1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
|
% $Id: manual.tex,v 1.24 1996/11/14 17:45:37 roberto Exp roberto $
\documentstyle[fullpage,11pt,bnf]{article}
\newcommand{\rw}[1]{{\bf #1}}
\newcommand{\see}[1]{see Section~\ref{#1}}
\newcommand{\nil}{{\bf nil}}
\newcommand{\Line}{\rule{\linewidth}{.5mm}}
\def\tecgraf{{\sf TeC\kern-.21em\lower.7ex\hbox{Graf}}}
\newcommand{\Index}[1]{#1\index{#1}}
\newcommand{\IndexVerb}[1]{{\tt #1}\index{#1}}
\newcommand{\Def}[1]{{\em #1}\index{#1}}
\newcommand{\Deffunc}[1]{\index{#1}}
\newcommand{\ff}{$\bullet$\ }
\newcommand{\Version}{2.5}
\makeindex
\begin{document}
\title{Reference Manual of the Programming Language Lua \Version}
\author{%
Roberto Ierusalimschy\quad
Luiz Henrique de Figueiredo\quad
Waldemar Celes
\vspace{1.0ex}\\
\smallskip
\small\tt lua@icad.puc-rio.br
\vspace{2.0ex}\\
%MCC 08/95 ---
\tecgraf\ --- Departamento de Inform\'atica --- PUC-Rio
}
\date{\small \verb$Date: 1996/11/14 17:45:37 $}
\maketitle
\begin{abstract}
\noindent
Lua is an extension programming language designed to be used
as a configuration language for any program that needs one.
This document describes version \Version\ of the Lua programming language and
the API that allows interaction between Lua programs and their host C programs.
The document also presents some examples of using the main
features of the system.
\end{abstract}
\vspace{4ex}
\begin{quotation}
\small
\begin{center}{\bf Sum\'ario}\end{center}
\vspace{1ex}
\noindent
Lua \'e uma linguagem de extens\~ao projetada para ser usada como
linguagem de configura\c{c}\~ao em qualquer programa que precise de
uma.
Este documento descreve a vers\~ao \Version\ da linguagem de
programa\c{c}\~ao Lua e a Interface de Programa\c{c}\~ao (API) que permite
a intera\c{c}\~ao entre programas Lua e programas C hospedeiros.
O documento tamb\'em apresenta alguns exemplos de uso das principais
ca\-racte\-r\'{\i}sticas do sistema.
\end{quotation}
\section{Introduction}
Lua is an extension programming language designed to support
general procedural programming features with data description
facilities.
It is intended to be used as a configuration language for any
program that needs one.
Lua has been designed and implemented by
W.~Celes, L.~H.~de Figueiredo and R.~Ierusalimschy.
Lua is implemented as a library, written in C.
Being an extension language, Lua has no notion of a ``main'' program:
it only works {\em embedded} in a host client,
called the {\em embedding} program.
This host program can invoke functions to execute a piece of
code in Lua, can write and read Lua variables,
and can register C functions to be called by Lua code.
Through the use of C functions, Lua can be augmented to cope with
rather different domains,
thus creating customized programming languages sharing a syntactical framework.
Lua is free-distribution software,
and provided as usual with no guarantees.
The implementation described in this manual is available
at the following URL's:
\begin{verbatim}
http://www.inf.puc-rio.br/~roberto/lua.html
ftp://ftp.icad.puc-rio.br/pub/lua/lua.tar.gz
\end{verbatim}
\section{Environment and Chunks}
All statements in Lua are executed in a \Def{global environment}.
This environment, which keeps all global variables and functions,
is initialized at the beginning of the embedding program and
persists until its end.
The global environment can be manipulated by Lua code or
by the embedding program,
which can read and write global variables
using functions in the library that implements Lua.
\Index{Global variables} do not need declaration.
Any variable is assumed to be global unless explicitly declared local
(\see{localvar}).
Before the first assignment, the value of a global variable is \nil.
The unit of execution of Lua is called a \Def{chunk}.
The syntax%
\footnote{As usual, \rep{{\em a}} means 0 or more {\em a\/}'s,
\opt{{\em a}} means an optional {\em a} and \oneormore{{\em a}} means
one or more {\em a\/}'s.}
for chunks is:
\begin{Produc}
\produc{chunk}{\rep{statement \Or function} \opt{ret}}
\end{Produc}%
A chunk may contain statements and function definitions,
and may be in a file or in a string inside the host program.
A chunk may optionally ends with a return statement (\see{return}).
When a chunk is executed, first all its functions and statements are compiled,
then the statements are executed in sequential order.
All modifications a chunk effects on the global environment persist
after its end.
Those include modifications to global variables and definitions
of new functions%
\footnote{Actually, a function definition is an
assignment to a global variable; \see{TypesSec}.}.
Chunks may be pre-compiled; see program \IndexVerb{luac} for details.
Text files with chunks and their binary pre-compiled forms
are interchangeable.
Lua automatically detects the file type and acts accordingly.
\index{pre-compilation}
\section{\Index{Types}} \label{TypesSec}
Lua is a dynamically typed language.
Variables do not have types; only values do.
All values carry their own type.
Therefore, there are no type definitions in the language.
There are seven \Index{basic types} in Lua: \Def{nil}, \Def{number},
\Def{string}, \Def{function}, \Def{CFunction}, \Def{userdata},
and \Def{table}.
{\em Nil} is the type of the value \nil,
whose main property is to be different from any other value.
{\em Number} represents real (floating point) numbers,
while {\em string} has the usual meaning.
Functions are considered first-class values in Lua.
This means that functions can be stored in variables,
passed as arguments to other functions and returned as results.
When a function is defined in Lua, its body is compiled and stored
in a given variable.
Lua can call (and manipulate) functions written in Lua and
functions written in C; the latter have type {\em CFunction\/}.
The type {\em userdata} is provided to allow
arbitrary \Index{C pointers} to be stored in Lua variables.
It corresponds to \verb'void*' and has no pre-defined operations in Lua,
besides assignment and equality test.
However, by using fallbacks, the programmer may define operations
for {\em userdata} values; \see{fallback}.
The type {\em table} implements \Index{associative arrays},
that is, \Index{arrays} that can be indexed not only with numbers,
but with any value (except \nil).
Therefore, this type may be used not only to represent ordinary arrays,
but also symbol tables, sets, records, etc.
To represent \Index{records}, Lua uses the field name as an index.
The language supports this representation by
providing \verb'a.name' as syntactic sugar for \verb'a["name"]'.
Tables may also carry methods.
Because functions are first class values,
table fields may contain functions.
The form \verb't:f(x)' is syntactic sugar for \verb't.f(t,x)',
which calls the method \verb'f' from the table \verb't' passing
itself as the first parameter.
It is important to notice that tables are objects, and not values.
Variables cannot contain tables, only references to them.
Assignment, parameter passing and returns always manipulate references
to tables, and do not imply any kind of copy.
Moreover, tables must be explicitly created before used
(\see{tableconstructor}).
\section{The Language}
This section describes the lexis, the syntax and the semantics of Lua.
\subsection{Lexical Conventions} \label{lexical}
Lua is a case sensitive language.
\Index{Identifiers} can be any string of letters, digits, and underscores,
not beginning with a digit.
The following words are reserved, and cannot be used as identifiers:
\index{reserved words}
\begin{verbatim}
and do else elseif
end function if local
nil not or repeat
return then until while
\end{verbatim}
The following strings denote other \Index{tokens}:
\begin{verbatim}
~= <= >= < > == = .. + - * /
% ( ) { } [ ] ; , .
\end{verbatim}
\Index{Literal strings} can be delimited by matching single or double quotes,
and can contain the C-like escape sequences
\verb-'\n'-, \verb-'\t'- and \verb-'\r'-.
Literal strings can also be delimited by matching \verb'[[ ... ]]'.
Literals in this bracketed form may run for several lines,
may contain nested \verb'[[ ... ]]' pairs,
and do not interpret escape sequences.
\Index{Comments} start anywhere outside a string with a
double hyphen (\verb'--') and run until the end of the line.
Moreover, if the first line of a chunk file starts with \verb'#',
this line is skipped%
\footnote{This facility allows the use of Lua as a script interpreter
in Unix systems.}.
\Index{Numerical constants} may be written with an optional decimal part,
and an optional decimal exponent.
Examples of valid numerical constants are:
\begin{verbatim}
4 4.0 0.4 4.57e-3 0.3e12
\end{verbatim}
\subsection{\Index{Coercion}} \label{coercion}
Lua provides some automatic conversions.
Any arithmetic operation applied to a string tries to convert
that string to a number, following the usual rules.
Conversely, whenever a number is used when a string is expected,
that number is converted to a string, according to the following rule:
if the number is an integer, it is written without exponent or decimal point;
otherwise, it is formatted following the \verb'%g'
conversion specification of the \verb'printf' function in the
standard C library.
\subsection{\Index{Adjustment}} \label{adjust}
Functions in Lua can return many values.
Because there are no type declarations,
the system does not know how many values a function will return,
or how many parameters it needs.
Therefore, sometimes, a list of values must be {\em adjusted\/}, at run time,
to a given length.
If there are more values than are needed, then the last values are thrown away.
If there are more needs than values, then the list is extended with as
many \nil's as needed.
Adjustment occurs in multiple assignment and function calls.
\subsection{Statements}
Lua supports an almost conventional set of \Index{statements}.
The conventional commands include
assignment, control structures and procedure calls.
Non-conventional commands include table constructors
(Section~\ref{tableconstructor}),
and local variable declarations (Section~\ref{localvar}).
\subsubsection{Blocks}
A \Index{block} is a list of statements, which is executed sequentially.
Any statement can be optionally followed by a semicolon:
\begin{Produc}
\produc{block}{\rep{stat sc} \opt{ret}}
\produc{sc}{\opt{\ter{;}}}
\end{Produc}%
For syntactic reasons, a \IndexVerb{return} statement can only be written
as the last statement of a block.
This restriction also avoids some ``statement not reached'' errors.
\subsubsection{\Index{Assignment}} \label{assignment}
The language allows \Index{multiple assignment}.
Therefore, the syntax defines a list of variables on the left side,
and a list of expressions on the right side.
Both lists have their elements separated by commas:
\begin{Produc}
\produc{stat}{varlist1 \ter{=} explist1}
\produc{varlist1}{var \rep{\ter{,} var}}
\end{Produc}%
This statement first evaluates all values on the right side
and eventual indices on the left side,
and then makes the assignments.
Therefore, it can be used to exchange two values, as in
\begin{verbatim}
x, y = y, x
\end{verbatim}
Before the assignment, the list of values is {\em adjusted} to
the length of the list of variables (\see{adjust}).
A single name can denote a global or a local variable,
or a formal parameter:
\begin{Produc}
\produc{var}{name}
\end{Produc}%
Square brackets are used to index a table:
\begin{Produc}
\produc{var}{var \ter{[} exp1 \ter{]}}
\end{Produc}%
If \verb'var' results in a table value,
the field indexed by the expression value gets the assigned value.
Otherwise, the fallback {\em settable} is called,
with three parameters: the value of \verb'var',
the value of expression, and the value being assigned to it;
\see{fallback}.
The syntax \verb'var.NAME' is just syntactic sugar for
\verb'var["NAME"]'.
\begin{Produc}
\produc{var}{var \ter{.} name}
\end{Produc}%
\subsubsection{Control Structures}
The \Index{condition expression} of a control structure can return any value.
All values different from \nil\ are considered true;
\nil\ is considered false.
{\tt if}'s, {\tt while}'s and {\tt repeat}'s have the usual meaning.
\index{while-do}\index{repeat-until}\index{if-then-else}
\begin{Produc}
\produc{stat}{\rwd{while} exp1 \rwd{do} block \rwd{end} \OrNL
\rwd{repeat} block \rwd{until} exp1 \OrNL
\rwd{if} exp1 \rwd{then} block \rep{elseif}
\opt{\rwd{else} block} \rwd{end}}
\produc{elseif}{\rwd{elseif} exp1 \rwd{then} block}
\end{Produc}
A {\tt return} is used to return values from a function or a chunk.
\label{return}
Because they may return more than one value,
the syntax for a \Index{return statement} is:
\begin{Produc}
\produc{ret}{\rwd{return} explist \opt{sc}}
\end{Produc}
\subsubsection{Function Calls as Statements} \label{funcstat}
Because of possible side-effects,
function calls can be executed as statements:
\begin{Produc}
\produc{stat}{functioncall}
\end{Produc}%
Eventual returned values are thrown away.
Function calls are explained in Section \ref{functioncall}.
\subsubsection{Local Declarations} \label{localvar}
\Index{Local variables} can be declared anywhere inside a block.
Their scope begins after the declaration and lasts until the
end of the block.
The declaration may include an initial assignment:
\begin{Produc}
\produc{stat}{\rwd{local} declist \opt{init}}
\produc{declist}{name \rep{\ter{,} name}}
\produc{init}{\ter{=} explist1}
\end{Produc}%
If present, an initial assignment has the same semantics
of a multiple assignment.
Otherwise, all variables are initialized with \nil.
\subsection{\Index{Expressions}}
\subsubsection{\Index{Simple Expressions}}
Simple expressions are:
\begin{Produc}
\produc{exp}{\ter{(} exp \ter{)}}
\produc{exp}{\rwd{nil}}
\produc{exp}{\ter{number}}
\produc{exp}{\ter{literal}}
\produc{exp}{var}
\end{Produc}%
Numbers (numerical constants) and
string literals are explained in Section~\ref{lexical}.
Variables are explained in Section~\ref{assignment}.
\subsubsection{Arithmetic Operators}
Lua supports the usual \Index{arithmetic operators}.
These operators are the binary
\verb'+', \verb'-', \verb'*', \verb'/' and \verb'^' (exponentiation),
and the unary \verb'-'.
If the operands are numbers, or strings that can be converted to
numbers, according to the rules given in Section \ref{coercion},
then all operations but exponentiation have the usual meaning.
Otherwise, the fallback ``arith'' is called (\see{fallback}).
An exponentiation always calls this fallback.
The standard mathematical library redefines this fallback,
giving the expected meaning to \Index{exponentiation}
(\see{mathlib}).
\subsubsection{Relational Operators}
Lua provides the following \Index{relational operators}:
\begin{verbatim}
< > <= >= ~= ==
\end{verbatim}
All these return \nil\ as false and a value different from \nil\
(actually the number 1) as true.
Equality first compares the types of its operands.
If they are different, then the result is \nil.
Otherwise, their values are compared.
Numbers and strings are compared in the usual way.
Tables, CFunctions, and functions are compared by reference,
that is, two tables are considered equal only if they are the same table.
The operator \verb'~=' is exactly the negation of equality (\verb'==').
The other operators work as follows.
If both arguments are numbers, then they are compared as such.
Otherwise, if both arguments can be converted to strings,
their values are compared using lexicographical order.
Otherwise, the ``order'' fallback is called (\see{fallback}).
\subsubsection{Logical Operators}
Like control structures, all logical operators
consider \nil\ as false and anything else as true.
The \Index{logical operators} are:
\index{and}\index{or}\index{not}
\begin{verbatim}
and or not
\end{verbatim}
The operator \verb'and' returns \nil\ if its first argument is \nil;
otherwise it returns its second argument.
The operator \verb'or' returns its first argument
if it is different from \nil;
otherwise it returns its second argument.
Both \verb'and' and \verb'or' use \Index{short-cut evaluation},
that is,
the second operand is evaluated only if necessary.
\subsubsection{Concatenation}
Lua offers a string \Index{concatenation} operator,
denoted by ``\IndexVerb{..}''.
If operands are strings or numbers, then they are converted to
strings according to the rules in Section \ref{coercion}.
Otherwise, the fallback ``concat'' is called (\see{fallback}).
\subsubsection{Precedence}
\Index{Operator precedence} follows the table below,
from the lower to the higher priority:
\begin{verbatim}
and or
< > <= >= ~= ==
..
+ -
* /
not - (unary)
^
\end{verbatim}
All binary operators are left associative,
except for \verb'^' (exponentiation),
which is right associative.
\subsubsection{Table Constructors} \label{tableconstructor}
Table \Index{constructors} are expressions that create tables;
every time a constructor is evaluated, a new table is created.
Constructors can be used to create empty tables,
or to create a table and initialize some fields.
The general syntax for constructors is:
\begin{Produc}
\produc{tableconstructor}{\ter{\{} fieldlist \ter{\}}}
\produc{fieldlist}{lfieldlist \Or ffieldlist \Or lfieldlist \ter{;} ffieldlist}
\produc{lfieldlist}{\opt{lfieldlist1}}
\produc{ffieldlist}{\opt{ffieldlist1}}
\end{Produc}
The form {\em lfieldlist1} is used to initialize lists.
\begin{Produc}
\produc{lfieldlist1}{exp \rep{\ter{,} exp} \opt{\ter{,}}}
\end{Produc}%
The expressions in the list are assigned to consecutive numerical indexes,
starting with 1.
For example:
\begin{verbatim}
a = {"v1", "v2", 34}
\end{verbatim}
is roughly equivalent to:
\begin{verbatim}
temp = {}
temp[1] = "v1"
temp[2] = "v2"
temp[3] = 34
a = temp
\end{verbatim}
The next form initializes named fields in a table:
\begin{Produc}
\produc{ffieldlist1}{ffield \rep{\ter{,} ffield} \opt{\ter{,}}}
\produc{ffield}{name \ter{=} exp}
\end{Produc}%
For example:
\begin{verbatim}
a = {x = 1, y = 3}
\end{verbatim}
is roughly equivalent to:
\begin{verbatim}
temp = {}
temp.x = 1 -- or temp["x"] = 1
temp.y = 3 -- or temp["y"] = 3
a = temp
\end{verbatim}
\subsubsection{Function Calls} \label{functioncall}
A \Index{function call} has the following syntax:
\begin{Produc}
\produc{functioncall}{var realParams}
\end{Produc}%
Here, \verb'var' can be any variable (global, local, indexed, etc).
If its value has type {\em function\/} or {\em CFunction\/},
then this function is called.
Otherwise, the ``function'' fallback is called,
having as first parameter the value of \verb'var',
and then the original call parameters.
The form:
\begin{Produc}
\produc{functioncall}{var \ter{:} name realParams}
\end{Produc}%
can be used to call ``methods''.
A call \verb'var:name(...)'
is syntactic sugar for
\begin{verbatim}
var.name(var, ...)
\end{verbatim}
except that \verb'var' is evaluated only once.
\begin{Produc}
\produc{realParams}{\ter{(} \opt{explist1} \ter{)}}
\produc{realParams}{tableconstructor}
\produc{explist1}{exp1 \rep{\ter{,} exp1}}
\end{Produc}%
All argument expressions are evaluated before the call;
then the list of \Index{arguments} is adjusted to
the length of the list of parameters (\see{adjust});
finally, this list is assigned to the formal parameters.
A call of the form \verb'f{...}' is syntactic sugar for
\verb'f({...})', that is,
the parameter list is a single new table.
Because a function can return any number of results
(\see{return}),
the number of results must be adjusted before used.
If the function is called as a statement (\see{funcstat}),
its return list is adjusted to 0.
If the function is called in a place that needs a single value
(syntactically denoted by the non-terminal \verb'exp1'),
then its return list is adjusted to 1.
If the function is called in a place that can hold many values
(syntactically denoted by the non-terminal \verb'exp'),
then no adjustment is made.
\subsection{\Index{Function Definitions}}
Functions in Lua can be defined anywhere in the global level of a chunk.
The syntax for function definition is:
\begin{Produc}
\produc{function}{\rwd{function} var \ter{(} \opt{parlist1} \ter{)}
block \rwd{end}}
\end{Produc}
When Lua pre-compiles a chunk,
all its function bodies are pre-compiled, too.
Then, when Lua ``executes'' the function definition,
its body is stored, with type {\em function},
into the variable \verb'var'.
Parameters act as local variables,
initialized with the argument values.
\begin{Produc}
\produc{parlist1}{name \rep{\ter{,} name}}
\end{Produc}
Results are returned using the \verb'return' statement (\see{return}).
If control reaches the end of a function without a return instruction,
then the function returns with no results.
There is a special syntax for defining \Index{methods},
that is, functions that have an extra parameter \Def{self}.
\begin{Produc}
\produc{function}{\rwd{function} var \ter{:} name \ter{(} \opt{parlist1}
\ter{)} block \rwd{end}}
\end{Produc}%
Thus, a declaration like
\begin{verbatim}
function v:f (...)
...
end
\end{verbatim}
is equivalent to
\begin{verbatim}
function v.f (self, ...)
...
end
\end{verbatim}
that is, the function gets an extra formal parameter called \verb'self'.
Notice that
the variable \verb'v' must have been previously initialized with a table value.
\subsection{Fallbacks} \label{fallback}
Lua provides a powerful mechanism to extend its semantics,
called \Def{fallbacks}.
A fallback is a programmer defined function
that is called whenever Lua does not know how to proceed.
Lua supports the following fallbacks,
identified by the given strings:
\begin{description}
\item[``arith'':]\index{arithmetic fallback}
called when an arithmetic operation is applied to non numerical operands,
or when the binary \verb'^' operation is called.
It receives three arguments:
the two operands (the second one is nil when the operation is unary minus)
and one of the following strings describing the offended operator:
\begin{verbatim}
add sub mul div pow unm
\end{verbatim}
Its return value is the final result of the arithmetic operation.
The default handler issues an error.
\item[``order'':]\index{order fallback}
called when an order comparison is applied to non numerical or
non string operands.
It receives three arguments:
the two operands and
one of the following strings describing the offended operator:
\begin{verbatim}
lt gt le ge
\end{verbatim}
Its return value is the final result of the comparison operation.
The default handler issues an error.
\item[``concat'':]\index{concatenation fallback}
called when a concatenation is applied to non string operands.
It receives the two operands as arguments.
Its return value is the final result of the concatenation operation.
The default handler issues an error.
\item[``index'':]\index{index fallback}
called when Lua tries to retrieve the value of an index
not present in a table.
It receives as arguments the table and the index.
Its return value is the final result of the indexing operation.
The default handler returns nil.
\item[``getglobal'':]\index{index getglobal}
called when Lua tries to retrieve the value of a global variable
which has a nil value (or which has not been initialized).
It receives as argument the name of the variable.
Its return value is the final result of the expression.
The default handler returns nil.
\item[``gettable'':]\index{gettable fallback}
called when Lua tries to index a non table value.
It receives as arguments the non table value and the index.
Its return value is the final result of the indexing operation.
The default handler issues an error.
\item[``settable'':]\index{settable fallback}
called when Lua tries to assign indexed a non table value.
It receives as arguments the non table value,
the index, and the assigned value.
The default handler issues an error.
\item[``function'':]\index{function fallback}
called when Lua tries to call a non function value.
It receives as arguments the non function value and the
arguments given in the original call.
Its return values are the final results of the call operation.
The default handler issues an error.
\item[``gc'':]
called during garbage collection.
It receives as argument the table being collected.
After each run of the collector this function is called with argument nil.
Because this function operates during garbage collection,
it must be used with great care,
and programmers should avoid the creation of new objects
(tables or strings) in this function.
The default handler does nothing.
\item[``error'':]\index{error fallback}
called when an error occurs.
It receives as argument a string describing the error.
The default handler prints the message on the standard error output.
\end{description}
The function \IndexVerb{setfallback} is used to change a fallback handler.
Its first argument is the name of a fallback condition,
and the second argument is the new function to be called.
It returns the old handler function for the given fallback.
Section \ref{exfallback} shows an example of the use of fallbacks.
\subsection{Error Handling} \label{error}
Because Lua is an extension language,
all Lua actions start from C code calling a function from the Lua library.
Whenever an error occurs during Lua compilation or execution,
an ``error'' fallback function is called,
and then the corresponding function from the library
(\verb'lua_dofile', \verb'lua_dostring',
\verb'lua_call', or \verb'lua_callfunction')
is terminated returning an error condition.
The only argument to the ``error'' fallback function is a string
describing the error.
The standard I/O library redefines this fallback,
using the debug facilities (\see{debugI}),
in order to print some extra information,
like the call stack.
For more information about an error,
the Lua program can include the compilation pragma \verb'$debug'.
\index{debug pragma}\label{pragma}
This pragma must be written in a line by itself.
When an error occurs in a program compiled with this option,
the error routine is able to print also the lines where the calls
(and the error) were made.
If needed, it is possible to change the ``error'' fallback handler
(\see{fallback}).
Lua code can explicitly generate an error by calling the built-in
function \verb'error' (\see{pdf-error}).
\section{The Application Program Interface}
This section describes the API for Lua, that is,
the set of C functions available to the host program to communicate
with the library.
The API functions can be classified in the following categories:
\begin{enumerate}
\item executing Lua code;
\item converting values between C and Lua;
\item manipulating (reading and writing) Lua objects;
\item calling Lua functions;
\item C functions to be called by Lua;
\item references to Lua Objects.
\end{enumerate}
All API functions are declared in the header file \verb'lua.h'.
\subsection{Executing Lua Code}
A host program can execute Lua chunks written in a file or in a string,
using the following functions:
\Deffunc{lua_dofile}\Deffunc{lua_dostring}
\begin{verbatim}
int lua_dofile (char *filename);
int lua_dostring (char *string);
\end{verbatim}
Both functions return an error code:
0, in case of success; non zero, in case of errors.
More specifically, \verb'lua_dofile' returns 2 if for any reason
it could not open the file.
The function \verb'lua_dofile', if called with argument \verb'NULL' (0),
executes the {\tt stdin} stream.
Function \verb'lua_dofile' is also able to execute pre-compiled chunks.
It automatically detects whether the file is text or binary,
and loads it accordingly (see program \IndexVerb{luac}).
\subsection{Converting Values between C and Lua} \label{valuesCLua}
Because Lua has no static type system,
all values passed between Lua and C have type
\verb'lua_Object'\Deffunc{lua_Object},
which works like an abstract type in C that can hold any Lua value.
Values of type \verb'lua_Object' have no meaning outside Lua;
for instance,
the comparisson of two \verb"lua_Object's" is of no significance.
Because Lua has automatic memory management and garbage collection,
a \verb'lua_Object' has a limited scope,
and is only valid inside the {\em block\/} where it was created.
A C function called from Lua is a block,
and its parameters are valid only until its end.
A good programming practice is to convert Lua objects to C values
as soon as they are available,
and never to store \verb'lua_Object's in C global variables.
When C code calls Lua repeatedly, as in a loop,
objects returned by these calls accumulate,
and may create a memory problem.
To avoid this,
nested blocks can be defined with the functions:
\begin{verbatim}
void lua_beginblock (void);
void lua_endblock (void);
\end{verbatim}
After the end of the block,
all \verb'lua_Object''s created inside it are released.
To check the type of a \verb'lua_Object',
the following function is available:
\Deffunc{lua_type}
\begin{verbatim}
int lua_type (lua_Object object);
\end{verbatim}
plus the following macros and functions:
\Deffunc{lua_isnil}\Deffunc{lua_isnumber}\Deffunc{lua_isstring}
\Deffunc{lua_istable}\Deffunc{lua_iscfunction}\Deffunc{lua_isuserdata}
\Deffunc{lua_isfunction}
\begin{verbatim}
int lua_isnil (lua_Object object);
int lua_isnumber (lua_Object object);
int lua_isstring (lua_Object object);
int lua_istable (lua_Object object);
int lua_isfunction (lua_Object object);
int lua_iscfunction (lua_Object object);
int lua_isuserdata (lua_Object object);
\end{verbatim}
All macros return 1 if the object is compatible with the given type,
and 0 otherwise.
The function \verb'lua_isnumber' accepts numbers and numerical strings,
\verb'lua_isstring' accepts strings and numbers (\see{coercion}),
and \verb'lua_isfunction' accepts Lua and C functions.
The function \verb'lua_type' can be used to distinguish between
different kinds of user data.
To translate a value from type \verb'lua_Object' to a specific C type,
the programmer can use:
\Deffunc{lua_getnumber}\Deffunc{lua_getstring}
\Deffunc{lua_getcfunction}\Deffunc{lua_getuserdata}
\begin{verbatim}
double lua_getnumber (lua_Object object);
char *lua_getstring (lua_Object object);
lua_CFunction lua_getcfunction (lua_Object object);
void *lua_getuserdata (lua_Object object);
\end{verbatim}
\verb'lua_getnumber' converts a \verb'lua_Object' to a float.
This \verb'lua_Object' must be a number or a string convertible to number
(\see{coercion}); otherwise, the function returns 0.
\verb'lua_getstring' converts a \verb'lua_Object' to a string (\verb'char *').
This \verb'lua_Object' must be a string or a number;
otherwise, the function returns 0 (the null pointer).
This function does not create a new string, but returns a pointer to
a string inside the Lua environment.
Because Lua has garbage collection, there is no guarantee that such
pointer will be valid after the block ends.
\verb'lua_getcfunction' converts a \verb'lua_Object' to a C function.
This \verb'lua_Object' must have type {\em CFunction\/};
otherwise, the function returns 0 (the null pointer).
The type \verb'lua_CFunction' is explained in Section~\ref{LuacallC}.
\verb'lua_getuserdata' converts a \verb'lua_Object' to \verb'void*'.
This \verb'lua_Object' must have type {\em userdata\/};
otherwise, the function returns 0 (the null pointer).
The reverse process, that is, passing a specific C value to Lua,
is done by using the following functions:
\Deffunc{lua_pushnumber}\Deffunc{lua_pushstring}
\Deffunc{lua_pushcfunction}\Deffunc{lua_pushusertag}
\Deffunc{lua_pushuserdata}
\begin{verbatim}
void lua_pushnumber (double n);
void lua_pushstring (char *s);
void lua_pushcfunction (lua_CFunction f);
void lua_pushusertag (void *u, int tag);
\end{verbatim}
plus the macro:
\begin{verbatim}
void lua_pushuserdata (void *u);
\end{verbatim}
All of them receive a C value,
convert it to a corresponding \verb'lua_Object',
and leave the result on the top of the Lua stack,
where it can be assigned to a Lua variable,
passed as parameter to a Lua function, etc. \label{pushing}
User data can have different tags,
whose semantics are defined by the host program.
Any positive integer can be used to tag a user datum.
When a user datum is retrieved,
the function \verb'lua_type' can be used to get its tag.
To complete the set,
the value \nil\ or a \verb'lua_Object' can also be pushed onto the stack,
with:
\Deffunc{lua_pushnil}\Deffunc{lua_pushobject}
\begin{verbatim}
void lua_pushnil (void);
void lua_pushobject (lua_Object object);
\end{verbatim}
\subsection{Manipulating Lua Objects}
To read the value of any global Lua variable,
one uses the function:
\Deffunc{lua_getglobal}
\begin{verbatim}
lua_Object lua_getglobal (char *varname);
\end{verbatim}
As in Lua, if the value of the global is \nil,
then the ``getglobal'' fallback is called.
To store a value previously pushed onto the stack in a global variable,
there is the function:
\Deffunc{lua_storeglobal}
\begin{verbatim}
void lua_storeglobal (char *varname);
\end{verbatim}
Tables can also be manipulated via the API.
The function
\Deffunc{lua_getsubscript}
\begin{verbatim}
lua_Object lua_getsubscript (void);
\end{verbatim}
expects on the stack a table and an index,
and returns the contents of the table at that index.
As in Lua, if the first object is not a table,
or the index is not present in the table,
the corresponding fallback is called.
To store a value in an index,
the program must push onto the stack the table, the index,
and the value,
and then call the function:
\Deffunc{lua_storesubscript}
\begin{verbatim}
void lua_storesubscript (void);
\end{verbatim}
Again, the corresponding fallback is called if needed.
Finally, the function
\Deffunc{lua_createtable}
\begin{verbatim}
lua_Object lua_createtable (void);
\end{verbatim}
creates and returns a new table.
{\em Please Notice:\/}
Most functions from the Lua library receive parameters through Lua's stack.
Because other functions also use this stack,
it is important that these
parameters be pushed just before the corresponding call,
without intermediate calls to the Lua library.
For instance, suppose the user wants the value of \verb'a[i]'.
A simplistic solution would be:
\begin{verbatim}
/* Warning: WRONG CODE */
lua_Object result;
lua_pushobject(lua_getglobal("a")); /* push table */
lua_pushobject(lua_getglobal("i")); /* push index */
result = lua_getsubscript();
\end{verbatim}
However, the call \verb'lua_getglobal("i")' modifies the stack,
and invalidates the previous pushed value.
A correct solution could be:
\begin{verbatim}
lua_Object result;
lua_Object index = lua_getglobal("i");
lua_pushobject(lua_getglobal("a")); /* push table */
lua_pushobject(index); /* push index */
result = lua_getsubscript();
\end{verbatim}
The functions \verb|lua_getnumber|, \verb|lua_getstring|,
\verb|lua_getuserdata|, and \verb|lua_getcfunction|,
plus the family \verb|lua_is*|,
are safe to be called without modifying the stack.
\subsection{Calling Lua Functions}
Functions defined in Lua by a chunk executed with
\verb'dofile' or \verb'dostring' can be called from the host program.
This is done using the following protocol:
first, the arguments to the function are pushed onto the Lua stack
(\see{pushing}), in direct order, i.e., the first argument is pushed first.
Again, it is important to emphasize that, during this phase,
no other Lua function can be called.
Then, the function is called using
\Deffunc{lua_call}\Deffunc{lua_callfunction}
\begin{verbatim}
int lua_call (char *functionname);
\end{verbatim}
or
\begin{verbatim}
int lua_callfunction (lua_Object function);
\end{verbatim}
Both functions return an error code:
0, in case of success; non zero, in case of errors.
Finally, the returned values (a Lua function may return many values)
can be retrieved with the macro
\Deffunc{lua_getresult}
\begin{verbatim}
lua_Object lua_getresult (int number);
\end{verbatim}
where \verb'number' is the order of the result, starting with 1.
When called with a number larger than the actual number of results,
this function returns \verb'LUA_NOOBJECT'.
Two special Lua functions have exclusive interfaces:
\verb'error' and \verb'setfallback'.
A C function can generate a Lua error calling the function
\Deffunc{lua_error}
\begin{verbatim}
void lua_error (char *message);
\end{verbatim}
This function never returns.
If the C function has been called from Lua,
the corresponding Lua execution terminates,
as if an error had occurred inside Lua code.
Otherwise, the whole program terminates.
Fallbacks can be changed with:
\Deffunc{lua_setfallback}
\begin{verbatim}
lua_Object lua_setfallback (char *name, lua_CFunction fallback);
\end{verbatim}
The first parameter is the fallback name,
and the second a CFunction to be used as the new fallback.
This function returns a \verb'lua_Object',
which is the old fallback value,
or \nil\ on fail (invalid fallback name).
This old value can be used for chaining fallbacks.
An example of C code calling a Lua function is shown in
Section~\ref{exLuacall}.
\subsection{C Functions} \label{LuacallC}
To register a C function to Lua,
there is the following macro:
\Deffunc{lua_register}
\begin{verbatim}
#define lua_register(n,f) (lua_pushcfunction(f), lua_storeglobal(n))
/* char *n; */
/* lua_CFunction f; */
\end{verbatim}
which receives the name the function will have in Lua,
and a pointer to the function.
This pointer must have type \verb'lua_CFunction',
which is defined as
\Deffunc{lua_CFunction}
\begin{verbatim}
typedef void (*lua_CFunction) (void);
\end{verbatim}
that is, a pointer to a function with no parameters and no results.
In order to communicate properly with Lua,
a C function must follow a protocol,
which defines the way parameters and results are passed.
To access its arguments, a C function calls:
\Deffunc{lua_getparam}
\begin{verbatim}
lua_Object lua_getparam (int number);
\end{verbatim}
where \verb'number' starts with 1 to get the first argument.
When called with a number larger than the actual number of arguments,
this function returns
\verb'LUA_NOOBJECT'\Deffunc{LUA_NOOBJECT}.
In this way, it is possible to write functions that work with
a variable number of parameters.
To return values, a C function just pushes them onto the stack,
in direct order (\see{valuesCLua}).
Like a Lua function, a C function called by Lua can also return
many results.
Section~\ref{exCFunction} presents an example of a CFunction.
\subsection{References to Lua Objects}
As noted in Section~\ref{LuacallC}, \verb'lua_Object's are volatile.
If the C code needs to keep a \verb'lua_Object'
outside block boundaries,
it must create a \Def{reference} to the object.
The routines to manipulate references are the following:
\Deffunc{lua_ref}\Deffunc{lua_getref}
\Deffunc{lua_pushref}\Deffunc{lua_unref}
\begin{verbatim}
int lua_ref (int lock);
lua_Object lua_getref (int ref);
void lua_pushref (int ref);
void lua_unref (int ref);
\end{verbatim}
The function \verb'lua_ref' creates a reference
to the object that is on the top of the stack,
and returns this reference.
If \verb'lock' is true, the object is {\em locked}:
that means the object will not be garbage collected.
Notice that an unlocked reference may be garbage collected.
Whenever the referenced object is needed,
a call to \verb'lua_getref'
returns a handle to it,
whereas \verb'lua_pushref' pushes the object on the stack.
If the object has been collected,
then \verb'lua_getref' returns \verb'LUA_NOOBJECT',
and \verb'lua_pushobject' issues an error.
When a reference is no longer needed,
it can be freed with a call to \verb'lua_unref'.
\section{Predefined Functions and Libraries}
The set of \Index{predefined functions} in Lua is small but powerful.
Most of them provide features that allows some degree of
\Index{reflexivity} in the language.
Some of these features cannot be simulated with the rest of the
Language nor with the standard Lua API.
Others are just convenient interfaces to common API functions.
The libraries, on the other hand, provide useful routines
that are implemented directly through the standard API.
Therefore, they are not necessary to the language,
and are provided as separated C modules.
Currently there are three standard libraries:
\begin{itemize}
\item string manipulation;
\item mathematical functions (sin, cos, etc);
\item input and output (plus some system facilities).
\end{itemize}
In order to have access to these libraries,
the host program must call the functions
\verb-strlib_open-, \verb-mathlib_open-, and \verb-iolib_open-,
declared in \verb-lualib.h-.
\subsection{Predefined Functions}
\subsubsection*{\ff{\tt dofile (filename)}}\Deffunc{dofile}
This function receives a file name,
opens it, and executes its contents as a Lua chunk,
or as pre-compiled chunks.
When called without arguments,
it executes the contents of the standard input (\verb'stdin').
If there is any error executing the file, it returns \nil.
Otherwise, it returns the values returned by the chunk,
or a non \nil\ value if the chunk returns no values.
It issues an error when called with a non string argument.
\subsubsection*{\ff{\tt dostring (string)}}\Deffunc{dostring}
This function executes a given string as a Lua chunk.
If there is any error executing the string, it returns \nil.
Otherwise, it returns the values returned by the chunk,
or a non \nil\ value if the chunk returns no values.
\subsubsection*{\ff{\tt next (table, index)}}\Deffunc{next}
This function allows a program to traverse all fields of a table.
Its first argument is a table and its second argument
is an index in this table.
It returns the next index of the table and the
value associated with the index.
When called with \nil\ as its second argument,
the function returns the first index
of the table (and its associated value).
When called with the last index, or with \nil\ in an empty table,
it returns \nil.
In Lua there is no declaration of fields;
semantically, there is no difference between a
field not present in a table or a field with value \nil.
Therefore, the function only considers fields with non nil values.
The order the indices are enumerated is not specified,
{\em even for numeric indices}.
See Section \ref{exnext} for an example of the use of this function.
\subsubsection*{\ff{\tt nextvar (name)}}\Deffunc{nextvar}
This function is similar to the function \verb'next',
but iterates over the global variables.
Its single argument is the name of a global variable,
or \nil\ to get a first name.
Similarly to \verb'next', it returns the name of another variable
and its value,
or \nil\ if there are no more variables.
See Section \ref{exnext} for an example of the use of this function.
\subsubsection*{\ff{\tt tostring (e)}}\Deffunc{tostring}
This function receives an argument of any type and
converts it to a string in a reasonable format.
\subsubsection*{\ff{\tt print (e1, e2, ...)}}\Deffunc{print}
This function receives any number of arguments,
and prints their values in a reasonable format.
Each value is printed in a new line.
This function is not intended for formatted output,
but as a quick way to show a value,
for instance for error messages or debugging.
See Section~\ref{libio} for functions for formatted output.
\subsubsection*{\ff{\tt tonumber (e)}}\Deffunc{tonumber}
This function receives one argument,
and tries to convert it to a number.
If the argument is already a number or a string convertible
to a number (\see{coercion}), then it returns that number;
otherwise, it returns \nil.
\subsubsection*{\ff{\tt type (v)}}\Deffunc{type}
This function allows Lua to test the type of a value.
It receives one argument, and returns its type, coded as a string.
The possible results of this function are
\verb'"nil"' (a string, not the value \nil),
\verb'"number"',
\verb'"string"',
\verb'"table"',
\verb'"function"' (returned both for C functions and Lua functions),
and \verb'"userdata"'.
Besides this string, the function returns a second result,
which is the \Def{tag} of the value.
This tag can be used to distinguish between user
data with different tags,
and between C functions and Lua functions.
\subsubsection*{\ff{\tt assert (v)}}\Deffunc{assert}
This function issues an {\em ``assertion failed!''} error
when its argument is \nil.
\subsubsection*{\ff{\tt error (message)}}\Deffunc{error}\label{pdf-error}
This function issues an error message and terminates
the last called function from the library
(\verb'lua_dofile', \verb'lua_dostring', \ldots).
It never returns.
\subsubsection*{\ff{\tt setglobal (name, value)}}\Deffunc{setglobal}
This function assigns the given value to a global variable.
The string \verb'name' does not need to be a syntactically valid variable name.
Therefore, this function can set global variables with strange names like
\verb|`m v 1'| or \verb'34'.
It returns the value of its second argument.
\subsubsection*{\ff{\tt getglobal (name)}}\Deffunc{getglobal}
This function retrieves the value of a global variable.
The string \verb'name' does not need to be a syntactically valid variable name.
\subsubsection*{\ff{\tt setfallback (fallbackname, newfallback)}}
\Deffunc{setfallback}
This function sets a new fallback function to the given fallback.
It returns the old fallback function.
\subsection{String Manipulation}
This library provides generic functions for string manipulation,
such as finding and extracting substrings and pattern matching.
When indexing a string, the first character has position 1.
See Page~\pageref{pm} for an explanation about patterns,
and Section~\ref{exstring} for some examples on string manipulation
in Lua.
\subsubsection*{\ff{\tt strfind (str, pattern [, init [, plain]])}}
\Deffunc{strfind}
This function looks for the first {\em match} of
\verb-pattern- in \verb-str-.
If it finds one, it returns the indexes on \verb-str-
where this occurence starts and ends;
otherwise, it returns \nil.
If the pattern specifies captures,
the captured strings are returned as extra results.
A third optional numerical argument specifies where to start the search;
its default value is 1.
A value of 1 as a forth optional argument
turns off the pattern matching facilities,
so the function does a plain ``find substring'' operation.
\subsubsection*{\ff{\tt strlen (s)}}\Deffunc{strlen}
Receives a string and returns its length.
\subsubsection*{\ff{\tt strsub (s, i [, j])}}\Deffunc{strsub}
Returns another string, which is a substring of \verb's',
starting at \verb'i' and runing until \verb'j'.
If \verb'j' is absent,
it is assumed to be equal to the length of \verb's'.
In particular, the call \verb'strsub(s,1,j)' returns a prefix of \verb's'
with length \verb'j',
whereas the call \verb'strsub(s,i)' returns a suffix of \verb's',
starting at \verb'i'.
\subsubsection*{\ff{\tt strlower (s)}}\Deffunc{strlower}
Receives a string and returns a copy of that string with all
upper case letters changed to lower case.
All other characters are left unchanged.
\subsubsection*{\ff{\tt strupper (s)}}\Deffunc{strupper}
Receives a string and returns a copy of that string with all
lower case letters changed to upper case.
All other characters are left unchanged.
\subsubsection*{\ff{\tt strrep (s, n)}}\Deffunc{strrep}
Returns a string which is the concatenation of \verb-n- copies of
the string \verb-s-.
\subsubsection*{\ff{\tt ascii (s [, i])}}\Deffunc{ascii}
Returns the ascii code of the character \verb's[i]'.
If \verb'i' is absent, then it is assumed to be 1.
\subsubsection*{\ff{\tt format (formatstring, e1, e2, \ldots)}}\Deffunc{format}
\label{format}
This function returns a formated version of its variable number of arguments
following the description given in its first argument (which must be a string).
The format string follows the same rules as the \verb'printf' family of
standard C functions.
The only differences are that the options/modifiers
\verb'*', \verb'l', \verb'L', \verb'n', \verb'p',
and \verb'h' are not supported,
and there is an extra option, \verb'q'.
This option formats a string in a form suitable to be safely read
back by the Lua interpreter;
that is,
the string is written between double quotes,
and all double quotes, returns and backslashes in the string
are correctly escaped when written.
For instance, the call
\begin{verbatim}
format('%q', 'a string with "quotes" and \n new line')
\end{verbatim}
will produce the string:
\begin{verbatim}
"a string with \"quotes\" and \
new line"
\end{verbatim}
The options \verb'c', \verb'd', \verb'E', \verb'e', \verb'f',
\verb'g' \verb'i', \verb'o', \verb'u', \verb'X', and \verb'x' all
expect a number as argument,
whereas \verb'q' and \verb's' expect a string.
\subsubsection*{\ff{\tt gsub (s, pat, repl [, n])}}\Deffunc{gsub}
Returns a copy of \verb-s-,
where all occurrences of the pattern \verb-pat- have been
replaced by a replacement string specified by \verb-repl-.
This function also returns, as a second value,
the total number of substitutions made.
If \verb-repl- is a string, its value is used for replacement.
Any sequence in \verb-repl- of the form \verb-%n-
with \verb-n- between 1 and 9
stands for the value of the n-th captured substring.
If \verb-repl- is a function, this function is called every time a
match occurs, with all captured substrings as parameters.
If the value returned by this function is a string,
it is used as the replacement string;
otherwise, the replacement string is the empty string.
An optional parameter \verb-n- limits
the maximum number of substitutions to occur.
For instance, when \verb-n- is 1 only the first occurrence of
\verb-pat- is replaced.
As an example, in the following expression each occurrence of the form
\verb-$name$- calls the function \verb|getenv|,
passing \verb|name| as argument
(because only this part of the pattern is captured).
The value returned by \verb|getenv| will replace the pattern.
Therefore, the whole expression:
\begin{verbatim}
gsub("home = $HOME$, user = $USER$", "$(%w%w*)$", getenv)
\end{verbatim}
may return the string:
\begin{verbatim}
home = /home/roberto, user = roberto
\end{verbatim}
\subsubsection*{Patterns} \label{pm}
\paragraph{Character Class:}
a \Def{character class} is used to represent a set of characters.
The following combinations are allowed in describing a character class:
\begin{description}
\item[{\em x}] (where {\em x} is any character not in the list \verb'()%.[*?')
--- represents the character {\em x} itself.
\item[{\tt .}] --- represents all characters.
\item[{\tt \%a}] --- represents all letters.
\item[{\tt \%A}] --- represents all non letter characters.
\item[{\tt \%d}] --- represents all digits.
\item[{\tt \%D}] --- represents all non digits.
\item[{\tt \%l}] --- represents all lower case letters.
\item[{\tt \%L}] --- represents all non lower case letter characters.
\item[{\tt \%s}] --- represents all space characters.
\item[{\tt \%S}] --- represents all non space characters.
\item[{\tt \%u}] --- represents all upper case letters.
\item[{\tt \%U}] --- represents all non upper case letter characters.
\item[{\tt \%w}] --- represents all alphanumeric characters.
\item[{\tt \%W}] --- represents all non alphanumeric characters.
\item[{\tt \%\em x}] (where {\em x} is any non alphanumeric character) ---
represents the character {\em x}.
\item[{\tt [char-set]}] ---
Represents the class which is the union of all
characters in char-set.
To include a \verb']' in char-set, it must be the first character.
A range of characters may be specified by
separating the end characters of the range with a \verb'-';
e.g., \verb'A-Z' specifies the upper case characters.
If \verb'-' appears as the first or last character of char-set,
then it represents itself.
All classes \verb'%'{\em x} described above can also be used as
components in a char-set.
All other characters in char-set represent themselves.
\item[{\tt [\^{ }char-set]}] ---
represents the complement of char-set,
where char-set is interpreted as above.
\end{description}
\paragraph{Pattern Item:}
a \Def{pattern item} may be a single character class,
or a character class followed by \verb'*' or by \verb'?'.
A single character class matches any single character in the class.
A character class followed by \verb'*' matches 0 or more repetitions
of characters in the class.
A character class followed by \verb'?' matches 0 or one occurrence
of a character in the class.
A pattern item may also has the form \verb'%n',
for \verb-n- between 1 and 9;
such item matches a sub-string equal to the n-th captured string.
\paragraph{Pattern:}
a \Def{pattern} is a sequence of pattern items.
Any repetition item (\verb'*') inside a pattern will always
match the longest possible sequence.
A \verb'^' at the beginning of a pattern anchors the match at the
beginning of the subject string.
A \verb'$' at the end of a pattern anchors the match at the
end of the subject string.
A pattern may contain sub-patterns enclosed in parentheses,
that describe \Def{captures}.
When a match succeeds, the sub-strings of the subject string
that match captures are {\em captured} for future use.
Captures are numbered according to their left parentheses.
\subsection{Mathematical Functions} \label{mathlib}
This library is an interface to some functions of the standard C math library.
Moreover, it registers a fallback for the binary operator \verb'^' which,
when applied to numbers \verb'x^y', returns $x^y$.
The library provides the following functions:
\Deffunc{abs}\Deffunc{acos}\Deffunc{asin}\Deffunc{atan}
\Deffunc{atan2}\Deffunc{ceil}\Deffunc{cos}\Deffunc{floor}
\Deffunc{log}\Deffunc{log10}\Deffunc{max}\Deffunc{min}
\Deffunc{mod}\Deffunc{sin}\Deffunc{sqrt}\Deffunc{tan}
\Deffunc{random}\Deffunc{randomseed}
\begin{verbatim}
abs acos asin atan atan2 ceil cos floor log log10
max min mod sin sqrt tan random randomseed
\end{verbatim}
Most of them
are only interfaces to the homonymous functions in the C library,
except that, for the trigonometric functions,
all angles are expressed in degrees, not radians.
The function \verb'max' returns the maximum
value of its numeric arguments.
Similarly, \verb'min' computes the minimum.
Both can be used with an unlimited number of arguments.
The functions \verb'random' and \verb'randomseed' are interfaces to
the simple random generator functions \verb'rand' and \verb'srand',
provided by ANSI C.
The function \verb'random' returns pseudo-random numbers in the range
$[0,1)$.
\subsection{I/O Facilities} \label{libio}
All I/O operations in Lua are done over two {\em current} files:
one for reading and one for writing.
Initially, the current input file is \verb'stdin',
and the current output file is \verb'stdout'.
Unless otherwise stated,
all I/O functions return \nil\ on failure and
some value different from \nil\ on success.
\subsubsection*{\ff{\tt readfrom (filename)}}\Deffunc{readfrom}
This function may be called in three ways.
When called with a file name,
it opens the named file,
sets it as the {\em current} input file,
and returns a {\em handle} to the file
(this handle is a user data containing the file stream \verb|FILE *|).
When called with a file handle, returned by a previous call,
it restores the file as the current input.
When called without parameters,
it closes the current input file,
and restores \verb'stdin' as the current input file.
If this function fails, it returns \nil,
plus a string describing the error.
{\em System dependent:} if \verb'filename' starts with a \verb'|',
then a \Index{piped input} is open, via function \IndexVerb{popen}.
\subsubsection*{\ff{\tt writeto (filename)}}\Deffunc{writeto}
This function may be called in three ways.
When called with a file name,
it opens the named file,
sets it as the {\em current} output file,
and returns a {\em handle} to the file
(this handle is a user data containing the file stream \verb|FILE *|).
Notice that, if the file already exists,
it will be {\em completely erased} with this operation.
When called with a file handle, returned by a previous call,
it restores the file as the current output.
When called without parameters,
this function closes the current output file,
and restores \verb'stdout' as the current output file.
\index{closing a file}
If this function fails, it returns \nil,
plus a string describing the error.
{\em System dependent:} if \verb'filename' starts with a \verb'|',
then a \Index{piped output} is open, via function \IndexVerb{popen}.
\subsubsection*{\ff{\tt appendto (filename)}}\Deffunc{appendto}
This function opens a file named \verb'filename' and sets it as the
{\em current} output file.
It returns the file handle,
or \nil\ in case of error.
Unlike the \verb'writeto' operation,
this function does not erase any previous content of the file.
If this function fails, it returns \nil,
plus a string describing the error.
Notice that function \verb|writeto| is available to close a file.
\subsubsection*{\ff{\tt remove (filename)}}\Deffunc{remove}
This function deletes the file with the given name.
If this function fails, it returns \nil,
plus a string describing the error.
\subsubsection*{\ff{\tt rename (name1, name2)}}\Deffunc{rename}
This function renames file \verb'name1' to \verb'name2'.
If this function fails, it returns \nil,
plus a string describing the error.
\subsubsection*{\ff{\tt tmpname ()}}\Deffunc{tmpname}
This function returns a string with a file name that can safely
be used for a temporary file.
\subsubsection*{\ff{\tt read ([readpattern])}}\Deffunc{read}
This function reads the current input
according to a read pattern, that specifies how much to read;
characters are read from the current input file until
the read pattern fails or ends.
The function \verb|read| returns a string with the characters read,
or \nil\ if the read pattern fails {\em and\/}
the result string would be empty.
When called without parameters,
it uses a default pattern that reads the next line
(see below).
A \Def{read pattern} is a sequence of read pattern items.
An item may be a single character class
or a character class followed by \verb'?' or by \verb'*'.
A single character class reads the next character from the input
if it belongs to the class, otherwise it fails.
A character class followed by \verb'?' reads the next character
from the input if it belongs to the class;
it never fails.
A character class followed by \verb'*' reads until a character that
does not belong to the class, or end of file;
since it can match a sequence of zero characteres, it never fails.%
\footnote{
Notice that this behaviour is different from regular pattern matching,
where a \verb'*' expands to the maximum length {\em such that\/}
the rest of the pattern does not fail.}
A pattern item may contain sub-patterns enclosed in curly brackets,
that describe \Def{skips}.
Characters matching a skip are read,
but are not included in the resulting string.
Following are some examples of read patterns and their meanings:
\begin{itemize}
\item \verb|"."| returns the next character, or \nil\ on end of file.
\item \verb|".*"| reads the whole file.
\item \verb|"[^\n]*{\n}"| returns the next line
(skipping the end of line), or \nil\ on end of file.
This is the default pattern.
\item \verb|"{%s*}%S%S*"| returns the next word
(maximal sequence of non white-space characters),
or \nil\ on end of file.
\item \verb|"{%s*}[+-]?%d%d*"| returns the next integer
or \nil\ if the next characters do not conform to an integer format.
\end{itemize}
\subsubsection*{\ff{\tt write (value1, ...)}}\Deffunc{write}
This function writes the value of each of its arguments to the
current output file.
The arguments must be strings or numbers.
If this function fails, it returns \nil,
plus a string describing the error.
\subsubsection*{\ff{\tt date ([format])}}\Deffunc{date}
This function returns a string containing date and time
formatted according to the given string \verb'format',
following the same rules of the ANSI C function \verb'strftime'.
When called without arguments,
it returns a reasonable date and time representation.
\subsubsection*{\ff{\tt exit ([code])}}\Deffunc{exit}
This function calls the C function \verb-exit-,
with an optional \verb-code-,
to terminate the program.
\subsubsection*{\ff{\tt getenv (varname)}}\Deffunc{getenv}
Returns the value of the environment variable \verb|varname|,
or \nil\ if the variable is not defined.
\subsubsection*{\ff{\tt execute (command)}}\Deffunc{execute}
This function is equivalent to the C function \verb|system|.
It passes \verb|command| to be executed by an Operating System Shell.
It returns an error code, which is implementation-defined.
\section{The Debugger Interface} \label{debugI}
Lua has no built-in debugger facilities.
Instead, it offers a special interface,
by means of functions and {\em hooks},
which allows the construction of different
kinds of debuggers, profilers, and other tools
that need ``inside information'' from the interpreter.
This interface is declared in the header file \verb'luadebug.h'.
\subsection{Stack and Function Information}
The main function to get information about the interpreter stack
is
\begin{verbatim}
lua_Function lua_stackedfunction (int level);
\end{verbatim}
It returns a handle (\verb'lua_Function') to the {\em activation record\/}
of the function executing at a given level.
Level 0 is the current running function,
while level $n+1$ is the function that has called level $n$.
When called with a level greater than the stack depth,
\verb'lua_stackedfunction' returns \verb'LUA_NOOBJECT'.
The type \verb'lua_Function' is just another name
to \verb'lua_Object'.
Although, in this library,
a \verb'lua_Function' can be used wherever a \verb'lua_Object' is required,
a parameter \verb'lua_Function' accepts only a handle returned by
\verb'lua_stackedfunction'.
Three other functions produce extra information about a function:
\begin{verbatim}
void lua_funcinfo (lua_Object func, char **filename, int *linedefined);
int lua_currentline (lua_Function func);
char *lua_getobjname (lua_Object o, char **name);
\end{verbatim}
\verb'lua_funcinfo' gives the file name and the line where the
given function has been defined.
If the ``function'' is in fact the main code of a chunk,
then \verb'linedefined' is 0.
If the function is a C function,
then \verb'linedefined' is -1, and \verb'filename' is \verb'"(C)"'.
The function \verb'lua_currentline' gives the current line where
a given function is executing.
It only works if the function has been pre-compiled with debug
information (\see{pragma}).
When no line information is available, it returns -1.
Function \verb'lua_getobjname' tries to find a reasonable name for
a given function.
Because functions in Lua are first class values,
they do not have a fixed name.
Some functions may be the value of many global variables,
while others may be stored only in a table field.
Function \verb'lua_getobjname' first checks whether the given
function is a fallback.
If so, it returns the string \verb'"fallback"',
and \verb'name' is set to point to the fallback name.
Otherwise, if the given function is the value of a global variable,
then \verb'lua_getobjname' returns the string \verb'"global"',
while \verb'name' points to the variable name.
If the given function is neither a fallback nor a global variable,
then \verb'lua_getobjname' returns the empty string,
and \verb'name' is set to \verb'NULL'.
\subsection{Manipulating Local Variables}
The following functions allow the manipulation of the
local variables of a given activation record.
They only work if the function has been pre-compiled with debug
information (\see{pragma}).
\begin{verbatim}
lua_Object lua_getlocal (lua_Function func, int local_number, char **name);
int lua_setlocal (lua_Function func, int local_number);
\end{verbatim}
The first one returns the value of a local variable,
and sets \verb'name' to point to the variable name.
\verb'local_number' is an index for local variables.
The first parameter has index 1, and so on, until the
last active local variable.
When called with a \verb'local_number' greater than the
number of active local variables,
or if the activation record has no debug information,
\verb'lua_getlocal' returns \verb'LUA_NOOBJECT'.
The function \verb'lua_setlocal' sets the local variable
\verb'local_number' to the value previously pushed on the stack
(\see{valuesCLua}).
If the function succeeds, then it returns 1.
If \verb'local_number' is greater than the number
of active local variables,
or if the activation record has no debug information,
then this function fails and returns 0.
\subsection{Hooks}
The Lua interpreter offers two hooks for debugging purposes:
\begin{verbatim}
typedef void (*lua_CHFunction) (lua_Function func, char *file, int line);
extern lua_CHFunction lua_callhook;
typedef void (*lua_LHFunction) (int line);
extern lua_LHFunction lua_linehook;
\end{verbatim}
The first one is called whenever the interpreter enters or leaves a
function.
When entering a function,
its parameters are a handle to the function activation record,
plus the file and the line where the function is defined (the same
information which is provided by \verb'lua_funcinfo');
when leaving a function, \verb'func' is \verb'LUA_NOOBJECT',
\verb'file' is \verb'"(return)"', and \verb'line' is 0.
The other hook is called every time the interpreter changes
the line of code it is executing.
Its only parameter is the line number
(the same information which is provided by the call
\verb'lua_currentline(lua_stackedfunction(0))').
This second hook is only called if the active function
has been pre-compiled with debug information (\see{pragma}).
A hook is disabled when its value is NULL (0),
which is the initial value of both hooks.
\section{Some Examples}
This section gives examples showing some features of Lua.
It does not intend to cover the whole language,
but only to illustrate some interesting uses of the system.
\subsection{\Index{Data Structures}}
Tables are a strong unifying data constructor.
They directly implement a multitude of data types,
like ordinary arrays, records, sets, bags, and lists.
Arrays need no explanations.
In Lua, it is conventional to start indices from 1,
but this is only a convention.
Arrays can be indexed by 0, negative numbers, or any other value (except \nil).
Records are also trivially implemented by the syntactic sugar
\verb'a.x'.
The best way to implement a set is to store
its elements as indices of a table.
The statement \verb's = {}' creates an empty set \verb's'.
The statement \verb's[x] = 1' inserts the value of \verb'x' into
the set \verb's'.
The expression \verb's[x]' is true if and only if
\verb'x' belongs to \verb's'.
Finally, the statement \verb's[x] = nil' removes \verb'x' from \verb's'.
Bags can be implemented similarly to sets,
but using the value associated to an element as its counter.
So, to insert an element,
the following code is enough:
\begin{verbatim}
if s[x] then s[x] = s[x]+1 else s[x] = 1 end
\end{verbatim}
and to remove an element:
\begin{verbatim}
if s[x] then s[x] = s[x]-1 end
if s[x] == 0 then s[x] = nil end
\end{verbatim}
Lisp-like lists also have an easy implementation.
The ``cons'' of two elements \verb'x' and \verb'y' can be
created with the code \verb'l = {car=x, cdr=y}'.
The expression \verb'l.car' extracts the header,
while \verb'l.cdr' extracts the tail.
An alternative way is to create the list directly with \verb'l={x,y}',
and then to extract the header with \verb'l[1]' and
the tail with \verb'l[2]'.
\subsection{The Functions {\tt next} and {\tt nextvar}} \label{exnext}
\Deffunc{next}\Deffunc{nextvar}
This example shows how to use the function \verb'next' to iterate
over the fields of a table.
Function \IndexVerb{clone} receives any table and returns a clone of it.
\begin{verbatim}
function clone (t) -- t is a table
local new_t = {} -- create a new table
local i, v = next(t, nil) -- i is an index of t, v = t[i]
while i do
new_t[i] = v
i, v = next(t, i) -- get next index
end
return new_t
end
\end{verbatim}
The next example prints the names of all global variables
in the system with non nil values:
\begin{verbatim}
function printGlobalVariables ()
local i, v = nextvar(nil)
while i do
print(i)
i, v = nextvar(i)
end
end
\end{verbatim}
\subsection{String Manipulation} \label{exstring}
The first example is a function to trim extra white-spaces at the beginning
and end of a string.
\begin{verbatim}
function trim(s)
local _, i = strfind(s, '^ *')
local f, __ = strfind(s, ' *$')
return strsub(s, i+1, f-1)
end
\end{verbatim}
The second example shows a function that eliminates all spaces
of a string.
\begin{verbatim}
function remove_blanks (s)
return gsub(s, "%s%s*", "")
end
\end{verbatim}
\subsection{\Index{Variable number of arguments}}
Lua does not provide any explicit mechanism to deal with
variable number of arguments in function calls.
However, one can use table constructors to simulate this mechanism.
As an example, suppose a function to concatenate all its arguments.
It could be written like
\begin{verbatim}
function concat (o)
local i = 1
local s = ''
while o[i] do
s = s .. o[i]
i = i+1
end
return s
end
\end{verbatim}
To call it, one uses a table constructor to join all arguments:
\begin{verbatim}
x = concat{"hello ", "john", " and ", "mary"}
\end{verbatim}
\subsection{\Index{Persistence}}
Because of its reflexive facilities,
persistence in Lua can be achieved within the language.
This section shows some ways to store and retrieve values in Lua,
using a text file written in the language itself as the storage media.
To store a single value with a name,
the following code is enough:
\begin{verbatim}
function store (name, value)
write(format('\n%s =', name))
write_value(value)
end
\end{verbatim}
\begin{verbatim}
function write_value (value)
local t = type(value)
if t == 'nil' then write('nil')
elseif t == 'number' then write(value)
elseif t == 'string' then write(value, 'q')
end
end
\end{verbatim}
In order to restore this value, a \verb'lua_dofile' suffices.
Storing tables is a little more complex.
Assuming that the table is a tree,
and that all indices are identifiers
(that is, the tables are being used as records),
then its value can be written directly with table constructors.
First, the function \verb'write_value' is changed to
\begin{verbatim}
function write_value (value)
local t = type(value)
if t == 'nil' then write('nil')
elseif t == 'number' then write(value)
elseif t == 'string' then write(value, 'q')
elseif t == 'table' then write_record(value)
end
end
\end{verbatim}
The function \verb'write_record' is:
\begin{verbatim}
function write_record(t)
local i, v = next(t, nil)
write('{') -- starts constructor
while i do
store(i, v)
write(', ')
i, v = next(t, i)
end
write('}') -- closes constructor
end
\end{verbatim}
\subsection{Inheritance} \label{exfallback}
The fallback for absent indices can be used to implement many
kinds of \Index{inheritance} in Lua.
As an example,
the following code implements single inheritance:
\begin{verbatim}
function Index (t,f)
if f == 'parent' then -- to avoid loop
return OldIndex(t,f)
end
local p = t.parent
if type(p) == 'table' then
return p[f]
else
return OldIndex(t,f)
end
end
OldIndex = setfallback("index", Index)
\end{verbatim}
Whenever Lua attempts to access an absent field in a table,
it calls the fallback function \verb'Index'.
If the table has a field \verb'parent' with a table value,
then Lua attempts to access the desired field in this parent object.
This process is repeated ``upwards'' until a value
for the field is found or the object has no parent.
In the latter case, the previous fallback is called to supply a value
for the field.
When better performance is needed,
the same fallback may be implemented in C,
as illustrated in Figure~\ref{Cinher}.
\begin{figure}
\Line
\begin{verbatim}
#include "lua.h"
int lockedParentName; /* lock index for the string "parent" */
int lockedOldIndex; /* previous fallback function */
void callOldFallback (lua_Object table, lua_Object index)
{
lua_Object oldIndex = lua_getref(lockedOldIndex);
lua_pushobject(table);
lua_pushobject(index);
lua_callfunction(oldIndex);
if (lua_getresult(1) != LUA_NOOBJECT)
lua_pushobject(lua_getresult(1)); /* return result */
}
void Index (void)
{
lua_Object table = lua_getparam(1);
lua_Object index = lua_getparam(2);
lua_Object parent;
if (lua_isstring(index) && strcmp(lua_getstring(index), "parent") == 0)
{
callOldFallback(table, index);
return;
}
lua_pushobject(table);
lua_pushref(lockedParentName);
parent = lua_getsubscript();
if (lua_istable(parent))
{
lua_pushobject(parent);
lua_pushobject(index);
/* return result from getsubscript */
lua_pushobject(lua_getsubscript());
}
else
callOldFallback(table, index);
}
\end{verbatim}
\caption{Inheritance in C.\label{Cinher}}
\Line
\end{figure}
This code must be registered with:
\begin{verbatim}
lua_pushstring("parent");
lockedParentName = lua_ref(1);
lua_pushobject(lua_setfallback("index", Index));
lockedOldIndex = lua_ref(1);
\end{verbatim}
Notice how the string \verb'"parent"' is kept
locked in Lua for optimal performance.
\subsection{\Index{Programming with Classes}}
There are many different ways to do object-oriented programming in Lua.
This section presents one possible way to
implement classes,
using the inheritance mechanism presented above.
{\em Please notice: the following examples only work
with the index fallback redefined according to
Section~\ref{exfallback}}.
As one could expect, a good way to represent a class is
with a table.
This table will contain all instance methods of the class,
plus optional default values for instance variables.
An instance of a class has its \verb'parent' field pointing to
the class,
and so it ``inherits'' all methods.
For instance, a class \verb'Point' can be described as in
Figure~\ref{Point}.
Function \verb'create' helps the creation of new points,
adding the parent field.
Function \verb'move' is an example of an instance method.
\begin{figure}
\Line
\begin{verbatim}
Point = {x = 0, y = 0}
function Point:create (o)
o.parent = self
return o
end
function Point:move (p)
self.x = self.x + p.x
self.y = self.y + p.y
end
...
--
-- creating points
--
p1 = Point:create{x = 10, y = 20}
p2 = Point:create{x = 10} -- y will be inherited until it is set
--
-- example of a method invocation
--
p1:move(p2)
\end{verbatim}
\caption{A Class {\tt Point}.\label{Point}}
\Line
\end{figure}
Finally, a subclass can be created as a new table,
with the \verb'parent' field pointing to its superclass.
It is interesting to notice how the use of \verb'self' in
method \verb'create' allows this method to work properly even
when inherited by a subclass.
As usual, a subclass may overwrite any inherited method with
its own version.
\subsection{\Index{Modules}}
Here we explain one possible way to simulate modules in Lua.
The main idea is to use a table to store the module functions.
A module should be written as a separate chunk, starting with:
\begin{verbatim}
if modulename then return end -- avoid loading twice the same module
modulename = {} -- create a table to represent the module
\end{verbatim}
After that, functions can be directly defined with the syntax
\begin{verbatim}
function modulename.foo (...)
...
end
\end{verbatim}
Any code that needs this module has only to execute
\verb'dofile("filename")', where \verb'filename' is the file
where the module is written.
After this, any function can be called with
\begin{verbatim}
modulename.foo(...)
\end{verbatim}
If a module function is going to be used many times,
the program can give a local name to it.
Because functions are values, it is enough to write
\begin{verbatim}
localname = modulename.foo
\end{verbatim}
Finally, a module may be {\em opened},
giving direct access to all its functions,
as shown in the code in Figure~\ref{openmod}.
\begin{figure}
\Line
\begin{verbatim}
function open (mod)
local n, f = next(mod, nil)
while n do
setglobal(n, f)
n, f = next(mod, n)
end
end
\end{verbatim}
\caption{Opening a module.\label{openmod}}
\Line
\end{figure}
\subsection{A CFunction} \label{exCFunction}\index{functions in C}
A CFunction to compute the maximum of a variable number of arguments
is shown in Figure~\ref{Cmax}.
\begin{figure}
\Line
\begin{verbatim}
void math_max (void)
{
int i=1; /* number of arguments */
double d, dmax;
lua_Object o;
/* the function must get at least one argument */
if ((o = lua_getparam(i++)) == LUA_NOOBJECT)
lua_error ("too few arguments to function `max'");
/* and this argument must be a number */
if (!lua_isnumber(o))
lua_error ("incorrect argument to function `max'");
dmax = lua_getnumber (o);
/* loops until there is no more arguments */
while ((o = lua_getparam(i++)) != LUA_NOOBJECT)
{
if (!lua_isnumber(o))
lua_error ("incorrect argument to function `max'");
d = lua_getnumber (o);
if (d > dmax) dmax = d;
}
/* push the result to be returned */
lua_pushnumber (dmax);
}
\end{verbatim}
\caption{C function {\tt math\_max}.\label{Cmax}}
\Line
\end{figure}
After registered with
\begin{verbatim}
lua_register ("max", math_max);
\end{verbatim}
this function is available in Lua, as follows:
\begin{verbatim}
i = max(4, 5, 10, -34) -- i receives 10
\end{verbatim}
\subsection{Calling Lua Functions} \label{exLuacall}
This example illustrates how a C function can call the Lua function
\verb'remove_blanks' presented in Section~\ref{exstring}.
\begin{verbatim}
void remove_blanks (char *s)
{
lua_pushstring(s); /* prepare parameter */
lua_call("remove_blanks"); /* call Lua function */
strcpy(s, lua_getstring(lua_getresult(1))); /* copy result back to 's' */
}
\end{verbatim}
\section{\Index{Lua Stand-alone}}
Although Lua has been designed as an extension language,
the language can also be used as a stand-alone interpreter.
An implementation of such an interpreter,
called simply \verb|lua|,
is provided with the standard distribution.
This program can be called with any sequence of the following arguments:
\begin{description}
\item[{\tt -v}] prints version information.
\item[{\tt -}] runs interactively, accepting commands from standard input
until an \verb|EOF|.
\item[{\tt -e stat}] executes \verb|stat| as a Lua chunk.
\item[{\tt var=exp}] executes \verb|var=exp| as a Lua chunk.
\item[{\tt filename}] executes file \verb|filename| as a Lua chunk.
\end{description}
All arguments are handle in order.
For instance, an invocation like
\begin{verbatim}
$ lua - a=1 prog.lua
\end{verbatim}
will first interact with the user until an \verb|EOF|,
then will set \verb'a' to 1,
and finally will run file \verb'prog.lua'.
Please notice that the interaction with the shell may lead to
unintended results.
For instance, a call like
\begin{verbatim}
$ lua a="name" prog.lua
\end{verbatim}
will {\em not} set \verb|a| to the string \verb|"name"|.
Instead, the quotes will be handled by the shell,
lua will get only \verb'a=name' to run,
and \verb'a' will finish with \nil.
Instead, one should write
\begin{verbatim}
$ lua 'a="name"' prog.lua
\end{verbatim}
\section*{Acknowledgments}
The authors would like to thank CENPES/PETROBR\'AS which,
jointly with \tecgraf, used extensively early versions of
this system and gave valuable comments.
The authors would also like to thank Carlos Henrique Levy,
who found the name of the game.
Lua means {\em moon} in Portuguese.
\appendix
\section*{Incompatibilities with Previous Versions}
Although great care has been taken to avoid incompatibilities with
the previous public versions of Lua,
some differences had to be introduced.
Here is a list of all these incompatibilities.
\subsection*{Incompatibilities with \Index{version 2.4}}
The whole I/O facilities have been rewritten.
We strongly encourage programmers to addapt their code
to this new version.
However, we are keeping the old version of the libraries
in the distribution,
to allow a smooth transition.
The incompatibilities between the new and the old libraries are:
\begin{itemize}
\item The format facility of function \verb'write' has been supersed by
function \verb'format';
therefore this facility has been dropped.
\item Function \verb'read' now uses {\em read patterns} to specify
what to read;
this is incompatible with the old format options.
\item Function \verb'strfind' now accepts patterns,
so it may have a different behavior when the pattern includes
special characteres.
\end{itemize}
\subsection*{Incompatibilities with \Index{version 2.2}}
\begin{itemize}
\item
Functions \verb'date' and \verb'time' (from \verb'iolib')
have been superseded by the new, more powerful version of function \verb'date'.
\item
Function \verb'append' (from \verb'iolib') now returns 1 whenever it succeeds,
whether the file is new or not.
\item
Function \verb'int2str' (from \verb'strlib') has been superseded by new
function \verb'format', with parameter \verb'"%c"'.
\item
The API lock mechanism has been superseded by the reference mechanism.
However, \verb-lua.h- provides compatibility macros,
so there is no need to change programs.
\item
The API function \verb'lua_pushliteral' now is just a macro to
\verb'lua_pushstring'.
\end{itemize}
\subsection*{Incompatibilities with \Index{version 2.1}}
\begin{itemize}
\item
The function \verb'type' now returns the string \verb'"function"'
both for C and Lua functions.
Because Lua functions and C functions are compatible,
this behavior is usually more useful.
When needed, the second result of function {\tt type} may be used
to distinguish between Lua and C functions.
\item
A function definition only assigns the function value to the
given variable at execution time.
\end{itemize}
\subsection*{Incompatibilities with \Index{version 1.1}}
\begin{itemize}
\item
The equality test operator now is denoted by \verb'==',
instead of \verb'='.
\item
The syntax for table construction has been greatly simplified.
The old \verb'@(size)' has been substituted by \verb'{}'.
The list constructor (formerly \verb'@[...]') and the record
constructor (formerly \verb'@{...}') now are both coded like
\verb'{...}'.
When the construction involves a function call,
like in \verb'@func{...}',
the new syntax does not use the \verb'@'.
More important, {\em a construction function must now
explicitly return the constructed table}.
\item
The function \verb'lua_call' no longer has the parameter \verb'nparam'.
\item
The function \verb'lua_pop' is no longer available,
since it could lead to strange behavior.
In particular,
to access results returned from a Lua function,
the new macro \verb'lua_getresult' should be used.
\item
The old functions \verb'lua_storefield' and \verb'lua_storeindexed'
have been replaced by
\begin{verbatim}
int lua_storesubscript (void);
\end{verbatim}
with the parameters explicitly pushed on the stack.
\item
The functionality of the function \verb'lua_errorfunction' has been
replaced by the {\em fallback} mechanism (\see{error}).
\item
When calling a function from the Lua library,
parameters passed through the stack
must be pushed just before the corresponding call,
with no intermediate calls to Lua.
Special care should be taken with macros like
\verb'lua_getindexed' and \verb'lua_getfield'.
\end{itemize}
\newcommand{\indexentry}[2]{\item {#1} #2}
%\catcode`\_=12
\begin{theindex}
\input{manual.id}
\end{theindex}
\pagebreak
\tableofcontents
\end{document}
|