ents; ++bkc_idx) | ||
2611 | { | ||
2612 | int subexp_len; | ||
2613 | re_dfastate_t *dest_state; | ||
2614 | struct re_backref_cache_entry *bkref_ent; | ||
2615 | bkref_ent = mctx->bkref_ents + bkc_idx; | ||
2616 | if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx) | ||
2617 | continue; | ||
2618 | subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from; | ||
2619 | new_dest_nodes = (subexp_len == 0 | ||
2620 | ? dfa->eclosures + dfa->edests[node_idx].elems[0] | ||
2621 | : dfa->eclosures + dfa->nexts[node_idx]); | ||
2622 | dest_str_idx = (cur_str_idx + bkref_ent->subexp_to | ||
2623 | - bkref_ent->subexp_from); | ||
2624 | context = re_string_context_at (&mctx->input, dest_str_idx - 1, | ||
2625 | mctx->eflags); | ||
2626 | dest_state = mctx->state_log[dest_str_idx]; | ||
2627 | prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0 | ||
2628 | : mctx->state_log[cur_str_idx]->nodes.nelem); | ||
2629 | /* Add `new_dest_node' to state_log. */ | ||
2630 | if (dest_state == NULL) | ||
2631 | { | ||
2632 | mctx->state_log[dest_str_idx] | ||
2633 | = re_acquire_state_context (&err, dfa, new_dest_nodes, | ||
2634 | context); | ||
2635 | if (BE (mctx->state_log[dest_str_idx] == NULL | ||
2636 | && err != REG_NOERROR, 0)) | ||
2637 | goto free_return; | ||
2638 | } | ||
2639 | else | ||
2640 | { | ||
2641 | re_node_set dest_nodes; | ||
2642 | err = re_node_set_init_union (&dest_nodes, | ||
2643 | dest_state->entrance_nodes, | ||
2644 | new_dest_nodes); | ||
2645 | if (BE (err != REG_NOERROR, 0)) | ||
2646 | { | ||
2647 | re_node_set_free (&dest_nodes); | ||
2648 | goto free_return; | ||
2649 | } | ||
2650 | mctx->state_log[dest_str_idx] | ||
2651 | = re_acquire_state_context (&err, dfa, &dest_nodes, context); | ||
2652 | re_node_set_free (&dest_nodes); | ||
2653 | if (BE (mctx->state_log[dest_str_idx] == NULL | ||
2654 | && err != REG_NOERROR, 0)) | ||
2655 | goto free_return; | ||
2656 | } | ||
2657 | /* We need to check recursively if the backreference can epsilon | ||
2658 | transit. */ | ||
2659 | if (subexp_len == 0 | ||
2660 | && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem) | ||
2661 | { | ||
2662 | err = check_subexp_matching_top (mctx, new_dest_nodes, | ||
2663 | cur_str_idx); | ||
2664 | if (BE (err != REG_NOERROR, 0)) | ||
2665 | goto free_return; | ||
2666 | err = transit_state_bkref (mctx, new_dest_nodes); | ||
2667 | if (BE (err != REG_NOERROR, 0)) | ||
2668 | goto free_return; | ||
2669 | } | ||
2670 | } | ||
2671 | } | ||
2672 | err = REG_NOERROR; | ||
2673 | free_return: | ||
2674 | return err; | ||
2675 | } | ||
2676 | |||
2677 | /* Enumerate all the candidates which the backreference BKREF_NODE can match | ||
2678 | at BKREF_STR_IDX, and register them by match_ctx_add_entry(). | ||
2679 | Note that we might collect inappropriate candidates here. | ||
2680 | However, the cost of checking them strictly here is too high, then we | ||
2681 | delay these checking for prune_impossible_nodes(). */ | ||
2682 | |||
2683 | static reg_errcode_t | ||
2684 | internal_function | ||
2685 | get_subexp (re_match_context_t *mctx, int bkref_node, int bkref_str_idx) | ||
2686 | { | ||
2687 | const re_dfa_t *const dfa = mctx->dfa; | ||
2688 | int subexp_num, sub_top_idx; | ||
2689 | const char *buf = (const char *) re_string_get_buffer (&mctx->input); | ||
2690 | /* Return if we have already checked BKREF_NODE at BKREF_STR_IDX. */ | ||
2691 | int cache_idx = search_cur_bkref_entry (mctx, bkref_str_idx); | ||
2692 | if (cache_idx != -1) | ||
2693 | { | ||
2694 | const struct re_backref_cache_entry *entry | ||
2695 | = mctx->bkref_ents + cache_idx; | ||
2696 | do | ||
2697 | if (entry->node == bkref_node) | ||
2698 | return REG_NOERROR; /* We already checked it. */ | ||
2699 | while (entry++->more); | ||
2700 | } | ||
2701 | |||
2702 | subexp_num = dfa->nodes[bkref_node].opr.idx; | ||
2703 | |||
2704 | /* For each sub expression */ | ||
2705 | for (sub_top_idx = 0; sub_top_idx < mctx->nsub_tops; ++sub_top_idx) | ||
2706 | { | ||
2707 | reg_errcode_t err; | ||
2708 | re_sub_match_top_t *sub_top = mctx->sub_tops[sub_top_idx]; | ||
2709 | re_sub_match_last_t *sub_last; | ||
2710 | int sub_last_idx, sl_str, bkref_str_off; | ||
2711 | |||
2712 | if (dfa->nodes[sub_top->node].opr.idx != subexp_num) | ||
2713 | continue; /* It isn't related. */ | ||
2714 | |||
2715 | sl_str = sub_top->str_idx; | ||
2716 | bkref_str_off = bkref_str_idx; | ||
2717 | /* At first, check the last node of sub expressions we already | ||
2718 | evaluated. */ | ||
2719 | for (sub_last_idx = 0; sub_last_idx < sub_top->nlasts; ++sub_last_idx) | ||
2720 | { | ||
2721 | int sl_str_diff; | ||
2722 | sub_last = sub_top->lasts[sub_last_idx]; | ||
2723 | sl_str_diff = sub_last->str_idx - sl_str; | ||
2724 | /* The matched string by the sub expression match with the substring | ||
2725 | at the back reference? */ | ||
2726 | if (sl_str_diff > 0) | ||
2727 | { | ||
2728 | if (BE (bkref_str_off + sl_str_diff > mctx->input.valid_len, 0)) | ||
2729 | { | ||
2730 | /* Not enough chars for a successful match. */ | ||
2731 | if (bkref_str_off + sl_str_diff > mctx->input.len) | ||
2732 | break; | ||
2733 | |||
2734 | err = clean_state_log_if_needed (mctx, | ||
2735 | bkref_str_off | ||
2736 | + sl_str_diff); | ||
2737 | if (BE (err != REG_NOERROR, 0)) | ||
2738 | return err; | ||
2739 | buf = (const char *) re_string_get_buffer (&mctx->input); | ||
2740 | } | ||
2741 | if (memcmp (buf + bkref_str_off, buf + sl_str, sl_str_diff) != 0) | ||
2742 | /* We don't need to search this sub expression any more. */ | ||
2743 | break; | ||
2744 | } | ||
2745 | bkref_str_off += sl_str_diff; | ||
2746 | sl_str += sl_str_diff; | ||
2747 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, | ||
2748 | bkref_str_idx); | ||
2749 | |||
2750 | /* Reload buf, since the preceding call might have reallocated | ||
2751 | the buffer. */ | ||
2752 | buf = (const char *) re_string_get_buffer (&mctx->input); | ||
2753 | |||
2754 | if (err == REG_NOMATCH) | ||
2755 | continue; | ||
2756 | if (BE (err != REG_NOERROR, 0)) | ||
2757 | return err; | ||
2758 | } | ||
2759 | |||
2760 | if (sub_last_idx < sub_top->nlasts) | ||
2761 | continue; | ||
2762 | if (sub_last_idx > 0) | ||
2763 | ++sl_str; | ||
2764 | /* Then, search for the other last nodes of the sub expression. */ | ||
2765 | for (; sl_str <= bkref_str_idx; ++sl_str) | ||
2766 | { | ||
2767 | int cls_node, sl_str_off; | ||
2768 | const re_node_set *nodes; | ||
2769 | sl_str_off = sl_str - sub_top->str_idx; | ||
2770 | /* The matched string by the sub expression match with the substring | ||
2771 | at the back reference? */ | ||
2772 | if (sl_str_off > 0) | ||
2773 | { | ||
2774 | if (BE (bkref_str_off >= mctx->input.valid_len, 0)) | ||
2775 | { | ||
2776 | /* If we are at the end of the input, we cannot match. */ | ||
2777 | if (bkref_str_off >= mctx->input.len) | ||
2778 | break; | ||
2779 | |||
2780 | err = extend_buffers (mctx); | ||
2781 | if (BE (err != REG_NOERROR, 0)) | ||
2782 | return err; | ||
2783 | |||
2784 | buf = (const char *) re_string_get_buffer (&mctx->input); | ||
2785 | } | ||
2786 | if (buf [bkref_str_off++] != buf[sl_str - 1]) | ||
2787 | break; /* We don't need to search this sub expression | ||
2788 | any more. */ | ||
2789 | } | ||
2790 | if (mctx->state_log[sl_str] == NULL) | ||
2791 | continue; | ||
2792 | /* Does this state have a ')' of the sub expression? */ | ||
2793 | nodes = &mctx->state_log[sl_str]->nodes; | ||
2794 | cls_node = find_subexp_node (dfa, nodes, subexp_num, | ||
2795 | OP_CLOSE_SUBEXP); | ||
2796 | if (cls_node == -1) | ||
2797 | continue; /* No. */ | ||
2798 | if (sub_top->path == NULL) | ||
2799 | { | ||
2800 | sub_top->path = calloc (sizeof (state_array_t), | ||
2801 | sl_str - sub_top->str_idx + 1); | ||
2802 | if (sub_top->path == NULL) | ||
2803 | return REG_ESPACE; | ||
2804 | } | ||
2805 | /* Can the OP_OPEN_SUBEXP node arrive the OP_CLOSE_SUBEXP node | ||
2806 | in the current context? */ | ||
2807 | err = check_arrival (mctx, sub_top->path, sub_top->node, | ||
2808 | sub_top->str_idx, cls_node, sl_str, | ||
2809 | OP_CLOSE_SUBEXP); | ||
2810 | if (err == REG_NOMATCH) | ||
2811 | continue; | ||
2812 | if (BE (err != REG_NOERROR, 0)) | ||
2813 | return err; | ||
2814 | sub_last = match_ctx_add_sublast (sub_top, cls_node, sl_str); | ||
2815 | if (BE (sub_last == NULL, 0)) | ||
2816 | return REG_ESPACE; | ||
2817 | err = get_subexp_sub (mctx, sub_top, sub_last, bkref_node, | ||
2818 | bkref_str_idx); | ||
2819 | if (err == REG_NOMATCH) | ||
2820 | continue; | ||
2821 | } | ||
2822 | } | ||
2823 | return REG_NOERROR; | ||
2824 | } | ||
2825 | |||
2826 | /* Helper functions for get_subexp(). */ | ||
2827 | |||
2828 | /* Check SUB_LAST can arrive to the back reference BKREF_NODE at BKREF_STR. | ||
2829 | If it can arrive, register the sub expression expressed with SUB_TOP | ||
2830 | and SUB_LAST. */ | ||
2831 | |||
2832 | static reg_errcode_t | ||
2833 | internal_function | ||
2834 | get_subexp_sub (re_match_context_t *mctx, const re_sub_match_top_t *sub_top, | ||
2835 | re_sub_match_last_t *sub_last, int bkref_node, int bkref_str) | ||
2836 | { | ||
2837 | reg_errcode_t err; | ||
2838 | int to_idx; | ||
2839 | /* Can the subexpression arrive the back reference? */ | ||
2840 | err = check_arrival (mctx, &sub_last->path, sub_last->node, | ||
2841 | sub_last->str_idx, bkref_node, bkref_str, | ||
2842 | OP_OPEN_SUBEXP); | ||
2843 | if (err != REG_NOERROR) | ||
2844 | return err; | ||
2845 | err = match_ctx_add_entry (mctx, bkref_node, bkref_str, sub_top->str_idx, | ||
2846 | sub_last->str_idx); | ||
2847 | if (BE (err != REG_NOERROR, 0)) | ||
2848 | return err; | ||
2849 | to_idx = bkref_str + sub_last->str_idx - sub_top->str_idx; | ||
2850 | return clean_state_log_if_needed (mctx, to_idx); | ||
2851 | } | ||
2852 | |||
2853 | /* Find the first node which is '(' or ')' and whose index is SUBEXP_IDX. | ||
2854 | Search '(' if FL_OPEN, or search ')' otherwise. | ||
2855 | TODO: This function isn't efficient... | ||
2856 | Because there might be more than one nodes whose types are | ||
2857 | OP_OPEN_SUBEXP and whose index is SUBEXP_IDX, we must check all | ||
2858 | nodes. | ||
2859 | E.g. RE: (a){2} */ | ||
2860 | |||
2861 | static int | ||
2862 | internal_function | ||
2863 | find_subexp_node (const re_dfa_t *dfa, const re_node_set *nodes, | ||
2864 | int subexp_idx, int type) | ||
2865 | { | ||
2866 | int cls_idx; | ||
2867 | for (cls_idx = 0; cls_idx < nodes->nelem; ++cls_idx) | ||
2868 | { | ||
2869 | int cls_node = nodes->elems[cls_idx]; | ||
2870 | const re_token_t *node = dfa->nodes + cls_node; | ||
2871 | if (node->type == type | ||
2872 | && node->opr.idx == subexp_idx) | ||
2873 | return cls_node; | ||
2874 | } | ||
2875 | return -1; | ||
2876 | } | ||
2877 | |||
2878 | /* Check whether the node TOP_NODE at TOP_STR can arrive to the node | ||
2879 | LAST_NODE at LAST_STR. We record the path onto PATH since it will be | ||
2880 | heavily reused. | ||
2881 | Return REG_NOERROR if it can arrive, or REG_NOMATCH otherwise. */ | ||
2882 | |||
2883 | static reg_errcode_t | ||
2884 | internal_function | ||
2885 | check_arrival (re_match_context_t *mctx, state_array_t *path, int top_node, | ||
2886 | int top_str, int last_node, int last_str, int type) | ||
2887 | { | ||
2888 | const re_dfa_t *const dfa = mctx->dfa; | ||
2889 | reg_errcode_t err = REG_NOERROR; | ||
2890 | int subexp_num, backup_cur_idx, str_idx, null_cnt; | ||
2891 | re_dfastate_t *cur_state = NULL; | ||
2892 | re_node_set *cur_nodes, next_nodes; | ||
2893 | re_dfastate_t **backup_state_log; | ||
2894 | unsigned int context; | ||
2895 | |||
2896 | subexp_num = dfa->nodes[top_node].opr.idx; | ||
2897 | /* Extend the buffer if we need. */ | ||
2898 | if (BE (path->alloc < last_str + mctx->max_mb_elem_len + 1, 0)) | ||
2899 | { | ||
2900 | re_dfastate_t **new_array; | ||
2901 | int old_alloc = path->alloc; | ||
2902 | path->alloc += last_str + mctx->max_mb_elem_len + 1; | ||
2903 | new_array = re_realloc (path->array, re_dfastate_t *, path->alloc); | ||
2904 | if (BE (new_array == NULL, 0)) | ||
2905 | { | ||
2906 | path->alloc = old_alloc; | ||
2907 | return REG_ESPACE; | ||
2908 | } | ||
2909 | path->array = new_array; | ||
2910 | memset (new_array + old_alloc, '\0', | ||
2911 | sizeof (re_dfastate_t *) * (path->alloc - old_alloc)); | ||
2912 | } | ||
2913 | |||
2914 | str_idx = path->next_idx ? path->next_idx : top_str; | ||
2915 | |||
2916 | /* Temporary modify MCTX. */ | ||
2917 | backup_state_log = mctx->state_log; | ||
2918 | backup_cur_idx = mctx->input.cur_idx; | ||
2919 | mctx->state_log = path->array; | ||
2920 | mctx->input.cur_idx = str_idx; | ||
2921 | |||
2922 | /* Setup initial node set. */ | ||
2923 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); | ||
2924 | if (str_idx == top_str) | ||
2925 | { | ||
2926 | err = re_node_set_init_1 (&next_nodes, top_node); | ||
2927 | if (BE (err != REG_NOERROR, 0)) | ||
2928 | return err; | ||
2929 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); | ||
2930 | if (BE (err != REG_NOERROR, 0)) | ||
2931 | { | ||
2932 | re_node_set_free (&next_nodes); | ||
2933 | return err; | ||
2934 | } | ||
2935 | } | ||
2936 | else | ||
2937 | { | ||
2938 | cur_state = mctx->state_log[str_idx]; | ||
2939 | if (cur_state && cur_state->has_backref) | ||
2940 | { | ||
2941 | err = re_node_set_init_copy (&next_nodes, &cur_state->nodes); | ||
2942 | if (BE (err != REG_NOERROR, 0)) | ||
2943 | return err; | ||
2944 | } | ||
2945 | else | ||
2946 | re_node_set_init_empty (&next_nodes); | ||
2947 | } | ||
2948 | if (str_idx == top_str || (cur_state && cur_state->has_backref)) | ||
2949 | { | ||
2950 | if (next_nodes.nelem) | ||
2951 | { | ||
2952 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, | ||
2953 | subexp_num, type); | ||
2954 | if (BE (err != REG_NOERROR, 0)) | ||
2955 | { | ||
2956 | re_node_set_free (&next_nodes); | ||
2957 | return err; | ||
2958 | } | ||
2959 | } | ||
2960 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); | ||
2961 | if (BE (cur_state == NULL && err != REG_NOERROR, 0)) | ||
2962 | { | ||
2963 | re_node_set_free (&next_nodes); | ||
2964 | return err; | ||
2965 | } | ||
2966 | mctx->state_log[str_idx] = cur_state; | ||
2967 | } | ||
2968 | |||
2969 | for (null_cnt = 0; str_idx < last_str && null_cnt <= mctx->max_mb_elem_len;) | ||
2970 | { | ||
2971 | re_node_set_empty (&next_nodes); | ||
2972 | if (mctx->state_log[str_idx + 1]) | ||
2973 | { | ||
2974 | err = re_node_set_merge (&next_nodes, | ||
2975 | &mctx->state_log[str_idx + 1]->nodes); | ||
2976 | if (BE (err != REG_NOERROR, 0)) | ||
2977 | { | ||
2978 | re_node_set_free (&next_nodes); | ||
2979 | return err; | ||
2980 | } | ||
2981 | } | ||
2982 | if (cur_state) | ||
2983 | { | ||
2984 | err = check_arrival_add_next_nodes (mctx, str_idx, | ||
2985 | &cur_state->non_eps_nodes, | ||
2986 | &next_nodes); | ||
2987 | if (BE (err != REG_NOERROR, 0)) | ||
2988 | { | ||
2989 | re_node_set_free (&next_nodes); | ||
2990 | return err; | ||
2991 | } | ||
2992 | } | ||
2993 | ++str_idx; | ||
2994 | if (next_nodes.nelem) | ||
2995 | { | ||
2996 | err = check_arrival_expand_ecl (dfa, &next_nodes, subexp_num, type); | ||
2997 | if (BE (err != REG_NOERROR, 0)) | ||
2998 | { | ||
2999 | re_node_set_free (&next_nodes); | ||
3000 | return err; | ||
3001 | } | ||
3002 | err = expand_bkref_cache (mctx, &next_nodes, str_idx, | ||
3003 | subexp_num, type); | ||
3004 | if (BE (err != REG_NOERROR, 0)) | ||
3005 | { | ||
3006 | re_node_set_free (&next_nodes); | ||
3007 | return err; | ||
3008 | } | ||
3009 | } | ||
3010 | context = re_string_context_at (&mctx->input, str_idx - 1, mctx->eflags); | ||
3011 | cur_state = re_acquire_state_context (&err, dfa, &next_nodes, context); | ||
3012 | if (BE (cur_state == NULL && err != REG_NOERROR, 0)) | ||
3013 | { | ||
3014 | re_node_set_free (&next_nodes); | ||
3015 | return err; | ||
3016 | } | ||
3017 | mctx->state_log[str_idx] = cur_state; | ||
3018 | null_cnt = cur_state == NULL ? null_cnt + 1 : 0; | ||
3019 | } | ||
3020 | re_node_set_free (&next_nodes); | ||
3021 | cur_nodes = (mctx->state_log[last_str] == NULL ? NULL | ||
3022 | : &mctx->state_log[last_str]->nodes); | ||
3023 | path->next_idx = str_idx; | ||
3024 | |||
3025 | /* Fix MCTX. */ | ||
3026 | mctx->state_log = backup_state_log; | ||
3027 | mctx->input.cur_idx = backup_cur_idx; | ||
3028 | |||
3029 | /* Then check the current node set has the node LAST_NODE. */ | ||
3030 | if (cur_nodes != NULL && re_node_set_contains (cur_nodes, last_node)) | ||
3031 | return REG_NOERROR; | ||
3032 | |||
3033 | return REG_NOMATCH; | ||
3034 | } | ||
3035 | |||
3036 | /* Helper functions for check_arrival. */ | ||
3037 | |||
3038 | /* Calculate the destination nodes of CUR_NODES at STR_IDX, and append them | ||
3039 | to NEXT_NODES. | ||
3040 | TODO: This function is similar to the functions transit_state*(), | ||
3041 | however this function has many additional works. | ||
3042 | Can't we unify them? */ | ||
3043 | |||
3044 | static reg_errcode_t | ||
3045 | internal_function | ||
3046 | check_arrival_add_next_nodes (re_match_context_t *mctx, int str_idx, | ||
3047 | re_node_set *cur_nodes, re_node_set *next_nodes) | ||
3048 | { | ||
3049 | const re_dfa_t *const dfa = mctx->dfa; | ||
3050 | int result; | ||
3051 | int cur_idx; | ||
3052 | #ifdef RE_ENABLE_I18N | ||
3053 | reg_errcode_t err = REG_NOERROR; | ||
3054 | #endif | ||
3055 | re_node_set union_set; | ||
3056 | re_node_set_init_empty (&union_set); | ||
3057 | for (cur_idx = 0; cur_idx < cur_nodes->nelem; ++cur_idx) | ||
3058 | { | ||
3059 | int naccepted = 0; | ||
3060 | int cur_node = cur_nodes->elems[cur_idx]; | ||
3061 | #ifdef DEBUG | ||
3062 | re_token_type_t type = dfa->nodes[cur_node].type; | ||
3063 | assert (!IS_EPSILON_NODE (type)); | ||
3064 | #endif | ||
3065 | #ifdef RE_ENABLE_I18N | ||
3066 | /* If the node may accept `multi byte'. */ | ||
3067 | if (dfa->nodes[cur_node].accept_mb) | ||
3068 | { | ||
3069 | naccepted = check_node_accept_bytes (dfa, cur_node, &mctx->input, | ||
3070 | str_idx); | ||
3071 | if (naccepted > 1) | ||
3072 | { | ||
3073 | re_dfastate_t *dest_state; | ||
3074 | int next_node = dfa->nexts[cur_node]; | ||
3075 | int next_idx = str_idx + naccepted; | ||
3076 | dest_state = mctx->state_log[next_idx]; | ||
3077 | re_node_set_empty (&union_set); | ||
3078 | if (dest_state) | ||
3079 | { | ||
3080 | err = re_node_set_merge (&union_set, &dest_state->nodes); | ||
3081 | if (BE (err != REG_NOERROR, 0)) | ||
3082 | { | ||
3083 | re_node_set_free (&union_set); | ||
3084 | return err; | ||
3085 | } | ||
3086 | } | ||
3087 | result = re_node_set_insert (&union_set, next_node); | ||
3088 | if (BE (result < 0, 0)) | ||
3089 | { | ||
3090 | re_node_set_free (&union_set); | ||
3091 | return REG_ESPACE; | ||
3092 | } | ||
3093 | mctx->state_log[next_idx] = re_acquire_state (&err, dfa, | ||
3094 | &union_set); | ||
3095 | if (BE (mctx->state_log[next_idx] == NULL | ||
3096 | && err != REG_NOERROR, 0)) | ||
3097 | { | ||
3098 | re_node_set_free (&union_set); | ||
3099 | return err; | ||
3100 | } | ||
3101 | } | ||
3102 | } | ||
3103 | #endif /* RE_ENABLE_I18N */ | ||
3104 | if (naccepted | ||
3105 | || check_node_accept (mctx, dfa->nodes + cur_node, str_idx)) | ||
3106 | { | ||
3107 | result = re_node_set_insert (next_nodes, dfa->nexts[cur_node]); | ||
3108 | if (BE (result < 0, 0)) | ||
3109 | { | ||
3110 | re_node_set_free (&union_set); | ||
3111 | return REG_ESPACE; | ||
3112 | } | ||
3113 | } | ||
3114 | } | ||
3115 | re_node_set_free (&union_set); | ||
3116 | return REG_NOERROR; | ||
3117 | } | ||
3118 | |||
3119 | /* For all the nodes in CUR_NODES, add the epsilon closures of them to | ||
3120 | CUR_NODES, however exclude the nodes which are: | ||
3121 | - inside the sub expression whose number is EX_SUBEXP, if FL_OPEN. | ||
3122 | - out of the sub expression whose number is EX_SUBEXP, if !FL_OPEN. | ||
3123 | */ | ||
3124 | |||
3125 | static reg_errcode_t | ||
3126 | internal_function | ||
3127 | check_arrival_expand_ecl (const re_dfa_t *dfa, re_node_set *cur_nodes, | ||
3128 | int ex_subexp, int type) | ||
3129 | { | ||
3130 | reg_errcode_t err; | ||
3131 | int idx, outside_node; | ||
3132 | re_node_set new_nodes; | ||
3133 | #ifdef DEBUG | ||
3134 | assert (cur_nodes->nelem); | ||
3135 | #endif | ||
3136 | err = re_node_set_alloc (&new_nodes, cur_nodes->nelem); | ||
3137 | if (BE (err != REG_NOERROR, 0)) | ||
3138 | return err; | ||
3139 | /* Create a new node set NEW_NODES with the nodes which are epsilon | ||
3140 | closures of the node in CUR_NODES. */ | ||
3141 | |||
3142 | for (idx = 0; idx < cur_nodes->nelem; ++idx) | ||
3143 | { | ||
3144 | int cur_node = cur_nodes->elems[idx]; | ||
3145 | const re_node_set *eclosure = dfa->eclosures + cur_node; | ||
3146 | outside_node = find_subexp_node (dfa, eclosure, ex_subexp, type); | ||
3147 | if (outside_node == -1) | ||
3148 | { | ||
3149 | /* There are no problematic nodes, just merge them. */ | ||
3150 | err = re_node_set_merge (&new_nodes, eclosure); | ||
3151 | if (BE (err != REG_NOERROR, 0)) | ||
3152 | { | ||
3153 | re_node_set_free (&new_nodes); | ||
3154 | return err; | ||
3155 | } | ||
3156 | } | ||
3157 | else | ||
3158 | { | ||
3159 | /* There are problematic nodes, re-calculate incrementally. */ | ||
3160 | err = check_arrival_expand_ecl_sub (dfa, &new_nodes, cur_node, | ||
3161 | ex_subexp, type); | ||
3162 | if (BE (err != REG_NOERROR, 0)) | ||
3163 | { | ||
3164 | re_node_set_free (&new_nodes); | ||
3165 | return err; | ||
3166 | } | ||
3167 | } | ||
3168 | } | ||
3169 | re_node_set_free (cur_nodes); | ||
3170 | *cur_nodes = new_nodes; | ||
3171 | return REG_NOERROR; | ||
3172 | } | ||
3173 | |||
3174 | /* Helper function for check_arrival_expand_ecl. | ||
3175 | Check incrementally the epsilon closure of TARGET, and if it isn't | ||
3176 | problematic append it to DST_NODES. */ | ||
3177 | |||
3178 | static reg_errcode_t | ||
3179 | internal_function | ||
3180 | check_arrival_expand_ecl_sub (const re_dfa_t *dfa, re_node_set *dst_nodes, | ||
3181 | int target, int ex_subexp, int type) | ||
3182 | { | ||
3183 | int cur_node; | ||
3184 | for (cur_node = target; !re_node_set_contains (dst_nodes, cur_node);) | ||
3185 | { | ||
3186 | int err; | ||
3187 | |||
3188 | if (dfa->nodes[cur_node].type == type | ||
3189 | && dfa->nodes[cur_node].opr.idx == ex_subexp) | ||
3190 | { | ||
3191 | if (type == OP_CLOSE_SUBEXP) | ||
3192 | { | ||
3193 | err = re_node_set_insert (dst_nodes, cur_node); | ||
3194 | if (BE (err == -1, 0)) | ||
3195 | return REG_ESPACE; | ||
3196 | } | ||
3197 | break; | ||
3198 | } | ||
3199 | err = re_node_set_insert (dst_nodes, cur_node); | ||
3200 | if (BE (err == -1, 0)) | ||
3201 | return REG_ESPACE; | ||
3202 | if (dfa->edests[cur_node].nelem == 0) | ||
3203 | break; | ||
3204 | if (dfa->edests[cur_node].nelem == 2) | ||
3205 | { | ||
3206 | err = check_arrival_expand_ecl_sub (dfa, dst_nodes, | ||
3207 | dfa->edests[cur_node].elems[1], | ||
3208 | ex_subexp, type); | ||
3209 | if (BE (err != REG_NOERROR, 0)) | ||
3210 | return err; | ||
3211 | } | ||
3212 | cur_node = dfa->edests[cur_node].elems[0]; | ||
3213 | } | ||
3214 | return REG_NOERROR; | ||
3215 | } | ||
3216 | |||
3217 | |||
3218 | /* For all the back references in the current state, calculate the | ||
3219 | destination of the back references by the appropriate entry | ||
3220 | in MCTX->BKREF_ENTS. */ | ||
3221 | |||
3222 | static reg_errcode_t | ||
3223 | internal_function | ||
3224 | expand_bkref_cache (re_match_context_t *mctx, re_node_set *cur_nodes, | ||
3225 | int cur_str, int subexp_num, int type) | ||
3226 | { | ||
3227 | const re_dfa_t *const dfa = mctx->dfa; | ||
3228 | reg_errcode_t err; | ||
3229 | int cache_idx_start = search_cur_bkref_entry (mctx, cur_str); | ||
3230 | struct re_backref_cache_entry *ent; | ||
3231 | |||
3232 | if (cache_idx_start == -1) | ||
3233 | return REG_NOERROR; | ||
3234 | |||
3235 | restart: | ||
3236 | ent = mctx->bkref_ents + cache_idx_start; | ||
3237 | do | ||
3238 | { | ||
3239 | int to_idx, next_node; | ||
3240 | |||
3241 | /* Is this entry ENT is appropriate? */ | ||
3242 | if (!re_node_set_contains (cur_nodes, ent->node)) | ||
3243 | continue; /* No. */ | ||
3244 | |||
3245 | to_idx = cur_str + ent->subexp_to - ent->subexp_from; | ||
3246 | /* Calculate the destination of the back reference, and append it | ||
3247 | to MCTX->STATE_LOG. */ | ||
3248 | if (to_idx == cur_str) | ||
3249 | { | ||
3250 | /* The backreference did epsilon transit, we must re-check all the | ||
3251 | node in the current state. */ | ||
3252 | re_node_set new_dests; | ||
3253 | reg_errcode_t err2, err3; | ||
3254 | next_node = dfa->edests[ent->node].elems[0]; | ||
3255 | if (re_node_set_contains (cur_nodes, next_node)) | ||
3256 | continue; | ||
3257 | err = re_node_set_init_1 (&new_dests, next_node); | ||
3258 | err2 = check_arrival_expand_ecl (dfa, &new_dests, subexp_num, type); | ||
3259 | err3 = re_node_set_merge (cur_nodes, &new_dests); | ||
3260 | re_node_set_free (&new_dests); | ||
3261 | if (BE (err != REG_NOERROR || err2 != REG_NOERROR | ||
3262 | || err3 != REG_NOERROR, 0)) | ||
3263 | { | ||
3264 | err = (err != REG_NOERROR ? err | ||
3265 | : (err2 != REG_NOERROR ? err2 : err3)); | ||
3266 | return err; | ||
3267 | } | ||
3268 | /* TODO: It is still inefficient... */ | ||
3269 | goto restart; | ||
3270 | } | ||
3271 | else | ||
3272 | { | ||
3273 | re_node_set union_set; | ||
3274 | next_node = dfa->nexts[ent->node]; | ||
3275 | if (mctx->state_log[to_idx]) | ||
3276 | { | ||
3277 | int ret; | ||
3278 | if (re_node_set_contains (&mctx->state_log[to_idx]->nodes, | ||
3279 | next_node)) | ||
3280 | continue; | ||
3281 | err = re_node_set_init_copy (&union_set, | ||
3282 | &mctx->state_log[to_idx]->nodes); | ||
3283 | ret = re_node_set_insert (&union_set, next_node); | ||
3284 | if (BE (err != REG_NOERROR || ret < 0, 0)) | ||
3285 | { | ||
3286 | re_node_set_free (&union_set); | ||
3287 | err = err != REG_NOERROR ? err : REG_ESPACE; | ||
3288 | return err; | ||
3289 | } | ||
3290 | } | ||
3291 | else | ||
3292 | { | ||
3293 | err = re_node_set_init_1 (&union_set, next_node); | ||
3294 | if (BE (err != REG_NOERROR, 0)) | ||
3295 | return err; | ||
3296 | } | ||
3297 | mctx->state_log[to_idx] = re_acquire_state (&err, dfa, &union_set); | ||
3298 | re_node_set_free (&union_set); | ||
3299 | if (BE (mctx->state_log[to_idx] == NULL | ||
3300 | && err != REG_NOERROR, 0)) | ||
3301 | return err; | ||
3302 | } | ||
3303 | } | ||
3304 | while (ent++->more); | ||
3305 | return REG_NOERROR; | ||
3306 | } | ||
3307 | |||
3308 | /* Build transition table for the state. | ||
3309 | Return 1 if succeeded, otherwise return NULL. */ | ||
3310 | |||
3311 | static int | ||
3312 | internal_function | ||
3313 | build_trtable (const re_dfa_t *dfa, re_dfastate_t *state) | ||
3314 | { | ||
3315 | reg_errcode_t err; | ||
3316 | int i, j, ch, need_word_trtable = 0; | ||
3317 | bitset_word_t elem, mask; | ||
3318 | bool dests_node_malloced = false; | ||
3319 | bool dest_states_malloced = false; | ||
3320 | int ndests; /* Number of the destination states from `state'. */ | ||
3321 | re_dfastate_t **trtable; | ||
3322 | re_dfastate_t **dest_states = NULL, **dest_states_word, **dest_states_nl; | ||
3323 | re_node_set follows, *dests_node; | ||
3324 | bitset_t *dests_ch; | ||
3325 | bitset_t acceptable; | ||
3326 | |||
3327 | struct dests_alloc | ||
3328 | { | ||
3329 | re_node_set dests_node[SBC_MAX]; | ||
3330 | bitset_t dests_ch[SBC_MAX]; | ||
3331 | } *dests_alloc; | ||
3332 | |||
3333 | /* We build DFA states which corresponds to the destination nodes | ||
3334 | from `state'. `dests_node[i]' represents the nodes which i-th | ||
3335 | destination state contains, and `dests_ch[i]' represents the | ||
3336 | characters which i-th destination state accepts. */ | ||
3337 | #ifdef HAVE_ALLOCA | ||
3338 | if (__libc_use_alloca (sizeof (struct dests_alloc))) | ||
3339 | dests_alloc = (struct dests_alloc *) alloca (sizeof (struct dests_alloc)); | ||
3340 | else | ||
3341 | #endif | ||
3342 | { | ||
3343 | dests_alloc = re_malloc (struct dests_alloc, 1); | ||
3344 | if (BE (dests_alloc == NULL, 0)) | ||
3345 | return 0; | ||
3346 | dests_node_malloced = true; | ||
3347 | } | ||
3348 | dests_node = dests_alloc->dests_node; | ||
3349 | dests_ch = dests_alloc->dests_ch; | ||
3350 | |||
3351 | /* Initialize transiton table. */ | ||
3352 | state->word_trtable = state->trtable = NULL; | ||
3353 | |||
3354 | /* At first, group all nodes belonging to `state' into several | ||
3355 | destinations. */ | ||
3356 | ndests = group_nodes_into_DFAstates (dfa, state, dests_node, dests_ch); | ||
3357 | if (BE (ndests <= 0, 0)) | ||
3358 | { | ||
3359 | if (dests_node_malloced) | ||
3360 | free (dests_alloc); | ||
3361 | /* Return 0 in case of an error, 1 otherwise. */ | ||
3362 | if (ndests == 0) | ||
3363 | { | ||
3364 | state->trtable = (re_dfastate_t **) | ||
3365 | calloc (sizeof (re_dfastate_t *), SBC_MAX); | ||
3366 | return 1; | ||
3367 | } | ||
3368 | return 0; | ||
3369 | } | ||
3370 | |||
3371 | err = re_node_set_alloc (&follows, ndests + 1); | ||
3372 | if (BE (err != REG_NOERROR, 0)) | ||
3373 | goto out_free; | ||
3374 | |||
3375 | /* Avoid arithmetic overflow in size calculation. */ | ||
3376 | if (BE ((((SIZE_MAX - (sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX) | ||
3377 | / (3 * sizeof (re_dfastate_t *))) | ||
3378 | < ndests), | ||
3379 | 0)) | ||
3380 | goto out_free; | ||
3381 | |||
3382 | #ifdef HAVE_ALLOCA | ||
3383 | if (__libc_use_alloca ((sizeof (re_node_set) + sizeof (bitset_t)) * SBC_MAX | ||
3384 | + ndests * 3 * sizeof (re_dfastate_t *))) | ||
3385 | dest_states = (re_dfastate_t **) | ||
3386 | alloca (ndests * 3 * sizeof (re_dfastate_t *)); | ||
3387 | else | ||
3388 | #endif | ||
3389 | { | ||
3390 | dest_states = (re_dfastate_t **) | ||
3391 | malloc (ndests * 3 * sizeof (re_dfastate_t *)); | ||
3392 | if (BE (dest_states == NULL, 0)) | ||
3393 | { | ||
3394 | out_free: | ||
3395 | if (dest_states_malloced) | ||
3396 | free (dest_states); | ||
3397 | re_node_set_free (&follows); | ||
3398 | for (i = 0; i < ndests; ++i) | ||
3399 | re_node_set_free (dests_node + i); | ||
3400 | if (dests_node_malloced) | ||
3401 | free (dests_alloc); | ||
3402 | return 0; | ||
3403 | } | ||
3404 | dest_states_malloced = true; | ||
3405 | } | ||
3406 | dest_states_word = dest_states + ndests; | ||
3407 | dest_states_nl = dest_states_word + ndests; | ||
3408 | bitset_empty (acceptable); | ||
3409 | |||
3410 | /* Then build the states for all destinations. */ | ||
3411 | for (i = 0; i < ndests; ++i) | ||
3412 | { | ||
3413 | int next_node; | ||
3414 | re_node_set_empty (&follows); | ||
3415 | /* Merge the follows of this destination states. */ | ||
3416 | for (j = 0; j < dests_node[i].nelem; ++j) | ||
3417 | { | ||
3418 | next_node = dfa->nexts[dests_node[i].elems[j]]; | ||
3419 | if (next_node != -1) | ||
3420 | { | ||
3421 | err = re_node_set_merge (&follows, dfa->eclosures + next_node); | ||
3422 | if (BE (err != REG_NOERROR, 0)) | ||
3423 | goto out_free; | ||
3424 | } | ||
3425 | } | ||
3426 | dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0); | ||
3427 | if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0)) | ||
3428 | goto out_free; | ||
3429 | /* If the new state has context constraint, | ||
3430 | build appropriate states for these contexts. */ | ||
3431 | if (dest_states[i]->has_constraint) | ||
3432 | { | ||
3433 | dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows, | ||
3434 | CONTEXT_WORD); | ||
3435 | if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0)) | ||
3436 | goto out_free; | ||
3437 | |||
3438 | if (dest_states[i] != dest_states_word[i] && dfa->mb_cur_max > 1) | ||
3439 | need_word_trtable = 1; | ||
3440 | |||
3441 | dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows, | ||
3442 | CONTEXT_NEWLINE); | ||
3443 | if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0)) | ||
3444 | goto out_free; | ||
3445 | } | ||
3446 | else | ||
3447 | { | ||
3448 | dest_states_word[i] = dest_states[i]; | ||
3449 | dest_states_nl[i] = dest_states[i]; | ||
3450 | } | ||
3451 | bitset_merge (acceptable, dests_ch[i]); | ||
3452 | } | ||
3453 | |||
3454 | if (!BE (need_word_trtable, 0)) | ||
3455 | { | ||
3456 | /* We don't care about whether the following character is a word | ||
3457 | character, or we are in a single-byte character set so we can | ||
3458 | discern by looking at the character code: allocate a | ||
3459 | 256-entry transition table. */ | ||
3460 | trtable = state->trtable = | ||
3461 | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX); | ||
3462 | if (BE (trtable == NULL, 0)) | ||
3463 | goto out_free; | ||
3464 | |||
3465 | /* For all characters ch...: */ | ||
3466 | for (i = 0; i < BITSET_WORDS; ++i) | ||
3467 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; | ||
3468 | elem; | ||
3469 | mask <<= 1, elem >>= 1, ++ch) | ||
3470 | if (BE (elem & 1, 0)) | ||
3471 | { | ||
3472 | /* There must be exactly one destination which accepts | ||
3473 | character ch. See group_nodes_into_DFAstates. */ | ||
3474 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) | ||
3475 | ; | ||
3476 | |||
3477 | /* j-th destination accepts the word character ch. */ | ||
3478 | if (dfa->word_char[i] & mask) | ||
3479 | trtable[ch] = dest_states_word[j]; | ||
3480 | else | ||
3481 | trtable[ch] = dest_states[j]; | ||
3482 | } | ||
3483 | } | ||
3484 | else | ||
3485 | { | ||
3486 | /* We care about whether the following character is a word | ||
3487 | character, and we are in a multi-byte character set: discern | ||
3488 | by looking at the character code: build two 256-entry | ||
3489 | transition tables, one starting at trtable[0] and one | ||
3490 | starting at trtable[SBC_MAX]. */ | ||
3491 | trtable = state->word_trtable = | ||
3492 | (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), 2 * SBC_MAX); | ||
3493 | if (BE (trtable == NULL, 0)) | ||
3494 | goto out_free; | ||
3495 | |||
3496 | /* For all characters ch...: */ | ||
3497 | for (i = 0; i < BITSET_WORDS; ++i) | ||
3498 | for (ch = i * BITSET_WORD_BITS, elem = acceptable[i], mask = 1; | ||
3499 | elem; | ||
3500 | mask <<= 1, elem >>= 1, ++ch) | ||
3501 | if (BE (elem & 1, 0)) | ||
3502 | { | ||
3503 | /* There must be exactly one destination which accepts | ||
3504 | character ch. See group_nodes_into_DFAstates. */ | ||
3505 | for (j = 0; (dests_ch[j][i] & mask) == 0; ++j) | ||
3506 | ; | ||
3507 | |||
3508 | /* j-th destination accepts the word character ch. */ | ||
3509 | trtable[ch] = dest_states[j]; | ||
3510 | trtable[ch + SBC_MAX] = dest_states_word[j]; | ||
3511 | } | ||
3512 | } | ||
3513 | |||
3514 | /* new line */ | ||
3515 | if (bitset_contain (acceptable, NEWLINE_CHAR)) | ||
3516 | { | ||
3517 | /* The current state accepts newline character. */ | ||
3518 | for (j = 0; j < ndests; ++j) | ||
3519 | if (bitset_contain (dests_ch[j], NEWLINE_CHAR)) | ||
3520 | { | ||
3521 | /* k-th destination accepts newline character. */ | ||
3522 | trtable[NEWLINE_CHAR] = dest_states_nl[j]; | ||
3523 | if (need_word_trtable) | ||
3524 | trtable[NEWLINE_CHAR + SBC_MAX] = dest_states_nl[j]; | ||
3525 | /* There must be only one destination which accepts | ||
3526 | newline. See group_nodes_into_DFAstates. */ | ||
3527 | break; | ||
3528 | } | ||
3529 | } | ||
3530 | |||
3531 | if (dest_states_malloced) | ||
3532 | free (dest_states); | ||
3533 | |||
3534 | re_node_set_free (&follows); | ||
3535 | for (i = 0; i < ndests; ++i) | ||
3536 | re_node_set_free (dests_node + i); | ||
3537 | |||
3538 | if (dests_node_malloced) | ||
3539 | free (dests_alloc); | ||
3540 | |||
3541 | return 1; | ||
3542 | } | ||
3543 | |||
3544 | /* Group all nodes belonging to STATE into several destinations. | ||
3545 | Then for all destinations, set the nodes belonging to the destination | ||
3546 | to DESTS_NODE[i] and set the characters accepted by the destination | ||
3547 | to DEST_CH[i]. This function return the number of destinations. */ | ||
3548 | |||
3549 | static int | ||
3550 | internal_function | ||
3551 | group_nodes_into_DFAstates (const re_dfa_t *dfa, const re_dfastate_t *state, | ||
3552 | re_node_set *dests_node, bitset_t *dests_ch) | ||
3553 | { | ||
3554 | reg_errcode_t err; | ||
3555 | int result; | ||
3556 | int i, j, k; | ||
3557 | int ndests; /* Number of the destinations from `state'. */ | ||
3558 | bitset_t accepts; /* Characters a node can accept. */ | ||
3559 | const re_node_set *cur_nodes = &state->nodes; | ||
3560 | bitset_empty (accepts); | ||
3561 | ndests = 0; | ||
3562 | |||
3563 | /* For all the nodes belonging to `state', */ | ||
3564 | for (i = 0; i < cur_nodes->nelem; ++i) | ||
3565 | { | ||
3566 | re_token_t *node = &dfa->nodes[cur_nodes->elems[i]]; | ||
3567 | re_token_type_t type = node->type; | ||
3568 | unsigned int constraint = node->constraint; | ||
3569 | |||
3570 | /* Enumerate all single byte character this node can accept. */ | ||
3571 | if (type == CHARACTER) | ||
3572 | bitset_set (accepts, node->opr.c); | ||
3573 | else if (type == SIMPLE_BRACKET) | ||
3574 | { | ||
3575 | bitset_merge (accepts, node->opr.sbcset); | ||
3576 | } | ||
3577 | else if (type == OP_PERIOD) | ||
3578 | { | ||
3579 | #ifdef RE_ENABLE_I18N | ||
3580 | if (dfa->mb_cur_max > 1) | ||
3581 | bitset_merge (accepts, dfa->sb_char); | ||
3582 | else | ||
3583 | #endif | ||
3584 | bitset_set_all (accepts); | ||
3585 | if (!(dfa->syntax & RE_DOT_NEWLINE)) | ||
3586 | bitset_clear (accepts, '\n'); | ||
3587 | if (dfa->syntax & RE_DOT_NOT_NULL) | ||
3588 | bitset_clear (accepts, '\0'); | ||
3589 | } | ||
3590 | #ifdef RE_ENABLE_I18N | ||
3591 | else if (type == OP_UTF8_PERIOD) | ||
3592 | { | ||
3593 | memset (accepts, '\xff', sizeof (bitset_t) / 2); | ||
3594 | if (!(dfa->syntax & RE_DOT_NEWLINE)) | ||
3595 | bitset_clear (accepts, '\n'); | ||
3596 | if (dfa->syntax & RE_DOT_NOT_NULL) | ||
3597 | bitset_clear (accepts, '\0'); | ||
3598 | } | ||
3599 | #endif | ||
3600 | else | ||
3601 | continue; | ||
3602 | |||
3603 | /* Check the `accepts' and sift the characters which are not | ||
3604 | match it the context. */ | ||
3605 | if (constraint) | ||
3606 | { | ||
3607 | if (constraint & NEXT_NEWLINE_CONSTRAINT) | ||
3608 | { | ||
3609 | bool accepts_newline = bitset_contain (accepts, NEWLINE_CHAR); | ||
3610 | bitset_empty (accepts); | ||
3611 | if (accepts_newline) | ||
3612 | bitset_set (accepts, NEWLINE_CHAR); | ||
3613 | else | ||
3614 | continue; | ||
3615 | } | ||
3616 | if (constraint & NEXT_ENDBUF_CONSTRAINT) | ||
3617 | { | ||
3618 | bitset_empty (accepts); | ||
3619 | continue; | ||
3620 | } | ||
3621 | |||
3622 | if (constraint & NEXT_WORD_CONSTRAINT) | ||
3623 | { | ||
3624 | bitset_word_t any_set = 0; | ||
3625 | if (type == CHARACTER && !node->word_char) | ||
3626 | { | ||
3627 | bitset_empty (accepts); | ||
3628 | continue; | ||
3629 | } | ||
3630 | #ifdef RE_ENABLE_I18N | ||
3631 | if (dfa->mb_cur_max > 1) | ||
3632 | for (j = 0; j < BITSET_WORDS; ++j) | ||
3633 | any_set |= (accepts[j] &= (dfa->word_char[j] | ~dfa->sb_char[j])); | ||
3634 | else | ||
3635 | #endif | ||
3636 | for (j = 0; j < BITSET_WORDS; ++j) | ||
3637 | any_set |= (accepts[j] &= dfa->word_char[j]); | ||
3638 | if (!any_set) | ||
3639 | continue; | ||
3640 | } | ||
3641 | if (constraint & NEXT_NOTWORD_CONSTRAINT) | ||
3642 | { | ||
3643 | bitset_word_t any_set = 0; | ||
3644 | if (type == CHARACTER && node->word_char) | ||
3645 | { | ||
3646 | bitset_empty (accepts); | ||
3647 | continue; | ||
3648 | } | ||
3649 | #ifdef RE_ENABLE_I18N | ||
3650 | if (dfa->mb_cur_max > 1) | ||
3651 | for (j = 0; j < BITSET_WORDS; ++j) | ||
3652 | any_set |= (accepts[j] &= ~(dfa->word_char[j] & dfa->sb_char[j])); | ||
3653 | else | ||
3654 | #endif | ||
3655 | for (j = 0; j < BITSET_WORDS; ++j) | ||
3656 | any_set |= (accepts[j] &= ~dfa->word_char[j]); | ||
3657 | if (!any_set) | ||
3658 | continue; | ||
3659 | } | ||
3660 | } | ||
3661 | |||
3662 | /* Then divide `accepts' into DFA states, or create a new | ||
3663 | state. Above, we make sure that accepts is not empty. */ | ||
3664 | for (j = 0; j < ndests; ++j) | ||
3665 | { | ||
3666 | bitset_t intersec; /* Intersection sets, see below. */ | ||
3667 | bitset_t remains; | ||
3668 | /* Flags, see below. */ | ||
3669 | bitset_word_t has_intersec, not_subset, not_consumed; | ||
3670 | |||
3671 | /* Optimization, skip if this state doesn't accept the character. */ | ||
3672 | if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c)) | ||
3673 | continue; | ||
3674 | |||
3675 | /* Enumerate the intersection set of this state and `accepts'. */ | ||
3676 | has_intersec = 0; | ||
3677 | for (k = 0; k < BITSET_WORDS; ++k) | ||
3678 | has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k]; | ||
3679 | /* And skip if the intersection set is empty. */ | ||
3680 | if (!has_intersec) | ||
3681 | continue; | ||
3682 | |||
3683 | /* Then check if this state is a subset of `accepts'. */ | ||
3684 | not_subset = not_consumed = 0; | ||
3685 | for (k = 0; k < BITSET_WORDS; ++k) | ||
3686 | { | ||
3687 | not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k]; | ||
3688 | not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k]; | ||
3689 | } | ||
3690 | |||
3691 | /* If this state isn't a subset of `accepts', create a | ||
3692 | new group state, which has the `remains'. */ | ||
3693 | if (not_subset) | ||
3694 | { | ||
3695 | bitset_copy (dests_ch[ndests], remains); | ||
3696 | bitset_copy (dests_ch[j], intersec); | ||
3697 | err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]); | ||
3698 | if (BE (err != REG_NOERROR, 0)) | ||
3699 | goto error_return; | ||
3700 | ++ndests; | ||
3701 | } | ||
3702 | |||
3703 | /* Put the position in the current group. */ | ||
3704 | result = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]); | ||
3705 | if (BE (result < 0, 0)) | ||
3706 | goto error_return; | ||
3707 | |||
3708 | /* If all characters are consumed, go to next node. */ | ||
3709 | if (!not_consumed) | ||
3710 | break; | ||
3711 | } | ||
3712 | /* Some characters remain, create a new group. */ | ||
3713 | if (j == ndests) | ||
3714 | { | ||
3715 | bitset_copy (dests_ch[ndests], accepts); | ||
3716 | err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]); | ||
3717 | if (BE (err != REG_NOERROR, 0)) | ||
3718 | goto error_return; | ||
3719 | ++ndests; | ||
3720 | bitset_empty (accepts); | ||
3721 | } | ||
3722 | } | ||
3723 | return ndests; | ||
3724 | error_return: | ||
3725 | for (j = 0; j < ndests; ++j) | ||
3726 | re_node_set_free (dests_node + j); | ||
3727 | return -1; | ||
3728 | } | ||
3729 | |||
3730 | #ifdef RE_ENABLE_I18N | ||
3731 | /* Check how many bytes the node `dfa->nodes[node_idx]' accepts. | ||
3732 | Return the number of the bytes the node accepts. | ||
3733 | STR_IDX is the current index of the input string. | ||
3734 | |||
3735 | This function handles the nodes which can accept one character, or | ||
3736 | one collating element like '.', '[a-z]', opposite to the other nodes | ||
3737 | can only accept one byte. */ | ||
3738 | |||
3739 | static int | ||
3740 | internal_function | ||
3741 | check_node_accept_bytes (const re_dfa_t *dfa, int node_idx, | ||
3742 | const re_string_t *input, int str_idx) | ||
3743 | { | ||
3744 | const re_token_t *node = dfa->nodes + node_idx; | ||
3745 | int char_len, elem_len; | ||
3746 | int i; | ||
3747 | wint_t wc; | ||
3748 | |||
3749 | if (BE (node->type == OP_UTF8_PERIOD, 0)) | ||
3750 | { | ||
3751 | unsigned char c = re_string_byte_at (input, str_idx), d; | ||
3752 | if (BE (c < 0xc2, 1)) | ||
3753 | return 0; | ||
3754 | |||
3755 | if (str_idx + 2 > input->len) | ||
3756 | return 0; | ||
3757 | |||
3758 | d = re_string_byte_at (input, str_idx + 1); | ||
3759 | if (c < 0xe0) | ||
3760 | return (d < 0x80 || d > 0xbf) ? 0 : 2; | ||
3761 | else if (c < 0xf0) | ||
3762 | { | ||
3763 | char_len = 3; | ||
3764 | if (c == 0xe0 && d < 0xa0) | ||
3765 | return 0; | ||
3766 | } | ||
3767 | else if (c < 0xf8) | ||
3768 | { | ||
3769 | char_len = 4; | ||
3770 | if (c == 0xf0 && d < 0x90) | ||
3771 | return 0; | ||
3772 | } | ||
3773 | else if (c < 0xfc) | ||
3774 | { | ||
3775 | char_len = 5; | ||
3776 | if (c == 0xf8 && d < 0x88) | ||
3777 | return 0; | ||
3778 | } | ||
3779 | else if (c < 0xfe) | ||
3780 | { | ||
3781 | char_len = 6; | ||
3782 | if (c == 0xfc && d < 0x84) | ||
3783 | return 0; | ||
3784 | } | ||
3785 | else | ||
3786 | return 0; | ||
3787 | |||
3788 | if (str_idx + char_len > input->len) | ||
3789 | return 0; | ||
3790 | |||
3791 | for (i = 1; i < char_len; ++i) | ||
3792 | { | ||
3793 | d = re_string_byte_at (input, str_idx + i); | ||
3794 | if (d < 0x80 || d > 0xbf) | ||
3795 | return 0; | ||
3796 | } | ||
3797 | return char_len; | ||
3798 | } | ||
3799 | |||
3800 | char_len = re_string_char_size_at (input, str_idx); | ||
3801 | if (node->type == OP_PERIOD) | ||
3802 | { | ||
3803 | if (char_len <= 1) | ||
3804 | return 0; | ||
3805 | /* FIXME: I don't think this if is needed, as both '\n' | ||
3806 | and '\0' are char_len == 1. */ | ||
3807 | /* '.' accepts any one character except the following two cases. */ | ||
3808 | if ((!(dfa->syntax & RE_DOT_NEWLINE) && | ||
3809 | re_string_byte_at (input, str_idx) == '\n') || | ||
3810 | ((dfa->syntax & RE_DOT_NOT_NULL) && | ||
3811 | re_string_byte_at (input, str_idx) == '\0')) | ||
3812 | return 0; | ||
3813 | return char_len; | ||
3814 | } | ||
3815 | |||
3816 | elem_len = re_string_elem_size_at (input, str_idx); | ||
3817 | wc = __btowc(*(input->mbs+str_idx)); | ||
3818 | if (((elem_len <= 1 && char_len <= 1) || char_len == 0) && (wc != WEOF && wc < SBC_MAX)) | ||
3819 | return 0; | ||
3820 | |||
3821 | if (node->type == COMPLEX_BRACKET) | ||
3822 | { | ||
3823 | const re_charset_t *cset = node->opr.mbcset; | ||
3824 | # ifdef _LIBC | ||
3825 | const unsigned char *pin | ||
3826 | = ((const unsigned char *) re_string_get_buffer (input) + str_idx); | ||
3827 | int j; | ||
3828 | uint32_t nrules; | ||
3829 | # endif /* _LIBC */ | ||
3830 | int match_len = 0; | ||
3831 | wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars) | ||
3832 | ? re_string_wchar_at (input, str_idx) : 0); | ||
3833 | |||
3834 | /* match with multibyte character? */ | ||
3835 | for (i = 0; i < cset->nmbchars; ++i) | ||
3836 | if (wc == cset->mbchars[i]) | ||
3837 | { | ||
3838 | match_len = char_len; | ||
3839 | goto check_node_accept_bytes_match; | ||
3840 | } | ||
3841 | /* match with character_class? */ | ||
3842 | for (i = 0; i < cset->nchar_classes; ++i) | ||
3843 | { | ||
3844 | wctype_t wt = cset->char_classes[i]; | ||
3845 | if (__iswctype (wc, wt)) | ||
3846 | { | ||
3847 | match_len = char_len; | ||
3848 | goto check_node_accept_bytes_match; | ||
3849 | } | ||
3850 | } | ||
3851 | |||
3852 | # ifdef _LIBC | ||
3853 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
3854 | if (nrules != 0) | ||
3855 | { | ||
3856 | unsigned int in_collseq = 0; | ||
3857 | const int32_t *table, *indirect; | ||
3858 | const unsigned char *weights, *extra; | ||
3859 | const char *collseqwc; | ||
3860 | /* This #include defines a local function! */ | ||
3861 | # include <locale/weight.h> | ||
3862 | |||
3863 | /* match with collating_symbol? */ | ||
3864 | if (cset->ncoll_syms) | ||
3865 | extra = (const unsigned char *) | ||
3866 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); | ||
3867 | for (i = 0; i < cset->ncoll_syms; ++i) | ||
3868 | { | ||
3869 | const unsigned char *coll_sym = extra + cset->coll_syms[i]; | ||
3870 | /* Compare the length of input collating element and | ||
3871 | the length of current collating element. */ | ||
3872 | if (*coll_sym != elem_len) | ||
3873 | continue; | ||
3874 | /* Compare each bytes. */ | ||
3875 | for (j = 0; j < *coll_sym; j++) | ||
3876 | if (pin[j] != coll_sym[1 + j]) | ||
3877 | break; | ||
3878 | if (j == *coll_sym) | ||
3879 | { | ||
3880 | /* Match if every bytes is equal. */ | ||
3881 | match_len = j; | ||
3882 | goto check_node_accept_bytes_match; | ||
3883 | } | ||
3884 | } | ||
3885 | |||
3886 | if (cset->nranges) | ||
3887 | { | ||
3888 | if (elem_len <= char_len) | ||
3889 | { | ||
3890 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); | ||
3891 | in_collseq = __collseq_table_lookup (collseqwc, wc); | ||
3892 | } | ||
3893 | else | ||
3894 | in_collseq = find_collation_sequence_value (pin, elem_len); | ||
3895 | } | ||
3896 | /* match with range expression? */ | ||
3897 | for (i = 0; i < cset->nranges; ++i) | ||
3898 | if (cset->range_starts[i] <= in_collseq | ||
3899 | && in_collseq <= cset->range_ends[i]) | ||
3900 | { | ||
3901 | match_len = elem_len; | ||
3902 | goto check_node_accept_bytes_match; | ||
3903 | } | ||
3904 | |||
3905 | /* match with equivalence_class? */ | ||
3906 | if (cset->nequiv_classes) | ||
3907 | { | ||
3908 | const unsigned char *cp = pin; | ||
3909 | table = (const int32_t *) | ||
3910 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | ||
3911 | weights = (const unsigned char *) | ||
3912 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); | ||
3913 | extra = (const unsigned char *) | ||
3914 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); | ||
3915 | indirect = (const int32_t *) | ||
3916 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); | ||
3917 | int32_t idx = findidx (&cp); | ||
3918 | if (idx > 0) | ||
3919 | for (i = 0; i < cset->nequiv_classes; ++i) | ||
3920 | { | ||
3921 | int32_t equiv_class_idx = cset->equiv_classes[i]; | ||
3922 | size_t weight_len = weights[idx & 0xffffff]; | ||
3923 | if (weight_len == weights[equiv_class_idx & 0xffffff] | ||
3924 | && (idx >> 24) == (equiv_class_idx >> 24)) | ||
3925 | { | ||
3926 | int cnt = 0; | ||
3927 | |||
3928 | idx &= 0xffffff; | ||
3929 | equiv_class_idx &= 0xffffff; | ||
3930 | |||
3931 | while (cnt <= weight_len | ||
3932 | && (weights[equiv_class_idx + 1 + cnt] | ||
3933 | == weights[idx + 1 + cnt])) | ||
3934 | ++cnt; | ||
3935 | if (cnt > weight_len) | ||
3936 | { | ||
3937 | match_len = elem_len; | ||
3938 | goto check_node_accept_bytes_match; | ||
3939 | } | ||
3940 | } | ||
3941 | } | ||
3942 | } | ||
3943 | } | ||
3944 | else | ||
3945 | # endif /* _LIBC */ | ||
3946 | { | ||
3947 | /* match with range expression? */ | ||
3948 | #if __GNUC__ >= 2 | ||
3949 | wchar_t cmp_buf[] = {L'\0', L'\0', wc, L'\0', L'\0', L'\0'}; | ||
3950 | #else | ||
3951 | wchar_t cmp_buf[] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; | ||
3952 | cmp_buf[2] = wc; | ||
3953 | #endif | ||
3954 | for (i = 0; i < cset->nranges; ++i) | ||
3955 | { | ||
3956 | cmp_buf[0] = cset->range_starts[i]; | ||
3957 | cmp_buf[4] = cset->range_ends[i]; | ||
3958 | if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 | ||
3959 | && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) | ||
3960 | { | ||
3961 | match_len = char_len; | ||
3962 | goto check_node_accept_bytes_match; | ||
3963 | } | ||
3964 | } | ||
3965 | } | ||
3966 | check_node_accept_bytes_match: | ||
3967 | if (!cset->non_match) | ||
3968 | return match_len; | ||
3969 | else | ||
3970 | { | ||
3971 | if (match_len > 0) | ||
3972 | return 0; | ||
3973 | else | ||
3974 | return (elem_len > char_len) ? elem_len : char_len; | ||
3975 | } | ||
3976 | } | ||
3977 | return 0; | ||
3978 | } | ||
3979 | |||
3980 | # ifdef _LIBC | ||
3981 | static unsigned int | ||
3982 | internal_function | ||
3983 | find_collation_sequence_value (const unsigned char *mbs, size_t mbs_len) | ||
3984 | { | ||
3985 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
3986 | if (nrules == 0) | ||
3987 | { | ||
3988 | if (mbs_len == 1) | ||
3989 | { | ||
3990 | /* No valid character. Match it as a single byte character. */ | ||
3991 | const unsigned char *collseq = (const unsigned char *) | ||
3992 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); | ||
3993 | return collseq[mbs[0]]; | ||
3994 | } | ||
3995 | return UINT_MAX; | ||
3996 | } | ||
3997 | else | ||
3998 | { | ||
3999 | int32_t idx; | ||
4000 | const unsigned char *extra = (const unsigned char *) | ||
4001 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); | ||
4002 | int32_t extrasize = (const unsigned char *) | ||
4003 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB + 1) - extra; | ||
4004 | |||
4005 | for (idx = 0; idx < extrasize;) | ||
4006 | { | ||
4007 | int mbs_cnt, found = 0; | ||
4008 | int32_t elem_mbs_len; | ||
4009 | /* Skip the name of collating element name. */ | ||
4010 | idx = idx + extra[idx] + 1; | ||
4011 | elem_mbs_len = extra[idx++]; | ||
4012 | if (mbs_len == elem_mbs_len) | ||
4013 | { | ||
4014 | for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt) | ||
4015 | if (extra[idx + mbs_cnt] != mbs[mbs_cnt]) | ||
4016 | break; | ||
4017 | if (mbs_cnt == elem_mbs_len) | ||
4018 | /* Found the entry. */ | ||
4019 | found = 1; | ||
4020 | } | ||
4021 | /* Skip the byte sequence of the collating element. */ | ||
4022 | idx += elem_mbs_len; | ||
4023 | /* Adjust for the alignment. */ | ||
4024 | idx = (idx + 3) & ~3; | ||
4025 | /* Skip the collation sequence value. */ | ||
4026 | idx += sizeof (uint32_t); | ||
4027 | /* Skip the wide char sequence of the collating element. */ | ||
4028 | idx = idx + sizeof (uint32_t) * (extra[idx] + 1); | ||
4029 | /* If we found the entry, return the sequence value. */ | ||
4030 | if (found) | ||
4031 | return *(uint32_t *) (extra + idx); | ||
4032 | /* Skip the collation sequence value. */ | ||
4033 | idx += sizeof (uint32_t); | ||
4034 | } | ||
4035 | return UINT_MAX; | ||
4036 | } | ||
4037 | } | ||
4038 | # endif /* _LIBC */ | ||
4039 | #endif /* RE_ENABLE_I18N */ | ||
4040 | |||
4041 | /* Check whether the node accepts the byte which is IDX-th | ||
4042 | byte of the INPUT. */ | ||
4043 | |||
4044 | static int | ||
4045 | internal_function | ||
4046 | check_node_accept (const re_match_context_t *mctx, const re_token_t *node, | ||
4047 | int idx) | ||
4048 | { | ||
4049 | unsigned char ch; | ||
4050 | ch = re_string_byte_at (&mctx->input, idx); | ||
4051 | switch (node->type) | ||
4052 | { | ||
4053 | case CHARACTER: | ||
4054 | if (node->opr.c != ch) | ||
4055 | return 0; | ||
4056 | break; | ||
4057 | |||
4058 | case SIMPLE_BRACKET: | ||
4059 | if (!bitset_contain (node->opr.sbcset, ch)) | ||
4060 | return 0; | ||
4061 | break; | ||
4062 | |||
4063 | #ifdef RE_ENABLE_I18N | ||
4064 | case OP_UTF8_PERIOD: | ||
4065 | if (ch >= 0x80) | ||
4066 | return 0; | ||
4067 | /* FALLTHROUGH */ | ||
4068 | #endif | ||
4069 | case OP_PERIOD: | ||
4070 | if ((ch == '\n' && !(mctx->dfa->syntax & RE_DOT_NEWLINE)) | ||
4071 | || (ch == '\0' && (mctx->dfa->syntax & RE_DOT_NOT_NULL))) | ||
4072 | return 0; | ||
4073 | break; | ||
4074 | |||
4075 | default: | ||
4076 | return 0; | ||
4077 | } | ||
4078 | |||
4079 | if (node->constraint) | ||
4080 | { | ||
4081 | /* The node has constraints. Check whether the current context | ||
4082 | satisfies the constraints. */ | ||
4083 | unsigned int context = re_string_context_at (&mctx->input, idx, | ||
4084 | mctx->eflags); | ||
4085 | if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) | ||
4086 | return 0; | ||
4087 | } | ||
4088 | |||
4089 | return 1; | ||
4090 | } | ||
4091 | |||
4092 | /* Extend the buffers, if the buffers have run out. */ | ||
4093 | |||
4094 | static reg_errcode_t | ||
4095 | internal_function | ||
4096 | extend_buffers (re_match_context_t *mctx) | ||
4097 | { | ||
4098 | reg_errcode_t ret; | ||
4099 | re_string_t *pstr = &mctx->input; | ||
4100 | |||
4101 | /* Avoid overflow. */ | ||
4102 | if (BE (INT_MAX / 2 / sizeof (re_dfastate_t *) <= pstr->bufs_len, 0)) | ||
4103 | return REG_ESPACE; | ||
4104 | |||
4105 | /* Double the lengthes of the buffers. */ | ||
4106 | ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); | ||
4107 | if (BE (ret != REG_NOERROR, 0)) | ||
4108 | return ret; | ||
4109 | |||
4110 | if (mctx->state_log != NULL) | ||
4111 | { | ||
4112 | /* And double the length of state_log. */ | ||
4113 | /* XXX We have no indication of the size of this buffer. If this | ||
4114 | allocation fail we have no indication that the state_log array | ||
4115 | does not have the right size. */ | ||
4116 | re_dfastate_t **new_array = re_realloc (mctx->state_log, re_dfastate_t *, | ||
4117 | pstr->bufs_len + 1); | ||
4118 | if (BE (new_array == NULL, 0)) | ||
4119 | return REG_ESPACE; | ||
4120 | mctx->state_log = new_array; | ||
4121 | } | ||
4122 | |||
4123 | /* Then reconstruct the buffers. */ | ||
4124 | if (pstr->icase) | ||
4125 | { | ||
4126 | #ifdef RE_ENABLE_I18N | ||
4127 | if (pstr->mb_cur_max > 1) | ||
4128 | { | ||
4129 | ret = build_wcs_upper_buffer (pstr); | ||
4130 | if (BE (ret != REG_NOERROR, 0)) | ||
4131 | return ret; | ||
4132 | } | ||
4133 | else | ||
4134 | #endif /* RE_ENABLE_I18N */ | ||
4135 | build_upper_buffer (pstr); | ||
4136 | } | ||
4137 | else | ||
4138 | { | ||
4139 | #ifdef RE_ENABLE_I18N | ||
4140 | if (pstr->mb_cur_max > 1) | ||
4141 | build_wcs_buffer (pstr); | ||
4142 | else | ||
4143 | #endif /* RE_ENABLE_I18N */ | ||
4144 | { | ||
4145 | if (pstr->trans != NULL) | ||
4146 | re_string_translate_buffer (pstr); | ||
4147 | } | ||
4148 | } | ||
4149 | return REG_NOERROR; | ||
4150 | } | ||
4151 | |||
4152 | |||
4153 | /* Functions for matching context. */ | ||
4154 | |||
4155 | /* Initialize MCTX. */ | ||
4156 | |||
4157 | static reg_errcode_t | ||
4158 | internal_function | ||
4159 | match_ctx_init (re_match_context_t *mctx, int eflags, int n) | ||
4160 | { | ||
4161 | mctx->eflags = eflags; | ||
4162 | mctx->match_last = -1; | ||
4163 | if (n > 0) | ||
4164 | { | ||
4165 | mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n); | ||
4166 | mctx->sub_tops = re_malloc (re_sub_match_top_t *, n); | ||
4167 | if (BE (mctx->bkref_ents == NULL || mctx->sub_tops == NULL, 0)) | ||
4168 | return REG_ESPACE; | ||
4169 | } | ||
4170 | /* Already zero-ed by the caller. | ||
4171 | else | ||
4172 | mctx->bkref_ents = NULL; | ||
4173 | mctx->nbkref_ents = 0; | ||
4174 | mctx->nsub_tops = 0; */ | ||
4175 | mctx->abkref_ents = n; | ||
4176 | mctx->max_mb_elem_len = 1; | ||
4177 | mctx->asub_tops = n; | ||
4178 | return REG_NOERROR; | ||
4179 | } | ||
4180 | |||
4181 | /* Clean the entries which depend on the current input in MCTX. | ||
4182 | This function must be invoked when the matcher changes the start index | ||
4183 | of the input, or changes the input string. */ | ||
4184 | |||
4185 | static void | ||
4186 | internal_function | ||
4187 | match_ctx_clean (re_match_context_t *mctx) | ||
4188 | { | ||
4189 | int st_idx; | ||
4190 | for (st_idx = 0; st_idx < mctx->nsub_tops; ++st_idx) | ||
4191 | { | ||
4192 | int sl_idx; | ||
4193 | re_sub_match_top_t *top = mctx->sub_tops[st_idx]; | ||
4194 | for (sl_idx = 0; sl_idx < top->nlasts; ++sl_idx) | ||
4195 | { | ||
4196 | re_sub_match_last_t *last = top->lasts[sl_idx]; | ||
4197 | re_free (last->path.array); | ||
4198 | re_free (last); | ||
4199 | } | ||
4200 | re_free (top->lasts); | ||
4201 | if (top->path) | ||
4202 | { | ||
4203 | re_free (top->path->array); | ||
4204 | re_free (top->path); | ||
4205 | } | ||
4206 | free (top); | ||
4207 | } | ||
4208 | |||
4209 | mctx->nsub_tops = 0; | ||
4210 | mctx->nbkref_ents = 0; | ||
4211 | } | ||
4212 | |||
4213 | /* Free all the memory associated with MCTX. */ | ||
4214 | |||
4215 | static void | ||
4216 | internal_function | ||
4217 | match_ctx_free (re_match_context_t *mctx) | ||
4218 | { | ||
4219 | /* First, free all the memory associated with MCTX->SUB_TOPS. */ | ||
4220 | match_ctx_clean (mctx); | ||
4221 | re_free (mctx->sub_tops); | ||
4222 | re_free (mctx->bkref_ents); | ||
4223 | } | ||
4224 | |||
4225 | /* Add a new backreference entry to MCTX. | ||
4226 | Note that we assume that caller never call this function with duplicate | ||
4227 | entry, and call with STR_IDX which isn't smaller than any existing entry. | ||
4228 | */ | ||
4229 | |||
4230 | static reg_errcode_t | ||
4231 | internal_function | ||
4232 | match_ctx_add_entry (re_match_context_t *mctx, int node, int str_idx, int from, | ||
4233 | int to) | ||
4234 | { | ||
4235 | if (mctx->nbkref_ents >= mctx->abkref_ents) | ||
4236 | { | ||
4237 | struct re_backref_cache_entry* new_entry; | ||
4238 | new_entry = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry, | ||
4239 | mctx->abkref_ents * 2); | ||
4240 | if (BE (new_entry == NULL, 0)) | ||
4241 | { | ||
4242 | re_free (mctx->bkref_ents); | ||
4243 | return REG_ESPACE; | ||
4244 | } | ||
4245 | mctx->bkref_ents = new_entry; | ||
4246 | memset (mctx->bkref_ents + mctx->nbkref_ents, '\0', | ||
4247 | sizeof (struct re_backref_cache_entry) * mctx->abkref_ents); | ||
4248 | mctx->abkref_ents *= 2; | ||
4249 | } | ||
4250 | if (mctx->nbkref_ents > 0 | ||
4251 | && mctx->bkref_ents[mctx->nbkref_ents - 1].str_idx == str_idx) | ||
4252 | mctx->bkref_ents[mctx->nbkref_ents - 1].more = 1; | ||
4253 | |||
4254 | mctx->bkref_ents[mctx->nbkref_ents].node = node; | ||
4255 | mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx; | ||
4256 | mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from; | ||
4257 | mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to; | ||
4258 | |||
4259 | /* This is a cache that saves negative results of check_dst_limits_calc_pos. | ||
4260 | If bit N is clear, means that this entry won't epsilon-transition to | ||
4261 | an OP_OPEN_SUBEXP or OP_CLOSE_SUBEXP for the N+1-th subexpression. If | ||
4262 | it is set, check_dst_limits_calc_pos_1 will recurse and try to find one | ||
4263 | such node. | ||
4264 | |||
4265 | A backreference does not epsilon-transition unless it is empty, so set | ||
4266 | to all zeros if FROM != TO. */ | ||
4267 | mctx->bkref_ents[mctx->nbkref_ents].eps_reachable_subexps_map | ||
4268 | = (from == to ? ~0 : 0); | ||
4269 | |||
4270 | mctx->bkref_ents[mctx->nbkref_ents++].more = 0; | ||
4271 | if (mctx->max_mb_elem_len < to - from) | ||
4272 | mctx->max_mb_elem_len = to - from; | ||
4273 | return REG_NOERROR; | ||
4274 | } | ||
4275 | |||
4276 | /* Search for the first entry which has the same str_idx, or -1 if none is | ||
4277 | found. Note that MCTX->BKREF_ENTS is already sorted by MCTX->STR_IDX. */ | ||
4278 | |||
4279 | static int | ||
4280 | internal_function | ||
4281 | search_cur_bkref_entry (const re_match_context_t *mctx, int str_idx) | ||
4282 | { | ||
4283 | int left, right, mid, last; | ||
4284 | last = right = mctx->nbkref_ents; | ||
4285 | for (left = 0; left < right;) | ||
4286 | { | ||
4287 | mid = (left + right) / 2; | ||
4288 | if (mctx->bkref_ents[mid].str_idx < str_idx) | ||
4289 | left = mid + 1; | ||
4290 | else | ||
4291 | right = mid; | ||
4292 | } | ||
4293 | if (left < last && mctx->bkref_ents[left].str_idx == str_idx) | ||
4294 | return left; | ||
4295 | else | ||
4296 | return -1; | ||
4297 | } | ||
4298 | |||
4299 | /* Register the node NODE, whose type is OP_OPEN_SUBEXP, and which matches | ||
4300 | at STR_IDX. */ | ||
4301 | |||
4302 | static reg_errcode_t | ||
4303 | internal_function | ||
4304 | match_ctx_add_subtop (re_match_context_t *mctx, int node, int str_idx) | ||
4305 | { | ||
4306 | #ifdef DEBUG | ||
4307 | assert (mctx->sub_tops != NULL); | ||
4308 | assert (mctx->asub_tops > 0); | ||
4309 | #endif | ||
4310 | if (BE (mctx->nsub_tops == mctx->asub_tops, 0)) | ||
4311 | { | ||
4312 | int new_asub_tops = mctx->asub_tops * 2; | ||
4313 | re_sub_match_top_t **new_array = re_realloc (mctx->sub_tops, | ||
4314 | re_sub_match_top_t *, | ||
4315 | new_asub_tops); | ||
4316 | if (BE (new_array == NULL, 0)) | ||
4317 | return REG_ESPACE; | ||
4318 | mctx->sub_tops = new_array; | ||
4319 | mctx->asub_tops = new_asub_tops; | ||
4320 | } | ||
4321 | mctx->sub_tops[mctx->nsub_tops] = calloc (1, sizeof (re_sub_match_top_t)); | ||
4322 | if (BE (mctx->sub_tops[mctx->nsub_tops] == NULL, 0)) | ||
4323 | return REG_ESPACE; | ||
4324 | mctx->sub_tops[mctx->nsub_tops]->node = node; | ||
4325 | mctx->sub_tops[mctx->nsub_tops++]->str_idx = str_idx; | ||
4326 | return REG_NOERROR; | ||
4327 | } | ||
4328 | |||
4329 | /* Register the node NODE, whose type is OP_CLOSE_SUBEXP, and which matches | ||
4330 | at STR_IDX, whose corresponding OP_OPEN_SUBEXP is SUB_TOP. */ | ||
4331 | |||
4332 | static re_sub_match_last_t * | ||
4333 | internal_function | ||
4334 | match_ctx_add_sublast (re_sub_match_top_t *subtop, int node, int str_idx) | ||
4335 | { | ||
4336 | re_sub_match_last_t *new_entry; | ||
4337 | if (BE (subtop->nlasts == subtop->alasts, 0)) | ||
4338 | { | ||
4339 | int new_alasts = 2 * subtop->alasts + 1; | ||
4340 | re_sub_match_last_t **new_array = re_realloc (subtop->lasts, | ||
4341 | re_sub_match_last_t *, | ||
4342 | new_alasts); | ||
4343 | if (BE (new_array == NULL, 0)) | ||
4344 | return NULL; | ||
4345 | subtop->lasts = new_array; | ||
4346 | subtop->alasts = new_alasts; | ||
4347 | } | ||
4348 | new_entry = calloc (1, sizeof (re_sub_match_last_t)); | ||
4349 | if (BE (new_entry != NULL, 1)) | ||
4350 | { | ||
4351 | subtop->lasts[subtop->nlasts] = new_entry; | ||
4352 | new_entry->node = node; | ||
4353 | new_entry->str_idx = str_idx; | ||
4354 | ++subtop->nlasts; | ||
4355 | } | ||
4356 | return new_entry; | ||
4357 | } | ||
4358 | |||
4359 | static void | ||
4360 | internal_function | ||
4361 | sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, | ||
4362 | re_dfastate_t **limited_sts, int last_node, int last_str_idx) | ||
4363 | { | ||
4364 | sctx->sifted_states = sifted_sts; | ||
4365 | sctx->limited_states = limited_sts; | ||
4366 | sctx->last_node = last_node; | ||
4367 | sctx->last_str_idx = last_str_idx; | ||
4368 | re_node_set_init_empty (&sctx->limits); | ||
4369 | } | ||