diff options
author | Roberto Ierusalimschy <roberto@inf.puc-rio.br> | 2003-01-24 14:38:18 -0200 |
---|---|---|
committer | Roberto Ierusalimschy <roberto@inf.puc-rio.br> | 2003-01-24 14:38:18 -0200 |
commit | 83f0d6ef1ac9ddd2e9771e721aab2af8117a18a1 (patch) | |
tree | 544aa77c0a59c66cf3e5f42e0192a81979850137 /manual.tex | |
parent | 3088ebd95b7c509ff1a049ef4a10a1c016883490 (diff) | |
download | lua-83f0d6ef1ac9ddd2e9771e721aab2af8117a18a1.tar.gz lua-83f0d6ef1ac9ddd2e9771e721aab2af8117a18a1.tar.bz2 lua-83f0d6ef1ac9ddd2e9771e721aab2af8117a18a1.zip |
DEPRECATED (new manual uses an independent format instead of LaTeX)
Diffstat (limited to 'manual.tex')
-rw-r--r-- | manual.tex | 4539 |
1 files changed, 0 insertions, 4539 deletions
diff --git a/manual.tex b/manual.tex deleted file mode 100644 index 35984019..00000000 --- a/manual.tex +++ /dev/null | |||
@@ -1,4539 +0,0 @@ | |||
1 | % $Id: manual.tex,v 2.1 2003/01/22 16:29:38 roberto Exp roberto $ | ||
2 | %{[( | ||
3 | |||
4 | \documentclass[11pt,twoside]{article} | ||
5 | \usepackage{fullpage} | ||
6 | \usepackage{iso} | ||
7 | \usepackage{graphicx} | ||
8 | |||
9 | |||
10 | |||
11 | % Right arrow (internal use) | ||
12 | \newcommand{\ra}{\(\rightarrow\)\ } | ||
13 | |||
14 | % Terminal Simbols | ||
15 | \newcommand{\ter}[1]{{\rm`{\tt#1}'}} | ||
16 | %reserved words | ||
17 | \newcommand{\rwd}[1]{{\bf\lowercase{#1}}} | ||
18 | % empty production | ||
19 | \newcommand{\emptyprod}{$\epsilon$ } | ||
20 | |||
21 | % repetitions and optionals | ||
22 | \newcommand{\rep}[1]{{\rm\{}\,#1\,{\rm\}}} | ||
23 | \newcommand{\opt}[1]{{\rm [}\,#1\,{\,\rm]}} | ||
24 | \newcommand{\oneormore}[1]{{\rm\{}#1{\/\rm\}$^+$}} | ||
25 | |||
26 | \newcommand{\prg}[1]{{\it #1\/}} | ||
27 | |||
28 | %productions: \produc{non-terminal}{rule} | ||
29 | \newcommand{\produc}[2]{#1 & \ra & #2\index{grammar!#1}\\} | ||
30 | |||
31 | %new line inside a production | ||
32 | \newcommand{\NL}{\\ & &} | ||
33 | %new line indented | ||
34 | \newcommand{\NLI}{\NL\hspace{2ex}} | ||
35 | |||
36 | % 'or' | ||
37 | \newcommand{\Or}{$|$ } | ||
38 | |||
39 | % 'or' in a new line | ||
40 | \newcommand{\OrNL}{\\ & \Or & } | ||
41 | |||
42 | %Environment for productions | ||
43 | \newenvironment{Produc}{\vspace{0.8ex}\par\noindent\hspace{5ex}\it\begin{tabular}{rrl}}{\end{tabular}\vspace{0.8ex}\par\noindent} | ||
44 | |||
45 | |||
46 | %\newcommand{\See}[1]{Section~\ref{#1}} | ||
47 | \newcommand{\See}[1]{\S\ref{#1}} | ||
48 | %\newcommand{\see}[1]{(see~\See{#1} on page \pageref{#1})} | ||
49 | \newcommand{\see}[1]{(see~\See{#1})} | ||
50 | \newcommand{\seepage}[1]{(see page~\pageref{#1})} | ||
51 | \newcommand{\M}[1]{{\rm\emph{#1}}} | ||
52 | \newcommand{\T}[1]{{\tt #1}} | ||
53 | \newcommand{\Math}[1]{$#1$} | ||
54 | \newcommand{\nil}{{\bf nil}} | ||
55 | \newcommand{\False}{{\bf false}} | ||
56 | \newcommand{\True}{{\bf true}} | ||
57 | %\def\tecgraf{{\sf TeC\kern-.21em\lower.7ex\hbox{Graf}}} | ||
58 | \def\tecgraf{{\sf Tecgraf}} | ||
59 | |||
60 | \newcommand{\Index}[1]{#1\index{#1@{\lowercase{#1}}}} | ||
61 | \newcommand{\IndexVerb}[1]{\T{#1}\index{#1@{\tt #1}}} | ||
62 | \newcommand{\IndexEmph}[1]{\emph{#1}\index{#1@{\lowercase{#1}}}} | ||
63 | \newcommand{\IndexTM}[1]{\index{#1 event@{\Q{#1} event}}\index{metamethod!#1}} | ||
64 | \newcommand{\Def}[1]{\emph{#1}\index{#1}} | ||
65 | \newcommand{\IndexAPI}[1]{\T{#1}\DefAPI{#1}} | ||
66 | \newcommand{\IndexLIB}[1]{\T{#1}\DefLIB{#1}} | ||
67 | \newcommand{\DefLIB}[1]{\index{#1@{\tt #1}}} | ||
68 | \newcommand{\DefAPI}[1]{\index{C API!#1@{\tt #1}}} | ||
69 | \newcommand{\IndexKW}[1]{\index{keywords!#1@{\tt #1}}} | ||
70 | |||
71 | \newcommand{\Q}[1]{``#1''} | ||
72 | \newcommand{\Em}{---} | ||
73 | \newcommand{\En}{--} | ||
74 | \newcommand{\C}[1]{} | ||
75 | |||
76 | \newcommand{\ff}{$\bullet$\ } | ||
77 | |||
78 | \newcommand{\Version}{5.0 (beta)} | ||
79 | |||
80 | \newcommand{\Nter}[1]{{\tt#1}} | ||
81 | \newcommand{\NOTE}{\par\medskip\noindent\emph{NOTE}: } | ||
82 | |||
83 | \newcommand{\At}{{\tt @}} %{\verb|@|} | ||
84 | \newcommand{\Nb}{~} | ||
85 | |||
86 | \makeindex | ||
87 | |||
88 | \begin{document} | ||
89 | |||
90 | %{=============================================================== | ||
91 | \thispagestyle{empty} | ||
92 | \pagestyle{empty} | ||
93 | |||
94 | { | ||
95 | \parindent=0pt | ||
96 | \vglue1.5in | ||
97 | {\LARGE\bf | ||
98 | The Lua Programming Language} | ||
99 | \hfill | ||
100 | \vskip4pt \hrule height 4pt width \hsize \vskip4pt | ||
101 | \hfill | ||
102 | Reference Manual for Lua version \Version | ||
103 | \\ | ||
104 | \null | ||
105 | \hfill | ||
106 | Last revised on \today | ||
107 | \\ | ||
108 | \vfill | ||
109 | \centering | ||
110 | \includegraphics[width=0.7\textwidth]{nolabel.ps} | ||
111 | \vfill | ||
112 | \vskip4pt \hrule height 2pt width \hsize | ||
113 | } | ||
114 | |||
115 | \newpage | ||
116 | \begin{quotation} | ||
117 | \parskip=10pt | ||
118 | \parindent=0pt | ||
119 | \footnotesize | ||
120 | \null\vfill | ||
121 | |||
122 | \noindent | ||
123 | Copyright \copyright\ 2002 Tecgraf, PUC-Rio. All rights reserved. | ||
124 | |||
125 | Permission is hereby granted, free of charge, | ||
126 | to any person obtaining a copy of this software | ||
127 | and associated documentation files (the "Software"), | ||
128 | to deal in the Software without restriction, | ||
129 | including without limitation the rights to use, copy, modify, | ||
130 | merge, publish, distribute, sublicense, | ||
131 | and/or sell copies of the Software, | ||
132 | and to permit persons to whom the Software is furnished to do so, | ||
133 | subject to the following conditions: | ||
134 | |||
135 | The above copyright notice and this permission notice shall be | ||
136 | included in all copies or substantial portions of the Software. | ||
137 | |||
138 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
139 | EXPRESS OR IMPLIED, | ||
140 | INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
141 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | ||
142 | IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE | ||
143 | FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, | ||
144 | WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | ||
145 | ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE | ||
146 | OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | ||
147 | |||
148 | |||
149 | Copies of this manual can be obtained at | ||
150 | Lua's official web site, | ||
151 | \verb|www.lua.org|. | ||
152 | |||
153 | \bigskip | ||
154 | The Lua logo was designed by A. Nakonechny. | ||
155 | Copyright \copyright\ 1998. All rights reserved. | ||
156 | \end{quotation} | ||
157 | %}=============================================================== | ||
158 | \newpage | ||
159 | |||
160 | \title{\Large\bf Reference Manual of the Programming Language Lua \Version} | ||
161 | |||
162 | \author{% | ||
163 | Roberto Ierusalimschy\qquad | ||
164 | Luiz Henrique de Figueiredo\qquad | ||
165 | Waldemar Celes | ||
166 | \vspace{1.0ex}\\ | ||
167 | \smallskip | ||
168 | \small\tt lua@tecgraf.puc-rio.br | ||
169 | \vspace{2.0ex}\\ | ||
170 | %MCC 08/95 --- | ||
171 | \tecgraf\ --- Computer Science Department --- PUC-Rio | ||
172 | } | ||
173 | |||
174 | %\date{{\small \tt\$Date: 2003/01/22 16:29:38 $ $}} | ||
175 | |||
176 | \maketitle | ||
177 | |||
178 | \pagestyle{plain} | ||
179 | \pagenumbering{roman} | ||
180 | |||
181 | \begin{abstract} | ||
182 | \noindent | ||
183 | Lua is a powerful, light-weight programming language | ||
184 | designed for extending applications. | ||
185 | Lua is also frequently used as a general-purpose, stand-alone language. | ||
186 | Lua combines simple procedural syntax | ||
187 | (similar to Pascal) | ||
188 | with | ||
189 | powerful data description constructs | ||
190 | based on associative arrays and extensible semantics. | ||
191 | Lua is | ||
192 | dynamically typed, | ||
193 | interpreted from opcodes, | ||
194 | and has automatic memory management with garbage collection, | ||
195 | making it ideal for | ||
196 | configuration, | ||
197 | scripting, | ||
198 | and | ||
199 | rapid prototyping. | ||
200 | |||
201 | This document describes version \Version{} of the Lua programming language | ||
202 | and the Application Program Interface (API) | ||
203 | that allows interaction between Lua programs and their host C~programs. | ||
204 | \end{abstract} | ||
205 | |||
206 | \def\abstractname{Resumo} | ||
207 | \begin{abstract} | ||
208 | \noindent | ||
209 | Lua é uma linguagem de programação | ||
210 | poderosa e leve, | ||
211 | projetada para estender aplicações. | ||
212 | Lua também é frequentemente usada como uma linguagem de propósito geral. | ||
213 | Lua combina programação procedural | ||
214 | (com sintaxe semelhante à de Pascal) | ||
215 | com | ||
216 | poderosas construções para descrição de dados, | ||
217 | baseadas em tabelas associativas e semântica extensível. | ||
218 | Lua é | ||
219 | tipada dinamicamente, | ||
220 | interpretada a partir de \emph{opcodes}, | ||
221 | e tem gerenciamento automático de memória com coleta de lixo. | ||
222 | Essas características fazem de Lua uma linguagem ideal para | ||
223 | configuração, | ||
224 | automação (\emph{scripting}) | ||
225 | e prototipagem rápida. | ||
226 | |||
227 | Este documento descreve a versão \Version{} da linguagem de | ||
228 | programação Lua e a Interface de Programação (API) que permite | ||
229 | a interação entre programas Lua e programas C~hospedeiros. | ||
230 | \end{abstract} | ||
231 | |||
232 | \newpage | ||
233 | \null | ||
234 | \newpage | ||
235 | \tableofcontents | ||
236 | |||
237 | \newpage | ||
238 | \setcounter{page}{1} | ||
239 | \pagestyle{plain} | ||
240 | \pagenumbering{arabic} | ||
241 | |||
242 | \catcode`\_=12 | ||
243 | \catcode`\$=12 | ||
244 | \catcode`\#=12 | ||
245 | \catcode`\%=12 | ||
246 | \catcode`\^=12 | ||
247 | \catcode`\~=12 | ||
248 | \catcode`\&=12 | ||
249 | |||
250 | |||
251 | |||
252 | \C{-------------------------------------------------------------------------} | ||
253 | \section{Introduction} | ||
254 | |||
255 | Lua is an extension programming language designed to support | ||
256 | general procedural programming with data description | ||
257 | facilities. | ||
258 | Lua is intended to be used as a powerful, light-weight | ||
259 | configuration language for any program that needs one. | ||
260 | Lua is implemented as a library, written in C. | ||
261 | |||
262 | Being an extension language, Lua has no notion of a \Q{main} program: | ||
263 | it only works \emph{embedded} in a host client, | ||
264 | called the \emph{embedding program} or simply the \emph{host}. | ||
265 | This host program can invoke functions to execute a piece of Lua code, | ||
266 | can write and read Lua variables, | ||
267 | and can register C\Nb{}functions to be called by Lua code. | ||
268 | Through the use of C\Nb{}functions, Lua can be augmented to cope with | ||
269 | a wide range of different domains, | ||
270 | thus creating customized programming languages sharing a syntactical framework. | ||
271 | |||
272 | Lua is free software, | ||
273 | and is provided as usual with no guarantees, | ||
274 | as stated in its copyright notice. | ||
275 | The implementation described in this manual is available | ||
276 | at Lua's official web site, \verb|www.lua.org|. | ||
277 | |||
278 | Like any other reference manual, | ||
279 | this document is dry in places. | ||
280 | For a discussion of the decisions behind the design of Lua, | ||
281 | see the papers below, | ||
282 | which are available at Lua's web site. | ||
283 | \begin{itemize} | ||
284 | \item | ||
285 | R.\Nb{}Ierusalimschy, L.\Nb{}H.\Nb{}de Figueiredo, and W.\Nb{}Celes. | ||
286 | Lua\Em{}an extensible extension language. | ||
287 | \emph{Software: Practice & Experience} {\bf 26} #6 (1996) 635\En{}652. | ||
288 | \item | ||
289 | L.\Nb{}H.\Nb{}de Figueiredo, R.\Nb{}Ierusalimschy, and W.\Nb{}Celes. | ||
290 | The design and implementation of a language for extending applications. | ||
291 | \emph{Proceedings of XXI Brazilian Seminar on Software and Hardware} (1994) 273\En{}283. | ||
292 | \item | ||
293 | L.\Nb{}H.\Nb{}de Figueiredo, R.\Nb{}Ierusalimschy, and W.\Nb{}Celes. | ||
294 | Lua: an extensible embedded language. | ||
295 | \emph{Dr. Dobb's Journal} {\bf 21} #12 (Dec 1996) 26\En{}33. | ||
296 | \item | ||
297 | R.\Nb{}Ierusalimschy, L.\Nb{}H.\Nb{}de Figueiredo, and W.\Nb{}Celes. | ||
298 | The evolution of an extension language: a history of Lua, | ||
299 | \emph{Proceedings of V Brazilian Symposium on Programming Languages} (2001) B-14\En{}B-28. | ||
300 | \end{itemize} | ||
301 | |||
302 | Lua means \Q{moon} in Portuguese. | ||
303 | |||
304 | \C{-------------------------------------------------------------------------} | ||
305 | \section{Lua Concepts}\label{concepts} | ||
306 | |||
307 | This section describes the main concepts of Lua as a language. | ||
308 | The syntax and semantics of Lua are described in \See{language}. | ||
309 | The discussion below is not purely conceptual; | ||
310 | it includes references to the C\Nb{}API \see{API}, | ||
311 | because Lua is designed to be embedded in host programs. | ||
312 | It also includes references to the standard libraries \see{libraries}. | ||
313 | |||
314 | |||
315 | \subsection{Environment and Chunks} | ||
316 | |||
317 | All statements in Lua are executed in a \Def{global environment}. | ||
318 | This environment is initialized with a call from the embedding program to | ||
319 | \verb|lua_open| and | ||
320 | persists until a call to \verb|lua_close| | ||
321 | or the end of the embedding program. | ||
322 | The host program can create multiple independent global | ||
323 | environments, and freely switch among them \see{mangstate}. | ||
324 | |||
325 | The unit of execution of Lua is called a \Def{chunk}. | ||
326 | A chunk is simply a sequence of statements. | ||
327 | Statements are described in \See{stats}. | ||
328 | |||
329 | A chunk may be stored in a file or in a string inside the host program. | ||
330 | When a chunk is executed, first it is pre-compiled into opcodes for | ||
331 | a virtual machine, | ||
332 | and then the compiled statements are executed | ||
333 | by an interpreter for the virtual machine. | ||
334 | All modifications that a chunk makes to the global environment persist | ||
335 | after the chunk ends. | ||
336 | |||
337 | Chunks may also be pre-compiled into binary form and stored in files; | ||
338 | see program \IndexVerb{luac} for details. | ||
339 | Programs in source and compiled forms are interchangeable; | ||
340 | Lua automatically detects the file type and acts accordingly. | ||
341 | \index{pre-compilation} | ||
342 | |||
343 | |||
344 | \subsection{Table of Globals} \label{global-table} | ||
345 | |||
346 | ???? | ||
347 | |||
348 | \subsection{\Index{Values and Types}} \label{TypesSec} | ||
349 | |||
350 | Lua is a \emph{dynamically typed language}. | ||
351 | That means that | ||
352 | variables do not have types; only values do. | ||
353 | There are no type definitions in the language. | ||
354 | All values carry their own type. | ||
355 | |||
356 | There are eight \Index{basic types} in Lua: | ||
357 | \Def{nil}, \Def{boolean}, \Def{number}, | ||
358 | \Def{string}, \Def{function}, \Def{userdata}, \Def{thread}, and \Def{table}. | ||
359 | \emph{Nil} is the type of the value \nil{}, | ||
360 | whose main property is to be different from any other value; | ||
361 | usually it represents the absence of a useful value. | ||
362 | \emph{Boolean} is the type of the values \False{} and \True{}. | ||
363 | In Lua, both \nil{} and \False{} make a condition false, | ||
364 | and any other value makes it true. | ||
365 | \emph{Number} represents real (double-precision floating-point) numbers. | ||
366 | (It is not difficult to build Lua interpreters that use other | ||
367 | internal representations for numbers, | ||
368 | such as single-precision float or long integers.) | ||
369 | \emph{String} represents arrays of characters. | ||
370 | \index{eight-bit clean} | ||
371 | Lua is 8-bit clean, | ||
372 | so strings may contain any 8-bit character, | ||
373 | including embedded zeros (\verb|'\0'|) \see{lexical}. | ||
374 | |||
375 | Functions are \emph{first-class values} in Lua. | ||
376 | That means that functions can be stored in variables, | ||
377 | passed as arguments to other functions, and returned as results. | ||
378 | Lua can call (and manipulate) functions written in Lua and | ||
379 | functions written in C | ||
380 | \see{functioncall}. | ||
381 | |||
382 | The type \emph{userdata} is provided to allow arbitrary C data to | ||
383 | be stored in Lua variables. | ||
384 | This type corresponds to a block of raw memory | ||
385 | and has no pre-defined operations in Lua, | ||
386 | except assignment and identity test. | ||
387 | However, by using \emph{metatables}, | ||
388 | the programmer can define operations for userdata values | ||
389 | \see{metatable}. | ||
390 | Userdata values cannot be created or modified in Lua, | ||
391 | only through the C\Nb{}API. | ||
392 | This guarantees the integrity of data owned by the host program. | ||
393 | |||
394 | The type \Def{thread} represents independent threads of execution, | ||
395 | and it is used to implement coroutines. | ||
396 | (This is an experimental area; it needs more documentation, | ||
397 | and is subject to changes in the future.) | ||
398 | |||
399 | The type \emph{table} implements \Index{associative arrays}, | ||
400 | that is, \Index{arrays} that can be indexed not only with numbers, | ||
401 | but with any value (except \nil{}). | ||
402 | Moreover, | ||
403 | tables can be \emph{heterogeneous}, | ||
404 | that is, they can contain values of all types (except \nil{}). | ||
405 | Tables are the sole data structuring mechanism in Lua; | ||
406 | they may be used to represent not only ordinary arrays, | ||
407 | but also symbol tables, sets, records, graphs, trees, etc. | ||
408 | To represent \Index{records}, Lua uses the field name as an index. | ||
409 | The language supports this representation by | ||
410 | providing \verb|a.name| as syntactic sugar for \verb|a["name"]|. | ||
411 | There are several convenient ways to create tables in Lua | ||
412 | \see{tableconstructor}. | ||
413 | |||
414 | Like indices, the value of a table field can be of any type. | ||
415 | In particular, | ||
416 | because functions are first class values, | ||
417 | table fields may contain functions. | ||
418 | Thus tables may also carry \emph{methods} \see{func-def}. | ||
419 | |||
420 | Tables, functions, and userdata values are \emph{objects}: | ||
421 | variables do not actually \emph{contain} these values, | ||
422 | only \emph{references} to them. | ||
423 | Assignment, parameter passing, and function returns | ||
424 | always manipulate references to these values, | ||
425 | and do not imply any kind of copy. | ||
426 | |||
427 | The library function \verb|type| returns a string describing the type | ||
428 | of a given value \see{pdf-type}. | ||
429 | |||
430 | |||
431 | \subsubsection{Metatables} | ||
432 | |||
433 | Each table and userdata object in Lua may have a \Index{metatable}. | ||
434 | |||
435 | You can change several aspects of the behavior | ||
436 | of an object by setting specific fields in its metatable. | ||
437 | For instance, when an object is the operand of an addition, | ||
438 | Lua checks for a function in the field \verb|"__add"| in its metatable. | ||
439 | If it finds one, | ||
440 | Lua calls that function to perform the addition. | ||
441 | |||
442 | We call the keys in a metatable \Index{events}, | ||
443 | and the values \Index{metamethods}. | ||
444 | In the previous example, \verb|"add"| is the event, | ||
445 | and the function is the metamethod that performs the addition. | ||
446 | |||
447 | A metatable controls how an object behaves in arithmetic operations, | ||
448 | order comparisons, concatenation, and indexing. | ||
449 | A metatable can also define a function to be called when a userdata | ||
450 | is garbage collected. | ||
451 | \See{metatable} gives a detailed description of which events you | ||
452 | can control with metatables. | ||
453 | |||
454 | You can query and change the metatable of an object | ||
455 | through the \verb|setmetatable| and \verb|getmetatable| | ||
456 | functions \see{pdf-getmetatable}. | ||
457 | |||
458 | |||
459 | |||
460 | \subsection{Coercion} \label{coercion} | ||
461 | |||
462 | Lua provides automatic conversion between | ||
463 | string and number values at run time. | ||
464 | Any arithmetic operation applied to a string tries to convert | ||
465 | that string to a number, following the usual rules. | ||
466 | Conversely, whenever a number is used where a string is expected, | ||
467 | the number is converted to a string, in a reasonable format. | ||
468 | The format is chosen so that | ||
469 | a conversion from number to string then back to number | ||
470 | reproduces the original number \emph{exactly}. | ||
471 | For complete control of how numbers are converted to strings, | ||
472 | use the \verb|format| function \see{format}. | ||
473 | |||
474 | |||
475 | \subsection{Variables} | ||
476 | |||
477 | There are two kinds of variables in Lua: | ||
478 | global variables | ||
479 | and local variables. | ||
480 | Variables are assumed to be global unless explicitly declared local | ||
481 | \see{localvar}. | ||
482 | Before the first assignment to a variable, its value is \nil{}. | ||
483 | |||
484 | All global variables live as fields in ordinary Lua tables. | ||
485 | Usually, globals live in a table called \Index{table of globals}. | ||
486 | However, a function can individually change its global table, | ||
487 | so that all global variables in that function will refer to that table. | ||
488 | This mechanism allows the creation of \Index{namespaces} and other | ||
489 | modularization facilities. | ||
490 | |||
491 | \Index{Local variables} are lexically scoped. | ||
492 | Therefore, local variables can be freely accessed by functions | ||
493 | defined inside their scope \see{visibility}. | ||
494 | |||
495 | |||
496 | \subsection{Garbage Collection}\label{GC} | ||
497 | |||
498 | Lua does automatic memory management. | ||
499 | That means that | ||
500 | you do not have to worry about allocating memory for new objects | ||
501 | and freeing it when the objects are no longer needed. | ||
502 | Lua manages memory automatically by running | ||
503 | a \Index{garbage collector} from time to time | ||
504 | and | ||
505 | collecting all dead objects | ||
506 | (all objects that are no longer accessible from Lua). | ||
507 | All objects in Lua are subject to automatic management: | ||
508 | tables, userdata, functions, and strings. | ||
509 | |||
510 | Using the C\Nb{}API, | ||
511 | you can set garbage-collector metamethods for userdata \see{metatable}. | ||
512 | When it is about to free a userdata, | ||
513 | Lua calls the metamethod associated with event \verb|gc| in the | ||
514 | userdata's metatable. | ||
515 | Using such facility, you can coordinate Lua's garbage collection | ||
516 | with external resource management | ||
517 | (such as closing files, network or database connections, | ||
518 | or freeing your own memory). | ||
519 | |||
520 | Lua uses two numbers to control its garbage-collection cycles. | ||
521 | One number counts how many bytes of dynamic memory Lua is using, | ||
522 | and the other is a threshold. | ||
523 | When the number of bytes crosses the threshold, | ||
524 | Lua runs the garbage collector, | ||
525 | which reclaims the memory of all dead objects. | ||
526 | The byte counter is adjusted, | ||
527 | and then the threshold is reset to twice the new value of the byte counter. | ||
528 | |||
529 | Through the C\Nb{}API, you can query those numbers, | ||
530 | and change the threshold \see{GC-API}. | ||
531 | Setting the threshold to zero actually forces an immediate | ||
532 | garbage-collection cycle, | ||
533 | while setting it to a huge number effectively stops the garbage collector. | ||
534 | Using Lua code you have a more limited control over garbage-collection cycles, | ||
535 | through the functions \verb|gcinfo| and \verb|collectgarbage| | ||
536 | \see{predefined}. | ||
537 | |||
538 | |||
539 | \subsubsection{Weak Tables}\label{weak-table} | ||
540 | |||
541 | A \IndexEmph{weak table} is a table whose elements are | ||
542 | \IndexEmph{weak references}. | ||
543 | A weak reference is ignored by the garbage collector. | ||
544 | In other words, | ||
545 | if the only references to an object are weak references, | ||
546 | then the garbage collector will collect that object. | ||
547 | |||
548 | A weak table can have weak keys, weak values, or both. | ||
549 | A table with weak keys allows the collection of its keys, | ||
550 | but prevents the collection of its values. | ||
551 | A table with both weak keys and weak values allows the collection of | ||
552 | both keys and values. | ||
553 | In any case, if either the key or the value is collected, | ||
554 | the whole pair is removed from the table. | ||
555 | The weakness of a table is controlled by the value of the | ||
556 | \verb|__mode| field of its metatable. | ||
557 | If the \verb|__mode| field is a string containing the character \verb|k|, | ||
558 | the keys in the table are weak. | ||
559 | If \verb|__mode| contains \verb|v|, | ||
560 | the values in the table are weak. | ||
561 | |||
562 | |||
563 | \C{-------------------------------------------------------------------------} | ||
564 | \section{The Language}\label{language} | ||
565 | |||
566 | This section describes the lexis, the syntax, and the semantics of Lua. | ||
567 | In other words, | ||
568 | this section describes | ||
569 | which tokens are valid, | ||
570 | how they can be combined, | ||
571 | and what their combinations mean. | ||
572 | |||
573 | \subsection{Lexical Conventions} \label{lexical} | ||
574 | |||
575 | \IndexEmph{Identifiers} in Lua can be any string of letters, | ||
576 | digits, and underscores, | ||
577 | not beginning with a digit. | ||
578 | This coincides with the definition of identifiers in most languages. | ||
579 | (The definition of letter depends on the current locale: | ||
580 | any character considered alphabetic by the current locale | ||
581 | can be used in an identifier.) | ||
582 | |||
583 | The following \IndexEmph{keywords} are reserved, | ||
584 | and cannot be used as identifiers: | ||
585 | \index{reserved words} | ||
586 | \begin{verbatim} | ||
587 | and break do else elseif | ||
588 | end false for function if | ||
589 | in local nil not or | ||
590 | repeat return then true until | ||
591 | while | ||
592 | \end{verbatim} | ||
593 | |||
594 | Lua is a case-sensitive language: | ||
595 | \T{and} is a reserved word, but \T{And} and \T{AND} | ||
596 | are two different, valid identifiers. | ||
597 | As a convention, identifiers starting with an underscore followed by | ||
598 | uppercase letters (such as \verb|_VERSION|) | ||
599 | are reserved for internal variables used by Lua. | ||
600 | |||
601 | The following strings denote other \Index{tokens}: | ||
602 | \begin{verbatim} | ||
603 | + - * / ^ = | ||
604 | ~= <= >= < > == | ||
605 | ( ) { } [ ] | ||
606 | ; : , . .. ... | ||
607 | \end{verbatim} | ||
608 | |||
609 | \IndexEmph{Literal strings} | ||
610 | can be delimited by matching single or double quotes, | ||
611 | and can contain the C-like escape sequences | ||
612 | `\verb|\a|' (bell), | ||
613 | `\verb|\b|' (backspace), | ||
614 | `\verb|\f|' (form feed), | ||
615 | `\verb|\n|' (newline), | ||
616 | `\verb|\r|' (carriage return), | ||
617 | `\verb|\t|' (horizontal tab), | ||
618 | `\verb|\v|' (vertical tab), | ||
619 | `\verb|\\|' (backslash), | ||
620 | `\verb|\"|' (quotation mark), | ||
621 | `\verb|\'|' (apostrophe), | ||
622 | `\verb|\[|' (left square bracket), | ||
623 | `\verb|\]|' (right square bracket), | ||
624 | and `\verb|\|\emph{newline}' (that is, a backslash followed by a real newline, | ||
625 | which results in a newline in the string). | ||
626 | A character in a string may also be specified by its numerical value | ||
627 | using the escape sequence `\verb|\|\emph{ddd}', | ||
628 | where \emph{ddd} is a sequence of up to three \emph{decimal} digits. | ||
629 | Strings in Lua may contain any 8-bit value, including embedded zeros, | ||
630 | which can be specified as `\verb|\0|'. | ||
631 | |||
632 | Literal strings can also be delimited by matching | ||
633 | \verb|[[| \Math{\ldots} \verb|]]|. | ||
634 | Literals in this bracketed form may run for several lines, | ||
635 | may contain nested \verb|[[| \Math{\ldots} \verb|]]| pairs, | ||
636 | and do not interpret escape sequences. | ||
637 | For convenience, | ||
638 | when the opening \verb|[[| is immediately followed by a newline, | ||
639 | the newline is not included in the string. \C{ ]]} | ||
640 | That form is specially convenient for | ||
641 | writing strings that contain program pieces or | ||
642 | other quoted strings. | ||
643 | As an example, in a system using ASCII | ||
644 | (in which `\verb|a|' is coded as\Nb{}97, | ||
645 | newline is coded as\Nb{}10, and `\verb|1|' is coded as\Nb{}49), | ||
646 | the four literals below denote the same string: | ||
647 | \begin{verbatim} | ||
648 | (1) "alo\n123\"" | ||
649 | (2) '\97lo\10\04923"' | ||
650 | (3) [[alo | ||
651 | 123"]] | ||
652 | (4) [[ | ||
653 | alo | ||
654 | 123"]] | ||
655 | \end{verbatim} | ||
656 | |||
657 | \IndexEmph{Numerical constants} may be written with an optional decimal part | ||
658 | and an optional decimal exponent. | ||
659 | Examples of valid numerical constants are | ||
660 | \begin{verbatim} | ||
661 | 3 3.0 3.1416 314.16e-2 0.31416E1 | ||
662 | \end{verbatim} | ||
663 | |||
664 | \IndexEmph{Comments} start anywhere outside a string with a | ||
665 | double hyphen (\verb|--|); | ||
666 | If the text after \verb|--| is different from \verb|[[|, | ||
667 | the comment is a short comment, | ||
668 | that runs until the end of the line. | ||
669 | Otherwise, it is a long comment, | ||
670 | that runs until the corresponding \verb|]]|. | ||
671 | Long comments may run for several lines, | ||
672 | and may contain nested \verb|[[| \Math{\ldots} \verb|]]| pairs. | ||
673 | For convenience, | ||
674 | the first line of a chunk is skipped if it starts with \verb|#|. | ||
675 | This facility allows the use of Lua as a script interpreter | ||
676 | in Unix systems \see{lua-sa}. | ||
677 | |||
678 | |||
679 | \subsection{Variables}\label{variables} | ||
680 | |||
681 | Variables are places that store values. | ||
682 | \C{In Lua, variables are given by simple identifiers or by table fields.} | ||
683 | |||
684 | A single name can denote a global variable, a local variable, | ||
685 | or a formal parameter in a function | ||
686 | (formal parameters are just local variables): | ||
687 | \begin{Produc} | ||
688 | \produc{var}{\Nter{Name}} | ||
689 | \end{Produc} | ||
690 | Square brackets are used to index a table: | ||
691 | \begin{Produc} | ||
692 | \produc{var}{prefixexp \ter{[} exp \ter{]}} | ||
693 | \end{Produc} | ||
694 | The first expression should result in a table value, | ||
695 | and the second expression identifies a specific entry inside that table. | ||
696 | |||
697 | The syntax \verb|var.NAME| is just syntactic sugar for | ||
698 | \verb|var["NAME"]|: | ||
699 | \begin{Produc} | ||
700 | \produc{var}{prefixexp \ter{.} \Nter{Name}} | ||
701 | \end{Produc} | ||
702 | |||
703 | The expression denoting the table to be indexed has a restricted syntax; | ||
704 | see \See{expressions} for details. | ||
705 | |||
706 | The meaning of assignments and evaluations of global and | ||
707 | indexed variables can be changed via metatables. | ||
708 | An assignment to a global variable \verb|x = val| | ||
709 | is equivalent to the assignment | ||
710 | \verb|_glob.x = val|, | ||
711 | where \verb|_glob| is the table of globals of the running function | ||
712 | (see \See{global-table} for a discussion about the table of globals). | ||
713 | An assignment to an indexed variable \verb|t[i] = val| is equivalent to | ||
714 | \verb|settable_event(t,i,val)|. | ||
715 | An access to a global variable \verb|x| | ||
716 | is equivalent to \verb|_glob.x| | ||
717 | (again, see \See{global-table} for a discussion about \verb|_glob|). | ||
718 | An access to an indexed variable \verb|t[i]| is equivalent to | ||
719 | a call \verb|gettable_event(t,i)|. | ||
720 | See \See{metatable} for a complete description of the | ||
721 | \verb|settable_event| and \verb|gettable_event| functions. | ||
722 | (These functions are not defined or callable in Lua. | ||
723 | We use them here only for explanatory purposes.) | ||
724 | |||
725 | |||
726 | \subsection{Statements}\label{stats} | ||
727 | |||
728 | Lua supports an almost conventional set of \Index{statements}, | ||
729 | similar to those in Pascal or C. | ||
730 | The conventional commands include | ||
731 | assignment, control structures, and procedure calls. | ||
732 | Non-conventional commands include table constructors | ||
733 | and variable declarations. | ||
734 | |||
735 | \subsubsection{Chunks}\label{chunks} | ||
736 | The unit of execution of Lua is called a \Def{chunk}. | ||
737 | A chunk is simply a sequence of statements, | ||
738 | which are executed sequentially. | ||
739 | Each statement can be optionally followed by a semicolon: | ||
740 | \begin{Produc} | ||
741 | \produc{chunk}{\rep{stat \opt{\ter{;}}}} | ||
742 | \end{Produc} | ||
743 | |||
744 | \subsubsection{Blocks} | ||
745 | A \Index{block} is a list of statements; | ||
746 | syntactically, a block is equal to a chunk: | ||
747 | \begin{Produc} | ||
748 | \produc{block}{chunk} | ||
749 | \end{Produc} | ||
750 | |||
751 | A block may be explicitly delimited to produce a single statement: | ||
752 | \begin{Produc} | ||
753 | \produc{stat}{\rwd{do} block \rwd{end}} | ||
754 | \end{Produc} | ||
755 | \IndexKW{do} | ||
756 | Explicit blocks are useful | ||
757 | to control the scope of variable declarations. | ||
758 | Explicit blocks are also sometimes used to | ||
759 | add a \rwd{return} or \rwd{break} statement in the middle | ||
760 | of another block \see{control}. | ||
761 | |||
762 | \subsubsection{\Index{Assignment}} \label{assignment} | ||
763 | Lua allows \Index{multiple assignment}. | ||
764 | Therefore, the syntax for assignment | ||
765 | defines a list of variables on the left side | ||
766 | and a list of expressions on the right side. | ||
767 | The elements in both lists are separated by commas: | ||
768 | \begin{Produc} | ||
769 | \produc{stat}{varlist1 \ter{=} explist1} | ||
770 | \produc{varlist1}{var \rep{\ter{,} var}} | ||
771 | \produc{explist1}{exp \rep{\ter{,} exp}} | ||
772 | \end{Produc} | ||
773 | Expressions are discussed in \See{expressions}. | ||
774 | |||
775 | Before the assignment, | ||
776 | the list of values is \emph{adjusted} to the length of | ||
777 | the list of variables.\index{adjustment} | ||
778 | If there are more values than needed, | ||
779 | the excess values are thrown away. | ||
780 | If there are fewer values than needed, | ||
781 | the list is extended with as many \nil{}'s as needed. | ||
782 | If the list of expressions ends with a function call, | ||
783 | then all values returned by that function call enter in the list of values, | ||
784 | before the adjustment | ||
785 | (except when the call is enclosed in parentheses; see \See{expressions}). | ||
786 | |||
787 | The assignment statement first evaluates all its expressions, | ||
788 | and only then are the assignments performed. | ||
789 | Thus the code | ||
790 | \begin{verbatim} | ||
791 | i = 3 | ||
792 | i, a[i] = i+1, 20 | ||
793 | \end{verbatim} | ||
794 | sets \verb|a[3]| to 20, without affecting \verb|a[4]| | ||
795 | because the \verb|i| in \verb|a[i]| is evaluated | ||
796 | before it is assigned 4. | ||
797 | Similarly, the line | ||
798 | \begin{verbatim} | ||
799 | x, y = y, x | ||
800 | \end{verbatim} | ||
801 | exchanges the values of \verb|x| and \verb|y|. | ||
802 | |||
803 | \subsubsection{Control Structures}\label{control} | ||
804 | The control structures | ||
805 | \rwd{if}, \rwd{while}, and \rwd{repeat} have the usual meaning and | ||
806 | familiar syntax: | ||
807 | \index{while-do statement}\IndexKW{while} | ||
808 | \index{repeat-until statement}\IndexKW{repeat}\IndexKW{until} | ||
809 | \index{if-then-else statement}\IndexKW{if}\IndexKW{else}\IndexKW{elseif} | ||
810 | \begin{Produc} | ||
811 | \produc{stat}{\rwd{while} exp \rwd{do} block \rwd{end}} | ||
812 | \produc{stat}{\rwd{repeat} block \rwd{until} exp} | ||
813 | \produc{stat}{\rwd{if} exp \rwd{then} block | ||
814 | \rep{\rwd{elseif} exp \rwd{then} block} | ||
815 | \opt{\rwd{else} block} \rwd{end}} | ||
816 | \end{Produc} | ||
817 | Lua also has a \rwd{for} statement, in two flavors \see{for}. | ||
818 | |||
819 | The \Index{condition expression} \M{exp} of a | ||
820 | control structure may return any value. | ||
821 | Both \False{} and \nil{} are considered false. | ||
822 | All values different from \nil{} and \False{} are considered true | ||
823 | (in particular, the number 0 and the empty string are also true). | ||
824 | |||
825 | The \rwd{return} statement is used to return values | ||
826 | from a function or from a chunk.\IndexKW{return} | ||
827 | \label{return} | ||
828 | \index{return statement} | ||
829 | Functions and chunks may return more than one value, | ||
830 | so the syntax for the \rwd{return} statement is | ||
831 | \begin{Produc} | ||
832 | \produc{stat}{\rwd{return} \opt{explist1}} | ||
833 | \end{Produc} | ||
834 | |||
835 | The \rwd{break} statement can be used to terminate the execution of a | ||
836 | \rwd{while}, \rwd{repeat}, or \rwd{for} loop, | ||
837 | and to skip to the next statement after the loop:\IndexKW{break} | ||
838 | \index{break statement} | ||
839 | \begin{Produc} | ||
840 | \produc{stat}{\rwd{break}} | ||
841 | \end{Produc} | ||
842 | A \rwd{break} ends the innermost enclosing loop. | ||
843 | |||
844 | \NOTE | ||
845 | For syntactic reasons, \rwd{return} and \rwd{break} | ||
846 | statements can only be written as the \emph{last} statement of a block. | ||
847 | If it is really necessary to \rwd{return} or \rwd{break} in the | ||
848 | middle of a block, | ||
849 | then an explicit inner block can used, | ||
850 | as in the idioms | ||
851 | `\verb|do return end|' and | ||
852 | `\verb|do break end|', | ||
853 | because now \rwd{return} and \rwd{break} are the last statements in | ||
854 | their (inner) blocks. | ||
855 | In practice, | ||
856 | those idioms are only used during debugging. | ||
857 | (For instance, a line `\verb|do return end|' can be added at the | ||
858 | beginning of a chunk for syntax checking only.) | ||
859 | |||
860 | \subsubsection{For Statement} \label{for}\index{for statement} | ||
861 | |||
862 | The \rwd{for} statement has two forms, | ||
863 | one numeric and one generic. | ||
864 | \IndexKW{for}\IndexKW{in} | ||
865 | |||
866 | The numeric \rwd{for} loop repeats a block of code while a | ||
867 | control variable runs through an arithmetic progression. | ||
868 | It has the following syntax: | ||
869 | \begin{Produc} | ||
870 | \produc{stat}{\rwd{for} \Nter{Name} \ter{=} exp \ter{,} exp \opt{\ter{,} exp} | ||
871 | \rwd{do} block \rwd{end}} | ||
872 | \end{Produc} | ||
873 | The \emph{block} is repeated for \emph{name} starting at the value of | ||
874 | the first \emph{exp}, until it passes the second \emph{exp} by steps of the | ||
875 | third \emph{exp}. | ||
876 | More precisely, a \rwd{for} statement like | ||
877 | \begin{verbatim} | ||
878 | for var = e1, e2, e3 do block end | ||
879 | \end{verbatim} | ||
880 | is equivalent to the code: | ||
881 | \begin{verbatim} | ||
882 | do | ||
883 | local var, _limit, _step = tonumber(e1), tonumber(e2), tonumber(e3) | ||
884 | if not (var and _limit and _step) then error() end | ||
885 | while (_step>0 and var<=_limit) or (_step<=0 and var>=_limit) do | ||
886 | block | ||
887 | var = var+_step | ||
888 | end | ||
889 | end | ||
890 | \end{verbatim} | ||
891 | Note the following: | ||
892 | \begin{itemize}\itemsep=0pt | ||
893 | \item Both the limit and the step are evaluated only once, | ||
894 | before the loop starts. | ||
895 | \item \verb|_limit| and \verb|_step| are invisible variables. | ||
896 | The names are here for explanatory purposes only. | ||
897 | \item The behavior is \emph{undefined} if you assign to \verb|var| inside | ||
898 | the block. | ||
899 | \item If the third expression (the step) is absent, then a step of\Nb{}1 is used. | ||
900 | \item You can use \rwd{break} to exit a \rwd{for} loop. | ||
901 | \item The loop variable \verb|var| is local to the statement; | ||
902 | you cannot use its value after the \rwd{for} ends or is broken. | ||
903 | If you need the value of the loop variable \verb|var|, | ||
904 | then assign it to another variable before breaking or exiting the loop. | ||
905 | \end{itemize} | ||
906 | |||
907 | The generic \rwd{for} statement works over functions, | ||
908 | called \Index{generators}. | ||
909 | It calls its generator to produce a new value for each iteration, | ||
910 | stopping when the new value is \nil{}. | ||
911 | It has the following syntax: | ||
912 | \begin{Produc} | ||
913 | \produc{stat}{\rwd{for} \Nter{Name} \rep{\ter{,} \Nter{Name}} \rwd{in} explist1 | ||
914 | \rwd{do} block \rwd{end}} | ||
915 | \end{Produc} | ||
916 | A \rwd{for} statement like | ||
917 | \begin{verbatim} | ||
918 | for var_1, ..., var_n in explist do block end | ||
919 | \end{verbatim} | ||
920 | is equivalent to the code: | ||
921 | \begin{verbatim} | ||
922 | do | ||
923 | local _f, _s, var_1, ..., var_n = explist | ||
924 | while true do | ||
925 | var_1, ..., var_n = _f(_s, var_1) | ||
926 | if var_1 == nil then break end | ||
927 | block | ||
928 | end | ||
929 | end | ||
930 | \end{verbatim} | ||
931 | Note the following: | ||
932 | \begin{itemize}\itemsep=0pt | ||
933 | \item \verb|explist| is evaluated only once. | ||
934 | Its results are a \Q{generator} function, | ||
935 | a \Q{state}, and an initial value for the first \Q{iterator variable}. | ||
936 | \item \verb|_f| and \verb|_s| are invisible variables. | ||
937 | The names are here for explanatory purposes only. | ||
938 | \item The behavior is \emph{undefined} if you assign to any | ||
939 | \verb|var_i| inside the block. | ||
940 | \item You can use \rwd{break} to exit a \rwd{for} loop. | ||
941 | \item The loop variables \verb|var_i| are local to the statement; | ||
942 | you cannot use their values after the \rwd{for} ends. | ||
943 | If you need these values, | ||
944 | then assign them to other variables before breaking or exiting the loop. | ||
945 | \end{itemize} | ||
946 | |||
947 | |||
948 | \subsubsection{Function Calls as Statements} \label{funcstat} | ||
949 | Because of possible side-effects, | ||
950 | function calls can be executed as statements: | ||
951 | \begin{Produc} | ||
952 | \produc{stat}{functioncall} | ||
953 | \end{Produc} | ||
954 | In this case, all returned values are thrown away. | ||
955 | Function calls are explained in \See{functioncall}. | ||
956 | |||
957 | \subsubsection{Local Declarations} \label{localvar} | ||
958 | \Index{Local variables} may be declared anywhere inside a block. | ||
959 | The declaration may include an initial assignment:\IndexKW{local} | ||
960 | \begin{Produc} | ||
961 | \produc{stat}{\rwd{local} namelist \opt{\ter{=} explist1}} | ||
962 | \produc{namelist}{\Nter{Name} \rep{\ter{,} \Nter{Name}}} | ||
963 | \end{Produc} | ||
964 | If present, an initial assignment has the same semantics | ||
965 | of a multiple assignment \see{assignment}. | ||
966 | Otherwise, all variables are initialized with \nil{}. | ||
967 | |||
968 | A chunk is also a block \see{chunks}, | ||
969 | so local variables can be declared outside any explicit block. | ||
970 | Such local variables die when the chunk ends. | ||
971 | |||
972 | Visibility rules for local variables are explained in \See{visibility}. | ||
973 | |||
974 | |||
975 | \subsection{\Index{Expressions}}\label{expressions} | ||
976 | |||
977 | \C{\subsubsection{\Index{Basic Expressions}}} | ||
978 | The basic expressions in Lua are the following: | ||
979 | \begin{Produc} | ||
980 | \produc{exp}{prefixexp} | ||
981 | \produc{exp}{\rwd{nil} \Or \rwd{false} \Or \rwd{true}} | ||
982 | \produc{exp}{Number} | ||
983 | \produc{exp}{Literal} | ||
984 | \produc{exp}{function} | ||
985 | \produc{exp}{tableconstructor} | ||
986 | \produc{prefixexp}{var \Or functioncall \Or \ter{(} exp \ter{)}} | ||
987 | \end{Produc} | ||
988 | \IndexKW{nil}\IndexKW{false}\IndexKW{true} | ||
989 | |||
990 | An expression enclosed in parentheses always results in only one value. | ||
991 | Thus, | ||
992 | \verb|(f(x,y,z))| is always a single value, | ||
993 | even if \verb|f| returns several values. | ||
994 | (The value of \verb|(f(x,y,z))| is the first value returned by \verb|f| | ||
995 | or \nil{} if \verb|f| does not return any values.) | ||
996 | |||
997 | \emph{Numbers} and \emph{literal strings} are explained in \See{lexical}; | ||
998 | variables are explained in \See{variables}; | ||
999 | function definitions are explained in \See{func-def}; | ||
1000 | function calls are explained in \See{functioncall}; | ||
1001 | table constructors are explained in \See{tableconstructor}. | ||
1002 | |||
1003 | Expressions can also be built with arithmetic operators, relational operators, | ||
1004 | and logical operators, all of which are explained below. | ||
1005 | |||
1006 | \subsubsection{Arithmetic Operators} | ||
1007 | Lua supports the usual \Index{arithmetic operators}: | ||
1008 | the binary \verb|+| (addition), | ||
1009 | \verb|-| (subtraction), \verb|*| (multiplication), | ||
1010 | \verb|/| (division), and \verb|^| (exponentiation); | ||
1011 | and unary \verb|-| (negation). | ||
1012 | If the operands are numbers, or strings that can be converted to | ||
1013 | numbers \see{coercion}, | ||
1014 | then all operations except exponentiation have the usual meaning, | ||
1015 | while exponentiation calls a global function \verb|pow|; ?? | ||
1016 | otherwise, an appropriate metamethod is called \see{metatable}. | ||
1017 | The standard mathematical library defines function \verb|pow|, | ||
1018 | giving the expected meaning to \Index{exponentiation} | ||
1019 | \see{mathlib}. | ||
1020 | |||
1021 | \subsubsection{Relational Operators}\label{rel-ops} | ||
1022 | The \Index{relational operators} in Lua are | ||
1023 | \begin{verbatim} | ||
1024 | == ~= < > <= >= | ||
1025 | \end{verbatim} | ||
1026 | These operators always result in \False{} or \True{}. | ||
1027 | |||
1028 | Equality (\verb|==|) first compares the type of its operands. | ||
1029 | If the types are different, then the result is \False{}. | ||
1030 | Otherwise, the values of the operands are compared. | ||
1031 | Numbers and strings are compared in the usual way. | ||
1032 | Tables, userdata, and functions are compared \emph{by reference}, | ||
1033 | that is, | ||
1034 | two tables are considered equal only if they are the \emph{same} table. | ||
1035 | |||
1036 | \C{TODO eq metamethod} | ||
1037 | |||
1038 | Every time you create a new table (or userdata, or function), | ||
1039 | this new value is different from any previously existing value. | ||
1040 | |||
1041 | \NOTE | ||
1042 | The conversion rules of \See{coercion} | ||
1043 | \emph{do not} apply to equality comparisons. | ||
1044 | Thus, \verb|"0"==0| evaluates to \emph{false}, | ||
1045 | and \verb|t[0]| and \verb|t["0"]| denote different | ||
1046 | entries in a table. | ||
1047 | \medskip | ||
1048 | |||
1049 | The operator \verb|~=| is exactly the negation of equality (\verb|==|). | ||
1050 | |||
1051 | The order operators work as follows. | ||
1052 | If both arguments are numbers, then they are compared as such. | ||
1053 | Otherwise, if both arguments are strings, | ||
1054 | then their values are compared according to the current locale. | ||
1055 | Otherwise, the \Q{lt} or the \Q{le} metamethod is called \see{metatable}. | ||
1056 | |||
1057 | |||
1058 | \subsubsection{Logical Operators} | ||
1059 | The \Index{logical operators} in Lua are | ||
1060 | \index{and}\index{or}\index{not} | ||
1061 | \begin{verbatim} | ||
1062 | and or not | ||
1063 | \end{verbatim} | ||
1064 | Like the control structures \see{control}, | ||
1065 | all logical operators consider both \False{} and \nil{} as false | ||
1066 | and anything else as true. | ||
1067 | \IndexKW{and}\IndexKW{or}\IndexKW{not} | ||
1068 | |||
1069 | The operator \rwd{not} always return \False{} or \True{}. | ||
1070 | |||
1071 | The conjunction operator \rwd{and} returns its first argument | ||
1072 | if its value is \False{} or \nil{}; | ||
1073 | otherwise, \rwd{and} returns its second argument. | ||
1074 | The disjunction operator \rwd{or} returns its first argument | ||
1075 | if it is different from \nil{} and \False{}; | ||
1076 | otherwise, \rwd{or} returns its second argument. | ||
1077 | Both \rwd{and} and \rwd{or} use \Index{short-cut evaluation}, | ||
1078 | that is, | ||
1079 | the second operand is evaluated only if necessary. | ||
1080 | For example, | ||
1081 | \begin{verbatim} | ||
1082 | 10 or error() -> 10 | ||
1083 | nil or "a" -> "a" | ||
1084 | nil and 10 -> nil | ||
1085 | false and error() -> false | ||
1086 | false and nil -> false | ||
1087 | false or nil -> nil | ||
1088 | 10 and 20 -> 20 | ||
1089 | \end{verbatim} | ||
1090 | |||
1091 | \subsubsection{Concatenation} \label{concat} | ||
1092 | The string \Index{concatenation} operator in Lua is | ||
1093 | denoted by two dots (`\verb|..|'). | ||
1094 | If both operands are strings or numbers, then they are converted to | ||
1095 | strings according to the rules mentioned in \See{coercion}. | ||
1096 | Otherwise, the \Q{concat} metamethod is called \see{metatable}. | ||
1097 | |||
1098 | \subsubsection{Precedence} | ||
1099 | \Index{Operator precedence} in Lua follows the table below, | ||
1100 | from lower to higher priority: | ||
1101 | \begin{verbatim} | ||
1102 | or | ||
1103 | and | ||
1104 | < > <= >= ~= == | ||
1105 | .. | ||
1106 | + - | ||
1107 | * / | ||
1108 | not - (unary) | ||
1109 | ^ | ||
1110 | \end{verbatim} | ||
1111 | The \verb|..| (concatenation) and \verb|^| (exponentiation) | ||
1112 | operators are right associative. | ||
1113 | All other binary operators are left associative. | ||
1114 | |||
1115 | \subsubsection{Table Constructors} \label{tableconstructor} | ||
1116 | Table \Index{constructors} are expressions that create tables; | ||
1117 | every time a constructor is evaluated, a new table is created. | ||
1118 | Constructors can be used to create empty tables, | ||
1119 | or to create a table and initialize some of its fields. | ||
1120 | The general syntax for constructors is | ||
1121 | \begin{Produc} | ||
1122 | \produc{tableconstructor}{\ter{\{} \opt{fieldlist} \ter{\}}} | ||
1123 | \produc{fieldlist}{field \rep{fieldsep field} \opt{fieldsep}} | ||
1124 | \produc{field}{\ter{[} exp \ter{]} \ter{=} exp \Or | ||
1125 | \Nter{Name} \ter{=} exp \Or exp} | ||
1126 | \produc{fieldsep}{\ter{,} \Or \ter{;}} | ||
1127 | \end{Produc} | ||
1128 | |||
1129 | Each field of the form \verb|[exp1] = exp2| adds to the new table an entry | ||
1130 | with key \verb|exp1| and value \verb|exp2|. | ||
1131 | A field of the form \verb|name = exp| is equivalent to | ||
1132 | \verb|["name"] = exp|. | ||
1133 | Finally, fields of the form \verb|exp| are equivalent to | ||
1134 | \verb|[i] = exp|, where \verb|i| are consecutive numerical integers, | ||
1135 | starting with 1. | ||
1136 | Fields in the other formats do not affect this counting. | ||
1137 | For example, | ||
1138 | \begin{verbatim} | ||
1139 | a = {[f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45} | ||
1140 | \end{verbatim} | ||
1141 | is equivalent to | ||
1142 | \begin{verbatim} | ||
1143 | do | ||
1144 | local temp = {} | ||
1145 | temp[f(1)] = g | ||
1146 | temp[1] = "x" -- 1st exp | ||
1147 | temp[2] = "y" -- 2nd exp | ||
1148 | temp.x = 1 -- temp["x"] = 1 | ||
1149 | temp[3] = f(x) -- 3rd exp | ||
1150 | temp[30] = 23 | ||
1151 | temp[4] = 45 -- 4th exp | ||
1152 | a = temp | ||
1153 | end | ||
1154 | \end{verbatim} | ||
1155 | |||
1156 | If the last expression in the list is a function call, | ||
1157 | then all values returned by the call enter the list consecutively | ||
1158 | \see{functioncall}. | ||
1159 | If you want to avoid this, | ||
1160 | enclose the function call in parentheses. | ||
1161 | |||
1162 | The field list may have an optional trailing separator, | ||
1163 | as a convenience for machine-generated code. | ||
1164 | |||
1165 | |||
1166 | \subsubsection{Function Calls} \label{functioncall} | ||
1167 | A \Index{function call} in Lua has the following syntax: | ||
1168 | \begin{Produc} | ||
1169 | \produc{functioncall}{prefixexp args} | ||
1170 | \end{Produc} | ||
1171 | In a function call, | ||
1172 | first \M{prefixexp} and \M{args} are evaluated. | ||
1173 | If the value of \M{prefixexp} has type \emph{function}, | ||
1174 | then that function is called, | ||
1175 | with the given arguments. | ||
1176 | Otherwise, its \Q{call} metamethod is called, | ||
1177 | having as first parameter the value of \M{prefixexp}, | ||
1178 | followed by the original call arguments | ||
1179 | \see{metatable}. | ||
1180 | |||
1181 | The form | ||
1182 | \begin{Produc} | ||
1183 | \produc{functioncall}{prefixexp \ter{:} \Nter{name} args} | ||
1184 | \end{Produc} | ||
1185 | can be used to call \Q{methods}. | ||
1186 | A call \verb|v:name(...)| | ||
1187 | is syntactic sugar for \verb|v.name(v, ...)|, | ||
1188 | except that \verb|v| is evaluated only once. | ||
1189 | |||
1190 | Arguments have the following syntax: | ||
1191 | \begin{Produc} | ||
1192 | \produc{args}{\ter{(} \opt{explist1} \ter{)}} | ||
1193 | \produc{args}{tableconstructor} | ||
1194 | \produc{args}{Literal} | ||
1195 | \end{Produc} | ||
1196 | All argument expressions are evaluated before the call. | ||
1197 | A call of the form \verb|f{...}| is syntactic sugar for | ||
1198 | \verb|f({...})|, that is, | ||
1199 | the argument list is a single new table. | ||
1200 | A call of the form \verb|f'...'| | ||
1201 | (or \verb|f"..."| or \verb|f[[...]]|) is syntactic sugar for | ||
1202 | \verb|f('...')|, that is, | ||
1203 | the argument list is a single literal string. | ||
1204 | |||
1205 | Because a function can return any number of results | ||
1206 | \see{return}, | ||
1207 | the number of results must be adjusted before they are used. | ||
1208 | If the function is called as a statement \see{funcstat}, | ||
1209 | then its return list is adjusted to\Nb{}0 elements, | ||
1210 | thus discarding all returned values. | ||
1211 | If the function is called inside another expression, | ||
1212 | or in the middle of a list of expressions, | ||
1213 | then its return list is adjusted to\Nb{}1 element, | ||
1214 | thus discarding all returned values but the first one. | ||
1215 | If the function is called as the last element of a list of expressions, | ||
1216 | then no adjustment is made | ||
1217 | (unless the call is enclosed in parentheses). | ||
1218 | |||
1219 | Here are some examples: | ||
1220 | \begin{verbatim} | ||
1221 | f() -- adjusted to 0 results | ||
1222 | g(f(), x) -- f() is adjusted to 1 result | ||
1223 | g(x, f()) -- g gets x plus all values returned by f() | ||
1224 | a,b,c = f(), x -- f() is adjusted to 1 result (and c gets nil) | ||
1225 | a,b,c = x, f() -- f() is adjusted to 2 | ||
1226 | a,b,c = f() -- f() is adjusted to 3 | ||
1227 | return f() -- returns all values returned by f() | ||
1228 | return x,y,f() -- returns x, y, and all values returned by f() | ||
1229 | {f()} -- creates a list with all values returned by f() | ||
1230 | {f(), nil} -- f() is adjusted to 1 result | ||
1231 | \end{verbatim} | ||
1232 | |||
1233 | If you enclose a function call in parentheses, | ||
1234 | then it is adjusted to return exactly one value: | ||
1235 | \begin{verbatim} | ||
1236 | return x,y,(f()) -- returns x, y, and the first value from f() | ||
1237 | {(f())} -- creates a table with exactly one element | ||
1238 | \end{verbatim} | ||
1239 | |||
1240 | As an exception to the format-free syntax of Lua, | ||
1241 | you cannot put a line break before the \verb|(| in a function call. | ||
1242 | That restriction avoids some ambiguities in the language. | ||
1243 | If you write | ||
1244 | \begin{verbatim} | ||
1245 | a = f | ||
1246 | (g).x(a) | ||
1247 | \end{verbatim} | ||
1248 | Lua would read that as \verb|a = f(g).x(a)|. | ||
1249 | So, if you want two statements, you must add a semi-colon between them. | ||
1250 | If you actually want to call \verb|f|, | ||
1251 | you must remove the line break before \verb|(g)|. | ||
1252 | |||
1253 | |||
1254 | \subsubsection{\Index{Function Definitions}} \label{func-def} | ||
1255 | |||
1256 | The syntax for function definition is\IndexKW{function} | ||
1257 | \begin{Produc} | ||
1258 | \produc{function}{\rwd{function} funcbody} | ||
1259 | \produc{funcbody}{\ter{(} \opt{parlist1} \ter{)} block \rwd{end}} | ||
1260 | \end{Produc} | ||
1261 | |||
1262 | The following syntactic sugar simplifies function definitions: | ||
1263 | \begin{Produc} | ||
1264 | \produc{stat}{\rwd{function} funcname funcbody} | ||
1265 | \produc{stat}{\rwd{local} \rwd{function} \Nter{name} funcbody} | ||
1266 | \produc{funcname}{\Nter{name} \rep{\ter{.} \Nter{name}} \opt{\ter{:} \Nter{name}}} | ||
1267 | \end{Produc} | ||
1268 | The statement | ||
1269 | \begin{verbatim} | ||
1270 | function f () ... end | ||
1271 | \end{verbatim} | ||
1272 | translates to | ||
1273 | \begin{verbatim} | ||
1274 | f = function () ... end | ||
1275 | \end{verbatim} | ||
1276 | The statement | ||
1277 | \begin{verbatim} | ||
1278 | function t.a.b.c.f () ... end | ||
1279 | \end{verbatim} | ||
1280 | translates to | ||
1281 | \begin{verbatim} | ||
1282 | t.a.b.c.f = function () ... end | ||
1283 | \end{verbatim} | ||
1284 | The statement | ||
1285 | \begin{verbatim} | ||
1286 | local function f () ... end | ||
1287 | \end{verbatim} | ||
1288 | translates to | ||
1289 | \begin{verbatim} | ||
1290 | local f; f = function () ... end | ||
1291 | \end{verbatim} | ||
1292 | |||
1293 | A function definition is an executable expression, | ||
1294 | whose value has type \emph{function}. | ||
1295 | When Lua pre-compiles a chunk, | ||
1296 | all its function bodies are pre-compiled too. | ||
1297 | Then, whenever Lua executes the function definition, | ||
1298 | the function is \emph{instantiated} (or \emph{closed}). | ||
1299 | This function instance (or \emph{closure}) | ||
1300 | is the final value of the expression. | ||
1301 | Different instances of the same function | ||
1302 | may refer to different non-local variables \see{visibility} | ||
1303 | and may have different tables of globals \see{global-table}. | ||
1304 | |||
1305 | Parameters act as local variables that are | ||
1306 | initialized with the argument values: | ||
1307 | \begin{Produc} | ||
1308 | \produc{parlist1}{namelist \opt{\ter{,} \ter{\ldots}}} | ||
1309 | \produc{parlist1}{\ter{\ldots}} | ||
1310 | \end{Produc} | ||
1311 | \label{vararg} | ||
1312 | When a function is called, | ||
1313 | the list of \Index{arguments} is adjusted to | ||
1314 | the length of the list of parameters, | ||
1315 | unless the function is a \Def{vararg function}, | ||
1316 | which is | ||
1317 | indicated by three dots (`\verb|...|') at the end of its parameter list. | ||
1318 | A vararg function does not adjust its argument list; | ||
1319 | instead, it collects all extra arguments into an implicit parameter, | ||
1320 | called \IndexLIB{arg}. | ||
1321 | The value of \verb|arg| is a table, | ||
1322 | with a field\Nb{}\verb|n| whose value is the number of extra arguments, | ||
1323 | and with the extra arguments at positions 1,\Nb{}2,\Nb{}\ldots,\Nb{}\verb|n|. | ||
1324 | |||
1325 | As an example, consider the following definitions: | ||
1326 | \begin{verbatim} | ||
1327 | function f(a, b) end | ||
1328 | function g(a, b, ...) end | ||
1329 | function r() return 1,2,3 end | ||
1330 | \end{verbatim} | ||
1331 | Then, we have the following mapping from arguments to parameters: | ||
1332 | \begin{verbatim} | ||
1333 | CALL PARAMETERS | ||
1334 | |||
1335 | f(3) a=3, b=nil | ||
1336 | f(3, 4) a=3, b=4 | ||
1337 | f(3, 4, 5) a=3, b=4 | ||
1338 | f(r(), 10) a=1, b=10 | ||
1339 | f(r()) a=1, b=2 | ||
1340 | |||
1341 | g(3) a=3, b=nil, arg={n=0} | ||
1342 | g(3, 4) a=3, b=4, arg={n=0} | ||
1343 | g(3, 4, 5, 8) a=3, b=4, arg={5, 8; n=2} | ||
1344 | g(5, r()) a=5, b=1, arg={2, 3; n=2} | ||
1345 | \end{verbatim} | ||
1346 | |||
1347 | Results are returned using the \rwd{return} statement \see{return}. | ||
1348 | If control reaches the end of a function | ||
1349 | without encountering a \rwd{return} statement, | ||
1350 | then the function returns with no results. | ||
1351 | |||
1352 | The \emph{colon} syntax | ||
1353 | is used for defining \IndexEmph{methods}, | ||
1354 | that is, functions that have an implicit extra parameter \IndexVerb{self}. | ||
1355 | Thus, the statement | ||
1356 | \begin{verbatim} | ||
1357 | function t.a.b.c:f (...) ... end | ||
1358 | \end{verbatim} | ||
1359 | is syntactic sugar for | ||
1360 | \begin{verbatim} | ||
1361 | t.a.b.c.f = function (self, ...) ... end | ||
1362 | \end{verbatim} | ||
1363 | |||
1364 | |||
1365 | \subsection{Visibility Rules} \label{visibility} | ||
1366 | \index{visibility} | ||
1367 | |||
1368 | Lua is a lexically scoped language. | ||
1369 | The scope of variables begins at the first statement \emph{after} | ||
1370 | their declaration and lasts until the end of the innermost block that | ||
1371 | includes the declaration. | ||
1372 | For instance: | ||
1373 | \begin{verbatim} | ||
1374 | x = 10 -- global variable | ||
1375 | do -- new block | ||
1376 | local x = x -- new `x', with value 10 | ||
1377 | print(x) --> 10 | ||
1378 | x = x+1 | ||
1379 | do -- another block | ||
1380 | local x = x+1 -- another `x' | ||
1381 | print(x) --> 12 | ||
1382 | end | ||
1383 | print(x) --> 11 | ||
1384 | end | ||
1385 | print(x) --> 10 (the global one) | ||
1386 | \end{verbatim} | ||
1387 | Notice that, in a declaration like \verb|local x = x|, | ||
1388 | the new \verb|x| being declared is not in scope yet, | ||
1389 | so the second \verb|x| refers to the \Q{outside} variable. | ||
1390 | |||
1391 | Because of these \Index{lexical scoping} rules, | ||
1392 | local variables can be freely accessed by functions | ||
1393 | defined inside their scope. | ||
1394 | For instance: | ||
1395 | \begin{verbatim} | ||
1396 | local counter = 0 | ||
1397 | function inc (x) | ||
1398 | counter = counter + x | ||
1399 | return counter | ||
1400 | end | ||
1401 | \end{verbatim} | ||
1402 | |||
1403 | Notice that each execution of a \rwd{local} statement | ||
1404 | \Q{creates} new local variables. | ||
1405 | Consider the following example: | ||
1406 | \begin{verbatim} | ||
1407 | a = {} | ||
1408 | local x = 20 | ||
1409 | for i=1,10 do | ||
1410 | local y = 0 | ||
1411 | a[i] = function () y=y+1; return x+y end | ||
1412 | end | ||
1413 | \end{verbatim} | ||
1414 | The loop creates ten closures | ||
1415 | (that is, instances of the anonymous function). | ||
1416 | Each of these closures uses a different \verb|y| variable, | ||
1417 | while all of them share the same \verb|x|. | ||
1418 | |||
1419 | \subsection{Error Handling} \label{error} | ||
1420 | |||
1421 | Because Lua is an extension language, | ||
1422 | all Lua actions start from C\Nb{}code in the host program | ||
1423 | calling a function from the Lua library \see{pcall}. | ||
1424 | Whenever an error occurs during Lua compilation or execution, | ||
1425 | control returns to C, | ||
1426 | which can take appropriate measures | ||
1427 | (such as to print an error message). | ||
1428 | |||
1429 | Lua code can explicitly generate an error by calling the | ||
1430 | function \verb|error| \see{pdf-error}. | ||
1431 | If you need to catch errors in Lua, | ||
1432 | you can use the \verb|pcall| function \see{pdf-pcall}. | ||
1433 | |||
1434 | |||
1435 | \subsection{Metatables} \label{metatable} | ||
1436 | |||
1437 | Every table and userdata value in Lua may have a \emph{metatable}. | ||
1438 | This \IndexEmph{metatable} is a table that defines the behavior of | ||
1439 | the original table and userdata under certain special operations. | ||
1440 | You can query and change the metatable of an object with | ||
1441 | functions \verb|setmetatable| and \verb|getmetatable| \see{pdf-getmetatable}. | ||
1442 | |||
1443 | For each of those operations Lua associates a specific key | ||
1444 | called an \emph{event}. | ||
1445 | When Lua performs one of those operations over a table or a userdata, | ||
1446 | it checks whether that object has a metatable with the corresponding event. | ||
1447 | If so, the value associated with that key (the \IndexEmph{metamethod}) | ||
1448 | controls how Lua will perform the operation. | ||
1449 | |||
1450 | Metatables control the operations listed next. | ||
1451 | Each operation is identified by its corresponding name. | ||
1452 | The key for each operation is a string with its name prefixed by | ||
1453 | two underscores; | ||
1454 | for instance, the key for operation \Q{add} is the | ||
1455 | string \verb|"__add"|. | ||
1456 | The semantics of these operations is better explained by a Lua function | ||
1457 | describing how the interpreter executes that operation. | ||
1458 | \C{Each function shows how a handler is called,} | ||
1459 | \C{its arguments (that is, its signature),} | ||
1460 | \C{its results,} | ||
1461 | \C{and the default behavior in the absence of a handler.} | ||
1462 | The code shown here in Lua is only illustrative; | ||
1463 | the real behavior is hard coded in the interpreter, | ||
1464 | and it is much more efficient than this simulation. | ||
1465 | All functions used in these descriptions | ||
1466 | (\verb|rawget|, \verb|tonumber|, etc.) | ||
1467 | are described in \See{predefined}. | ||
1468 | |||
1469 | \begin{description} | ||
1470 | |||
1471 | \item[\Q{add}:]\IndexTM{add} | ||
1472 | the \verb|+| operation. | ||
1473 | |||
1474 | The function \verb|getbinhandler| below defines how Lua chooses a handler | ||
1475 | for a binary operation. | ||
1476 | First, Lua tries the first operand. | ||
1477 | If its type does not define a handler for the operation, | ||
1478 | then Lua tries the second operand. | ||
1479 | \begin{verbatim} | ||
1480 | function getbinhandler (op1, op2, event) | ||
1481 | return metatable(op1)[event] or metatable(op2)[event] | ||
1482 | end | ||
1483 | \end{verbatim} | ||
1484 | Using that function, | ||
1485 | the behavior of the \Q{add} operation is | ||
1486 | \begin{verbatim} | ||
1487 | function add_event (op1, op2) | ||
1488 | local o1, o2 = tonumber(op1), tonumber(op2) | ||
1489 | if o1 and o2 then -- both operands are numeric | ||
1490 | return o1+o2 -- '+' here is the primitive 'add' | ||
1491 | else -- at least one of the operands is not numeric | ||
1492 | local h = getbinhandler(op1, op2, "__add") | ||
1493 | if h then | ||
1494 | -- call the handler with both operands | ||
1495 | return h(op1, op2) | ||
1496 | else -- no handler available: default behavior | ||
1497 | error("unexpected type at arithmetic operation") | ||
1498 | end | ||
1499 | end | ||
1500 | end | ||
1501 | \end{verbatim} | ||
1502 | |||
1503 | \item[\Q{sub}:]\IndexTM{sub} | ||
1504 | the \verb|-| operation. | ||
1505 | Behavior similar to the \Q{add} operation. | ||
1506 | |||
1507 | \item[\Q{mul}:]\IndexTM{mul} | ||
1508 | the \verb|*| operation. | ||
1509 | Behavior similar to the \Q{add} operation. | ||
1510 | |||
1511 | \item[\Q{div}:]\IndexTM{div} | ||
1512 | the \verb|/| operation. | ||
1513 | Behavior similar to the \Q{add} operation. | ||
1514 | |||
1515 | \item[\Q{pow}:]\IndexTM{pow} | ||
1516 | the \verb|^| operation (exponentiation) operation. | ||
1517 | \begin{verbatim} ?? | ||
1518 | function pow_event (op1, op2) | ||
1519 | local h = getbinhandler(op1, op2, "__pow") ??? | ||
1520 | if h then | ||
1521 | -- call the handler with both operands | ||
1522 | return h(op1, op2) | ||
1523 | else -- no handler available: default behavior | ||
1524 | error("unexpected type at arithmetic operation") | ||
1525 | end | ||
1526 | end | ||
1527 | \end{verbatim} | ||
1528 | |||
1529 | \item[\Q{unm}:]\IndexTM{unm} | ||
1530 | the unary \verb|-| operation. | ||
1531 | \begin{verbatim} | ||
1532 | function unm_event (op) | ||
1533 | local o = tonumber(op) | ||
1534 | if o then -- operand is numeric | ||
1535 | return -o -- '-' here is the primitive 'unm' | ||
1536 | else -- the operand is not numeric. | ||
1537 | -- Try to get a handler from the operand; | ||
1538 | local h = metatable(op).__unm | ||
1539 | if h then | ||
1540 | -- call the handler with the operand and nil | ||
1541 | return h(op, nil) | ||
1542 | else -- no handler available: default behavior | ||
1543 | error("unexpected type at arithmetic operation") | ||
1544 | end | ||
1545 | end | ||
1546 | end | ||
1547 | \end{verbatim} | ||
1548 | |||
1549 | \item[\Q{lt}:]\IndexTM{lt} | ||
1550 | the \verb|<| operation. | ||
1551 | \begin{verbatim} | ||
1552 | function lt_event (op1, op2) | ||
1553 | if type(op1) == "number" and type(op2) == "number" then | ||
1554 | return op1 < op2 -- numeric comparison | ||
1555 | elseif type(op1) == "string" and type(op2) == "string" then | ||
1556 | return op1 < op2 -- lexicographic comparison | ||
1557 | else | ||
1558 | local h = getbinhandler(op1, op2, "__lt") | ||
1559 | if h then | ||
1560 | return h(op1, op2) | ||
1561 | else | ||
1562 | error("unexpected type at comparison"); | ||
1563 | end | ||
1564 | end | ||
1565 | end | ||
1566 | \end{verbatim} | ||
1567 | \verb|a>b| is equivalent to \verb|b<a|. | ||
1568 | |||
1569 | \item[\Q{le}:]\IndexTM{lt} | ||
1570 | the \verb|<=| operation. | ||
1571 | \begin{verbatim} | ||
1572 | function le_event (op1, op2) | ||
1573 | if type(op1) == "number" and type(op2) == "number" then | ||
1574 | return op1 <= op2 -- numeric comparison | ||
1575 | elseif type(op1) == "string" and type(op2) == "string" then | ||
1576 | return op1 <= op2 -- lexicographic comparison | ||
1577 | else | ||
1578 | local h = getbinhandler(op1, op2, "__le") | ||
1579 | if h then | ||
1580 | return h(op1, op2) | ||
1581 | else | ||
1582 | h = getbinhandler(op1, op2, "__lt") | ||
1583 | if h then | ||
1584 | return not h(op2, op1) | ||
1585 | else | ||
1586 | error("unexpected type at comparison"); | ||
1587 | end | ||
1588 | end | ||
1589 | end | ||
1590 | end | ||
1591 | \end{verbatim} | ||
1592 | \verb|a>=b| is equivalent to \verb|b<=a|. | ||
1593 | Notice that, in the absence of a \Q{le} metamethod, | ||
1594 | Lua tries the \Q{lt}, assuming that \verb|a<=b| is | ||
1595 | equivalent to \verb|not (b<a)|. | ||
1596 | |||
1597 | |||
1598 | \item[\Q{concat}:]\IndexTM{concatenation} | ||
1599 | the \verb|..| (concatenation) operation. | ||
1600 | \begin{verbatim} | ||
1601 | function concat_event (op1, op2) | ||
1602 | if (type(op1) == "string" or type(op1) == "number") and | ||
1603 | (type(op2) == "string" or type(op2) == "number") then | ||
1604 | return op1..op2 -- primitive string concatenation | ||
1605 | else | ||
1606 | local h = getbinhandler(op1, op2, "__concat") | ||
1607 | if h then | ||
1608 | return h(op1, op2) | ||
1609 | else | ||
1610 | error("unexpected type for concatenation") | ||
1611 | end | ||
1612 | end | ||
1613 | end | ||
1614 | \end{verbatim} | ||
1615 | |||
1616 | \item[\Q{index}:]\IndexTM{index} | ||
1617 | The \Q{gettable} operation \verb|table[key]|. | ||
1618 | \begin{verbatim} | ||
1619 | function gettable_event (table, key) | ||
1620 | local h | ||
1621 | if type(table) == "table" then | ||
1622 | local v = rawget(table, key) | ||
1623 | if v ~= nil then return v end | ||
1624 | h = metatable(table).__index | ||
1625 | if h == nil then return nil end | ||
1626 | else | ||
1627 | h = metatable(table).__index | ||
1628 | if h == nil then | ||
1629 | error("indexed expression not a table"); | ||
1630 | end | ||
1631 | end | ||
1632 | if type(h) == "function" then | ||
1633 | return h(table, key) -- call the handler | ||
1634 | else return h[key] -- or repeat operation with it | ||
1635 | end | ||
1636 | \end{verbatim} | ||
1637 | |||
1638 | \item[\Q{newindex}:]\IndexTM{index} | ||
1639 | The \Q{settable} operation \verb|table[key] = value|. | ||
1640 | \begin{verbatim} | ||
1641 | function settable_event (table, key, value) | ||
1642 | local h | ||
1643 | if type(table) == "table" then | ||
1644 | local v = rawget(table, key) | ||
1645 | if v ~= nil then rawset(table, key, value); return end | ||
1646 | h = metatable(table).__newindex | ||
1647 | if h == nil then rawset(table, key, value); return end | ||
1648 | else | ||
1649 | h = metatable(table).__newindex | ||
1650 | if h == nil then | ||
1651 | error("indexed expression not a table"); | ||
1652 | end | ||
1653 | end | ||
1654 | if type(h) == "function" then | ||
1655 | return h(table, key,value) -- call the handler | ||
1656 | else h[key] = value -- or repeat operation with it | ||
1657 | end | ||
1658 | \end{verbatim} | ||
1659 | |||
1660 | |||
1661 | \item[\Q{call}:]\IndexTM{call} | ||
1662 | called when Lua calls a value. | ||
1663 | \begin{verbatim} | ||
1664 | function function_event (func, ...) | ||
1665 | if type(func) == "function" then | ||
1666 | return func(unpack(arg)) -- regular call | ||
1667 | else | ||
1668 | local h = metatable(func).__call | ||
1669 | if h then | ||
1670 | table.insert(arg, 1, func) | ||
1671 | return h(unpack(arg)) | ||
1672 | else | ||
1673 | error("call expression not a function") | ||
1674 | end | ||
1675 | end | ||
1676 | end | ||
1677 | \end{verbatim} | ||
1678 | |||
1679 | \end{description} | ||
1680 | |||
1681 | \subsubsection{Metatables and Garbage collection} | ||
1682 | |||
1683 | Metatables may also define \IndexEmph{finalizer} methods | ||
1684 | for userdata values. | ||
1685 | For each userdata to be collected, | ||
1686 | Lua does the equivalent of the following function: | ||
1687 | \begin{verbatim} | ||
1688 | function gc_event (obj) | ||
1689 | local h = metatable(obj).__gc | ||
1690 | if h then | ||
1691 | h(obj) | ||
1692 | end | ||
1693 | end | ||
1694 | \end{verbatim} | ||
1695 | In a garbage-collection cycle, | ||
1696 | the finalizers for userdata are called in \emph{reverse} | ||
1697 | order of their creation, | ||
1698 | that is, the first finalizer to be called is the one associated | ||
1699 | with the last userdata created in the program | ||
1700 | (among those to be collected in the same cycle). | ||
1701 | |||
1702 | |||
1703 | |||
1704 | \subsection{Coroutines} | ||
1705 | |||
1706 | Lua supports coroutines, | ||
1707 | also called \emph{semi-coroutines} | ||
1708 | or \emph{collaborative multithreading}. | ||
1709 | A coroutine in Lua represents an independent thread of execution. | ||
1710 | Unlike \Q{real} threads, however, | ||
1711 | a coroutine only suspends its execution by explicitly calling | ||
1712 | an yield function. | ||
1713 | |||
1714 | You create a coroutine with a call to \IndexVerb{coroutine.create}. | ||
1715 | Its sole argument is a function | ||
1716 | that is the main function of the coroutine. | ||
1717 | The \verb|coroutine.create| only creates a new coroutine and | ||
1718 | returns a handle to it (an object of type \emph{thread}). | ||
1719 | It does not start the coroutine execution. | ||
1720 | |||
1721 | When you first call \IndexVerb{coroutine.resume}, | ||
1722 | passing as argument the thread returned by \verb|coroutine.create|, | ||
1723 | the coroutine starts its execution, | ||
1724 | at the first line of its main function. | ||
1725 | Extra arguments passed to \verb|coroutine.resume| are given as | ||
1726 | parameters for the coroutine main function. | ||
1727 | After the coroutine starts running, | ||
1728 | it runs until it terminates or it \emph{yields}. | ||
1729 | |||
1730 | A coroutine can terminate its execution in two ways: | ||
1731 | Normally, when its main function returns | ||
1732 | (explicitly or implicitly, after the last instruction); | ||
1733 | and abnormally, if there is an unprotected error. | ||
1734 | In the first case, \verb|coroutine.resume| returns \True{}, | ||
1735 | plus any values returned by the coroutine main function. | ||
1736 | In case of errors, \verb|coroutine.resume| returns \False{} | ||
1737 | plus an error message. | ||
1738 | |||
1739 | A coroutine yields by calling \IndexVerb{coroutine.yield}. | ||
1740 | When a coroutine yields, | ||
1741 | the corresponding \verb|coroutine.resume| returns immediately, | ||
1742 | even if the yield happens inside nested function calls | ||
1743 | (that is, not in the main function, | ||
1744 | but in a function directly or indirectly called by the main function). | ||
1745 | In the case of a yield, \verb|coroutine.resume| also returns \True{}, | ||
1746 | plus any values passed to \verb|coroutine.yield|. | ||
1747 | The next time you resume the same coroutine, | ||
1748 | it continues its execution from the point where it yielded, | ||
1749 | with the call to \verb|coroutine.yield| returning any extra | ||
1750 | arguments passed to \verb|coroutine.resume|. | ||
1751 | |||
1752 | The \IndexVerb{coroutine.wrap} function creates a coroutine | ||
1753 | like \verb|coroutine.create|, | ||
1754 | but instead of returning the coroutine itself, | ||
1755 | it returns a function that, when called, resumes the coroutine. | ||
1756 | Any arguments passed to that function | ||
1757 | go as extra arguments to resume. | ||
1758 | The function returns all the values returned by resume, | ||
1759 | but the first one (the boolean error code). | ||
1760 | Unlike \verb|coroutine.resume|, | ||
1761 | this function does not catch errors; | ||
1762 | any error is propagated to the caller. | ||
1763 | |||
1764 | As a complete example, | ||
1765 | consider the next code: | ||
1766 | \begin{verbatim} | ||
1767 | function foo1 (a) | ||
1768 | print("foo", a) | ||
1769 | return coroutine.yield(2*a) | ||
1770 | end | ||
1771 | |||
1772 | co = coroutine.create(function (a,b) | ||
1773 | print("co-body", a, b) | ||
1774 | local r = foo1(a+1) | ||
1775 | print("co-body", r) | ||
1776 | local r, s = coroutine.yield(a+b, a-b) | ||
1777 | print("co-body", r, s) | ||
1778 | return b, "end" | ||
1779 | end) | ||
1780 | |||
1781 | a, b = coroutine.resume(co, 1, 10) | ||
1782 | print("main", a, b) | ||
1783 | a, b, c = coroutine.resume(co, "r") | ||
1784 | print("main", a, b, c) | ||
1785 | a, b, c = coroutine.resume(co, "x", "y") | ||
1786 | print("main", a, b, c) | ||
1787 | a, b = coroutine.resume(co, "x", "y") | ||
1788 | print("main", a, b) | ||
1789 | \end{verbatim} | ||
1790 | When you run it, it produces the following output: | ||
1791 | \begin{verbatim} | ||
1792 | co-body 1 10 | ||
1793 | foo 2 | ||
1794 | main true 4 | ||
1795 | co-body r | ||
1796 | main true 11 -9 | ||
1797 | co-body x y | ||
1798 | main true 10 end | ||
1799 | main false cannot resume dead coroutine | ||
1800 | \end{verbatim} | ||
1801 | |||
1802 | |||
1803 | |||
1804 | \C{-------------------------------------------------------------------------} | ||
1805 | \section{The Application Program Interface}\label{API} | ||
1806 | \index{C API} | ||
1807 | |||
1808 | This section describes the API for Lua, that is, | ||
1809 | the set of C\Nb{}functions available to the host program to communicate | ||
1810 | with Lua. | ||
1811 | All API functions and related types and constants | ||
1812 | are declared in the header file \verb|lua.h|. | ||
1813 | |||
1814 | \NOTE | ||
1815 | Even when we use the term \Q{function}, | ||
1816 | any facility in the API may be provided as a \emph{macro} instead. | ||
1817 | All such macros use each of its arguments exactly once | ||
1818 | (except for the first argument, which is always a Lua state), | ||
1819 | and so do not generate hidden side-effects. | ||
1820 | |||
1821 | |||
1822 | \subsection{States} \label{mangstate} | ||
1823 | |||
1824 | The Lua library is fully reentrant: | ||
1825 | it has no global variables. | ||
1826 | \index{state} | ||
1827 | The whole state of the Lua interpreter | ||
1828 | (global variables, stack, etc.) | ||
1829 | is stored in a dynamically allocated structure of type \verb|lua_State|; | ||
1830 | \DefAPI{lua_State} | ||
1831 | this state must be passed as the first argument to | ||
1832 | every function in the library (except \verb|lua_open| below). | ||
1833 | |||
1834 | Before calling any API function, | ||
1835 | you must create a state by calling | ||
1836 | \begin{verbatim} | ||
1837 | lua_State *lua_open (void); | ||
1838 | \end{verbatim} | ||
1839 | \DefAPI{lua_open} | ||
1840 | |||
1841 | To release a state created with \verb|lua_open|, call | ||
1842 | \begin{verbatim} | ||
1843 | void lua_close (lua_State *L); | ||
1844 | \end{verbatim} | ||
1845 | \DefAPI{lua_close} | ||
1846 | This function destroys all objects in the given Lua environment | ||
1847 | (calling the corresponding garbage-collection metamethods, if any) | ||
1848 | and frees all dynamic memory used by that state. | ||
1849 | On several platforms, you may not need to call this function, | ||
1850 | because all resources are naturally released when the host program ends. | ||
1851 | On the other hand, | ||
1852 | long-running programs \Em{} | ||
1853 | like a daemon or a web server \Em{} | ||
1854 | might need to release states as soon as they are not needed, | ||
1855 | to avoid growing too large. | ||
1856 | |||
1857 | |||
1858 | \subsection{Threads} | ||
1859 | |||
1860 | Lua offers partial support for multiple threads of execution. | ||
1861 | If you have a C\Nb{}library that offers multi-threading, | ||
1862 | then Lua can cooperate with it to implement the equivalent facility in Lua. | ||
1863 | Also, Lua implements its own coroutine system on top of threads. | ||
1864 | The following function creates a new \Q{thread} in Lua: | ||
1865 | \begin{verbatim} | ||
1866 | lua_State *lua_newthread (lua_State *L); | ||
1867 | \end{verbatim} | ||
1868 | \DefAPI{lua_newthread} | ||
1869 | The new state returned by this function shares with the original state | ||
1870 | all global environment (such as tables), | ||
1871 | but has an independent run-time stack. | ||
1872 | (The use of these multiple stacks must be \Q{synchronized} with C. | ||
1873 | How to explain that? TO BE WRITTEN.) | ||
1874 | |||
1875 | Each thread has an independent table for global variables. | ||
1876 | When you create a thread, this table is the same as that of the given state, | ||
1877 | but you can change each one independently. | ||
1878 | |||
1879 | You destroy threads with \DefAPI{lua_closethread} | ||
1880 | \begin{verbatim} | ||
1881 | void lua_closethread (lua_State *L, lua_State *thread); | ||
1882 | \end{verbatim} | ||
1883 | You cannot close the sole (or last) thread of a state. | ||
1884 | Instead, you must close the state itself. | ||
1885 | |||
1886 | |||
1887 | \subsection{The Stack and Indices} | ||
1888 | |||
1889 | Lua uses a virtual \emph{stack} to pass values to and from C. | ||
1890 | Each element in this stack represents a Lua value | ||
1891 | (\nil{}, number, string, etc.). | ||
1892 | |||
1893 | Each C invocation has its own stack. | ||
1894 | Whenever Lua calls C, the called function gets a new stack, | ||
1895 | which is independent of previous stacks and of stacks of still | ||
1896 | active C functions. | ||
1897 | That stack initially contains any arguments to the C function, | ||
1898 | and it is where the C function pushes its results \see{LuacallC}. | ||
1899 | |||
1900 | For convenience, | ||
1901 | most query operations in the API do not follow a strict stack discipline. | ||
1902 | Instead, they can refer to any element in the stack by using an \emph{index}: | ||
1903 | A positive index represents an \emph{absolute} stack position | ||
1904 | (starting at\Nb{}1); | ||
1905 | a negative index represents an \emph{offset} from the top of the stack. | ||
1906 | More specifically, if the stack has \M{n} elements, | ||
1907 | then index\Nb{}1 represents the first element | ||
1908 | (that is, the element that was pushed onto the stack first), | ||
1909 | and | ||
1910 | index\Nb{}\M{n} represents the last element; | ||
1911 | index\Nb{}\Math{-1} also represents the last element | ||
1912 | (that is, the element at the top), | ||
1913 | and index \Math{-n} represents the first element. | ||
1914 | We say that an index is \emph{valid} | ||
1915 | if it lies between\Nb{}1 and the stack top | ||
1916 | (that is, if \verb|1 <= abs(index) <= top|). | ||
1917 | \index{stack index} \index{valid index} | ||
1918 | |||
1919 | At any time, you can get the index of the top element by calling | ||
1920 | \begin{verbatim} | ||
1921 | int lua_gettop (lua_State *L); | ||
1922 | \end{verbatim} | ||
1923 | \DefAPI{lua_gettop} | ||
1924 | Because indices start at\Nb{}1, | ||
1925 | the result of \verb|lua_gettop| is equal to the number of elements in the stack | ||
1926 | (and so 0\Nb{}means an empty stack). | ||
1927 | |||
1928 | When you interact with Lua API, | ||
1929 | \emph{you are responsible for controlling stack overflow}. | ||
1930 | The function | ||
1931 | \begin{verbatim} | ||
1932 | int lua_checkstack (lua_State *L, int extra); | ||
1933 | \end{verbatim} | ||
1934 | \DefAPI{lua_checkstack} | ||
1935 | grows the stack size to \verb|top + extra| elements; | ||
1936 | it returns false if it cannot grow the stack to that size. | ||
1937 | This function never shrinks the stack; | ||
1938 | if the stack is already bigger than the new size, | ||
1939 | it is left unchanged. | ||
1940 | |||
1941 | Whenever Lua calls C, \DefAPI{LUA_MINSTACK} | ||
1942 | it ensures that \verb|lua_checkstack(L, LUA_MINSTACK)| is true, | ||
1943 | that is, | ||
1944 | at least \verb|LUA_MINSTACK| positions are still available. | ||
1945 | \verb|LUA_MINSTACK| is defined in \verb|lua.h| as 20, | ||
1946 | so that usually you do not have to worry about stack space | ||
1947 | unless your code has loops pushing elements onto the stack. | ||
1948 | |||
1949 | Most query functions accept as indices any value inside the | ||
1950 | available stack space, that is, indices up to the maximum stack size | ||
1951 | you (or Lua) have set through \verb|lua_checkstack|. | ||
1952 | Such indices are called \emph{acceptable indices}. | ||
1953 | More formally, we define an \IndexEmph{acceptable index} | ||
1954 | as follows: | ||
1955 | \begin{verbatim} | ||
1956 | (index < 0 && abs(index) <= top) || (index > 0 && index <= top + stackspace) | ||
1957 | \end{verbatim} | ||
1958 | Note that 0 is never an acceptable index. | ||
1959 | |||
1960 | Unless otherwise noted, | ||
1961 | any function that accepts valid indices can also be called with | ||
1962 | \Index{pseudo-indices}, | ||
1963 | which represent some Lua values that are accessible to the C\Nb{}code | ||
1964 | but are not in the stack. | ||
1965 | Pseudo-indices are used to access the table of globals \see{globals}, | ||
1966 | the registry, and the upvalues of a C function \see{c-closure}. | ||
1967 | |||
1968 | \subsection{Stack Manipulation} | ||
1969 | The API offers the following functions for basic stack manipulation: | ||
1970 | \begin{verbatim} | ||
1971 | void lua_settop (lua_State *L, int index); | ||
1972 | void lua_pushvalue (lua_State *L, int index); | ||
1973 | void lua_remove (lua_State *L, int index); | ||
1974 | void lua_insert (lua_State *L, int index); | ||
1975 | void lua_replace (lua_State *L, int index); | ||
1976 | \end{verbatim} | ||
1977 | \DefAPI{lua_settop}\DefAPI{lua_pushvalue} | ||
1978 | \DefAPI{lua_remove}\DefAPI{lua_insert}\DefAPI{lua_replace} | ||
1979 | |||
1980 | \verb|lua_settop| accepts any acceptable index, | ||
1981 | or 0, | ||
1982 | and sets the stack top to that index. | ||
1983 | If the new top is larger than the old one, | ||
1984 | then the new elements are filled with \nil{}. | ||
1985 | If \verb|index| is 0, then all stack elements are removed. | ||
1986 | A useful macro defined in the \verb|lua.h| is | ||
1987 | \begin{verbatim} | ||
1988 | #define lua_pop(L,n) lua_settop(L, -(n)-1) | ||
1989 | \end{verbatim} | ||
1990 | \DefAPI{lua_pop} | ||
1991 | which pops \verb|n| elements from the stack. | ||
1992 | |||
1993 | \verb|lua_pushvalue| pushes onto the stack a copy of the element | ||
1994 | at the given index. | ||
1995 | \verb|lua_remove| removes the element at the given position, | ||
1996 | shifting down the elements above that position to fill the gap. | ||
1997 | \verb|lua_insert| moves the top element into the given position, | ||
1998 | shifting up the elements above that position to open space. | ||
1999 | \verb|lua_replace| moves the top element into the given position, | ||
2000 | without shifting any element (therefore replacing the value at | ||
2001 | the given position). | ||
2002 | These functions accept only valid indices. | ||
2003 | (Obviously, you cannot call \verb|lua_remove| or \verb|lua_insert| with | ||
2004 | pseudo-indices, as they do not represent a stack position.) | ||
2005 | |||
2006 | As an example, if the stack starts as \verb|10 20 30 40 50*| | ||
2007 | (from bottom to top; the \verb|*| marks the top), | ||
2008 | then | ||
2009 | \begin{verbatim} | ||
2010 | lua_pushvalue(L, 3) --> 10 20 30 40 50 30* | ||
2011 | lua_pushvalue(L, -1) --> 10 20 30 40 50 30 30* | ||
2012 | lua_remove(L, -3) --> 10 20 30 40 30 30* | ||
2013 | lua_remove(L, 6) --> 10 20 30 40 30* | ||
2014 | lua_insert(L, 1) --> 30 10 20 30 40* | ||
2015 | lua_insert(L, -1) --> 30 10 20 30 40* (no effect) | ||
2016 | lua_replace(L, 2) --> 30 40 20 30* | ||
2017 | lua_settop(L, -3) --> 30 40* | ||
2018 | lua_settop(L, 6) --> 30 40 nil nil nil nil* | ||
2019 | \end{verbatim} | ||
2020 | |||
2021 | |||
2022 | |||
2023 | \subsection{Querying the Stack} | ||
2024 | |||
2025 | To check the type of a stack element, | ||
2026 | the following functions are available: | ||
2027 | \begin{verbatim} | ||
2028 | int lua_type (lua_State *L, int index); | ||
2029 | int lua_isnil (lua_State *L, int index); | ||
2030 | int lua_isboolean (lua_State *L, int index); | ||
2031 | int lua_isnumber (lua_State *L, int index); | ||
2032 | int lua_isstring (lua_State *L, int index); | ||
2033 | int lua_istable (lua_State *L, int index); | ||
2034 | int lua_isfunction (lua_State *L, int index); | ||
2035 | int lua_iscfunction (lua_State *L, int index); | ||
2036 | int lua_isuserdata (lua_State *L, int index); | ||
2037 | int lua_islightuserdata (lua_State *L, int index); | ||
2038 | \end{verbatim} | ||
2039 | \DefAPI{lua_type} | ||
2040 | \DefAPI{lua_isnil}\DefAPI{lua_isnumber}\DefAPI{lua_isstring} | ||
2041 | \DefAPI{lua_istable}\DefAPI{lua_isboolean} | ||
2042 | \DefAPI{lua_isfunction}\DefAPI{lua_iscfunction} | ||
2043 | \DefAPI{lua_isuserdata}\DefAPI{lua_islightuserdata} | ||
2044 | These functions can be called with any acceptable index. | ||
2045 | |||
2046 | \verb|lua_type| returns the type of a value in the stack, | ||
2047 | or \verb|LUA_TNONE| for a non-valid index | ||
2048 | (that is, if that stack position is \Q{empty}). | ||
2049 | The types are coded by the following constants | ||
2050 | defined in \verb|lua.h|: | ||
2051 | \verb|LUA_TNIL|, | ||
2052 | \verb|LUA_TNUMBER|, | ||
2053 | \verb|LUA_TBOOLEAN|, | ||
2054 | \verb|LUA_TSTRING|, | ||
2055 | \verb|LUA_TTABLE|, | ||
2056 | \verb|LUA_TFUNCTION|, | ||
2057 | \verb|LUA_TUSERDATA|, | ||
2058 | \verb|LUA_TTHREAD|, | ||
2059 | \verb|LUA_TLIGHTUSERDATA|. | ||
2060 | The following function translates such constants to a type name: | ||
2061 | \begin{verbatim} | ||
2062 | const char *lua_typename (lua_State *L, int type); | ||
2063 | \end{verbatim} | ||
2064 | \DefAPI{lua_typename} | ||
2065 | |||
2066 | The \verb|lua_is*| functions return\Nb{}1 if the object is compatible | ||
2067 | with the given type, and 0 otherwise. | ||
2068 | \verb|lua_isboolean| is an exception to this rule, | ||
2069 | and it succeeds only for boolean values | ||
2070 | (otherwise it would be useless, | ||
2071 | as any value has a boolean value). | ||
2072 | They always return 0 for a non-valid index. | ||
2073 | \verb|lua_isnumber| accepts numbers and numerical strings, | ||
2074 | \verb|lua_isstring| accepts strings and numbers \see{coercion}, | ||
2075 | \verb|lua_isfunction| accepts both Lua functions and C\Nb{}functions, | ||
2076 | and \verb|lua_isuserdata| accepts both full and light userdata. | ||
2077 | To distinguish between Lua functions and C\Nb{}functions, | ||
2078 | you should use \verb|lua_iscfunction|. | ||
2079 | To distinguish between full and light userdata, | ||
2080 | you can use \verb|lua_islightuserdata|. | ||
2081 | To distinguish between numbers and numerical strings, | ||
2082 | you can use \verb|lua_type|. | ||
2083 | |||
2084 | The API also has functions to compare two values in the stack: | ||
2085 | \begin{verbatim} | ||
2086 | int lua_equal (lua_State *L, int index1, int index2); | ||
2087 | int lua_lessthan (lua_State *L, int index1, int index2); | ||
2088 | \end{verbatim} | ||
2089 | \DefAPI{lua_equal} \DefAPI{lua_lessthan} | ||
2090 | These functions are equivalent to their counterparts in Lua \see{rel-ops}. | ||
2091 | Both functions return 0 if any of the indices are non-valid. | ||
2092 | |||
2093 | \subsection{Getting Values from the Stack}\label{lua-to} | ||
2094 | |||
2095 | To translate a value in the stack to a specific C\Nb{}type, | ||
2096 | you can use the following conversion functions: | ||
2097 | \begin{verbatim} | ||
2098 | int lua_toboolean (lua_State *L, int index); | ||
2099 | lua_Number lua_tonumber (lua_State *L, int index); | ||
2100 | const char *lua_tostring (lua_State *L, int index); | ||
2101 | size_t lua_strlen (lua_State *L, int index); | ||
2102 | lua_CFunction lua_tocfunction (lua_State *L, int index); | ||
2103 | void *lua_touserdata (lua_State *L, int index); | ||
2104 | \end{verbatim} | ||
2105 | \DefAPI{lua_tonumber}\DefAPI{lua_tostring}\DefAPI{lua_strlen} | ||
2106 | \DefAPI{lua_tocfunction}\DefAPI{lua_touserdata}\DefAPI{lua_toboolean} | ||
2107 | These functions can be called with any acceptable index. | ||
2108 | When called with a non-valid index, | ||
2109 | they act as if the given value had an incorrect type. | ||
2110 | |||
2111 | \verb|lua_toboolean| converts the Lua value at the given index | ||
2112 | to a C \Q{boolean} value (that is, 0 or 1). | ||
2113 | Like all tests in Lua, it returns 1 for any Lua value different from | ||
2114 | \False{} and \nil{}; | ||
2115 | otherwise it returns 0. | ||
2116 | It also returns 0 when called with a non-valid index. | ||
2117 | (If you want to accept only real boolean values, | ||
2118 | use \verb|lua_isboolean| to test the type of the value.) | ||
2119 | |||
2120 | \verb|lua_tonumber| converts the Lua value at the given index | ||
2121 | to a number (by default, \verb|lua_Number| is \verb|double|). | ||
2122 | \DefAPI{lua_Number} | ||
2123 | The Lua value must be a number or a string convertible to number | ||
2124 | \see{coercion}; otherwise, \verb|lua_tonumber| returns\Nb{}0. | ||
2125 | |||
2126 | \verb|lua_tostring| converts the Lua value at the given index to a string | ||
2127 | (\verb|const char*|). | ||
2128 | The Lua value must be a string or a number; | ||
2129 | otherwise, the function returns \verb|NULL|. | ||
2130 | If the value is a number, | ||
2131 | then \verb|lua_tostring| also | ||
2132 | \emph{changes the actual value in the stack to a string}. | ||
2133 | (This change confuses \verb|lua_next| | ||
2134 | when \verb|lua_tostring| is applied to keys.) | ||
2135 | \verb|lua_tostring| returns a fully aligned pointer | ||
2136 | to a string inside the Lua environment. | ||
2137 | This string always has a zero (\verb|'\0'|) | ||
2138 | after its last character (as in\Nb{}C), | ||
2139 | but may contain other zeros in its body. | ||
2140 | If you do not know whether a string may contain zeros, | ||
2141 | you can use \verb|lua_strlen| to get its actual length. | ||
2142 | Because Lua has garbage collection, | ||
2143 | there is no guarantee that the pointer returned by \verb|lua_tostring| | ||
2144 | will be valid after the corresponding value is removed from the stack. | ||
2145 | If you need the string after the current function returns, | ||
2146 | then you should duplicate it (or put it into the registry \see{registry}). | ||
2147 | |||
2148 | \verb|lua_tocfunction| converts a value in the stack to a C\Nb{}function. | ||
2149 | This value must be a C\Nb{}function; | ||
2150 | otherwise, \verb|lua_tocfunction| returns \verb|NULL|. | ||
2151 | The type \verb|lua_CFunction| is explained in \See{LuacallC}. | ||
2152 | |||
2153 | \verb|lua_touserdata| is explained in \See{userdata}. | ||
2154 | |||
2155 | |||
2156 | \subsection{Pushing Values onto the Stack} | ||
2157 | |||
2158 | The API has the following functions to | ||
2159 | push C\Nb{}values onto the stack: | ||
2160 | \begin{verbatim} | ||
2161 | void lua_pushboolean (lua_State *L, int b); | ||
2162 | void lua_pushnumber (lua_State *L, lua_Number n); | ||
2163 | void lua_pushlstring (lua_State *L, const char *s, size_t len); | ||
2164 | void lua_pushstring (lua_State *L, const char *s); | ||
2165 | void lua_pushnil (lua_State *L); | ||
2166 | void lua_pushcfunction (lua_State *L, lua_CFunction f); | ||
2167 | void lua_pushlightuserdata (lua_State *L, void *p); | ||
2168 | \end{verbatim} | ||
2169 | |||
2170 | \DefAPI{lua_pushnumber}\DefAPI{lua_pushlstring}\DefAPI{lua_pushstring} | ||
2171 | \DefAPI{lua_pushcfunction}\DefAPI{lua_pushlightuserdata}\DefAPI{lua_pushboolean} | ||
2172 | \DefAPI{lua_pushnil}\label{pushing} | ||
2173 | These functions receive a C\Nb{}value, | ||
2174 | convert it to a corresponding Lua value, | ||
2175 | and push the result onto the stack. | ||
2176 | In particular, \verb|lua_pushlstring| and \verb|lua_pushstring| | ||
2177 | make an internal copy of the given string. | ||
2178 | \verb|lua_pushstring| can only be used to push proper C\Nb{}strings | ||
2179 | (that is, strings that end with a zero and do not contain embedded zeros); | ||
2180 | otherwise, you should use the more general \verb|lua_pushlstring|, | ||
2181 | which accepts an explicit size. | ||
2182 | |||
2183 | You can also push \Q{formatted} strings: | ||
2184 | \begin{verbatim} | ||
2185 | const char *lua_pushfstring (lua_State *L, const char *fmt, ...); | ||
2186 | const char *lua_pushvfstring (lua_State *L, const char *fmt, | ||
2187 | va_list argp); | ||
2188 | \end{verbatim} | ||
2189 | \DefAPI{lua_pushfstring}\DefAPI{lua_pushvfstring} | ||
2190 | Both functions push onto the stack a formatted string, | ||
2191 | and return a pointer to that string. | ||
2192 | These functions are similar to \verb|sprintf| and \verb|vsprintf|, | ||
2193 | but with some important differences: | ||
2194 | \begin{itemize} | ||
2195 | \item You do not have to allocate the space for the result; | ||
2196 | the result is a Lua string, and Lua takes care of memory allocation | ||
2197 | (and deallocation, later). | ||
2198 | \item The conversion specifiers are quite restricted. | ||
2199 | There are no flags, widths, or precisions. | ||
2200 | The conversion specifiers can be simply | ||
2201 | \verb|%%| (inserts a \verb|%| in the string), | ||
2202 | \verb|%s| (inserts a zero-terminated string, with no size restrictions), | ||
2203 | \verb|%f| (inserts a \verb|lua_Number|), | ||
2204 | \verb|%d| (inserts an \verb|int|), | ||
2205 | \verb|%c| (inserts an \verb|int| as a character). | ||
2206 | \end{itemize} | ||
2207 | |||
2208 | |||
2209 | \subsection{Controlling Garbage Collection}\label{GC-API} | ||
2210 | |||
2211 | Lua uses two numbers to control its garbage collection: | ||
2212 | the \emph{count} and the \emph{threshold} \see{GC}. | ||
2213 | The first counts the amount of memory in use by Lua; | ||
2214 | when the count reaches the threshold, | ||
2215 | Lua runs its garbage collector. | ||
2216 | After the collection, the count is updated, | ||
2217 | and the threshold is set to twice the count value. | ||
2218 | |||
2219 | You can access the current values of these two numbers through the | ||
2220 | following functions: | ||
2221 | \begin{verbatim} | ||
2222 | int lua_getgccount (lua_State *L); | ||
2223 | int lua_getgcthreshold (lua_State *L); | ||
2224 | \end{verbatim} | ||
2225 | \DefAPI{lua_getgcthreshold} \DefAPI{lua_getgccount} | ||
2226 | Both return their respective values in Kbytes. | ||
2227 | You can change the threshold value with | ||
2228 | \begin{verbatim} | ||
2229 | void lua_setgcthreshold (lua_State *L, int newthreshold); | ||
2230 | \end{verbatim} | ||
2231 | \DefAPI{lua_setgcthreshold} | ||
2232 | Again, the \verb|newthreshold| value is given in Kbytes. | ||
2233 | When you call this function, | ||
2234 | Lua sets the new threshold and checks it against the byte counter. | ||
2235 | If the new threshold is smaller than the byte counter, | ||
2236 | then Lua immediately runs the garbage collector. | ||
2237 | In particular | ||
2238 | \verb|lua_setgcthreshold(L,0)| forces a garbage collection. | ||
2239 | After the collection, | ||
2240 | a new threshold is set according to the previous rule. | ||
2241 | |||
2242 | \C{TODO do we need a new way to do that??} | ||
2243 | \C{ If you want to change the adaptive behavior of the garbage collector,} | ||
2244 | \C{ you can use the garbage-collection tag method for \nil{} } | ||
2245 | \C{ to set your own threshold} | ||
2246 | \C{ (the tag method is called after Lua resets the threshold).} | ||
2247 | |||
2248 | |||
2249 | \subsection{Userdata}\label{userdata} | ||
2250 | |||
2251 | Userdata represents C values in Lua. | ||
2252 | Lua supports two types of userdata: | ||
2253 | \Def{full userdata} and \Def{light userdata}. | ||
2254 | |||
2255 | A full userdata represents a block of memory. | ||
2256 | It is an object (like a table): | ||
2257 | You must create it, it can have its own metatable, | ||
2258 | and you can detect when it is being collected. | ||
2259 | A full userdata is only equal to itself (under raw equality). | ||
2260 | |||
2261 | A light userdata represents a pointer. | ||
2262 | It is a value (like a number): | ||
2263 | You do not create it, it has no metatables, | ||
2264 | it is not collected (as it was never created). | ||
2265 | A light userdata is equal to \Q{any} | ||
2266 | light userdata with the same address. | ||
2267 | |||
2268 | In Lua code, there is no way to test whether a userdata is full or light; | ||
2269 | both have type \verb|userdata|. | ||
2270 | In C code, \verb|lua_type| returns \verb|LUA_TUSERDATA| for full userdata, | ||
2271 | and \verb|LUA_LIGHTUSERDATA| for light userdata. | ||
2272 | |||
2273 | You can create new full userdata with the following function: | ||
2274 | \begin{verbatim} | ||
2275 | void *lua_newuserdata (lua_State *L, size_t size); | ||
2276 | \end{verbatim} | ||
2277 | \DefAPI{lua_newuserdata} | ||
2278 | It allocates a new block of memory with the given size, | ||
2279 | pushes on the stack a new userdata with the block address, | ||
2280 | and returns this address. | ||
2281 | |||
2282 | To push a light userdata into the stack you use | ||
2283 | \verb|lua_pushlightuserdata| \see{pushing}. | ||
2284 | |||
2285 | \verb|lua_touserdata| \see{lua-to} retrieves the value of a userdata. | ||
2286 | When applied on a full userdata, it returns the address of its block; | ||
2287 | when applied on a light userdata, it returns its pointer; | ||
2288 | when applied on a non-userdata value, it returns \verb|NULL|. | ||
2289 | |||
2290 | When Lua collects a full userdata, | ||
2291 | it calls its \verb|gc| metamethod, if any, | ||
2292 | and then it frees its corresponding memory. | ||
2293 | |||
2294 | |||
2295 | \subsection{Metatables} | ||
2296 | |||
2297 | The following functions allow you to manipulate the metatables | ||
2298 | of an object: | ||
2299 | \begin{verbatim} | ||
2300 | int lua_getmetatable (lua_State *L, int objindex); | ||
2301 | int lua_setmetatable (lua_State *L, int objindex); | ||
2302 | \end{verbatim} | ||
2303 | \DefAPI{lua_getmetatable}\DefAPI{lua_setmetatable} | ||
2304 | Both get at \verb|objindex| a valid index for an object. | ||
2305 | \verb|lua_getmetatable| pushes on the stack the metatable of that object; | ||
2306 | \verb|lua_setmetatable| sets the table on the top of the stack as the | ||
2307 | new metatable for that object (and pops the table). | ||
2308 | |||
2309 | If the object does not have a metatable, | ||
2310 | \verb|lua_getmetatable| returns 0, and pushes nothing on the stack. | ||
2311 | \verb|lua_setmetatable| returns 0 when it cannot | ||
2312 | set the metatable of the given object | ||
2313 | (that is, when the object is not a userdata nor a table); | ||
2314 | even then it pops the table from the stack. | ||
2315 | |||
2316 | \subsection{Loading Lua Chunks} | ||
2317 | |||
2318 | You can load a Lua chunk with | ||
2319 | \begin{verbatim} | ||
2320 | typedef const char * (*lua_Chunkreader) | ||
2321 | (lua_State *L, void *data, size_t *size); | ||
2322 | |||
2323 | int lua_load (lua_State *L, lua_Chunkreader reader, void *data, | ||
2324 | const char *chunkname); | ||
2325 | \end{verbatim} | ||
2326 | \DefAPI{Chunkreader}\DefAPI{lua_load} | ||
2327 | The return values of \verb|lua_load| are: | ||
2328 | \begin{itemize} | ||
2329 | \item 0 \Em{} no errors; | ||
2330 | \item \IndexAPI{LUA_ERRSYNTAX} \Em{} | ||
2331 | syntax error during pre-compilation. | ||
2332 | \item \IndexAPI{LUA_ERRMEM} \Em{} | ||
2333 | memory allocation error. | ||
2334 | \end{itemize} | ||
2335 | If there are no errors, | ||
2336 | \verb|lua_load| pushes the compiled chunk as a Lua | ||
2337 | function on top of the stack. | ||
2338 | Otherwise, it pushes an error message. | ||
2339 | |||
2340 | \verb|lua_load| automatically detects whether the chunk is text or binary, | ||
2341 | and loads it accordingly (see program \IndexVerb{luac}). | ||
2342 | |||
2343 | \verb|lua_load| uses the \emph{reader} to read the chunk. | ||
2344 | Everytime it needs another piece of the chunk, | ||
2345 | it calls the reader, | ||
2346 | passing along its \verb|data| parameter. | ||
2347 | The reader must return a pointer to a block of memory | ||
2348 | with a new part of the chunk, | ||
2349 | and set \verb|size| to the block size. | ||
2350 | To signal the end of the chunk, the reader must return \verb|NULL|. | ||
2351 | The reader function may return pieces of any size greater than zero. | ||
2352 | |||
2353 | In the current implementation, | ||
2354 | the reader function cannot call any Lua function; | ||
2355 | to ensure that, it always receives \verb|NULL| as the Lua state. | ||
2356 | |||
2357 | The \emph{chunkname} is used for error messages | ||
2358 | and debug information \see{debugI}. | ||
2359 | |||
2360 | See the auxiliary library (\verb|lauxlib|) | ||
2361 | for examples of how to use \verb|lua_load|, | ||
2362 | and for some ready-to-use functions to load chunks | ||
2363 | from files and from strings. | ||
2364 | |||
2365 | \subsection{Manipulating Tables} | ||
2366 | |||
2367 | Tables are created by calling | ||
2368 | the function | ||
2369 | \begin{verbatim} | ||
2370 | void lua_newtable (lua_State *L); | ||
2371 | \end{verbatim} | ||
2372 | \DefAPI{lua_newtable} | ||
2373 | This function creates a new, empty table and pushes it onto the stack. | ||
2374 | |||
2375 | To read a value from a table that resides somewhere in the stack, | ||
2376 | call | ||
2377 | \begin{verbatim} | ||
2378 | void lua_gettable (lua_State *L, int index); | ||
2379 | \end{verbatim} | ||
2380 | \DefAPI{lua_gettable} | ||
2381 | where \verb|index| points to the table. | ||
2382 | \verb|lua_gettable| pops a key from the stack | ||
2383 | and returns (on the stack) the contents of the table at that key. | ||
2384 | The table is left where it was in the stack; | ||
2385 | this is convenient for getting multiple values from a table. | ||
2386 | |||
2387 | As in Lua, this function may trigger a metamethod | ||
2388 | for the \Q{index} event \see{metatable}. | ||
2389 | To get the real value of any table key, | ||
2390 | without invoking any metamethod, | ||
2391 | use the \emph{raw} version: | ||
2392 | \begin{verbatim} | ||
2393 | void lua_rawget (lua_State *L, int index); | ||
2394 | \end{verbatim} | ||
2395 | \DefAPI{lua_rawget} | ||
2396 | |||
2397 | To store a value into a table that resides somewhere in the stack, | ||
2398 | you push the key and the value onto the stack | ||
2399 | (in this order), | ||
2400 | and then call | ||
2401 | \begin{verbatim} | ||
2402 | void lua_settable (lua_State *L, int index); | ||
2403 | \end{verbatim} | ||
2404 | \DefAPI{lua_settable} | ||
2405 | where \verb|index| points to the table. | ||
2406 | \verb|lua_settable| pops from the stack both the key and the value. | ||
2407 | The table is left where it was in the stack; | ||
2408 | this is convenient for setting multiple values in a table. | ||
2409 | |||
2410 | As in Lua, this operation may trigger a metamethod | ||
2411 | for the \Q{settable} or \Q{newindex} events. | ||
2412 | To set the real value of any table index, | ||
2413 | without invoking any metamethod, | ||
2414 | use the \emph{raw} version: | ||
2415 | \begin{verbatim} | ||
2416 | void lua_rawset (lua_State *L, int index); | ||
2417 | \end{verbatim} | ||
2418 | \DefAPI{lua_rawset} | ||
2419 | |||
2420 | You can traverse a table with the function | ||
2421 | \begin{verbatim} | ||
2422 | int lua_next (lua_State *L, int index); | ||
2423 | \end{verbatim} | ||
2424 | \DefAPI{lua_next} | ||
2425 | where \verb|index| points to the table to be traversed. | ||
2426 | The function pops a key from the stack, | ||
2427 | and pushes a key-value pair from the table | ||
2428 | (the \Q{next} pair after the given key). | ||
2429 | If there are no more elements, then \verb|lua_next| returns 0 | ||
2430 | (and pushes nothing). | ||
2431 | Use a \nil{} key to signal the start of a traversal. | ||
2432 | |||
2433 | A typical traversal looks like this: | ||
2434 | \begin{verbatim} | ||
2435 | /* table is in the stack at index `t' */ | ||
2436 | lua_pushnil(L); /* first key */ | ||
2437 | while (lua_next(L, t) != 0) { | ||
2438 | /* `key' is at index -2 and `value' at index -1 */ | ||
2439 | printf("%s - %s\n", | ||
2440 | lua_typename(L, lua_type(L, -2)), lua_typename(L, lua_type(L, -1))); | ||
2441 | lua_pop(L, 1); /* removes `value'; keeps `key' for next iteration */ | ||
2442 | } | ||
2443 | \end{verbatim} | ||
2444 | |||
2445 | NOTE: | ||
2446 | While traversing a table, | ||
2447 | do not call \verb|lua_tostring| on a key, | ||
2448 | unless you know the key is actually a string. | ||
2449 | Recall that \verb|lua_tostring| \emph{changes} the value at the given index; | ||
2450 | this confuses the next call to \verb|lua_next|. | ||
2451 | |||
2452 | \subsection{Manipulating Global Variables} \label{globals} | ||
2453 | |||
2454 | All global variables are kept in an ordinary Lua table. | ||
2455 | This table is always at pseudo-index \IndexAPI{LUA_GLOBALSINDEX}. | ||
2456 | |||
2457 | To access and change the value of global variables, | ||
2458 | you can use regular table operations over the global table. | ||
2459 | For instance, to access the value of a global variable, do | ||
2460 | \begin{verbatim} | ||
2461 | lua_pushstring(L, varname); | ||
2462 | lua_gettable(L, LUA_GLOBALSINDEX); | ||
2463 | \end{verbatim} | ||
2464 | |||
2465 | You can change the global table of a Lua thread using \verb|lua_replace|. | ||
2466 | |||
2467 | |||
2468 | \subsection{Using Tables as Arrays} | ||
2469 | The API has functions that help to use Lua tables as arrays, | ||
2470 | that is, | ||
2471 | tables indexed by numbers only: | ||
2472 | \begin{verbatim} | ||
2473 | void lua_rawgeti (lua_State *L, int index, int n); | ||
2474 | void lua_rawseti (lua_State *L, int index, int n); | ||
2475 | \end{verbatim} | ||
2476 | \DefAPI{lua_rawgeti} | ||
2477 | \DefAPI{lua_rawseti} | ||
2478 | |||
2479 | \verb|lua_rawgeti| pushes the value of the \M{n}-th element of the table | ||
2480 | at stack position \verb|index|. | ||
2481 | \verb|lua_rawseti| sets the value of the \M{n}-th element of the table | ||
2482 | at stack position \verb|index| to the value at the top of the stack, | ||
2483 | removing this value from the stack. | ||
2484 | |||
2485 | |||
2486 | \subsection{Calling Functions} | ||
2487 | |||
2488 | Functions defined in Lua | ||
2489 | and C\Nb{}functions registered in Lua | ||
2490 | can be called from the host program. | ||
2491 | This is done using the following protocol: | ||
2492 | First, the function to be called is pushed onto the stack; | ||
2493 | then, the arguments to the function are pushed | ||
2494 | in \emph{direct order}, that is, the first argument is pushed first. | ||
2495 | Finally, the function is called using | ||
2496 | \begin{verbatim} | ||
2497 | void lua_call (lua_State *L, int nargs, int nresults); | ||
2498 | \end{verbatim} | ||
2499 | \DefAPI{lua_call} | ||
2500 | \verb|nargs| is the number of arguments that you pushed onto the stack. | ||
2501 | All arguments and the function value are popped from the stack, | ||
2502 | and the function results are pushed. | ||
2503 | The number of results are adjusted to \verb|nresults|, | ||
2504 | unless \verb|nresults| is \IndexAPI{LUA_MULTRET}. | ||
2505 | In that case, \emph{all} results from the function are pushed. | ||
2506 | Lua takes care that the returned values fit into the stack space. | ||
2507 | The function results are pushed onto the stack in direct order | ||
2508 | (the first result is pushed first), | ||
2509 | so that after the call the last result is on the top. | ||
2510 | |||
2511 | The following example shows how the host program may do the | ||
2512 | equivalent to this Lua code: | ||
2513 | \begin{verbatim} | ||
2514 | a = f("how", t.x, 14) | ||
2515 | \end{verbatim} | ||
2516 | Here it is in\Nb{}C: | ||
2517 | \begin{verbatim} | ||
2518 | lua_pushstring(L, "t"); | ||
2519 | lua_gettable(L, LUA_GLOBALSINDEX); /* global `t' (for later use) */ | ||
2520 | lua_pushstring(L, "a"); /* var name */ | ||
2521 | lua_pushstring(L, "f"); /* function name */ | ||
2522 | lua_gettable(L, LUA_GLOBALSINDEX); /* function to be called */ | ||
2523 | lua_pushstring(L, "how"); /* 1st argument */ | ||
2524 | lua_pushstring(L, "x"); /* push the string "x" */ | ||
2525 | lua_gettable(L, -5); /* push result of t.x (2nd arg) */ | ||
2526 | lua_pushnumber(L, 14); /* 3rd argument */ | ||
2527 | lua_call(L, 3, 1); /* call function with 3 arguments and 1 result */ | ||
2528 | lua_settable(L, LUA_GLOBALSINDEX); /* set global variable `a' */ | ||
2529 | lua_pop(L, 1); /* remove `t' from the stack */ | ||
2530 | \end{verbatim} | ||
2531 | Notice that the code above is \Q{balanced}: | ||
2532 | at its end, the stack is back to its original configuration. | ||
2533 | This is considered good programming practice. | ||
2534 | |||
2535 | (We did this example using only the raw functions provided by Lua's API, | ||
2536 | to show all the details. | ||
2537 | Usually programmers use several macros and auxiliary functions that | ||
2538 | provide higher level access to Lua.) | ||
2539 | |||
2540 | |||
2541 | \subsection{Protected Calls}\label{pcall} | ||
2542 | |||
2543 | When you call a function with \verb|lua_call|, | ||
2544 | any error inside the called function is propagated upwards | ||
2545 | (with a \verb|longjmp|). | ||
2546 | If you need to handle errors, | ||
2547 | then you should use \verb|lua_pcall|: | ||
2548 | \begin{verbatim} | ||
2549 | int lua_pcall (lua_State *L, int nargs, int nresults, int errfunc); | ||
2550 | \end{verbatim} | ||
2551 | Both \verb|nargs| and \verb|nresults| have the same meaning as | ||
2552 | in \verb|lua_call|. | ||
2553 | If there are no errors during the call, | ||
2554 | \verb|lua_pcall| behaves exactly like \verb|lua_call|. | ||
2555 | Like \verb|lua_call|, | ||
2556 | \verb|lua_pcall| always removes the function | ||
2557 | and its arguments from the stack. | ||
2558 | However, if there is any error, | ||
2559 | \verb|lua_pcall| catches it, | ||
2560 | pushes a single value at the stack (the error message), | ||
2561 | and returns an error code. | ||
2562 | |||
2563 | If \verb|errfunc| is 0, | ||
2564 | then the error message returned is exactly the original error message. | ||
2565 | Otherwise, \verb|errfunc| gives the stack index for an | ||
2566 | \emph{error handler function}. | ||
2567 | (In the current implementation, that index cannot be a pseudo-index.) | ||
2568 | In case of runtime errors, | ||
2569 | that function will be called with the error message, | ||
2570 | and its return value will be the message returned by \verb|lua_pcall|. | ||
2571 | |||
2572 | Typically, the error handler function is used to add more debug | ||
2573 | information to the error message, such as a stack traceback. | ||
2574 | Such information cannot be gathered after the return of \verb|lua_pcall|, | ||
2575 | since by then the stack has unwound. | ||
2576 | |||
2577 | The \verb|lua_pcall| function returns 0 in case of success, | ||
2578 | or one of the following error codes | ||
2579 | (defined in \verb|lua.h|): | ||
2580 | \begin{itemize} | ||
2581 | \item \IndexAPI{LUA_ERRRUN} \Em{} a runtime error. | ||
2582 | \item \IndexAPI{LUA_ERRMEM} \Em{} memory allocation error. | ||
2583 | For such errors, Lua does not call the error handler function. | ||
2584 | \item \IndexAPI{LUA_ERRERR} \Em{} | ||
2585 | error while running the error handler function. | ||
2586 | \end{itemize} | ||
2587 | |||
2588 | |||
2589 | \medskip | ||
2590 | |||
2591 | >>>> | ||
2592 | \C{ TODO: mover essas 2 para algum lugar melhor.} | ||
2593 | Some special Lua functions have their own C\Nb{}interfaces. | ||
2594 | The host program can generate a Lua error calling the function | ||
2595 | \begin{verbatim} | ||
2596 | void lua_error (lua_State *L); | ||
2597 | \end{verbatim} | ||
2598 | \DefAPI{lua_error} | ||
2599 | The error message (which actually can be any type of object) | ||
2600 | is popped from the stack. | ||
2601 | This function never returns. | ||
2602 | If \verb|lua_error| is called from a C\Nb{}function that | ||
2603 | has been called from Lua, | ||
2604 | then the corresponding Lua execution terminates, | ||
2605 | as if an error had occurred inside Lua code. | ||
2606 | Otherwise, the whole host program terminates with a call to | ||
2607 | \verb|exit(EXIT_FAILURE)|. | ||
2608 | \C{ TODO: at_panic} | ||
2609 | |||
2610 | The function | ||
2611 | \begin{verbatim} | ||
2612 | void lua_concat (lua_State *L, int n); | ||
2613 | \end{verbatim} | ||
2614 | \DefAPI{lua_concat} | ||
2615 | concatenates the \verb|n| values at the top of the stack, | ||
2616 | pops them, and leaves the result at the top. | ||
2617 | If \verb|n| is 1, the result is that single string | ||
2618 | (that is, the function does nothing); | ||
2619 | if \verb|n| is 0, the result is the empty string. | ||
2620 | Concatenation is done following the usual semantics of Lua | ||
2621 | \see{concat}. | ||
2622 | |||
2623 | |||
2624 | \subsection{Defining C Functions} \label{LuacallC} | ||
2625 | |||
2626 | Lua can be extended with functions written in\Nb{}C. | ||
2627 | These functions must be of type \verb|lua_CFunction|, | ||
2628 | which is defined as | ||
2629 | \begin{verbatim} | ||
2630 | typedef int (*lua_CFunction) (lua_State *L); | ||
2631 | \end{verbatim} | ||
2632 | \DefAPI{lua_CFunction} | ||
2633 | A C\Nb{}function receives a Lua environment and returns an integer, | ||
2634 | the number of values it has returned to Lua. | ||
2635 | |||
2636 | In order to communicate properly with Lua, | ||
2637 | a C\Nb{}function must follow the following protocol, | ||
2638 | which defines the way parameters and results are passed: | ||
2639 | A C\Nb{}function receives its arguments from Lua in its stack, | ||
2640 | in direct order (the first argument is pushed first). | ||
2641 | So, when the function starts, | ||
2642 | its first argument (if any) is at index 1. | ||
2643 | To return values to Lua, a C\Nb{}function just pushes them onto the stack, | ||
2644 | in direct order (the first result is pushed first), | ||
2645 | and returns the number of results. | ||
2646 | Any other value in the stack below the results will be properly | ||
2647 | discharged by Lua. | ||
2648 | Like a Lua function, a C\Nb{}function called by Lua can also return | ||
2649 | many results. | ||
2650 | |||
2651 | As an example, the following function receives a variable number | ||
2652 | of numerical arguments and returns their average and sum: | ||
2653 | \begin{verbatim} | ||
2654 | static int foo (lua_State *L) { | ||
2655 | int n = lua_gettop(L); /* number of arguments */ | ||
2656 | lua_Number sum = 0; | ||
2657 | int i; | ||
2658 | for (i = 1; i <= n; i++) { | ||
2659 | if (!lua_isnumber(L, i)) { | ||
2660 | lua_pushstring(L, "incorrect argument to function `average'"); | ||
2661 | lua_error(L); | ||
2662 | } | ||
2663 | sum += lua_tonumber(L, i); | ||
2664 | } | ||
2665 | lua_pushnumber(L, sum/n); /* first result */ | ||
2666 | lua_pushnumber(L, sum); /* second result */ | ||
2667 | return 2; /* number of results */ | ||
2668 | } | ||
2669 | \end{verbatim} | ||
2670 | |||
2671 | To register a C\Nb{}function to Lua, | ||
2672 | there is the following convenience macro: | ||
2673 | \begin{verbatim} | ||
2674 | #define lua_register(L,n,f) \ | ||
2675 | (lua_pushstring(L, n), \ | ||
2676 | lua_pushcfunction(L, f), \ | ||
2677 | lua_settable(L, LUA_GLOBALSINDEX)) | ||
2678 | /* const char *n; */ | ||
2679 | /* lua_CFunction f; */ | ||
2680 | \end{verbatim} | ||
2681 | \DefAPI{lua_register} | ||
2682 | which receives the name the function will have in Lua, | ||
2683 | and a pointer to the function. | ||
2684 | Thus, | ||
2685 | the C\Nb{}function `\verb|foo|' above may be registered in Lua as `\verb|average|' | ||
2686 | by calling | ||
2687 | \begin{verbatim} | ||
2688 | lua_register(L, "average", foo); | ||
2689 | \end{verbatim} | ||
2690 | |||
2691 | \subsection{Defining C Closures} \label{c-closure} | ||
2692 | |||
2693 | When a C\Nb{}function is created, | ||
2694 | it is possible to associate some values with it, | ||
2695 | thus creating a \IndexEmph{C\Nb{}closure}; | ||
2696 | these values are then accessible to the function whenever it is called. | ||
2697 | To associate values with a C\Nb{}function, | ||
2698 | first these values should be pushed onto the stack | ||
2699 | (when there are multiple values, the first value is pushed first). | ||
2700 | Then the function | ||
2701 | \begin{verbatim} | ||
2702 | void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n); | ||
2703 | \end{verbatim} | ||
2704 | \DefAPI{lua_pushcclosure} | ||
2705 | is used to push the C\Nb{}function onto the stack, | ||
2706 | with the argument \verb|n| telling how many values should be | ||
2707 | associated with the function | ||
2708 | (\verb|lua_pushcclosure| also pops these values from the stack); | ||
2709 | in fact, the macro \verb|lua_pushcfunction| is defined as | ||
2710 | \verb|lua_pushcclosure| with \verb|n| set to 0. | ||
2711 | |||
2712 | Then, whenever the C\Nb{}function is called, | ||
2713 | those values are located at specific pseudo-indices. | ||
2714 | Those pseudo-indices are produced by a macro \IndexAPI{lua_upvalueindex}. | ||
2715 | The first value associated with a function is at position | ||
2716 | \verb|lua_upvalueindex(1)|, and so on. | ||
2717 | |||
2718 | For examples of C\Nb{}functions and closures, see files | ||
2719 | \verb|lbaselib.c|, \verb|liolib.c|, \verb|lmathlib.c|, and \verb|lstrlib.c| | ||
2720 | in the official Lua distribution. | ||
2721 | |||
2722 | |||
2723 | \subsubsection*{Registry} \label{registry} | ||
2724 | |||
2725 | Lua provides a pre-defined table that can be used by any C\Nb{}code to | ||
2726 | store whatever Lua value it needs to store, | ||
2727 | especially if the C\Nb{}code needs to keep that Lua value | ||
2728 | outside the life span of a C\Nb{}function. | ||
2729 | This table is always located at pseudo-index | ||
2730 | \IndexAPI{LUA_REGISTRYINDEX}. | ||
2731 | Any C\Nb{}library can store data into this table, | ||
2732 | as long as it chooses keys different from other libraries. | ||
2733 | Typically, you should use as key a string containing your library name, | ||
2734 | or a light userdata with the address of a C object in your code. | ||
2735 | |||
2736 | The integer keys in the registry are used by the reference mechanism, | ||
2737 | implemented by the auxiliary library, | ||
2738 | and therefore should not be used by other purposes. | ||
2739 | |||
2740 | |||
2741 | \C{-------------------------------------------------------------------------} | ||
2742 | \section{The Debug Interface} \label{debugI} | ||
2743 | |||
2744 | Lua has no built-in debugging facilities. | ||
2745 | Instead, it offers a special interface | ||
2746 | by means of functions and \emph{hooks}. | ||
2747 | This interface allows the construction of different | ||
2748 | kinds of debuggers, profilers, and other tools | ||
2749 | that need \Q{inside information} from the interpreter. | ||
2750 | |||
2751 | \subsection{Stack and Function Information} | ||
2752 | |||
2753 | The main function to get information about the interpreter stack is | ||
2754 | \begin{verbatim} | ||
2755 | int lua_getstack (lua_State *L, int level, lua_Debug *ar); | ||
2756 | \end{verbatim} | ||
2757 | \DefAPI{lua_getstack} | ||
2758 | This function fills parts of a \verb|lua_Debug| structure with | ||
2759 | an identification of the \emph{activation record} | ||
2760 | of the function executing at a given level. | ||
2761 | Level\Nb{}0 is the current running function, | ||
2762 | whereas level \Math{n+1} is the function that has called level \Math{n}. | ||
2763 | Usually, \verb|lua_getstack| returns 1; | ||
2764 | when called with a level greater than the stack depth, | ||
2765 | it returns 0. | ||
2766 | |||
2767 | The structure \verb|lua_Debug| is used to carry different pieces of | ||
2768 | information about an active function: | ||
2769 | \begin{verbatim} | ||
2770 | typedef struct lua_Debug { | ||
2771 | int event; | ||
2772 | const char *name; /* (n) */ | ||
2773 | const char *namewhat; /* (n) `global', `local', `field', `method' */ | ||
2774 | const char *what; /* (S) `Lua' function, `C' function, Lua `main' */ | ||
2775 | const char *source; /* (S) */ | ||
2776 | int currentline; /* (l) */ | ||
2777 | int nups; /* (u) number of upvalues */ | ||
2778 | int linedefined; /* (S) */ | ||
2779 | char short_src[LUA_IDSIZE]; /* (S) */ | ||
2780 | |||
2781 | /* private part */ | ||
2782 | ... | ||
2783 | } lua_Debug; | ||
2784 | \end{verbatim} | ||
2785 | \DefAPI{lua_Debug} | ||
2786 | \verb|lua_getstack| fills only the private part | ||
2787 | of this structure, for future use. | ||
2788 | To fill the other fields of \verb|lua_Debug| with useful information, | ||
2789 | call | ||
2790 | \begin{verbatim} | ||
2791 | int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar); | ||
2792 | \end{verbatim} | ||
2793 | \DefAPI{lua_getinfo} | ||
2794 | This function returns 0 on error | ||
2795 | (for instance, an invalid option in \verb|what|). | ||
2796 | Each character in the string \verb|what| | ||
2797 | selects some fields of \verb|ar| to be filled, | ||
2798 | as indicated by the letter in parentheses in the definition of \verb|lua_Debug| | ||
2799 | above: | ||
2800 | `\verb|S|' fills in the fields \verb|source|, \verb|linedefined|, | ||
2801 | and \verb|what|; | ||
2802 | `\verb|l|' fills in the field \verb|currentline|, etc. | ||
2803 | Moreover, `\verb|f|' pushes onto the stack the function that is | ||
2804 | running at the given level. | ||
2805 | |||
2806 | To get information about a function that is not active (that is, | ||
2807 | it is not in the stack), | ||
2808 | you push the function onto the stack, | ||
2809 | and start the \verb|what| string with the character `\verb|>|'. | ||
2810 | For instance, to know in which line a function \verb|f| was defined, | ||
2811 | you can write | ||
2812 | \begin{verbatim} | ||
2813 | lua_Debug ar; | ||
2814 | lua_pushstring(L, "f"); | ||
2815 | lua_gettable(L, LUA_GLOBALSINDEX); /* get global `f' */ | ||
2816 | lua_getinfo(L, ">S", &ar); | ||
2817 | printf("%d\n", ar.linedefined); | ||
2818 | \end{verbatim} | ||
2819 | The fields of \verb|lua_Debug| have the following meaning: | ||
2820 | \begin{description}\leftskip=20pt | ||
2821 | |||
2822 | \item[source] | ||
2823 | If the function was defined in a string, | ||
2824 | then \verb|source| is that string; | ||
2825 | if the function was defined in a file, | ||
2826 | then \verb|source| starts with a \At{} followed by the file name. | ||
2827 | |||
2828 | \item[short_src] | ||
2829 | A \Q{printable} version of \verb|source|, to be used in error messages. | ||
2830 | |||
2831 | \item[linedefined] | ||
2832 | the line number where the definition of the function starts. | ||
2833 | |||
2834 | \item[what] the string \verb|"Lua"| if this is a Lua function, | ||
2835 | \verb|"C"| if this is a C\Nb{}function, | ||
2836 | or \verb|"main"| if this is the main part of a chunk. | ||
2837 | |||
2838 | \item[currentline] | ||
2839 | the current line where the given function is executing. | ||
2840 | When no line information is available, | ||
2841 | \verb|currentline| is set to \Math{-1}. | ||
2842 | |||
2843 | \item[name] | ||
2844 | a reasonable name for the given function. | ||
2845 | Because functions in Lua are first class values, | ||
2846 | they do not have a fixed name: | ||
2847 | Some functions may be the value of many global variables, | ||
2848 | while others may be stored only in a table field. | ||
2849 | The \verb|lua_getinfo| function checks how the function was | ||
2850 | called or whether it is the value of a global variable to | ||
2851 | find a suitable name. | ||
2852 | If it cannot find a name, | ||
2853 | then \verb|name| is set to \verb|NULL|. | ||
2854 | |||
2855 | \item[namewhat] | ||
2856 | Explains the previous field. | ||
2857 | It can be \verb|"global"|, \verb|"local"|, \verb|"method"|, | ||
2858 | \verb|"field"|, or \verb|""| (the empty string), | ||
2859 | according to how the function was called. | ||
2860 | (Lua uses the empty string when no other option seems to apply.) | ||
2861 | |||
2862 | \item[nups] | ||
2863 | Number of upvalues of the function. | ||
2864 | |||
2865 | \end{description} | ||
2866 | |||
2867 | |||
2868 | \subsection{Manipulating Local Variables} | ||
2869 | |||
2870 | For the manipulation of local variables, | ||
2871 | \verb|luadebug.h| uses indices: | ||
2872 | The first parameter or local variable has index\Nb{}1, and so on, | ||
2873 | until the last active local variable. | ||
2874 | |||
2875 | The following functions allow the manipulation of the | ||
2876 | local variables of a given activation record: | ||
2877 | \begin{verbatim} | ||
2878 | const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n); | ||
2879 | const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n); | ||
2880 | \end{verbatim} | ||
2881 | \DefAPI{lua_getlocal}\DefAPI{lua_setlocal} | ||
2882 | The parameter \verb|ar| must be a valid activation record that was | ||
2883 | filled by a previous call to \verb|lua_getstack| or | ||
2884 | was given as argument to a hook \see{sub-hooks}. | ||
2885 | \verb|lua_getlocal| gets the index \verb|n| of a local variable, | ||
2886 | pushes the variable's value onto the stack, | ||
2887 | and returns its name. | ||
2888 | \verb|lua_setlocal| assigns the value at the top of the stack | ||
2889 | to the variable and returns its name. | ||
2890 | Both functions return \verb|NULL| | ||
2891 | when the index is greater than | ||
2892 | the number of active local variables. | ||
2893 | |||
2894 | As an example, the following function lists the names of all | ||
2895 | local variables for a function at a given level of the stack: | ||
2896 | \begin{verbatim} | ||
2897 | int listvars (lua_State *L, int level) { | ||
2898 | lua_Debug ar; | ||
2899 | int i = 1; | ||
2900 | const char *name; | ||
2901 | if (lua_getstack(L, level, &ar) == 0) | ||
2902 | return 0; /* failure: no such level in the stack */ | ||
2903 | while ((name = lua_getlocal(L, &ar, i++)) != NULL) { | ||
2904 | printf("%s\n", name); | ||
2905 | lua_pop(L, 1); /* remove variable value */ | ||
2906 | } | ||
2907 | return 1; | ||
2908 | } | ||
2909 | \end{verbatim} | ||
2910 | |||
2911 | |||
2912 | \subsection{Hooks}\label{sub-hooks} | ||
2913 | |||
2914 | The Lua interpreter offers a mechanism of hooks, which are | ||
2915 | user-defined C functions that are called during the program execution. | ||
2916 | A hook may be called in four different events: | ||
2917 | a \emph{call} event, when Lua calls a function; | ||
2918 | a \emph{return} event, when Lua returns from a function; | ||
2919 | a \emph{line} event, when Lua starts executing a new line of code; | ||
2920 | and a \emph{count} event, which happens every \Q{count} instructions. | ||
2921 | Lua identifies them with the following constants: | ||
2922 | \verb|LUA_HOOKCALL|\DefAPI{LUA_HOOKCALL}, | ||
2923 | \verb|LUA_HOOKRET|\DefAPI{LUA_HOOKRET}, | ||
2924 | \verb|LUA_HOOKLINE|\DefAPI{LUA_HOOKLINE}, | ||
2925 | and \verb|LUA_HOOKCOUNT|\DefAPI{LUA_HOOKCOUNT}. | ||
2926 | |||
2927 | A hook has type \verb|lua_Hook|, defined as follows: | ||
2928 | \begin{verbatim} | ||
2929 | typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar); | ||
2930 | \end{verbatim} | ||
2931 | \DefAPI{lua_Hook} | ||
2932 | You can set the hook with the following function: | ||
2933 | \begin{verbatim} | ||
2934 | int lua_sethook (lua_State *L, lua_Hook func, unsigned long mask); | ||
2935 | \end{verbatim} | ||
2936 | \DefAPI{lua_sethook} | ||
2937 | \verb|func| is the hook, | ||
2938 | and \verb|mask| specifies at which events it will be called. | ||
2939 | It is formed by a disjunction of the constants | ||
2940 | \verb|LUA_MASKCALL|, | ||
2941 | \verb|LUA_MASKRET|, | ||
2942 | \verb|LUA_MASKLINE|, | ||
2943 | plus the macro \verb|LUA_MASKCOUNT(count)|. | ||
2944 | For each event, the hook is called as explained below: | ||
2945 | \begin{description} | ||
2946 | \item{The call hook} is called when the interpreter calls a function. | ||
2947 | The hook is called just after Lua \Q{enters} the new function. | ||
2948 | \item{The return hook} is called when the interpreter returns from a function. | ||
2949 | The hook is called just before Lua \Q{leaves} the function. | ||
2950 | \item{The line hook} is called when the interpreter is about to | ||
2951 | start the execution of a new line of code, | ||
2952 | or when it jumps back (even for the same line). | ||
2953 | (For obvious reasons, this event does not happen while Lua is executing | ||
2954 | a C function.) | ||
2955 | \item{The count hook} is called after the interpreter executes every | ||
2956 | \verb|count| instructions. | ||
2957 | (For obvious reasons, this event does not happen while Lua is executing | ||
2958 | a C function.) | ||
2959 | \end{description} | ||
2960 | |||
2961 | A hook is disabled with the mask zero. | ||
2962 | |||
2963 | You can get the current hook and the current mask with the next functions: | ||
2964 | \begin{verbatim} | ||
2965 | lua_Hook lua_gethook (lua_State *L); | ||
2966 | unsigned long lua_gethookmask (lua_State *L); | ||
2967 | \end{verbatim} | ||
2968 | \DefAPI{lua_gethook}\DefAPI{lua_gethookmask} | ||
2969 | You can get the count inside a mask with the macro \verb|lua_getmaskcount|. | ||
2970 | |||
2971 | Whenever a hook is called, its \verb|ar| argument has its field | ||
2972 | \verb|event| set to the specific event that triggered the hook. | ||
2973 | Moreover, for line events, the field \verb|currentline| is also set. | ||
2974 | For the value of any other field, the hook must call \verb|lua_getinfo|. | ||
2975 | |||
2976 | While Lua is running a hook, it disables other calls to hooks. | ||
2977 | Therefore, if a hook calls Lua to execute a function or a chunk, | ||
2978 | that execution occurs without any calls to hooks. | ||
2979 | |||
2980 | |||
2981 | \C{-------------------------------------------------------------------------} | ||
2982 | \section{Standard Libraries}\label{libraries} | ||
2983 | |||
2984 | The standard libraries provide useful functions | ||
2985 | that are implemented directly through the standard C\Nb{}API. | ||
2986 | Some of these functions provide essential services to the language | ||
2987 | (e.g. \verb|type| and \verb|getmetatable|); | ||
2988 | others provide access to \Q{outside} services (e.g. I/O); | ||
2989 | and others could be implemented in Lua itself, | ||
2990 | but are quite useful or have critical performance to | ||
2991 | deserve an implementation in C (e.g. \verb|sort|). | ||
2992 | |||
2993 | All libraries are implemented through the official C API, | ||
2994 | and are provided as separate C\Nb{}modules. | ||
2995 | Currently, Lua has the following standard libraries: | ||
2996 | \begin{itemize} | ||
2997 | \item basic library; | ||
2998 | \item string manipulation; | ||
2999 | \item table manipulation; | ||
3000 | \item mathematical functions (sin, log, etc.); | ||
3001 | \item input and output; | ||
3002 | \item operating system facilities; | ||
3003 | \item debug facilities. | ||
3004 | \end{itemize} | ||
3005 | Except for the basic library, | ||
3006 | each library provides all its functions as fields of a global table | ||
3007 | or as methods of its objects. | ||
3008 | |||
3009 | To have access to these libraries, | ||
3010 | the C\Nb{}host program must call the functions | ||
3011 | \verb|lua_baselibopen| (for the basic library), | ||
3012 | \verb|lua_strlibopen| (for the string library), | ||
3013 | \verb|lua_tablibopen| (for the table library), | ||
3014 | \verb|lua_mathlibopen| (for the mathematical library), | ||
3015 | \verb|lua_iolibopen| (for the I/O and the Operating System libraries), | ||
3016 | and \verb|lua_dblibopen| (for the debug library), | ||
3017 | which are declared in \verb|lualib.h|. | ||
3018 | \DefAPI{lua_baselibopen} | ||
3019 | \DefAPI{lua_strlibopen} | ||
3020 | \DefAPI{lua_tablibopen} | ||
3021 | \DefAPI{lua_mathlibopen} | ||
3022 | \DefAPI{lua_iolibopen} | ||
3023 | \DefAPI{lua_dblibopen} | ||
3024 | |||
3025 | |||
3026 | \subsection{Basic Functions} \label{predefined} | ||
3027 | |||
3028 | The basic library provides some core functions to Lua. | ||
3029 | If you do not include this library in your application, | ||
3030 | you should check carefully whether you need to provide some alternative | ||
3031 | implementation for some facilities. | ||
3032 | |||
3033 | The basic library also defines a global variable \IndexLIB{_VERSION} | ||
3034 | with a string containing the current interpreter version. | ||
3035 | The current content of this string is {\tt "Lua \Version"}. | ||
3036 | |||
3037 | \subsubsection*{\ff \T{assert (v [, message])}}\DefLIB{assert} | ||
3038 | Issues an \emph{\Q{assertion failed!}} error | ||
3039 | when its argument \verb|v| is \nil{} or \False{}; | ||
3040 | otherwise, returns this argument. | ||
3041 | This function is equivalent to the following Lua function: | ||
3042 | \begin{verbatim} | ||
3043 | function assert (v, m) | ||
3044 | if not v then | ||
3045 | error(m or "assertion failed!") | ||
3046 | end | ||
3047 | return v | ||
3048 | end | ||
3049 | \end{verbatim} | ||
3050 | |||
3051 | \subsubsection*{\ff \T{collectgarbage ([limit])}}\DefLIB{collectgarbage} | ||
3052 | |||
3053 | Sets the garbage-collection threshold to the given limit | ||
3054 | (in Kbytes), and checks it against the byte counter. | ||
3055 | If the new threshold is smaller than the byte counter, | ||
3056 | then Lua immediately runs the garbage collector \see{GC}. | ||
3057 | If \verb|limit| is absent, it defaults to zero | ||
3058 | (thus forcing a garbage-collection cycle). | ||
3059 | |||
3060 | \subsubsection*{\ff \T{dofile (filename)}}\DefLIB{dofile} | ||
3061 | Receives a file name, | ||
3062 | opens the named file, and executes its contents as a Lua chunk. | ||
3063 | When called without arguments, | ||
3064 | \verb|dofile| executes the contents of the standard input (\verb|stdin|). | ||
3065 | Returns any value returned by the chunk. | ||
3066 | |||
3067 | \subsubsection*{\ff \T{error (message [, level])}} | ||
3068 | \DefLIB{error}\label{pdf-error} | ||
3069 | Terminates the last protected function called, | ||
3070 | and returns \verb|message| as the error message. | ||
3071 | Function \verb|error| never returns. | ||
3072 | |||
3073 | The \verb|level| argument specifies where the error | ||
3074 | message points the error. | ||
3075 | With level 1 (the default), the error position is where the | ||
3076 | \verb|error| function was called. | ||
3077 | Level 2 points the error to where the function | ||
3078 | that called \verb|error| was called; and so on. | ||
3079 | |||
3080 | \subsubsection*{\ff \T{getglobals (function)}}\DefLIB{getglobals} | ||
3081 | Returns the current table of globals in use by the function. | ||
3082 | \verb|function| can be a Lua function or a number, | ||
3083 | which specifies the function at that stack level: | ||
3084 | Level 1 is the function calling \verb|getglobals|. | ||
3085 | If the given function is not a Lua function, | ||
3086 | returns the \Q{global} table of globals. | ||
3087 | The default for \verb|function| is 1. | ||
3088 | |||
3089 | \subsubsection*{\ff \T{getmetatable (object)}} | ||
3090 | \DefLIB{getmetatable}\label{pdf-getmetatable} | ||
3091 | |||
3092 | Returns the metatable of the given object. | ||
3093 | If the object does not have a metatable, returns \nil{}. | ||
3094 | |||
3095 | \subsubsection*{\ff \T{gcinfo ()}}\DefLIB{gcinfo} | ||
3096 | Returns the number of Kbytes of dynamic memory Lua is using, | ||
3097 | and (as a second result) the | ||
3098 | current garbage collector threshold (also in Kbytes). | ||
3099 | |||
3100 | \subsubsection*{\ff \T{ipairs (t)}}\DefLIB{ipairs} | ||
3101 | |||
3102 | Returns a generator function and the table \verb|t|, | ||
3103 | so that the construction | ||
3104 | \begin{verbatim} | ||
3105 | for i,v in ipairs(t) do ... end | ||
3106 | \end{verbatim} | ||
3107 | will iterate over the pairs \verb|1, t[1]|, \verb|2, t[2]|, \ldots, | ||
3108 | up to the first nil value of the table. | ||
3109 | |||
3110 | \subsubsection*{\ff \T{loadfile (filename)}}\DefLIB{loadfile} | ||
3111 | Loads a file as a Lua chunk. | ||
3112 | If there are no errors, | ||
3113 | returns the compiled chunk as a function; | ||
3114 | otherwise, returns \nil{} plus an error message. | ||
3115 | |||
3116 | \subsubsection*{\ff \T{loadstring (string [, chunkname])}}\DefLIB{loadstring} | ||
3117 | Loads a string as a Lua chunk. | ||
3118 | If there are no errors, | ||
3119 | returns the compiled chunk as a function; | ||
3120 | otherwise, returns \nil{} plus an error message. | ||
3121 | |||
3122 | The optional parameter \verb|chunkname| | ||
3123 | is the \Q{name of the chunk}, | ||
3124 | which is used in error messages and debug information. | ||
3125 | |||
3126 | To load and run a given string, use the idiom | ||
3127 | \begin{verbatim} | ||
3128 | assert(loadstring(s))() | ||
3129 | \end{verbatim} | ||
3130 | |||
3131 | \subsubsection*{\ff \T{next (table, [index])}}\DefLIB{next} | ||
3132 | Allows a program to traverse all fields of a table. | ||
3133 | Its first argument is a table and its second argument | ||
3134 | is an index in this table. | ||
3135 | \verb|next| returns the next index of the table and the | ||
3136 | value associated with the index. | ||
3137 | When called with \nil{} as its second argument, | ||
3138 | \verb|next| returns the first index | ||
3139 | of the table and its associated value. | ||
3140 | When called with the last index, | ||
3141 | or with \nil{} in an empty table, | ||
3142 | \verb|next| returns \nil{}. | ||
3143 | If the second argument is absent, then it is interpreted as \nil{}. | ||
3144 | |||
3145 | Lua has no declaration of fields; | ||
3146 | semantically, there is no difference between a | ||
3147 | field not present in a table or a field with value \nil{}. | ||
3148 | Therefore, \verb|next| only considers fields with non-\nil{} values. | ||
3149 | The order in which the indices are enumerated is not specified, | ||
3150 | \emph{even for numeric indices}. | ||
3151 | (To traverse a table in numeric order, | ||
3152 | use a numerical \rwd{for} or the function \verb|ipairs|.) | ||
3153 | |||
3154 | The behavior of \verb|next| is \emph{undefined} if you modify | ||
3155 | the table during the traversal. | ||
3156 | |||
3157 | \subsubsection*{\ff \T{pairs (t)}}\DefLIB{pairs} | ||
3158 | |||
3159 | Returns the function \verb|next| and the table \verb|t| (plus a \nil{}), | ||
3160 | so that the construction | ||
3161 | \begin{verbatim} | ||
3162 | for k,v in pairs(t) do ... end | ||
3163 | \end{verbatim} | ||
3164 | will iterate over all pairs of key\En{}value of table \verb|t|. | ||
3165 | |||
3166 | \subsubsection*{\ff \T{pcall (func, arg1, arg2, ...)}}\DefLIB{pcall} | ||
3167 | \label{pdf-pcall} | ||
3168 | Calls function \verb|func| with | ||
3169 | the given arguments in protected mode. | ||
3170 | That means that any error inside \verb|func| is not propagated; | ||
3171 | instead, \verb|pcall| catches the error | ||
3172 | and returns a status code. | ||
3173 | Its first result is the status code (a boolean), | ||
3174 | which is true if the call succeeds without errors. | ||
3175 | In such case, \verb|pcall| also returns all results from the call, | ||
3176 | after this first result. | ||
3177 | In case of any error, \verb|pcall| returns false plus the error message. | ||
3178 | |||
3179 | \subsubsection*{\ff \T{print (e1, e2, ...)}}\DefLIB{print} | ||
3180 | Receives any number of arguments, | ||
3181 | and prints their values in \verb|stdout|, | ||
3182 | using the strings returned by \verb|tostring|. | ||
3183 | This function is not intended for formatted output, | ||
3184 | but only as a quick way to show a value, | ||
3185 | typically for debugging. | ||
3186 | For formatted output, see \verb|format| \see{format}. | ||
3187 | |||
3188 | \subsubsection*{\ff \T{rawget (table, index)}}\DefLIB{rawget} | ||
3189 | Gets the real value of \verb|table[index]|, | ||
3190 | without invoking any metamethod. | ||
3191 | \verb|table| must be a table; | ||
3192 | \verb|index| is any value different from \nil{}. | ||
3193 | |||
3194 | \subsubsection*{\ff \T{rawset (table, index, value)}}\DefLIB{rawset} | ||
3195 | Sets the real value of \verb|table[index]| to \verb|value|, | ||
3196 | without invoking any metamethod. | ||
3197 | \verb|table| must be a table; | ||
3198 | \verb|index| is any value different from \nil{}; | ||
3199 | and \verb|value| is any Lua value. | ||
3200 | |||
3201 | \subsubsection*{\ff \T{require (packagename)}}\DefLIB{require} | ||
3202 | |||
3203 | Loads the given package. | ||
3204 | The function starts by looking into the table \IndexVerb{_LOADED} | ||
3205 | to determine whether \verb|packagename| is already loaded. | ||
3206 | If it is, then \verb|require| is done. | ||
3207 | Otherwise, it searches a path looking for a file to load. | ||
3208 | |||
3209 | If the global variable \IndexVerb{LUA_PATH} is a string, | ||
3210 | this string is the path. | ||
3211 | Otherwise, \verb|require| tries the environment variable \verb|LUA_PATH|. | ||
3212 | As a last resort, it uses a predefined path. | ||
3213 | |||
3214 | The path is a sequence of \emph{templates} separated by semicolons. | ||
3215 | For each template, \verb|require| will change an eventual interrogation | ||
3216 | mark in the template to \verb|packagename|, | ||
3217 | and then will try to load the resulting file name. | ||
3218 | So, for instance, if the path is | ||
3219 | \begin{verbatim} | ||
3220 | "./?.lua;./?.lc;/usr/local/?/init.lua;/lasttry" | ||
3221 | \end{verbatim} | ||
3222 | a \verb|require "mod"| will try to load the files | ||
3223 | \verb|./mod.lua|, | ||
3224 | \verb|./mod.lc|, | ||
3225 | \verb|/usr/local/mod/init.lua|, | ||
3226 | and \verb|/lasttry|, in that order. | ||
3227 | |||
3228 | The function stops the search as soon as it can load a file, | ||
3229 | and then it runs the file. | ||
3230 | If there is any error loading or running the file, | ||
3231 | or if it cannot find any file in the path, | ||
3232 | then \verb|require| signals an error. | ||
3233 | Otherwise, it marks in table \verb|_LOADED| | ||
3234 | that the package is loaded, and returns. | ||
3235 | |||
3236 | While running a packaged file, | ||
3237 | \verb|require| defines the global variable \IndexVerb{_REQUIREDNAME} | ||
3238 | with the package name. | ||
3239 | |||
3240 | \subsubsection*{\ff \T{setglobals (function, table)}}\DefLIB{setglobals} | ||
3241 | Sets the current table of globals to be used by the given function. | ||
3242 | \verb|function| can be a Lua function or a number, | ||
3243 | which specifies the function at that stack level: | ||
3244 | Level 1 is the function calling \verb|setglobals|. | ||
3245 | |||
3246 | \subsubsection*{\ff \T{setmetatable (table, metatable)}}\DefLIB{setmetatable} | ||
3247 | |||
3248 | Sets the metatable for the given table. | ||
3249 | (You cannot change the metatable of a userdata from Lua.) | ||
3250 | If \verb|metatable| is \nil{}, removes the metatable of the given table. | ||
3251 | |||
3252 | \subsubsection*{\ff \T{tonumber (e [, base])}}\DefLIB{tonumber} | ||
3253 | Tries to convert its argument to a number. | ||
3254 | If the argument is already a number or a string convertible | ||
3255 | to a number, then \verb|tonumber| returns that number; | ||
3256 | otherwise, it returns \nil{}. | ||
3257 | |||
3258 | An optional argument specifies the base to interpret the numeral. | ||
3259 | The base may be any integer between 2 and 36, inclusive. | ||
3260 | In bases above\Nb{}10, the letter `A' (in either upper or lower case) | ||
3261 | represents\Nb{}10, `B' represents\Nb{}11, and so forth, with `Z' representing 35. | ||
3262 | In base 10 (the default), the number may have a decimal part, | ||
3263 | as well as an optional exponent part \see{coercion}. | ||
3264 | In other bases, only unsigned integers are accepted. | ||
3265 | |||
3266 | \subsubsection*{\ff \T{tostring (e)}}\DefLIB{tostring} | ||
3267 | Receives an argument of any type and | ||
3268 | converts it to a string in a reasonable format. | ||
3269 | For complete control of how numbers are converted, | ||
3270 | use \verb|format| \see{format}. | ||
3271 | |||
3272 | \subsubsection*{\ff \T{type (v)}}\DefLIB{type}\label{pdf-type} | ||
3273 | Returns the type of its only argument, coded as a string. | ||
3274 | The possible results of this function are | ||
3275 | \verb|"nil"| (a string, not the value \nil{}), | ||
3276 | \verb|"number"|, | ||
3277 | \verb|"string"|, | ||
3278 | \verb|"table"|, | ||
3279 | \verb|"function"|, | ||
3280 | and \verb|"userdata"|. | ||
3281 | |||
3282 | \subsubsection*{\ff \T{unpack (list)}}\DefLIB{unpack} | ||
3283 | Returns all elements from the given list. | ||
3284 | This function is equivalent to | ||
3285 | \begin{verbatim} | ||
3286 | return list[1], list[2], ..., list[n] | ||
3287 | \end{verbatim} | ||
3288 | except that the above code can be valid only for a fixed \M{n}. | ||
3289 | The number \M{n} of returned values | ||
3290 | is either the value of \verb|list.n|, if it is a number, | ||
3291 | or one less the index of the first absent (\nil{}) value. | ||
3292 | |||
3293 | \subsection{String Manipulation} | ||
3294 | This library provides generic functions for string manipulation, | ||
3295 | such as finding and extracting substrings and pattern matching. | ||
3296 | When indexing a string in Lua, the first character is at position\Nb{}1 | ||
3297 | (not at\Nb{}0, as in C). | ||
3298 | Indices are allowed to be negative and are interpreted as indexing backwards, | ||
3299 | from the end of the string. | ||
3300 | Thus, the last character is at position \Math{-1}, and so on. | ||
3301 | |||
3302 | The string library provides all its functions inside the table | ||
3303 | \IndexLIB{string}. | ||
3304 | |||
3305 | \subsubsection*{\ff \T{string.byte (s [, i])}}\DefLIB{string.byte} | ||
3306 | Returns the internal numerical code of the \M{i}-th character of \verb|s|. | ||
3307 | If \verb|i| is absent, then it is assumed to be\Nb{}1. | ||
3308 | \verb|i| may be negative. | ||
3309 | |||
3310 | \NOTE | ||
3311 | Numerical codes are not necessarily portable across platforms. | ||
3312 | |||
3313 | \subsubsection*{\ff \T{string.char (i1, i2, \ldots)}}\DefLIB{string.char} | ||
3314 | Receives 0 or more integers. | ||
3315 | Returns a string with length equal to the number of arguments, | ||
3316 | in which each character has the internal numerical code equal | ||
3317 | to its correspondent argument. | ||
3318 | |||
3319 | \NOTE | ||
3320 | Numerical codes are not necessarily portable across platforms. | ||
3321 | |||
3322 | \subsubsection*{\ff \T{string.find (s, pattern [, init [, plain]])}} | ||
3323 | \DefLIB{string.find} | ||
3324 | Looks for the first \emph{match} of | ||
3325 | \verb|pattern| in the string \verb|s|. | ||
3326 | If it finds one, then \verb|find| returns the indices of \verb|s| | ||
3327 | where this occurrence starts and ends; | ||
3328 | otherwise, it returns \nil{}. | ||
3329 | If the pattern specifies captures (see \verb|string.gsub| below), | ||
3330 | the captured strings are returned as extra results. | ||
3331 | A third, optional numerical argument \verb|init| specifies | ||
3332 | where to start the search; | ||
3333 | its default value is\Nb{}1, and may be negative. | ||
3334 | A value of \True{} as a fourth, optional argument \verb|plain| | ||
3335 | turns off the pattern matching facilities, | ||
3336 | so the function does a plain \Q{find substring} operation, | ||
3337 | with no characters in \verb|pattern| being considered \Q{magic}. | ||
3338 | Note that if \verb|plain| is given, then \verb|init| must be given too. | ||
3339 | |||
3340 | \subsubsection*{\ff \T{string.len (s)}}\DefLIB{string.len} | ||
3341 | Receives a string and returns its length. | ||
3342 | The empty string \verb|""| has length 0. | ||
3343 | Embedded zeros are counted, | ||
3344 | so \verb|"a\000b\000c"| has length 5. | ||
3345 | |||
3346 | \subsubsection*{\ff \T{string.lower (s)}}\DefLIB{string.lower} | ||
3347 | Receives a string and returns a copy of that string with all | ||
3348 | uppercase letters changed to lowercase. | ||
3349 | All other characters are left unchanged. | ||
3350 | The definition of what is an uppercase letter depends on the current locale. | ||
3351 | |||
3352 | \subsubsection*{\ff \T{string.rep (s, n)}}\DefLIB{string.rep} | ||
3353 | Returns a string that is the concatenation of \verb|n| copies of | ||
3354 | the string \verb|s|. | ||
3355 | |||
3356 | \subsubsection*{\ff \T{string.sub (s, i [, j])}}\DefLIB{string.sub} | ||
3357 | Returns another string, which is the substring of \verb|s| that | ||
3358 | starts at \verb|i| and continues until \verb|j|; | ||
3359 | \verb|i| and \verb|j| may be negative. | ||
3360 | If \verb|j| is absent, then it is assumed to be equal to \Math{-1} | ||
3361 | (which is the same as the string length). | ||
3362 | In particular, | ||
3363 | the call \verb|string.sub(s,1,j)| returns a prefix of \verb|s| | ||
3364 | with length \verb|j|, | ||
3365 | and the call \verb|string.sub(s, -i)| returns a suffix of \verb|s| | ||
3366 | with length \verb|i|. | ||
3367 | |||
3368 | \subsubsection*{\ff \T{string.upper (s)}}\DefLIB{string.upper} | ||
3369 | Receives a string and returns a copy of that string with all | ||
3370 | lowercase letters changed to uppercase. | ||
3371 | All other characters are left unchanged. | ||
3372 | The definition of what is a lowercase letter depends on the current locale. | ||
3373 | |||
3374 | \subsubsection*{\ff \T{string.format (formatstring, e1, e2, \ldots)}} | ||
3375 | \DefLIB{string.format}\label{format} | ||
3376 | Returns a formatted version of its variable number of arguments | ||
3377 | following the description given in its first argument (which must be a string). | ||
3378 | The format string follows the same rules as the \verb|printf| family of | ||
3379 | standard C\Nb{}functions. | ||
3380 | The only differences are that the options/modifiers | ||
3381 | \verb|*|, \verb|l|, \verb|L|, \verb|n|, \verb|p|, | ||
3382 | and \verb|h| are not supported, | ||
3383 | and there is an extra option, \verb|q|. | ||
3384 | The \verb|q| option formats a string in a form suitable to be safely read | ||
3385 | back by the Lua interpreter: | ||
3386 | The string is written between double quotes, | ||
3387 | and all double quotes, returns, and backslashes in the string | ||
3388 | are correctly escaped when written. | ||
3389 | For instance, the call | ||
3390 | \begin{verbatim} | ||
3391 | string.format('%q', 'a string with "quotes" and \n new line') | ||
3392 | \end{verbatim} | ||
3393 | will produce the string: | ||
3394 | \begin{verbatim} | ||
3395 | "a string with \"quotes\" and \ | ||
3396 | new line" | ||
3397 | \end{verbatim} | ||
3398 | |||
3399 | The options \verb|c|, \verb|d|, \verb|E|, \verb|e|, \verb|f|, | ||
3400 | \verb|g|, \verb|G|, \verb|i|, \verb|o|, \verb|u|, \verb|X|, and \verb|x| all | ||
3401 | expect a number as argument, | ||
3402 | whereas \verb|q| and \verb|s| expect a string. | ||
3403 | The \verb|*| modifier can be simulated by building | ||
3404 | the appropriate format string. | ||
3405 | For example, \verb|"%*g"| can be simulated with | ||
3406 | \verb|"%"..width.."g"|. | ||
3407 | |||
3408 | \NOTE | ||
3409 | String values to be formatted with | ||
3410 | \verb|%s| cannot contain embedded zeros. | ||
3411 | |||
3412 | \subsubsection*{\ff \T{string.gfind (s, pat)}} | ||
3413 | |||
3414 | Returns a generator function that, | ||
3415 | each time it is called, | ||
3416 | returns the next captures from pattern \verb|pat| over string \verb|s|. | ||
3417 | |||
3418 | If \verb|pat| specifies no captures, | ||
3419 | then the whole match is produced in each call. | ||
3420 | |||
3421 | As an example, the following loop | ||
3422 | \begin{verbatim} | ||
3423 | s = "hello world from Lua" | ||
3424 | for w in string.gfind(s, "%a+") do | ||
3425 | print(w) | ||
3426 | end | ||
3427 | \end{verbatim} | ||
3428 | will iterate over all the words from string \verb|s|, | ||
3429 | printing one per line. | ||
3430 | The next example collects all pairs \verb|key=value| from the | ||
3431 | given string into a table: | ||
3432 | \begin{verbatim} | ||
3433 | t = {} | ||
3434 | s = "from=world, to=Lua" | ||
3435 | for k, v in string.gfind(s, "(%w+)=(%w+)") do | ||
3436 | t[k] = v | ||
3437 | end | ||
3438 | \end{verbatim} | ||
3439 | |||
3440 | \subsubsection*{\ff \T{string.gsub (s, pat, repl [, n])}} | ||
3441 | \DefLIB{string.gsub} | ||
3442 | Returns a copy of \verb|s| | ||
3443 | in which all occurrences of the pattern \verb|pat| have been | ||
3444 | replaced by a replacement string specified by \verb|repl|. | ||
3445 | \verb|gsub| also returns, as a second value, | ||
3446 | the total number of substitutions made. | ||
3447 | |||
3448 | If \verb|repl| is a string, then its value is used for replacement. | ||
3449 | Any sequence in \verb|repl| of the form \verb|%|\M{n}, | ||
3450 | with \M{n} between 1 and 9, | ||
3451 | stands for the value of the \M{n}-th captured substring. | ||
3452 | |||
3453 | If \verb|repl| is a function, then this function is called every time a | ||
3454 | match occurs, with all captured substrings passed as arguments, | ||
3455 | in order (see below); | ||
3456 | if the pattern specifies no captures, | ||
3457 | then the whole match is passed as a sole argument. | ||
3458 | If the value returned by this function is a string, | ||
3459 | then it is used as the replacement string; | ||
3460 | otherwise, the replacement string is the empty string. | ||
3461 | |||
3462 | The last, optional parameter \verb|n| limits | ||
3463 | the maximum number of substitutions to occur. | ||
3464 | For instance, when \verb|n| is 1 only the first occurrence of | ||
3465 | \verb|pat| is replaced. | ||
3466 | |||
3467 | Here are some examples: | ||
3468 | \begin{verbatim} | ||
3469 | x = string.gsub("hello world", "(%w+)", "%1 %1") | ||
3470 | --> x="hello hello world world" | ||
3471 | |||
3472 | x = string.gsub("hello world", "(%w+)", "%1 %1", 1) | ||
3473 | --> x="hello hello world" | ||
3474 | |||
3475 | x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1") | ||
3476 | --> x="world hello Lua from" | ||
3477 | |||
3478 | x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv) | ||
3479 | --> x="home = /home/roberto, user = roberto" (for instance) | ||
3480 | |||
3481 | x = string.gsub("4+5 = $return 4+5$", "%$(.-)%$", function (s) | ||
3482 | return loadstring(s)() | ||
3483 | end) | ||
3484 | --> x="4+5 = 9" | ||
3485 | |||
3486 | local t = {name="Lua", version="5.0"} | ||
3487 | x = string.gsub("$name - $version", "%$(%w+)", function (v) | ||
3488 | return t[v] | ||
3489 | end) | ||
3490 | --> x="Lua - 5.0" | ||
3491 | \end{verbatim} | ||
3492 | |||
3493 | |||
3494 | \subsubsection*{Patterns} \label{pm} | ||
3495 | |||
3496 | \paragraph{Character Class:} | ||
3497 | a \Def{character class} is used to represent a set of characters. | ||
3498 | The following combinations are allowed in describing a character class: | ||
3499 | \begin{description}\leftskip=20pt | ||
3500 | \item[\emph{x}] (where \emph{x} is not one of the magic characters | ||
3501 | \verb|^$()%.[]*+-?|) | ||
3502 | \Em{} represents the character \emph{x} itself. | ||
3503 | \item[\T{.}] \Em{} (a dot) represents all characters. | ||
3504 | \item[\T{%a}] \Em{} represents all letters. | ||
3505 | \item[\T{%c}] \Em{} represents all control characters. | ||
3506 | \item[\T{%d}] \Em{} represents all digits. | ||
3507 | \item[\T{%l}] \Em{} represents all lowercase letters. | ||
3508 | \item[\T{%p}] \Em{} represents all punctuation characters. | ||
3509 | \item[\T{%s}] \Em{} represents all space characters. | ||
3510 | \item[\T{%u}] \Em{} represents all uppercase letters. | ||
3511 | \item[\T{%w}] \Em{} represents all alphanumeric characters. | ||
3512 | \item[\T{%x}] \Em{} represents all hexadecimal digits. | ||
3513 | \item[\T{%z}] \Em{} represents the character with representation 0. | ||
3514 | \item[\T{%\M{x}}] (where \M{x} is any non-alphanumeric character) \Em{} | ||
3515 | represents the character \M{x}. | ||
3516 | This is the standard way to escape the magic characters. | ||
3517 | We recommend that any punctuation character (even the non magic) | ||
3518 | should be preceded by a \verb|%| | ||
3519 | when used to represent itself in a pattern. | ||
3520 | |||
3521 | \item[\T{[\M{set}]}] \Em{} | ||
3522 | represents the class which is the union of all | ||
3523 | characters in \M{set}. | ||
3524 | A range of characters may be specified by | ||
3525 | separating the end characters of the range with a \verb|-|. | ||
3526 | All classes \verb|%|\emph{x} described above may also be used as | ||
3527 | components in \M{set}. | ||
3528 | All other characters in \M{set} represent themselves. | ||
3529 | For example, \verb|[%w_]| (or \verb|[_%w]|) | ||
3530 | represents all alphanumeric characters plus the underscore, | ||
3531 | \verb|[0-7]| represents the octal digits, | ||
3532 | and \verb|[0-7%l%-]| represents the octal digits plus | ||
3533 | the lowercase letters plus the \verb|-| character. | ||
3534 | |||
3535 | The interaction between ranges and classes is not defined. | ||
3536 | Therefore, patterns like \verb|[%a-z]| or \verb|[a-%%]| | ||
3537 | have no meaning. | ||
3538 | |||
3539 | \item[\T{[^\M{set}]}] \Em{} | ||
3540 | represents the complement of \M{set}, | ||
3541 | where \M{set} is interpreted as above. | ||
3542 | \end{description} | ||
3543 | For all classes represented by single letters (\verb|%a|, \verb|%c|, \ldots), | ||
3544 | the corresponding uppercase letter represents the complement of the class. | ||
3545 | For instance, \verb|%S| represents all non-space characters. | ||
3546 | |||
3547 | The definitions of letter, space, etc.{} depend on the current locale. | ||
3548 | In particular, the class \verb|[a-z]| may not be equivalent to \verb|%l|. | ||
3549 | The second form should be preferred for portability. | ||
3550 | |||
3551 | \paragraph{Pattern Item:} | ||
3552 | a \Def{pattern item} may be | ||
3553 | \begin{itemize} | ||
3554 | \item | ||
3555 | a single character class, | ||
3556 | which matches any single character in the class; | ||
3557 | \item | ||
3558 | a single character class followed by \verb|*|, | ||
3559 | which matches 0 or more repetitions of characters in the class. | ||
3560 | These repetition items will always match the longest possible sequence; | ||
3561 | \item | ||
3562 | a single character class followed by \verb|+|, | ||
3563 | which matches 1 or more repetitions of characters in the class. | ||
3564 | These repetition items will always match the longest possible sequence; | ||
3565 | \item | ||
3566 | a single character class followed by \verb|-|, | ||
3567 | which also matches 0 or more repetitions of characters in the class. | ||
3568 | Unlike \verb|*|, | ||
3569 | these repetition items will always match the \emph{shortest} possible sequence; | ||
3570 | \item | ||
3571 | a single character class followed by \verb|?|, | ||
3572 | which matches 0 or 1 occurrence of a character in the class; | ||
3573 | \item | ||
3574 | \T{%\M{n}}, for \M{n} between 1 and 9; | ||
3575 | such item matches a substring equal to the \M{n}-th captured string | ||
3576 | (see below); | ||
3577 | \item | ||
3578 | \T{%b\M{xy}}, where \M{x} and \M{y} are two distinct characters; | ||
3579 | such item matches strings that start with\Nb{}\M{x}, end with\Nb{}\M{y}, | ||
3580 | and where the \M{x} and \M{y} are \emph{balanced}. | ||
3581 | This means that, if one reads the string from left to right, | ||
3582 | counting \Math{+1} for an \M{x} and \Math{-1} for a \M{y}, | ||
3583 | the ending \M{y} is the first \M{y} where the count reaches 0. | ||
3584 | For instance, the item \verb|%b()| matches expressions with | ||
3585 | balanced parentheses. | ||
3586 | \end{itemize} | ||
3587 | |||
3588 | \paragraph{Pattern:} | ||
3589 | a \Def{pattern} is a sequence of pattern items. | ||
3590 | A \verb|^| at the beginning of a pattern anchors the match at the | ||
3591 | beginning of the subject string. | ||
3592 | A \verb|$| at the end of a pattern anchors the match at the | ||
3593 | end of the subject string. | ||
3594 | At other positions, | ||
3595 | \verb|^| and \verb|$| have no special meaning and represent themselves. | ||
3596 | |||
3597 | \paragraph{Captures:} | ||
3598 | A pattern may contain sub-patterns enclosed in parentheses; | ||
3599 | they describe \Def{captures}. | ||
3600 | When a match succeeds, the substrings of the subject string | ||
3601 | that match captures are stored (\emph{captured}) for future use. | ||
3602 | Captures are numbered according to their left parentheses. | ||
3603 | For instance, in the pattern \verb|"(a*(.)%w(%s*))"|, | ||
3604 | the part of the string matching \verb|"a*(.)%w(%s*)"| is | ||
3605 | stored as the first capture (and therefore has number\Nb{}1); | ||
3606 | the character matching \verb|.| is captured with number\Nb{}2, | ||
3607 | and the part matching \verb|%s*| has number\Nb{}3. | ||
3608 | |||
3609 | As a special case, the empty capture \verb|()| captures | ||
3610 | the current string position (a number). | ||
3611 | For instance, if we apply the pattern \verb|"()aa()"| on the | ||
3612 | string \verb|"flaaap"|, there will be two captures: 3 and 5. | ||
3613 | |||
3614 | \NOTE | ||
3615 | A pattern cannot contain embedded zeros. Use \verb|%z| instead. | ||
3616 | |||
3617 | |||
3618 | \subsection{Table Manipulation} | ||
3619 | This library provides generic functions for table manipulation. | ||
3620 | It provides all its functions inside the table \IndexLIB{table}. | ||
3621 | |||
3622 | Most functions in the table library assume that the table | ||
3623 | represents an array or a list. | ||
3624 | For those functions, an important concept is the \emph{size} of the array. | ||
3625 | There are three ways to specify that size: | ||
3626 | \begin{itemize} | ||
3627 | \item the field \verb|"n"| \Em{} | ||
3628 | When the table has a field \verb|"n"| with a numerical value, | ||
3629 | that value is assumed as its size. | ||
3630 | \item \verb|setn| \Em{} | ||
3631 | You can call the \verb|table.setn| function to explicitly set | ||
3632 | the size of a table. | ||
3633 | \item implicit size \Em{} | ||
3634 | Otherwise, the size of the object is one less the first integer index | ||
3635 | with a \nil{} value. | ||
3636 | \end{itemize} | ||
3637 | For more details, see the descriptions of the \verb|table.getn| and | ||
3638 | \verb|table.setn| functions. | ||
3639 | |||
3640 | \subsubsection*{\ff \T{table.concat (table [, sep [, i [, j]]])}} | ||
3641 | \DefLIB{table.concat} | ||
3642 | Returns \verb|table[i]..sep..table[i+1] ... sep..table[j]|. | ||
3643 | The default value for \verb|sep| is the empty string, | ||
3644 | the default for \verb|i| is 1, | ||
3645 | and the default for \verb|j| is the size of the table. | ||
3646 | If \verb|i| is greater than \verb|j|, returns the empty string. | ||
3647 | |||
3648 | \subsubsection*{\ff \T{table.foreach (table, func)}}\DefLIB{table.foreach} | ||
3649 | Executes the given \verb|func| over all elements of \verb|table|. | ||
3650 | For each element, \verb|func| is called with the index and | ||
3651 | respective value as arguments. | ||
3652 | If \verb|func| returns a non-\nil{} value, | ||
3653 | then the loop is broken, and this value is returned | ||
3654 | as the final value of \verb|foreach|. | ||
3655 | |||
3656 | The behavior of \verb|foreach| is \emph{undefined} if you change | ||
3657 | the table \verb|t| during the traversal. | ||
3658 | |||
3659 | |||
3660 | \subsubsection*{\ff \T{table.foreachi (table, func)}}\DefLIB{table.foreachi} | ||
3661 | Executes the given \verb|func| over the | ||
3662 | numerical indices of \verb|table|. | ||
3663 | For each index, \verb|func| is called with the index and | ||
3664 | respective value as arguments. | ||
3665 | Indices are visited in sequential order, | ||
3666 | from\Nb{}1 to \verb|n|, | ||
3667 | where \verb|n| is the size of the table \see{getn}. | ||
3668 | If \verb|func| returns a non-\nil{} value, | ||
3669 | then the loop is broken, and this value is returned | ||
3670 | as the final value of \verb|foreachi|. | ||
3671 | |||
3672 | \subsubsection*{\ff \T{table.getn (table)}}\DefLIB{table.getn}\label{getn} | ||
3673 | Returns the \Q{size} of a table, when seen as a list. | ||
3674 | If the table has an \verb|n| field with a numeric value, | ||
3675 | this value is the \Q{size} of the table. | ||
3676 | Otherwise, if there was a previous call to | ||
3677 | \verb|table.getn| or to \verb|table.setn| over this table, | ||
3678 | the respective value is returned. | ||
3679 | Otherwise, the \Q{size} is one less the first integer index with | ||
3680 | a \nil{} value. | ||
3681 | |||
3682 | Notice that the last option happens only once for a table. | ||
3683 | If you call \verb|table.getn| again over the same table, | ||
3684 | it will return the same previous result, | ||
3685 | even if the table has been modified. | ||
3686 | The only way to change the value of \verb|table.getn| is by calling | ||
3687 | \verb|table.setn| or assigning to field \verb|"n"| in the table. | ||
3688 | |||
3689 | \subsubsection*{\ff \T{table.sort (table [, comp])}}\DefLIB{table.sort} | ||
3690 | Sorts table elements in a given order, \emph{in-place}, | ||
3691 | from \verb|table[1]| to \verb|table[n]|, | ||
3692 | where \verb|n| is the size of the table \see{getn}. | ||
3693 | If \verb|comp| is given, | ||
3694 | then it must be a function that receives two table elements, | ||
3695 | and returns true | ||
3696 | when the first is less than the second | ||
3697 | (so that \verb|not comp(a[i+1],a[i])| will be true after the sort). | ||
3698 | If \verb|comp| is not given, | ||
3699 | then the standard Lua operator \verb|<| is used instead. | ||
3700 | |||
3701 | The sort algorithm is \emph{not} stable | ||
3702 | (that is, elements considered equal by the given order | ||
3703 | may have their relative positions changed by the sort). | ||
3704 | |||
3705 | \subsubsection*{\ff \T{table.insert (table, [pos,] value)}}\DefLIB{table.insert} | ||
3706 | |||
3707 | Inserts element \verb|value| at position \verb|pos| in \verb|table|, | ||
3708 | shifting other elements up to open space, if necessary. | ||
3709 | The default value for \verb|pos| is \verb|n+1|, | ||
3710 | where \verb|n| is the size of the table \see{getn}, | ||
3711 | so that a call \verb|table.insert(t,x)| inserts \verb|x| at the end | ||
3712 | of table \verb|t|. | ||
3713 | This function also updates the size of the table by | ||
3714 | calling \verb|table.setn(table, n+1)|. | ||
3715 | |||
3716 | \subsubsection*{\ff \T{table.remove (table [, pos])}}\DefLIB{table.remove} | ||
3717 | |||
3718 | Removes from \verb|table| the element at position \verb|pos|, | ||
3719 | shifting other elements down to close the space, if necessary. | ||
3720 | Returns the value of the removed element. | ||
3721 | The default value for \verb|pos| is \verb|n|, | ||
3722 | where \verb|n| is the size of the table \see{getn}, | ||
3723 | so that a call \verb|tremove(t)| removes the last element | ||
3724 | of table \verb|t|. | ||
3725 | This function also updates the size of the table by | ||
3726 | calling \verb|table.setn(table, n-1)|. | ||
3727 | |||
3728 | \subsubsection*{\ff \T{table.setn (table, n)}}\DefLIB{table.setn} | ||
3729 | |||
3730 | Updates the \Q{size} of a table. | ||
3731 | If the table has a field \verb|"n"| with a numerical value, | ||
3732 | that value is changed to the given \verb|n|. | ||
3733 | Otherwise, it updates an internal state of the \verb|table| library | ||
3734 | so that subsequent calls to \verb|table.getn(table)| return \verb|n|. | ||
3735 | |||
3736 | |||
3737 | \subsection{Mathematical Functions} \label{mathlib} | ||
3738 | |||
3739 | This library is an interface to most of the functions of the | ||
3740 | standard C\Nb{}math library. | ||
3741 | (Some have slightly different names.) | ||
3742 | It provides all its functions inside the table \IndexLIB{math}. | ||
3743 | In addition, | ||
3744 | it registers a ??tag method for the binary exponentiation operator \verb|^| | ||
3745 | that returns \Math{x\sp{y}} when applied to numbers \verb|x| and \verb|y|. | ||
3746 | |||
3747 | The library provides the following functions: | ||
3748 | \DefLIB{math.abs}\DefLIB{math.acos}\DefLIB{math.asin}\DefLIB{math.atan} | ||
3749 | \DefLIB{math.atan2}\DefLIB{math.ceil}\DefLIB{math.cos} | ||
3750 | \DefLIB{math.def}\DefLIB{math.exp} | ||
3751 | \DefLIB{math.floor}\DefLIB{math.log}\DefLIB{math.log10} | ||
3752 | \DefLIB{math.max}\DefLIB{math.min} | ||
3753 | \DefLIB{math.mod}\DefLIB{math.rad}\DefLIB{math.sin} | ||
3754 | \DefLIB{math.sqrt}\DefLIB{math.tan} | ||
3755 | \DefLIB{math.frexp}\DefLIB{math.ldexp}\DefLIB{math.random} | ||
3756 | \DefLIB{math.randomseed} | ||
3757 | \begin{verbatim} | ||
3758 | math.abs math.acos math.asin math.atan math.atan2 | ||
3759 | math.ceil math.cos math.deg math.exp math.floor | ||
3760 | math.log math.log10 math.max math.min math.mod | ||
3761 | math.rad math.sin math.sqrt math.tan math.frexp | ||
3762 | math.ldexp math.random math.randomseed | ||
3763 | \end{verbatim} | ||
3764 | plus a variable \IndexLIB{math.pi}. | ||
3765 | Most of them | ||
3766 | are only interfaces to the corresponding functions in the C\Nb{}library. | ||
3767 | All trigonometric functions work in radians. | ||
3768 | The functions \verb|math.deg| and \verb|math.rad| convert | ||
3769 | between radians and degrees. | ||
3770 | |||
3771 | The function \verb|math.max| returns the maximum | ||
3772 | value of its numeric arguments. | ||
3773 | Similarly, \verb|math.min| computes the minimum. | ||
3774 | Both can be used with 1, 2, or more arguments. | ||
3775 | |||
3776 | The functions \verb|math.random| and \verb|math.randomseed| | ||
3777 | are interfaces to the simple random generator functions | ||
3778 | \verb|rand| and \verb|srand| that are provided by ANSI\Nb{}C. | ||
3779 | (No guarantees can be given for their statistical properties.) | ||
3780 | When called without arguments, | ||
3781 | \verb|math.random| returns a pseudo-random real number | ||
3782 | in the range \Math{[0,1)}. \C{]} | ||
3783 | When called with a number \Math{n}, | ||
3784 | \verb|math.random| returns a pseudo-random integer in the range \Math{[1,n]}. | ||
3785 | When called with two arguments, \Math{l} and \Math{u}, | ||
3786 | \verb|math.random| returns a pseudo-random integer in the range \Math{[l,u]}. | ||
3787 | The \verb|math.randomseed| function sets a \Q{seed} | ||
3788 | for the pseudo-random generator: | ||
3789 | Equal seeds produce equal sequences of numbers. | ||
3790 | |||
3791 | |||
3792 | \subsection{Input and Output Facilities} \label{libio} | ||
3793 | |||
3794 | The I/O library provides two different styles for file manipulation. | ||
3795 | The first one uses implicit file descriptors; | ||
3796 | that is, there are operations to set a default input file and a | ||
3797 | default output file, | ||
3798 | and all input/output operations are over those default files. | ||
3799 | The second style uses explicit file descriptors. | ||
3800 | |||
3801 | When using implicit file descriptors, | ||
3802 | all operations are supplied by table \IndexLIB{io}. | ||
3803 | When using explicit file descriptors, | ||
3804 | the operation \IndexLIB{io.open} returns a file descriptor, | ||
3805 | and then all operations are supplied as methods by the file descriptor. | ||
3806 | |||
3807 | The table \verb|io| also provides | ||
3808 | three predefined file descriptors with their usual meanings from C: | ||
3809 | \IndexLIB{io.stdin}, \IndexLIB{io.stdout}, and \IndexLIB{io.stderr}. | ||
3810 | |||
3811 | A file handle is a userdata containing the file stream (\verb|FILE*|), | ||
3812 | with a distinctive metatable created by the I/O library. | ||
3813 | |||
3814 | Unless otherwise stated, | ||
3815 | all I/O functions return \nil{} on failure | ||
3816 | (plus an error message as a second result) | ||
3817 | and some value different from \nil{} on success. | ||
3818 | |||
3819 | \subsubsection*{\ff \T{io.close ([file])}}\DefLIB{io.close} | ||
3820 | |||
3821 | Equivalent to \verb|file:close()|. | ||
3822 | Without a \verb|file|, closes the default output file. | ||
3823 | |||
3824 | \subsubsection*{\ff \T{io.flush ()}}\DefLIB{io.flush} | ||
3825 | |||
3826 | Equivalent to \verb|file:flush| over the default output file. | ||
3827 | |||
3828 | \subsubsection*{\ff \T{io.input ([file])}}\DefLIB{io.input} | ||
3829 | |||
3830 | When called with a file name, it opens the named file (in text mode), | ||
3831 | and sets its handle as the default input file | ||
3832 | (and returns nothing). | ||
3833 | When called with a file handle, | ||
3834 | it simply sets that file handle as the default input file. | ||
3835 | When called without parameters, | ||
3836 | it returns the current default input file. | ||
3837 | |||
3838 | In case of errors this function raises the error, | ||
3839 | instead of returning an error code. | ||
3840 | |||
3841 | \subsubsection*{\ff \T{io.lines ([filename])}}\DefLIB{io.lines} | ||
3842 | |||
3843 | Opens the given file name in read mode, | ||
3844 | and returns a generator function that, | ||
3845 | each time it is called, | ||
3846 | returns a new line from the file. | ||
3847 | Therefore, the construction | ||
3848 | \begin{verbatim} | ||
3849 | for line in io.lines(filename) do ... end | ||
3850 | \end{verbatim} | ||
3851 | will iterate over all lines of the file. | ||
3852 | When the generator function detects the end of file, | ||
3853 | it returns nil (to finish the loop) and automatically closes the file. | ||
3854 | |||
3855 | The call \verb|io.lines()| (without a file name) is equivalent | ||
3856 | to \verb|io.input():lines()|, that is, it iterates over the | ||
3857 | lines of the default input file. | ||
3858 | |||
3859 | \subsubsection*{\ff \T{io.open (filename [, mode])}}\DefLIB{io.open} | ||
3860 | |||
3861 | This function opens a file, | ||
3862 | in the mode specified in the string \verb|mode|. | ||
3863 | It returns a new file handle, | ||
3864 | or, in case of errors, \nil{} plus an error message. | ||
3865 | |||
3866 | The \verb|mode| string can be any of the following: | ||
3867 | \begin{description}\leftskip=20pt | ||
3868 | \item[\Q{r}] read mode (the default); | ||
3869 | \item[\Q{w}] write mode; | ||
3870 | \item[\Q{a}] append mode; | ||
3871 | \item[\Q{r+}] update mode, all previous data is preserved; | ||
3872 | \item[\Q{w+}] update mode, all previous data is erased; | ||
3873 | \item[\Q{a+}] append update mode, previous data is preserved, | ||
3874 | writing is only allowed at the end of file. | ||
3875 | \end{description} | ||
3876 | The \verb|mode| string may also have a \verb|b| at the end, | ||
3877 | which is needed in some systems to open the file in binary mode. | ||
3878 | This string is exactly what is used in the standard\Nb{}C function \verb|fopen|. | ||
3879 | |||
3880 | \subsubsection*{\ff \T{io.output ([file])}}\DefLIB{io.output} | ||
3881 | |||
3882 | Similar to \verb|io.input|, but operates over the default output file. | ||
3883 | |||
3884 | \subsubsection*{\ff \T{io.read (format1, ...)}}\DefLIB{io.read} | ||
3885 | |||
3886 | Equivalent to \verb|file:read| over the default input file. | ||
3887 | |||
3888 | \subsubsection*{\ff \T{io.tmpfile ()}}\DefLIB{io.tmpfile} | ||
3889 | |||
3890 | Returns a handle for a temporary file. | ||
3891 | This file is open in read/write mode, | ||
3892 | and it is automatically removed when the program ends. | ||
3893 | |||
3894 | \subsubsection*{\ff \T{io.write (value1, ...)}}\DefLIB{io.write} | ||
3895 | |||
3896 | Equivalent to \verb|file:write| over the default output file. | ||
3897 | |||
3898 | |||
3899 | |||
3900 | \subsubsection*{\ff \T{file:close ()}}\DefLIB{file:close} | ||
3901 | |||
3902 | Closes the file \verb|file|. | ||
3903 | |||
3904 | \subsubsection*{\ff \T{file:flush ()}}\DefLIB{file:flush} | ||
3905 | |||
3906 | Saves any written data to the file \verb|file|. | ||
3907 | |||
3908 | \subsubsection*{\ff \T{file:lines ()}}\DefLIB{file:lines} | ||
3909 | |||
3910 | Returns a generator function that, | ||
3911 | each time it is called, | ||
3912 | returns a new line from the file. | ||
3913 | Therefore, the construction | ||
3914 | \begin{verbatim} | ||
3915 | for line in file:lines() do ... end | ||
3916 | \end{verbatim} | ||
3917 | will iterate over all lines of the file. | ||
3918 | (Unlike \verb|io.lines|, this function does not close the file | ||
3919 | when the loop ends.) | ||
3920 | |||
3921 | \subsubsection*{\ff \T{file:read (format1, ...)}}\DefLIB{file:read} | ||
3922 | |||
3923 | Reads the file \verb|file|, | ||
3924 | according to the given formats, which specify what to read. | ||
3925 | For each format, | ||
3926 | the function returns a string (or a number) with the characters read, | ||
3927 | or \nil{} if it cannot read data with the specified format. | ||
3928 | When called without formats, | ||
3929 | it uses a default format that reads the entire next line | ||
3930 | (see below). | ||
3931 | |||
3932 | The available formats are | ||
3933 | \begin{description}\leftskip=20pt | ||
3934 | \item[\Q{*n}] reads a number; | ||
3935 | this is the only format that returns a number instead of a string. | ||
3936 | \item[\Q{*a}] reads the whole file, starting at the current position. | ||
3937 | On end of file, it returns the empty string. | ||
3938 | \item[\Q{*l}] reads the next line (skipping the end of line), | ||
3939 | returning \nil{} on end of file. | ||
3940 | This is the default format. | ||
3941 | \item[\emph{number}] reads a string with up to that number of characters, | ||
3942 | or \nil{} on end of file. | ||
3943 | If number is zero, | ||
3944 | it reads nothing and returns an empty string, | ||
3945 | or \nil{} on end of file. | ||
3946 | \end{description} | ||
3947 | |||
3948 | \subsubsection*{\ff \T{file:seek ([whence] [, offset])}}\DefLIB{file:seek} | ||
3949 | |||
3950 | Sets and gets the file position, | ||
3951 | measured in bytes from the beginning of the file, | ||
3952 | to the position given by \verb|offset| plus a base | ||
3953 | specified by the string \verb|whence|, as follows: | ||
3954 | \begin{description}\leftskip=20pt | ||
3955 | \item[\Q{set}] base is position 0 (beginning of the file); | ||
3956 | \item[\Q{cur}] base is current position; | ||
3957 | \item[\Q{end}] base is end of file; | ||
3958 | \end{description} | ||
3959 | In case of success, function \verb|seek| returns the final file position, | ||
3960 | measured in bytes from the beginning of the file. | ||
3961 | If this function fails, it returns \nil{}, | ||
3962 | plus a string describing the error. | ||
3963 | |||
3964 | The default value for \verb|whence| is \verb|"cur"|, | ||
3965 | and for \verb|offset| is 0. | ||
3966 | Therefore, the call \verb|file:seek()| returns the current | ||
3967 | file position, without changing it; | ||
3968 | the call \verb|file:seek("set")| sets the position to the | ||
3969 | beginning of the file (and returns 0); | ||
3970 | and the call \verb|file:seek("end")| sets the position to the | ||
3971 | end of the file, and returns its size. | ||
3972 | |||
3973 | \subsubsection*{\ff \T{file:write (value1, ...)}}\DefLIB{file:write} | ||
3974 | |||
3975 | Writes the value of each of its arguments to | ||
3976 | the filehandle \verb|file|. | ||
3977 | The arguments must be strings or numbers. | ||
3978 | To write other values, | ||
3979 | use \verb|tostring| or \verb|format| before \verb|write|. | ||
3980 | If this function fails, it returns \nil{}, | ||
3981 | plus a string describing the error. | ||
3982 | |||
3983 | |||
3984 | \subsection{Operating System Facilities} \label{libiosys} | ||
3985 | |||
3986 | This library is implemented through table \IndexLIB{os}. | ||
3987 | |||
3988 | \subsubsection*{\ff \T{os.clock ()}}\DefLIB{os.clock} | ||
3989 | |||
3990 | Returns an approximation of the amount of CPU time | ||
3991 | used by the program, in seconds. | ||
3992 | |||
3993 | \subsubsection*{\ff \T{os.date ([format [, time]])}}\DefLIB{os.date} | ||
3994 | |||
3995 | Returns a string or a table containing date and time, | ||
3996 | formatted according to the given string \verb|format|. | ||
3997 | |||
3998 | If the \verb|time| argument is present, | ||
3999 | this is the time to be formatted | ||
4000 | (see the \verb|time| function for a description of this value). | ||
4001 | Otherwise, \verb|date| formats the current time. | ||
4002 | |||
4003 | If \verb|format| starts with \verb|!|, | ||
4004 | then the date is formatted in Coordinated Universal Time. | ||
4005 | |||
4006 | After that optional character, | ||
4007 | if \verb|format| is \verb|*t|, | ||
4008 | then \verb|date| returns a table with the following fields: | ||
4009 | \verb|year| (four digits), \verb|month| (1--12), \verb|day| (1--31), | ||
4010 | \verb|hour| (0--23), \verb|min| (0--59), \verb|sec| (0--61), | ||
4011 | \verb|wday| (weekday, Sunday is 1), | ||
4012 | \verb|yday| (day of the year), | ||
4013 | and \verb|isdst| (daylight saving flag, a boolean). | ||
4014 | |||
4015 | If format is not \verb|*t|, | ||
4016 | then \verb|date| returns the date as a string, | ||
4017 | formatted according with the same rules as the C\Nb{}function \verb|strftime|. | ||
4018 | When called without arguments, | ||
4019 | \verb|date| returns a reasonable date and time representation that depends on | ||
4020 | the host system and on the current locale | ||
4021 | (that is, \verb|os.date()| is equivalent to \verb|os.date("%c")|). | ||
4022 | |||
4023 | \subsubsection*{\ff \T{os.difftime (t2, t1)}}\DefLIB{os.difftime} | ||
4024 | |||
4025 | Returns the number of seconds from time \verb|t1| to time \verb|t2|. | ||
4026 | In Posix, Windows, and some other systems, | ||
4027 | this value is exactly \verb|t2|\Math{-}\verb|t1|. | ||
4028 | |||
4029 | \subsubsection*{\ff \T{os.execute (command)}}\DefLIB{os.execute} | ||
4030 | |||
4031 | This function is equivalent to the C\Nb{}function \verb|system|. | ||
4032 | It passes \verb|command| to be executed by an operating system shell. | ||
4033 | It returns a status code, which is system-dependent. | ||
4034 | |||
4035 | \subsubsection*{\ff \T{os.exit ([code])}}\DefLIB{os.exit} | ||
4036 | |||
4037 | Calls the C\Nb{}function \verb|exit|, | ||
4038 | with an optional \verb|code|, | ||
4039 | to terminate the host program. | ||
4040 | The default value for \verb|code| is the success code. | ||
4041 | |||
4042 | \subsubsection*{\ff \T{os.getenv (varname)}}\DefLIB{os.getenv} | ||
4043 | |||
4044 | Returns the value of the process environment variable \verb|varname|, | ||
4045 | or \nil{} if the variable is not defined. | ||
4046 | |||
4047 | \subsubsection*{\ff \T{os.remove (filename)}}\DefLIB{os.remove} | ||
4048 | |||
4049 | Deletes the file with the given name. | ||
4050 | If this function fails, it returns \nil{}, | ||
4051 | plus a string describing the error. | ||
4052 | |||
4053 | \subsubsection*{\ff \T{os.rename (name1, name2)}}\DefLIB{os.rename} | ||
4054 | |||
4055 | Renames file named \verb|name1| to \verb|name2|. | ||
4056 | If this function fails, it returns \nil{}, | ||
4057 | plus a string describing the error. | ||
4058 | |||
4059 | \subsubsection*{\ff \T{os.setlocale (locale [, category])}}\DefLIB{os.setlocale} | ||
4060 | |||
4061 | This function is an interface to the C\Nb{}function \verb|setlocale|. | ||
4062 | \verb|locale| is a string specifying a locale; | ||
4063 | \verb|category| is an optional string describing which category to change: | ||
4064 | \verb|"all"|, \verb|"collate"|, \verb|"ctype"|, | ||
4065 | \verb|"monetary"|, \verb|"numeric"|, or \verb|"time"|; | ||
4066 | the default category is \verb|"all"|. | ||
4067 | The function returns the name of the new locale, | ||
4068 | or \nil{} if the request cannot be honored. | ||
4069 | |||
4070 | \subsubsection*{\ff \T{os.time ([table])}}\DefLIB{os.time} | ||
4071 | |||
4072 | Returns the current time when called without arguments, | ||
4073 | or a time representing the date and time specified by the given table. | ||
4074 | This table must have fields \verb|year|, \verb|month|, and \verb|day|, | ||
4075 | and may have fields \verb|hour|, \verb|min|, \verb|sec|, and \verb|isdst| | ||
4076 | (for a description of these fields, see the \verb|os.date| function). | ||
4077 | |||
4078 | The returned value is a number, whose meaning depends on your system. | ||
4079 | In Posix, Windows, and some other systems, this number counts the number | ||
4080 | of seconds since some given start time (the \Q{epoch}). | ||
4081 | In other systems, the meaning is not specified, | ||
4082 | and the number returned by \verb|time| can be used only as an argument to | ||
4083 | \verb|date| and \verb|difftime|. | ||
4084 | |||
4085 | \subsubsection*{\ff \T{os.tmpname ()}}\DefLIB{os.tmpname} | ||
4086 | |||
4087 | Returns a string with a file name that can | ||
4088 | be used for a temporary file. | ||
4089 | The file must be explicitly opened before its use | ||
4090 | and removed when no longer needed. | ||
4091 | |||
4092 | This function is equivalent to the \verb|tmpnam| C\Nb{}function, | ||
4093 | and many people (and even some compilers!) advise against its use, | ||
4094 | because between the time you call this function | ||
4095 | and the time you open the file, | ||
4096 | it is possible for another process | ||
4097 | to create a file with the same name. | ||
4098 | |||
4099 | |||
4100 | \subsection{The Reflexive Debug Interface} | ||
4101 | |||
4102 | The library \verb|ldblib| provides | ||
4103 | the functionality of the debug interface to Lua programs. | ||
4104 | You should exert great care when using this library. | ||
4105 | The functions provided here should be used exclusively for debugging | ||
4106 | and similar tasks, such as profiling. | ||
4107 | Please resist the temptation to use them as a | ||
4108 | usual programming tool: | ||
4109 | They can be very slow. | ||
4110 | Moreover, \verb|setlocal| and \verb|getlocal| | ||
4111 | violate the privacy of local variables, | ||
4112 | and therefore can compromise some (otherwise) secure code. | ||
4113 | |||
4114 | All functions in this library are provided | ||
4115 | inside a \IndexVerb{debug} table. | ||
4116 | |||
4117 | |||
4118 | \subsubsection*{\ff \T{debug.getinfo (function, [what])}}\DefLIB{debug.getinfo} | ||
4119 | |||
4120 | This function returns a table with information about a function. | ||
4121 | You can give the function directly, | ||
4122 | or you can give a number as the value of \verb|function|, | ||
4123 | which means the function running at level \verb|function| of the stack: | ||
4124 | Level 0 is the current function (\verb|getinfo| itself); | ||
4125 | level 1 is the function that called \verb|getinfo|; | ||
4126 | and so on. | ||
4127 | If \verb|function| is a number larger than the number of active functions, | ||
4128 | then \verb|getinfo| returns \nil{}. | ||
4129 | |||
4130 | The returned table contains all the fields returned by \verb|lua_getinfo|, | ||
4131 | with the string \verb|what| describing which fields to fill in. | ||
4132 | The default for \verb|what| is to get all information available. | ||
4133 | If present, | ||
4134 | the option \verb|f| | ||
4135 | adds a field named \verb|func| with the function itself. | ||
4136 | |||
4137 | For instance, the expression \verb|debug.getinfo(1,"n").name| returns | ||
4138 | the name of the current function, if a reasonable name can be found, | ||
4139 | and \verb|debug.getinfo(print)| returns a table with all available information | ||
4140 | about the \verb|print| function. | ||
4141 | |||
4142 | |||
4143 | \subsubsection*{\ff \T{debug.getlocal (level, local)}}\DefLIB{debug.getlocal} | ||
4144 | |||
4145 | This function returns the name and the value of the local variable | ||
4146 | with index \verb|local| of the function at level \verb|level| of the stack. | ||
4147 | (The first parameter or local variable has index\Nb{}1, and so on, | ||
4148 | until the last active local variable.) | ||
4149 | The function returns \nil{} if there is no local | ||
4150 | variable with the given index, | ||
4151 | and raises an error when called with a \verb|level| out of range. | ||
4152 | (You can call \verb|getinfo| to check whether the level is valid.) | ||
4153 | |||
4154 | \subsubsection*{\ff \T{debug.setlocal (level, local, value)}} | ||
4155 | \DefLIB{debug.setlocal} | ||
4156 | |||
4157 | This function assigns the value \verb|value| to the local variable | ||
4158 | with index \verb|local| of the function at level \verb|level| of the stack. | ||
4159 | The function returns \nil{} if there is no local | ||
4160 | variable with the given index, | ||
4161 | and raises an error when called with a \verb|level| out of range. | ||
4162 | (You can call \verb|getinfo| to check whether the level is valid.) | ||
4163 | |||
4164 | \subsubsection*{\ff \T{debug.sethook (hook, mask [, count])}} | ||
4165 | \DefLIB{debug.sethook} | ||
4166 | |||
4167 | Sets the given function as a hook. | ||
4168 | The string \verb|mask| and the number \verb|count| describe | ||
4169 | when the hook will be called. | ||
4170 | The string mask may have the following characters, | ||
4171 | with the given meaning: | ||
4172 | \begin{description} | ||
4173 | \item[{\tt "c"}] The hook is called every time Lua calls a function; | ||
4174 | \item[{\tt "r"}] The hook is called every time Lua returns from a function; | ||
4175 | \item[{\tt "l"}] The hook is called every time Lua enters a new line of code. | ||
4176 | \end{description} | ||
4177 | With a \verb|count| different from zero, | ||
4178 | the hook is called after every \verb|count| instructions. | ||
4179 | |||
4180 | When called without arguments, | ||
4181 | the \verb|debug.sethook| function turns off the hook. | ||
4182 | |||
4183 | When the hook is called, its first parameter is always a string | ||
4184 | describing the event that triggered its call: | ||
4185 | \verb|"call"|, \verb|"return"|, \verb|"line"|, and \verb|"count"|. | ||
4186 | Moreover, for line events, | ||
4187 | it also gets as its second parameter the new line number. | ||
4188 | Inside a hook, | ||
4189 | you can call \verb|getinfo| with level 2 to get more information about | ||
4190 | the running function | ||
4191 | (level\Nb{}0 is the \verb|getinfo| function, | ||
4192 | and level\Nb{}1 is the hook function). | ||
4193 | |||
4194 | \subsubsection*{\ff \T{debug.gethook ()}}\DefLIB{debug.gethook} | ||
4195 | |||
4196 | Returns the current hook settings, as three values: | ||
4197 | the current hook function, the current hook mask, | ||
4198 | and the current hook count (as set by the \verb|debug.sethook| function). | ||
4199 | |||
4200 | |||
4201 | \C{-------------------------------------------------------------------------} | ||
4202 | \section{\Index{Lua Stand-alone}} \label{lua-sa} | ||
4203 | |||
4204 | Although Lua has been designed as an extension language, | ||
4205 | to be embedded in a host C\Nb{}program, | ||
4206 | it is also frequently used as a stand-alone language. | ||
4207 | An interpreter for Lua as a stand-alone language, | ||
4208 | called simply \verb|lua|, | ||
4209 | is provided with the standard distribution. | ||
4210 | The stand-alone interpreter includes | ||
4211 | all standard libraries plus the reflexive debug interface. | ||
4212 | Its usage is: | ||
4213 | \begin{verbatim} | ||
4214 | lua [options] [script [args]] | ||
4215 | \end{verbatim} | ||
4216 | The options are: | ||
4217 | \begin{description}\leftskip=20pt | ||
4218 | \item[\T{-} ] executes \verb|stdin| as a file; | ||
4219 | \item[\T{-e} \rm\emph{stat}] executes string \emph{stat}; | ||
4220 | \item[\T{-l} \rm\emph{file}] \Q{requires} \emph{file}; | ||
4221 | \item[\T{-i}] enters interactive mode after running \emph{script}; | ||
4222 | \item[\T{-v}] prints version information; | ||
4223 | \item[\T{--}] stop handling options. | ||
4224 | \end{description} | ||
4225 | After handling its options, \verb|lua| runs the given \emph{script}, | ||
4226 | passing to it the given \emph{args}. | ||
4227 | When called without arguments, | ||
4228 | \verb|lua| behaves as \verb|lua -v -i| when \verb|stdin| is a terminal, | ||
4229 | and as \verb|lua -| otherwise. | ||
4230 | |||
4231 | Before running any argument, | ||
4232 | the interpreter checks for an environment variable \IndexVerb{LUA_INIT}. | ||
4233 | If its format is \At{}\emph{filename}, | ||
4234 | then lua executes the file. | ||
4235 | Otherwise, lua executes the string itself. | ||
4236 | |||
4237 | All options are handled in order, except \verb|-i|. | ||
4238 | For instance, an invocation like | ||
4239 | \begin{verbatim} | ||
4240 | $ lua -e'a=1' -e 'print(a)' script.lua | ||
4241 | \end{verbatim} | ||
4242 | will first set \verb|a| to 1, then print \verb|a|, | ||
4243 | and finally run the file \verb|script.lua|. | ||
4244 | (Here, \verb|$| is the shell prompt. Your prompt may be different.) | ||
4245 | |||
4246 | Before starting to run the script, | ||
4247 | \verb|lua| collects all arguments in the command line | ||
4248 | in a global table called \verb|arg|. | ||
4249 | The script name is stored in index 0, | ||
4250 | the first argument after the script name goes to index 1, | ||
4251 | and so on. | ||
4252 | The field \verb|n| gets the number of arguments after the script name. | ||
4253 | Any arguments before the script name | ||
4254 | (that is, the interpreter name plus the options) | ||
4255 | go to negative indices. | ||
4256 | For instance, in the call | ||
4257 | \begin{verbatim} | ||
4258 | $ lua -la.lua b.lua t1 t2 | ||
4259 | \end{verbatim} | ||
4260 | the interpreter first runs the file \T{a.lua}, | ||
4261 | then creates a table | ||
4262 | \begin{verbatim} | ||
4263 | arg = { [-2] = "lua", [-1] = "-la.lua", [0] = "b.lua", | ||
4264 | [1] = "t1", [2] = "t2"; n = 2 } | ||
4265 | \end{verbatim} | ||
4266 | and finally runs the file \T{b.lua}. | ||
4267 | |||
4268 | In interactive mode, | ||
4269 | if you write an incomplete statement, | ||
4270 | the interpreter waits for its completion. | ||
4271 | |||
4272 | If the global variable \IndexVerb{_PROMPT} is defined as a string, | ||
4273 | then its value is used as the prompt. | ||
4274 | Therefore, the prompt can be changed directly on the command line: | ||
4275 | \begin{verbatim} | ||
4276 | $ lua -e"_PROMPT='myprompt> '" -i | ||
4277 | \end{verbatim} | ||
4278 | (the first pair of quotes is for the shell, | ||
4279 | the second is for Lua), | ||
4280 | or in any Lua programs by assigning to \verb|_PROMPT|. | ||
4281 | Note the use of \verb|-i| to enter interactive mode; otherwise, | ||
4282 | the program would end just after the assignment to \verb|_PROMPT|. | ||
4283 | |||
4284 | In Unix systems, Lua scripts can be made into executable programs | ||
4285 | by using \verb|chmod +x| and the\Nb{}\verb|#!| form, | ||
4286 | as in | ||
4287 | \begin{verbatim} | ||
4288 | #!/usr/local/bin/lua | ||
4289 | \end{verbatim} | ||
4290 | (Of course, | ||
4291 | the location of the Lua interpreter may be different in your machine. | ||
4292 | If \verb|lua| is in your \verb|PATH|, | ||
4293 | then | ||
4294 | \begin{verbatim} | ||
4295 | #!/usr/bin/env lua | ||
4296 | \end{verbatim} | ||
4297 | is a more portable solution.) | ||
4298 | |||
4299 | \C{-------------------------------------------------------------------------} | ||
4300 | \section*{Acknowledgments} | ||
4301 | |||
4302 | The Lua team is grateful to \tecgraf{} for its continued support to Lua. | ||
4303 | We thank everyone at \tecgraf{}, | ||
4304 | specially the head of the group, Marcelo Gattass. | ||
4305 | At the risk of omitting several names, | ||
4306 | we also thank the following individuals for supporting, | ||
4307 | contributing to, and spreading the word about Lua: | ||
4308 | Alan Watson. | ||
4309 | André Clinio, | ||
4310 | André Costa, | ||
4311 | Antonio Scuri, | ||
4312 | Bret Mogilefsky, | ||
4313 | Cameron Laird, | ||
4314 | Carlos Cassino, | ||
4315 | Carlos Henrique Levy, | ||
4316 | Claudio Terra, | ||
4317 | David Jeske, | ||
4318 | Edgar Toernig, | ||
4319 | Erik Hougaard, | ||
4320 | Jim Mathies, | ||
4321 | John Belmonte, | ||
4322 | John Passaniti, | ||
4323 | John Roll, | ||
4324 | Jon Erickson, | ||
4325 | Jon Kleiser, | ||
4326 | Mark Ian Barlow, | ||
4327 | Nick Trout, | ||
4328 | Noemi Rodriguez, | ||
4329 | Norman Ramsey, | ||
4330 | Philippe Lhoste, | ||
4331 | Renata Ratton, | ||
4332 | Renato Borges, | ||
4333 | Renato Cerqueira, | ||
4334 | Reuben Thomas, | ||
4335 | Stephan Herrmann, | ||
4336 | Steve Dekorte, | ||
4337 | Thatcher Ulrich, | ||
4338 | Tomás Gorham, | ||
4339 | Vincent Penquerc'h, | ||
4340 | Thank you! | ||
4341 | |||
4342 | |||
4343 | \appendix | ||
4344 | |||
4345 | \section*{Incompatibilities with Previous Versions} | ||
4346 | \addcontentsline{toc}{section}{Incompatibilities with Previous Versions} | ||
4347 | |||
4348 | \subsection*{Incompatibilities with \Index{version 4.0}} | ||
4349 | |||
4350 | \subsubsection*{Changes in the Language} | ||
4351 | \begin{itemize} | ||
4352 | |||
4353 | \item | ||
4354 | Function calls written between parentheses result in exactly one value. | ||
4355 | |||
4356 | \item | ||
4357 | A function call as the last expression in a list constructor | ||
4358 | (like \verb|{a,b,f()}|) has all its return values inserted in the list. | ||
4359 | |||
4360 | \item | ||
4361 | The precedence of \rwd{or} is smaller than the precedence of \rwd{and}. | ||
4362 | |||
4363 | \item | ||
4364 | \rwd{in} is a reserved word. | ||
4365 | |||
4366 | \item | ||
4367 | The old construction \verb|for k,v in t|, where \verb|t| is a table, | ||
4368 | is deprecated (although it is still supported). | ||
4369 | Use \verb|for k,v in pairs(t)| instead. | ||
4370 | |||
4371 | \item | ||
4372 | When a literal string of the form \verb|[[...]]| starts with a newline, | ||
4373 | this newline is ignored. | ||
4374 | |||
4375 | \item Old pre-compiled code is obsolete, and must be re-compiled. | ||
4376 | |||
4377 | \end{itemize} | ||
4378 | |||
4379 | |||
4380 | \subsubsection*{Changes in the Libraries} | ||
4381 | \begin{itemize} | ||
4382 | |||
4383 | \item | ||
4384 | Most library functions now are defined inside tables. | ||
4385 | There is a compatibility script (\verb|compat.lua|) that | ||
4386 | redefine most of them as global names. | ||
4387 | |||
4388 | \item | ||
4389 | In the math library, angles are expressed in radians. | ||
4390 | With the compatibility script (\verb|compat.lua|), | ||
4391 | functions still work in degrees. | ||
4392 | |||
4393 | \item | ||
4394 | The \verb|call| function is deprecated. | ||
4395 | Use \verb|f(unpack(tab))| instead of \verb|call(f, tab)| | ||
4396 | for unprotected calls, | ||
4397 | or the new \verb|pcall| function for protected calls. | ||
4398 | |||
4399 | \item | ||
4400 | \verb|dofile| do not handle errors, but simply propagates them. | ||
4401 | |||
4402 | \item | ||
4403 | The \verb|read| option \verb|*w| is obsolete. | ||
4404 | |||
4405 | \item | ||
4406 | The \verb|format| option \verb|%n$| is obsolete. | ||
4407 | |||
4408 | \end{itemize} | ||
4409 | |||
4410 | |||
4411 | \subsubsection*{Changes in the API} | ||
4412 | \begin{itemize} | ||
4413 | |||
4414 | \item | ||
4415 | Userdata!! | ||
4416 | |||
4417 | \end{itemize} | ||
4418 | |||
4419 | |||
4420 | |||
4421 | \C{[===============================================================} | ||
4422 | \newpage | ||
4423 | \section*{The Complete Syntax of Lua} \label{BNF} | ||
4424 | \addcontentsline{toc}{section}{The Complete Syntax of Lua} | ||
4425 | |||
4426 | The notation used here is the usual extended BNF, | ||
4427 | in which | ||
4428 | \rep{\emph{a}}\Nb{}means 0 or more \emph{a}'s, and | ||
4429 | \opt{\emph{a}}\Nb{}means an optional \emph{a}. | ||
4430 | Non-terminals are shown in \emph{italics}, | ||
4431 | keywords are shown in {\bf bold}, | ||
4432 | and other terminal symbols are shown in {\tt typewriter} font, | ||
4433 | enclosed in single quotes. | ||
4434 | |||
4435 | |||
4436 | \index{grammar} | ||
4437 | |||
4438 | \begin{Produc} | ||
4439 | |||
4440 | \produc{chunk}{\rep{stat \opt{\ter{;}}}} | ||
4441 | |||
4442 | \produc{block}{chunk} | ||
4443 | |||
4444 | \produc{stat}{ | ||
4445 | varlist1 \ter{=} explist1 | ||
4446 | \OrNL functioncall | ||
4447 | \OrNL \rwd{do} block \rwd{end} | ||
4448 | \OrNL \rwd{while} exp \rwd{do} block \rwd{end} | ||
4449 | \OrNL \rwd{repeat} block \rwd{until} exp | ||
4450 | \OrNL \rwd{if} exp \rwd{then} block | ||
4451 | \rep{\rwd{elseif} exp \rwd{then} block} | ||
4452 | \opt{\rwd{else} block} \rwd{end} | ||
4453 | \OrNL \rwd{return} \opt{explist1} | ||
4454 | \OrNL \rwd{break} | ||
4455 | \OrNL \rwd{for} \Nter{Name} \ter{=} exp \ter{,} exp \opt{\ter{,} exp} | ||
4456 | \rwd{do} block \rwd{end} | ||
4457 | \OrNL \rwd{for} \Nter{Name} \rep{\ter{,} \Nter{Name}} \rwd{in} explist1 | ||
4458 | \rwd{do} block \rwd{end} | ||
4459 | \OrNL \rwd{function} funcname funcbody | ||
4460 | \OrNL \rwd{local} \rwd{function} \Nter{Name} funcbody | ||
4461 | \OrNL \rwd{local} namelist \opt{init} | ||
4462 | } | ||
4463 | |||
4464 | \produc{funcname}{\Nter{Name} \rep{\ter{.} \Nter{Name}} | ||
4465 | \opt{\ter{:} \Nter{Name}}} | ||
4466 | |||
4467 | \produc{varlist1}{var \rep{\ter{,} var}} | ||
4468 | |||
4469 | \produc{var}{ | ||
4470 | \Nter{Name} | ||
4471 | \Or prefixexp \ter{[} exp \ter{]} | ||
4472 | \Or prefixexp \ter{.} \Nter{Name} | ||
4473 | } | ||
4474 | |||
4475 | \produc{namelist}{\Nter{Name} \rep{\ter{,} \Nter{Name}}} | ||
4476 | |||
4477 | \produc{init}{\ter{=} explist1} | ||
4478 | |||
4479 | \produc{explist1}{\rep{exp \ter{,}} exp} | ||
4480 | |||
4481 | \produc{exp}{ | ||
4482 | \rwd{nil} | ||
4483 | \rwd{false} | ||
4484 | \rwd{true} | ||
4485 | \Or \Nter{Number} | ||
4486 | \OrNL \Nter{Literal} | ||
4487 | \Or function | ||
4488 | \Or prefixexp | ||
4489 | \OrNL tableconstructor | ||
4490 | \Or exp binop exp | ||
4491 | \Or unop exp | ||
4492 | } | ||
4493 | |||
4494 | \produc{prefixexp}{var \Or functioncall \Or \ter{(} exp \ter{)}} | ||
4495 | |||
4496 | \produc{functioncall}{ | ||
4497 | prefixexp args | ||
4498 | \Or prefixexp \ter{:} \Nter{Name} args | ||
4499 | } | ||
4500 | |||
4501 | \produc{args}{ | ||
4502 | \ter{(} \opt{explist1} \ter{)} | ||
4503 | \Or tableconstructor | ||
4504 | \Or \Nter{Literal} | ||
4505 | } | ||
4506 | |||
4507 | \produc{function}{\rwd{function} funcbody} | ||
4508 | |||
4509 | \produc{funcbody}{\ter{(} \opt{parlist1} \ter{)} block \rwd{end}} | ||
4510 | |||
4511 | \produc{parlist1}{ | ||
4512 | \Nter{Name} \rep{\ter{,} \Nter{Name}} \opt{\ter{,} \ter{\ldots}} | ||
4513 | \Or \ter{\ldots} | ||
4514 | } | ||
4515 | |||
4516 | \produc{tableconstructor}{\ter{\{} \opt{fieldlist} \ter{\}}} | ||
4517 | \produc{fieldlist}{field \rep{fieldsep field} \opt{fieldsep}} | ||
4518 | \produc{field}{\ter{[} exp \ter{]} \ter{=} exp \Or name \ter{=} exp \Or exp} | ||
4519 | \produc{fieldsep}{\ter{,} \Or \ter{;}} | ||
4520 | |||
4521 | \produc{binop}{\ter{+} \Or \ter{-} \Or \ter{*} \Or \ter{/} \Or \ter{^} \Or | ||
4522 | \ter{..} \OrNL \ter{<} \Or \ter{<=} \Or \ter{>} \Or \ter{>=} | ||
4523 | \Or \ter{==} \Or \ter{~=} \OrNL \rwd{and} \Or \rwd{or}} | ||
4524 | |||
4525 | \produc{unop}{\ter{-} \Or \rwd{not}} | ||
4526 | |||
4527 | \end{Produc} | ||
4528 | |||
4529 | \C{]===============================================================} | ||
4530 | |||
4531 | \C{ Index} | ||
4532 | |||
4533 | \newpage | ||
4534 | \addcontentsline{toc}{section}{Index} | ||
4535 | \input{manual.id} | ||
4536 | |||
4537 | \end{document} | ||
4538 | %)]} | ||
4539 | |||