diff options
Diffstat (limited to 'ltable.c')
-rw-r--r-- | ltable.c | 298 |
1 files changed, 100 insertions, 198 deletions
@@ -41,12 +41,12 @@ | |||
41 | 41 | ||
42 | 42 | ||
43 | /* | 43 | /* |
44 | ** Only tables with hash parts larger than 2^LIMFORLAST has a 'lastfree' | 44 | ** Only hash parts with at least 2^LIMFORLAST have a 'lastfree' field |
45 | ** field that optimizes finding a free slot. That field is stored just | 45 | ** that optimizes finding a free slot. That field is stored just before |
46 | ** before the array of nodes, in the same block. Smaller tables do a | 46 | ** the array of nodes, in the same block. Smaller tables do a complete |
47 | ** complete search when looking for a free slot. | 47 | ** search when looking for a free slot. |
48 | */ | 48 | */ |
49 | #define LIMFORLAST 2 /* log2 of real limit */ | 49 | #define LIMFORLAST 3 /* log2 of real limit (8) */ |
50 | 50 | ||
51 | /* | 51 | /* |
52 | ** The union 'Limbox' stores 'lastfree' and ensures that what follows it | 52 | ** The union 'Limbox' stores 'lastfree' and ensures that what follows it |
@@ -59,7 +59,7 @@ typedef union { | |||
59 | char padding[offsetof(Limbox_aux, follows_pNode)]; | 59 | char padding[offsetof(Limbox_aux, follows_pNode)]; |
60 | } Limbox; | 60 | } Limbox; |
61 | 61 | ||
62 | #define haslastfree(t) ((t)->lsizenode > LIMFORLAST) | 62 | #define haslastfree(t) ((t)->lsizenode >= LIMFORLAST) |
63 | #define getlastfree(t) ((cast(Limbox *, (t)->node) - 1)->lastfree) | 63 | #define getlastfree(t) ((cast(Limbox *, (t)->node) - 1)->lastfree) |
64 | 64 | ||
65 | 65 | ||
@@ -274,61 +274,6 @@ static int equalkey (const TValue *k1, const Node *n2, int deadok) { | |||
274 | 274 | ||
275 | 275 | ||
276 | /* | 276 | /* |
277 | ** True if value of 'alimit' is equal to the real size of the array | ||
278 | ** part of table 't'. (Otherwise, the array part must be larger than | ||
279 | ** 'alimit'.) | ||
280 | */ | ||
281 | #define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit)) | ||
282 | |||
283 | |||
284 | /* | ||
285 | ** Returns the real size of the 'array' array | ||
286 | */ | ||
287 | unsigned int luaH_realasize (const Table *t) { | ||
288 | if (limitequalsasize(t)) | ||
289 | return t->alimit; /* this is the size */ | ||
290 | else { | ||
291 | unsigned int size = t->alimit; | ||
292 | /* compute the smallest power of 2 not smaller than 'size' */ | ||
293 | size |= (size >> 1); | ||
294 | size |= (size >> 2); | ||
295 | size |= (size >> 4); | ||
296 | size |= (size >> 8); | ||
297 | #if (UINT_MAX >> 14) > 3 /* unsigned int has more than 16 bits */ | ||
298 | size |= (size >> 16); | ||
299 | #if (UINT_MAX >> 30) > 3 | ||
300 | size |= (size >> 32); /* unsigned int has more than 32 bits */ | ||
301 | #endif | ||
302 | #endif | ||
303 | size++; | ||
304 | lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size); | ||
305 | return size; | ||
306 | } | ||
307 | } | ||
308 | |||
309 | |||
310 | /* | ||
311 | ** Check whether real size of the array is a power of 2. | ||
312 | ** (If it is not, 'alimit' cannot be changed to any other value | ||
313 | ** without changing the real size.) | ||
314 | */ | ||
315 | static int ispow2realasize (const Table *t) { | ||
316 | return (!isrealasize(t) || ispow2(t->alimit)); | ||
317 | } | ||
318 | |||
319 | |||
320 | static unsigned int setlimittosize (Table *t) { | ||
321 | t->alimit = luaH_realasize(t); | ||
322 | setrealasize(t); | ||
323 | return t->alimit; | ||
324 | } | ||
325 | |||
326 | |||
327 | #define limitasasize(t) check_exp(isrealasize(t), t->alimit) | ||
328 | |||
329 | |||
330 | |||
331 | /* | ||
332 | ** "Generic" get version. (Not that generic: not valid for integers, | 277 | ** "Generic" get version. (Not that generic: not valid for integers, |
333 | ** which may be in array part, nor for floats with integral values.) | 278 | ** which may be in array part, nor for floats with integral values.) |
334 | ** See explanation about 'deadok' in function 'equalkey'. | 279 | ** See explanation about 'deadok' in function 'equalkey'. |
@@ -384,7 +329,7 @@ static unsigned findindex (lua_State *L, Table *t, TValue *key, | |||
384 | 329 | ||
385 | 330 | ||
386 | int luaH_next (lua_State *L, Table *t, StkId key) { | 331 | int luaH_next (lua_State *L, Table *t, StkId key) { |
387 | unsigned int asize = luaH_realasize(t); | 332 | unsigned int asize = t->asize; |
388 | unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */ | 333 | unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */ |
389 | for (; i < asize; i++) { /* try first array part */ | 334 | for (; i < asize; i++) { /* try first array part */ |
390 | lu_byte tag = *getArrTag(t, i); | 335 | lu_byte tag = *getArrTag(t, i); |
@@ -425,38 +370,10 @@ static void freehash (lua_State *L, Table *t) { | |||
425 | 370 | ||
426 | 371 | ||
427 | /* | 372 | /* |
428 | ** Check whether an integer key is in the array part. If 'alimit' is | 373 | ** Check whether an integer key is in the array part of a table. |
429 | ** not the real size of the array, the key still can be in the array | ||
430 | ** part. In this case, do the "Xmilia trick" to check whether 'key-1' | ||
431 | ** is smaller than the real size. | ||
432 | ** The trick works as follow: let 'p' be the integer such that | ||
433 | ** '2^(p+1) >= alimit > 2^p', or '2^(p+1) > alimit-1 >= 2^p'. That is, | ||
434 | ** 'p' is the highest 1-bit in 'alimit-1', and 2^(p+1) is the real size | ||
435 | ** of the array. What we have to check becomes 'key-1 < 2^(p+1)'. We | ||
436 | ** compute '(key-1) & ~(alimit-1)', which we call 'res'; it will have | ||
437 | ** the 'p' bit cleared. (It may also clear other bits smaller than 'p', | ||
438 | ** but no bit higher than 'p'.) If the key is outside the array, that | ||
439 | ** is, 'key-1 >= 2^(p+1)', then 'res' will have some 1-bit higher than | ||
440 | ** 'p', therefore it will be larger or equal to 'alimit', and the check | ||
441 | ** will fail. If 'key-1 < 2^(p+1)', then 'res' has no 1-bit higher than | ||
442 | ** 'p', and as the bit 'p' itself was cleared, 'res' will be smaller | ||
443 | ** than 2^p, therefore smaller than 'alimit', and the check succeeds. | ||
444 | ** As special cases, when 'alimit' is 0 the condition is trivially false, | ||
445 | ** and when 'alimit' is 1 the condition simplifies to 'key-1 < alimit'. | ||
446 | ** If key is 0 or negative, 'res' will have its higher bit on, so that | ||
447 | ** it cannot be smaller than 'alimit'. | ||
448 | */ | 374 | */ |
449 | static int keyinarray (Table *t, lua_Integer key) { | 375 | l_sinline int keyinarray (Table *t, lua_Integer key) { |
450 | lua_Unsigned alimit = t->alimit; | 376 | return (l_castS2U(key) - 1u < t->asize); /* 'key' in [1, t->asize]? */ |
451 | if (l_castS2U(key) - 1u < alimit) /* 'key' in [1, t->alimit]? */ | ||
452 | return 1; | ||
453 | else if (!isrealasize(t) && /* key still may be in the array part? */ | ||
454 | (((l_castS2U(key) - 1u) & ~(alimit - 1u)) < alimit)) { | ||
455 | t->alimit = cast_uint(key); /* probably '#t' is here now */ | ||
456 | return 1; | ||
457 | } | ||
458 | else | ||
459 | return 0; | ||
460 | } | 377 | } |
461 | 378 | ||
462 | 379 | ||
@@ -466,7 +383,6 @@ static int keyinarray (Table *t, lua_Integer key) { | |||
466 | ** ============================================================== | 383 | ** ============================================================== |
467 | */ | 384 | */ |
468 | 385 | ||
469 | |||
470 | /* | 386 | /* |
471 | ** Structure to count the keys in a table. | 387 | ** Structure to count the keys in a table. |
472 | ** 'total' is the total number of keys in the table. | 388 | ** 'total' is the total number of keys in the table. |
@@ -534,7 +450,7 @@ static void countint (lua_Integer key, Counters *ct) { | |||
534 | } | 450 | } |
535 | 451 | ||
536 | 452 | ||
537 | l_sinline int arraykeyisempty (const Table *t, lua_Unsigned key) { | 453 | l_sinline int arraykeyisempty (const Table *t, unsigned key) { |
538 | int tag = *getArrTag(t, key - 1); | 454 | int tag = *getArrTag(t, key - 1); |
539 | return tagisempty(tag); | 455 | return tagisempty(tag); |
540 | } | 456 | } |
@@ -548,7 +464,7 @@ static void numusearray (const Table *t, Counters *ct) { | |||
548 | unsigned int ttlg; /* 2^lg */ | 464 | unsigned int ttlg; /* 2^lg */ |
549 | unsigned int ause = 0; /* summation of 'nums' */ | 465 | unsigned int ause = 0; /* summation of 'nums' */ |
550 | unsigned int i = 1; /* index to traverse all array keys */ | 466 | unsigned int i = 1; /* index to traverse all array keys */ |
551 | unsigned int asize = limitasasize(t); /* real array size */ | 467 | unsigned int asize = t->asize; |
552 | /* traverse each slice */ | 468 | /* traverse each slice */ |
553 | for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { | 469 | for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) { |
554 | unsigned int lc = 0; /* counter */ | 470 | unsigned int lc = 0; /* counter */ |
@@ -600,7 +516,10 @@ static void numusehash (const Table *t, Counters *ct) { | |||
600 | ** "concrete size" (number of bytes in the array). | 516 | ** "concrete size" (number of bytes in the array). |
601 | */ | 517 | */ |
602 | static size_t concretesize (unsigned int size) { | 518 | static size_t concretesize (unsigned int size) { |
603 | return size * sizeof(Value) + size; /* space for the two arrays */ | 519 | if (size == 0) |
520 | return 0; | ||
521 | else /* space for the two arrays plus an unsigned in between */ | ||
522 | return size * (sizeof(Value) + 1) + sizeof(unsigned); | ||
604 | } | 523 | } |
605 | 524 | ||
606 | 525 | ||
@@ -631,17 +550,18 @@ static Value *resizearray (lua_State *L , Table *t, | |||
631 | luaM_reallocvector(L, NULL, 0, newasizeb, lu_byte)); | 550 | luaM_reallocvector(L, NULL, 0, newasizeb, lu_byte)); |
632 | if (np == NULL) /* allocation error? */ | 551 | if (np == NULL) /* allocation error? */ |
633 | return NULL; | 552 | return NULL; |
553 | np += newasize; /* shift pointer to the end of value segment */ | ||
634 | if (oldasize > 0) { | 554 | if (oldasize > 0) { |
635 | size_t oldasizeb = concretesize(oldasize); | ||
636 | /* move common elements to new position */ | 555 | /* move common elements to new position */ |
637 | Value *op = t->array - oldasize; /* real original array */ | 556 | size_t oldasizeb = concretesize(oldasize); |
557 | Value *op = t->array; /* original array */ | ||
638 | unsigned tomove = (oldasize < newasize) ? oldasize : newasize; | 558 | unsigned tomove = (oldasize < newasize) ? oldasize : newasize; |
639 | size_t tomoveb = (oldasize < newasize) ? oldasizeb : newasizeb; | 559 | size_t tomoveb = (oldasize < newasize) ? oldasizeb : newasizeb; |
640 | lua_assert(tomoveb > 0); | 560 | lua_assert(tomoveb > 0); |
641 | memcpy(np + newasize - tomove, op + oldasize - tomove, tomoveb); | 561 | memcpy(np - tomove, op - tomove, tomoveb); |
642 | luaM_freemem(L, op, oldasizeb); | 562 | luaM_freemem(L, op - oldasize, oldasizeb); /* free old block */ |
643 | } | 563 | } |
644 | return np + newasize; /* shift pointer to the end of value segment */ | 564 | return np; |
645 | } | 565 | } |
646 | } | 566 | } |
647 | 567 | ||
@@ -665,7 +585,7 @@ static void setnodevector (lua_State *L, Table *t, unsigned size) { | |||
665 | if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE) | 585 | if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE) |
666 | luaG_runerror(L, "table overflow"); | 586 | luaG_runerror(L, "table overflow"); |
667 | size = twoto(lsize); | 587 | size = twoto(lsize); |
668 | if (lsize <= LIMFORLAST) /* no 'lastfree' field? */ | 588 | if (lsize < LIMFORLAST) /* no 'lastfree' field? */ |
669 | t->node = luaM_newvector(L, size, Node); | 589 | t->node = luaM_newvector(L, size, Node); |
670 | else { | 590 | else { |
671 | size_t bsize = size * sizeof(Node) + sizeof(Limbox); | 591 | size_t bsize = size * sizeof(Node) + sizeof(Limbox); |
@@ -730,7 +650,7 @@ static void exchangehashpart (Table *t1, Table *t2) { | |||
730 | static void reinsertOldSlice (lua_State *L, Table *t, unsigned oldasize, | 650 | static void reinsertOldSlice (lua_State *L, Table *t, unsigned oldasize, |
731 | unsigned newasize) { | 651 | unsigned newasize) { |
732 | unsigned i; | 652 | unsigned i; |
733 | t->alimit = newasize; /* pretend array has new size... */ | 653 | t->asize = newasize; /* pretend array has new size... */ |
734 | for (i = newasize; i < oldasize; i++) { /* traverse vanishing slice */ | 654 | for (i = newasize; i < oldasize; i++) { /* traverse vanishing slice */ |
735 | lu_byte tag = *getArrTag(t, i); | 655 | lu_byte tag = *getArrTag(t, i); |
736 | if (!tagisempty(tag)) { /* a non-empty entry? */ | 656 | if (!tagisempty(tag)) { /* a non-empty entry? */ |
@@ -740,7 +660,7 @@ static void reinsertOldSlice (lua_State *L, Table *t, unsigned oldasize, | |||
740 | luaH_setint(L, t, cast_int(i) + 1, &aux); | 660 | luaH_setint(L, t, cast_int(i) + 1, &aux); |
741 | } | 661 | } |
742 | } | 662 | } |
743 | t->alimit = oldasize; /* restore current size... */ | 663 | t->asize = oldasize; /* restore current size... */ |
744 | } | 664 | } |
745 | 665 | ||
746 | 666 | ||
@@ -772,7 +692,7 @@ static void clearNewSlice (Table *t, unsigned oldasize, unsigned newasize) { | |||
772 | void luaH_resize (lua_State *L, Table *t, unsigned newasize, | 692 | void luaH_resize (lua_State *L, Table *t, unsigned newasize, |
773 | unsigned nhsize) { | 693 | unsigned nhsize) { |
774 | Table newt; /* to keep the new hash part */ | 694 | Table newt; /* to keep the new hash part */ |
775 | unsigned int oldasize = setlimittosize(t); | 695 | unsigned oldasize = t->asize; |
776 | Value *newarray; | 696 | Value *newarray; |
777 | if (newasize > MAXASIZE) | 697 | if (newasize > MAXASIZE) |
778 | luaG_runerror(L, "table overflow"); | 698 | luaG_runerror(L, "table overflow"); |
@@ -794,7 +714,9 @@ void luaH_resize (lua_State *L, Table *t, unsigned newasize, | |||
794 | /* allocation ok; initialize new part of the array */ | 714 | /* allocation ok; initialize new part of the array */ |
795 | exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */ | 715 | exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */ |
796 | t->array = newarray; /* set new array part */ | 716 | t->array = newarray; /* set new array part */ |
797 | t->alimit = newasize; | 717 | t->asize = newasize; |
718 | if (newarray != NULL) | ||
719 | *lenhint(t) = newasize / 2u; /* set an initial hint */ | ||
798 | clearNewSlice(t, oldasize, newasize); | 720 | clearNewSlice(t, oldasize, newasize); |
799 | /* re-insert elements from old hash part into new parts */ | 721 | /* re-insert elements from old hash part into new parts */ |
800 | reinsert(L, &newt, t); /* 'newt' now has the old hash */ | 722 | reinsert(L, &newt, t); /* 'newt' now has the old hash */ |
@@ -818,7 +740,6 @@ static void rehash (lua_State *L, Table *t, const TValue *ek) { | |||
818 | Counters ct; | 740 | Counters ct; |
819 | unsigned i; | 741 | unsigned i; |
820 | unsigned nsize; /* size for the hash part */ | 742 | unsigned nsize; /* size for the hash part */ |
821 | setlimittosize(t); | ||
822 | /* reset counts */ | 743 | /* reset counts */ |
823 | for (i = 0; i <= MAXABITS; i++) ct.nums[i] = 0; | 744 | for (i = 0; i <= MAXABITS; i++) ct.nums[i] = 0; |
824 | ct.na = 0; | 745 | ct.na = 0; |
@@ -829,7 +750,7 @@ static void rehash (lua_State *L, Table *t, const TValue *ek) { | |||
829 | numusehash(t, &ct); /* count keys in hash part */ | 750 | numusehash(t, &ct); /* count keys in hash part */ |
830 | if (ct.na == 0) { | 751 | if (ct.na == 0) { |
831 | /* no new keys to enter array part; keep it with the same size */ | 752 | /* no new keys to enter array part; keep it with the same size */ |
832 | asize = luaH_realasize(t); | 753 | asize = t->asize; |
833 | } | 754 | } |
834 | else { /* compute best size for array part */ | 755 | else { /* compute best size for array part */ |
835 | numusearray(t, &ct); /* count keys in array part */ | 756 | numusearray(t, &ct); /* count keys in array part */ |
@@ -857,15 +778,14 @@ Table *luaH_new (lua_State *L) { | |||
857 | t->metatable = NULL; | 778 | t->metatable = NULL; |
858 | t->flags = maskflags; /* table has no metamethod fields */ | 779 | t->flags = maskflags; /* table has no metamethod fields */ |
859 | t->array = NULL; | 780 | t->array = NULL; |
860 | t->alimit = 0; | 781 | t->asize = 0; |
861 | setnodevector(L, t, 0); | 782 | setnodevector(L, t, 0); |
862 | return t; | 783 | return t; |
863 | } | 784 | } |
864 | 785 | ||
865 | 786 | ||
866 | lu_mem luaH_size (Table *t) { | 787 | lu_mem luaH_size (Table *t) { |
867 | lu_mem sz = cast(lu_mem, sizeof(Table)) | 788 | lu_mem sz = cast(lu_mem, sizeof(Table)) + concretesize(t->asize); |
868 | + luaH_realasize(t) * (sizeof(Value) + 1); | ||
869 | if (!isdummy(t)) | 789 | if (!isdummy(t)) |
870 | sz += sizehash(t); | 790 | sz += sizehash(t); |
871 | return sz; | 791 | return sz; |
@@ -876,9 +796,8 @@ lu_mem luaH_size (Table *t) { | |||
876 | ** Frees a table. | 796 | ** Frees a table. |
877 | */ | 797 | */ |
878 | void luaH_free (lua_State *L, Table *t) { | 798 | void luaH_free (lua_State *L, Table *t) { |
879 | unsigned int realsize = luaH_realasize(t); | ||
880 | freehash(L, t); | 799 | freehash(L, t); |
881 | resizearray(L, t, realsize, 0); | 800 | resizearray(L, t, t->asize, 0); |
882 | luaM_free(L, t); | 801 | luaM_free(L, t); |
883 | } | 802 | } |
884 | 803 | ||
@@ -972,7 +891,7 @@ static void luaH_newkey (lua_State *L, Table *t, const TValue *key, | |||
972 | 891 | ||
973 | static const TValue *getintfromhash (Table *t, lua_Integer key) { | 892 | static const TValue *getintfromhash (Table *t, lua_Integer key) { |
974 | Node *n = hashint(t, key); | 893 | Node *n = hashint(t, key); |
975 | lua_assert(l_castS2U(key) - 1u >= luaH_realasize(t)); | 894 | lua_assert(!keyinarray(t, key)); |
976 | for (;;) { /* check whether 'key' is somewhere in the chain */ | 895 | for (;;) { /* check whether 'key' is somewhere in the chain */ |
977 | if (keyisinteger(n) && keyival(n) == key) | 896 | if (keyisinteger(n) && keyival(n) == key) |
978 | return gval(n); /* that's it */ | 897 | return gval(n); /* that's it */ |
@@ -1112,17 +1031,15 @@ static int rawfinishnodeset (const TValue *slot, TValue *val) { | |||
1112 | 1031 | ||
1113 | 1032 | ||
1114 | int luaH_psetint (Table *t, lua_Integer key, TValue *val) { | 1033 | int luaH_psetint (Table *t, lua_Integer key, TValue *val) { |
1115 | if (keyinarray(t, key)) { | 1034 | lua_assert(!keyinarray(t, key)); |
1116 | lu_byte *tag = getArrTag(t, key - 1); | 1035 | return finishnodeset(t, getintfromhash(t, key), val); |
1117 | if (!tagisempty(*tag) || checknoTM(t->metatable, TM_NEWINDEX)) { | 1036 | } |
1118 | fval2arr(t, cast_uint(key) - 1, tag, val); | 1037 | |
1119 | return HOK; /* success */ | 1038 | |
1120 | } | 1039 | static int psetint (Table *t, lua_Integer key, TValue *val) { |
1121 | else | 1040 | int hres; |
1122 | return ~cast_int(key - 1); /* empty slot in the array part */ | 1041 | luaH_fastseti(t, key, val, hres); |
1123 | } | 1042 | return hres; |
1124 | else | ||
1125 | return finishnodeset(t, getintfromhash(t, key), val); | ||
1126 | } | 1043 | } |
1127 | 1044 | ||
1128 | 1045 | ||
@@ -1139,12 +1056,12 @@ int luaH_psetstr (Table *t, TString *key, TValue *val) { | |||
1139 | int luaH_pset (Table *t, const TValue *key, TValue *val) { | 1056 | int luaH_pset (Table *t, const TValue *key, TValue *val) { |
1140 | switch (ttypetag(key)) { | 1057 | switch (ttypetag(key)) { |
1141 | case LUA_VSHRSTR: return luaH_psetshortstr(t, tsvalue(key), val); | 1058 | case LUA_VSHRSTR: return luaH_psetshortstr(t, tsvalue(key), val); |
1142 | case LUA_VNUMINT: return luaH_psetint(t, ivalue(key), val); | 1059 | case LUA_VNUMINT: return psetint(t, ivalue(key), val); |
1143 | case LUA_VNIL: return HNOTFOUND; | 1060 | case LUA_VNIL: return HNOTFOUND; |
1144 | case LUA_VNUMFLT: { | 1061 | case LUA_VNUMFLT: { |
1145 | lua_Integer k; | 1062 | lua_Integer k; |
1146 | if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ | 1063 | if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */ |
1147 | return luaH_psetint(t, k, val); /* use specialized version */ | 1064 | return psetint(t, k, val); /* use specialized version */ |
1148 | /* else... */ | 1065 | /* else... */ |
1149 | } /* FALLTHROUGH */ | 1066 | } /* FALLTHROUGH */ |
1150 | default: | 1067 | default: |
@@ -1244,6 +1161,7 @@ static lua_Unsigned hash_search (Table *t, lua_Unsigned j) { | |||
1244 | 1161 | ||
1245 | 1162 | ||
1246 | static unsigned int binsearch (Table *array, unsigned int i, unsigned int j) { | 1163 | static unsigned int binsearch (Table *array, unsigned int i, unsigned int j) { |
1164 | lua_assert(i <= j); | ||
1247 | while (j - i > 1u) { /* binary search */ | 1165 | while (j - i > 1u) { /* binary search */ |
1248 | unsigned int m = (i + j) / 2; | 1166 | unsigned int m = (i + j) / 2; |
1249 | if (arraykeyisempty(array, m)) j = m; | 1167 | if (arraykeyisempty(array, m)) j = m; |
@@ -1253,90 +1171,74 @@ static unsigned int binsearch (Table *array, unsigned int i, unsigned int j) { | |||
1253 | } | 1171 | } |
1254 | 1172 | ||
1255 | 1173 | ||
1174 | /* return a border, saving it as a hint for next call */ | ||
1175 | static lua_Unsigned newhint (Table *t, unsigned hint) { | ||
1176 | lua_assert(hint <= t->asize); | ||
1177 | *lenhint(t) = hint; | ||
1178 | return hint; | ||
1179 | } | ||
1180 | |||
1181 | |||
1256 | /* | 1182 | /* |
1257 | ** Try to find a boundary in table 't'. (A 'boundary' is an integer index | 1183 | ** Try to find a border in table 't'. (A 'border' is an integer index |
1258 | ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent | 1184 | ** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent, |
1259 | ** and 'maxinteger' if t[maxinteger] is present.) | 1185 | ** or 'maxinteger' if t[maxinteger] is present.) |
1260 | ** (In the next explanation, we use Lua indices, that is, with base 1. | 1186 | ** If there is an array part, try to find a border there. First try |
1261 | ** The code itself uses base 0 when indexing the array part of the table.) | 1187 | ** to find it in the vicinity of the previous result (hint), to handle |
1262 | ** The code starts with 'limit = t->alimit', a position in the array | 1188 | ** cases like 't[#t + 1] = val' or 't[#t] = nil', that move the border |
1263 | ** part that may be a boundary. | 1189 | ** by one entry. Otherwise, do a binary search to find the border. |
1264 | ** | 1190 | ** If there is no array part, or its last element is non empty, the |
1265 | ** (1) If 't[limit]' is empty, there must be a boundary before it. | 1191 | ** border may be in the hash part. |
1266 | ** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1' | ||
1267 | ** is present. If so, it is a boundary. Otherwise, do a binary search | ||
1268 | ** between 0 and limit to find a boundary. In both cases, try to | ||
1269 | ** use this boundary as the new 'alimit', as a hint for the next call. | ||
1270 | ** | ||
1271 | ** (2) If 't[limit]' is not empty and the array has more elements | ||
1272 | ** after 'limit', try to find a boundary there. Again, try first | ||
1273 | ** the special case (which should be quite frequent) where 'limit+1' | ||
1274 | ** is empty, so that 'limit' is a boundary. Otherwise, check the | ||
1275 | ** last element of the array part. If it is empty, there must be a | ||
1276 | ** boundary between the old limit (present) and the last element | ||
1277 | ** (absent), which is found with a binary search. (This boundary always | ||
1278 | ** can be a new limit.) | ||
1279 | ** | ||
1280 | ** (3) The last case is when there are no elements in the array part | ||
1281 | ** (limit == 0) or its last element (the new limit) is present. | ||
1282 | ** In this case, must check the hash part. If there is no hash part | ||
1283 | ** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call | ||
1284 | ** 'hash_search' to find a boundary in the hash part of the table. | ||
1285 | ** (In those cases, the boundary is not inside the array part, and | ||
1286 | ** therefore cannot be used as a new limit.) | ||
1287 | */ | 1192 | */ |
1288 | lua_Unsigned luaH_getn (Table *t) { | 1193 | lua_Unsigned luaH_getn (Table *t) { |
1289 | unsigned int limit = t->alimit; | 1194 | unsigned asize = t->asize; |
1290 | if (limit > 0 && arraykeyisempty(t, limit)) { /* (1)? */ | 1195 | if (asize > 0) { /* is there an array part? */ |
1291 | /* there must be a boundary before 'limit' */ | 1196 | const unsigned maxvicinity = 4; |
1292 | if (limit >= 2 && !arraykeyisempty(t, limit - 1)) { | 1197 | unsigned limit = *lenhint(t); /* start with the hint */ |
1293 | /* 'limit - 1' is a boundary; can it be a new limit? */ | 1198 | if (limit == 0) |
1294 | if (ispow2realasize(t) && !ispow2(limit - 1)) { | 1199 | limit = 1; /* make limit a valid index in the array */ |
1295 | t->alimit = limit - 1; | 1200 | if (arraykeyisempty(t, limit)) { /* t[limit] empty? */ |
1296 | setnorealasize(t); /* now 'alimit' is not the real size */ | 1201 | /* there must be a border before 'limit' */ |
1202 | unsigned i; | ||
1203 | /* look for a border in the vicinity of the hint */ | ||
1204 | for (i = 0; i < maxvicinity && limit > 1; i++) { | ||
1205 | limit--; | ||
1206 | if (!arraykeyisempty(t, limit)) | ||
1207 | return newhint(t, limit); /* 'limit' is a border */ | ||
1297 | } | 1208 | } |
1298 | return limit - 1; | 1209 | /* t[limit] still empty; search for a border in [0, limit) */ |
1210 | return newhint(t, binsearch(t, 0, limit)); | ||
1299 | } | 1211 | } |
1300 | else { /* must search for a boundary in [0, limit] */ | 1212 | else { /* 'limit' is present in table; look for a border after it */ |
1301 | unsigned int boundary = binsearch(t, 0, limit); | 1213 | unsigned i; |
1302 | /* can this boundary represent the real size of the array? */ | 1214 | /* look for a border in the vicinity of the hint */ |
1303 | if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) { | 1215 | for (i = 0; i < maxvicinity && limit < asize; i++) { |
1304 | t->alimit = boundary; /* use it as the new limit */ | 1216 | limit++; |
1305 | setnorealasize(t); | 1217 | if (arraykeyisempty(t, limit)) |
1218 | return newhint(t, limit - 1); /* 'limit - 1' is a border */ | ||
1219 | } | ||
1220 | if (arraykeyisempty(t, asize)) { /* last element empty? */ | ||
1221 | /* t[limit] not empty; search for a border in [limit, asize) */ | ||
1222 | return newhint(t, binsearch(t, limit, asize)); | ||
1306 | } | 1223 | } |
1307 | return boundary; | ||
1308 | } | ||
1309 | } | ||
1310 | /* 'limit' is zero or present in table */ | ||
1311 | if (!limitequalsasize(t)) { /* (2)? */ | ||
1312 | /* 'limit' > 0 and array has more elements after 'limit' */ | ||
1313 | if (arraykeyisempty(t, limit + 1)) /* 'limit + 1' is empty? */ | ||
1314 | return limit; /* this is the boundary */ | ||
1315 | /* else, try last element in the array */ | ||
1316 | limit = luaH_realasize(t); | ||
1317 | if (arraykeyisempty(t, limit)) { /* empty? */ | ||
1318 | /* there must be a boundary in the array after old limit, | ||
1319 | and it must be a valid new limit */ | ||
1320 | unsigned int boundary = binsearch(t, t->alimit, limit); | ||
1321 | t->alimit = boundary; | ||
1322 | return boundary; | ||
1323 | } | 1224 | } |
1324 | /* else, new limit is present in the table; check the hash part */ | 1225 | /* last element non empty; set a hint to speed up findind that again */ |
1226 | /* (keys in the hash part cannot be hints) */ | ||
1227 | *lenhint(t) = asize; | ||
1325 | } | 1228 | } |
1326 | /* (3) 'limit' is the last element and either is zero or present in table */ | 1229 | /* no array part or t[asize] is not empty; check the hash part */ |
1327 | lua_assert(limit == luaH_realasize(t) && | 1230 | lua_assert(asize == 0 || !arraykeyisempty(t, asize)); |
1328 | (limit == 0 || !arraykeyisempty(t, limit))); | 1231 | if (isdummy(t) || hashkeyisempty(t, asize + 1)) |
1329 | if (isdummy(t) || hashkeyisempty(t, limit + 1)) | 1232 | return asize; /* 'asize + 1' is empty */ |
1330 | return limit; /* 'limit + 1' is absent */ | 1233 | else /* 'asize + 1' is also non empty */ |
1331 | else /* 'limit + 1' is also present */ | 1234 | return hash_search(t, asize); |
1332 | return hash_search(t, limit); | ||
1333 | } | 1235 | } |
1334 | 1236 | ||
1335 | 1237 | ||
1336 | 1238 | ||
1337 | #if defined(LUA_DEBUG) | 1239 | #if defined(LUA_DEBUG) |
1338 | 1240 | ||
1339 | /* export these functions for the test library */ | 1241 | /* export this function for the test library */ |
1340 | 1242 | ||
1341 | Node *luaH_mainposition (const Table *t, const TValue *key) { | 1243 | Node *luaH_mainposition (const Table *t, const TValue *key) { |
1342 | return mainpositionTV(t, key); | 1244 | return mainpositionTV(t, key); |