diff options
Diffstat (limited to 'lopcodes.h')
-rw-r--r-- | lopcodes.h | 288 |
1 files changed, 288 insertions, 0 deletions
diff --git a/lopcodes.h b/lopcodes.h new file mode 100644 index 00000000..07d2b3f3 --- /dev/null +++ b/lopcodes.h | |||
@@ -0,0 +1,288 @@ | |||
1 | /* | ||
2 | ** $Id: lopcodes.h,v 1.142 2011/07/15 12:50:29 roberto Exp $ | ||
3 | ** Opcodes for Lua virtual machine | ||
4 | ** See Copyright Notice in lua.h | ||
5 | */ | ||
6 | |||
7 | #ifndef lopcodes_h | ||
8 | #define lopcodes_h | ||
9 | |||
10 | #include "llimits.h" | ||
11 | |||
12 | |||
13 | /*=========================================================================== | ||
14 | We assume that instructions are unsigned numbers. | ||
15 | All instructions have an opcode in the first 6 bits. | ||
16 | Instructions can have the following fields: | ||
17 | `A' : 8 bits | ||
18 | `B' : 9 bits | ||
19 | `C' : 9 bits | ||
20 | 'Ax' : 26 bits ('A', 'B', and 'C' together) | ||
21 | `Bx' : 18 bits (`B' and `C' together) | ||
22 | `sBx' : signed Bx | ||
23 | |||
24 | A signed argument is represented in excess K; that is, the number | ||
25 | value is the unsigned value minus K. K is exactly the maximum value | ||
26 | for that argument (so that -max is represented by 0, and +max is | ||
27 | represented by 2*max), which is half the maximum for the corresponding | ||
28 | unsigned argument. | ||
29 | ===========================================================================*/ | ||
30 | |||
31 | |||
32 | enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */ | ||
33 | |||
34 | |||
35 | /* | ||
36 | ** size and position of opcode arguments. | ||
37 | */ | ||
38 | #define SIZE_C 9 | ||
39 | #define SIZE_B 9 | ||
40 | #define SIZE_Bx (SIZE_C + SIZE_B) | ||
41 | #define SIZE_A 8 | ||
42 | #define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A) | ||
43 | |||
44 | #define SIZE_OP 6 | ||
45 | |||
46 | #define POS_OP 0 | ||
47 | #define POS_A (POS_OP + SIZE_OP) | ||
48 | #define POS_C (POS_A + SIZE_A) | ||
49 | #define POS_B (POS_C + SIZE_C) | ||
50 | #define POS_Bx POS_C | ||
51 | #define POS_Ax POS_A | ||
52 | |||
53 | |||
54 | /* | ||
55 | ** limits for opcode arguments. | ||
56 | ** we use (signed) int to manipulate most arguments, | ||
57 | ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) | ||
58 | */ | ||
59 | #if SIZE_Bx < LUAI_BITSINT-1 | ||
60 | #define MAXARG_Bx ((1<<SIZE_Bx)-1) | ||
61 | #define MAXARG_sBx (MAXARG_Bx>>1) /* `sBx' is signed */ | ||
62 | #else | ||
63 | #define MAXARG_Bx MAX_INT | ||
64 | #define MAXARG_sBx MAX_INT | ||
65 | #endif | ||
66 | |||
67 | #if SIZE_Ax < LUAI_BITSINT-1 | ||
68 | #define MAXARG_Ax ((1<<SIZE_Ax)-1) | ||
69 | #else | ||
70 | #define MAXARG_Ax MAX_INT | ||
71 | #endif | ||
72 | |||
73 | |||
74 | #define MAXARG_A ((1<<SIZE_A)-1) | ||
75 | #define MAXARG_B ((1<<SIZE_B)-1) | ||
76 | #define MAXARG_C ((1<<SIZE_C)-1) | ||
77 | |||
78 | |||
79 | /* creates a mask with `n' 1 bits at position `p' */ | ||
80 | #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) | ||
81 | |||
82 | /* creates a mask with `n' 0 bits at position `p' */ | ||
83 | #define MASK0(n,p) (~MASK1(n,p)) | ||
84 | |||
85 | /* | ||
86 | ** the following macros help to manipulate instructions | ||
87 | */ | ||
88 | |||
89 | #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) | ||
90 | #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ | ||
91 | ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) | ||
92 | |||
93 | #define getarg(i,pos,size) (cast(int, ((i)>>pos) & MASK1(size,0))) | ||
94 | #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ | ||
95 | ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) | ||
96 | |||
97 | #define GETARG_A(i) getarg(i, POS_A, SIZE_A) | ||
98 | #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A) | ||
99 | |||
100 | #define GETARG_B(i) getarg(i, POS_B, SIZE_B) | ||
101 | #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B) | ||
102 | |||
103 | #define GETARG_C(i) getarg(i, POS_C, SIZE_C) | ||
104 | #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C) | ||
105 | |||
106 | #define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx) | ||
107 | #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx) | ||
108 | |||
109 | #define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax) | ||
110 | #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax) | ||
111 | |||
112 | #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx) | ||
113 | #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) | ||
114 | |||
115 | |||
116 | #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ | ||
117 | | (cast(Instruction, a)<<POS_A) \ | ||
118 | | (cast(Instruction, b)<<POS_B) \ | ||
119 | | (cast(Instruction, c)<<POS_C)) | ||
120 | |||
121 | #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ | ||
122 | | (cast(Instruction, a)<<POS_A) \ | ||
123 | | (cast(Instruction, bc)<<POS_Bx)) | ||
124 | |||
125 | #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \ | ||
126 | | (cast(Instruction, a)<<POS_Ax)) | ||
127 | |||
128 | |||
129 | /* | ||
130 | ** Macros to operate RK indices | ||
131 | */ | ||
132 | |||
133 | /* this bit 1 means constant (0 means register) */ | ||
134 | #define BITRK (1 << (SIZE_B - 1)) | ||
135 | |||
136 | /* test whether value is a constant */ | ||
137 | #define ISK(x) ((x) & BITRK) | ||
138 | |||
139 | /* gets the index of the constant */ | ||
140 | #define INDEXK(r) ((int)(r) & ~BITRK) | ||
141 | |||
142 | #define MAXINDEXRK (BITRK - 1) | ||
143 | |||
144 | /* code a constant index as a RK value */ | ||
145 | #define RKASK(x) ((x) | BITRK) | ||
146 | |||
147 | |||
148 | /* | ||
149 | ** invalid register that fits in 8 bits | ||
150 | */ | ||
151 | #define NO_REG MAXARG_A | ||
152 | |||
153 | |||
154 | /* | ||
155 | ** R(x) - register | ||
156 | ** Kst(x) - constant (in constant table) | ||
157 | ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) | ||
158 | */ | ||
159 | |||
160 | |||
161 | /* | ||
162 | ** grep "ORDER OP" if you change these enums | ||
163 | */ | ||
164 | |||
165 | typedef enum { | ||
166 | /*---------------------------------------------------------------------- | ||
167 | name args description | ||
168 | ------------------------------------------------------------------------*/ | ||
169 | OP_MOVE,/* A B R(A) := R(B) */ | ||
170 | OP_LOADK,/* A Bx R(A) := Kst(Bx) */ | ||
171 | OP_LOADKX,/* A R(A) := Kst(extra arg) */ | ||
172 | OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ | ||
173 | OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */ | ||
174 | OP_GETUPVAL,/* A B R(A) := UpValue[B] */ | ||
175 | |||
176 | OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */ | ||
177 | OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ | ||
178 | |||
179 | OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */ | ||
180 | OP_SETUPVAL,/* A B UpValue[B] := R(A) */ | ||
181 | OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ | ||
182 | |||
183 | OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ | ||
184 | |||
185 | OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ | ||
186 | |||
187 | OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ | ||
188 | OP_SUB,/* A B C R(A) := RK(B) - RK(C) */ | ||
189 | OP_MUL,/* A B C R(A) := RK(B) * RK(C) */ | ||
190 | OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ | ||
191 | OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ | ||
192 | OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ | ||
193 | OP_UNM,/* A B R(A) := -R(B) */ | ||
194 | OP_NOT,/* A B R(A) := not R(B) */ | ||
195 | OP_LEN,/* A B R(A) := length of R(B) */ | ||
196 | |||
197 | OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ | ||
198 | |||
199 | OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A) + 1 */ | ||
200 | OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ | ||
201 | OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ | ||
202 | OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ | ||
203 | |||
204 | OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ | ||
205 | OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ | ||
206 | |||
207 | OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ | ||
208 | OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ | ||
209 | OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ | ||
210 | |||
211 | OP_FORLOOP,/* A sBx R(A)+=R(A+2); | ||
212 | if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ | ||
213 | OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ | ||
214 | |||
215 | OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */ | ||
216 | OP_TFORLOOP,/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/ | ||
217 | |||
218 | OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ | ||
219 | |||
220 | OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */ | ||
221 | |||
222 | OP_VARARG,/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */ | ||
223 | |||
224 | OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */ | ||
225 | } OpCode; | ||
226 | |||
227 | |||
228 | #define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1) | ||
229 | |||
230 | |||
231 | |||
232 | /*=========================================================================== | ||
233 | Notes: | ||
234 | (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then `top' is | ||
235 | set to last_result+1, so next open instruction (OP_CALL, OP_RETURN, | ||
236 | OP_SETLIST) may use `top'. | ||
237 | |||
238 | (*) In OP_VARARG, if (B == 0) then use actual number of varargs and | ||
239 | set top (like in OP_CALL with C == 0). | ||
240 | |||
241 | (*) In OP_RETURN, if (B == 0) then return up to `top'. | ||
242 | |||
243 | (*) In OP_SETLIST, if (B == 0) then B = `top'; if (C == 0) then next | ||
244 | 'instruction' is EXTRAARG(real C). | ||
245 | |||
246 | (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG. | ||
247 | |||
248 | (*) For comparisons, A specifies what condition the test should accept | ||
249 | (true or false). | ||
250 | |||
251 | (*) All `skips' (pc++) assume that next instruction is a jump. | ||
252 | |||
253 | ===========================================================================*/ | ||
254 | |||
255 | |||
256 | /* | ||
257 | ** masks for instruction properties. The format is: | ||
258 | ** bits 0-1: op mode | ||
259 | ** bits 2-3: C arg mode | ||
260 | ** bits 4-5: B arg mode | ||
261 | ** bit 6: instruction set register A | ||
262 | ** bit 7: operator is a test (next instruction must be a jump) | ||
263 | */ | ||
264 | |||
265 | enum OpArgMask { | ||
266 | OpArgN, /* argument is not used */ | ||
267 | OpArgU, /* argument is used */ | ||
268 | OpArgR, /* argument is a register or a jump offset */ | ||
269 | OpArgK /* argument is a constant or register/constant */ | ||
270 | }; | ||
271 | |||
272 | LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES]; | ||
273 | |||
274 | #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) | ||
275 | #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) | ||
276 | #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) | ||
277 | #define testAMode(m) (luaP_opmodes[m] & (1 << 6)) | ||
278 | #define testTMode(m) (luaP_opmodes[m] & (1 << 7)) | ||
279 | |||
280 | |||
281 | LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ | ||
282 | |||
283 | |||
284 | /* number of list items to accumulate before a SETLIST instruction */ | ||
285 | #define LFIELDS_PER_FLUSH 50 | ||
286 | |||
287 | |||
288 | #endif | ||