diff options
Diffstat (limited to 'libbb/md5.c')
-rw-r--r-- | libbb/md5.c | 510 |
1 files changed, 510 insertions, 0 deletions
diff --git a/libbb/md5.c b/libbb/md5.c new file mode 100644 index 000000000..8cec88535 --- /dev/null +++ b/libbb/md5.c | |||
@@ -0,0 +1,510 @@ | |||
1 | /* | ||
2 | * md5.c - Compute MD5 checksum of strings according to the | ||
3 | * definition of MD5 in RFC 1321 from April 1992. | ||
4 | * | ||
5 | * Written by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1995. | ||
6 | * | ||
7 | * Copyright (C) 1995-1999 Free Software Foundation, Inc. | ||
8 | * Copyright (C) 2001 Manuel Novoa III | ||
9 | * Copyright (C) 2003 Glenn L. McGrath | ||
10 | * Copyright (C) 2003 Erik Andersen | ||
11 | * | ||
12 | * Licensed under the GPL v2 or later, see the file LICENSE in this tarball. | ||
13 | */ | ||
14 | #include <fcntl.h> | ||
15 | #include <limits.h> | ||
16 | #include <stdio.h> | ||
17 | #include <stdint.h> | ||
18 | #include <stdlib.h> | ||
19 | #include <string.h> | ||
20 | #include <unistd.h> | ||
21 | |||
22 | #include "busybox.h" | ||
23 | |||
24 | # if CONFIG_MD5_SIZE_VS_SPEED < 0 || CONFIG_MD5_SIZE_VS_SPEED > 3 | ||
25 | # define MD5_SIZE_VS_SPEED 2 | ||
26 | # else | ||
27 | # define MD5_SIZE_VS_SPEED CONFIG_MD5_SIZE_VS_SPEED | ||
28 | # endif | ||
29 | |||
30 | /* Handle endian-ness */ | ||
31 | # if !BB_BIG_ENDIAN | ||
32 | # define SWAP(n) (n) | ||
33 | # elif defined(bswap_32) | ||
34 | # define SWAP(n) bswap_32(n) | ||
35 | # else | ||
36 | # define SWAP(n) ((n << 24) | ((n&65280)<<8) | ((n&16711680)>>8) | (n>>24)) | ||
37 | # endif | ||
38 | |||
39 | # if MD5_SIZE_VS_SPEED == 0 | ||
40 | /* This array contains the bytes used to pad the buffer to the next | ||
41 | 64-byte boundary. (RFC 1321, 3.1: Step 1) */ | ||
42 | static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; | ||
43 | # endif /* MD5_SIZE_VS_SPEED == 0 */ | ||
44 | |||
45 | /* Initialize structure containing state of computation. | ||
46 | * (RFC 1321, 3.3: Step 3) | ||
47 | */ | ||
48 | void md5_begin(md5_ctx_t *ctx) | ||
49 | { | ||
50 | ctx->A = 0x67452301; | ||
51 | ctx->B = 0xefcdab89; | ||
52 | ctx->C = 0x98badcfe; | ||
53 | ctx->D = 0x10325476; | ||
54 | |||
55 | ctx->total[0] = ctx->total[1] = 0; | ||
56 | ctx->buflen = 0; | ||
57 | } | ||
58 | |||
59 | /* These are the four functions used in the four steps of the MD5 algorithm | ||
60 | * and defined in the RFC 1321. The first function is a little bit optimized | ||
61 | * (as found in Colin Plumbs public domain implementation). | ||
62 | * #define FF(b, c, d) ((b & c) | (~b & d)) | ||
63 | */ | ||
64 | # define FF(b, c, d) (d ^ (b & (c ^ d))) | ||
65 | # define FG(b, c, d) FF (d, b, c) | ||
66 | # define FH(b, c, d) (b ^ c ^ d) | ||
67 | # define FI(b, c, d) (c ^ (b | ~d)) | ||
68 | |||
69 | /* Starting with the result of former calls of this function (or the | ||
70 | * initialization function update the context for the next LEN bytes | ||
71 | * starting at BUFFER. | ||
72 | * It is necessary that LEN is a multiple of 64!!! | ||
73 | */ | ||
74 | void md5_hash_block(const void *buffer, size_t len, md5_ctx_t *ctx) | ||
75 | { | ||
76 | uint32_t correct_words[16]; | ||
77 | const uint32_t *words = buffer; | ||
78 | size_t nwords = len / sizeof(uint32_t); | ||
79 | const uint32_t *endp = words + nwords; | ||
80 | |||
81 | # if MD5_SIZE_VS_SPEED > 0 | ||
82 | static const uint32_t C_array[] = { | ||
83 | /* round 1 */ | ||
84 | 0xd76aa478, 0xe8c7b756, 0x242070db, 0xc1bdceee, | ||
85 | 0xf57c0faf, 0x4787c62a, 0xa8304613, 0xfd469501, | ||
86 | 0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be, | ||
87 | 0x6b901122, 0xfd987193, 0xa679438e, 0x49b40821, | ||
88 | /* round 2 */ | ||
89 | 0xf61e2562, 0xc040b340, 0x265e5a51, 0xe9b6c7aa, | ||
90 | 0xd62f105d, 0x2441453, 0xd8a1e681, 0xe7d3fbc8, | ||
91 | 0x21e1cde6, 0xc33707d6, 0xf4d50d87, 0x455a14ed, | ||
92 | 0xa9e3e905, 0xfcefa3f8, 0x676f02d9, 0x8d2a4c8a, | ||
93 | /* round 3 */ | ||
94 | 0xfffa3942, 0x8771f681, 0x6d9d6122, 0xfde5380c, | ||
95 | 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70, | ||
96 | 0x289b7ec6, 0xeaa127fa, 0xd4ef3085, 0x4881d05, | ||
97 | 0xd9d4d039, 0xe6db99e5, 0x1fa27cf8, 0xc4ac5665, | ||
98 | /* round 4 */ | ||
99 | 0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039, | ||
100 | 0x655b59c3, 0x8f0ccc92, 0xffeff47d, 0x85845dd1, | ||
101 | 0x6fa87e4f, 0xfe2ce6e0, 0xa3014314, 0x4e0811a1, | ||
102 | 0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 | ||
103 | }; | ||
104 | |||
105 | static const char P_array[] = { | ||
106 | # if MD5_SIZE_VS_SPEED > 1 | ||
107 | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 1 */ | ||
108 | # endif /* MD5_SIZE_VS_SPEED > 1 */ | ||
109 | 1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, /* 2 */ | ||
110 | 5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2, /* 3 */ | ||
111 | 0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9 /* 4 */ | ||
112 | }; | ||
113 | |||
114 | # if MD5_SIZE_VS_SPEED > 1 | ||
115 | static const char S_array[] = { | ||
116 | 7, 12, 17, 22, | ||
117 | 5, 9, 14, 20, | ||
118 | 4, 11, 16, 23, | ||
119 | 6, 10, 15, 21 | ||
120 | }; | ||
121 | # endif /* MD5_SIZE_VS_SPEED > 1 */ | ||
122 | # endif | ||
123 | |||
124 | uint32_t A = ctx->A; | ||
125 | uint32_t B = ctx->B; | ||
126 | uint32_t C = ctx->C; | ||
127 | uint32_t D = ctx->D; | ||
128 | |||
129 | /* First increment the byte count. RFC 1321 specifies the possible | ||
130 | length of the file up to 2^64 bits. Here we only compute the | ||
131 | number of bytes. Do a double word increment. */ | ||
132 | ctx->total[0] += len; | ||
133 | if (ctx->total[0] < len) | ||
134 | ++ctx->total[1]; | ||
135 | |||
136 | /* Process all bytes in the buffer with 64 bytes in each round of | ||
137 | the loop. */ | ||
138 | while (words < endp) { | ||
139 | uint32_t *cwp = correct_words; | ||
140 | uint32_t A_save = A; | ||
141 | uint32_t B_save = B; | ||
142 | uint32_t C_save = C; | ||
143 | uint32_t D_save = D; | ||
144 | |||
145 | # if MD5_SIZE_VS_SPEED > 1 | ||
146 | # define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s))) | ||
147 | |||
148 | const uint32_t *pc; | ||
149 | const char *pp; | ||
150 | const char *ps; | ||
151 | int i; | ||
152 | uint32_t temp; | ||
153 | |||
154 | for (i = 0; i < 16; i++) { | ||
155 | cwp[i] = SWAP(words[i]); | ||
156 | } | ||
157 | words += 16; | ||
158 | |||
159 | # if MD5_SIZE_VS_SPEED > 2 | ||
160 | pc = C_array; | ||
161 | pp = P_array; | ||
162 | ps = S_array - 4; | ||
163 | |||
164 | for (i = 0; i < 64; i++) { | ||
165 | if ((i & 0x0f) == 0) | ||
166 | ps += 4; | ||
167 | temp = A; | ||
168 | switch (i >> 4) { | ||
169 | case 0: | ||
170 | temp += FF(B, C, D); | ||
171 | break; | ||
172 | case 1: | ||
173 | temp += FG(B, C, D); | ||
174 | break; | ||
175 | case 2: | ||
176 | temp += FH(B, C, D); | ||
177 | break; | ||
178 | case 3: | ||
179 | temp += FI(B, C, D); | ||
180 | } | ||
181 | temp += cwp[(int) (*pp++)] + *pc++; | ||
182 | CYCLIC(temp, ps[i & 3]); | ||
183 | temp += B; | ||
184 | A = D; | ||
185 | D = C; | ||
186 | C = B; | ||
187 | B = temp; | ||
188 | } | ||
189 | # else | ||
190 | pc = C_array; | ||
191 | pp = P_array; | ||
192 | ps = S_array; | ||
193 | |||
194 | for (i = 0; i < 16; i++) { | ||
195 | temp = A + FF(B, C, D) + cwp[(int) (*pp++)] + *pc++; | ||
196 | CYCLIC(temp, ps[i & 3]); | ||
197 | temp += B; | ||
198 | A = D; | ||
199 | D = C; | ||
200 | C = B; | ||
201 | B = temp; | ||
202 | } | ||
203 | |||
204 | ps += 4; | ||
205 | for (i = 0; i < 16; i++) { | ||
206 | temp = A + FG(B, C, D) + cwp[(int) (*pp++)] + *pc++; | ||
207 | CYCLIC(temp, ps[i & 3]); | ||
208 | temp += B; | ||
209 | A = D; | ||
210 | D = C; | ||
211 | C = B; | ||
212 | B = temp; | ||
213 | } | ||
214 | ps += 4; | ||
215 | for (i = 0; i < 16; i++) { | ||
216 | temp = A + FH(B, C, D) + cwp[(int) (*pp++)] + *pc++; | ||
217 | CYCLIC(temp, ps[i & 3]); | ||
218 | temp += B; | ||
219 | A = D; | ||
220 | D = C; | ||
221 | C = B; | ||
222 | B = temp; | ||
223 | } | ||
224 | ps += 4; | ||
225 | for (i = 0; i < 16; i++) { | ||
226 | temp = A + FI(B, C, D) + cwp[(int) (*pp++)] + *pc++; | ||
227 | CYCLIC(temp, ps[i & 3]); | ||
228 | temp += B; | ||
229 | A = D; | ||
230 | D = C; | ||
231 | C = B; | ||
232 | B = temp; | ||
233 | } | ||
234 | |||
235 | # endif /* MD5_SIZE_VS_SPEED > 2 */ | ||
236 | # else | ||
237 | /* First round: using the given function, the context and a constant | ||
238 | the next context is computed. Because the algorithms processing | ||
239 | unit is a 32-bit word and it is determined to work on words in | ||
240 | little endian byte order we perhaps have to change the byte order | ||
241 | before the computation. To reduce the work for the next steps | ||
242 | we store the swapped words in the array CORRECT_WORDS. */ | ||
243 | |||
244 | # define OP(a, b, c, d, s, T) \ | ||
245 | do \ | ||
246 | { \ | ||
247 | a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \ | ||
248 | ++words; \ | ||
249 | CYCLIC (a, s); \ | ||
250 | a += b; \ | ||
251 | } \ | ||
252 | while (0) | ||
253 | |||
254 | /* It is unfortunate that C does not provide an operator for | ||
255 | cyclic rotation. Hope the C compiler is smart enough. */ | ||
256 | /* gcc 2.95.4 seems to be --aaronl */ | ||
257 | # define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s))) | ||
258 | |||
259 | /* Before we start, one word to the strange constants. | ||
260 | They are defined in RFC 1321 as | ||
261 | |||
262 | T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64 | ||
263 | */ | ||
264 | |||
265 | # if MD5_SIZE_VS_SPEED == 1 | ||
266 | const uint32_t *pc; | ||
267 | const char *pp; | ||
268 | int i; | ||
269 | # endif /* MD5_SIZE_VS_SPEED */ | ||
270 | |||
271 | /* Round 1. */ | ||
272 | # if MD5_SIZE_VS_SPEED == 1 | ||
273 | pc = C_array; | ||
274 | for (i = 0; i < 4; i++) { | ||
275 | OP(A, B, C, D, 7, *pc++); | ||
276 | OP(D, A, B, C, 12, *pc++); | ||
277 | OP(C, D, A, B, 17, *pc++); | ||
278 | OP(B, C, D, A, 22, *pc++); | ||
279 | } | ||
280 | # else | ||
281 | OP(A, B, C, D, 7, 0xd76aa478); | ||
282 | OP(D, A, B, C, 12, 0xe8c7b756); | ||
283 | OP(C, D, A, B, 17, 0x242070db); | ||
284 | OP(B, C, D, A, 22, 0xc1bdceee); | ||
285 | OP(A, B, C, D, 7, 0xf57c0faf); | ||
286 | OP(D, A, B, C, 12, 0x4787c62a); | ||
287 | OP(C, D, A, B, 17, 0xa8304613); | ||
288 | OP(B, C, D, A, 22, 0xfd469501); | ||
289 | OP(A, B, C, D, 7, 0x698098d8); | ||
290 | OP(D, A, B, C, 12, 0x8b44f7af); | ||
291 | OP(C, D, A, B, 17, 0xffff5bb1); | ||
292 | OP(B, C, D, A, 22, 0x895cd7be); | ||
293 | OP(A, B, C, D, 7, 0x6b901122); | ||
294 | OP(D, A, B, C, 12, 0xfd987193); | ||
295 | OP(C, D, A, B, 17, 0xa679438e); | ||
296 | OP(B, C, D, A, 22, 0x49b40821); | ||
297 | # endif /* MD5_SIZE_VS_SPEED == 1 */ | ||
298 | |||
299 | /* For the second to fourth round we have the possibly swapped words | ||
300 | in CORRECT_WORDS. Redefine the macro to take an additional first | ||
301 | argument specifying the function to use. */ | ||
302 | # undef OP | ||
303 | # define OP(f, a, b, c, d, k, s, T) \ | ||
304 | do \ | ||
305 | { \ | ||
306 | a += f (b, c, d) + correct_words[k] + T; \ | ||
307 | CYCLIC (a, s); \ | ||
308 | a += b; \ | ||
309 | } \ | ||
310 | while (0) | ||
311 | |||
312 | /* Round 2. */ | ||
313 | # if MD5_SIZE_VS_SPEED == 1 | ||
314 | pp = P_array; | ||
315 | for (i = 0; i < 4; i++) { | ||
316 | OP(FG, A, B, C, D, (int) (*pp++), 5, *pc++); | ||
317 | OP(FG, D, A, B, C, (int) (*pp++), 9, *pc++); | ||
318 | OP(FG, C, D, A, B, (int) (*pp++), 14, *pc++); | ||
319 | OP(FG, B, C, D, A, (int) (*pp++), 20, *pc++); | ||
320 | } | ||
321 | # else | ||
322 | OP(FG, A, B, C, D, 1, 5, 0xf61e2562); | ||
323 | OP(FG, D, A, B, C, 6, 9, 0xc040b340); | ||
324 | OP(FG, C, D, A, B, 11, 14, 0x265e5a51); | ||
325 | OP(FG, B, C, D, A, 0, 20, 0xe9b6c7aa); | ||
326 | OP(FG, A, B, C, D, 5, 5, 0xd62f105d); | ||
327 | OP(FG, D, A, B, C, 10, 9, 0x02441453); | ||
328 | OP(FG, C, D, A, B, 15, 14, 0xd8a1e681); | ||
329 | OP(FG, B, C, D, A, 4, 20, 0xe7d3fbc8); | ||
330 | OP(FG, A, B, C, D, 9, 5, 0x21e1cde6); | ||
331 | OP(FG, D, A, B, C, 14, 9, 0xc33707d6); | ||
332 | OP(FG, C, D, A, B, 3, 14, 0xf4d50d87); | ||
333 | OP(FG, B, C, D, A, 8, 20, 0x455a14ed); | ||
334 | OP(FG, A, B, C, D, 13, 5, 0xa9e3e905); | ||
335 | OP(FG, D, A, B, C, 2, 9, 0xfcefa3f8); | ||
336 | OP(FG, C, D, A, B, 7, 14, 0x676f02d9); | ||
337 | OP(FG, B, C, D, A, 12, 20, 0x8d2a4c8a); | ||
338 | # endif /* MD5_SIZE_VS_SPEED == 1 */ | ||
339 | |||
340 | /* Round 3. */ | ||
341 | # if MD5_SIZE_VS_SPEED == 1 | ||
342 | for (i = 0; i < 4; i++) { | ||
343 | OP(FH, A, B, C, D, (int) (*pp++), 4, *pc++); | ||
344 | OP(FH, D, A, B, C, (int) (*pp++), 11, *pc++); | ||
345 | OP(FH, C, D, A, B, (int) (*pp++), 16, *pc++); | ||
346 | OP(FH, B, C, D, A, (int) (*pp++), 23, *pc++); | ||
347 | } | ||
348 | # else | ||
349 | OP(FH, A, B, C, D, 5, 4, 0xfffa3942); | ||
350 | OP(FH, D, A, B, C, 8, 11, 0x8771f681); | ||
351 | OP(FH, C, D, A, B, 11, 16, 0x6d9d6122); | ||
352 | OP(FH, B, C, D, A, 14, 23, 0xfde5380c); | ||
353 | OP(FH, A, B, C, D, 1, 4, 0xa4beea44); | ||
354 | OP(FH, D, A, B, C, 4, 11, 0x4bdecfa9); | ||
355 | OP(FH, C, D, A, B, 7, 16, 0xf6bb4b60); | ||
356 | OP(FH, B, C, D, A, 10, 23, 0xbebfbc70); | ||
357 | OP(FH, A, B, C, D, 13, 4, 0x289b7ec6); | ||
358 | OP(FH, D, A, B, C, 0, 11, 0xeaa127fa); | ||
359 | OP(FH, C, D, A, B, 3, 16, 0xd4ef3085); | ||
360 | OP(FH, B, C, D, A, 6, 23, 0x04881d05); | ||
361 | OP(FH, A, B, C, D, 9, 4, 0xd9d4d039); | ||
362 | OP(FH, D, A, B, C, 12, 11, 0xe6db99e5); | ||
363 | OP(FH, C, D, A, B, 15, 16, 0x1fa27cf8); | ||
364 | OP(FH, B, C, D, A, 2, 23, 0xc4ac5665); | ||
365 | # endif /* MD5_SIZE_VS_SPEED == 1 */ | ||
366 | |||
367 | /* Round 4. */ | ||
368 | # if MD5_SIZE_VS_SPEED == 1 | ||
369 | for (i = 0; i < 4; i++) { | ||
370 | OP(FI, A, B, C, D, (int) (*pp++), 6, *pc++); | ||
371 | OP(FI, D, A, B, C, (int) (*pp++), 10, *pc++); | ||
372 | OP(FI, C, D, A, B, (int) (*pp++), 15, *pc++); | ||
373 | OP(FI, B, C, D, A, (int) (*pp++), 21, *pc++); | ||
374 | } | ||
375 | # else | ||
376 | OP(FI, A, B, C, D, 0, 6, 0xf4292244); | ||
377 | OP(FI, D, A, B, C, 7, 10, 0x432aff97); | ||
378 | OP(FI, C, D, A, B, 14, 15, 0xab9423a7); | ||
379 | OP(FI, B, C, D, A, 5, 21, 0xfc93a039); | ||
380 | OP(FI, A, B, C, D, 12, 6, 0x655b59c3); | ||
381 | OP(FI, D, A, B, C, 3, 10, 0x8f0ccc92); | ||
382 | OP(FI, C, D, A, B, 10, 15, 0xffeff47d); | ||
383 | OP(FI, B, C, D, A, 1, 21, 0x85845dd1); | ||
384 | OP(FI, A, B, C, D, 8, 6, 0x6fa87e4f); | ||
385 | OP(FI, D, A, B, C, 15, 10, 0xfe2ce6e0); | ||
386 | OP(FI, C, D, A, B, 6, 15, 0xa3014314); | ||
387 | OP(FI, B, C, D, A, 13, 21, 0x4e0811a1); | ||
388 | OP(FI, A, B, C, D, 4, 6, 0xf7537e82); | ||
389 | OP(FI, D, A, B, C, 11, 10, 0xbd3af235); | ||
390 | OP(FI, C, D, A, B, 2, 15, 0x2ad7d2bb); | ||
391 | OP(FI, B, C, D, A, 9, 21, 0xeb86d391); | ||
392 | # endif /* MD5_SIZE_VS_SPEED == 1 */ | ||
393 | # endif /* MD5_SIZE_VS_SPEED > 1 */ | ||
394 | |||
395 | /* Add the starting values of the context. */ | ||
396 | A += A_save; | ||
397 | B += B_save; | ||
398 | C += C_save; | ||
399 | D += D_save; | ||
400 | } | ||
401 | |||
402 | /* Put checksum in context given as argument. */ | ||
403 | ctx->A = A; | ||
404 | ctx->B = B; | ||
405 | ctx->C = C; | ||
406 | ctx->D = D; | ||
407 | } | ||
408 | |||
409 | /* Starting with the result of former calls of this function (or the | ||
410 | * initialization function update the context for the next LEN bytes | ||
411 | * starting at BUFFER. | ||
412 | * It is NOT required that LEN is a multiple of 64. | ||
413 | */ | ||
414 | |||
415 | static void md5_hash_bytes(const void *buffer, size_t len, md5_ctx_t *ctx) | ||
416 | { | ||
417 | /* When we already have some bits in our internal buffer concatenate | ||
418 | both inputs first. */ | ||
419 | if (ctx->buflen != 0) { | ||
420 | size_t left_over = ctx->buflen; | ||
421 | size_t add = 128 - left_over > len ? len : 128 - left_over; | ||
422 | |||
423 | memcpy(&ctx->buffer[left_over], buffer, add); | ||
424 | ctx->buflen += add; | ||
425 | |||
426 | if (left_over + add > 64) { | ||
427 | md5_hash_block(ctx->buffer, (left_over + add) & ~63, ctx); | ||
428 | /* The regions in the following copy operation cannot overlap. */ | ||
429 | memcpy(ctx->buffer, &ctx->buffer[(left_over + add) & ~63], | ||
430 | (left_over + add) & 63); | ||
431 | ctx->buflen = (left_over + add) & 63; | ||
432 | } | ||
433 | |||
434 | buffer = (const char *) buffer + add; | ||
435 | len -= add; | ||
436 | } | ||
437 | |||
438 | /* Process available complete blocks. */ | ||
439 | if (len > 64) { | ||
440 | md5_hash_block(buffer, len & ~63, ctx); | ||
441 | buffer = (const char *) buffer + (len & ~63); | ||
442 | len &= 63; | ||
443 | } | ||
444 | |||
445 | /* Move remaining bytes in internal buffer. */ | ||
446 | if (len > 0) { | ||
447 | memcpy(ctx->buffer, buffer, len); | ||
448 | ctx->buflen = len; | ||
449 | } | ||
450 | } | ||
451 | |||
452 | void md5_hash(const void *data, size_t length, md5_ctx_t *ctx) | ||
453 | { | ||
454 | if (length % 64 == 0) { | ||
455 | md5_hash_block(data, length, ctx); | ||
456 | } else { | ||
457 | md5_hash_bytes(data, length, ctx); | ||
458 | } | ||
459 | } | ||
460 | |||
461 | /* Process the remaining bytes in the buffer and put result from CTX | ||
462 | * in first 16 bytes following RESBUF. The result is always in little | ||
463 | * endian byte order, so that a byte-wise output yields to the wanted | ||
464 | * ASCII representation of the message digest. | ||
465 | * | ||
466 | * IMPORTANT: On some systems it is required that RESBUF is correctly | ||
467 | * aligned for a 32 bits value. | ||
468 | */ | ||
469 | void *md5_end(void *resbuf, md5_ctx_t *ctx) | ||
470 | { | ||
471 | /* Take yet unprocessed bytes into account. */ | ||
472 | uint32_t bytes = ctx->buflen; | ||
473 | size_t pad; | ||
474 | |||
475 | /* Now count remaining bytes. */ | ||
476 | ctx->total[0] += bytes; | ||
477 | if (ctx->total[0] < bytes) | ||
478 | ++ctx->total[1]; | ||
479 | |||
480 | pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; | ||
481 | # if MD5_SIZE_VS_SPEED > 0 | ||
482 | memset(&ctx->buffer[bytes], 0, pad); | ||
483 | ctx->buffer[bytes] = 0x80; | ||
484 | # else | ||
485 | memcpy(&ctx->buffer[bytes], fillbuf, pad); | ||
486 | # endif /* MD5_SIZE_VS_SPEED > 0 */ | ||
487 | |||
488 | /* Put the 64-bit file length in *bits* at the end of the buffer. */ | ||
489 | *(uint32_t *) & ctx->buffer[bytes + pad] = SWAP(ctx->total[0] << 3); | ||
490 | *(uint32_t *) & ctx->buffer[bytes + pad + 4] = | ||
491 | SWAP(((ctx->total[1] << 3) | (ctx->total[0] >> 29))); | ||
492 | |||
493 | /* Process last bytes. */ | ||
494 | md5_hash_block(ctx->buffer, bytes + pad + 8, ctx); | ||
495 | |||
496 | /* Put result from CTX in first 16 bytes following RESBUF. The result is | ||
497 | * always in little endian byte order, so that a byte-wise output yields | ||
498 | * to the wanted ASCII representation of the message digest. | ||
499 | * | ||
500 | * IMPORTANT: On some systems it is required that RESBUF is correctly | ||
501 | * aligned for a 32 bits value. | ||
502 | */ | ||
503 | ((uint32_t *) resbuf)[0] = SWAP(ctx->A); | ||
504 | ((uint32_t *) resbuf)[1] = SWAP(ctx->B); | ||
505 | ((uint32_t *) resbuf)[2] = SWAP(ctx->C); | ||
506 | ((uint32_t *) resbuf)[3] = SWAP(ctx->D); | ||
507 | |||
508 | return resbuf; | ||
509 | } | ||
510 | |||