aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorMike Pall <mike>2011-05-12 01:35:09 +0200
committerMike Pall <mike>2011-05-12 01:35:09 +0200
commit58f38c254bcdcf1f874f2e052751f568c2866133 (patch)
treee3e7d951b8b77c934da407d44568299d9689b72a
parent800349387a25b73e1c98f4dcf39a65b7559894fe (diff)
downloadluajit-58f38c254bcdcf1f874f2e052751f568c2866133.tar.gz
luajit-58f38c254bcdcf1f874f2e052751f568c2866133.tar.bz2
luajit-58f38c254bcdcf1f874f2e052751f568c2866133.zip
Move x86/x64 parts of JIT assembler backend to extra files.
-rw-r--r--src/Makefile4
-rw-r--r--src/Makefile.dep9
-rw-r--r--src/lj_asm.c3161
-rw-r--r--src/lj_asm_x86.h2668
-rw-r--r--src/lj_emit_x86.h456
5 files changed, 3173 insertions, 3125 deletions
diff --git a/src/Makefile b/src/Makefile
index 6ac05c49..03e45d2d 100644
--- a/src/Makefile
+++ b/src/Makefile
@@ -482,7 +482,9 @@ depend:
482 @$(HOST_CC) $(HOST_ACFLAGS) -MM *.c | \ 482 @$(HOST_CC) $(HOST_ACFLAGS) -MM *.c | \
483 sed -e "s| [^ ]*/dasm_\S*\.h||g" \ 483 sed -e "s| [^ ]*/dasm_\S*\.h||g" \
484 -e "s| buildvm_\S*\.h||g" \ 484 -e "s| buildvm_\S*\.h||g" \
485 -e "s| lj_target_\S*\.h| lj_target_*.h|g" >Makefile.dep 485 -e "s| lj_target_\S*\.h| lj_target_*.h|g" \
486 -e "s| lj_emit_\S*\.h| lj_emit_*.h|g" \
487 -e "s| lj_asm_\S*\.h| lj_asm_*.h|g" >Makefile.dep
486 @for file in $(ALL_HDRGEN) $(ALL_DYNGEN); do \ 488 @for file in $(ALL_HDRGEN) $(ALL_DYNGEN); do \
487 test -s $$file || $(HOST_RM) $$file; \ 489 test -s $$file || $(HOST_RM) $$file; \
488 done 490 done
diff --git a/src/Makefile.dep b/src/Makefile.dep
index 4f5317b9..05ef5748 100644
--- a/src/Makefile.dep
+++ b/src/Makefile.dep
@@ -53,7 +53,7 @@ lj_api.o: lj_api.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \
53lj_asm.o: lj_asm.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \ 53lj_asm.o: lj_asm.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_gc.h \
54 lj_str.h lj_tab.h lj_frame.h lj_bc.h lj_ctype.h lj_ir.h lj_jit.h \ 54 lj_str.h lj_tab.h lj_frame.h lj_bc.h lj_ctype.h lj_ir.h lj_jit.h \
55 lj_iropt.h lj_mcode.h lj_trace.h lj_dispatch.h lj_traceerr.h lj_snap.h \ 55 lj_iropt.h lj_mcode.h lj_trace.h lj_dispatch.h lj_traceerr.h lj_snap.h \
56 lj_asm.h lj_vm.h lj_target.h lj_target_*.h 56 lj_asm.h lj_vm.h lj_target.h lj_target_*.h lj_emit_*.h lj_asm_*.h
57lj_bc.o: lj_bc.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_bc.h \ 57lj_bc.o: lj_bc.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h lj_bc.h \
58 lj_bcdef.h 58 lj_bcdef.h
59lj_carith.o: lj_carith.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \ 59lj_carith.o: lj_carith.c lj_obj.h lua.h luaconf.h lj_def.h lj_arch.h \
@@ -177,7 +177,8 @@ ljamalg.o: ljamalg.c lua.h luaconf.h lauxlib.h lj_gc.c lj_obj.h lj_def.h \
177 lj_opt_loop.c lj_snap.h lj_opt_split.c lj_mcode.c lj_mcode.h lj_snap.c \ 177 lj_opt_loop.c lj_snap.h lj_opt_split.c lj_mcode.c lj_mcode.h lj_snap.c \
178 lj_target.h lj_target_*.h lj_record.c lj_record.h lj_ffrecord.h \ 178 lj_target.h lj_target_*.h lj_record.c lj_record.h lj_ffrecord.h \
179 lj_crecord.c lj_crecord.h lj_ffrecord.c lj_recdef.h lj_asm.c lj_asm.h \ 179 lj_crecord.c lj_crecord.h lj_ffrecord.c lj_recdef.h lj_asm.c lj_asm.h \
180 lj_trace.c lj_gdbjit.h lj_gdbjit.c lj_alloc.c lib_aux.c lib_base.c \ 180 lj_emit_*.h lj_asm_*.h lj_trace.c lj_gdbjit.h lj_gdbjit.c lj_alloc.c \
181 lj_libdef.h lib_math.c lib_string.c lib_table.c lib_io.c lib_os.c \ 181 lib_aux.c lib_base.c lj_libdef.h lib_math.c lib_string.c lib_table.c \
182 lib_package.c lib_debug.c lib_bit.c lib_jit.c lib_ffi.c lib_init.c 182 lib_io.c lib_os.c lib_package.c lib_debug.c lib_bit.c lib_jit.c \
183 lib_ffi.c lib_init.c
183luajit.o: luajit.c lua.h luaconf.h lauxlib.h lualib.h luajit.h lj_arch.h 184luajit.o: luajit.c lua.h luaconf.h lauxlib.h lualib.h luajit.h lj_arch.h
diff --git a/src/lj_asm.c b/src/lj_asm.c
index be6c359e..87c09bb9 100644
--- a/src/lj_asm.c
+++ b/src/lj_asm.c
@@ -130,457 +130,14 @@ IRFLDEF(FLOFS)
130#define VG_INVALIDATE(p, sz) ((void)0) 130#define VG_INVALIDATE(p, sz) ((void)0)
131#endif 131#endif
132 132
133/* -- Emit basic instructions --------------------------------------------- */ 133/* -- Target-specific instruction emitter --------------------------------- */
134 134
135#define MODRM(mode, r1, r2) ((MCode)((mode)+(((r1)&7)<<3)+((r2)&7))) 135#if LJ_TARGET_X86ORX64
136 136#include "lj_emit_x86.h"
137#if LJ_64
138#define REXRB(p, rr, rb) \
139 { MCode rex = 0x40 + (((rr)>>1)&4) + (((rb)>>3)&1); \
140 if (rex != 0x40) *--(p) = rex; }
141#define FORCE_REX 0x200
142#define REX_64 (FORCE_REX|0x080000)
143#else
144#define REXRB(p, rr, rb) ((void)0)
145#define FORCE_REX 0
146#define REX_64 0
147#endif
148
149#define emit_i8(as, i) (*--as->mcp = (MCode)(i))
150#define emit_i32(as, i) (*(int32_t *)(as->mcp-4) = (i), as->mcp -= 4)
151#define emit_u32(as, u) (*(uint32_t *)(as->mcp-4) = (u), as->mcp -= 4)
152
153#define emit_x87op(as, xo) \
154 (*(uint16_t *)(as->mcp-2) = (uint16_t)(xo), as->mcp -= 2)
155
156/* op */
157static LJ_AINLINE MCode *emit_op(x86Op xo, Reg rr, Reg rb, Reg rx,
158 MCode *p, int delta)
159{
160 int n = (int8_t)xo;
161#if defined(__GNUC__)
162 if (__builtin_constant_p(xo) && n == -2)
163 p[delta-2] = (MCode)(xo >> 24);
164 else if (__builtin_constant_p(xo) && n == -3)
165 *(uint16_t *)(p+delta-3) = (uint16_t)(xo >> 16);
166 else
167#endif
168 *(uint32_t *)(p+delta-5) = (uint32_t)xo;
169 p += n + delta;
170#if LJ_64
171 {
172 uint32_t rex = 0x40 + ((rr>>1)&(4+(FORCE_REX>>1)))+((rx>>2)&2)+((rb>>3)&1);
173 if (rex != 0x40) {
174 rex |= (rr >> 16);
175 if (n == -4) { *p = (MCode)rex; rex = (MCode)(xo >> 8); }
176 else if ((xo & 0xffffff) == 0x6600fd) { *p = (MCode)rex; rex = 0x66; }
177 *--p = (MCode)rex;
178 }
179 }
180#else
181 UNUSED(rr); UNUSED(rb); UNUSED(rx);
182#endif
183 return p;
184}
185
186/* op + modrm */
187#define emit_opm(xo, mode, rr, rb, p, delta) \
188 (p[(delta)-1] = MODRM((mode), (rr), (rb)), \
189 emit_op((xo), (rr), (rb), 0, (p), (delta)))
190
191/* op + modrm + sib */
192#define emit_opmx(xo, mode, scale, rr, rb, rx, p) \
193 (p[-1] = MODRM((scale), (rx), (rb)), \
194 p[-2] = MODRM((mode), (rr), RID_ESP), \
195 emit_op((xo), (rr), (rb), (rx), (p), -1))
196
197/* op r1, r2 */
198static void emit_rr(ASMState *as, x86Op xo, Reg r1, Reg r2)
199{
200 MCode *p = as->mcp;
201 as->mcp = emit_opm(xo, XM_REG, r1, r2, p, 0);
202}
203
204#if LJ_64 && defined(LUA_USE_ASSERT)
205/* [addr] is sign-extended in x64 and must be in lower 2G (not 4G). */
206static int32_t ptr2addr(const void *p)
207{
208 lua_assert((uintptr_t)p < (uintptr_t)0x80000000);
209 return i32ptr(p);
210}
211#else
212#define ptr2addr(p) (i32ptr((p)))
213#endif
214
215/* op r, [addr] */
216static void emit_rma(ASMState *as, x86Op xo, Reg rr, const void *addr)
217{
218 MCode *p = as->mcp;
219 *(int32_t *)(p-4) = ptr2addr(addr);
220#if LJ_64
221 p[-5] = MODRM(XM_SCALE1, RID_ESP, RID_EBP);
222 as->mcp = emit_opm(xo, XM_OFS0, rr, RID_ESP, p, -5);
223#else
224 as->mcp = emit_opm(xo, XM_OFS0, rr, RID_EBP, p, -4);
225#endif
226}
227
228/* op r, [base+ofs] */
229static void emit_rmro(ASMState *as, x86Op xo, Reg rr, Reg rb, int32_t ofs)
230{
231 MCode *p = as->mcp;
232 x86Mode mode;
233 if (ra_hasreg(rb)) {
234 if (ofs == 0 && (rb&7) != RID_EBP) {
235 mode = XM_OFS0;
236 } else if (checki8(ofs)) {
237 *--p = (MCode)ofs;
238 mode = XM_OFS8;
239 } else {
240 p -= 4;
241 *(int32_t *)p = ofs;
242 mode = XM_OFS32;
243 }
244 if ((rb&7) == RID_ESP)
245 *--p = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
246 } else {
247 *(int32_t *)(p-4) = ofs;
248#if LJ_64
249 p[-5] = MODRM(XM_SCALE1, RID_ESP, RID_EBP);
250 p -= 5;
251 rb = RID_ESP;
252#else
253 p -= 4;
254 rb = RID_EBP;
255#endif
256 mode = XM_OFS0;
257 }
258 as->mcp = emit_opm(xo, mode, rr, rb, p, 0);
259}
260
261/* op r, [base+idx*scale+ofs] */
262static void emit_rmrxo(ASMState *as, x86Op xo, Reg rr, Reg rb, Reg rx,
263 x86Mode scale, int32_t ofs)
264{
265 MCode *p = as->mcp;
266 x86Mode mode;
267 if (ofs == 0 && (rb&7) != RID_EBP) {
268 mode = XM_OFS0;
269 } else if (checki8(ofs)) {
270 mode = XM_OFS8;
271 *--p = (MCode)ofs;
272 } else {
273 mode = XM_OFS32;
274 p -= 4;
275 *(int32_t *)p = ofs;
276 }
277 as->mcp = emit_opmx(xo, mode, scale, rr, rb, rx, p);
278}
279
280/* op r, i */
281static void emit_gri(ASMState *as, x86Group xg, Reg rb, int32_t i)
282{
283 MCode *p = as->mcp;
284 x86Op xo;
285 if (checki8(i)) {
286 *--p = (MCode)i;
287 xo = XG_TOXOi8(xg);
288 } else {
289 p -= 4;
290 *(int32_t *)p = i;
291 xo = XG_TOXOi(xg);
292 }
293 as->mcp = emit_opm(xo, XM_REG, (Reg)(xg & 7) | (rb & REX_64), rb, p, 0);
294}
295
296/* op [base+ofs], i */
297static void emit_gmroi(ASMState *as, x86Group xg, Reg rb, int32_t ofs,
298 int32_t i)
299{
300 x86Op xo;
301 if (checki8(i)) {
302 emit_i8(as, i);
303 xo = XG_TOXOi8(xg);
304 } else {
305 emit_i32(as, i);
306 xo = XG_TOXOi(xg);
307 }
308 emit_rmro(as, xo, (Reg)(xg & 7), rb, ofs);
309}
310
311#define emit_shifti(as, xg, r, i) \
312 (emit_i8(as, (i)), emit_rr(as, XO_SHIFTi, (Reg)(xg), (r)))
313
314/* op r, rm/mrm */
315static void emit_mrm(ASMState *as, x86Op xo, Reg rr, Reg rb)
316{
317 MCode *p = as->mcp;
318 x86Mode mode = XM_REG;
319 if (rb == RID_MRM) {
320 rb = as->mrm.base;
321 if (rb == RID_NONE) {
322 rb = RID_EBP;
323 mode = XM_OFS0;
324 p -= 4;
325 *(int32_t *)p = as->mrm.ofs;
326 if (as->mrm.idx != RID_NONE)
327 goto mrmidx;
328#if LJ_64
329 *--p = MODRM(XM_SCALE1, RID_ESP, RID_EBP);
330 rb = RID_ESP;
331#endif
332 } else {
333 if (as->mrm.ofs == 0 && (rb&7) != RID_EBP) {
334 mode = XM_OFS0;
335 } else if (checki8(as->mrm.ofs)) {
336 *--p = (MCode)as->mrm.ofs;
337 mode = XM_OFS8;
338 } else {
339 p -= 4;
340 *(int32_t *)p = as->mrm.ofs;
341 mode = XM_OFS32;
342 }
343 if (as->mrm.idx != RID_NONE) {
344 mrmidx:
345 as->mcp = emit_opmx(xo, mode, as->mrm.scale, rr, rb, as->mrm.idx, p);
346 return;
347 }
348 if ((rb&7) == RID_ESP)
349 *--p = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
350 }
351 }
352 as->mcp = emit_opm(xo, mode, rr, rb, p, 0);
353}
354
355/* op rm/mrm, i */
356static void emit_gmrmi(ASMState *as, x86Group xg, Reg rb, int32_t i)
357{
358 x86Op xo;
359 if (checki8(i)) {
360 emit_i8(as, i);
361 xo = XG_TOXOi8(xg);
362 } else {
363 emit_i32(as, i);
364 xo = XG_TOXOi(xg);
365 }
366 emit_mrm(as, xo, (Reg)(xg & 7) | (rb & REX_64), (rb & ~REX_64));
367}
368
369/* -- Emit loads/stores --------------------------------------------------- */
370
371/* Instruction selection for XMM moves. */
372#define XMM_MOVRR(as) ((as->flags & JIT_F_SPLIT_XMM) ? XO_MOVSD : XO_MOVAPS)
373#define XMM_MOVRM(as) ((as->flags & JIT_F_SPLIT_XMM) ? XO_MOVLPD : XO_MOVSD)
374
375/* mov [base+ofs], i */
376static void emit_movmroi(ASMState *as, Reg base, int32_t ofs, int32_t i)
377{
378 emit_i32(as, i);
379 emit_rmro(as, XO_MOVmi, 0, base, ofs);
380}
381
382/* mov [base+ofs], r */
383#define emit_movtomro(as, r, base, ofs) \
384 emit_rmro(as, XO_MOVto, (r), (base), (ofs))
385
386/* Get/set global_State fields. */
387#define emit_opgl(as, xo, r, field) \
388 emit_rma(as, (xo), (r), (void *)&J2G(as->J)->field)
389#define emit_getgl(as, r, field) emit_opgl(as, XO_MOV, (r), field)
390#define emit_setgl(as, r, field) emit_opgl(as, XO_MOVto, (r), field)
391#define emit_setgli(as, field, i) \
392 (emit_i32(as, i), emit_opgl(as, XO_MOVmi, 0, field))
393
394/* mov r, i / xor r, r */
395static void emit_loadi(ASMState *as, Reg r, int32_t i)
396{
397 /* XOR r,r is shorter, but modifies the flags. This is bad for HIOP. */
398 if (i == 0 && !(LJ_32 && (IR(as->curins)->o == IR_HIOP ||
399 (as->curins+1 < as->T->nins &&
400 IR(as->curins+1)->o == IR_HIOP)))) {
401 emit_rr(as, XO_ARITH(XOg_XOR), r, r);
402 } else {
403 MCode *p = as->mcp;
404 *(int32_t *)(p-4) = i;
405 p[-5] = (MCode)(XI_MOVri+(r&7));
406 p -= 5;
407 REXRB(p, 0, r);
408 as->mcp = p;
409 }
410}
411
412/* mov r, addr */
413#define emit_loada(as, r, addr) \
414 emit_loadi(as, (r), ptr2addr((addr)))
415
416#if LJ_64
417/* mov r, imm64 or shorter 32 bit extended load. */
418static void emit_loadu64(ASMState *as, Reg r, uint64_t u64)
419{
420 if (checku32(u64)) { /* 32 bit load clears upper 32 bits. */
421 emit_loadi(as, r, (int32_t)u64);
422 } else if (checki32((int64_t)u64)) { /* Sign-extended 32 bit load. */
423 MCode *p = as->mcp;
424 *(int32_t *)(p-4) = (int32_t)u64;
425 as->mcp = emit_opm(XO_MOVmi, XM_REG, REX_64, r, p, -4);
426 } else { /* Full-size 64 bit load. */
427 MCode *p = as->mcp;
428 *(uint64_t *)(p-8) = u64;
429 p[-9] = (MCode)(XI_MOVri+(r&7));
430 p[-10] = 0x48 + ((r>>3)&1);
431 p -= 10;
432 as->mcp = p;
433 }
434}
435#endif
436
437/* movsd r, [&tv->n] / xorps r, r */
438static void emit_loadn(ASMState *as, Reg r, cTValue *tv)
439{
440 if (tvispzero(tv)) /* Use xor only for +0. */
441 emit_rr(as, XO_XORPS, r, r);
442 else
443 emit_rma(as, XMM_MOVRM(as), r, &tv->n);
444}
445
446/* -- Emit control-flow instructions -------------------------------------- */
447
448/* Label for short jumps. */
449typedef MCode *MCLabel;
450
451#if LJ_32 && LJ_HASFFI
452/* jmp short target */
453static void emit_sjmp(ASMState *as, MCLabel target)
454{
455 MCode *p = as->mcp;
456 ptrdiff_t delta = target - p;
457 lua_assert(delta == (int8_t)delta);
458 p[-1] = (MCode)(int8_t)delta;
459 p[-2] = XI_JMPs;
460 as->mcp = p - 2;
461}
462#endif
463
464/* jcc short target */
465static void emit_sjcc(ASMState *as, int cc, MCLabel target)
466{
467 MCode *p = as->mcp;
468 ptrdiff_t delta = target - p;
469 lua_assert(delta == (int8_t)delta);
470 p[-1] = (MCode)(int8_t)delta;
471 p[-2] = (MCode)(XI_JCCs+(cc&15));
472 as->mcp = p - 2;
473}
474
475/* jcc short (pending target) */
476static MCLabel emit_sjcc_label(ASMState *as, int cc)
477{
478 MCode *p = as->mcp;
479 p[-1] = 0;
480 p[-2] = (MCode)(XI_JCCs+(cc&15));
481 as->mcp = p - 2;
482 return p;
483}
484
485/* Fixup jcc short target. */
486static void emit_sfixup(ASMState *as, MCLabel source)
487{
488 source[-1] = (MCode)(as->mcp-source);
489}
490
491/* Return label pointing to current PC. */
492#define emit_label(as) ((as)->mcp)
493
494/* Compute relative 32 bit offset for jump and call instructions. */
495static LJ_AINLINE int32_t jmprel(MCode *p, MCode *target)
496{
497 ptrdiff_t delta = target - p;
498 lua_assert(delta == (int32_t)delta);
499 return (int32_t)delta;
500}
501
502/* jcc target */
503static void emit_jcc(ASMState *as, int cc, MCode *target)
504{
505 MCode *p = as->mcp;
506 *(int32_t *)(p-4) = jmprel(p, target);
507 p[-5] = (MCode)(XI_JCCn+(cc&15));
508 p[-6] = 0x0f;
509 as->mcp = p - 6;
510}
511
512/* call target */
513static void emit_call_(ASMState *as, MCode *target)
514{
515 MCode *p = as->mcp;
516#if LJ_64
517 if (target-p != (int32_t)(target-p)) {
518 /* Assumes RID_RET is never an argument to calls and always clobbered. */
519 emit_rr(as, XO_GROUP5, XOg_CALL, RID_RET);
520 emit_loadu64(as, RID_RET, (uint64_t)target);
521 return;
522 }
523#endif
524 *(int32_t *)(p-4) = jmprel(p, target);
525 p[-5] = XI_CALL;
526 as->mcp = p - 5;
527}
528
529#define emit_call(as, f) emit_call_(as, (MCode *)(void *)(f))
530
531/* -- Emit generic operations --------------------------------------------- */
532
533/* Use 64 bit operations to handle 64 bit IR types. */
534#if LJ_64
535#define REX_64IR(ir, r) ((r) + (irt_is64((ir)->t) ? REX_64 : 0))
536#else 137#else
537#define REX_64IR(ir, r) (r) 138#error "Missing instruction emitter for target CPU"
538#endif 139#endif
539 140
540/* Generic move between two regs. */
541static void emit_movrr(ASMState *as, IRIns *ir, Reg dst, Reg src)
542{
543 UNUSED(ir);
544 if (dst < RID_MAX_GPR)
545 emit_rr(as, XO_MOV, REX_64IR(ir, dst), src);
546 else
547 emit_rr(as, XMM_MOVRR(as), dst, src);
548}
549
550/* Generic load of register from stack slot. */
551static void emit_spload(ASMState *as, IRIns *ir, Reg r, int32_t ofs)
552{
553 if (r < RID_MAX_GPR)
554 emit_rmro(as, XO_MOV, REX_64IR(ir, r), RID_ESP, ofs);
555 else
556 emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS, r, RID_ESP, ofs);
557}
558
559/* Generic store of register to stack slot. */
560static void emit_spstore(ASMState *as, IRIns *ir, Reg r, int32_t ofs)
561{
562 if (r < RID_MAX_GPR)
563 emit_rmro(as, XO_MOVto, REX_64IR(ir, r), RID_ESP, ofs);
564 else
565 emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSDto : XO_MOVSSto, r, RID_ESP, ofs);
566}
567
568/* Add offset to pointer. */
569static void emit_addptr(ASMState *as, Reg r, int32_t ofs)
570{
571 if (ofs) {
572 if ((as->flags & JIT_F_LEA_AGU))
573 emit_rmro(as, XO_LEA, r, r, ofs);
574 else
575 emit_gri(as, XG_ARITHi(XOg_ADD), r, ofs);
576 }
577}
578
579#define emit_spsub(as, ofs) emit_addptr(as, RID_ESP|REX_64, -(ofs))
580
581/* Prefer rematerialization of BASE/L from global_State over spills. */
582#define emit_canremat(ref) ((ref) <= REF_BASE)
583
584/* -- Register allocator debugging ---------------------------------------- */ 141/* -- Register allocator debugging ---------------------------------------- */
585 142
586/* #define LUAJIT_DEBUG_RA */ 143/* #define LUAJIT_DEBUG_RA */
@@ -1026,52 +583,7 @@ static void ra_left(ASMState *as, Reg dest, IRRef lref)
1026 } 583 }
1027} 584}
1028 585
1029/* -- Exit stubs ---------------------------------------------------------- */ 586/* -- Snapshot handling --------- ----------------------------------------- */
1030
1031/* Generate an exit stub group at the bottom of the reserved MCode memory. */
1032static MCode *asm_exitstub_gen(ASMState *as, ExitNo group)
1033{
1034 ExitNo i, groupofs = (group*EXITSTUBS_PER_GROUP) & 0xff;
1035 MCode *mxp = as->mcbot;
1036 MCode *mxpstart = mxp;
1037 if (mxp + (2+2)*EXITSTUBS_PER_GROUP+8+5 >= as->mctop)
1038 asm_mclimit(as);
1039 /* Push low byte of exitno for each exit stub. */
1040 *mxp++ = XI_PUSHi8; *mxp++ = (MCode)groupofs;
1041 for (i = 1; i < EXITSTUBS_PER_GROUP; i++) {
1042 *mxp++ = XI_JMPs; *mxp++ = (MCode)((2+2)*(EXITSTUBS_PER_GROUP - i) - 2);
1043 *mxp++ = XI_PUSHi8; *mxp++ = (MCode)(groupofs + i);
1044 }
1045 /* Push the high byte of the exitno for each exit stub group. */
1046 *mxp++ = XI_PUSHi8; *mxp++ = (MCode)((group*EXITSTUBS_PER_GROUP)>>8);
1047 /* Store DISPATCH at original stack slot 0. Account for the two push ops. */
1048 *mxp++ = XI_MOVmi;
1049 *mxp++ = MODRM(XM_OFS8, 0, RID_ESP);
1050 *mxp++ = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
1051 *mxp++ = 2*sizeof(void *);
1052 *(int32_t *)mxp = ptr2addr(J2GG(as->J)->dispatch); mxp += 4;
1053 /* Jump to exit handler which fills in the ExitState. */
1054 *mxp++ = XI_JMP; mxp += 4;
1055 *((int32_t *)(mxp-4)) = jmprel(mxp, (MCode *)(void *)lj_vm_exit_handler);
1056 /* Commit the code for this group (even if assembly fails later on). */
1057 lj_mcode_commitbot(as->J, mxp);
1058 as->mcbot = mxp;
1059 as->mclim = as->mcbot + MCLIM_REDZONE;
1060 return mxpstart;
1061}
1062
1063/* Setup all needed exit stubs. */
1064static void asm_exitstub_setup(ASMState *as, ExitNo nexits)
1065{
1066 ExitNo i;
1067 if (nexits >= EXITSTUBS_PER_GROUP*LJ_MAX_EXITSTUBGR)
1068 lj_trace_err(as->J, LJ_TRERR_SNAPOV);
1069 for (i = 0; i < (nexits+EXITSTUBS_PER_GROUP-1)/EXITSTUBS_PER_GROUP; i++)
1070 if (as->J->exitstubgroup[i] == NULL)
1071 as->J->exitstubgroup[i] = asm_exitstub_gen(as, i);
1072}
1073
1074/* -- Snapshot and guard handling ----------------------------------------- */
1075 587
1076/* Can we rematerialize a KNUM instead of forcing a spill? */ 588/* Can we rematerialize a KNUM instead of forcing a spill? */
1077static int asm_snap_canremat(ASMState *as) 589static int asm_snap_canremat(ASMState *as)
@@ -1157,451 +669,7 @@ static void asm_snap_prep(ASMState *as)
1157 } 669 }
1158} 670}
1159 671
1160/* Emit conditional branch to exit for guard. 672/* -- Miscellaneous helpers ----------------------------------------------- */
1161** It's important to emit this *after* all registers have been allocated,
1162** because rematerializations may invalidate the flags.
1163*/
1164static void asm_guardcc(ASMState *as, int cc)
1165{
1166 MCode *target = exitstub_addr(as->J, as->snapno);
1167 MCode *p = as->mcp;
1168 if (LJ_UNLIKELY(p == as->invmcp)) {
1169 as->loopinv = 1;
1170 *(int32_t *)(p+1) = jmprel(p+5, target);
1171 target = p;
1172 cc ^= 1;
1173 if (as->realign) {
1174 emit_sjcc(as, cc, target);
1175 return;
1176 }
1177 }
1178 emit_jcc(as, cc, target);
1179}
1180
1181/* -- Memory operand fusion ----------------------------------------------- */
1182
1183/* Limit linear search to this distance. Avoids O(n^2) behavior. */
1184#define CONFLICT_SEARCH_LIM 31
1185
1186/* Check if a reference is a signed 32 bit constant. */
1187static int asm_isk32(ASMState *as, IRRef ref, int32_t *k)
1188{
1189 if (irref_isk(ref)) {
1190 IRIns *ir = IR(ref);
1191 if (ir->o != IR_KINT64) {
1192 *k = ir->i;
1193 return 1;
1194 } else if (checki32((int64_t)ir_kint64(ir)->u64)) {
1195 *k = (int32_t)ir_kint64(ir)->u64;
1196 return 1;
1197 }
1198 }
1199 return 0;
1200}
1201
1202/* Check if there's no conflicting instruction between curins and ref.
1203** Also avoid fusing loads if there are multiple references.
1204*/
1205static int noconflict(ASMState *as, IRRef ref, IROp conflict, int noload)
1206{
1207 IRIns *ir = as->ir;
1208 IRRef i = as->curins;
1209 if (i > ref + CONFLICT_SEARCH_LIM)
1210 return 0; /* Give up, ref is too far away. */
1211 while (--i > ref) {
1212 if (ir[i].o == conflict)
1213 return 0; /* Conflict found. */
1214 else if (!noload && (ir[i].op1 == ref || ir[i].op2 == ref))
1215 return 0;
1216 }
1217 return 1; /* Ok, no conflict. */
1218}
1219
1220/* Fuse array base into memory operand. */
1221static IRRef asm_fuseabase(ASMState *as, IRRef ref)
1222{
1223 IRIns *irb = IR(ref);
1224 as->mrm.ofs = 0;
1225 if (irb->o == IR_FLOAD) {
1226 IRIns *ira = IR(irb->op1);
1227 lua_assert(irb->op2 == IRFL_TAB_ARRAY);
1228 /* We can avoid the FLOAD of t->array for colocated arrays. */
1229 if (ira->o == IR_TNEW && ira->op1 <= LJ_MAX_COLOSIZE &&
1230 noconflict(as, irb->op1, IR_NEWREF, 1)) {
1231 as->mrm.ofs = (int32_t)sizeof(GCtab); /* Ofs to colocated array. */
1232 return irb->op1; /* Table obj. */
1233 }
1234 } else if (irb->o == IR_ADD && irref_isk(irb->op2)) {
1235 /* Fuse base offset (vararg load). */
1236 as->mrm.ofs = IR(irb->op2)->i;
1237 return irb->op1;
1238 }
1239 return ref; /* Otherwise use the given array base. */
1240}
1241
1242/* Fuse array reference into memory operand. */
1243static void asm_fusearef(ASMState *as, IRIns *ir, RegSet allow)
1244{
1245 IRIns *irx;
1246 lua_assert(ir->o == IR_AREF);
1247 as->mrm.base = (uint8_t)ra_alloc1(as, asm_fuseabase(as, ir->op1), allow);
1248 irx = IR(ir->op2);
1249 if (irref_isk(ir->op2)) {
1250 as->mrm.ofs += 8*irx->i;
1251 as->mrm.idx = RID_NONE;
1252 } else {
1253 rset_clear(allow, as->mrm.base);
1254 as->mrm.scale = XM_SCALE8;
1255 /* Fuse a constant ADD (e.g. t[i+1]) into the offset.
1256 ** Doesn't help much without ABCelim, but reduces register pressure.
1257 */
1258 if (!LJ_64 && /* Has bad effects with negative index on x64. */
1259 mayfuse(as, ir->op2) && ra_noreg(irx->r) &&
1260 irx->o == IR_ADD && irref_isk(irx->op2)) {
1261 as->mrm.ofs += 8*IR(irx->op2)->i;
1262 as->mrm.idx = (uint8_t)ra_alloc1(as, irx->op1, allow);
1263 } else {
1264 as->mrm.idx = (uint8_t)ra_alloc1(as, ir->op2, allow);
1265 }
1266 }
1267}
1268
1269/* Fuse array/hash/upvalue reference into memory operand.
1270** Caveat: this may allocate GPRs for the base/idx registers. Be sure to
1271** pass the final allow mask, excluding any GPRs used for other inputs.
1272** In particular: 2-operand GPR instructions need to call ra_dest() first!
1273*/
1274static void asm_fuseahuref(ASMState *as, IRRef ref, RegSet allow)
1275{
1276 IRIns *ir = IR(ref);
1277 if (ra_noreg(ir->r)) {
1278 switch ((IROp)ir->o) {
1279 case IR_AREF:
1280 if (mayfuse(as, ref)) {
1281 asm_fusearef(as, ir, allow);
1282 return;
1283 }
1284 break;
1285 case IR_HREFK:
1286 if (mayfuse(as, ref)) {
1287 as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow);
1288 as->mrm.ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node));
1289 as->mrm.idx = RID_NONE;
1290 return;
1291 }
1292 break;
1293 case IR_UREFC:
1294 if (irref_isk(ir->op1)) {
1295 GCfunc *fn = ir_kfunc(IR(ir->op1));
1296 GCupval *uv = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv;
1297 as->mrm.ofs = ptr2addr(&uv->tv);
1298 as->mrm.base = as->mrm.idx = RID_NONE;
1299 return;
1300 }
1301 break;
1302 default:
1303 lua_assert(ir->o == IR_HREF || ir->o == IR_NEWREF || ir->o == IR_UREFO);
1304 break;
1305 }
1306 }
1307 as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow);
1308 as->mrm.ofs = 0;
1309 as->mrm.idx = RID_NONE;
1310}
1311
1312/* Fuse FLOAD/FREF reference into memory operand. */
1313static void asm_fusefref(ASMState *as, IRIns *ir, RegSet allow)
1314{
1315 lua_assert(ir->o == IR_FLOAD || ir->o == IR_FREF);
1316 as->mrm.ofs = field_ofs[ir->op2];
1317 as->mrm.idx = RID_NONE;
1318 if (irref_isk(ir->op1)) {
1319 as->mrm.ofs += IR(ir->op1)->i;
1320 as->mrm.base = RID_NONE;
1321 } else {
1322 as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow);
1323 }
1324}
1325
1326/* Fuse string reference into memory operand. */
1327static void asm_fusestrref(ASMState *as, IRIns *ir, RegSet allow)
1328{
1329 IRIns *irr;
1330 lua_assert(ir->o == IR_STRREF);
1331 as->mrm.base = as->mrm.idx = RID_NONE;
1332 as->mrm.scale = XM_SCALE1;
1333 as->mrm.ofs = sizeof(GCstr);
1334 if (irref_isk(ir->op1)) {
1335 as->mrm.ofs += IR(ir->op1)->i;
1336 } else {
1337 Reg r = ra_alloc1(as, ir->op1, allow);
1338 rset_clear(allow, r);
1339 as->mrm.base = (uint8_t)r;
1340 }
1341 irr = IR(ir->op2);
1342 if (irref_isk(ir->op2)) {
1343 as->mrm.ofs += irr->i;
1344 } else {
1345 Reg r;
1346 /* Fuse a constant add into the offset, e.g. string.sub(s, i+10). */
1347 if (!LJ_64 && /* Has bad effects with negative index on x64. */
1348 mayfuse(as, ir->op2) && irr->o == IR_ADD && irref_isk(irr->op2)) {
1349 as->mrm.ofs += IR(irr->op2)->i;
1350 r = ra_alloc1(as, irr->op1, allow);
1351 } else {
1352 r = ra_alloc1(as, ir->op2, allow);
1353 }
1354 if (as->mrm.base == RID_NONE)
1355 as->mrm.base = (uint8_t)r;
1356 else
1357 as->mrm.idx = (uint8_t)r;
1358 }
1359}
1360
1361static void asm_fusexref(ASMState *as, IRRef ref, RegSet allow)
1362{
1363 IRIns *ir = IR(ref);
1364 as->mrm.idx = RID_NONE;
1365 if (ir->o == IR_KPTR || ir->o == IR_KKPTR) {
1366 as->mrm.ofs = ir->i;
1367 as->mrm.base = RID_NONE;
1368 } else if (ir->o == IR_STRREF) {
1369 asm_fusestrref(as, ir, allow);
1370 } else {
1371 as->mrm.ofs = 0;
1372 if (canfuse(as, ir) && ir->o == IR_ADD && ra_noreg(ir->r)) {
1373 /* Gather (base+idx*sz)+ofs as emitted by cdata ptr/array indexing. */
1374 IRIns *irx;
1375 IRRef idx;
1376 Reg r;
1377 if (asm_isk32(as, ir->op2, &as->mrm.ofs)) { /* Recognize x+ofs. */
1378 ref = ir->op1;
1379 ir = IR(ref);
1380 if (!(ir->o == IR_ADD && canfuse(as, ir) && ra_noreg(ir->r)))
1381 goto noadd;
1382 }
1383 as->mrm.scale = XM_SCALE1;
1384 idx = ir->op1;
1385 ref = ir->op2;
1386 irx = IR(idx);
1387 if (!(irx->o == IR_BSHL || irx->o == IR_ADD)) { /* Try other operand. */
1388 idx = ir->op2;
1389 ref = ir->op1;
1390 irx = IR(idx);
1391 }
1392 if (canfuse(as, irx) && ra_noreg(irx->r)) {
1393 if (irx->o == IR_BSHL && irref_isk(irx->op2) && IR(irx->op2)->i <= 3) {
1394 /* Recognize idx<<b with b = 0-3, corresponding to sz = (1),2,4,8. */
1395 idx = irx->op1;
1396 as->mrm.scale = (uint8_t)(IR(irx->op2)->i << 6);
1397 } else if (irx->o == IR_ADD && irx->op1 == irx->op2) {
1398 /* FOLD does idx*2 ==> idx<<1 ==> idx+idx. */
1399 idx = irx->op1;
1400 as->mrm.scale = XM_SCALE2;
1401 }
1402 }
1403 r = ra_alloc1(as, idx, allow);
1404 rset_clear(allow, r);
1405 as->mrm.idx = (uint8_t)r;
1406 }
1407 noadd:
1408 as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow);
1409 }
1410}
1411
1412/* Fuse load into memory operand. */
1413static Reg asm_fuseload(ASMState *as, IRRef ref, RegSet allow)
1414{
1415 IRIns *ir = IR(ref);
1416 if (ra_hasreg(ir->r)) {
1417 if (allow != RSET_EMPTY) { /* Fast path. */
1418 ra_noweak(as, ir->r);
1419 return ir->r;
1420 }
1421 fusespill:
1422 /* Force a spill if only memory operands are allowed (asm_x87load). */
1423 as->mrm.base = RID_ESP;
1424 as->mrm.ofs = ra_spill(as, ir);
1425 as->mrm.idx = RID_NONE;
1426 return RID_MRM;
1427 }
1428 if (ir->o == IR_KNUM) {
1429 RegSet avail = as->freeset & ~as->modset & RSET_FPR;
1430 lua_assert(allow != RSET_EMPTY);
1431 if (!(avail & (avail-1))) { /* Fuse if less than two regs available. */
1432 as->mrm.ofs = ptr2addr(ir_knum(ir));
1433 as->mrm.base = as->mrm.idx = RID_NONE;
1434 return RID_MRM;
1435 }
1436 } else if (mayfuse(as, ref)) {
1437 RegSet xallow = (allow & RSET_GPR) ? allow : RSET_GPR;
1438 if (ir->o == IR_SLOAD) {
1439 if (!(ir->op2 & (IRSLOAD_PARENT|IRSLOAD_CONVERT)) &&
1440 noconflict(as, ref, IR_RETF, 0)) {
1441 as->mrm.base = (uint8_t)ra_alloc1(as, REF_BASE, xallow);
1442 as->mrm.ofs = 8*((int32_t)ir->op1-1) + ((ir->op2&IRSLOAD_FRAME)?4:0);
1443 as->mrm.idx = RID_NONE;
1444 return RID_MRM;
1445 }
1446 } else if (ir->o == IR_FLOAD) {
1447 /* Generic fusion is only ok for 32 bit operand (but see asm_comp). */
1448 if ((irt_isint(ir->t) || irt_isaddr(ir->t)) &&
1449 noconflict(as, ref, IR_FSTORE, 0)) {
1450 asm_fusefref(as, ir, xallow);
1451 return RID_MRM;
1452 }
1453 } else if (ir->o == IR_ALOAD || ir->o == IR_HLOAD || ir->o == IR_ULOAD) {
1454 if (noconflict(as, ref, ir->o + IRDELTA_L2S, 0)) {
1455 asm_fuseahuref(as, ir->op1, xallow);
1456 return RID_MRM;
1457 }
1458 } else if (ir->o == IR_XLOAD) {
1459 /* Generic fusion is not ok for 8/16 bit operands (but see asm_comp).
1460 ** Fusing unaligned memory operands is ok on x86 (except for SIMD types).
1461 */
1462 if ((!irt_typerange(ir->t, IRT_I8, IRT_U16)) &&
1463 noconflict(as, ref, IR_XSTORE, 0)) {
1464 asm_fusexref(as, ir->op1, xallow);
1465 return RID_MRM;
1466 }
1467 } else if (ir->o == IR_VLOAD) {
1468 asm_fuseahuref(as, ir->op1, xallow);
1469 return RID_MRM;
1470 }
1471 }
1472 if (!(as->freeset & allow) &&
1473 (allow == RSET_EMPTY || ra_hasspill(ir->s) || iscrossref(as, ref)))
1474 goto fusespill;
1475 return ra_allocref(as, ref, allow);
1476}
1477
1478/* -- Calls --------------------------------------------------------------- */
1479
1480/* Generate a call to a C function. */
1481static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args)
1482{
1483 uint32_t n, nargs = CCI_NARGS(ci);
1484 int32_t ofs = STACKARG_OFS;
1485 uint32_t gprs = REGARG_GPRS;
1486#if LJ_64
1487 Reg fpr = REGARG_FIRSTFPR;
1488#endif
1489 lua_assert(!(nargs > 2 && (ci->flags&CCI_FASTCALL))); /* Avoid stack adj. */
1490 if ((void *)ci->func)
1491 emit_call(as, ci->func);
1492 for (n = 0; n < nargs; n++) { /* Setup args. */
1493 IRRef ref = args[n];
1494 IRIns *ir = IR(ref);
1495 Reg r;
1496#if LJ_64 && LJ_ABI_WIN
1497 /* Windows/x64 argument registers are strictly positional. */
1498 r = irt_isfp(ir->t) ? (fpr <= REGARG_LASTFPR ? fpr : 0) : (gprs & 31);
1499 fpr++; gprs >>= 5;
1500#elif LJ_64
1501 /* POSIX/x64 argument registers are used in order of appearance. */
1502 if (irt_isfp(ir->t)) {
1503 r = fpr <= REGARG_LASTFPR ? fpr : 0; fpr++;
1504 } else {
1505 r = gprs & 31; gprs >>= 5;
1506 }
1507#else
1508 if (irt_isfp(ir->t) || !(ci->flags & CCI_FASTCALL)) {
1509 r = 0;
1510 } else {
1511 r = gprs & 31; gprs >>= 5;
1512 }
1513#endif
1514 if (r) { /* Argument is in a register. */
1515 if (r < RID_MAX_GPR && ref < ASMREF_TMP1) {
1516#if LJ_64
1517 if (ir->o == IR_KINT64)
1518 emit_loadu64(as, r, ir_kint64(ir)->u64);
1519 else
1520#endif
1521 emit_loadi(as, r, ir->i);
1522 } else {
1523 lua_assert(rset_test(as->freeset, r)); /* Must have been evicted. */
1524 if (ra_hasreg(ir->r)) {
1525 ra_noweak(as, ir->r);
1526 emit_movrr(as, ir, r, ir->r);
1527 } else {
1528 ra_allocref(as, ref, RID2RSET(r));
1529 }
1530 }
1531 } else if (irt_isfp(ir->t)) { /* FP argument is on stack. */
1532 lua_assert(!(irt_isfloat(ir->t) && irref_isk(ref))); /* No float k. */
1533 if (LJ_32 && (ofs & 4) && irref_isk(ref)) {
1534 /* Split stores for unaligned FP consts. */
1535 emit_movmroi(as, RID_ESP, ofs, (int32_t)ir_knum(ir)->u32.lo);
1536 emit_movmroi(as, RID_ESP, ofs+4, (int32_t)ir_knum(ir)->u32.hi);
1537 } else {
1538 r = ra_alloc1(as, ref, RSET_FPR);
1539 emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSDto : XO_MOVSSto,
1540 r, RID_ESP, ofs);
1541 }
1542 ofs += (LJ_32 && irt_isfloat(ir->t)) ? 4 : 8;
1543 } else { /* Non-FP argument is on stack. */
1544 if (LJ_32 && ref < ASMREF_TMP1) {
1545 emit_movmroi(as, RID_ESP, ofs, ir->i);
1546 } else {
1547 r = ra_alloc1(as, ref, RSET_GPR);
1548 emit_movtomro(as, REX_64IR(ir, r), RID_ESP, ofs);
1549 }
1550 ofs += sizeof(intptr_t);
1551 }
1552 }
1553}
1554
1555/* Setup result reg/sp for call. Evict scratch regs. */
1556static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci)
1557{
1558 RegSet drop = RSET_SCRATCH;
1559 if ((ci->flags & CCI_NOFPRCLOBBER))
1560 drop &= ~RSET_FPR;
1561 if (ra_hasreg(ir->r))
1562 rset_clear(drop, ir->r); /* Dest reg handled below. */
1563 ra_evictset(as, drop); /* Evictions must be performed first. */
1564 if (ra_used(ir)) {
1565 if (irt_isfp(ir->t)) {
1566 int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
1567#if LJ_64
1568 if ((ci->flags & CCI_CASTU64)) {
1569 Reg dest = ir->r;
1570 if (ra_hasreg(dest)) {
1571 ra_free(as, dest);
1572 ra_modified(as, dest);
1573 emit_rr(as, XO_MOVD, dest|REX_64, RID_RET); /* Really MOVQ. */
1574 } else {
1575 emit_movtomro(as, RID_RET|REX_64, RID_ESP, ofs);
1576 }
1577 } else {
1578 ra_destreg(as, ir, RID_FPRET);
1579 }
1580#else
1581 /* Number result is in x87 st0 for x86 calling convention. */
1582 Reg dest = ir->r;
1583 if (ra_hasreg(dest)) {
1584 ra_free(as, dest);
1585 ra_modified(as, dest);
1586 emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS,
1587 dest, RID_ESP, ofs);
1588 }
1589 if ((ci->flags & CCI_CASTU64)) {
1590 emit_movtomro(as, RID_RET, RID_ESP, ofs);
1591 emit_movtomro(as, RID_RETHI, RID_ESP, ofs+4);
1592 } else {
1593 emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd,
1594 irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs);
1595 }
1596#endif
1597 } else {
1598 lua_assert(!irt_ispri(ir->t));
1599 ra_destreg(as, ir, RID_RET);
1600 }
1601 } else if (LJ_32 && irt_isfp(ir->t)) {
1602 emit_x87op(as, XI_FPOP); /* Pop unused result from x87 st0. */
1603 }
1604}
1605 673
1606/* Collect arguments from CALL* and CARG instructions. */ 674/* Collect arguments from CALL* and CARG instructions. */
1607static void asm_collectargs(ASMState *as, IRIns *ir, 675static void asm_collectargs(ASMState *as, IRIns *ir,
@@ -1619,15 +687,6 @@ static void asm_collectargs(ASMState *as, IRIns *ir,
1619 lua_assert(IR(ir->op1)->o != IR_CARG); 687 lua_assert(IR(ir->op1)->o != IR_CARG);
1620} 688}
1621 689
1622static void asm_call(ASMState *as, IRIns *ir)
1623{
1624 IRRef args[CCI_NARGS_MAX];
1625 const CCallInfo *ci = &lj_ir_callinfo[ir->op2];
1626 asm_collectargs(as, ir, ci, args);
1627 asm_setupresult(as, ir, ci);
1628 asm_gencall(as, ci, args);
1629}
1630
1631/* Reconstruct CCallInfo flags for CALLX*. */ 690/* Reconstruct CCallInfo flags for CALLX*. */
1632static uint32_t asm_callx_flags(ASMState *as, IRIns *ir) 691static uint32_t asm_callx_flags(ASMState *as, IRIns *ir)
1633{ 692{
@@ -1641,349 +700,36 @@ static uint32_t asm_callx_flags(ASMState *as, IRIns *ir)
1641 return (nargs | (ir->t.irt << CCI_OTSHIFT)); 700 return (nargs | (ir->t.irt << CCI_OTSHIFT));
1642} 701}
1643 702
1644static void asm_callx(ASMState *as, IRIns *ir) 703/* Get extent of the stack for a snapshot. */
1645{ 704static BCReg asm_stack_extent(ASMState *as, SnapShot *snap, BCReg *ptopslot)
1646 IRRef args[CCI_NARGS_MAX];
1647 CCallInfo ci;
1648 IRIns *irf;
1649 ci.flags = asm_callx_flags(as, ir);
1650 asm_collectargs(as, ir, &ci, args);
1651 asm_setupresult(as, ir, &ci);
1652 irf = IR(ir->op2);
1653 if (LJ_32 && irref_isk(ir->op2)) { /* Call to constant address on x86. */
1654 ci.func = (ASMFunction)(void *)(uintptr_t)(uint32_t)irf->i;
1655 } else {
1656 /* Prefer a non-argument register or RID_RET for indirect calls. */
1657 RegSet allow = (RSET_GPR & ~RSET_SCRATCH)|RID2RSET(RID_RET);
1658 Reg r = ra_alloc1(as, ir->op2, allow);
1659 emit_rr(as, XO_GROUP5, XOg_CALL, r);
1660 ci.func = (ASMFunction)(void *)0;
1661 }
1662 asm_gencall(as, &ci, args);
1663}
1664
1665/* -- Returns ------------------------------------------------------------- */
1666
1667/* Return to lower frame. Guard that it goes to the right spot. */
1668static void asm_retf(ASMState *as, IRIns *ir)
1669{
1670 Reg base = ra_alloc1(as, REF_BASE, RSET_GPR);
1671 void *pc = ir_kptr(IR(ir->op2));
1672 int32_t delta = 1+bc_a(*((const BCIns *)pc - 1));
1673 as->topslot -= (BCReg)delta;
1674 if ((int32_t)as->topslot < 0) as->topslot = 0;
1675 emit_setgl(as, base, jit_base);
1676 emit_addptr(as, base, -8*delta);
1677 asm_guardcc(as, CC_NE);
1678 emit_gmroi(as, XG_ARITHi(XOg_CMP), base, -4, ptr2addr(pc));
1679}
1680
1681/* -- Type conversions ---------------------------------------------------- */
1682
1683static void asm_tointg(ASMState *as, IRIns *ir, Reg left)
1684{
1685 Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left));
1686 Reg dest = ra_dest(as, ir, RSET_GPR);
1687 asm_guardcc(as, CC_P);
1688 asm_guardcc(as, CC_NE);
1689 emit_rr(as, XO_UCOMISD, left, tmp);
1690 emit_rr(as, XO_CVTSI2SD, tmp, dest);
1691 if (!(as->flags & JIT_F_SPLIT_XMM))
1692 emit_rr(as, XO_XORPS, tmp, tmp); /* Avoid partial register stall. */
1693 emit_rr(as, XO_CVTTSD2SI, dest, left);
1694 /* Can't fuse since left is needed twice. */
1695}
1696
1697static void asm_tobit(ASMState *as, IRIns *ir)
1698{
1699 Reg dest = ra_dest(as, ir, RSET_GPR);
1700 Reg tmp = ra_noreg(IR(ir->op1)->r) ?
1701 ra_alloc1(as, ir->op1, RSET_FPR) :
1702 ra_scratch(as, RSET_FPR);
1703 Reg right = asm_fuseload(as, ir->op2, rset_exclude(RSET_FPR, tmp));
1704 emit_rr(as, XO_MOVDto, tmp, dest);
1705 emit_mrm(as, XO_ADDSD, tmp, right);
1706 ra_left(as, tmp, ir->op1);
1707}
1708
1709static void asm_conv(ASMState *as, IRIns *ir)
1710{ 705{
1711 IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK); 706 SnapEntry *map = &as->T->snapmap[snap->mapofs];
1712 int st64 = (st == IRT_I64 || st == IRT_U64 || (LJ_64 && st == IRT_P64)); 707 MSize n, nent = snap->nent;
1713 int stfp = (st == IRT_NUM || st == IRT_FLOAT); 708 BCReg baseslot = 0, topslot = 0;
1714 IRRef lref = ir->op1; 709 /* Must check all frames to find topslot (outer can be larger than inner). */
1715 lua_assert(irt_type(ir->t) != st); 710 for (n = 0; n < nent; n++) {
1716 lua_assert(!(LJ_32 && (irt_isint64(ir->t) || st64))); /* Handled by SPLIT. */ 711 SnapEntry sn = map[n];
1717 if (irt_isfp(ir->t)) { 712 if ((sn & SNAP_FRAME)) {
1718 Reg dest = ra_dest(as, ir, RSET_FPR); 713 IRIns *ir = IR(snap_ref(sn));
1719 if (stfp) { /* FP to FP conversion. */ 714 GCfunc *fn = ir_kfunc(ir);
1720 Reg left = asm_fuseload(as, lref, RSET_FPR); 715 if (isluafunc(fn)) {
1721 emit_mrm(as, st == IRT_NUM ? XO_CVTSD2SS : XO_CVTSS2SD, dest, left); 716 BCReg s = snap_slot(sn);
1722 if (left == dest) return; /* Avoid the XO_XORPS. */ 717 BCReg fs = s + funcproto(fn)->framesize;
1723 } else if (LJ_32 && st == IRT_U32) { /* U32 to FP conversion on x86. */ 718 if (fs > topslot) topslot = fs;
1724 /* number = (2^52+2^51 .. u32) - (2^52+2^51) */ 719 baseslot = s;
1725 cTValue *k = lj_ir_k64_find(as->J, U64x(43380000,00000000));
1726 Reg bias = ra_scratch(as, rset_exclude(RSET_FPR, dest));
1727 if (irt_isfloat(ir->t))
1728 emit_rr(as, XO_CVTSD2SS, dest, dest);
1729 emit_rr(as, XO_SUBSD, dest, bias); /* Subtract 2^52+2^51 bias. */
1730 emit_rr(as, XO_XORPS, dest, bias); /* Merge bias and integer. */
1731 emit_loadn(as, bias, k);
1732 emit_mrm(as, XO_MOVD, dest, asm_fuseload(as, lref, RSET_GPR));
1733 return;
1734 } else { /* Integer to FP conversion. */
1735 Reg left = (LJ_64 && (st == IRT_U32 || st == IRT_U64)) ?
1736 ra_alloc1(as, lref, RSET_GPR) :
1737 asm_fuseload(as, lref, RSET_GPR);
1738 if (LJ_64 && st == IRT_U64) {
1739 MCLabel l_end = emit_label(as);
1740 const void *k = lj_ir_k64_find(as->J, U64x(43f00000,00000000));
1741 emit_rma(as, XO_ADDSD, dest, k); /* Add 2^64 to compensate. */
1742 emit_sjcc(as, CC_NS, l_end);
1743 emit_rr(as, XO_TEST, left|REX_64, left); /* Check if u64 >= 2^63. */
1744 }
1745 emit_mrm(as, irt_isnum(ir->t) ? XO_CVTSI2SD : XO_CVTSI2SS,
1746 dest|((LJ_64 && (st64 || st == IRT_U32)) ? REX_64 : 0), left);
1747 }
1748 if (!(as->flags & JIT_F_SPLIT_XMM))
1749 emit_rr(as, XO_XORPS, dest, dest); /* Avoid partial register stall. */
1750 } else if (stfp) { /* FP to integer conversion. */
1751 if (irt_isguard(ir->t)) {
1752 /* Checked conversions are only supported from number to int. */
1753 lua_assert(irt_isint(ir->t) && st == IRT_NUM);
1754 asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR));
1755 } else {
1756 Reg dest = ra_dest(as, ir, RSET_GPR);
1757 x86Op op = st == IRT_NUM ?
1758 ((ir->op2 & IRCONV_TRUNC) ? XO_CVTTSD2SI : XO_CVTSD2SI) :
1759 ((ir->op2 & IRCONV_TRUNC) ? XO_CVTTSS2SI : XO_CVTSS2SI);
1760 if (LJ_32 && irt_isu32(ir->t)) { /* FP to U32 conversion on x86. */
1761 /* u32 = (int32_t)(number - 2^31) + 2^31 */
1762 Reg tmp = ra_noreg(IR(lref)->r) ? ra_alloc1(as, lref, RSET_FPR) :
1763 ra_scratch(as, RSET_FPR);
1764 emit_gri(as, XG_ARITHi(XOg_ADD), dest, (int32_t)0x80000000);
1765 emit_rr(as, op, dest, tmp);
1766 if (st == IRT_NUM)
1767 emit_rma(as, XO_ADDSD, tmp,
1768 lj_ir_k64_find(as->J, U64x(c1e00000,00000000)));
1769 else
1770 emit_rma(as, XO_ADDSS, tmp,
1771 lj_ir_k64_find(as->J, U64x(00000000,cf000000)));
1772 ra_left(as, tmp, lref);
1773 } else if (LJ_64 && irt_isu64(ir->t)) {
1774 /* For inputs in [2^63,2^64-1] add -2^64 and convert again. */
1775 Reg tmp = ra_noreg(IR(lref)->r) ? ra_alloc1(as, lref, RSET_FPR) :
1776 ra_scratch(as, RSET_FPR);
1777 MCLabel l_end = emit_label(as);
1778 emit_rr(as, op, dest|REX_64, tmp);
1779 if (st == IRT_NUM)
1780 emit_rma(as, XO_ADDSD, tmp,
1781 lj_ir_k64_find(as->J, U64x(c3f00000,00000000)));
1782 else
1783 emit_rma(as, XO_ADDSS, tmp,
1784 lj_ir_k64_find(as->J, U64x(00000000,df800000)));
1785 emit_sjcc(as, CC_NS, l_end);
1786 emit_rr(as, XO_TEST, dest|REX_64, dest); /* Check if dest < 2^63. */
1787 emit_rr(as, op, dest|REX_64, tmp);
1788 ra_left(as, tmp, lref);
1789 } else {
1790 Reg left = asm_fuseload(as, lref, RSET_FPR);
1791 if (LJ_64 && irt_isu32(ir->t))
1792 emit_rr(as, XO_MOV, dest, dest); /* Zero hiword. */
1793 emit_mrm(as, op,
1794 dest|((LJ_64 &&
1795 (irt_is64(ir->t) || irt_isu32(ir->t))) ? REX_64 : 0),
1796 left);
1797 }
1798 }
1799 } else if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */
1800 Reg left, dest = ra_dest(as, ir, RSET_GPR);
1801 RegSet allow = RSET_GPR;
1802 x86Op op;
1803 lua_assert(irt_isint(ir->t) || irt_isu32(ir->t));
1804 if (st == IRT_I8) {
1805 op = XO_MOVSXb; allow = RSET_GPR8; dest |= FORCE_REX;
1806 } else if (st == IRT_U8) {
1807 op = XO_MOVZXb; allow = RSET_GPR8; dest |= FORCE_REX;
1808 } else if (st == IRT_I16) {
1809 op = XO_MOVSXw;
1810 } else {
1811 op = XO_MOVZXw;
1812 }
1813 left = asm_fuseload(as, lref, allow);
1814 /* Add extra MOV if source is already in wrong register. */
1815 if (!LJ_64 && left != RID_MRM && !rset_test(allow, left)) {
1816 Reg tmp = ra_scratch(as, allow);
1817 emit_rr(as, op, dest, tmp);
1818 emit_rr(as, XO_MOV, tmp, left);
1819 } else {
1820 emit_mrm(as, op, dest, left);
1821 }
1822 } else { /* 32/64 bit integer conversions. */
1823 if (LJ_32) { /* Only need to handle 32/32 bit no-op (cast) on x86. */
1824 Reg dest = ra_dest(as, ir, RSET_GPR);
1825 ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
1826 } else if (irt_is64(ir->t)) {
1827 Reg dest = ra_dest(as, ir, RSET_GPR);
1828 if (st64 || !(ir->op2 & IRCONV_SEXT)) {
1829 /* 64/64 bit no-op (cast) or 32 to 64 bit zero extension. */
1830 ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
1831 } else { /* 32 to 64 bit sign extension. */
1832 Reg left = asm_fuseload(as, lref, RSET_GPR);
1833 emit_mrm(as, XO_MOVSXd, dest|REX_64, left);
1834 }
1835 } else {
1836 Reg dest = ra_dest(as, ir, RSET_GPR);
1837 if (st64) {
1838 Reg left = asm_fuseload(as, lref, RSET_GPR);
1839 /* This is either a 32 bit reg/reg mov which zeroes the hiword
1840 ** or a load of the loword from a 64 bit address.
1841 */
1842 emit_mrm(as, XO_MOV, dest, left);
1843 } else { /* 32/32 bit no-op (cast). */
1844 ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
1845 } 720 }
1846 } 721 }
1847 } 722 }
723 *ptopslot = topslot;
724 return baseslot;
1848} 725}
1849 726
1850#if LJ_32 && LJ_HASFFI 727/* Calculate stack adjustment. */
1851/* No SSE conversions to/from 64 bit on x86, so resort to ugly x87 code. */ 728static int32_t asm_stack_adjust(ASMState *as)
1852
1853/* 64 bit integer to FP conversion in 32 bit mode. */
1854static void asm_conv_fp_int64(ASMState *as, IRIns *ir)
1855{
1856 Reg hi = ra_alloc1(as, ir->op1, RSET_GPR);
1857 Reg lo = ra_alloc1(as, (ir-1)->op1, rset_exclude(RSET_GPR, hi));
1858 int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
1859 Reg dest = ir->r;
1860 if (ra_hasreg(dest)) {
1861 ra_free(as, dest);
1862 ra_modified(as, dest);
1863 emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS,
1864 dest, RID_ESP, ofs);
1865 }
1866 emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd,
1867 irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs);
1868 if (((ir-1)->op2 & IRCONV_SRCMASK) == IRT_U64) {
1869 /* For inputs in [2^63,2^64-1] add 2^64 to compensate. */
1870 MCLabel l_end = emit_label(as);
1871 emit_rma(as, XO_FADDq, XOg_FADDq,
1872 lj_ir_k64_find(as->J, U64x(43f00000,00000000)));
1873 emit_sjcc(as, CC_NS, l_end);
1874 emit_rr(as, XO_TEST, hi, hi); /* Check if u64 >= 2^63. */
1875 } else {
1876 lua_assert(((ir-1)->op2 & IRCONV_SRCMASK) == IRT_I64);
1877 }
1878 emit_rmro(as, XO_FILDq, XOg_FILDq, RID_ESP, 0);
1879 /* NYI: Avoid narrow-to-wide store-to-load forwarding stall. */
1880 emit_rmro(as, XO_MOVto, hi, RID_ESP, 4);
1881 emit_rmro(as, XO_MOVto, lo, RID_ESP, 0);
1882}
1883
1884/* FP to 64 bit integer conversion in 32 bit mode. */
1885static void asm_conv_int64_fp(ASMState *as, IRIns *ir)
1886{
1887 IRType st = (IRType)((ir-1)->op2 & IRCONV_SRCMASK);
1888 IRType dt = (((ir-1)->op2 & IRCONV_DSTMASK) >> IRCONV_DSH);
1889 Reg lo, hi;
1890 lua_assert(st == IRT_NUM || st == IRT_FLOAT);
1891 lua_assert(dt == IRT_I64 || dt == IRT_U64);
1892 lua_assert(((ir-1)->op2 & IRCONV_TRUNC));
1893 hi = ra_dest(as, ir, RSET_GPR);
1894 lo = ra_dest(as, ir-1, rset_exclude(RSET_GPR, hi));
1895 if (ra_used(ir-1)) emit_rmro(as, XO_MOV, lo, RID_ESP, 0);
1896 /* NYI: Avoid wide-to-narrow store-to-load forwarding stall. */
1897 if (!(as->flags & JIT_F_SSE3)) { /* Set FPU rounding mode to default. */
1898 emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 4);
1899 emit_rmro(as, XO_MOVto, lo, RID_ESP, 4);
1900 emit_gri(as, XG_ARITHi(XOg_AND), lo, 0xf3ff);
1901 }
1902 if (dt == IRT_U64) {
1903 /* For inputs in [2^63,2^64-1] add -2^64 and convert again. */
1904 MCLabel l_pop, l_end = emit_label(as);
1905 emit_x87op(as, XI_FPOP);
1906 l_pop = emit_label(as);
1907 emit_sjmp(as, l_end);
1908 emit_rmro(as, XO_MOV, hi, RID_ESP, 4);
1909 if ((as->flags & JIT_F_SSE3))
1910 emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0);
1911 else
1912 emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0);
1913 emit_rma(as, XO_FADDq, XOg_FADDq,
1914 lj_ir_k64_find(as->J, U64x(c3f00000,00000000)));
1915 emit_sjcc(as, CC_NS, l_pop);
1916 emit_rr(as, XO_TEST, hi, hi); /* Check if out-of-range (2^63). */
1917 }
1918 emit_rmro(as, XO_MOV, hi, RID_ESP, 4);
1919 if ((as->flags & JIT_F_SSE3)) { /* Truncation is easy with SSE3. */
1920 emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0);
1921 } else { /* Otherwise set FPU rounding mode to truncate before the store. */
1922 emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0);
1923 emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 0);
1924 emit_rmro(as, XO_MOVtow, lo, RID_ESP, 0);
1925 emit_rmro(as, XO_ARITHw(XOg_OR), lo, RID_ESP, 0);
1926 emit_loadi(as, lo, 0xc00);
1927 emit_rmro(as, XO_FNSTCW, XOg_FNSTCW, RID_ESP, 0);
1928 }
1929 if (dt == IRT_U64)
1930 emit_x87op(as, XI_FDUP);
1931 emit_mrm(as, st == IRT_NUM ? XO_FLDq : XO_FLDd,
1932 st == IRT_NUM ? XOg_FLDq: XOg_FLDd,
1933 asm_fuseload(as, ir->op1, RSET_EMPTY));
1934}
1935#endif
1936
1937static void asm_strto(ASMState *as, IRIns *ir)
1938{
1939 /* Force a spill slot for the destination register (if any). */
1940 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_tonum];
1941 IRRef args[2];
1942 RegSet drop = RSET_SCRATCH;
1943 if ((drop & RSET_FPR) != RSET_FPR && ra_hasreg(ir->r))
1944 rset_set(drop, ir->r); /* WIN64 doesn't spill all FPRs. */
1945 ra_evictset(as, drop);
1946 asm_guardcc(as, CC_E);
1947 emit_rr(as, XO_TEST, RID_RET, RID_RET); /* Test return status. */
1948 args[0] = ir->op1; /* GCstr *str */
1949 args[1] = ASMREF_TMP1; /* TValue *n */
1950 asm_gencall(as, ci, args);
1951 /* Store the result to the spill slot or temp slots. */
1952 emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64,
1953 RID_ESP, sps_scale(ir->s));
1954}
1955
1956static void asm_tostr(ASMState *as, IRIns *ir)
1957{
1958 IRIns *irl = IR(ir->op1);
1959 IRRef args[2];
1960 args[0] = ASMREF_L;
1961 as->gcsteps++;
1962 if (irt_isnum(irl->t)) {
1963 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromnum];
1964 args[1] = ASMREF_TMP1; /* const lua_Number * */
1965 asm_setupresult(as, ir, ci); /* GCstr * */
1966 asm_gencall(as, ci, args);
1967 emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64,
1968 RID_ESP, ra_spill(as, irl));
1969 } else {
1970 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromint];
1971 args[1] = ir->op1; /* int32_t k */
1972 asm_setupresult(as, ir, ci); /* GCstr * */
1973 asm_gencall(as, ci, args);
1974 }
1975}
1976
1977/* -- Memory references --------------------------------------------------- */
1978
1979static void asm_aref(ASMState *as, IRIns *ir)
1980{ 729{
1981 Reg dest = ra_dest(as, ir, RSET_GPR); 730 if (as->evenspill <= SPS_FIXED)
1982 asm_fusearef(as, ir, RSET_GPR); 731 return 0;
1983 if (!(as->mrm.idx == RID_NONE && as->mrm.ofs == 0)) 732 return sps_scale((as->evenspill - SPS_FIXED + 3) & ~3);
1984 emit_mrm(as, XO_LEA, dest, RID_MRM);
1985 else if (as->mrm.base != dest)
1986 emit_rr(as, XO_MOV, dest, as->mrm.base);
1987} 733}
1988 734
1989/* Must match with hash*() in lj_tab.c. */ 735/* Must match with hash*() in lj_tab.c. */
@@ -2006,536 +752,11 @@ static uint32_t ir_khash(IRIns *ir)
2006 return hashrot(lo, hi); 752 return hashrot(lo, hi);
2007} 753}
2008 754
2009/* Merge NE(HREF, niltv) check. */
2010static MCode *merge_href_niltv(ASMState *as, IRIns *ir)
2011{
2012 /* Assumes nothing else generates NE of HREF. */
2013 if ((ir[1].o == IR_NE || ir[1].o == IR_EQ) && ir[1].op1 == as->curins &&
2014 ra_hasreg(ir->r)) {
2015 MCode *p = as->mcp;
2016 p += (LJ_64 && *p != XI_ARITHi) ? 7+6 : 6+6;
2017 /* Ensure no loop branch inversion happened. */
2018 if (p[-6] == 0x0f && p[-5] == XI_JCCn+(CC_NE^(ir[1].o & 1))) {
2019 as->mcp = p; /* Kill cmp reg, imm32 + jz exit. */
2020 return p + *(int32_t *)(p-4); /* Return exit address. */
2021 }
2022 }
2023 return NULL;
2024}
2025
2026/* Inlined hash lookup. Specialized for key type and for const keys.
2027** The equivalent C code is:
2028** Node *n = hashkey(t, key);
2029** do {
2030** if (lj_obj_equal(&n->key, key)) return &n->val;
2031** } while ((n = nextnode(n)));
2032** return niltv(L);
2033*/
2034static void asm_href(ASMState *as, IRIns *ir)
2035{
2036 MCode *nilexit = merge_href_niltv(as, ir); /* Do this before any restores. */
2037 RegSet allow = RSET_GPR;
2038 Reg dest = ra_dest(as, ir, allow);
2039 Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest));
2040 Reg key = RID_NONE, tmp = RID_NONE;
2041 IRIns *irkey = IR(ir->op2);
2042 int isk = irref_isk(ir->op2);
2043 IRType1 kt = irkey->t;
2044 uint32_t khash;
2045 MCLabel l_end, l_loop, l_next;
2046
2047 if (!isk) {
2048 rset_clear(allow, tab);
2049 key = ra_alloc1(as, ir->op2, irt_isnum(kt) ? RSET_FPR : allow);
2050 if (!irt_isstr(kt))
2051 tmp = ra_scratch(as, rset_exclude(allow, key));
2052 }
2053
2054 /* Key not found in chain: jump to exit (if merged with NE) or load niltv. */
2055 l_end = emit_label(as);
2056 if (nilexit && ir[1].o == IR_NE) {
2057 emit_jcc(as, CC_E, nilexit); /* XI_JMP is not found by lj_asm_patchexit. */
2058 nilexit = NULL;
2059 } else {
2060 emit_loada(as, dest, niltvg(J2G(as->J)));
2061 }
2062
2063 /* Follow hash chain until the end. */
2064 l_loop = emit_sjcc_label(as, CC_NZ);
2065 emit_rr(as, XO_TEST, dest, dest);
2066 emit_rmro(as, XO_MOV, dest, dest, offsetof(Node, next));
2067 l_next = emit_label(as);
2068
2069 /* Type and value comparison. */
2070 if (nilexit)
2071 emit_jcc(as, CC_E, nilexit);
2072 else
2073 emit_sjcc(as, CC_E, l_end);
2074 if (irt_isnum(kt)) {
2075 if (isk) {
2076 /* Assumes -0.0 is already canonicalized to +0.0. */
2077 emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.lo),
2078 (int32_t)ir_knum(irkey)->u32.lo);
2079 emit_sjcc(as, CC_NE, l_next);
2080 emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.hi),
2081 (int32_t)ir_knum(irkey)->u32.hi);
2082 } else {
2083 emit_sjcc(as, CC_P, l_next);
2084 emit_rmro(as, XO_UCOMISD, key, dest, offsetof(Node, key.n));
2085 emit_sjcc(as, CC_AE, l_next);
2086 /* The type check avoids NaN penalties and complaints from Valgrind. */
2087#if LJ_64
2088 emit_u32(as, LJ_TISNUM);
2089 emit_rmro(as, XO_ARITHi, XOg_CMP, dest, offsetof(Node, key.it));
2090#else
2091 emit_i8(as, LJ_TISNUM);
2092 emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it));
2093#endif
2094 }
2095#if LJ_64
2096 } else if (irt_islightud(kt)) {
2097 emit_rmro(as, XO_CMP, key|REX_64, dest, offsetof(Node, key.u64));
2098#endif
2099 } else {
2100 if (!irt_ispri(kt)) {
2101 lua_assert(irt_isaddr(kt));
2102 if (isk)
2103 emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.gcr),
2104 ptr2addr(ir_kgc(irkey)));
2105 else
2106 emit_rmro(as, XO_CMP, key, dest, offsetof(Node, key.gcr));
2107 emit_sjcc(as, CC_NE, l_next);
2108 }
2109 lua_assert(!irt_isnil(kt));
2110 emit_i8(as, irt_toitype(kt));
2111 emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it));
2112 }
2113 emit_sfixup(as, l_loop);
2114 checkmclim(as);
2115
2116 /* Load main position relative to tab->node into dest. */
2117 khash = isk ? ir_khash(irkey) : 1;
2118 if (khash == 0) {
2119 emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, node));
2120 } else {
2121 emit_rmro(as, XO_ARITH(XOg_ADD), dest, tab, offsetof(GCtab, node));
2122 if ((as->flags & JIT_F_PREFER_IMUL)) {
2123 emit_i8(as, sizeof(Node));
2124 emit_rr(as, XO_IMULi8, dest, dest);
2125 } else {
2126 emit_shifti(as, XOg_SHL, dest, 3);
2127 emit_rmrxo(as, XO_LEA, dest, dest, dest, XM_SCALE2, 0);
2128 }
2129 if (isk) {
2130 emit_gri(as, XG_ARITHi(XOg_AND), dest, (int32_t)khash);
2131 emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask));
2132 } else if (irt_isstr(kt)) {
2133 emit_rmro(as, XO_ARITH(XOg_AND), dest, key, offsetof(GCstr, hash));
2134 emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask));
2135 } else { /* Must match with hashrot() in lj_tab.c. */
2136 emit_rmro(as, XO_ARITH(XOg_AND), dest, tab, offsetof(GCtab, hmask));
2137 emit_rr(as, XO_ARITH(XOg_SUB), dest, tmp);
2138 emit_shifti(as, XOg_ROL, tmp, HASH_ROT3);
2139 emit_rr(as, XO_ARITH(XOg_XOR), dest, tmp);
2140 emit_shifti(as, XOg_ROL, dest, HASH_ROT2);
2141 emit_rr(as, XO_ARITH(XOg_SUB), tmp, dest);
2142 emit_shifti(as, XOg_ROL, dest, HASH_ROT1);
2143 emit_rr(as, XO_ARITH(XOg_XOR), tmp, dest);
2144 if (irt_isnum(kt)) {
2145 emit_rr(as, XO_ARITH(XOg_ADD), dest, dest);
2146#if LJ_64
2147 emit_shifti(as, XOg_SHR|REX_64, dest, 32);
2148 emit_rr(as, XO_MOV, tmp, dest);
2149 emit_rr(as, XO_MOVDto, key|REX_64, dest);
2150#else
2151 emit_rmro(as, XO_MOV, dest, RID_ESP, ra_spill(as, irkey)+4);
2152 emit_rr(as, XO_MOVDto, key, tmp);
2153#endif
2154 } else {
2155 emit_rr(as, XO_MOV, tmp, key);
2156 emit_rmro(as, XO_LEA, dest, key, HASH_BIAS);
2157 }
2158 }
2159 }
2160}
2161
2162static void asm_hrefk(ASMState *as, IRIns *ir)
2163{
2164 IRIns *kslot = IR(ir->op2);
2165 IRIns *irkey = IR(kslot->op1);
2166 int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node));
2167 Reg dest = ra_used(ir) ? ra_dest(as, ir, RSET_GPR) : RID_NONE;
2168 Reg node = ra_alloc1(as, ir->op1, RSET_GPR);
2169#if !LJ_64
2170 MCLabel l_exit;
2171#endif
2172 lua_assert(ofs % sizeof(Node) == 0);
2173 if (ra_hasreg(dest)) {
2174 if (ofs != 0) {
2175 if (dest == node && !(as->flags & JIT_F_LEA_AGU))
2176 emit_gri(as, XG_ARITHi(XOg_ADD), dest, ofs);
2177 else
2178 emit_rmro(as, XO_LEA, dest, node, ofs);
2179 } else if (dest != node) {
2180 emit_rr(as, XO_MOV, dest, node);
2181 }
2182 }
2183 asm_guardcc(as, CC_NE);
2184#if LJ_64
2185 if (!irt_ispri(irkey->t)) {
2186 Reg key = ra_scratch(as, rset_exclude(RSET_GPR, node));
2187 emit_rmro(as, XO_CMP, key|REX_64, node,
2188 ofs + (int32_t)offsetof(Node, key.u64));
2189 lua_assert(irt_isnum(irkey->t) || irt_isgcv(irkey->t));
2190 /* Assumes -0.0 is already canonicalized to +0.0. */
2191 emit_loadu64(as, key, irt_isnum(irkey->t) ? ir_knum(irkey)->u64 :
2192 ((uint64_t)irt_toitype(irkey->t) << 32) |
2193 (uint64_t)(uint32_t)ptr2addr(ir_kgc(irkey)));
2194 } else {
2195 lua_assert(!irt_isnil(irkey->t));
2196 emit_i8(as, irt_toitype(irkey->t));
2197 emit_rmro(as, XO_ARITHi8, XOg_CMP, node,
2198 ofs + (int32_t)offsetof(Node, key.it));
2199 }
2200#else
2201 l_exit = emit_label(as);
2202 if (irt_isnum(irkey->t)) {
2203 /* Assumes -0.0 is already canonicalized to +0.0. */
2204 emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
2205 ofs + (int32_t)offsetof(Node, key.u32.lo),
2206 (int32_t)ir_knum(irkey)->u32.lo);
2207 emit_sjcc(as, CC_NE, l_exit);
2208 emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
2209 ofs + (int32_t)offsetof(Node, key.u32.hi),
2210 (int32_t)ir_knum(irkey)->u32.hi);
2211 } else {
2212 if (!irt_ispri(irkey->t)) {
2213 lua_assert(irt_isgcv(irkey->t));
2214 emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
2215 ofs + (int32_t)offsetof(Node, key.gcr),
2216 ptr2addr(ir_kgc(irkey)));
2217 emit_sjcc(as, CC_NE, l_exit);
2218 }
2219 lua_assert(!irt_isnil(irkey->t));
2220 emit_i8(as, irt_toitype(irkey->t));
2221 emit_rmro(as, XO_ARITHi8, XOg_CMP, node,
2222 ofs + (int32_t)offsetof(Node, key.it));
2223 }
2224#endif
2225}
2226
2227static void asm_newref(ASMState *as, IRIns *ir)
2228{
2229 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_newkey];
2230 IRRef args[3];
2231 IRIns *irkey;
2232 Reg tmp;
2233 args[0] = ASMREF_L; /* lua_State *L */
2234 args[1] = ir->op1; /* GCtab *t */
2235 args[2] = ASMREF_TMP1; /* cTValue *key */
2236 asm_setupresult(as, ir, ci); /* TValue * */
2237 asm_gencall(as, ci, args);
2238 tmp = ra_releasetmp(as, ASMREF_TMP1);
2239 irkey = IR(ir->op2);
2240 if (irt_isnum(irkey->t)) {
2241 /* For numbers use the constant itself or a spill slot as a TValue. */
2242 if (irref_isk(ir->op2))
2243 emit_loada(as, tmp, ir_knum(irkey));
2244 else
2245 emit_rmro(as, XO_LEA, tmp|REX_64, RID_ESP, ra_spill(as, irkey));
2246 } else {
2247 /* Otherwise use g->tmptv to hold the TValue. */
2248 if (!irref_isk(ir->op2)) {
2249 Reg src = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, tmp));
2250 emit_movtomro(as, REX_64IR(irkey, src), tmp, 0);
2251 } else if (!irt_ispri(irkey->t)) {
2252 emit_movmroi(as, tmp, 0, irkey->i);
2253 }
2254 if (!(LJ_64 && irt_islightud(irkey->t)))
2255 emit_movmroi(as, tmp, 4, irt_toitype(irkey->t));
2256 emit_loada(as, tmp, &J2G(as->J)->tmptv);
2257 }
2258}
2259
2260static void asm_uref(ASMState *as, IRIns *ir)
2261{
2262 /* NYI: Check that UREFO is still open and not aliasing a slot. */
2263 Reg dest = ra_dest(as, ir, RSET_GPR);
2264 if (irref_isk(ir->op1)) {
2265 GCfunc *fn = ir_kfunc(IR(ir->op1));
2266 MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v;
2267 emit_rma(as, XO_MOV, dest, v);
2268 } else {
2269 Reg uv = ra_scratch(as, RSET_GPR);
2270 Reg func = ra_alloc1(as, ir->op1, RSET_GPR);
2271 if (ir->o == IR_UREFC) {
2272 emit_rmro(as, XO_LEA, dest, uv, offsetof(GCupval, tv));
2273 asm_guardcc(as, CC_NE);
2274 emit_i8(as, 1);
2275 emit_rmro(as, XO_ARITHib, XOg_CMP, uv, offsetof(GCupval, closed));
2276 } else {
2277 emit_rmro(as, XO_MOV, dest, uv, offsetof(GCupval, v));
2278 }
2279 emit_rmro(as, XO_MOV, uv, func,
2280 (int32_t)offsetof(GCfuncL, uvptr) + 4*(int32_t)(ir->op2 >> 8));
2281 }
2282}
2283
2284static void asm_fref(ASMState *as, IRIns *ir)
2285{
2286 Reg dest = ra_dest(as, ir, RSET_GPR);
2287 asm_fusefref(as, ir, RSET_GPR);
2288 emit_mrm(as, XO_LEA, dest, RID_MRM);
2289}
2290
2291static void asm_strref(ASMState *as, IRIns *ir)
2292{
2293 Reg dest = ra_dest(as, ir, RSET_GPR);
2294 asm_fusestrref(as, ir, RSET_GPR);
2295 if (as->mrm.base == RID_NONE)
2296 emit_loadi(as, dest, as->mrm.ofs);
2297 else if (as->mrm.base == dest && as->mrm.idx == RID_NONE)
2298 emit_gri(as, XG_ARITHi(XOg_ADD), dest, as->mrm.ofs);
2299 else
2300 emit_mrm(as, XO_LEA, dest, RID_MRM);
2301}
2302
2303/* -- Loads and stores ---------------------------------------------------- */
2304
2305static void asm_fxload(ASMState *as, IRIns *ir)
2306{
2307 Reg dest = ra_dest(as, ir, irt_isnum(ir->t) ? RSET_FPR : RSET_GPR);
2308 x86Op xo;
2309 if (ir->o == IR_FLOAD)
2310 asm_fusefref(as, ir, RSET_GPR);
2311 else
2312 asm_fusexref(as, ir->op1, RSET_GPR);
2313 /* ir->op2 is ignored -- unaligned loads are ok on x86. */
2314 switch (irt_type(ir->t)) {
2315 case IRT_I8: xo = XO_MOVSXb; break;
2316 case IRT_U8: xo = XO_MOVZXb; break;
2317 case IRT_I16: xo = XO_MOVSXw; break;
2318 case IRT_U16: xo = XO_MOVZXw; break;
2319 case IRT_NUM: xo = XMM_MOVRM(as); break;
2320 case IRT_FLOAT: xo = XO_MOVSS; break;
2321 default:
2322 if (LJ_64 && irt_is64(ir->t))
2323 dest |= REX_64;
2324 else
2325 lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t));
2326 xo = XO_MOV;
2327 break;
2328 }
2329 emit_mrm(as, xo, dest, RID_MRM);
2330}
2331
2332static void asm_fxstore(ASMState *as, IRIns *ir)
2333{
2334 RegSet allow = RSET_GPR;
2335 Reg src = RID_NONE, osrc = RID_NONE;
2336 int32_t k = 0;
2337 /* The IRT_I16/IRT_U16 stores should never be simplified for constant
2338 ** values since mov word [mem], imm16 has a length-changing prefix.
2339 */
2340 if (irt_isi16(ir->t) || irt_isu16(ir->t) || irt_isfp(ir->t) ||
2341 !asm_isk32(as, ir->op2, &k)) {
2342 RegSet allow8 = irt_isfp(ir->t) ? RSET_FPR :
2343 (irt_isi8(ir->t) || irt_isu8(ir->t)) ? RSET_GPR8 : RSET_GPR;
2344 src = osrc = ra_alloc1(as, ir->op2, allow8);
2345 if (!LJ_64 && !rset_test(allow8, src)) { /* Already in wrong register. */
2346 rset_clear(allow, osrc);
2347 src = ra_scratch(as, allow8);
2348 }
2349 rset_clear(allow, src);
2350 }
2351 if (ir->o == IR_FSTORE)
2352 asm_fusefref(as, IR(ir->op1), allow);
2353 else
2354 asm_fusexref(as, ir->op1, allow);
2355 /* ir->op2 is ignored -- unaligned stores are ok on x86. */
2356 if (ra_hasreg(src)) {
2357 x86Op xo;
2358 switch (irt_type(ir->t)) {
2359 case IRT_I8: case IRT_U8: xo = XO_MOVtob; src |= FORCE_REX; break;
2360 case IRT_I16: case IRT_U16: xo = XO_MOVtow; break;
2361 case IRT_NUM: xo = XO_MOVSDto; break;
2362 case IRT_FLOAT: xo = XO_MOVSSto; break;
2363#if LJ_64
2364 case IRT_LIGHTUD: lua_assert(0); /* NYI: mask 64 bit lightuserdata. */
2365#endif
2366 default:
2367 if (LJ_64 && irt_is64(ir->t))
2368 src |= REX_64;
2369 else
2370 lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t));
2371 xo = XO_MOVto;
2372 break;
2373 }
2374 emit_mrm(as, xo, src, RID_MRM);
2375 if (!LJ_64 && src != osrc) {
2376 ra_noweak(as, osrc);
2377 emit_rr(as, XO_MOV, src, osrc);
2378 }
2379 } else {
2380 if (irt_isi8(ir->t) || irt_isu8(ir->t)) {
2381 emit_i8(as, k);
2382 emit_mrm(as, XO_MOVmib, 0, RID_MRM);
2383 } else {
2384 lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isu32(ir->t) ||
2385 irt_isaddr(ir->t));
2386 emit_i32(as, k);
2387 emit_mrm(as, XO_MOVmi, REX_64IR(ir, 0), RID_MRM);
2388 }
2389 }
2390}
2391
2392#if LJ_64
2393static Reg asm_load_lightud64(ASMState *as, IRIns *ir, int typecheck)
2394{
2395 if (ra_used(ir) || typecheck) {
2396 Reg dest = ra_dest(as, ir, RSET_GPR);
2397 if (typecheck) {
2398 Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, dest));
2399 asm_guardcc(as, CC_NE);
2400 emit_i8(as, -2);
2401 emit_rr(as, XO_ARITHi8, XOg_CMP, tmp);
2402 emit_shifti(as, XOg_SAR|REX_64, tmp, 47);
2403 emit_rr(as, XO_MOV, tmp|REX_64, dest);
2404 }
2405 return dest;
2406 } else {
2407 return RID_NONE;
2408 }
2409}
2410#endif
2411
2412static void asm_ahuvload(ASMState *as, IRIns *ir)
2413{
2414 lua_assert(irt_isnum(ir->t) || irt_ispri(ir->t) || irt_isaddr(ir->t) ||
2415 (LJ_DUALNUM && irt_isint(ir->t)));
2416#if LJ_64
2417 if (irt_islightud(ir->t)) {
2418 Reg dest = asm_load_lightud64(as, ir, 1);
2419 if (ra_hasreg(dest)) {
2420 asm_fuseahuref(as, ir->op1, RSET_GPR);
2421 emit_mrm(as, XO_MOV, dest|REX_64, RID_MRM);
2422 }
2423 return;
2424 } else
2425#endif
2426 if (ra_used(ir)) {
2427 RegSet allow = irt_isnum(ir->t) ? RSET_FPR : RSET_GPR;
2428 Reg dest = ra_dest(as, ir, allow);
2429 asm_fuseahuref(as, ir->op1, RSET_GPR);
2430 emit_mrm(as, dest < RID_MAX_GPR ? XO_MOV : XMM_MOVRM(as), dest, RID_MRM);
2431 } else {
2432 asm_fuseahuref(as, ir->op1, RSET_GPR);
2433 }
2434 /* Always do the type check, even if the load result is unused. */
2435 as->mrm.ofs += 4;
2436 asm_guardcc(as, irt_isnum(ir->t) ? CC_AE : CC_NE);
2437 if (LJ_64 && irt_type(ir->t) >= IRT_NUM) {
2438 lua_assert(irt_isinteger(ir->t) || irt_isnum(ir->t));
2439 emit_u32(as, LJ_TISNUM);
2440 emit_mrm(as, XO_ARITHi, XOg_CMP, RID_MRM);
2441 } else {
2442 emit_i8(as, irt_toitype(ir->t));
2443 emit_mrm(as, XO_ARITHi8, XOg_CMP, RID_MRM);
2444 }
2445}
2446
2447static void asm_ahustore(ASMState *as, IRIns *ir)
2448{
2449 if (irt_isnum(ir->t)) {
2450 Reg src = ra_alloc1(as, ir->op2, RSET_FPR);
2451 asm_fuseahuref(as, ir->op1, RSET_GPR);
2452 emit_mrm(as, XO_MOVSDto, src, RID_MRM);
2453#if LJ_64
2454 } else if (irt_islightud(ir->t)) {
2455 Reg src = ra_alloc1(as, ir->op2, RSET_GPR);
2456 asm_fuseahuref(as, ir->op1, rset_exclude(RSET_GPR, src));
2457 emit_mrm(as, XO_MOVto, src|REX_64, RID_MRM);
2458#endif
2459 } else {
2460 IRIns *irr = IR(ir->op2);
2461 RegSet allow = RSET_GPR;
2462 Reg src = RID_NONE;
2463 if (!irref_isk(ir->op2)) {
2464 src = ra_alloc1(as, ir->op2, allow);
2465 rset_clear(allow, src);
2466 }
2467 asm_fuseahuref(as, ir->op1, allow);
2468 if (ra_hasreg(src)) {
2469 emit_mrm(as, XO_MOVto, src, RID_MRM);
2470 } else if (!irt_ispri(irr->t)) {
2471 lua_assert(irt_isaddr(ir->t) || (LJ_DUALNUM && irt_isinteger(ir->t)));
2472 emit_i32(as, irr->i);
2473 emit_mrm(as, XO_MOVmi, 0, RID_MRM);
2474 }
2475 as->mrm.ofs += 4;
2476 emit_i32(as, (int32_t)irt_toitype(ir->t));
2477 emit_mrm(as, XO_MOVmi, 0, RID_MRM);
2478 }
2479}
2480
2481static void asm_sload(ASMState *as, IRIns *ir)
2482{
2483 int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 4 : 0);
2484 IRType1 t = ir->t;
2485 Reg base;
2486 lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */
2487 lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK));
2488 lua_assert(LJ_DUALNUM ||
2489 !irt_isint(t) || (ir->op2 & (IRSLOAD_CONVERT|IRSLOAD_FRAME)));
2490 if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) {
2491 Reg left = ra_scratch(as, RSET_FPR);
2492 asm_tointg(as, ir, left); /* Frees dest reg. Do this before base alloc. */
2493 base = ra_alloc1(as, REF_BASE, RSET_GPR);
2494 emit_rmro(as, XMM_MOVRM(as), left, base, ofs);
2495 t.irt = IRT_NUM; /* Continue with a regular number type check. */
2496#if LJ_64
2497 } else if (irt_islightud(t)) {
2498 Reg dest = asm_load_lightud64(as, ir, (ir->op2 & IRSLOAD_TYPECHECK));
2499 if (ra_hasreg(dest)) {
2500 base = ra_alloc1(as, REF_BASE, RSET_GPR);
2501 emit_rmro(as, XO_MOV, dest|REX_64, base, ofs);
2502 }
2503 return;
2504#endif
2505 } else if (ra_used(ir)) {
2506 RegSet allow = irt_isnum(t) ? RSET_FPR : RSET_GPR;
2507 Reg dest = ra_dest(as, ir, allow);
2508 base = ra_alloc1(as, REF_BASE, RSET_GPR);
2509 lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t));
2510 if ((ir->op2 & IRSLOAD_CONVERT)) {
2511 t.irt = irt_isint(t) ? IRT_NUM : IRT_INT; /* Check for original type. */
2512 emit_rmro(as, irt_isint(t) ? XO_CVTSI2SD : XO_CVTSD2SI, dest, base, ofs);
2513 } else if (irt_isnum(t)) {
2514 emit_rmro(as, XMM_MOVRM(as), dest, base, ofs);
2515 } else {
2516 emit_rmro(as, XO_MOV, dest, base, ofs);
2517 }
2518 } else {
2519 if (!(ir->op2 & IRSLOAD_TYPECHECK))
2520 return; /* No type check: avoid base alloc. */
2521 base = ra_alloc1(as, REF_BASE, RSET_GPR);
2522 }
2523 if ((ir->op2 & IRSLOAD_TYPECHECK)) {
2524 /* Need type check, even if the load result is unused. */
2525 asm_guardcc(as, irt_isnum(t) ? CC_AE : CC_NE);
2526 if (LJ_64 && irt_type(t) >= IRT_NUM) {
2527 lua_assert(irt_isinteger(t) || irt_isnum(t));
2528 emit_u32(as, LJ_TISNUM);
2529 emit_rmro(as, XO_ARITHi, XOg_CMP, base, ofs+4);
2530 } else {
2531 emit_i8(as, irt_toitype(t));
2532 emit_rmro(as, XO_ARITHi8, XOg_CMP, base, ofs+4);
2533 }
2534 }
2535}
2536
2537/* -- Allocations --------------------------------------------------------- */ 755/* -- Allocations --------------------------------------------------------- */
2538 756
757static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args);
758static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci);
759
2539static void asm_snew(ASMState *as, IRIns *ir) 760static void asm_snew(ASMState *as, IRIns *ir)
2540{ 761{
2541 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_new]; 762 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_new];
@@ -2571,933 +792,6 @@ static void asm_tdup(ASMState *as, IRIns *ir)
2571 asm_gencall(as, ci, args); 792 asm_gencall(as, ci, args);
2572} 793}
2573 794
2574#if LJ_HASFFI
2575static void asm_cnew(ASMState *as, IRIns *ir)
2576{
2577 CTState *cts = ctype_ctsG(J2G(as->J));
2578 CTypeID typeid = (CTypeID)IR(ir->op1)->i;
2579 CTSize sz = (ir->o == IR_CNEWI || ir->op2 == REF_NIL) ?
2580 lj_ctype_size(cts, typeid) : (CTSize)IR(ir->op2)->i;
2581 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco];
2582 IRRef args[2];
2583 lua_assert(sz != CTSIZE_INVALID);
2584
2585 args[0] = ASMREF_L; /* lua_State *L */
2586 args[1] = ASMREF_TMP1; /* MSize size */
2587 as->gcsteps++;
2588 asm_setupresult(as, ir, ci); /* GCcdata * */
2589
2590 /* Initialize immutable cdata object. */
2591 if (ir->o == IR_CNEWI) {
2592 RegSet allow = (RSET_GPR & ~RSET_SCRATCH);
2593#if LJ_64
2594 Reg r64 = sz == 8 ? REX_64 : 0;
2595 if (irref_isk(ir->op2)) {
2596 IRIns *irk = IR(ir->op2);
2597 uint64_t k = irk->o == IR_KINT64 ? ir_k64(irk)->u64 :
2598 (uint64_t)(uint32_t)irk->i;
2599 if (sz == 4 || checki32((int64_t)k)) {
2600 emit_i32(as, (int32_t)k);
2601 emit_rmro(as, XO_MOVmi, r64, RID_RET, sizeof(GCcdata));
2602 } else {
2603 emit_movtomro(as, RID_ECX + r64, RID_RET, sizeof(GCcdata));
2604 emit_loadu64(as, RID_ECX, k);
2605 }
2606 } else {
2607 Reg r = ra_alloc1(as, ir->op2, allow);
2608 emit_movtomro(as, r + r64, RID_RET, sizeof(GCcdata));
2609 }
2610#else
2611 int32_t ofs = sizeof(GCcdata);
2612 if (LJ_HASFFI && sz == 8) {
2613 ofs += 4; ir++;
2614 lua_assert(ir->o == IR_HIOP);
2615 }
2616 do {
2617 if (irref_isk(ir->op2)) {
2618 emit_movmroi(as, RID_RET, ofs, IR(ir->op2)->i);
2619 } else {
2620 Reg r = ra_alloc1(as, ir->op2, allow);
2621 emit_movtomro(as, r, RID_RET, ofs);
2622 rset_clear(allow, r);
2623 }
2624 if (!LJ_HASFFI || ofs == sizeof(GCcdata)) break;
2625 ofs -= 4; ir--;
2626 } while (1);
2627#endif
2628 lua_assert(sz == 4 || (sz == 8 && (LJ_64 || LJ_HASFFI)));
2629 }
2630
2631 /* Combine initialization of marked, gct and typeid. */
2632 emit_movtomro(as, RID_ECX, RID_RET, offsetof(GCcdata, marked));
2633 emit_gri(as, XG_ARITHi(XOg_OR), RID_ECX,
2634 (int32_t)((~LJ_TCDATA<<8)+(typeid<<16)));
2635 emit_gri(as, XG_ARITHi(XOg_AND), RID_ECX, LJ_GC_WHITES);
2636 emit_opgl(as, XO_MOVZXb, RID_ECX, gc.currentwhite);
2637
2638 asm_gencall(as, ci, args);
2639 emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), (int32_t)(sz+sizeof(GCcdata)));
2640}
2641#else
2642#define asm_cnew(as, ir) ((void)0)
2643#endif
2644
2645/* -- Write barriers ------------------------------------------------------ */
2646
2647static void asm_tbar(ASMState *as, IRIns *ir)
2648{
2649 Reg tab = ra_alloc1(as, ir->op1, RSET_GPR);
2650 Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, tab));
2651 MCLabel l_end = emit_label(as);
2652 emit_movtomro(as, tmp, tab, offsetof(GCtab, gclist));
2653 emit_setgl(as, tab, gc.grayagain);
2654 emit_getgl(as, tmp, gc.grayagain);
2655 emit_i8(as, ~LJ_GC_BLACK);
2656 emit_rmro(as, XO_ARITHib, XOg_AND, tab, offsetof(GCtab, marked));
2657 emit_sjcc(as, CC_Z, l_end);
2658 emit_i8(as, LJ_GC_BLACK);
2659 emit_rmro(as, XO_GROUP3b, XOg_TEST, tab, offsetof(GCtab, marked));
2660}
2661
2662static void asm_obar(ASMState *as, IRIns *ir)
2663{
2664 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv];
2665 IRRef args[2];
2666 MCLabel l_end;
2667 Reg obj;
2668 /* No need for other object barriers (yet). */
2669 lua_assert(IR(ir->op1)->o == IR_UREFC);
2670 ra_evictset(as, RSET_SCRATCH);
2671 l_end = emit_label(as);
2672 args[0] = ASMREF_TMP1; /* global_State *g */
2673 args[1] = ir->op1; /* TValue *tv */
2674 asm_gencall(as, ci, args);
2675 emit_loada(as, ra_releasetmp(as, ASMREF_TMP1), J2G(as->J));
2676 obj = IR(ir->op1)->r;
2677 emit_sjcc(as, CC_Z, l_end);
2678 emit_i8(as, LJ_GC_WHITES);
2679 if (irref_isk(ir->op2)) {
2680 GCobj *vp = ir_kgc(IR(ir->op2));
2681 emit_rma(as, XO_GROUP3b, XOg_TEST, &vp->gch.marked);
2682 } else {
2683 Reg val = ra_alloc1(as, ir->op2, rset_exclude(RSET_SCRATCH&RSET_GPR, obj));
2684 emit_rmro(as, XO_GROUP3b, XOg_TEST, val, (int32_t)offsetof(GChead, marked));
2685 }
2686 emit_sjcc(as, CC_Z, l_end);
2687 emit_i8(as, LJ_GC_BLACK);
2688 emit_rmro(as, XO_GROUP3b, XOg_TEST, obj,
2689 (int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv));
2690}
2691
2692/* -- FP/int arithmetic and logic operations ------------------------------ */
2693
2694/* Load reference onto x87 stack. Force a spill to memory if needed. */
2695static void asm_x87load(ASMState *as, IRRef ref)
2696{
2697 IRIns *ir = IR(ref);
2698 if (ir->o == IR_KNUM) {
2699 cTValue *tv = ir_knum(ir);
2700 if (tvispzero(tv)) /* Use fldz only for +0. */
2701 emit_x87op(as, XI_FLDZ);
2702 else if (tvispone(tv))
2703 emit_x87op(as, XI_FLD1);
2704 else
2705 emit_rma(as, XO_FLDq, XOg_FLDq, tv);
2706 } else if (ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT && !ra_used(ir) &&
2707 !irref_isk(ir->op1) && mayfuse(as, ir->op1)) {
2708 IRIns *iri = IR(ir->op1);
2709 emit_rmro(as, XO_FILDd, XOg_FILDd, RID_ESP, ra_spill(as, iri));
2710 } else {
2711 emit_mrm(as, XO_FLDq, XOg_FLDq, asm_fuseload(as, ref, RSET_EMPTY));
2712 }
2713}
2714
2715/* Try to rejoin pow from EXP2, MUL and LOG2 (if still unsplit). */
2716static int fpmjoin_pow(ASMState *as, IRIns *ir)
2717{
2718 IRIns *irp = IR(ir->op1);
2719 if (irp == ir-1 && irp->o == IR_MUL && !ra_used(irp)) {
2720 IRIns *irpp = IR(irp->op1);
2721 if (irpp == ir-2 && irpp->o == IR_FPMATH &&
2722 irpp->op2 == IRFPM_LOG2 && !ra_used(irpp)) {
2723 /* The modified regs must match with the *.dasc implementation. */
2724 RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM2+1)|RID2RSET(RID_EAX);
2725 IRIns *irx;
2726 if (ra_hasreg(ir->r))
2727 rset_clear(drop, ir->r); /* Dest reg handled below. */
2728 ra_evictset(as, drop);
2729 ra_destreg(as, ir, RID_XMM0);
2730 emit_call(as, lj_vm_pow_sse);
2731 irx = IR(irpp->op1);
2732 if (ra_noreg(irx->r) && ra_gethint(irx->r) == RID_XMM1)
2733 irx->r = RID_INIT; /* Avoid allocating xmm1 for x. */
2734 ra_left(as, RID_XMM0, irpp->op1);
2735 ra_left(as, RID_XMM1, irp->op2);
2736 return 1;
2737 }
2738 }
2739 return 0;
2740}
2741
2742static void asm_fpmath(ASMState *as, IRIns *ir)
2743{
2744 IRFPMathOp fpm = ir->o == IR_FPMATH ? (IRFPMathOp)ir->op2 : IRFPM_OTHER;
2745 if (fpm == IRFPM_SQRT) {
2746 Reg dest = ra_dest(as, ir, RSET_FPR);
2747 Reg left = asm_fuseload(as, ir->op1, RSET_FPR);
2748 emit_mrm(as, XO_SQRTSD, dest, left);
2749 } else if (fpm <= IRFPM_TRUNC) {
2750 if (as->flags & JIT_F_SSE4_1) { /* SSE4.1 has a rounding instruction. */
2751 Reg dest = ra_dest(as, ir, RSET_FPR);
2752 Reg left = asm_fuseload(as, ir->op1, RSET_FPR);
2753 /* ROUNDSD has a 4-byte opcode which doesn't fit in x86Op.
2754 ** Let's pretend it's a 3-byte opcode, and compensate afterwards.
2755 ** This is atrocious, but the alternatives are much worse.
2756 */
2757 /* Round down/up/trunc == 1001/1010/1011. */
2758 emit_i8(as, 0x09 + fpm);
2759 emit_mrm(as, XO_ROUNDSD, dest, left);
2760 if (LJ_64 && as->mcp[1] != (MCode)(XO_ROUNDSD >> 16)) {
2761 as->mcp[0] = as->mcp[1]; as->mcp[1] = 0x0f; /* Swap 0F and REX. */
2762 }
2763 *--as->mcp = 0x66; /* 1st byte of ROUNDSD opcode. */
2764 } else { /* Call helper functions for SSE2 variant. */
2765 /* The modified regs must match with the *.dasc implementation. */
2766 RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM3+1)|RID2RSET(RID_EAX);
2767 if (ra_hasreg(ir->r))
2768 rset_clear(drop, ir->r); /* Dest reg handled below. */
2769 ra_evictset(as, drop);
2770 ra_destreg(as, ir, RID_XMM0);
2771 emit_call(as, fpm == IRFPM_FLOOR ? lj_vm_floor_sse :
2772 fpm == IRFPM_CEIL ? lj_vm_ceil_sse : lj_vm_trunc_sse);
2773 ra_left(as, RID_XMM0, ir->op1);
2774 }
2775 } else if (fpm == IRFPM_EXP2 && fpmjoin_pow(as, ir)) {
2776 /* Rejoined to pow(). */
2777 } else { /* Handle x87 ops. */
2778 int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
2779 Reg dest = ir->r;
2780 if (ra_hasreg(dest)) {
2781 ra_free(as, dest);
2782 ra_modified(as, dest);
2783 emit_rmro(as, XMM_MOVRM(as), dest, RID_ESP, ofs);
2784 }
2785 emit_rmro(as, XO_FSTPq, XOg_FSTPq, RID_ESP, ofs);
2786 switch (fpm) { /* st0 = lj_vm_*(st0) */
2787 case IRFPM_EXP: emit_call(as, lj_vm_exp); break;
2788 case IRFPM_EXP2: emit_call(as, lj_vm_exp2); break;
2789 case IRFPM_SIN: emit_x87op(as, XI_FSIN); break;
2790 case IRFPM_COS: emit_x87op(as, XI_FCOS); break;
2791 case IRFPM_TAN: emit_x87op(as, XI_FPOP); emit_x87op(as, XI_FPTAN); break;
2792 case IRFPM_LOG: case IRFPM_LOG2: case IRFPM_LOG10:
2793 /* Note: the use of fyl2xp1 would be pointless here. When computing
2794 ** log(1.0+eps) the precision is already lost after 1.0 is added.
2795 ** Subtracting 1.0 won't recover it. OTOH math.log1p would make sense.
2796 */
2797 emit_x87op(as, XI_FYL2X); break;
2798 case IRFPM_OTHER:
2799 switch (ir->o) {
2800 case IR_ATAN2:
2801 emit_x87op(as, XI_FPATAN); asm_x87load(as, ir->op2); break;
2802 case IR_LDEXP:
2803 emit_x87op(as, XI_FPOP1); emit_x87op(as, XI_FSCALE); break;
2804 default: lua_assert(0); break;
2805 }
2806 break;
2807 default: lua_assert(0); break;
2808 }
2809 asm_x87load(as, ir->op1);
2810 switch (fpm) {
2811 case IRFPM_LOG: emit_x87op(as, XI_FLDLN2); break;
2812 case IRFPM_LOG2: emit_x87op(as, XI_FLD1); break;
2813 case IRFPM_LOG10: emit_x87op(as, XI_FLDLG2); break;
2814 case IRFPM_OTHER:
2815 if (ir->o == IR_LDEXP) asm_x87load(as, ir->op2);
2816 break;
2817 default: break;
2818 }
2819 }
2820}
2821
2822static void asm_fppowi(ASMState *as, IRIns *ir)
2823{
2824 /* The modified regs must match with the *.dasc implementation. */
2825 RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM1+1)|RID2RSET(RID_EAX);
2826 if (ra_hasreg(ir->r))
2827 rset_clear(drop, ir->r); /* Dest reg handled below. */
2828 ra_evictset(as, drop);
2829 ra_destreg(as, ir, RID_XMM0);
2830 emit_call(as, lj_vm_powi_sse);
2831 ra_left(as, RID_XMM0, ir->op1);
2832 ra_left(as, RID_EAX, ir->op2);
2833}
2834
2835#if LJ_64 && LJ_HASFFI
2836static void asm_arith64(ASMState *as, IRIns *ir, IRCallID id)
2837{
2838 const CCallInfo *ci = &lj_ir_callinfo[id];
2839 IRRef args[2];
2840 args[0] = ir->op1;
2841 args[1] = ir->op2;
2842 asm_setupresult(as, ir, ci);
2843 asm_gencall(as, ci, args);
2844}
2845#endif
2846
2847/* Find out whether swapping operands might be beneficial. */
2848static int swapops(ASMState *as, IRIns *ir)
2849{
2850 IRIns *irl = IR(ir->op1);
2851 IRIns *irr = IR(ir->op2);
2852 lua_assert(ra_noreg(irr->r));
2853 if (!irm_iscomm(lj_ir_mode[ir->o]))
2854 return 0; /* Can't swap non-commutative operations. */
2855 if (irref_isk(ir->op2))
2856 return 0; /* Don't swap constants to the left. */
2857 if (ra_hasreg(irl->r))
2858 return 1; /* Swap if left already has a register. */
2859 if (ra_samehint(ir->r, irr->r))
2860 return 1; /* Swap if dest and right have matching hints. */
2861 if (as->curins > as->loopref) { /* In variant part? */
2862 if (ir->op2 < as->loopref && !irt_isphi(irr->t))
2863 return 0; /* Keep invariants on the right. */
2864 if (ir->op1 < as->loopref && !irt_isphi(irl->t))
2865 return 1; /* Swap invariants to the right. */
2866 }
2867 if (opisfusableload(irl->o))
2868 return 1; /* Swap fusable loads to the right. */
2869 return 0; /* Otherwise don't swap. */
2870}
2871
2872static void asm_fparith(ASMState *as, IRIns *ir, x86Op xo)
2873{
2874 IRRef lref = ir->op1;
2875 IRRef rref = ir->op2;
2876 RegSet allow = RSET_FPR;
2877 Reg dest;
2878 Reg right = IR(rref)->r;
2879 if (ra_hasreg(right)) {
2880 rset_clear(allow, right);
2881 ra_noweak(as, right);
2882 }
2883 dest = ra_dest(as, ir, allow);
2884 if (lref == rref) {
2885 right = dest;
2886 } else if (ra_noreg(right)) {
2887 if (swapops(as, ir)) {
2888 IRRef tmp = lref; lref = rref; rref = tmp;
2889 }
2890 right = asm_fuseload(as, rref, rset_clear(allow, dest));
2891 }
2892 emit_mrm(as, xo, dest, right);
2893 ra_left(as, dest, lref);
2894}
2895
2896static void asm_intarith(ASMState *as, IRIns *ir, x86Arith xa)
2897{
2898 IRRef lref = ir->op1;
2899 IRRef rref = ir->op2;
2900 RegSet allow = RSET_GPR;
2901 Reg dest, right;
2902 int32_t k = 0;
2903 if (as->flagmcp == as->mcp) { /* Drop test r,r instruction. */
2904 as->flagmcp = NULL;
2905 as->mcp += (LJ_64 && *as->mcp != XI_TEST) ? 3 : 2;
2906 }
2907 right = IR(rref)->r;
2908 if (ra_hasreg(right)) {
2909 rset_clear(allow, right);
2910 ra_noweak(as, right);
2911 }
2912 dest = ra_dest(as, ir, allow);
2913 if (lref == rref) {
2914 right = dest;
2915 } else if (ra_noreg(right) && !asm_isk32(as, rref, &k)) {
2916 if (swapops(as, ir)) {
2917 IRRef tmp = lref; lref = rref; rref = tmp;
2918 }
2919 right = asm_fuseload(as, rref, rset_clear(allow, dest));
2920 }
2921 if (irt_isguard(ir->t)) /* For IR_ADDOV etc. */
2922 asm_guardcc(as, CC_O);
2923 if (xa != XOg_X_IMUL) {
2924 if (ra_hasreg(right))
2925 emit_mrm(as, XO_ARITH(xa), REX_64IR(ir, dest), right);
2926 else
2927 emit_gri(as, XG_ARITHi(xa), REX_64IR(ir, dest), k);
2928 } else if (ra_hasreg(right)) { /* IMUL r, mrm. */
2929 emit_mrm(as, XO_IMUL, REX_64IR(ir, dest), right);
2930 } else { /* IMUL r, r, k. */
2931 /* NYI: use lea/shl/add/sub (FOLD only does 2^k) depending on CPU. */
2932 Reg left = asm_fuseload(as, lref, RSET_GPR);
2933 x86Op xo;
2934 if (checki8(k)) { emit_i8(as, k); xo = XO_IMULi8;
2935 } else { emit_i32(as, k); xo = XO_IMULi; }
2936 emit_mrm(as, xo, REX_64IR(ir, dest), left);
2937 return;
2938 }
2939 ra_left(as, dest, lref);
2940}
2941
2942/* LEA is really a 4-operand ADD with an independent destination register,
2943** up to two source registers and an immediate. One register can be scaled
2944** by 1, 2, 4 or 8. This can be used to avoid moves or to fuse several
2945** instructions.
2946**
2947** Currently only a few common cases are supported:
2948** - 3-operand ADD: y = a+b; y = a+k with a and b already allocated
2949** - Left ADD fusion: y = (a+b)+k; y = (a+k)+b
2950** - Right ADD fusion: y = a+(b+k)
2951** The ommited variants have already been reduced by FOLD.
2952**
2953** There are more fusion opportunities, like gathering shifts or joining
2954** common references. But these are probably not worth the trouble, since
2955** array indexing is not decomposed and already makes use of all fields
2956** of the ModRM operand.
2957*/
2958static int asm_lea(ASMState *as, IRIns *ir)
2959{
2960 IRIns *irl = IR(ir->op1);
2961 IRIns *irr = IR(ir->op2);
2962 RegSet allow = RSET_GPR;
2963 Reg dest;
2964 as->mrm.base = as->mrm.idx = RID_NONE;
2965 as->mrm.scale = XM_SCALE1;
2966 as->mrm.ofs = 0;
2967 if (ra_hasreg(irl->r)) {
2968 rset_clear(allow, irl->r);
2969 ra_noweak(as, irl->r);
2970 as->mrm.base = irl->r;
2971 if (irref_isk(ir->op2) || ra_hasreg(irr->r)) {
2972 /* The PHI renaming logic does a better job in some cases. */
2973 if (ra_hasreg(ir->r) &&
2974 ((irt_isphi(irl->t) && as->phireg[ir->r] == ir->op1) ||
2975 (irt_isphi(irr->t) && as->phireg[ir->r] == ir->op2)))
2976 return 0;
2977 if (irref_isk(ir->op2)) {
2978 as->mrm.ofs = irr->i;
2979 } else {
2980 rset_clear(allow, irr->r);
2981 ra_noweak(as, irr->r);
2982 as->mrm.idx = irr->r;
2983 }
2984 } else if (irr->o == IR_ADD && mayfuse(as, ir->op2) &&
2985 irref_isk(irr->op2)) {
2986 Reg idx = ra_alloc1(as, irr->op1, allow);
2987 rset_clear(allow, idx);
2988 as->mrm.idx = (uint8_t)idx;
2989 as->mrm.ofs = IR(irr->op2)->i;
2990 } else {
2991 return 0;
2992 }
2993 } else if (ir->op1 != ir->op2 && irl->o == IR_ADD && mayfuse(as, ir->op1) &&
2994 (irref_isk(ir->op2) || irref_isk(irl->op2))) {
2995 Reg idx, base = ra_alloc1(as, irl->op1, allow);
2996 rset_clear(allow, base);
2997 as->mrm.base = (uint8_t)base;
2998 if (irref_isk(ir->op2)) {
2999 as->mrm.ofs = irr->i;
3000 idx = ra_alloc1(as, irl->op2, allow);
3001 } else {
3002 as->mrm.ofs = IR(irl->op2)->i;
3003 idx = ra_alloc1(as, ir->op2, allow);
3004 }
3005 rset_clear(allow, idx);
3006 as->mrm.idx = (uint8_t)idx;
3007 } else {
3008 return 0;
3009 }
3010 dest = ra_dest(as, ir, allow);
3011 emit_mrm(as, XO_LEA, dest, RID_MRM);
3012 return 1; /* Success. */
3013}
3014
3015static void asm_add(ASMState *as, IRIns *ir)
3016{
3017 if (irt_isnum(ir->t))
3018 asm_fparith(as, ir, XO_ADDSD);
3019 else if ((as->flags & JIT_F_LEA_AGU) || as->flagmcp == as->mcp ||
3020 irt_is64(ir->t) || !asm_lea(as, ir))
3021 asm_intarith(as, ir, XOg_ADD);
3022}
3023
3024static void asm_neg_not(ASMState *as, IRIns *ir, x86Group3 xg)
3025{
3026 Reg dest = ra_dest(as, ir, RSET_GPR);
3027 emit_rr(as, XO_GROUP3, REX_64IR(ir, xg), dest);
3028 ra_left(as, dest, ir->op1);
3029}
3030
3031static void asm_min_max(ASMState *as, IRIns *ir, int cc)
3032{
3033 Reg right, dest = ra_dest(as, ir, RSET_GPR);
3034 IRRef lref = ir->op1, rref = ir->op2;
3035 if (irref_isk(rref)) { lref = rref; rref = ir->op1; }
3036 right = ra_alloc1(as, rref, rset_exclude(RSET_GPR, dest));
3037 emit_rr(as, XO_CMOV + (cc<<24), REX_64IR(ir, dest), right);
3038 emit_rr(as, XO_CMP, REX_64IR(ir, dest), right);
3039 ra_left(as, dest, lref);
3040}
3041
3042static void asm_bitswap(ASMState *as, IRIns *ir)
3043{
3044 Reg dest = ra_dest(as, ir, RSET_GPR);
3045 as->mcp = emit_op(XO_BSWAP + ((dest&7) << 24),
3046 REX_64IR(ir, dest), 0, 0, as->mcp, 1);
3047 ra_left(as, dest, ir->op1);
3048}
3049
3050static void asm_bitshift(ASMState *as, IRIns *ir, x86Shift xs)
3051{
3052 IRRef rref = ir->op2;
3053 IRIns *irr = IR(rref);
3054 Reg dest;
3055 if (irref_isk(rref)) { /* Constant shifts. */
3056 int shift;
3057 dest = ra_dest(as, ir, RSET_GPR);
3058 shift = irr->i & (irt_is64(ir->t) ? 63 : 31);
3059 switch (shift) {
3060 case 0: break;
3061 case 1: emit_rr(as, XO_SHIFT1, REX_64IR(ir, xs), dest); break;
3062 default: emit_shifti(as, REX_64IR(ir, xs), dest, shift); break;
3063 }
3064 } else { /* Variable shifts implicitly use register cl (i.e. ecx). */
3065 RegSet allow = rset_exclude(RSET_GPR, RID_ECX);
3066 Reg right = irr->r;
3067 if (ra_noreg(right)) {
3068 right = ra_allocref(as, rref, RID2RSET(RID_ECX));
3069 } else if (right != RID_ECX) {
3070 rset_clear(allow, right);
3071 ra_scratch(as, RID2RSET(RID_ECX));
3072 }
3073 dest = ra_dest(as, ir, allow);
3074 emit_rr(as, XO_SHIFTcl, REX_64IR(ir, xs), dest);
3075 if (right != RID_ECX) {
3076 ra_noweak(as, right);
3077 emit_rr(as, XO_MOV, RID_ECX, right);
3078 }
3079 }
3080 ra_left(as, dest, ir->op1);
3081 /*
3082 ** Note: avoid using the flags resulting from a shift or rotate!
3083 ** All of them cause a partial flag stall, except for r,1 shifts
3084 ** (but not rotates). And a shift count of 0 leaves the flags unmodified.
3085 */
3086}
3087
3088/* -- Comparisons --------------------------------------------------------- */
3089
3090/* Virtual flags for unordered FP comparisons. */
3091#define VCC_U 0x1000 /* Unordered. */
3092#define VCC_P 0x2000 /* Needs extra CC_P branch. */
3093#define VCC_S 0x4000 /* Swap avoids CC_P branch. */
3094#define VCC_PS (VCC_P|VCC_S)
3095
3096/* Map of comparisons to flags. ORDER IR. */
3097#define COMPFLAGS(ci, cin, cu, cf) ((ci)+((cu)<<4)+((cin)<<8)+(cf))
3098static const uint16_t asm_compmap[IR_ABC+1] = {
3099 /* signed non-eq unsigned flags */
3100 /* LT */ COMPFLAGS(CC_GE, CC_G, CC_AE, VCC_PS),
3101 /* GE */ COMPFLAGS(CC_L, CC_L, CC_B, 0),
3102 /* LE */ COMPFLAGS(CC_G, CC_G, CC_A, VCC_PS),
3103 /* GT */ COMPFLAGS(CC_LE, CC_L, CC_BE, 0),
3104 /* ULT */ COMPFLAGS(CC_AE, CC_A, CC_AE, VCC_U),
3105 /* UGE */ COMPFLAGS(CC_B, CC_B, CC_B, VCC_U|VCC_PS),
3106 /* ULE */ COMPFLAGS(CC_A, CC_A, CC_A, VCC_U),
3107 /* UGT */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS),
3108 /* EQ */ COMPFLAGS(CC_NE, CC_NE, CC_NE, VCC_P),
3109 /* NE */ COMPFLAGS(CC_E, CC_E, CC_E, VCC_U|VCC_P),
3110 /* ABC */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS) /* Same as UGT. */
3111};
3112
3113/* FP and integer comparisons. */
3114static void asm_comp(ASMState *as, IRIns *ir, uint32_t cc)
3115{
3116 if (irt_isnum(ir->t)) {
3117 IRRef lref = ir->op1;
3118 IRRef rref = ir->op2;
3119 Reg left, right;
3120 MCLabel l_around;
3121 /*
3122 ** An extra CC_P branch is required to preserve ordered/unordered
3123 ** semantics for FP comparisons. This can be avoided by swapping
3124 ** the operands and inverting the condition (except for EQ and UNE).
3125 ** So always try to swap if possible.
3126 **
3127 ** Another option would be to swap operands to achieve better memory
3128 ** operand fusion. But it's unlikely that this outweighs the cost
3129 ** of the extra branches.
3130 */
3131 if (cc & VCC_S) { /* Swap? */
3132 IRRef tmp = lref; lref = rref; rref = tmp;
3133 cc ^= (VCC_PS|(5<<4)); /* A <-> B, AE <-> BE, PS <-> none */
3134 }
3135 left = ra_alloc1(as, lref, RSET_FPR);
3136 right = asm_fuseload(as, rref, rset_exclude(RSET_FPR, left));
3137 l_around = emit_label(as);
3138 asm_guardcc(as, cc >> 4);
3139 if (cc & VCC_P) { /* Extra CC_P branch required? */
3140 if (!(cc & VCC_U)) {
3141 asm_guardcc(as, CC_P); /* Branch to exit for ordered comparisons. */
3142 } else if (l_around != as->invmcp) {
3143 emit_sjcc(as, CC_P, l_around); /* Branch around for unordered. */
3144 } else {
3145 /* Patched to mcloop by asm_loop_fixup. */
3146 as->loopinv = 2;
3147 if (as->realign)
3148 emit_sjcc(as, CC_P, as->mcp);
3149 else
3150 emit_jcc(as, CC_P, as->mcp);
3151 }
3152 }
3153 emit_mrm(as, XO_UCOMISD, left, right);
3154 } else {
3155 IRRef lref = ir->op1, rref = ir->op2;
3156 IROp leftop = (IROp)(IR(lref)->o);
3157 Reg r64 = REX_64IR(ir, 0);
3158 int32_t imm = 0;
3159 lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isaddr(ir->t));
3160 /* Swap constants (only for ABC) and fusable loads to the right. */
3161 if (irref_isk(lref) || (!irref_isk(rref) && opisfusableload(leftop))) {
3162 if ((cc & 0xc) == 0xc) cc ^= 3; /* L <-> G, LE <-> GE */
3163 else if ((cc & 0xa) == 0x2) cc ^= 5; /* A <-> B, AE <-> BE */
3164 lref = ir->op2; rref = ir->op1;
3165 }
3166 if (asm_isk32(as, rref, &imm)) {
3167 IRIns *irl = IR(lref);
3168 /* Check wether we can use test ins. Not for unsigned, since CF=0. */
3169 int usetest = (imm == 0 && (cc & 0xa) != 0x2);
3170 if (usetest && irl->o == IR_BAND && irl+1 == ir && !ra_used(irl)) {
3171 /* Combine comp(BAND(ref, r/imm), 0) into test mrm, r/imm. */
3172 Reg right, left = RID_NONE;
3173 RegSet allow = RSET_GPR;
3174 if (!asm_isk32(as, irl->op2, &imm)) {
3175 left = ra_alloc1(as, irl->op2, allow);
3176 rset_clear(allow, left);
3177 } else { /* Try to Fuse IRT_I8/IRT_U8 loads, too. See below. */
3178 IRIns *irll = IR(irl->op1);
3179 if (opisfusableload((IROp)irll->o) &&
3180 (irt_isi8(irll->t) || irt_isu8(irll->t))) {
3181 IRType1 origt = irll->t; /* Temporarily flip types. */
3182 irll->t.irt = (irll->t.irt & ~IRT_TYPE) | IRT_INT;
3183 as->curins--; /* Skip to BAND to avoid failing in noconflict(). */
3184 right = asm_fuseload(as, irl->op1, RSET_GPR);
3185 as->curins++;
3186 irll->t = origt;
3187 if (right != RID_MRM) goto test_nofuse;
3188 /* Fusion succeeded, emit test byte mrm, imm8. */
3189 asm_guardcc(as, cc);
3190 emit_i8(as, (imm & 0xff));
3191 emit_mrm(as, XO_GROUP3b, XOg_TEST, RID_MRM);
3192 return;
3193 }
3194 }
3195 as->curins--; /* Skip to BAND to avoid failing in noconflict(). */
3196 right = asm_fuseload(as, irl->op1, allow);
3197 as->curins++; /* Undo the above. */
3198 test_nofuse:
3199 asm_guardcc(as, cc);
3200 if (ra_noreg(left)) {
3201 emit_i32(as, imm);
3202 emit_mrm(as, XO_GROUP3, r64 + XOg_TEST, right);
3203 } else {
3204 emit_mrm(as, XO_TEST, r64 + left, right);
3205 }
3206 } else {
3207 Reg left;
3208 if (opisfusableload((IROp)irl->o) &&
3209 ((irt_isu8(irl->t) && checku8(imm)) ||
3210 ((irt_isi8(irl->t) || irt_isi16(irl->t)) && checki8(imm)) ||
3211 (irt_isu16(irl->t) && checku16(imm) && checki8((int16_t)imm)))) {
3212 /* Only the IRT_INT case is fused by asm_fuseload.
3213 ** The IRT_I8/IRT_U8 loads and some IRT_I16/IRT_U16 loads
3214 ** are handled here.
3215 ** Note that cmp word [mem], imm16 should not be generated,
3216 ** since it has a length-changing prefix. Compares of a word
3217 ** against a sign-extended imm8 are ok, however.
3218 */
3219 IRType1 origt = irl->t; /* Temporarily flip types. */
3220 irl->t.irt = (irl->t.irt & ~IRT_TYPE) | IRT_INT;
3221 left = asm_fuseload(as, lref, RSET_GPR);
3222 irl->t = origt;
3223 if (left == RID_MRM) { /* Fusion succeeded? */
3224 asm_guardcc(as, cc);
3225 emit_i8(as, imm);
3226 emit_mrm(as, (irt_isi8(origt) || irt_isu8(origt)) ?
3227 XO_ARITHib : XO_ARITHiw8, r64 + XOg_CMP, RID_MRM);
3228 return;
3229 } /* Otherwise handle register case as usual. */
3230 } else {
3231 left = asm_fuseload(as, lref, RSET_GPR);
3232 }
3233 asm_guardcc(as, cc);
3234 if (usetest && left != RID_MRM) {
3235 /* Use test r,r instead of cmp r,0. */
3236 emit_rr(as, XO_TEST, r64 + left, left);
3237 if (irl+1 == ir) /* Referencing previous ins? */
3238 as->flagmcp = as->mcp; /* Set flag to drop test r,r if possible. */
3239 } else {
3240 emit_gmrmi(as, XG_ARITHi(XOg_CMP), r64 + left, imm);
3241 }
3242 }
3243 } else {
3244 Reg left = ra_alloc1(as, lref, RSET_GPR);
3245 Reg right = asm_fuseload(as, rref, rset_exclude(RSET_GPR, left));
3246 asm_guardcc(as, cc);
3247 emit_mrm(as, XO_CMP, r64 + left, right);
3248 }
3249 }
3250}
3251
3252#if LJ_32 && LJ_HASFFI
3253/* 64 bit integer comparisons in 32 bit mode. */
3254static void asm_comp_int64(ASMState *as, IRIns *ir)
3255{
3256 uint32_t cc = asm_compmap[(ir-1)->o];
3257 RegSet allow = RSET_GPR;
3258 Reg lefthi = RID_NONE, leftlo = RID_NONE;
3259 Reg righthi = RID_NONE, rightlo = RID_NONE;
3260 MCLabel l_around;
3261 x86ModRM mrm;
3262
3263 as->curins--; /* Skip loword ins. Avoids failing in noconflict(), too. */
3264
3265 /* Allocate/fuse hiword operands. */
3266 if (irref_isk(ir->op2)) {
3267 lefthi = asm_fuseload(as, ir->op1, allow);
3268 } else {
3269 lefthi = ra_alloc1(as, ir->op1, allow);
3270 righthi = asm_fuseload(as, ir->op2, allow);
3271 if (righthi == RID_MRM) {
3272 if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base);
3273 if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx);
3274 } else {
3275 rset_clear(allow, righthi);
3276 }
3277 }
3278 mrm = as->mrm; /* Save state for hiword instruction. */
3279
3280 /* Allocate/fuse loword operands. */
3281 if (irref_isk((ir-1)->op2)) {
3282 leftlo = asm_fuseload(as, (ir-1)->op1, allow);
3283 } else {
3284 leftlo = ra_alloc1(as, (ir-1)->op1, allow);
3285 rightlo = asm_fuseload(as, (ir-1)->op2, allow);
3286 if (rightlo == RID_MRM) {
3287 if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base);
3288 if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx);
3289 } else {
3290 rset_clear(allow, rightlo);
3291 }
3292 }
3293
3294 /* All register allocations must be performed _before_ this point. */
3295 l_around = emit_label(as);
3296 as->invmcp = as->flagmcp = NULL; /* Cannot use these optimizations. */
3297
3298 /* Loword comparison and branch. */
3299 asm_guardcc(as, cc >> 4); /* Always use unsigned compare for loword. */
3300 if (ra_noreg(rightlo)) {
3301 int32_t imm = IR((ir-1)->op2)->i;
3302 if (imm == 0 && ((cc >> 4) & 0xa) != 0x2 && leftlo != RID_MRM)
3303 emit_rr(as, XO_TEST, leftlo, leftlo);
3304 else
3305 emit_gmrmi(as, XG_ARITHi(XOg_CMP), leftlo, imm);
3306 } else {
3307 emit_mrm(as, XO_CMP, leftlo, rightlo);
3308 }
3309
3310 /* Hiword comparison and branches. */
3311 if ((cc & 15) != CC_NE)
3312 emit_sjcc(as, CC_NE, l_around); /* Hiword unequal: skip loword compare. */
3313 if ((cc & 15) != CC_E)
3314 asm_guardcc(as, cc >> 8); /* Hiword compare without equality check. */
3315 as->mrm = mrm; /* Restore state. */
3316 if (ra_noreg(righthi)) {
3317 int32_t imm = IR(ir->op2)->i;
3318 if (imm == 0 && (cc & 0xa) != 0x2 && lefthi != RID_MRM)
3319 emit_rr(as, XO_TEST, lefthi, lefthi);
3320 else
3321 emit_gmrmi(as, XG_ARITHi(XOg_CMP), lefthi, imm);
3322 } else {
3323 emit_mrm(as, XO_CMP, lefthi, righthi);
3324 }
3325}
3326#endif
3327
3328/* -- Support for 64 bit ops in 32 bit mode ------------------------------- */
3329
3330/* Hiword op of a split 64 bit op. Previous op must be the loword op. */
3331static void asm_hiop(ASMState *as, IRIns *ir)
3332{
3333#if LJ_32 && LJ_HASFFI
3334 /* HIOP is marked as a store because it needs its own DCE logic. */
3335 int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */
3336 if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1;
3337 if ((ir-1)->o == IR_CONV) { /* Conversions to/from 64 bit. */
3338 if (usehi || uselo) {
3339 if (irt_isfp(ir->t))
3340 asm_conv_fp_int64(as, ir);
3341 else
3342 asm_conv_int64_fp(as, ir);
3343 }
3344 as->curins--; /* Always skip the CONV. */
3345 return;
3346 } else if ((ir-1)->o <= IR_NE) { /* 64 bit integer comparisons. ORDER IR. */
3347 asm_comp_int64(as, ir);
3348 return;
3349 }
3350 if (!usehi) return; /* Skip unused hiword op for all remaining ops. */
3351 switch ((ir-1)->o) {
3352 case IR_ADD:
3353 asm_intarith(as, ir, uselo ? XOg_ADC : XOg_ADD);
3354 break;
3355 case IR_SUB:
3356 asm_intarith(as, ir, uselo ? XOg_SBB : XOg_SUB);
3357 break;
3358 case IR_NEG: {
3359 Reg dest = ra_dest(as, ir, RSET_GPR);
3360 emit_rr(as, XO_GROUP3, XOg_NEG, dest);
3361 if (uselo) {
3362 emit_i8(as, 0);
3363 emit_rr(as, XO_ARITHi8, XOg_ADC, dest);
3364 }
3365 ra_left(as, dest, ir->op1);
3366 break;
3367 }
3368 case IR_CALLN:
3369 case IR_CALLXS:
3370 ra_destreg(as, ir, RID_RETHI);
3371 if (!uselo)
3372 ra_allocref(as, ir->op1, RID2RSET(RID_RET)); /* Mark call as used. */
3373 break;
3374 case IR_CNEWI:
3375 /* Nothing to do here. Handled by CNEWI itself. */
3376 break;
3377 default: lua_assert(0); break;
3378 }
3379#else
3380 UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused on x64 or without FFI. */
3381#endif
3382}
3383
3384/* -- Stack handling ------------------------------------------------------ */
3385
3386/* Get extent of the stack for a snapshot. */
3387static BCReg asm_stack_extent(ASMState *as, SnapShot *snap, BCReg *ptopslot)
3388{
3389 SnapEntry *map = &as->T->snapmap[snap->mapofs];
3390 MSize n, nent = snap->nent;
3391 BCReg baseslot = 0, topslot = 0;
3392 /* Must check all frames to find topslot (outer can be larger than inner). */
3393 for (n = 0; n < nent; n++) {
3394 SnapEntry sn = map[n];
3395 if ((sn & SNAP_FRAME)) {
3396 IRIns *ir = IR(snap_ref(sn));
3397 GCfunc *fn = ir_kfunc(ir);
3398 if (isluafunc(fn)) {
3399 BCReg s = snap_slot(sn);
3400 BCReg fs = s + funcproto(fn)->framesize;
3401 if (fs > topslot) topslot = fs;
3402 baseslot = s;
3403 }
3404 }
3405 }
3406 *ptopslot = topslot;
3407 return baseslot;
3408}
3409
3410/* Check Lua stack size for overflow. Use exit handler as fallback. */
3411static void asm_stack_check(ASMState *as, BCReg topslot,
3412 Reg pbase, RegSet allow, ExitNo exitno)
3413{
3414 /* Try to get an unused temp. register, otherwise spill/restore eax. */
3415 Reg r = allow ? rset_pickbot(allow) : RID_EAX;
3416 emit_jcc(as, CC_B, exitstub_addr(as->J, exitno));
3417 if (allow == RSET_EMPTY) /* Restore temp. register. */
3418 emit_rmro(as, XO_MOV, r|REX_64, RID_ESP, 0);
3419 else
3420 ra_modified(as, r);
3421 emit_gri(as, XG_ARITHi(XOg_CMP), r, (int32_t)(8*topslot));
3422 if (ra_hasreg(pbase) && pbase != r)
3423 emit_rr(as, XO_ARITH(XOg_SUB), r, pbase);
3424 else
3425 emit_rmro(as, XO_ARITH(XOg_SUB), r, RID_NONE,
3426 ptr2addr(&J2G(as->J)->jit_base));
3427 emit_rmro(as, XO_MOV, r, r, offsetof(lua_State, maxstack));
3428 emit_getgl(as, r, jit_L);
3429 if (allow == RSET_EMPTY) /* Spill temp. register. */
3430 emit_rmro(as, XO_MOVto, r|REX_64, RID_ESP, 0);
3431}
3432
3433/* Restore Lua stack from on-trace state. */
3434static void asm_stack_restore(ASMState *as, SnapShot *snap)
3435{
3436 SnapEntry *map = &as->T->snapmap[snap->mapofs];
3437 MSize n, nent = snap->nent;
3438 SnapEntry *flinks = map + nent + snap->depth;
3439 /* Store the value of all modified slots to the Lua stack. */
3440 for (n = 0; n < nent; n++) {
3441 SnapEntry sn = map[n];
3442 BCReg s = snap_slot(sn);
3443 int32_t ofs = 8*((int32_t)s-1);
3444 IRRef ref = snap_ref(sn);
3445 IRIns *ir = IR(ref);
3446 if ((sn & SNAP_NORESTORE))
3447 continue;
3448 if (irt_isnum(ir->t)) {
3449 Reg src = ra_alloc1(as, ref, RSET_FPR);
3450 emit_rmro(as, XO_MOVSDto, src, RID_BASE, ofs);
3451 } else {
3452 lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) ||
3453 (LJ_DUALNUM && irt_isinteger(ir->t)));
3454 if (!irref_isk(ref)) {
3455 Reg src = ra_alloc1(as, ref, rset_exclude(RSET_GPR, RID_BASE));
3456 emit_movtomro(as, REX_64IR(ir, src), RID_BASE, ofs);
3457 } else if (!irt_ispri(ir->t)) {
3458 emit_movmroi(as, RID_BASE, ofs, ir->i);
3459 }
3460 if ((sn & (SNAP_CONT|SNAP_FRAME))) {
3461 if (s != 0) /* Do not overwrite link to previous frame. */
3462 emit_movmroi(as, RID_BASE, ofs+4, (int32_t)(*flinks--));
3463 } else {
3464 if (!(LJ_64 && irt_islightud(ir->t)))
3465 emit_movmroi(as, RID_BASE, ofs+4, irt_toitype(ir->t));
3466 }
3467 }
3468 checkmclim(as);
3469 }
3470 lua_assert(map + nent == flinks);
3471}
3472
3473/* -- GC handling --------------------------------------------------------- */
3474
3475/* Check GC threshold and do one or more GC steps. */
3476static void asm_gc_check(ASMState *as)
3477{
3478 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit];
3479 IRRef args[2];
3480 MCLabel l_end;
3481 Reg tmp;
3482 ra_evictset(as, RSET_SCRATCH);
3483 l_end = emit_label(as);
3484 /* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */
3485 asm_guardcc(as, CC_NE); /* Assumes asm_snap_prep() already done. */
3486 emit_rr(as, XO_TEST, RID_RET, RID_RET);
3487 args[0] = ASMREF_TMP1; /* global_State *g */
3488 args[1] = ASMREF_TMP2; /* MSize steps */
3489 asm_gencall(as, ci, args);
3490 tmp = ra_releasetmp(as, ASMREF_TMP1);
3491 emit_loada(as, tmp, J2G(as->J));
3492 emit_loadi(as, ra_releasetmp(as, ASMREF_TMP2), (int32_t)as->gcsteps);
3493 /* Jump around GC step if GC total < GC threshold. */
3494 emit_sjcc(as, CC_B, l_end);
3495 emit_opgl(as, XO_ARITH(XOg_CMP), tmp, gc.threshold);
3496 emit_getgl(as, tmp, gc.total);
3497 as->gcsteps = 0;
3498 checkmclim(as);
3499}
3500
3501/* -- PHI and loop handling ----------------------------------------------- */ 795/* -- PHI and loop handling ----------------------------------------------- */
3502 796
3503/* Break a PHI cycle by renaming to a free register (evict if needed). */ 797/* Break a PHI cycle by renaming to a free register (evict if needed). */
@@ -3657,50 +951,8 @@ static void asm_phi(ASMState *as, IRIns *ir)
3657 } 951 }
3658} 952}
3659 953
3660/* Fixup the loop branch. */ 954static void asm_gc_check(ASMState *as);
3661static void asm_loop_fixup(ASMState *as) 955static void asm_loop_fixup(ASMState *as);
3662{
3663 MCode *p = as->mctop;
3664 MCode *target = as->mcp;
3665 if (as->realign) { /* Realigned loops use short jumps. */
3666 as->realign = NULL; /* Stop another retry. */
3667 lua_assert(((intptr_t)target & 15) == 0);
3668 if (as->loopinv) { /* Inverted loop branch? */
3669 p -= 5;
3670 p[0] = XI_JMP;
3671 lua_assert(target - p >= -128);
3672 p[-1] = (MCode)(target - p); /* Patch sjcc. */
3673 if (as->loopinv == 2)
3674 p[-3] = (MCode)(target - p + 2); /* Patch opt. short jp. */
3675 } else {
3676 lua_assert(target - p >= -128);
3677 p[-1] = (MCode)(int8_t)(target - p); /* Patch short jmp. */
3678 p[-2] = XI_JMPs;
3679 }
3680 } else {
3681 MCode *newloop;
3682 p[-5] = XI_JMP;
3683 if (as->loopinv) { /* Inverted loop branch? */
3684 /* asm_guardcc already inverted the jcc and patched the jmp. */
3685 p -= 5;
3686 newloop = target+4;
3687 *(int32_t *)(p-4) = (int32_t)(target - p); /* Patch jcc. */
3688 if (as->loopinv == 2) {
3689 *(int32_t *)(p-10) = (int32_t)(target - p + 6); /* Patch opt. jp. */
3690 newloop = target+8;
3691 }
3692 } else { /* Otherwise just patch jmp. */
3693 *(int32_t *)(p-4) = (int32_t)(target - p);
3694 newloop = target+3;
3695 }
3696 /* Realign small loops and shorten the loop branch. */
3697 if (newloop >= p - 128) {
3698 as->realign = newloop; /* Force a retry and remember alignment. */
3699 as->curins = as->stopins; /* Abort asm_trace now. */
3700 as->T->nins = as->orignins; /* Remove any added renames. */
3701 }
3702 }
3703}
3704 956
3705/* Middle part of a loop. */ 957/* Middle part of a loop. */
3706static void asm_loop(ASMState *as) 958static void asm_loop(ASMState *as)
@@ -3720,29 +972,15 @@ static void asm_loop(ASMState *as)
3720 if (!as->realign) RA_DBG_FLUSH(); 972 if (!as->realign) RA_DBG_FLUSH();
3721} 973}
3722 974
3723/* -- Head of trace ------------------------------------------------------- */ 975/* -- Target-specific assembler ------------------------------------------- */
3724 976
3725/* Calculate stack adjustment. */ 977#if LJ_TARGET_X86ORX64
3726static int32_t asm_stack_adjust(ASMState *as) 978#include "lj_asm_x86.h"
3727{ 979#else
3728 if (as->evenspill <= SPS_FIXED) 980#error "Missing instruction emitter for target CPU"
3729 return 0; 981#endif
3730 return sps_scale((as->evenspill - SPS_FIXED + 3) & ~3);
3731}
3732 982
3733/* Coalesce BASE register for a root trace. */ 983/* -- Head of trace ------------------------------------------------------- */
3734static void asm_head_root_base(ASMState *as)
3735{
3736 IRIns *ir = IR(REF_BASE);
3737 Reg r = ir->r;
3738 if (ra_hasreg(r)) {
3739 ra_free(as, r);
3740 if (rset_test(as->modset, r))
3741 ir->r = RID_INIT; /* No inheritance for modified BASE register. */
3742 if (r != RID_BASE)
3743 emit_rr(as, XO_MOV, r, RID_BASE);
3744 }
3745}
3746 984
3747/* Head of a root trace. */ 985/* Head of a root trace. */
3748static void asm_head_root(ASMState *as) 986static void asm_head_root(ASMState *as)
@@ -3757,27 +995,6 @@ static void asm_head_root(ASMState *as)
3757 as->T->topslot = gcref(as->T->startpt)->pt.framesize; 995 as->T->topslot = gcref(as->T->startpt)->pt.framesize;
3758} 996}
3759 997
3760/* Coalesce or reload BASE register for a side trace. */
3761static RegSet asm_head_side_base(ASMState *as, Reg pbase, RegSet allow)
3762{
3763 IRIns *ir = IR(REF_BASE);
3764 Reg r = ir->r;
3765 if (ra_hasreg(r)) {
3766 ra_free(as, r);
3767 if (rset_test(as->modset, r))
3768 ir->r = RID_INIT; /* No inheritance for modified BASE register. */
3769 if (pbase == r) {
3770 rset_clear(allow, r); /* Mark same BASE register as coalesced. */
3771 } else if (ra_hasreg(pbase) && rset_test(as->freeset, pbase)) {
3772 rset_clear(allow, pbase);
3773 emit_rr(as, XO_MOV, r, pbase); /* Move from coalesced parent register. */
3774 } else {
3775 emit_getgl(as, r, jit_base); /* Otherwise reload BASE. */
3776 }
3777 }
3778 return allow;
3779}
3780
3781/* Head of a side trace. 998/* Head of a side trace.
3782** 999**
3783** The current simplistic algorithm requires that all slots inherited 1000** The current simplistic algorithm requires that all slots inherited
@@ -3976,276 +1193,8 @@ static void asm_tail_link(ASMState *as)
3976 asm_stack_check(as, as->topslot, RID_BASE, as->freeset & RSET_GPR, snapno); 1193 asm_stack_check(as, as->topslot, RID_BASE, as->freeset & RSET_GPR, snapno);
3977} 1194}
3978 1195
3979/* Fixup the tail code. */
3980static void asm_tail_fixup(ASMState *as, TraceNo lnk)
3981{
3982 /* Note: don't use as->mcp swap + emit_*: emit_op overwrites more bytes. */
3983 MCode *p = as->mctop;
3984 MCode *target, *q;
3985 int32_t spadj = as->T->spadjust;
3986 if (spadj == 0) {
3987 p -= ((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0);
3988 } else {
3989 MCode *p1;
3990 /* Patch stack adjustment. */
3991 if (checki8(spadj)) {
3992 p -= 3;
3993 p1 = p-6;
3994 *p1 = (MCode)spadj;
3995 } else {
3996 p1 = p-9;
3997 *(int32_t *)p1 = spadj;
3998 }
3999 if ((as->flags & JIT_F_LEA_AGU)) {
4000#if LJ_64
4001 p1[-4] = 0x48;
4002#endif
4003 p1[-3] = (MCode)XI_LEA;
4004 p1[-2] = MODRM(checki8(spadj) ? XM_OFS8 : XM_OFS32, RID_ESP, RID_ESP);
4005 p1[-1] = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
4006 } else {
4007#if LJ_64
4008 p1[-3] = 0x48;
4009#endif
4010 p1[-2] = (MCode)(checki8(spadj) ? XI_ARITHi8 : XI_ARITHi);
4011 p1[-1] = MODRM(XM_REG, XOg_ADD, RID_ESP);
4012 }
4013 }
4014 /* Patch exit branch. */
4015 target = lnk == TRACE_INTERP ? (MCode *)lj_vm_exit_interp :
4016 traceref(as->J, lnk)->mcode;
4017 *(int32_t *)(p-4) = jmprel(p, target);
4018 p[-5] = XI_JMP;
4019 /* Drop unused mcode tail. Fill with NOPs to make the prefetcher happy. */
4020 for (q = as->mctop-1; q >= p; q--)
4021 *q = XI_NOP;
4022 as->mctop = p;
4023}
4024
4025/* Prepare tail of code. */
4026static void asm_tail_prep(ASMState *as)
4027{
4028 MCode *p = as->mctop;
4029 /* Realign and leave room for backwards loop branch or exit branch. */
4030 if (as->realign) {
4031 int i = ((int)(intptr_t)as->realign) & 15;
4032 /* Fill unused mcode tail with NOPs to make the prefetcher happy. */
4033 while (i-- > 0)
4034 *--p = XI_NOP;
4035 as->mctop = p;
4036 p -= (as->loopinv ? 5 : 2); /* Space for short/near jmp. */
4037 } else {
4038 p -= 5; /* Space for exit branch (near jmp). */
4039 }
4040 if (as->loopref) {
4041 as->invmcp = as->mcp = p;
4042 } else {
4043 /* Leave room for ESP adjustment: add esp, imm or lea esp, [esp+imm] */
4044 as->mcp = p - (((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0));
4045 as->invmcp = NULL;
4046 }
4047}
4048
4049/* -- Instruction dispatch ------------------------------------------------ */
4050
4051/* Assemble a single instruction. */
4052static void asm_ir(ASMState *as, IRIns *ir)
4053{
4054 switch ((IROp)ir->o) {
4055 /* Miscellaneous ops. */
4056 case IR_LOOP: asm_loop(as); break;
4057 case IR_NOP: case IR_XBAR: lua_assert(!ra_used(ir)); break;
4058 case IR_USE:
4059 ra_alloc1(as, ir->op1, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); break;
4060 case IR_PHI: asm_phi(as, ir); break;
4061 case IR_HIOP: asm_hiop(as, ir); break;
4062
4063 /* Guarded assertions. */
4064 case IR_LT: case IR_GE: case IR_LE: case IR_GT:
4065 case IR_ULT: case IR_UGE: case IR_ULE: case IR_UGT:
4066 case IR_EQ: case IR_NE: case IR_ABC:
4067 asm_comp(as, ir, asm_compmap[ir->o]);
4068 break;
4069
4070 case IR_RETF: asm_retf(as, ir); break;
4071
4072 /* Bit ops. */
4073 case IR_BNOT: asm_neg_not(as, ir, XOg_NOT); break;
4074 case IR_BSWAP: asm_bitswap(as, ir); break;
4075
4076 case IR_BAND: asm_intarith(as, ir, XOg_AND); break;
4077 case IR_BOR: asm_intarith(as, ir, XOg_OR); break;
4078 case IR_BXOR: asm_intarith(as, ir, XOg_XOR); break;
4079
4080 case IR_BSHL: asm_bitshift(as, ir, XOg_SHL); break;
4081 case IR_BSHR: asm_bitshift(as, ir, XOg_SHR); break;
4082 case IR_BSAR: asm_bitshift(as, ir, XOg_SAR); break;
4083 case IR_BROL: asm_bitshift(as, ir, XOg_ROL); break;
4084 case IR_BROR: asm_bitshift(as, ir, XOg_ROR); break;
4085
4086 /* Arithmetic ops. */
4087 case IR_ADD: asm_add(as, ir); break;
4088 case IR_SUB:
4089 if (irt_isnum(ir->t))
4090 asm_fparith(as, ir, XO_SUBSD);
4091 else /* Note: no need for LEA trick here. i-k is encoded as i+(-k). */
4092 asm_intarith(as, ir, XOg_SUB);
4093 break;
4094 case IR_MUL:
4095 if (irt_isnum(ir->t))
4096 asm_fparith(as, ir, XO_MULSD);
4097 else
4098 asm_intarith(as, ir, XOg_X_IMUL);
4099 break;
4100 case IR_DIV:
4101#if LJ_64 && LJ_HASFFI
4102 if (!irt_isnum(ir->t))
4103 asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 :
4104 IRCALL_lj_carith_divu64);
4105 else
4106#endif
4107 asm_fparith(as, ir, XO_DIVSD);
4108 break;
4109 case IR_MOD:
4110#if LJ_64 && LJ_HASFFI
4111 asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 :
4112 IRCALL_lj_carith_modu64);
4113#else
4114 lua_assert(0);
4115#endif
4116 break;
4117
4118 case IR_NEG:
4119 if (irt_isnum(ir->t))
4120 asm_fparith(as, ir, XO_XORPS);
4121 else
4122 asm_neg_not(as, ir, XOg_NEG);
4123 break;
4124 case IR_ABS: asm_fparith(as, ir, XO_ANDPS); break;
4125
4126 case IR_MIN:
4127 if (irt_isnum(ir->t))
4128 asm_fparith(as, ir, XO_MINSD);
4129 else
4130 asm_min_max(as, ir, CC_G);
4131 break;
4132 case IR_MAX:
4133 if (irt_isnum(ir->t))
4134 asm_fparith(as, ir, XO_MAXSD);
4135 else
4136 asm_min_max(as, ir, CC_L);
4137 break;
4138
4139 case IR_FPMATH: case IR_ATAN2: case IR_LDEXP:
4140 asm_fpmath(as, ir);
4141 break;
4142 case IR_POW:
4143#if LJ_64 && LJ_HASFFI
4144 if (!irt_isnum(ir->t))
4145 asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 :
4146 IRCALL_lj_carith_powu64);
4147 else
4148#endif
4149 asm_fppowi(as, ir);
4150 break;
4151
4152 /* Overflow-checking arithmetic ops. Note: don't use LEA here! */
4153 case IR_ADDOV: asm_intarith(as, ir, XOg_ADD); break;
4154 case IR_SUBOV: asm_intarith(as, ir, XOg_SUB); break;
4155 case IR_MULOV: asm_intarith(as, ir, XOg_X_IMUL); break;
4156
4157 /* Memory references. */
4158 case IR_AREF: asm_aref(as, ir); break;
4159 case IR_HREF: asm_href(as, ir); break;
4160 case IR_HREFK: asm_hrefk(as, ir); break;
4161 case IR_NEWREF: asm_newref(as, ir); break;
4162 case IR_UREFO: case IR_UREFC: asm_uref(as, ir); break;
4163 case IR_FREF: asm_fref(as, ir); break;
4164 case IR_STRREF: asm_strref(as, ir); break;
4165
4166 /* Loads and stores. */
4167 case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
4168 asm_ahuvload(as, ir);
4169 break;
4170 case IR_FLOAD: case IR_XLOAD: asm_fxload(as, ir); break;
4171 case IR_SLOAD: asm_sload(as, ir); break;
4172
4173 case IR_ASTORE: case IR_HSTORE: case IR_USTORE: asm_ahustore(as, ir); break;
4174 case IR_FSTORE: case IR_XSTORE: asm_fxstore(as, ir); break;
4175
4176 /* Allocations. */
4177 case IR_SNEW: case IR_XSNEW: asm_snew(as, ir); break;
4178 case IR_TNEW: asm_tnew(as, ir); break;
4179 case IR_TDUP: asm_tdup(as, ir); break;
4180 case IR_CNEW: case IR_CNEWI: asm_cnew(as, ir); break;
4181
4182 /* Write barriers. */
4183 case IR_TBAR: asm_tbar(as, ir); break;
4184 case IR_OBAR: asm_obar(as, ir); break;
4185
4186 /* Type conversions. */
4187 case IR_TOBIT: asm_tobit(as, ir); break;
4188 case IR_CONV: asm_conv(as, ir); break;
4189 case IR_TOSTR: asm_tostr(as, ir); break;
4190 case IR_STRTO: asm_strto(as, ir); break;
4191
4192 /* Calls. */
4193 case IR_CALLN: case IR_CALLL: case IR_CALLS: asm_call(as, ir); break;
4194 case IR_CALLXS: asm_callx(as, ir); break;
4195 case IR_CARG: break;
4196
4197 default:
4198 setintV(&as->J->errinfo, ir->o);
4199 lj_trace_err_info(as->J, LJ_TRERR_NYIIR);
4200 break;
4201 }
4202}
4203
4204/* -- Trace setup --------------------------------------------------------- */ 1196/* -- Trace setup --------------------------------------------------------- */
4205 1197
4206/* Ensure there are enough stack slots for call arguments. */
4207static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci)
4208{
4209 IRRef args[CCI_NARGS_MAX];
4210 uint32_t nargs = (int)CCI_NARGS(ci);
4211 int nslots = 0;
4212 asm_collectargs(as, ir, ci, args);
4213#if LJ_64
4214 if (LJ_ABI_WIN) {
4215 nslots = (int)(nargs*2); /* Only matters for more than four args. */
4216 } else {
4217 uint32_t i;
4218 int ngpr = 6, nfpr = 8;
4219 for (i = 0; i < nargs; i++)
4220 if (irt_isfp(IR(args[i])->t)) {
4221 if (nfpr > 0) nfpr--; else nslots += 2;
4222 } else {
4223 if (ngpr > 0) ngpr--; else nslots += 2;
4224 }
4225 }
4226 if (nslots > as->evenspill) /* Leave room for args in stack slots. */
4227 as->evenspill = nslots;
4228 return irt_isfp(ir->t) ? REGSP_HINT(RID_FPRET) : REGSP_HINT(RID_RET);
4229#else
4230 if ((ci->flags & CCI_FASTCALL)) {
4231 lua_assert(nargs <= 2);
4232 } else {
4233 uint32_t i;
4234 for (i = 0; i < nargs; i++)
4235 nslots += irt_isnum(IR(args[i])->t) ? 2 : 1;
4236 if (nslots > as->evenspill) /* Leave room for args. */
4237 as->evenspill = nslots;
4238 }
4239 return irt_isfp(ir->t) ? REGSP_INIT : REGSP_HINT(RID_RET);
4240#endif
4241}
4242
4243/* Target-specific setup. */
4244static void asm_setup_target(ASMState *as)
4245{
4246 asm_exitstub_setup(as, as->T->nsnap);
4247}
4248
4249/* Clear reg/sp for all instructions and add register hints. */ 1198/* Clear reg/sp for all instructions and add register hints. */
4250static void asm_setup_regsp(ASMState *as) 1199static void asm_setup_regsp(ASMState *as)
4251{ 1200{
@@ -4497,34 +1446,6 @@ void lj_asm_trace(jit_State *J, GCtrace *T)
4497 VG_INVALIDATE(T->mcode, T->szmcode); 1446 VG_INVALIDATE(T->mcode, T->szmcode);
4498} 1447}
4499 1448
4500/* Patch exit jumps of existing machine code to a new target. */
4501void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target)
4502{
4503 MCode *p = T->mcode;
4504 MCode *mcarea = lj_mcode_patch(J, p, 0);
4505 MSize len = T->szmcode;
4506 MCode *px = exitstub_addr(J, exitno) - 6;
4507 MCode *pe = p+len-6;
4508 uint32_t stateaddr = u32ptr(&J2G(J)->vmstate);
4509 if (len > 5 && p[len-5] == XI_JMP && p+len-6 + *(int32_t *)(p+len-4) == px)
4510 *(int32_t *)(p+len-4) = jmprel(p+len, target);
4511 /* Do not patch parent exit for a stack check. Skip beyond vmstate update. */
4512 for (; p < pe; p++)
4513 if (*(uint32_t *)(p+(LJ_64 ? 3 : 2)) == stateaddr && p[0] == XI_MOVmi) {
4514 p += LJ_64 ? 11 : 10;
4515 break;
4516 }
4517 lua_assert(p < pe);
4518 for (; p < pe; p++) {
4519 if ((*(uint16_t *)p & 0xf0ff) == 0x800f && p + *(int32_t *)(p+2) == px) {
4520 *(int32_t *)(p+2) = jmprel(p+6, target);
4521 p += 5;
4522 }
4523 }
4524 lj_mcode_patch(J, mcarea, 1);
4525 VG_INVALIDATE(T->mcode, T->szmcode);
4526}
4527
4528#undef IR 1449#undef IR
4529 1450
4530#endif 1451#endif
diff --git a/src/lj_asm_x86.h b/src/lj_asm_x86.h
new file mode 100644
index 00000000..fb46b3ad
--- /dev/null
+++ b/src/lj_asm_x86.h
@@ -0,0 +1,2668 @@
1/*
2** x86/x64 IR assembler (SSA IR -> machine code).
3** Copyright (C) 2005-2011 Mike Pall. See Copyright Notice in luajit.h
4*/
5
6/* -- Guard handling ------------------------------------------------------ */
7
8/* Generate an exit stub group at the bottom of the reserved MCode memory. */
9static MCode *asm_exitstub_gen(ASMState *as, ExitNo group)
10{
11 ExitNo i, groupofs = (group*EXITSTUBS_PER_GROUP) & 0xff;
12 MCode *mxp = as->mcbot;
13 MCode *mxpstart = mxp;
14 if (mxp + (2+2)*EXITSTUBS_PER_GROUP+8+5 >= as->mctop)
15 asm_mclimit(as);
16 /* Push low byte of exitno for each exit stub. */
17 *mxp++ = XI_PUSHi8; *mxp++ = (MCode)groupofs;
18 for (i = 1; i < EXITSTUBS_PER_GROUP; i++) {
19 *mxp++ = XI_JMPs; *mxp++ = (MCode)((2+2)*(EXITSTUBS_PER_GROUP - i) - 2);
20 *mxp++ = XI_PUSHi8; *mxp++ = (MCode)(groupofs + i);
21 }
22 /* Push the high byte of the exitno for each exit stub group. */
23 *mxp++ = XI_PUSHi8; *mxp++ = (MCode)((group*EXITSTUBS_PER_GROUP)>>8);
24 /* Store DISPATCH at original stack slot 0. Account for the two push ops. */
25 *mxp++ = XI_MOVmi;
26 *mxp++ = MODRM(XM_OFS8, 0, RID_ESP);
27 *mxp++ = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
28 *mxp++ = 2*sizeof(void *);
29 *(int32_t *)mxp = ptr2addr(J2GG(as->J)->dispatch); mxp += 4;
30 /* Jump to exit handler which fills in the ExitState. */
31 *mxp++ = XI_JMP; mxp += 4;
32 *((int32_t *)(mxp-4)) = jmprel(mxp, (MCode *)(void *)lj_vm_exit_handler);
33 /* Commit the code for this group (even if assembly fails later on). */
34 lj_mcode_commitbot(as->J, mxp);
35 as->mcbot = mxp;
36 as->mclim = as->mcbot + MCLIM_REDZONE;
37 return mxpstart;
38}
39
40/* Setup all needed exit stubs. */
41static void asm_exitstub_setup(ASMState *as, ExitNo nexits)
42{
43 ExitNo i;
44 if (nexits >= EXITSTUBS_PER_GROUP*LJ_MAX_EXITSTUBGR)
45 lj_trace_err(as->J, LJ_TRERR_SNAPOV);
46 for (i = 0; i < (nexits+EXITSTUBS_PER_GROUP-1)/EXITSTUBS_PER_GROUP; i++)
47 if (as->J->exitstubgroup[i] == NULL)
48 as->J->exitstubgroup[i] = asm_exitstub_gen(as, i);
49}
50
51/* Emit conditional branch to exit for guard.
52** It's important to emit this *after* all registers have been allocated,
53** because rematerializations may invalidate the flags.
54*/
55static void asm_guardcc(ASMState *as, int cc)
56{
57 MCode *target = exitstub_addr(as->J, as->snapno);
58 MCode *p = as->mcp;
59 if (LJ_UNLIKELY(p == as->invmcp)) {
60 as->loopinv = 1;
61 *(int32_t *)(p+1) = jmprel(p+5, target);
62 target = p;
63 cc ^= 1;
64 if (as->realign) {
65 emit_sjcc(as, cc, target);
66 return;
67 }
68 }
69 emit_jcc(as, cc, target);
70}
71
72/* -- Memory operand fusion ----------------------------------------------- */
73
74/* Limit linear search to this distance. Avoids O(n^2) behavior. */
75#define CONFLICT_SEARCH_LIM 31
76
77/* Check if a reference is a signed 32 bit constant. */
78static int asm_isk32(ASMState *as, IRRef ref, int32_t *k)
79{
80 if (irref_isk(ref)) {
81 IRIns *ir = IR(ref);
82 if (ir->o != IR_KINT64) {
83 *k = ir->i;
84 return 1;
85 } else if (checki32((int64_t)ir_kint64(ir)->u64)) {
86 *k = (int32_t)ir_kint64(ir)->u64;
87 return 1;
88 }
89 }
90 return 0;
91}
92
93/* Check if there's no conflicting instruction between curins and ref.
94** Also avoid fusing loads if there are multiple references.
95*/
96static int noconflict(ASMState *as, IRRef ref, IROp conflict, int noload)
97{
98 IRIns *ir = as->ir;
99 IRRef i = as->curins;
100 if (i > ref + CONFLICT_SEARCH_LIM)
101 return 0; /* Give up, ref is too far away. */
102 while (--i > ref) {
103 if (ir[i].o == conflict)
104 return 0; /* Conflict found. */
105 else if (!noload && (ir[i].op1 == ref || ir[i].op2 == ref))
106 return 0;
107 }
108 return 1; /* Ok, no conflict. */
109}
110
111/* Fuse array base into memory operand. */
112static IRRef asm_fuseabase(ASMState *as, IRRef ref)
113{
114 IRIns *irb = IR(ref);
115 as->mrm.ofs = 0;
116 if (irb->o == IR_FLOAD) {
117 IRIns *ira = IR(irb->op1);
118 lua_assert(irb->op2 == IRFL_TAB_ARRAY);
119 /* We can avoid the FLOAD of t->array for colocated arrays. */
120 if (ira->o == IR_TNEW && ira->op1 <= LJ_MAX_COLOSIZE &&
121 noconflict(as, irb->op1, IR_NEWREF, 1)) {
122 as->mrm.ofs = (int32_t)sizeof(GCtab); /* Ofs to colocated array. */
123 return irb->op1; /* Table obj. */
124 }
125 } else if (irb->o == IR_ADD && irref_isk(irb->op2)) {
126 /* Fuse base offset (vararg load). */
127 as->mrm.ofs = IR(irb->op2)->i;
128 return irb->op1;
129 }
130 return ref; /* Otherwise use the given array base. */
131}
132
133/* Fuse array reference into memory operand. */
134static void asm_fusearef(ASMState *as, IRIns *ir, RegSet allow)
135{
136 IRIns *irx;
137 lua_assert(ir->o == IR_AREF);
138 as->mrm.base = (uint8_t)ra_alloc1(as, asm_fuseabase(as, ir->op1), allow);
139 irx = IR(ir->op2);
140 if (irref_isk(ir->op2)) {
141 as->mrm.ofs += 8*irx->i;
142 as->mrm.idx = RID_NONE;
143 } else {
144 rset_clear(allow, as->mrm.base);
145 as->mrm.scale = XM_SCALE8;
146 /* Fuse a constant ADD (e.g. t[i+1]) into the offset.
147 ** Doesn't help much without ABCelim, but reduces register pressure.
148 */
149 if (!LJ_64 && /* Has bad effects with negative index on x64. */
150 mayfuse(as, ir->op2) && ra_noreg(irx->r) &&
151 irx->o == IR_ADD && irref_isk(irx->op2)) {
152 as->mrm.ofs += 8*IR(irx->op2)->i;
153 as->mrm.idx = (uint8_t)ra_alloc1(as, irx->op1, allow);
154 } else {
155 as->mrm.idx = (uint8_t)ra_alloc1(as, ir->op2, allow);
156 }
157 }
158}
159
160/* Fuse array/hash/upvalue reference into memory operand.
161** Caveat: this may allocate GPRs for the base/idx registers. Be sure to
162** pass the final allow mask, excluding any GPRs used for other inputs.
163** In particular: 2-operand GPR instructions need to call ra_dest() first!
164*/
165static void asm_fuseahuref(ASMState *as, IRRef ref, RegSet allow)
166{
167 IRIns *ir = IR(ref);
168 if (ra_noreg(ir->r)) {
169 switch ((IROp)ir->o) {
170 case IR_AREF:
171 if (mayfuse(as, ref)) {
172 asm_fusearef(as, ir, allow);
173 return;
174 }
175 break;
176 case IR_HREFK:
177 if (mayfuse(as, ref)) {
178 as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow);
179 as->mrm.ofs = (int32_t)(IR(ir->op2)->op2 * sizeof(Node));
180 as->mrm.idx = RID_NONE;
181 return;
182 }
183 break;
184 case IR_UREFC:
185 if (irref_isk(ir->op1)) {
186 GCfunc *fn = ir_kfunc(IR(ir->op1));
187 GCupval *uv = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv;
188 as->mrm.ofs = ptr2addr(&uv->tv);
189 as->mrm.base = as->mrm.idx = RID_NONE;
190 return;
191 }
192 break;
193 default:
194 lua_assert(ir->o == IR_HREF || ir->o == IR_NEWREF || ir->o == IR_UREFO);
195 break;
196 }
197 }
198 as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow);
199 as->mrm.ofs = 0;
200 as->mrm.idx = RID_NONE;
201}
202
203/* Fuse FLOAD/FREF reference into memory operand. */
204static void asm_fusefref(ASMState *as, IRIns *ir, RegSet allow)
205{
206 lua_assert(ir->o == IR_FLOAD || ir->o == IR_FREF);
207 as->mrm.ofs = field_ofs[ir->op2];
208 as->mrm.idx = RID_NONE;
209 if (irref_isk(ir->op1)) {
210 as->mrm.ofs += IR(ir->op1)->i;
211 as->mrm.base = RID_NONE;
212 } else {
213 as->mrm.base = (uint8_t)ra_alloc1(as, ir->op1, allow);
214 }
215}
216
217/* Fuse string reference into memory operand. */
218static void asm_fusestrref(ASMState *as, IRIns *ir, RegSet allow)
219{
220 IRIns *irr;
221 lua_assert(ir->o == IR_STRREF);
222 as->mrm.base = as->mrm.idx = RID_NONE;
223 as->mrm.scale = XM_SCALE1;
224 as->mrm.ofs = sizeof(GCstr);
225 if (irref_isk(ir->op1)) {
226 as->mrm.ofs += IR(ir->op1)->i;
227 } else {
228 Reg r = ra_alloc1(as, ir->op1, allow);
229 rset_clear(allow, r);
230 as->mrm.base = (uint8_t)r;
231 }
232 irr = IR(ir->op2);
233 if (irref_isk(ir->op2)) {
234 as->mrm.ofs += irr->i;
235 } else {
236 Reg r;
237 /* Fuse a constant add into the offset, e.g. string.sub(s, i+10). */
238 if (!LJ_64 && /* Has bad effects with negative index on x64. */
239 mayfuse(as, ir->op2) && irr->o == IR_ADD && irref_isk(irr->op2)) {
240 as->mrm.ofs += IR(irr->op2)->i;
241 r = ra_alloc1(as, irr->op1, allow);
242 } else {
243 r = ra_alloc1(as, ir->op2, allow);
244 }
245 if (as->mrm.base == RID_NONE)
246 as->mrm.base = (uint8_t)r;
247 else
248 as->mrm.idx = (uint8_t)r;
249 }
250}
251
252static void asm_fusexref(ASMState *as, IRRef ref, RegSet allow)
253{
254 IRIns *ir = IR(ref);
255 as->mrm.idx = RID_NONE;
256 if (ir->o == IR_KPTR || ir->o == IR_KKPTR) {
257 as->mrm.ofs = ir->i;
258 as->mrm.base = RID_NONE;
259 } else if (ir->o == IR_STRREF) {
260 asm_fusestrref(as, ir, allow);
261 } else {
262 as->mrm.ofs = 0;
263 if (canfuse(as, ir) && ir->o == IR_ADD && ra_noreg(ir->r)) {
264 /* Gather (base+idx*sz)+ofs as emitted by cdata ptr/array indexing. */
265 IRIns *irx;
266 IRRef idx;
267 Reg r;
268 if (asm_isk32(as, ir->op2, &as->mrm.ofs)) { /* Recognize x+ofs. */
269 ref = ir->op1;
270 ir = IR(ref);
271 if (!(ir->o == IR_ADD && canfuse(as, ir) && ra_noreg(ir->r)))
272 goto noadd;
273 }
274 as->mrm.scale = XM_SCALE1;
275 idx = ir->op1;
276 ref = ir->op2;
277 irx = IR(idx);
278 if (!(irx->o == IR_BSHL || irx->o == IR_ADD)) { /* Try other operand. */
279 idx = ir->op2;
280 ref = ir->op1;
281 irx = IR(idx);
282 }
283 if (canfuse(as, irx) && ra_noreg(irx->r)) {
284 if (irx->o == IR_BSHL && irref_isk(irx->op2) && IR(irx->op2)->i <= 3) {
285 /* Recognize idx<<b with b = 0-3, corresponding to sz = (1),2,4,8. */
286 idx = irx->op1;
287 as->mrm.scale = (uint8_t)(IR(irx->op2)->i << 6);
288 } else if (irx->o == IR_ADD && irx->op1 == irx->op2) {
289 /* FOLD does idx*2 ==> idx<<1 ==> idx+idx. */
290 idx = irx->op1;
291 as->mrm.scale = XM_SCALE2;
292 }
293 }
294 r = ra_alloc1(as, idx, allow);
295 rset_clear(allow, r);
296 as->mrm.idx = (uint8_t)r;
297 }
298 noadd:
299 as->mrm.base = (uint8_t)ra_alloc1(as, ref, allow);
300 }
301}
302
303/* Fuse load into memory operand. */
304static Reg asm_fuseload(ASMState *as, IRRef ref, RegSet allow)
305{
306 IRIns *ir = IR(ref);
307 if (ra_hasreg(ir->r)) {
308 if (allow != RSET_EMPTY) { /* Fast path. */
309 ra_noweak(as, ir->r);
310 return ir->r;
311 }
312 fusespill:
313 /* Force a spill if only memory operands are allowed (asm_x87load). */
314 as->mrm.base = RID_ESP;
315 as->mrm.ofs = ra_spill(as, ir);
316 as->mrm.idx = RID_NONE;
317 return RID_MRM;
318 }
319 if (ir->o == IR_KNUM) {
320 RegSet avail = as->freeset & ~as->modset & RSET_FPR;
321 lua_assert(allow != RSET_EMPTY);
322 if (!(avail & (avail-1))) { /* Fuse if less than two regs available. */
323 as->mrm.ofs = ptr2addr(ir_knum(ir));
324 as->mrm.base = as->mrm.idx = RID_NONE;
325 return RID_MRM;
326 }
327 } else if (mayfuse(as, ref)) {
328 RegSet xallow = (allow & RSET_GPR) ? allow : RSET_GPR;
329 if (ir->o == IR_SLOAD) {
330 if (!(ir->op2 & (IRSLOAD_PARENT|IRSLOAD_CONVERT)) &&
331 noconflict(as, ref, IR_RETF, 0)) {
332 as->mrm.base = (uint8_t)ra_alloc1(as, REF_BASE, xallow);
333 as->mrm.ofs = 8*((int32_t)ir->op1-1) + ((ir->op2&IRSLOAD_FRAME)?4:0);
334 as->mrm.idx = RID_NONE;
335 return RID_MRM;
336 }
337 } else if (ir->o == IR_FLOAD) {
338 /* Generic fusion is only ok for 32 bit operand (but see asm_comp). */
339 if ((irt_isint(ir->t) || irt_isaddr(ir->t)) &&
340 noconflict(as, ref, IR_FSTORE, 0)) {
341 asm_fusefref(as, ir, xallow);
342 return RID_MRM;
343 }
344 } else if (ir->o == IR_ALOAD || ir->o == IR_HLOAD || ir->o == IR_ULOAD) {
345 if (noconflict(as, ref, ir->o + IRDELTA_L2S, 0)) {
346 asm_fuseahuref(as, ir->op1, xallow);
347 return RID_MRM;
348 }
349 } else if (ir->o == IR_XLOAD) {
350 /* Generic fusion is not ok for 8/16 bit operands (but see asm_comp).
351 ** Fusing unaligned memory operands is ok on x86 (except for SIMD types).
352 */
353 if ((!irt_typerange(ir->t, IRT_I8, IRT_U16)) &&
354 noconflict(as, ref, IR_XSTORE, 0)) {
355 asm_fusexref(as, ir->op1, xallow);
356 return RID_MRM;
357 }
358 } else if (ir->o == IR_VLOAD) {
359 asm_fuseahuref(as, ir->op1, xallow);
360 return RID_MRM;
361 }
362 }
363 if (!(as->freeset & allow) &&
364 (allow == RSET_EMPTY || ra_hasspill(ir->s) || iscrossref(as, ref)))
365 goto fusespill;
366 return ra_allocref(as, ref, allow);
367}
368
369/* -- Calls --------------------------------------------------------------- */
370
371/* Generate a call to a C function. */
372static void asm_gencall(ASMState *as, const CCallInfo *ci, IRRef *args)
373{
374 uint32_t n, nargs = CCI_NARGS(ci);
375 int32_t ofs = STACKARG_OFS;
376 uint32_t gprs = REGARG_GPRS;
377#if LJ_64
378 Reg fpr = REGARG_FIRSTFPR;
379#endif
380 lua_assert(!(nargs > 2 && (ci->flags&CCI_FASTCALL))); /* Avoid stack adj. */
381 if ((void *)ci->func)
382 emit_call(as, ci->func);
383 for (n = 0; n < nargs; n++) { /* Setup args. */
384 IRRef ref = args[n];
385 IRIns *ir = IR(ref);
386 Reg r;
387#if LJ_64 && LJ_ABI_WIN
388 /* Windows/x64 argument registers are strictly positional. */
389 r = irt_isfp(ir->t) ? (fpr <= REGARG_LASTFPR ? fpr : 0) : (gprs & 31);
390 fpr++; gprs >>= 5;
391#elif LJ_64
392 /* POSIX/x64 argument registers are used in order of appearance. */
393 if (irt_isfp(ir->t)) {
394 r = fpr <= REGARG_LASTFPR ? fpr : 0; fpr++;
395 } else {
396 r = gprs & 31; gprs >>= 5;
397 }
398#else
399 if (irt_isfp(ir->t) || !(ci->flags & CCI_FASTCALL)) {
400 r = 0;
401 } else {
402 r = gprs & 31; gprs >>= 5;
403 }
404#endif
405 if (r) { /* Argument is in a register. */
406 if (r < RID_MAX_GPR && ref < ASMREF_TMP1) {
407#if LJ_64
408 if (ir->o == IR_KINT64)
409 emit_loadu64(as, r, ir_kint64(ir)->u64);
410 else
411#endif
412 emit_loadi(as, r, ir->i);
413 } else {
414 lua_assert(rset_test(as->freeset, r)); /* Must have been evicted. */
415 if (ra_hasreg(ir->r)) {
416 ra_noweak(as, ir->r);
417 emit_movrr(as, ir, r, ir->r);
418 } else {
419 ra_allocref(as, ref, RID2RSET(r));
420 }
421 }
422 } else if (irt_isfp(ir->t)) { /* FP argument is on stack. */
423 lua_assert(!(irt_isfloat(ir->t) && irref_isk(ref))); /* No float k. */
424 if (LJ_32 && (ofs & 4) && irref_isk(ref)) {
425 /* Split stores for unaligned FP consts. */
426 emit_movmroi(as, RID_ESP, ofs, (int32_t)ir_knum(ir)->u32.lo);
427 emit_movmroi(as, RID_ESP, ofs+4, (int32_t)ir_knum(ir)->u32.hi);
428 } else {
429 r = ra_alloc1(as, ref, RSET_FPR);
430 emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSDto : XO_MOVSSto,
431 r, RID_ESP, ofs);
432 }
433 ofs += (LJ_32 && irt_isfloat(ir->t)) ? 4 : 8;
434 } else { /* Non-FP argument is on stack. */
435 if (LJ_32 && ref < ASMREF_TMP1) {
436 emit_movmroi(as, RID_ESP, ofs, ir->i);
437 } else {
438 r = ra_alloc1(as, ref, RSET_GPR);
439 emit_movtomro(as, REX_64IR(ir, r), RID_ESP, ofs);
440 }
441 ofs += sizeof(intptr_t);
442 }
443 }
444}
445
446/* Setup result reg/sp for call. Evict scratch regs. */
447static void asm_setupresult(ASMState *as, IRIns *ir, const CCallInfo *ci)
448{
449 RegSet drop = RSET_SCRATCH;
450 if ((ci->flags & CCI_NOFPRCLOBBER))
451 drop &= ~RSET_FPR;
452 if (ra_hasreg(ir->r))
453 rset_clear(drop, ir->r); /* Dest reg handled below. */
454 ra_evictset(as, drop); /* Evictions must be performed first. */
455 if (ra_used(ir)) {
456 if (irt_isfp(ir->t)) {
457 int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
458#if LJ_64
459 if ((ci->flags & CCI_CASTU64)) {
460 Reg dest = ir->r;
461 if (ra_hasreg(dest)) {
462 ra_free(as, dest);
463 ra_modified(as, dest);
464 emit_rr(as, XO_MOVD, dest|REX_64, RID_RET); /* Really MOVQ. */
465 } else {
466 emit_movtomro(as, RID_RET|REX_64, RID_ESP, ofs);
467 }
468 } else {
469 ra_destreg(as, ir, RID_FPRET);
470 }
471#else
472 /* Number result is in x87 st0 for x86 calling convention. */
473 Reg dest = ir->r;
474 if (ra_hasreg(dest)) {
475 ra_free(as, dest);
476 ra_modified(as, dest);
477 emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS,
478 dest, RID_ESP, ofs);
479 }
480 if ((ci->flags & CCI_CASTU64)) {
481 emit_movtomro(as, RID_RET, RID_ESP, ofs);
482 emit_movtomro(as, RID_RETHI, RID_ESP, ofs+4);
483 } else {
484 emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd,
485 irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs);
486 }
487#endif
488 } else {
489 lua_assert(!irt_ispri(ir->t));
490 ra_destreg(as, ir, RID_RET);
491 }
492 } else if (LJ_32 && irt_isfp(ir->t)) {
493 emit_x87op(as, XI_FPOP); /* Pop unused result from x87 st0. */
494 }
495}
496
497static void asm_call(ASMState *as, IRIns *ir)
498{
499 IRRef args[CCI_NARGS_MAX];
500 const CCallInfo *ci = &lj_ir_callinfo[ir->op2];
501 asm_collectargs(as, ir, ci, args);
502 asm_setupresult(as, ir, ci);
503 asm_gencall(as, ci, args);
504}
505
506static void asm_callx(ASMState *as, IRIns *ir)
507{
508 IRRef args[CCI_NARGS_MAX];
509 CCallInfo ci;
510 IRIns *irf;
511 ci.flags = asm_callx_flags(as, ir);
512 asm_collectargs(as, ir, &ci, args);
513 asm_setupresult(as, ir, &ci);
514 irf = IR(ir->op2);
515 if (LJ_32 && irref_isk(ir->op2)) { /* Call to constant address on x86. */
516 ci.func = (ASMFunction)(void *)(uintptr_t)(uint32_t)irf->i;
517 } else {
518 /* Prefer a non-argument register or RID_RET for indirect calls. */
519 RegSet allow = (RSET_GPR & ~RSET_SCRATCH)|RID2RSET(RID_RET);
520 Reg r = ra_alloc1(as, ir->op2, allow);
521 emit_rr(as, XO_GROUP5, XOg_CALL, r);
522 ci.func = (ASMFunction)(void *)0;
523 }
524 asm_gencall(as, &ci, args);
525}
526
527/* -- Returns ------------------------------------------------------------- */
528
529/* Return to lower frame. Guard that it goes to the right spot. */
530static void asm_retf(ASMState *as, IRIns *ir)
531{
532 Reg base = ra_alloc1(as, REF_BASE, RSET_GPR);
533 void *pc = ir_kptr(IR(ir->op2));
534 int32_t delta = 1+bc_a(*((const BCIns *)pc - 1));
535 as->topslot -= (BCReg)delta;
536 if ((int32_t)as->topslot < 0) as->topslot = 0;
537 emit_setgl(as, base, jit_base);
538 emit_addptr(as, base, -8*delta);
539 asm_guardcc(as, CC_NE);
540 emit_gmroi(as, XG_ARITHi(XOg_CMP), base, -4, ptr2addr(pc));
541}
542
543/* -- Type conversions ---------------------------------------------------- */
544
545static void asm_tointg(ASMState *as, IRIns *ir, Reg left)
546{
547 Reg tmp = ra_scratch(as, rset_exclude(RSET_FPR, left));
548 Reg dest = ra_dest(as, ir, RSET_GPR);
549 asm_guardcc(as, CC_P);
550 asm_guardcc(as, CC_NE);
551 emit_rr(as, XO_UCOMISD, left, tmp);
552 emit_rr(as, XO_CVTSI2SD, tmp, dest);
553 if (!(as->flags & JIT_F_SPLIT_XMM))
554 emit_rr(as, XO_XORPS, tmp, tmp); /* Avoid partial register stall. */
555 emit_rr(as, XO_CVTTSD2SI, dest, left);
556 /* Can't fuse since left is needed twice. */
557}
558
559static void asm_tobit(ASMState *as, IRIns *ir)
560{
561 Reg dest = ra_dest(as, ir, RSET_GPR);
562 Reg tmp = ra_noreg(IR(ir->op1)->r) ?
563 ra_alloc1(as, ir->op1, RSET_FPR) :
564 ra_scratch(as, RSET_FPR);
565 Reg right = asm_fuseload(as, ir->op2, rset_exclude(RSET_FPR, tmp));
566 emit_rr(as, XO_MOVDto, tmp, dest);
567 emit_mrm(as, XO_ADDSD, tmp, right);
568 ra_left(as, tmp, ir->op1);
569}
570
571static void asm_conv(ASMState *as, IRIns *ir)
572{
573 IRType st = (IRType)(ir->op2 & IRCONV_SRCMASK);
574 int st64 = (st == IRT_I64 || st == IRT_U64 || (LJ_64 && st == IRT_P64));
575 int stfp = (st == IRT_NUM || st == IRT_FLOAT);
576 IRRef lref = ir->op1;
577 lua_assert(irt_type(ir->t) != st);
578 lua_assert(!(LJ_32 && (irt_isint64(ir->t) || st64))); /* Handled by SPLIT. */
579 if (irt_isfp(ir->t)) {
580 Reg dest = ra_dest(as, ir, RSET_FPR);
581 if (stfp) { /* FP to FP conversion. */
582 Reg left = asm_fuseload(as, lref, RSET_FPR);
583 emit_mrm(as, st == IRT_NUM ? XO_CVTSD2SS : XO_CVTSS2SD, dest, left);
584 if (left == dest) return; /* Avoid the XO_XORPS. */
585 } else if (LJ_32 && st == IRT_U32) { /* U32 to FP conversion on x86. */
586 /* number = (2^52+2^51 .. u32) - (2^52+2^51) */
587 cTValue *k = lj_ir_k64_find(as->J, U64x(43380000,00000000));
588 Reg bias = ra_scratch(as, rset_exclude(RSET_FPR, dest));
589 if (irt_isfloat(ir->t))
590 emit_rr(as, XO_CVTSD2SS, dest, dest);
591 emit_rr(as, XO_SUBSD, dest, bias); /* Subtract 2^52+2^51 bias. */
592 emit_rr(as, XO_XORPS, dest, bias); /* Merge bias and integer. */
593 emit_loadn(as, bias, k);
594 emit_mrm(as, XO_MOVD, dest, asm_fuseload(as, lref, RSET_GPR));
595 return;
596 } else { /* Integer to FP conversion. */
597 Reg left = (LJ_64 && (st == IRT_U32 || st == IRT_U64)) ?
598 ra_alloc1(as, lref, RSET_GPR) :
599 asm_fuseload(as, lref, RSET_GPR);
600 if (LJ_64 && st == IRT_U64) {
601 MCLabel l_end = emit_label(as);
602 const void *k = lj_ir_k64_find(as->J, U64x(43f00000,00000000));
603 emit_rma(as, XO_ADDSD, dest, k); /* Add 2^64 to compensate. */
604 emit_sjcc(as, CC_NS, l_end);
605 emit_rr(as, XO_TEST, left|REX_64, left); /* Check if u64 >= 2^63. */
606 }
607 emit_mrm(as, irt_isnum(ir->t) ? XO_CVTSI2SD : XO_CVTSI2SS,
608 dest|((LJ_64 && (st64 || st == IRT_U32)) ? REX_64 : 0), left);
609 }
610 if (!(as->flags & JIT_F_SPLIT_XMM))
611 emit_rr(as, XO_XORPS, dest, dest); /* Avoid partial register stall. */
612 } else if (stfp) { /* FP to integer conversion. */
613 if (irt_isguard(ir->t)) {
614 /* Checked conversions are only supported from number to int. */
615 lua_assert(irt_isint(ir->t) && st == IRT_NUM);
616 asm_tointg(as, ir, ra_alloc1(as, lref, RSET_FPR));
617 } else {
618 Reg dest = ra_dest(as, ir, RSET_GPR);
619 x86Op op = st == IRT_NUM ?
620 ((ir->op2 & IRCONV_TRUNC) ? XO_CVTTSD2SI : XO_CVTSD2SI) :
621 ((ir->op2 & IRCONV_TRUNC) ? XO_CVTTSS2SI : XO_CVTSS2SI);
622 if (LJ_32 && irt_isu32(ir->t)) { /* FP to U32 conversion on x86. */
623 /* u32 = (int32_t)(number - 2^31) + 2^31 */
624 Reg tmp = ra_noreg(IR(lref)->r) ? ra_alloc1(as, lref, RSET_FPR) :
625 ra_scratch(as, RSET_FPR);
626 emit_gri(as, XG_ARITHi(XOg_ADD), dest, (int32_t)0x80000000);
627 emit_rr(as, op, dest, tmp);
628 if (st == IRT_NUM)
629 emit_rma(as, XO_ADDSD, tmp,
630 lj_ir_k64_find(as->J, U64x(c1e00000,00000000)));
631 else
632 emit_rma(as, XO_ADDSS, tmp,
633 lj_ir_k64_find(as->J, U64x(00000000,cf000000)));
634 ra_left(as, tmp, lref);
635 } else if (LJ_64 && irt_isu64(ir->t)) {
636 /* For inputs in [2^63,2^64-1] add -2^64 and convert again. */
637 Reg tmp = ra_noreg(IR(lref)->r) ? ra_alloc1(as, lref, RSET_FPR) :
638 ra_scratch(as, RSET_FPR);
639 MCLabel l_end = emit_label(as);
640 emit_rr(as, op, dest|REX_64, tmp);
641 if (st == IRT_NUM)
642 emit_rma(as, XO_ADDSD, tmp,
643 lj_ir_k64_find(as->J, U64x(c3f00000,00000000)));
644 else
645 emit_rma(as, XO_ADDSS, tmp,
646 lj_ir_k64_find(as->J, U64x(00000000,df800000)));
647 emit_sjcc(as, CC_NS, l_end);
648 emit_rr(as, XO_TEST, dest|REX_64, dest); /* Check if dest < 2^63. */
649 emit_rr(as, op, dest|REX_64, tmp);
650 ra_left(as, tmp, lref);
651 } else {
652 Reg left = asm_fuseload(as, lref, RSET_FPR);
653 if (LJ_64 && irt_isu32(ir->t))
654 emit_rr(as, XO_MOV, dest, dest); /* Zero hiword. */
655 emit_mrm(as, op,
656 dest|((LJ_64 &&
657 (irt_is64(ir->t) || irt_isu32(ir->t))) ? REX_64 : 0),
658 left);
659 }
660 }
661 } else if (st >= IRT_I8 && st <= IRT_U16) { /* Extend to 32 bit integer. */
662 Reg left, dest = ra_dest(as, ir, RSET_GPR);
663 RegSet allow = RSET_GPR;
664 x86Op op;
665 lua_assert(irt_isint(ir->t) || irt_isu32(ir->t));
666 if (st == IRT_I8) {
667 op = XO_MOVSXb; allow = RSET_GPR8; dest |= FORCE_REX;
668 } else if (st == IRT_U8) {
669 op = XO_MOVZXb; allow = RSET_GPR8; dest |= FORCE_REX;
670 } else if (st == IRT_I16) {
671 op = XO_MOVSXw;
672 } else {
673 op = XO_MOVZXw;
674 }
675 left = asm_fuseload(as, lref, allow);
676 /* Add extra MOV if source is already in wrong register. */
677 if (!LJ_64 && left != RID_MRM && !rset_test(allow, left)) {
678 Reg tmp = ra_scratch(as, allow);
679 emit_rr(as, op, dest, tmp);
680 emit_rr(as, XO_MOV, tmp, left);
681 } else {
682 emit_mrm(as, op, dest, left);
683 }
684 } else { /* 32/64 bit integer conversions. */
685 if (LJ_32) { /* Only need to handle 32/32 bit no-op (cast) on x86. */
686 Reg dest = ra_dest(as, ir, RSET_GPR);
687 ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
688 } else if (irt_is64(ir->t)) {
689 Reg dest = ra_dest(as, ir, RSET_GPR);
690 if (st64 || !(ir->op2 & IRCONV_SEXT)) {
691 /* 64/64 bit no-op (cast) or 32 to 64 bit zero extension. */
692 ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
693 } else { /* 32 to 64 bit sign extension. */
694 Reg left = asm_fuseload(as, lref, RSET_GPR);
695 emit_mrm(as, XO_MOVSXd, dest|REX_64, left);
696 }
697 } else {
698 Reg dest = ra_dest(as, ir, RSET_GPR);
699 if (st64) {
700 Reg left = asm_fuseload(as, lref, RSET_GPR);
701 /* This is either a 32 bit reg/reg mov which zeroes the hiword
702 ** or a load of the loword from a 64 bit address.
703 */
704 emit_mrm(as, XO_MOV, dest, left);
705 } else { /* 32/32 bit no-op (cast). */
706 ra_left(as, dest, lref); /* Do nothing, but may need to move regs. */
707 }
708 }
709 }
710}
711
712#if LJ_32 && LJ_HASFFI
713/* No SSE conversions to/from 64 bit on x86, so resort to ugly x87 code. */
714
715/* 64 bit integer to FP conversion in 32 bit mode. */
716static void asm_conv_fp_int64(ASMState *as, IRIns *ir)
717{
718 Reg hi = ra_alloc1(as, ir->op1, RSET_GPR);
719 Reg lo = ra_alloc1(as, (ir-1)->op1, rset_exclude(RSET_GPR, hi));
720 int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
721 Reg dest = ir->r;
722 if (ra_hasreg(dest)) {
723 ra_free(as, dest);
724 ra_modified(as, dest);
725 emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS,
726 dest, RID_ESP, ofs);
727 }
728 emit_rmro(as, irt_isnum(ir->t) ? XO_FSTPq : XO_FSTPd,
729 irt_isnum(ir->t) ? XOg_FSTPq : XOg_FSTPd, RID_ESP, ofs);
730 if (((ir-1)->op2 & IRCONV_SRCMASK) == IRT_U64) {
731 /* For inputs in [2^63,2^64-1] add 2^64 to compensate. */
732 MCLabel l_end = emit_label(as);
733 emit_rma(as, XO_FADDq, XOg_FADDq,
734 lj_ir_k64_find(as->J, U64x(43f00000,00000000)));
735 emit_sjcc(as, CC_NS, l_end);
736 emit_rr(as, XO_TEST, hi, hi); /* Check if u64 >= 2^63. */
737 } else {
738 lua_assert(((ir-1)->op2 & IRCONV_SRCMASK) == IRT_I64);
739 }
740 emit_rmro(as, XO_FILDq, XOg_FILDq, RID_ESP, 0);
741 /* NYI: Avoid narrow-to-wide store-to-load forwarding stall. */
742 emit_rmro(as, XO_MOVto, hi, RID_ESP, 4);
743 emit_rmro(as, XO_MOVto, lo, RID_ESP, 0);
744}
745
746/* FP to 64 bit integer conversion in 32 bit mode. */
747static void asm_conv_int64_fp(ASMState *as, IRIns *ir)
748{
749 IRType st = (IRType)((ir-1)->op2 & IRCONV_SRCMASK);
750 IRType dt = (((ir-1)->op2 & IRCONV_DSTMASK) >> IRCONV_DSH);
751 Reg lo, hi;
752 lua_assert(st == IRT_NUM || st == IRT_FLOAT);
753 lua_assert(dt == IRT_I64 || dt == IRT_U64);
754 lua_assert(((ir-1)->op2 & IRCONV_TRUNC));
755 hi = ra_dest(as, ir, RSET_GPR);
756 lo = ra_dest(as, ir-1, rset_exclude(RSET_GPR, hi));
757 if (ra_used(ir-1)) emit_rmro(as, XO_MOV, lo, RID_ESP, 0);
758 /* NYI: Avoid wide-to-narrow store-to-load forwarding stall. */
759 if (!(as->flags & JIT_F_SSE3)) { /* Set FPU rounding mode to default. */
760 emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 4);
761 emit_rmro(as, XO_MOVto, lo, RID_ESP, 4);
762 emit_gri(as, XG_ARITHi(XOg_AND), lo, 0xf3ff);
763 }
764 if (dt == IRT_U64) {
765 /* For inputs in [2^63,2^64-1] add -2^64 and convert again. */
766 MCLabel l_pop, l_end = emit_label(as);
767 emit_x87op(as, XI_FPOP);
768 l_pop = emit_label(as);
769 emit_sjmp(as, l_end);
770 emit_rmro(as, XO_MOV, hi, RID_ESP, 4);
771 if ((as->flags & JIT_F_SSE3))
772 emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0);
773 else
774 emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0);
775 emit_rma(as, XO_FADDq, XOg_FADDq,
776 lj_ir_k64_find(as->J, U64x(c3f00000,00000000)));
777 emit_sjcc(as, CC_NS, l_pop);
778 emit_rr(as, XO_TEST, hi, hi); /* Check if out-of-range (2^63). */
779 }
780 emit_rmro(as, XO_MOV, hi, RID_ESP, 4);
781 if ((as->flags & JIT_F_SSE3)) { /* Truncation is easy with SSE3. */
782 emit_rmro(as, XO_FISTTPq, XOg_FISTTPq, RID_ESP, 0);
783 } else { /* Otherwise set FPU rounding mode to truncate before the store. */
784 emit_rmro(as, XO_FISTPq, XOg_FISTPq, RID_ESP, 0);
785 emit_rmro(as, XO_FLDCW, XOg_FLDCW, RID_ESP, 0);
786 emit_rmro(as, XO_MOVtow, lo, RID_ESP, 0);
787 emit_rmro(as, XO_ARITHw(XOg_OR), lo, RID_ESP, 0);
788 emit_loadi(as, lo, 0xc00);
789 emit_rmro(as, XO_FNSTCW, XOg_FNSTCW, RID_ESP, 0);
790 }
791 if (dt == IRT_U64)
792 emit_x87op(as, XI_FDUP);
793 emit_mrm(as, st == IRT_NUM ? XO_FLDq : XO_FLDd,
794 st == IRT_NUM ? XOg_FLDq: XOg_FLDd,
795 asm_fuseload(as, ir->op1, RSET_EMPTY));
796}
797#endif
798
799static void asm_strto(ASMState *as, IRIns *ir)
800{
801 /* Force a spill slot for the destination register (if any). */
802 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_tonum];
803 IRRef args[2];
804 RegSet drop = RSET_SCRATCH;
805 if ((drop & RSET_FPR) != RSET_FPR && ra_hasreg(ir->r))
806 rset_set(drop, ir->r); /* WIN64 doesn't spill all FPRs. */
807 ra_evictset(as, drop);
808 asm_guardcc(as, CC_E);
809 emit_rr(as, XO_TEST, RID_RET, RID_RET); /* Test return status. */
810 args[0] = ir->op1; /* GCstr *str */
811 args[1] = ASMREF_TMP1; /* TValue *n */
812 asm_gencall(as, ci, args);
813 /* Store the result to the spill slot or temp slots. */
814 emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64,
815 RID_ESP, sps_scale(ir->s));
816}
817
818static void asm_tostr(ASMState *as, IRIns *ir)
819{
820 IRIns *irl = IR(ir->op1);
821 IRRef args[2];
822 args[0] = ASMREF_L;
823 as->gcsteps++;
824 if (irt_isnum(irl->t)) {
825 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromnum];
826 args[1] = ASMREF_TMP1; /* const lua_Number * */
827 asm_setupresult(as, ir, ci); /* GCstr * */
828 asm_gencall(as, ci, args);
829 emit_rmro(as, XO_LEA, ra_releasetmp(as, ASMREF_TMP1)|REX_64,
830 RID_ESP, ra_spill(as, irl));
831 } else {
832 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_str_fromint];
833 args[1] = ir->op1; /* int32_t k */
834 asm_setupresult(as, ir, ci); /* GCstr * */
835 asm_gencall(as, ci, args);
836 }
837}
838
839/* -- Memory references --------------------------------------------------- */
840
841static void asm_aref(ASMState *as, IRIns *ir)
842{
843 Reg dest = ra_dest(as, ir, RSET_GPR);
844 asm_fusearef(as, ir, RSET_GPR);
845 if (!(as->mrm.idx == RID_NONE && as->mrm.ofs == 0))
846 emit_mrm(as, XO_LEA, dest, RID_MRM);
847 else if (as->mrm.base != dest)
848 emit_rr(as, XO_MOV, dest, as->mrm.base);
849}
850
851/* Merge NE(HREF, niltv) check. */
852static MCode *merge_href_niltv(ASMState *as, IRIns *ir)
853{
854 /* Assumes nothing else generates NE of HREF. */
855 if ((ir[1].o == IR_NE || ir[1].o == IR_EQ) && ir[1].op1 == as->curins &&
856 ra_hasreg(ir->r)) {
857 MCode *p = as->mcp;
858 p += (LJ_64 && *p != XI_ARITHi) ? 7+6 : 6+6;
859 /* Ensure no loop branch inversion happened. */
860 if (p[-6] == 0x0f && p[-5] == XI_JCCn+(CC_NE^(ir[1].o & 1))) {
861 as->mcp = p; /* Kill cmp reg, imm32 + jz exit. */
862 return p + *(int32_t *)(p-4); /* Return exit address. */
863 }
864 }
865 return NULL;
866}
867
868/* Inlined hash lookup. Specialized for key type and for const keys.
869** The equivalent C code is:
870** Node *n = hashkey(t, key);
871** do {
872** if (lj_obj_equal(&n->key, key)) return &n->val;
873** } while ((n = nextnode(n)));
874** return niltv(L);
875*/
876static void asm_href(ASMState *as, IRIns *ir)
877{
878 MCode *nilexit = merge_href_niltv(as, ir); /* Do this before any restores. */
879 RegSet allow = RSET_GPR;
880 Reg dest = ra_dest(as, ir, allow);
881 Reg tab = ra_alloc1(as, ir->op1, rset_clear(allow, dest));
882 Reg key = RID_NONE, tmp = RID_NONE;
883 IRIns *irkey = IR(ir->op2);
884 int isk = irref_isk(ir->op2);
885 IRType1 kt = irkey->t;
886 uint32_t khash;
887 MCLabel l_end, l_loop, l_next;
888
889 if (!isk) {
890 rset_clear(allow, tab);
891 key = ra_alloc1(as, ir->op2, irt_isnum(kt) ? RSET_FPR : allow);
892 if (!irt_isstr(kt))
893 tmp = ra_scratch(as, rset_exclude(allow, key));
894 }
895
896 /* Key not found in chain: jump to exit (if merged with NE) or load niltv. */
897 l_end = emit_label(as);
898 if (nilexit && ir[1].o == IR_NE) {
899 emit_jcc(as, CC_E, nilexit); /* XI_JMP is not found by lj_asm_patchexit. */
900 nilexit = NULL;
901 } else {
902 emit_loada(as, dest, niltvg(J2G(as->J)));
903 }
904
905 /* Follow hash chain until the end. */
906 l_loop = emit_sjcc_label(as, CC_NZ);
907 emit_rr(as, XO_TEST, dest, dest);
908 emit_rmro(as, XO_MOV, dest, dest, offsetof(Node, next));
909 l_next = emit_label(as);
910
911 /* Type and value comparison. */
912 if (nilexit)
913 emit_jcc(as, CC_E, nilexit);
914 else
915 emit_sjcc(as, CC_E, l_end);
916 if (irt_isnum(kt)) {
917 if (isk) {
918 /* Assumes -0.0 is already canonicalized to +0.0. */
919 emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.lo),
920 (int32_t)ir_knum(irkey)->u32.lo);
921 emit_sjcc(as, CC_NE, l_next);
922 emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.u32.hi),
923 (int32_t)ir_knum(irkey)->u32.hi);
924 } else {
925 emit_sjcc(as, CC_P, l_next);
926 emit_rmro(as, XO_UCOMISD, key, dest, offsetof(Node, key.n));
927 emit_sjcc(as, CC_AE, l_next);
928 /* The type check avoids NaN penalties and complaints from Valgrind. */
929#if LJ_64
930 emit_u32(as, LJ_TISNUM);
931 emit_rmro(as, XO_ARITHi, XOg_CMP, dest, offsetof(Node, key.it));
932#else
933 emit_i8(as, LJ_TISNUM);
934 emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it));
935#endif
936 }
937#if LJ_64
938 } else if (irt_islightud(kt)) {
939 emit_rmro(as, XO_CMP, key|REX_64, dest, offsetof(Node, key.u64));
940#endif
941 } else {
942 if (!irt_ispri(kt)) {
943 lua_assert(irt_isaddr(kt));
944 if (isk)
945 emit_gmroi(as, XG_ARITHi(XOg_CMP), dest, offsetof(Node, key.gcr),
946 ptr2addr(ir_kgc(irkey)));
947 else
948 emit_rmro(as, XO_CMP, key, dest, offsetof(Node, key.gcr));
949 emit_sjcc(as, CC_NE, l_next);
950 }
951 lua_assert(!irt_isnil(kt));
952 emit_i8(as, irt_toitype(kt));
953 emit_rmro(as, XO_ARITHi8, XOg_CMP, dest, offsetof(Node, key.it));
954 }
955 emit_sfixup(as, l_loop);
956 checkmclim(as);
957
958 /* Load main position relative to tab->node into dest. */
959 khash = isk ? ir_khash(irkey) : 1;
960 if (khash == 0) {
961 emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, node));
962 } else {
963 emit_rmro(as, XO_ARITH(XOg_ADD), dest, tab, offsetof(GCtab, node));
964 if ((as->flags & JIT_F_PREFER_IMUL)) {
965 emit_i8(as, sizeof(Node));
966 emit_rr(as, XO_IMULi8, dest, dest);
967 } else {
968 emit_shifti(as, XOg_SHL, dest, 3);
969 emit_rmrxo(as, XO_LEA, dest, dest, dest, XM_SCALE2, 0);
970 }
971 if (isk) {
972 emit_gri(as, XG_ARITHi(XOg_AND), dest, (int32_t)khash);
973 emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask));
974 } else if (irt_isstr(kt)) {
975 emit_rmro(as, XO_ARITH(XOg_AND), dest, key, offsetof(GCstr, hash));
976 emit_rmro(as, XO_MOV, dest, tab, offsetof(GCtab, hmask));
977 } else { /* Must match with hashrot() in lj_tab.c. */
978 emit_rmro(as, XO_ARITH(XOg_AND), dest, tab, offsetof(GCtab, hmask));
979 emit_rr(as, XO_ARITH(XOg_SUB), dest, tmp);
980 emit_shifti(as, XOg_ROL, tmp, HASH_ROT3);
981 emit_rr(as, XO_ARITH(XOg_XOR), dest, tmp);
982 emit_shifti(as, XOg_ROL, dest, HASH_ROT2);
983 emit_rr(as, XO_ARITH(XOg_SUB), tmp, dest);
984 emit_shifti(as, XOg_ROL, dest, HASH_ROT1);
985 emit_rr(as, XO_ARITH(XOg_XOR), tmp, dest);
986 if (irt_isnum(kt)) {
987 emit_rr(as, XO_ARITH(XOg_ADD), dest, dest);
988#if LJ_64
989 emit_shifti(as, XOg_SHR|REX_64, dest, 32);
990 emit_rr(as, XO_MOV, tmp, dest);
991 emit_rr(as, XO_MOVDto, key|REX_64, dest);
992#else
993 emit_rmro(as, XO_MOV, dest, RID_ESP, ra_spill(as, irkey)+4);
994 emit_rr(as, XO_MOVDto, key, tmp);
995#endif
996 } else {
997 emit_rr(as, XO_MOV, tmp, key);
998 emit_rmro(as, XO_LEA, dest, key, HASH_BIAS);
999 }
1000 }
1001 }
1002}
1003
1004static void asm_hrefk(ASMState *as, IRIns *ir)
1005{
1006 IRIns *kslot = IR(ir->op2);
1007 IRIns *irkey = IR(kslot->op1);
1008 int32_t ofs = (int32_t)(kslot->op2 * sizeof(Node));
1009 Reg dest = ra_used(ir) ? ra_dest(as, ir, RSET_GPR) : RID_NONE;
1010 Reg node = ra_alloc1(as, ir->op1, RSET_GPR);
1011#if !LJ_64
1012 MCLabel l_exit;
1013#endif
1014 lua_assert(ofs % sizeof(Node) == 0);
1015 if (ra_hasreg(dest)) {
1016 if (ofs != 0) {
1017 if (dest == node && !(as->flags & JIT_F_LEA_AGU))
1018 emit_gri(as, XG_ARITHi(XOg_ADD), dest, ofs);
1019 else
1020 emit_rmro(as, XO_LEA, dest, node, ofs);
1021 } else if (dest != node) {
1022 emit_rr(as, XO_MOV, dest, node);
1023 }
1024 }
1025 asm_guardcc(as, CC_NE);
1026#if LJ_64
1027 if (!irt_ispri(irkey->t)) {
1028 Reg key = ra_scratch(as, rset_exclude(RSET_GPR, node));
1029 emit_rmro(as, XO_CMP, key|REX_64, node,
1030 ofs + (int32_t)offsetof(Node, key.u64));
1031 lua_assert(irt_isnum(irkey->t) || irt_isgcv(irkey->t));
1032 /* Assumes -0.0 is already canonicalized to +0.0. */
1033 emit_loadu64(as, key, irt_isnum(irkey->t) ? ir_knum(irkey)->u64 :
1034 ((uint64_t)irt_toitype(irkey->t) << 32) |
1035 (uint64_t)(uint32_t)ptr2addr(ir_kgc(irkey)));
1036 } else {
1037 lua_assert(!irt_isnil(irkey->t));
1038 emit_i8(as, irt_toitype(irkey->t));
1039 emit_rmro(as, XO_ARITHi8, XOg_CMP, node,
1040 ofs + (int32_t)offsetof(Node, key.it));
1041 }
1042#else
1043 l_exit = emit_label(as);
1044 if (irt_isnum(irkey->t)) {
1045 /* Assumes -0.0 is already canonicalized to +0.0. */
1046 emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
1047 ofs + (int32_t)offsetof(Node, key.u32.lo),
1048 (int32_t)ir_knum(irkey)->u32.lo);
1049 emit_sjcc(as, CC_NE, l_exit);
1050 emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
1051 ofs + (int32_t)offsetof(Node, key.u32.hi),
1052 (int32_t)ir_knum(irkey)->u32.hi);
1053 } else {
1054 if (!irt_ispri(irkey->t)) {
1055 lua_assert(irt_isgcv(irkey->t));
1056 emit_gmroi(as, XG_ARITHi(XOg_CMP), node,
1057 ofs + (int32_t)offsetof(Node, key.gcr),
1058 ptr2addr(ir_kgc(irkey)));
1059 emit_sjcc(as, CC_NE, l_exit);
1060 }
1061 lua_assert(!irt_isnil(irkey->t));
1062 emit_i8(as, irt_toitype(irkey->t));
1063 emit_rmro(as, XO_ARITHi8, XOg_CMP, node,
1064 ofs + (int32_t)offsetof(Node, key.it));
1065 }
1066#endif
1067}
1068
1069static void asm_newref(ASMState *as, IRIns *ir)
1070{
1071 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_tab_newkey];
1072 IRRef args[3];
1073 IRIns *irkey;
1074 Reg tmp;
1075 args[0] = ASMREF_L; /* lua_State *L */
1076 args[1] = ir->op1; /* GCtab *t */
1077 args[2] = ASMREF_TMP1; /* cTValue *key */
1078 asm_setupresult(as, ir, ci); /* TValue * */
1079 asm_gencall(as, ci, args);
1080 tmp = ra_releasetmp(as, ASMREF_TMP1);
1081 irkey = IR(ir->op2);
1082 if (irt_isnum(irkey->t)) {
1083 /* For numbers use the constant itself or a spill slot as a TValue. */
1084 if (irref_isk(ir->op2))
1085 emit_loada(as, tmp, ir_knum(irkey));
1086 else
1087 emit_rmro(as, XO_LEA, tmp|REX_64, RID_ESP, ra_spill(as, irkey));
1088 } else {
1089 /* Otherwise use g->tmptv to hold the TValue. */
1090 if (!irref_isk(ir->op2)) {
1091 Reg src = ra_alloc1(as, ir->op2, rset_exclude(RSET_GPR, tmp));
1092 emit_movtomro(as, REX_64IR(irkey, src), tmp, 0);
1093 } else if (!irt_ispri(irkey->t)) {
1094 emit_movmroi(as, tmp, 0, irkey->i);
1095 }
1096 if (!(LJ_64 && irt_islightud(irkey->t)))
1097 emit_movmroi(as, tmp, 4, irt_toitype(irkey->t));
1098 emit_loada(as, tmp, &J2G(as->J)->tmptv);
1099 }
1100}
1101
1102static void asm_uref(ASMState *as, IRIns *ir)
1103{
1104 /* NYI: Check that UREFO is still open and not aliasing a slot. */
1105 Reg dest = ra_dest(as, ir, RSET_GPR);
1106 if (irref_isk(ir->op1)) {
1107 GCfunc *fn = ir_kfunc(IR(ir->op1));
1108 MRef *v = &gcref(fn->l.uvptr[(ir->op2 >> 8)])->uv.v;
1109 emit_rma(as, XO_MOV, dest, v);
1110 } else {
1111 Reg uv = ra_scratch(as, RSET_GPR);
1112 Reg func = ra_alloc1(as, ir->op1, RSET_GPR);
1113 if (ir->o == IR_UREFC) {
1114 emit_rmro(as, XO_LEA, dest, uv, offsetof(GCupval, tv));
1115 asm_guardcc(as, CC_NE);
1116 emit_i8(as, 1);
1117 emit_rmro(as, XO_ARITHib, XOg_CMP, uv, offsetof(GCupval, closed));
1118 } else {
1119 emit_rmro(as, XO_MOV, dest, uv, offsetof(GCupval, v));
1120 }
1121 emit_rmro(as, XO_MOV, uv, func,
1122 (int32_t)offsetof(GCfuncL, uvptr) + 4*(int32_t)(ir->op2 >> 8));
1123 }
1124}
1125
1126static void asm_fref(ASMState *as, IRIns *ir)
1127{
1128 Reg dest = ra_dest(as, ir, RSET_GPR);
1129 asm_fusefref(as, ir, RSET_GPR);
1130 emit_mrm(as, XO_LEA, dest, RID_MRM);
1131}
1132
1133static void asm_strref(ASMState *as, IRIns *ir)
1134{
1135 Reg dest = ra_dest(as, ir, RSET_GPR);
1136 asm_fusestrref(as, ir, RSET_GPR);
1137 if (as->mrm.base == RID_NONE)
1138 emit_loadi(as, dest, as->mrm.ofs);
1139 else if (as->mrm.base == dest && as->mrm.idx == RID_NONE)
1140 emit_gri(as, XG_ARITHi(XOg_ADD), dest, as->mrm.ofs);
1141 else
1142 emit_mrm(as, XO_LEA, dest, RID_MRM);
1143}
1144
1145/* -- Loads and stores ---------------------------------------------------- */
1146
1147static void asm_fxload(ASMState *as, IRIns *ir)
1148{
1149 Reg dest = ra_dest(as, ir, irt_isnum(ir->t) ? RSET_FPR : RSET_GPR);
1150 x86Op xo;
1151 if (ir->o == IR_FLOAD)
1152 asm_fusefref(as, ir, RSET_GPR);
1153 else
1154 asm_fusexref(as, ir->op1, RSET_GPR);
1155 /* ir->op2 is ignored -- unaligned loads are ok on x86. */
1156 switch (irt_type(ir->t)) {
1157 case IRT_I8: xo = XO_MOVSXb; break;
1158 case IRT_U8: xo = XO_MOVZXb; break;
1159 case IRT_I16: xo = XO_MOVSXw; break;
1160 case IRT_U16: xo = XO_MOVZXw; break;
1161 case IRT_NUM: xo = XMM_MOVRM(as); break;
1162 case IRT_FLOAT: xo = XO_MOVSS; break;
1163 default:
1164 if (LJ_64 && irt_is64(ir->t))
1165 dest |= REX_64;
1166 else
1167 lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t));
1168 xo = XO_MOV;
1169 break;
1170 }
1171 emit_mrm(as, xo, dest, RID_MRM);
1172}
1173
1174static void asm_fxstore(ASMState *as, IRIns *ir)
1175{
1176 RegSet allow = RSET_GPR;
1177 Reg src = RID_NONE, osrc = RID_NONE;
1178 int32_t k = 0;
1179 /* The IRT_I16/IRT_U16 stores should never be simplified for constant
1180 ** values since mov word [mem], imm16 has a length-changing prefix.
1181 */
1182 if (irt_isi16(ir->t) || irt_isu16(ir->t) || irt_isfp(ir->t) ||
1183 !asm_isk32(as, ir->op2, &k)) {
1184 RegSet allow8 = irt_isfp(ir->t) ? RSET_FPR :
1185 (irt_isi8(ir->t) || irt_isu8(ir->t)) ? RSET_GPR8 : RSET_GPR;
1186 src = osrc = ra_alloc1(as, ir->op2, allow8);
1187 if (!LJ_64 && !rset_test(allow8, src)) { /* Already in wrong register. */
1188 rset_clear(allow, osrc);
1189 src = ra_scratch(as, allow8);
1190 }
1191 rset_clear(allow, src);
1192 }
1193 if (ir->o == IR_FSTORE)
1194 asm_fusefref(as, IR(ir->op1), allow);
1195 else
1196 asm_fusexref(as, ir->op1, allow);
1197 /* ir->op2 is ignored -- unaligned stores are ok on x86. */
1198 if (ra_hasreg(src)) {
1199 x86Op xo;
1200 switch (irt_type(ir->t)) {
1201 case IRT_I8: case IRT_U8: xo = XO_MOVtob; src |= FORCE_REX; break;
1202 case IRT_I16: case IRT_U16: xo = XO_MOVtow; break;
1203 case IRT_NUM: xo = XO_MOVSDto; break;
1204 case IRT_FLOAT: xo = XO_MOVSSto; break;
1205#if LJ_64
1206 case IRT_LIGHTUD: lua_assert(0); /* NYI: mask 64 bit lightuserdata. */
1207#endif
1208 default:
1209 if (LJ_64 && irt_is64(ir->t))
1210 src |= REX_64;
1211 else
1212 lua_assert(irt_isint(ir->t) || irt_isu32(ir->t) || irt_isaddr(ir->t));
1213 xo = XO_MOVto;
1214 break;
1215 }
1216 emit_mrm(as, xo, src, RID_MRM);
1217 if (!LJ_64 && src != osrc) {
1218 ra_noweak(as, osrc);
1219 emit_rr(as, XO_MOV, src, osrc);
1220 }
1221 } else {
1222 if (irt_isi8(ir->t) || irt_isu8(ir->t)) {
1223 emit_i8(as, k);
1224 emit_mrm(as, XO_MOVmib, 0, RID_MRM);
1225 } else {
1226 lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isu32(ir->t) ||
1227 irt_isaddr(ir->t));
1228 emit_i32(as, k);
1229 emit_mrm(as, XO_MOVmi, REX_64IR(ir, 0), RID_MRM);
1230 }
1231 }
1232}
1233
1234#if LJ_64
1235static Reg asm_load_lightud64(ASMState *as, IRIns *ir, int typecheck)
1236{
1237 if (ra_used(ir) || typecheck) {
1238 Reg dest = ra_dest(as, ir, RSET_GPR);
1239 if (typecheck) {
1240 Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, dest));
1241 asm_guardcc(as, CC_NE);
1242 emit_i8(as, -2);
1243 emit_rr(as, XO_ARITHi8, XOg_CMP, tmp);
1244 emit_shifti(as, XOg_SAR|REX_64, tmp, 47);
1245 emit_rr(as, XO_MOV, tmp|REX_64, dest);
1246 }
1247 return dest;
1248 } else {
1249 return RID_NONE;
1250 }
1251}
1252#endif
1253
1254static void asm_ahuvload(ASMState *as, IRIns *ir)
1255{
1256 lua_assert(irt_isnum(ir->t) || irt_ispri(ir->t) || irt_isaddr(ir->t) ||
1257 (LJ_DUALNUM && irt_isint(ir->t)));
1258#if LJ_64
1259 if (irt_islightud(ir->t)) {
1260 Reg dest = asm_load_lightud64(as, ir, 1);
1261 if (ra_hasreg(dest)) {
1262 asm_fuseahuref(as, ir->op1, RSET_GPR);
1263 emit_mrm(as, XO_MOV, dest|REX_64, RID_MRM);
1264 }
1265 return;
1266 } else
1267#endif
1268 if (ra_used(ir)) {
1269 RegSet allow = irt_isnum(ir->t) ? RSET_FPR : RSET_GPR;
1270 Reg dest = ra_dest(as, ir, allow);
1271 asm_fuseahuref(as, ir->op1, RSET_GPR);
1272 emit_mrm(as, dest < RID_MAX_GPR ? XO_MOV : XMM_MOVRM(as), dest, RID_MRM);
1273 } else {
1274 asm_fuseahuref(as, ir->op1, RSET_GPR);
1275 }
1276 /* Always do the type check, even if the load result is unused. */
1277 as->mrm.ofs += 4;
1278 asm_guardcc(as, irt_isnum(ir->t) ? CC_AE : CC_NE);
1279 if (LJ_64 && irt_type(ir->t) >= IRT_NUM) {
1280 lua_assert(irt_isinteger(ir->t) || irt_isnum(ir->t));
1281 emit_u32(as, LJ_TISNUM);
1282 emit_mrm(as, XO_ARITHi, XOg_CMP, RID_MRM);
1283 } else {
1284 emit_i8(as, irt_toitype(ir->t));
1285 emit_mrm(as, XO_ARITHi8, XOg_CMP, RID_MRM);
1286 }
1287}
1288
1289static void asm_ahustore(ASMState *as, IRIns *ir)
1290{
1291 if (irt_isnum(ir->t)) {
1292 Reg src = ra_alloc1(as, ir->op2, RSET_FPR);
1293 asm_fuseahuref(as, ir->op1, RSET_GPR);
1294 emit_mrm(as, XO_MOVSDto, src, RID_MRM);
1295#if LJ_64
1296 } else if (irt_islightud(ir->t)) {
1297 Reg src = ra_alloc1(as, ir->op2, RSET_GPR);
1298 asm_fuseahuref(as, ir->op1, rset_exclude(RSET_GPR, src));
1299 emit_mrm(as, XO_MOVto, src|REX_64, RID_MRM);
1300#endif
1301 } else {
1302 IRIns *irr = IR(ir->op2);
1303 RegSet allow = RSET_GPR;
1304 Reg src = RID_NONE;
1305 if (!irref_isk(ir->op2)) {
1306 src = ra_alloc1(as, ir->op2, allow);
1307 rset_clear(allow, src);
1308 }
1309 asm_fuseahuref(as, ir->op1, allow);
1310 if (ra_hasreg(src)) {
1311 emit_mrm(as, XO_MOVto, src, RID_MRM);
1312 } else if (!irt_ispri(irr->t)) {
1313 lua_assert(irt_isaddr(ir->t) || (LJ_DUALNUM && irt_isinteger(ir->t)));
1314 emit_i32(as, irr->i);
1315 emit_mrm(as, XO_MOVmi, 0, RID_MRM);
1316 }
1317 as->mrm.ofs += 4;
1318 emit_i32(as, (int32_t)irt_toitype(ir->t));
1319 emit_mrm(as, XO_MOVmi, 0, RID_MRM);
1320 }
1321}
1322
1323static void asm_sload(ASMState *as, IRIns *ir)
1324{
1325 int32_t ofs = 8*((int32_t)ir->op1-1) + ((ir->op2 & IRSLOAD_FRAME) ? 4 : 0);
1326 IRType1 t = ir->t;
1327 Reg base;
1328 lua_assert(!(ir->op2 & IRSLOAD_PARENT)); /* Handled by asm_head_side(). */
1329 lua_assert(irt_isguard(t) || !(ir->op2 & IRSLOAD_TYPECHECK));
1330 lua_assert(LJ_DUALNUM ||
1331 !irt_isint(t) || (ir->op2 & (IRSLOAD_CONVERT|IRSLOAD_FRAME)));
1332 if ((ir->op2 & IRSLOAD_CONVERT) && irt_isguard(t) && irt_isint(t)) {
1333 Reg left = ra_scratch(as, RSET_FPR);
1334 asm_tointg(as, ir, left); /* Frees dest reg. Do this before base alloc. */
1335 base = ra_alloc1(as, REF_BASE, RSET_GPR);
1336 emit_rmro(as, XMM_MOVRM(as), left, base, ofs);
1337 t.irt = IRT_NUM; /* Continue with a regular number type check. */
1338#if LJ_64
1339 } else if (irt_islightud(t)) {
1340 Reg dest = asm_load_lightud64(as, ir, (ir->op2 & IRSLOAD_TYPECHECK));
1341 if (ra_hasreg(dest)) {
1342 base = ra_alloc1(as, REF_BASE, RSET_GPR);
1343 emit_rmro(as, XO_MOV, dest|REX_64, base, ofs);
1344 }
1345 return;
1346#endif
1347 } else if (ra_used(ir)) {
1348 RegSet allow = irt_isnum(t) ? RSET_FPR : RSET_GPR;
1349 Reg dest = ra_dest(as, ir, allow);
1350 base = ra_alloc1(as, REF_BASE, RSET_GPR);
1351 lua_assert(irt_isnum(t) || irt_isint(t) || irt_isaddr(t));
1352 if ((ir->op2 & IRSLOAD_CONVERT)) {
1353 t.irt = irt_isint(t) ? IRT_NUM : IRT_INT; /* Check for original type. */
1354 emit_rmro(as, irt_isint(t) ? XO_CVTSI2SD : XO_CVTSD2SI, dest, base, ofs);
1355 } else if (irt_isnum(t)) {
1356 emit_rmro(as, XMM_MOVRM(as), dest, base, ofs);
1357 } else {
1358 emit_rmro(as, XO_MOV, dest, base, ofs);
1359 }
1360 } else {
1361 if (!(ir->op2 & IRSLOAD_TYPECHECK))
1362 return; /* No type check: avoid base alloc. */
1363 base = ra_alloc1(as, REF_BASE, RSET_GPR);
1364 }
1365 if ((ir->op2 & IRSLOAD_TYPECHECK)) {
1366 /* Need type check, even if the load result is unused. */
1367 asm_guardcc(as, irt_isnum(t) ? CC_AE : CC_NE);
1368 if (LJ_64 && irt_type(t) >= IRT_NUM) {
1369 lua_assert(irt_isinteger(t) || irt_isnum(t));
1370 emit_u32(as, LJ_TISNUM);
1371 emit_rmro(as, XO_ARITHi, XOg_CMP, base, ofs+4);
1372 } else {
1373 emit_i8(as, irt_toitype(t));
1374 emit_rmro(as, XO_ARITHi8, XOg_CMP, base, ofs+4);
1375 }
1376 }
1377}
1378
1379/* -- Allocations --------------------------------------------------------- */
1380
1381#if LJ_HASFFI
1382static void asm_cnew(ASMState *as, IRIns *ir)
1383{
1384 CTState *cts = ctype_ctsG(J2G(as->J));
1385 CTypeID typeid = (CTypeID)IR(ir->op1)->i;
1386 CTSize sz = (ir->o == IR_CNEWI || ir->op2 == REF_NIL) ?
1387 lj_ctype_size(cts, typeid) : (CTSize)IR(ir->op2)->i;
1388 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_mem_newgco];
1389 IRRef args[2];
1390 lua_assert(sz != CTSIZE_INVALID);
1391
1392 args[0] = ASMREF_L; /* lua_State *L */
1393 args[1] = ASMREF_TMP1; /* MSize size */
1394 as->gcsteps++;
1395 asm_setupresult(as, ir, ci); /* GCcdata * */
1396
1397 /* Initialize immutable cdata object. */
1398 if (ir->o == IR_CNEWI) {
1399 RegSet allow = (RSET_GPR & ~RSET_SCRATCH);
1400#if LJ_64
1401 Reg r64 = sz == 8 ? REX_64 : 0;
1402 if (irref_isk(ir->op2)) {
1403 IRIns *irk = IR(ir->op2);
1404 uint64_t k = irk->o == IR_KINT64 ? ir_k64(irk)->u64 :
1405 (uint64_t)(uint32_t)irk->i;
1406 if (sz == 4 || checki32((int64_t)k)) {
1407 emit_i32(as, (int32_t)k);
1408 emit_rmro(as, XO_MOVmi, r64, RID_RET, sizeof(GCcdata));
1409 } else {
1410 emit_movtomro(as, RID_ECX + r64, RID_RET, sizeof(GCcdata));
1411 emit_loadu64(as, RID_ECX, k);
1412 }
1413 } else {
1414 Reg r = ra_alloc1(as, ir->op2, allow);
1415 emit_movtomro(as, r + r64, RID_RET, sizeof(GCcdata));
1416 }
1417#else
1418 int32_t ofs = sizeof(GCcdata);
1419 if (LJ_HASFFI && sz == 8) {
1420 ofs += 4; ir++;
1421 lua_assert(ir->o == IR_HIOP);
1422 }
1423 do {
1424 if (irref_isk(ir->op2)) {
1425 emit_movmroi(as, RID_RET, ofs, IR(ir->op2)->i);
1426 } else {
1427 Reg r = ra_alloc1(as, ir->op2, allow);
1428 emit_movtomro(as, r, RID_RET, ofs);
1429 rset_clear(allow, r);
1430 }
1431 if (!LJ_HASFFI || ofs == sizeof(GCcdata)) break;
1432 ofs -= 4; ir--;
1433 } while (1);
1434#endif
1435 lua_assert(sz == 4 || (sz == 8 && (LJ_64 || LJ_HASFFI)));
1436 }
1437
1438 /* Combine initialization of marked, gct and typeid. */
1439 emit_movtomro(as, RID_ECX, RID_RET, offsetof(GCcdata, marked));
1440 emit_gri(as, XG_ARITHi(XOg_OR), RID_ECX,
1441 (int32_t)((~LJ_TCDATA<<8)+(typeid<<16)));
1442 emit_gri(as, XG_ARITHi(XOg_AND), RID_ECX, LJ_GC_WHITES);
1443 emit_opgl(as, XO_MOVZXb, RID_ECX, gc.currentwhite);
1444
1445 asm_gencall(as, ci, args);
1446 emit_loadi(as, ra_releasetmp(as, ASMREF_TMP1), (int32_t)(sz+sizeof(GCcdata)));
1447}
1448#else
1449#define asm_cnew(as, ir) ((void)0)
1450#endif
1451
1452/* -- Write barriers ------------------------------------------------------ */
1453
1454static void asm_tbar(ASMState *as, IRIns *ir)
1455{
1456 Reg tab = ra_alloc1(as, ir->op1, RSET_GPR);
1457 Reg tmp = ra_scratch(as, rset_exclude(RSET_GPR, tab));
1458 MCLabel l_end = emit_label(as);
1459 emit_movtomro(as, tmp, tab, offsetof(GCtab, gclist));
1460 emit_setgl(as, tab, gc.grayagain);
1461 emit_getgl(as, tmp, gc.grayagain);
1462 emit_i8(as, ~LJ_GC_BLACK);
1463 emit_rmro(as, XO_ARITHib, XOg_AND, tab, offsetof(GCtab, marked));
1464 emit_sjcc(as, CC_Z, l_end);
1465 emit_i8(as, LJ_GC_BLACK);
1466 emit_rmro(as, XO_GROUP3b, XOg_TEST, tab, offsetof(GCtab, marked));
1467}
1468
1469static void asm_obar(ASMState *as, IRIns *ir)
1470{
1471 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_barrieruv];
1472 IRRef args[2];
1473 MCLabel l_end;
1474 Reg obj;
1475 /* No need for other object barriers (yet). */
1476 lua_assert(IR(ir->op1)->o == IR_UREFC);
1477 ra_evictset(as, RSET_SCRATCH);
1478 l_end = emit_label(as);
1479 args[0] = ASMREF_TMP1; /* global_State *g */
1480 args[1] = ir->op1; /* TValue *tv */
1481 asm_gencall(as, ci, args);
1482 emit_loada(as, ra_releasetmp(as, ASMREF_TMP1), J2G(as->J));
1483 obj = IR(ir->op1)->r;
1484 emit_sjcc(as, CC_Z, l_end);
1485 emit_i8(as, LJ_GC_WHITES);
1486 if (irref_isk(ir->op2)) {
1487 GCobj *vp = ir_kgc(IR(ir->op2));
1488 emit_rma(as, XO_GROUP3b, XOg_TEST, &vp->gch.marked);
1489 } else {
1490 Reg val = ra_alloc1(as, ir->op2, rset_exclude(RSET_SCRATCH&RSET_GPR, obj));
1491 emit_rmro(as, XO_GROUP3b, XOg_TEST, val, (int32_t)offsetof(GChead, marked));
1492 }
1493 emit_sjcc(as, CC_Z, l_end);
1494 emit_i8(as, LJ_GC_BLACK);
1495 emit_rmro(as, XO_GROUP3b, XOg_TEST, obj,
1496 (int32_t)offsetof(GCupval, marked)-(int32_t)offsetof(GCupval, tv));
1497}
1498
1499/* -- FP/int arithmetic and logic operations ------------------------------ */
1500
1501/* Load reference onto x87 stack. Force a spill to memory if needed. */
1502static void asm_x87load(ASMState *as, IRRef ref)
1503{
1504 IRIns *ir = IR(ref);
1505 if (ir->o == IR_KNUM) {
1506 cTValue *tv = ir_knum(ir);
1507 if (tvispzero(tv)) /* Use fldz only for +0. */
1508 emit_x87op(as, XI_FLDZ);
1509 else if (tvispone(tv))
1510 emit_x87op(as, XI_FLD1);
1511 else
1512 emit_rma(as, XO_FLDq, XOg_FLDq, tv);
1513 } else if (ir->o == IR_CONV && ir->op2 == IRCONV_NUM_INT && !ra_used(ir) &&
1514 !irref_isk(ir->op1) && mayfuse(as, ir->op1)) {
1515 IRIns *iri = IR(ir->op1);
1516 emit_rmro(as, XO_FILDd, XOg_FILDd, RID_ESP, ra_spill(as, iri));
1517 } else {
1518 emit_mrm(as, XO_FLDq, XOg_FLDq, asm_fuseload(as, ref, RSET_EMPTY));
1519 }
1520}
1521
1522/* Try to rejoin pow from EXP2, MUL and LOG2 (if still unsplit). */
1523static int fpmjoin_pow(ASMState *as, IRIns *ir)
1524{
1525 IRIns *irp = IR(ir->op1);
1526 if (irp == ir-1 && irp->o == IR_MUL && !ra_used(irp)) {
1527 IRIns *irpp = IR(irp->op1);
1528 if (irpp == ir-2 && irpp->o == IR_FPMATH &&
1529 irpp->op2 == IRFPM_LOG2 && !ra_used(irpp)) {
1530 /* The modified regs must match with the *.dasc implementation. */
1531 RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM2+1)|RID2RSET(RID_EAX);
1532 IRIns *irx;
1533 if (ra_hasreg(ir->r))
1534 rset_clear(drop, ir->r); /* Dest reg handled below. */
1535 ra_evictset(as, drop);
1536 ra_destreg(as, ir, RID_XMM0);
1537 emit_call(as, lj_vm_pow_sse);
1538 irx = IR(irpp->op1);
1539 if (ra_noreg(irx->r) && ra_gethint(irx->r) == RID_XMM1)
1540 irx->r = RID_INIT; /* Avoid allocating xmm1 for x. */
1541 ra_left(as, RID_XMM0, irpp->op1);
1542 ra_left(as, RID_XMM1, irp->op2);
1543 return 1;
1544 }
1545 }
1546 return 0;
1547}
1548
1549static void asm_fpmath(ASMState *as, IRIns *ir)
1550{
1551 IRFPMathOp fpm = ir->o == IR_FPMATH ? (IRFPMathOp)ir->op2 : IRFPM_OTHER;
1552 if (fpm == IRFPM_SQRT) {
1553 Reg dest = ra_dest(as, ir, RSET_FPR);
1554 Reg left = asm_fuseload(as, ir->op1, RSET_FPR);
1555 emit_mrm(as, XO_SQRTSD, dest, left);
1556 } else if (fpm <= IRFPM_TRUNC) {
1557 if (as->flags & JIT_F_SSE4_1) { /* SSE4.1 has a rounding instruction. */
1558 Reg dest = ra_dest(as, ir, RSET_FPR);
1559 Reg left = asm_fuseload(as, ir->op1, RSET_FPR);
1560 /* ROUNDSD has a 4-byte opcode which doesn't fit in x86Op.
1561 ** Let's pretend it's a 3-byte opcode, and compensate afterwards.
1562 ** This is atrocious, but the alternatives are much worse.
1563 */
1564 /* Round down/up/trunc == 1001/1010/1011. */
1565 emit_i8(as, 0x09 + fpm);
1566 emit_mrm(as, XO_ROUNDSD, dest, left);
1567 if (LJ_64 && as->mcp[1] != (MCode)(XO_ROUNDSD >> 16)) {
1568 as->mcp[0] = as->mcp[1]; as->mcp[1] = 0x0f; /* Swap 0F and REX. */
1569 }
1570 *--as->mcp = 0x66; /* 1st byte of ROUNDSD opcode. */
1571 } else { /* Call helper functions for SSE2 variant. */
1572 /* The modified regs must match with the *.dasc implementation. */
1573 RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM3+1)|RID2RSET(RID_EAX);
1574 if (ra_hasreg(ir->r))
1575 rset_clear(drop, ir->r); /* Dest reg handled below. */
1576 ra_evictset(as, drop);
1577 ra_destreg(as, ir, RID_XMM0);
1578 emit_call(as, fpm == IRFPM_FLOOR ? lj_vm_floor_sse :
1579 fpm == IRFPM_CEIL ? lj_vm_ceil_sse : lj_vm_trunc_sse);
1580 ra_left(as, RID_XMM0, ir->op1);
1581 }
1582 } else if (fpm == IRFPM_EXP2 && fpmjoin_pow(as, ir)) {
1583 /* Rejoined to pow(). */
1584 } else { /* Handle x87 ops. */
1585 int32_t ofs = sps_scale(ir->s); /* Use spill slot or temp slots. */
1586 Reg dest = ir->r;
1587 if (ra_hasreg(dest)) {
1588 ra_free(as, dest);
1589 ra_modified(as, dest);
1590 emit_rmro(as, XMM_MOVRM(as), dest, RID_ESP, ofs);
1591 }
1592 emit_rmro(as, XO_FSTPq, XOg_FSTPq, RID_ESP, ofs);
1593 switch (fpm) { /* st0 = lj_vm_*(st0) */
1594 case IRFPM_EXP: emit_call(as, lj_vm_exp); break;
1595 case IRFPM_EXP2: emit_call(as, lj_vm_exp2); break;
1596 case IRFPM_SIN: emit_x87op(as, XI_FSIN); break;
1597 case IRFPM_COS: emit_x87op(as, XI_FCOS); break;
1598 case IRFPM_TAN: emit_x87op(as, XI_FPOP); emit_x87op(as, XI_FPTAN); break;
1599 case IRFPM_LOG: case IRFPM_LOG2: case IRFPM_LOG10:
1600 /* Note: the use of fyl2xp1 would be pointless here. When computing
1601 ** log(1.0+eps) the precision is already lost after 1.0 is added.
1602 ** Subtracting 1.0 won't recover it. OTOH math.log1p would make sense.
1603 */
1604 emit_x87op(as, XI_FYL2X); break;
1605 case IRFPM_OTHER:
1606 switch (ir->o) {
1607 case IR_ATAN2:
1608 emit_x87op(as, XI_FPATAN); asm_x87load(as, ir->op2); break;
1609 case IR_LDEXP:
1610 emit_x87op(as, XI_FPOP1); emit_x87op(as, XI_FSCALE); break;
1611 default: lua_assert(0); break;
1612 }
1613 break;
1614 default: lua_assert(0); break;
1615 }
1616 asm_x87load(as, ir->op1);
1617 switch (fpm) {
1618 case IRFPM_LOG: emit_x87op(as, XI_FLDLN2); break;
1619 case IRFPM_LOG2: emit_x87op(as, XI_FLD1); break;
1620 case IRFPM_LOG10: emit_x87op(as, XI_FLDLG2); break;
1621 case IRFPM_OTHER:
1622 if (ir->o == IR_LDEXP) asm_x87load(as, ir->op2);
1623 break;
1624 default: break;
1625 }
1626 }
1627}
1628
1629static void asm_fppowi(ASMState *as, IRIns *ir)
1630{
1631 /* The modified regs must match with the *.dasc implementation. */
1632 RegSet drop = RSET_RANGE(RID_XMM0, RID_XMM1+1)|RID2RSET(RID_EAX);
1633 if (ra_hasreg(ir->r))
1634 rset_clear(drop, ir->r); /* Dest reg handled below. */
1635 ra_evictset(as, drop);
1636 ra_destreg(as, ir, RID_XMM0);
1637 emit_call(as, lj_vm_powi_sse);
1638 ra_left(as, RID_XMM0, ir->op1);
1639 ra_left(as, RID_EAX, ir->op2);
1640}
1641
1642#if LJ_64 && LJ_HASFFI
1643static void asm_arith64(ASMState *as, IRIns *ir, IRCallID id)
1644{
1645 const CCallInfo *ci = &lj_ir_callinfo[id];
1646 IRRef args[2];
1647 args[0] = ir->op1;
1648 args[1] = ir->op2;
1649 asm_setupresult(as, ir, ci);
1650 asm_gencall(as, ci, args);
1651}
1652#endif
1653
1654static int asm_swapops(ASMState *as, IRIns *ir)
1655{
1656 IRIns *irl = IR(ir->op1);
1657 IRIns *irr = IR(ir->op2);
1658 lua_assert(ra_noreg(irr->r));
1659 if (!irm_iscomm(lj_ir_mode[ir->o]))
1660 return 0; /* Can't swap non-commutative operations. */
1661 if (irref_isk(ir->op2))
1662 return 0; /* Don't swap constants to the left. */
1663 if (ra_hasreg(irl->r))
1664 return 1; /* Swap if left already has a register. */
1665 if (ra_samehint(ir->r, irr->r))
1666 return 1; /* Swap if dest and right have matching hints. */
1667 if (as->curins > as->loopref) { /* In variant part? */
1668 if (ir->op2 < as->loopref && !irt_isphi(irr->t))
1669 return 0; /* Keep invariants on the right. */
1670 if (ir->op1 < as->loopref && !irt_isphi(irl->t))
1671 return 1; /* Swap invariants to the right. */
1672 }
1673 if (opisfusableload(irl->o))
1674 return 1; /* Swap fusable loads to the right. */
1675 return 0; /* Otherwise don't swap. */
1676}
1677
1678static void asm_fparith(ASMState *as, IRIns *ir, x86Op xo)
1679{
1680 IRRef lref = ir->op1;
1681 IRRef rref = ir->op2;
1682 RegSet allow = RSET_FPR;
1683 Reg dest;
1684 Reg right = IR(rref)->r;
1685 if (ra_hasreg(right)) {
1686 rset_clear(allow, right);
1687 ra_noweak(as, right);
1688 }
1689 dest = ra_dest(as, ir, allow);
1690 if (lref == rref) {
1691 right = dest;
1692 } else if (ra_noreg(right)) {
1693 if (asm_swapops(as, ir)) {
1694 IRRef tmp = lref; lref = rref; rref = tmp;
1695 }
1696 right = asm_fuseload(as, rref, rset_clear(allow, dest));
1697 }
1698 emit_mrm(as, xo, dest, right);
1699 ra_left(as, dest, lref);
1700}
1701
1702static void asm_intarith(ASMState *as, IRIns *ir, x86Arith xa)
1703{
1704 IRRef lref = ir->op1;
1705 IRRef rref = ir->op2;
1706 RegSet allow = RSET_GPR;
1707 Reg dest, right;
1708 int32_t k = 0;
1709 if (as->flagmcp == as->mcp) { /* Drop test r,r instruction. */
1710 as->flagmcp = NULL;
1711 as->mcp += (LJ_64 && *as->mcp != XI_TEST) ? 3 : 2;
1712 }
1713 right = IR(rref)->r;
1714 if (ra_hasreg(right)) {
1715 rset_clear(allow, right);
1716 ra_noweak(as, right);
1717 }
1718 dest = ra_dest(as, ir, allow);
1719 if (lref == rref) {
1720 right = dest;
1721 } else if (ra_noreg(right) && !asm_isk32(as, rref, &k)) {
1722 if (asm_swapops(as, ir)) {
1723 IRRef tmp = lref; lref = rref; rref = tmp;
1724 }
1725 right = asm_fuseload(as, rref, rset_clear(allow, dest));
1726 }
1727 if (irt_isguard(ir->t)) /* For IR_ADDOV etc. */
1728 asm_guardcc(as, CC_O);
1729 if (xa != XOg_X_IMUL) {
1730 if (ra_hasreg(right))
1731 emit_mrm(as, XO_ARITH(xa), REX_64IR(ir, dest), right);
1732 else
1733 emit_gri(as, XG_ARITHi(xa), REX_64IR(ir, dest), k);
1734 } else if (ra_hasreg(right)) { /* IMUL r, mrm. */
1735 emit_mrm(as, XO_IMUL, REX_64IR(ir, dest), right);
1736 } else { /* IMUL r, r, k. */
1737 /* NYI: use lea/shl/add/sub (FOLD only does 2^k) depending on CPU. */
1738 Reg left = asm_fuseload(as, lref, RSET_GPR);
1739 x86Op xo;
1740 if (checki8(k)) { emit_i8(as, k); xo = XO_IMULi8;
1741 } else { emit_i32(as, k); xo = XO_IMULi; }
1742 emit_mrm(as, xo, REX_64IR(ir, dest), left);
1743 return;
1744 }
1745 ra_left(as, dest, lref);
1746}
1747
1748/* LEA is really a 4-operand ADD with an independent destination register,
1749** up to two source registers and an immediate. One register can be scaled
1750** by 1, 2, 4 or 8. This can be used to avoid moves or to fuse several
1751** instructions.
1752**
1753** Currently only a few common cases are supported:
1754** - 3-operand ADD: y = a+b; y = a+k with a and b already allocated
1755** - Left ADD fusion: y = (a+b)+k; y = (a+k)+b
1756** - Right ADD fusion: y = a+(b+k)
1757** The ommited variants have already been reduced by FOLD.
1758**
1759** There are more fusion opportunities, like gathering shifts or joining
1760** common references. But these are probably not worth the trouble, since
1761** array indexing is not decomposed and already makes use of all fields
1762** of the ModRM operand.
1763*/
1764static int asm_lea(ASMState *as, IRIns *ir)
1765{
1766 IRIns *irl = IR(ir->op1);
1767 IRIns *irr = IR(ir->op2);
1768 RegSet allow = RSET_GPR;
1769 Reg dest;
1770 as->mrm.base = as->mrm.idx = RID_NONE;
1771 as->mrm.scale = XM_SCALE1;
1772 as->mrm.ofs = 0;
1773 if (ra_hasreg(irl->r)) {
1774 rset_clear(allow, irl->r);
1775 ra_noweak(as, irl->r);
1776 as->mrm.base = irl->r;
1777 if (irref_isk(ir->op2) || ra_hasreg(irr->r)) {
1778 /* The PHI renaming logic does a better job in some cases. */
1779 if (ra_hasreg(ir->r) &&
1780 ((irt_isphi(irl->t) && as->phireg[ir->r] == ir->op1) ||
1781 (irt_isphi(irr->t) && as->phireg[ir->r] == ir->op2)))
1782 return 0;
1783 if (irref_isk(ir->op2)) {
1784 as->mrm.ofs = irr->i;
1785 } else {
1786 rset_clear(allow, irr->r);
1787 ra_noweak(as, irr->r);
1788 as->mrm.idx = irr->r;
1789 }
1790 } else if (irr->o == IR_ADD && mayfuse(as, ir->op2) &&
1791 irref_isk(irr->op2)) {
1792 Reg idx = ra_alloc1(as, irr->op1, allow);
1793 rset_clear(allow, idx);
1794 as->mrm.idx = (uint8_t)idx;
1795 as->mrm.ofs = IR(irr->op2)->i;
1796 } else {
1797 return 0;
1798 }
1799 } else if (ir->op1 != ir->op2 && irl->o == IR_ADD && mayfuse(as, ir->op1) &&
1800 (irref_isk(ir->op2) || irref_isk(irl->op2))) {
1801 Reg idx, base = ra_alloc1(as, irl->op1, allow);
1802 rset_clear(allow, base);
1803 as->mrm.base = (uint8_t)base;
1804 if (irref_isk(ir->op2)) {
1805 as->mrm.ofs = irr->i;
1806 idx = ra_alloc1(as, irl->op2, allow);
1807 } else {
1808 as->mrm.ofs = IR(irl->op2)->i;
1809 idx = ra_alloc1(as, ir->op2, allow);
1810 }
1811 rset_clear(allow, idx);
1812 as->mrm.idx = (uint8_t)idx;
1813 } else {
1814 return 0;
1815 }
1816 dest = ra_dest(as, ir, allow);
1817 emit_mrm(as, XO_LEA, dest, RID_MRM);
1818 return 1; /* Success. */
1819}
1820
1821static void asm_add(ASMState *as, IRIns *ir)
1822{
1823 if (irt_isnum(ir->t))
1824 asm_fparith(as, ir, XO_ADDSD);
1825 else if ((as->flags & JIT_F_LEA_AGU) || as->flagmcp == as->mcp ||
1826 irt_is64(ir->t) || !asm_lea(as, ir))
1827 asm_intarith(as, ir, XOg_ADD);
1828}
1829
1830static void asm_neg_not(ASMState *as, IRIns *ir, x86Group3 xg)
1831{
1832 Reg dest = ra_dest(as, ir, RSET_GPR);
1833 emit_rr(as, XO_GROUP3, REX_64IR(ir, xg), dest);
1834 ra_left(as, dest, ir->op1);
1835}
1836
1837static void asm_min_max(ASMState *as, IRIns *ir, int cc)
1838{
1839 Reg right, dest = ra_dest(as, ir, RSET_GPR);
1840 IRRef lref = ir->op1, rref = ir->op2;
1841 if (irref_isk(rref)) { lref = rref; rref = ir->op1; }
1842 right = ra_alloc1(as, rref, rset_exclude(RSET_GPR, dest));
1843 emit_rr(as, XO_CMOV + (cc<<24), REX_64IR(ir, dest), right);
1844 emit_rr(as, XO_CMP, REX_64IR(ir, dest), right);
1845 ra_left(as, dest, lref);
1846}
1847
1848static void asm_bitswap(ASMState *as, IRIns *ir)
1849{
1850 Reg dest = ra_dest(as, ir, RSET_GPR);
1851 as->mcp = emit_op(XO_BSWAP + ((dest&7) << 24),
1852 REX_64IR(ir, dest), 0, 0, as->mcp, 1);
1853 ra_left(as, dest, ir->op1);
1854}
1855
1856static void asm_bitshift(ASMState *as, IRIns *ir, x86Shift xs)
1857{
1858 IRRef rref = ir->op2;
1859 IRIns *irr = IR(rref);
1860 Reg dest;
1861 if (irref_isk(rref)) { /* Constant shifts. */
1862 int shift;
1863 dest = ra_dest(as, ir, RSET_GPR);
1864 shift = irr->i & (irt_is64(ir->t) ? 63 : 31);
1865 switch (shift) {
1866 case 0: break;
1867 case 1: emit_rr(as, XO_SHIFT1, REX_64IR(ir, xs), dest); break;
1868 default: emit_shifti(as, REX_64IR(ir, xs), dest, shift); break;
1869 }
1870 } else { /* Variable shifts implicitly use register cl (i.e. ecx). */
1871 RegSet allow = rset_exclude(RSET_GPR, RID_ECX);
1872 Reg right = irr->r;
1873 if (ra_noreg(right)) {
1874 right = ra_allocref(as, rref, RID2RSET(RID_ECX));
1875 } else if (right != RID_ECX) {
1876 rset_clear(allow, right);
1877 ra_scratch(as, RID2RSET(RID_ECX));
1878 }
1879 dest = ra_dest(as, ir, allow);
1880 emit_rr(as, XO_SHIFTcl, REX_64IR(ir, xs), dest);
1881 if (right != RID_ECX) {
1882 ra_noweak(as, right);
1883 emit_rr(as, XO_MOV, RID_ECX, right);
1884 }
1885 }
1886 ra_left(as, dest, ir->op1);
1887 /*
1888 ** Note: avoid using the flags resulting from a shift or rotate!
1889 ** All of them cause a partial flag stall, except for r,1 shifts
1890 ** (but not rotates). And a shift count of 0 leaves the flags unmodified.
1891 */
1892}
1893
1894/* -- Comparisons --------------------------------------------------------- */
1895
1896/* Virtual flags for unordered FP comparisons. */
1897#define VCC_U 0x1000 /* Unordered. */
1898#define VCC_P 0x2000 /* Needs extra CC_P branch. */
1899#define VCC_S 0x4000 /* Swap avoids CC_P branch. */
1900#define VCC_PS (VCC_P|VCC_S)
1901
1902/* Map of comparisons to flags. ORDER IR. */
1903#define COMPFLAGS(ci, cin, cu, cf) ((ci)+((cu)<<4)+((cin)<<8)+(cf))
1904static const uint16_t asm_compmap[IR_ABC+1] = {
1905 /* signed non-eq unsigned flags */
1906 /* LT */ COMPFLAGS(CC_GE, CC_G, CC_AE, VCC_PS),
1907 /* GE */ COMPFLAGS(CC_L, CC_L, CC_B, 0),
1908 /* LE */ COMPFLAGS(CC_G, CC_G, CC_A, VCC_PS),
1909 /* GT */ COMPFLAGS(CC_LE, CC_L, CC_BE, 0),
1910 /* ULT */ COMPFLAGS(CC_AE, CC_A, CC_AE, VCC_U),
1911 /* UGE */ COMPFLAGS(CC_B, CC_B, CC_B, VCC_U|VCC_PS),
1912 /* ULE */ COMPFLAGS(CC_A, CC_A, CC_A, VCC_U),
1913 /* UGT */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS),
1914 /* EQ */ COMPFLAGS(CC_NE, CC_NE, CC_NE, VCC_P),
1915 /* NE */ COMPFLAGS(CC_E, CC_E, CC_E, VCC_U|VCC_P),
1916 /* ABC */ COMPFLAGS(CC_BE, CC_B, CC_BE, VCC_U|VCC_PS) /* Same as UGT. */
1917};
1918
1919/* FP and integer comparisons. */
1920static void asm_comp(ASMState *as, IRIns *ir, uint32_t cc)
1921{
1922 if (irt_isnum(ir->t)) {
1923 IRRef lref = ir->op1;
1924 IRRef rref = ir->op2;
1925 Reg left, right;
1926 MCLabel l_around;
1927 /*
1928 ** An extra CC_P branch is required to preserve ordered/unordered
1929 ** semantics for FP comparisons. This can be avoided by swapping
1930 ** the operands and inverting the condition (except for EQ and UNE).
1931 ** So always try to swap if possible.
1932 **
1933 ** Another option would be to swap operands to achieve better memory
1934 ** operand fusion. But it's unlikely that this outweighs the cost
1935 ** of the extra branches.
1936 */
1937 if (cc & VCC_S) { /* Swap? */
1938 IRRef tmp = lref; lref = rref; rref = tmp;
1939 cc ^= (VCC_PS|(5<<4)); /* A <-> B, AE <-> BE, PS <-> none */
1940 }
1941 left = ra_alloc1(as, lref, RSET_FPR);
1942 right = asm_fuseload(as, rref, rset_exclude(RSET_FPR, left));
1943 l_around = emit_label(as);
1944 asm_guardcc(as, cc >> 4);
1945 if (cc & VCC_P) { /* Extra CC_P branch required? */
1946 if (!(cc & VCC_U)) {
1947 asm_guardcc(as, CC_P); /* Branch to exit for ordered comparisons. */
1948 } else if (l_around != as->invmcp) {
1949 emit_sjcc(as, CC_P, l_around); /* Branch around for unordered. */
1950 } else {
1951 /* Patched to mcloop by asm_loop_fixup. */
1952 as->loopinv = 2;
1953 if (as->realign)
1954 emit_sjcc(as, CC_P, as->mcp);
1955 else
1956 emit_jcc(as, CC_P, as->mcp);
1957 }
1958 }
1959 emit_mrm(as, XO_UCOMISD, left, right);
1960 } else {
1961 IRRef lref = ir->op1, rref = ir->op2;
1962 IROp leftop = (IROp)(IR(lref)->o);
1963 Reg r64 = REX_64IR(ir, 0);
1964 int32_t imm = 0;
1965 lua_assert(irt_is64(ir->t) || irt_isint(ir->t) || irt_isaddr(ir->t));
1966 /* Swap constants (only for ABC) and fusable loads to the right. */
1967 if (irref_isk(lref) || (!irref_isk(rref) && opisfusableload(leftop))) {
1968 if ((cc & 0xc) == 0xc) cc ^= 3; /* L <-> G, LE <-> GE */
1969 else if ((cc & 0xa) == 0x2) cc ^= 5; /* A <-> B, AE <-> BE */
1970 lref = ir->op2; rref = ir->op1;
1971 }
1972 if (asm_isk32(as, rref, &imm)) {
1973 IRIns *irl = IR(lref);
1974 /* Check wether we can use test ins. Not for unsigned, since CF=0. */
1975 int usetest = (imm == 0 && (cc & 0xa) != 0x2);
1976 if (usetest && irl->o == IR_BAND && irl+1 == ir && !ra_used(irl)) {
1977 /* Combine comp(BAND(ref, r/imm), 0) into test mrm, r/imm. */
1978 Reg right, left = RID_NONE;
1979 RegSet allow = RSET_GPR;
1980 if (!asm_isk32(as, irl->op2, &imm)) {
1981 left = ra_alloc1(as, irl->op2, allow);
1982 rset_clear(allow, left);
1983 } else { /* Try to Fuse IRT_I8/IRT_U8 loads, too. See below. */
1984 IRIns *irll = IR(irl->op1);
1985 if (opisfusableload((IROp)irll->o) &&
1986 (irt_isi8(irll->t) || irt_isu8(irll->t))) {
1987 IRType1 origt = irll->t; /* Temporarily flip types. */
1988 irll->t.irt = (irll->t.irt & ~IRT_TYPE) | IRT_INT;
1989 as->curins--; /* Skip to BAND to avoid failing in noconflict(). */
1990 right = asm_fuseload(as, irl->op1, RSET_GPR);
1991 as->curins++;
1992 irll->t = origt;
1993 if (right != RID_MRM) goto test_nofuse;
1994 /* Fusion succeeded, emit test byte mrm, imm8. */
1995 asm_guardcc(as, cc);
1996 emit_i8(as, (imm & 0xff));
1997 emit_mrm(as, XO_GROUP3b, XOg_TEST, RID_MRM);
1998 return;
1999 }
2000 }
2001 as->curins--; /* Skip to BAND to avoid failing in noconflict(). */
2002 right = asm_fuseload(as, irl->op1, allow);
2003 as->curins++; /* Undo the above. */
2004 test_nofuse:
2005 asm_guardcc(as, cc);
2006 if (ra_noreg(left)) {
2007 emit_i32(as, imm);
2008 emit_mrm(as, XO_GROUP3, r64 + XOg_TEST, right);
2009 } else {
2010 emit_mrm(as, XO_TEST, r64 + left, right);
2011 }
2012 } else {
2013 Reg left;
2014 if (opisfusableload((IROp)irl->o) &&
2015 ((irt_isu8(irl->t) && checku8(imm)) ||
2016 ((irt_isi8(irl->t) || irt_isi16(irl->t)) && checki8(imm)) ||
2017 (irt_isu16(irl->t) && checku16(imm) && checki8((int16_t)imm)))) {
2018 /* Only the IRT_INT case is fused by asm_fuseload.
2019 ** The IRT_I8/IRT_U8 loads and some IRT_I16/IRT_U16 loads
2020 ** are handled here.
2021 ** Note that cmp word [mem], imm16 should not be generated,
2022 ** since it has a length-changing prefix. Compares of a word
2023 ** against a sign-extended imm8 are ok, however.
2024 */
2025 IRType1 origt = irl->t; /* Temporarily flip types. */
2026 irl->t.irt = (irl->t.irt & ~IRT_TYPE) | IRT_INT;
2027 left = asm_fuseload(as, lref, RSET_GPR);
2028 irl->t = origt;
2029 if (left == RID_MRM) { /* Fusion succeeded? */
2030 asm_guardcc(as, cc);
2031 emit_i8(as, imm);
2032 emit_mrm(as, (irt_isi8(origt) || irt_isu8(origt)) ?
2033 XO_ARITHib : XO_ARITHiw8, r64 + XOg_CMP, RID_MRM);
2034 return;
2035 } /* Otherwise handle register case as usual. */
2036 } else {
2037 left = asm_fuseload(as, lref, RSET_GPR);
2038 }
2039 asm_guardcc(as, cc);
2040 if (usetest && left != RID_MRM) {
2041 /* Use test r,r instead of cmp r,0. */
2042 emit_rr(as, XO_TEST, r64 + left, left);
2043 if (irl+1 == ir) /* Referencing previous ins? */
2044 as->flagmcp = as->mcp; /* Set flag to drop test r,r if possible. */
2045 } else {
2046 emit_gmrmi(as, XG_ARITHi(XOg_CMP), r64 + left, imm);
2047 }
2048 }
2049 } else {
2050 Reg left = ra_alloc1(as, lref, RSET_GPR);
2051 Reg right = asm_fuseload(as, rref, rset_exclude(RSET_GPR, left));
2052 asm_guardcc(as, cc);
2053 emit_mrm(as, XO_CMP, r64 + left, right);
2054 }
2055 }
2056}
2057
2058#if LJ_32 && LJ_HASFFI
2059/* 64 bit integer comparisons in 32 bit mode. */
2060static void asm_comp_int64(ASMState *as, IRIns *ir)
2061{
2062 uint32_t cc = asm_compmap[(ir-1)->o];
2063 RegSet allow = RSET_GPR;
2064 Reg lefthi = RID_NONE, leftlo = RID_NONE;
2065 Reg righthi = RID_NONE, rightlo = RID_NONE;
2066 MCLabel l_around;
2067 x86ModRM mrm;
2068
2069 as->curins--; /* Skip loword ins. Avoids failing in noconflict(), too. */
2070
2071 /* Allocate/fuse hiword operands. */
2072 if (irref_isk(ir->op2)) {
2073 lefthi = asm_fuseload(as, ir->op1, allow);
2074 } else {
2075 lefthi = ra_alloc1(as, ir->op1, allow);
2076 righthi = asm_fuseload(as, ir->op2, allow);
2077 if (righthi == RID_MRM) {
2078 if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base);
2079 if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx);
2080 } else {
2081 rset_clear(allow, righthi);
2082 }
2083 }
2084 mrm = as->mrm; /* Save state for hiword instruction. */
2085
2086 /* Allocate/fuse loword operands. */
2087 if (irref_isk((ir-1)->op2)) {
2088 leftlo = asm_fuseload(as, (ir-1)->op1, allow);
2089 } else {
2090 leftlo = ra_alloc1(as, (ir-1)->op1, allow);
2091 rightlo = asm_fuseload(as, (ir-1)->op2, allow);
2092 if (rightlo == RID_MRM) {
2093 if (as->mrm.base != RID_NONE) rset_clear(allow, as->mrm.base);
2094 if (as->mrm.idx != RID_NONE) rset_clear(allow, as->mrm.idx);
2095 } else {
2096 rset_clear(allow, rightlo);
2097 }
2098 }
2099
2100 /* All register allocations must be performed _before_ this point. */
2101 l_around = emit_label(as);
2102 as->invmcp = as->flagmcp = NULL; /* Cannot use these optimizations. */
2103
2104 /* Loword comparison and branch. */
2105 asm_guardcc(as, cc >> 4); /* Always use unsigned compare for loword. */
2106 if (ra_noreg(rightlo)) {
2107 int32_t imm = IR((ir-1)->op2)->i;
2108 if (imm == 0 && ((cc >> 4) & 0xa) != 0x2 && leftlo != RID_MRM)
2109 emit_rr(as, XO_TEST, leftlo, leftlo);
2110 else
2111 emit_gmrmi(as, XG_ARITHi(XOg_CMP), leftlo, imm);
2112 } else {
2113 emit_mrm(as, XO_CMP, leftlo, rightlo);
2114 }
2115
2116 /* Hiword comparison and branches. */
2117 if ((cc & 15) != CC_NE)
2118 emit_sjcc(as, CC_NE, l_around); /* Hiword unequal: skip loword compare. */
2119 if ((cc & 15) != CC_E)
2120 asm_guardcc(as, cc >> 8); /* Hiword compare without equality check. */
2121 as->mrm = mrm; /* Restore state. */
2122 if (ra_noreg(righthi)) {
2123 int32_t imm = IR(ir->op2)->i;
2124 if (imm == 0 && (cc & 0xa) != 0x2 && lefthi != RID_MRM)
2125 emit_rr(as, XO_TEST, lefthi, lefthi);
2126 else
2127 emit_gmrmi(as, XG_ARITHi(XOg_CMP), lefthi, imm);
2128 } else {
2129 emit_mrm(as, XO_CMP, lefthi, righthi);
2130 }
2131}
2132#endif
2133
2134/* -- Support for 64 bit ops in 32 bit mode ------------------------------- */
2135
2136/* Hiword op of a split 64 bit op. Previous op must be the loword op. */
2137static void asm_hiop(ASMState *as, IRIns *ir)
2138{
2139#if LJ_32 && LJ_HASFFI
2140 /* HIOP is marked as a store because it needs its own DCE logic. */
2141 int uselo = ra_used(ir-1), usehi = ra_used(ir); /* Loword/hiword used? */
2142 if (LJ_UNLIKELY(!(as->flags & JIT_F_OPT_DCE))) uselo = usehi = 1;
2143 if ((ir-1)->o == IR_CONV) { /* Conversions to/from 64 bit. */
2144 if (usehi || uselo) {
2145 if (irt_isfp(ir->t))
2146 asm_conv_fp_int64(as, ir);
2147 else
2148 asm_conv_int64_fp(as, ir);
2149 }
2150 as->curins--; /* Always skip the CONV. */
2151 return;
2152 } else if ((ir-1)->o <= IR_NE) { /* 64 bit integer comparisons. ORDER IR. */
2153 asm_comp_int64(as, ir);
2154 return;
2155 }
2156 if (!usehi) return; /* Skip unused hiword op for all remaining ops. */
2157 switch ((ir-1)->o) {
2158 case IR_ADD:
2159 asm_intarith(as, ir, uselo ? XOg_ADC : XOg_ADD);
2160 break;
2161 case IR_SUB:
2162 asm_intarith(as, ir, uselo ? XOg_SBB : XOg_SUB);
2163 break;
2164 case IR_NEG: {
2165 Reg dest = ra_dest(as, ir, RSET_GPR);
2166 emit_rr(as, XO_GROUP3, XOg_NEG, dest);
2167 if (uselo) {
2168 emit_i8(as, 0);
2169 emit_rr(as, XO_ARITHi8, XOg_ADC, dest);
2170 }
2171 ra_left(as, dest, ir->op1);
2172 break;
2173 }
2174 case IR_CALLN:
2175 case IR_CALLXS:
2176 ra_destreg(as, ir, RID_RETHI);
2177 if (!uselo)
2178 ra_allocref(as, ir->op1, RID2RSET(RID_RET)); /* Mark call as used. */
2179 break;
2180 case IR_CNEWI:
2181 /* Nothing to do here. Handled by CNEWI itself. */
2182 break;
2183 default: lua_assert(0); break;
2184 }
2185#else
2186 UNUSED(as); UNUSED(ir); lua_assert(0); /* Unused on x64 or without FFI. */
2187#endif
2188}
2189
2190/* -- Stack handling ------------------------------------------------------ */
2191
2192/* Check Lua stack size for overflow. Use exit handler as fallback. */
2193static void asm_stack_check(ASMState *as, BCReg topslot,
2194 Reg pbase, RegSet allow, ExitNo exitno)
2195{
2196 /* Try to get an unused temp. register, otherwise spill/restore eax. */
2197 Reg r = allow ? rset_pickbot(allow) : RID_EAX;
2198 emit_jcc(as, CC_B, exitstub_addr(as->J, exitno));
2199 if (allow == RSET_EMPTY) /* Restore temp. register. */
2200 emit_rmro(as, XO_MOV, r|REX_64, RID_ESP, 0);
2201 else
2202 ra_modified(as, r);
2203 emit_gri(as, XG_ARITHi(XOg_CMP), r, (int32_t)(8*topslot));
2204 if (ra_hasreg(pbase) && pbase != r)
2205 emit_rr(as, XO_ARITH(XOg_SUB), r, pbase);
2206 else
2207 emit_rmro(as, XO_ARITH(XOg_SUB), r, RID_NONE,
2208 ptr2addr(&J2G(as->J)->jit_base));
2209 emit_rmro(as, XO_MOV, r, r, offsetof(lua_State, maxstack));
2210 emit_getgl(as, r, jit_L);
2211 if (allow == RSET_EMPTY) /* Spill temp. register. */
2212 emit_rmro(as, XO_MOVto, r|REX_64, RID_ESP, 0);
2213}
2214
2215/* Restore Lua stack from on-trace state. */
2216static void asm_stack_restore(ASMState *as, SnapShot *snap)
2217{
2218 SnapEntry *map = &as->T->snapmap[snap->mapofs];
2219 MSize n, nent = snap->nent;
2220 SnapEntry *flinks = map + nent + snap->depth;
2221 /* Store the value of all modified slots to the Lua stack. */
2222 for (n = 0; n < nent; n++) {
2223 SnapEntry sn = map[n];
2224 BCReg s = snap_slot(sn);
2225 int32_t ofs = 8*((int32_t)s-1);
2226 IRRef ref = snap_ref(sn);
2227 IRIns *ir = IR(ref);
2228 if ((sn & SNAP_NORESTORE))
2229 continue;
2230 if (irt_isnum(ir->t)) {
2231 Reg src = ra_alloc1(as, ref, RSET_FPR);
2232 emit_rmro(as, XO_MOVSDto, src, RID_BASE, ofs);
2233 } else {
2234 lua_assert(irt_ispri(ir->t) || irt_isaddr(ir->t) ||
2235 (LJ_DUALNUM && irt_isinteger(ir->t)));
2236 if (!irref_isk(ref)) {
2237 Reg src = ra_alloc1(as, ref, rset_exclude(RSET_GPR, RID_BASE));
2238 emit_movtomro(as, REX_64IR(ir, src), RID_BASE, ofs);
2239 } else if (!irt_ispri(ir->t)) {
2240 emit_movmroi(as, RID_BASE, ofs, ir->i);
2241 }
2242 if ((sn & (SNAP_CONT|SNAP_FRAME))) {
2243 if (s != 0) /* Do not overwrite link to previous frame. */
2244 emit_movmroi(as, RID_BASE, ofs+4, (int32_t)(*flinks--));
2245 } else {
2246 if (!(LJ_64 && irt_islightud(ir->t)))
2247 emit_movmroi(as, RID_BASE, ofs+4, irt_toitype(ir->t));
2248 }
2249 }
2250 checkmclim(as);
2251 }
2252 lua_assert(map + nent == flinks);
2253}
2254
2255/* -- GC handling --------------------------------------------------------- */
2256
2257/* Check GC threshold and do one or more GC steps. */
2258static void asm_gc_check(ASMState *as)
2259{
2260 const CCallInfo *ci = &lj_ir_callinfo[IRCALL_lj_gc_step_jit];
2261 IRRef args[2];
2262 MCLabel l_end;
2263 Reg tmp;
2264 ra_evictset(as, RSET_SCRATCH);
2265 l_end = emit_label(as);
2266 /* Exit trace if in GCSatomic or GCSfinalize. Avoids syncing GC objects. */
2267 asm_guardcc(as, CC_NE); /* Assumes asm_snap_prep() already done. */
2268 emit_rr(as, XO_TEST, RID_RET, RID_RET);
2269 args[0] = ASMREF_TMP1; /* global_State *g */
2270 args[1] = ASMREF_TMP2; /* MSize steps */
2271 asm_gencall(as, ci, args);
2272 tmp = ra_releasetmp(as, ASMREF_TMP1);
2273 emit_loada(as, tmp, J2G(as->J));
2274 emit_loadi(as, ra_releasetmp(as, ASMREF_TMP2), (int32_t)as->gcsteps);
2275 /* Jump around GC step if GC total < GC threshold. */
2276 emit_sjcc(as, CC_B, l_end);
2277 emit_opgl(as, XO_ARITH(XOg_CMP), tmp, gc.threshold);
2278 emit_getgl(as, tmp, gc.total);
2279 as->gcsteps = 0;
2280 checkmclim(as);
2281}
2282
2283/* -- Loop handling ------------------------------------------------------- */
2284
2285/* Fixup the loop branch. */
2286static void asm_loop_fixup(ASMState *as)
2287{
2288 MCode *p = as->mctop;
2289 MCode *target = as->mcp;
2290 if (as->realign) { /* Realigned loops use short jumps. */
2291 as->realign = NULL; /* Stop another retry. */
2292 lua_assert(((intptr_t)target & 15) == 0);
2293 if (as->loopinv) { /* Inverted loop branch? */
2294 p -= 5;
2295 p[0] = XI_JMP;
2296 lua_assert(target - p >= -128);
2297 p[-1] = (MCode)(target - p); /* Patch sjcc. */
2298 if (as->loopinv == 2)
2299 p[-3] = (MCode)(target - p + 2); /* Patch opt. short jp. */
2300 } else {
2301 lua_assert(target - p >= -128);
2302 p[-1] = (MCode)(int8_t)(target - p); /* Patch short jmp. */
2303 p[-2] = XI_JMPs;
2304 }
2305 } else {
2306 MCode *newloop;
2307 p[-5] = XI_JMP;
2308 if (as->loopinv) { /* Inverted loop branch? */
2309 /* asm_guardcc already inverted the jcc and patched the jmp. */
2310 p -= 5;
2311 newloop = target+4;
2312 *(int32_t *)(p-4) = (int32_t)(target - p); /* Patch jcc. */
2313 if (as->loopinv == 2) {
2314 *(int32_t *)(p-10) = (int32_t)(target - p + 6); /* Patch opt. jp. */
2315 newloop = target+8;
2316 }
2317 } else { /* Otherwise just patch jmp. */
2318 *(int32_t *)(p-4) = (int32_t)(target - p);
2319 newloop = target+3;
2320 }
2321 /* Realign small loops and shorten the loop branch. */
2322 if (newloop >= p - 128) {
2323 as->realign = newloop; /* Force a retry and remember alignment. */
2324 as->curins = as->stopins; /* Abort asm_trace now. */
2325 as->T->nins = as->orignins; /* Remove any added renames. */
2326 }
2327 }
2328}
2329
2330/* -- Head of trace ------------------------------------------------------- */
2331
2332/* Coalesce BASE register for a root trace. */
2333static void asm_head_root_base(ASMState *as)
2334{
2335 IRIns *ir = IR(REF_BASE);
2336 Reg r = ir->r;
2337 if (ra_hasreg(r)) {
2338 ra_free(as, r);
2339 if (rset_test(as->modset, r))
2340 ir->r = RID_INIT; /* No inheritance for modified BASE register. */
2341 if (r != RID_BASE)
2342 emit_rr(as, XO_MOV, r, RID_BASE);
2343 }
2344}
2345
2346/* Coalesce or reload BASE register for a side trace. */
2347static RegSet asm_head_side_base(ASMState *as, Reg pbase, RegSet allow)
2348{
2349 IRIns *ir = IR(REF_BASE);
2350 Reg r = ir->r;
2351 if (ra_hasreg(r)) {
2352 ra_free(as, r);
2353 if (rset_test(as->modset, r))
2354 ir->r = RID_INIT; /* No inheritance for modified BASE register. */
2355 if (pbase == r) {
2356 rset_clear(allow, r); /* Mark same BASE register as coalesced. */
2357 } else if (ra_hasreg(pbase) && rset_test(as->freeset, pbase)) {
2358 rset_clear(allow, pbase);
2359 emit_rr(as, XO_MOV, r, pbase); /* Move from coalesced parent register. */
2360 } else {
2361 emit_getgl(as, r, jit_base); /* Otherwise reload BASE. */
2362 }
2363 }
2364 return allow;
2365}
2366
2367/* -- Tail of trace ------------------------------------------------------- */
2368
2369/* Fixup the tail code. */
2370static void asm_tail_fixup(ASMState *as, TraceNo lnk)
2371{
2372 /* Note: don't use as->mcp swap + emit_*: emit_op overwrites more bytes. */
2373 MCode *p = as->mctop;
2374 MCode *target, *q;
2375 int32_t spadj = as->T->spadjust;
2376 if (spadj == 0) {
2377 p -= ((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0);
2378 } else {
2379 MCode *p1;
2380 /* Patch stack adjustment. */
2381 if (checki8(spadj)) {
2382 p -= 3;
2383 p1 = p-6;
2384 *p1 = (MCode)spadj;
2385 } else {
2386 p1 = p-9;
2387 *(int32_t *)p1 = spadj;
2388 }
2389 if ((as->flags & JIT_F_LEA_AGU)) {
2390#if LJ_64
2391 p1[-4] = 0x48;
2392#endif
2393 p1[-3] = (MCode)XI_LEA;
2394 p1[-2] = MODRM(checki8(spadj) ? XM_OFS8 : XM_OFS32, RID_ESP, RID_ESP);
2395 p1[-1] = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
2396 } else {
2397#if LJ_64
2398 p1[-3] = 0x48;
2399#endif
2400 p1[-2] = (MCode)(checki8(spadj) ? XI_ARITHi8 : XI_ARITHi);
2401 p1[-1] = MODRM(XM_REG, XOg_ADD, RID_ESP);
2402 }
2403 }
2404 /* Patch exit branch. */
2405 target = lnk == TRACE_INTERP ? (MCode *)lj_vm_exit_interp :
2406 traceref(as->J, lnk)->mcode;
2407 *(int32_t *)(p-4) = jmprel(p, target);
2408 p[-5] = XI_JMP;
2409 /* Drop unused mcode tail. Fill with NOPs to make the prefetcher happy. */
2410 for (q = as->mctop-1; q >= p; q--)
2411 *q = XI_NOP;
2412 as->mctop = p;
2413}
2414
2415/* Prepare tail of code. */
2416static void asm_tail_prep(ASMState *as)
2417{
2418 MCode *p = as->mctop;
2419 /* Realign and leave room for backwards loop branch or exit branch. */
2420 if (as->realign) {
2421 int i = ((int)(intptr_t)as->realign) & 15;
2422 /* Fill unused mcode tail with NOPs to make the prefetcher happy. */
2423 while (i-- > 0)
2424 *--p = XI_NOP;
2425 as->mctop = p;
2426 p -= (as->loopinv ? 5 : 2); /* Space for short/near jmp. */
2427 } else {
2428 p -= 5; /* Space for exit branch (near jmp). */
2429 }
2430 if (as->loopref) {
2431 as->invmcp = as->mcp = p;
2432 } else {
2433 /* Leave room for ESP adjustment: add esp, imm or lea esp, [esp+imm] */
2434 as->mcp = p - (((as->flags & JIT_F_LEA_AGU) ? 7 : 6) + (LJ_64 ? 1 : 0));
2435 as->invmcp = NULL;
2436 }
2437}
2438
2439/* -- Instruction dispatch ------------------------------------------------ */
2440
2441/* Assemble a single instruction. */
2442static void asm_ir(ASMState *as, IRIns *ir)
2443{
2444 switch ((IROp)ir->o) {
2445 /* Miscellaneous ops. */
2446 case IR_LOOP: asm_loop(as); break;
2447 case IR_NOP: case IR_XBAR: lua_assert(!ra_used(ir)); break;
2448 case IR_USE:
2449 ra_alloc1(as, ir->op1, irt_isfp(ir->t) ? RSET_FPR : RSET_GPR); break;
2450 case IR_PHI: asm_phi(as, ir); break;
2451 case IR_HIOP: asm_hiop(as, ir); break;
2452
2453 /* Guarded assertions. */
2454 case IR_LT: case IR_GE: case IR_LE: case IR_GT:
2455 case IR_ULT: case IR_UGE: case IR_ULE: case IR_UGT:
2456 case IR_EQ: case IR_NE: case IR_ABC:
2457 asm_comp(as, ir, asm_compmap[ir->o]);
2458 break;
2459
2460 case IR_RETF: asm_retf(as, ir); break;
2461
2462 /* Bit ops. */
2463 case IR_BNOT: asm_neg_not(as, ir, XOg_NOT); break;
2464 case IR_BSWAP: asm_bitswap(as, ir); break;
2465
2466 case IR_BAND: asm_intarith(as, ir, XOg_AND); break;
2467 case IR_BOR: asm_intarith(as, ir, XOg_OR); break;
2468 case IR_BXOR: asm_intarith(as, ir, XOg_XOR); break;
2469
2470 case IR_BSHL: asm_bitshift(as, ir, XOg_SHL); break;
2471 case IR_BSHR: asm_bitshift(as, ir, XOg_SHR); break;
2472 case IR_BSAR: asm_bitshift(as, ir, XOg_SAR); break;
2473 case IR_BROL: asm_bitshift(as, ir, XOg_ROL); break;
2474 case IR_BROR: asm_bitshift(as, ir, XOg_ROR); break;
2475
2476 /* Arithmetic ops. */
2477 case IR_ADD: asm_add(as, ir); break;
2478 case IR_SUB:
2479 if (irt_isnum(ir->t))
2480 asm_fparith(as, ir, XO_SUBSD);
2481 else /* Note: no need for LEA trick here. i-k is encoded as i+(-k). */
2482 asm_intarith(as, ir, XOg_SUB);
2483 break;
2484 case IR_MUL:
2485 if (irt_isnum(ir->t))
2486 asm_fparith(as, ir, XO_MULSD);
2487 else
2488 asm_intarith(as, ir, XOg_X_IMUL);
2489 break;
2490 case IR_DIV:
2491#if LJ_64 && LJ_HASFFI
2492 if (!irt_isnum(ir->t))
2493 asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_divi64 :
2494 IRCALL_lj_carith_divu64);
2495 else
2496#endif
2497 asm_fparith(as, ir, XO_DIVSD);
2498 break;
2499 case IR_MOD:
2500#if LJ_64 && LJ_HASFFI
2501 asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_modi64 :
2502 IRCALL_lj_carith_modu64);
2503#else
2504 lua_assert(0);
2505#endif
2506 break;
2507
2508 case IR_NEG:
2509 if (irt_isnum(ir->t))
2510 asm_fparith(as, ir, XO_XORPS);
2511 else
2512 asm_neg_not(as, ir, XOg_NEG);
2513 break;
2514 case IR_ABS: asm_fparith(as, ir, XO_ANDPS); break;
2515
2516 case IR_MIN:
2517 if (irt_isnum(ir->t))
2518 asm_fparith(as, ir, XO_MINSD);
2519 else
2520 asm_min_max(as, ir, CC_G);
2521 break;
2522 case IR_MAX:
2523 if (irt_isnum(ir->t))
2524 asm_fparith(as, ir, XO_MAXSD);
2525 else
2526 asm_min_max(as, ir, CC_L);
2527 break;
2528
2529 case IR_FPMATH: case IR_ATAN2: case IR_LDEXP:
2530 asm_fpmath(as, ir);
2531 break;
2532 case IR_POW:
2533#if LJ_64 && LJ_HASFFI
2534 if (!irt_isnum(ir->t))
2535 asm_arith64(as, ir, irt_isi64(ir->t) ? IRCALL_lj_carith_powi64 :
2536 IRCALL_lj_carith_powu64);
2537 else
2538#endif
2539 asm_fppowi(as, ir);
2540 break;
2541
2542 /* Overflow-checking arithmetic ops. Note: don't use LEA here! */
2543 case IR_ADDOV: asm_intarith(as, ir, XOg_ADD); break;
2544 case IR_SUBOV: asm_intarith(as, ir, XOg_SUB); break;
2545 case IR_MULOV: asm_intarith(as, ir, XOg_X_IMUL); break;
2546
2547 /* Memory references. */
2548 case IR_AREF: asm_aref(as, ir); break;
2549 case IR_HREF: asm_href(as, ir); break;
2550 case IR_HREFK: asm_hrefk(as, ir); break;
2551 case IR_NEWREF: asm_newref(as, ir); break;
2552 case IR_UREFO: case IR_UREFC: asm_uref(as, ir); break;
2553 case IR_FREF: asm_fref(as, ir); break;
2554 case IR_STRREF: asm_strref(as, ir); break;
2555
2556 /* Loads and stores. */
2557 case IR_ALOAD: case IR_HLOAD: case IR_ULOAD: case IR_VLOAD:
2558 asm_ahuvload(as, ir);
2559 break;
2560 case IR_FLOAD: case IR_XLOAD: asm_fxload(as, ir); break;
2561 case IR_SLOAD: asm_sload(as, ir); break;
2562
2563 case IR_ASTORE: case IR_HSTORE: case IR_USTORE: asm_ahustore(as, ir); break;
2564 case IR_FSTORE: case IR_XSTORE: asm_fxstore(as, ir); break;
2565
2566 /* Allocations. */
2567 case IR_SNEW: case IR_XSNEW: asm_snew(as, ir); break;
2568 case IR_TNEW: asm_tnew(as, ir); break;
2569 case IR_TDUP: asm_tdup(as, ir); break;
2570 case IR_CNEW: case IR_CNEWI: asm_cnew(as, ir); break;
2571
2572 /* Write barriers. */
2573 case IR_TBAR: asm_tbar(as, ir); break;
2574 case IR_OBAR: asm_obar(as, ir); break;
2575
2576 /* Type conversions. */
2577 case IR_TOBIT: asm_tobit(as, ir); break;
2578 case IR_CONV: asm_conv(as, ir); break;
2579 case IR_TOSTR: asm_tostr(as, ir); break;
2580 case IR_STRTO: asm_strto(as, ir); break;
2581
2582 /* Calls. */
2583 case IR_CALLN: case IR_CALLL: case IR_CALLS: asm_call(as, ir); break;
2584 case IR_CALLXS: asm_callx(as, ir); break;
2585 case IR_CARG: break;
2586
2587 default:
2588 setintV(&as->J->errinfo, ir->o);
2589 lj_trace_err_info(as->J, LJ_TRERR_NYIIR);
2590 break;
2591 }
2592}
2593
2594/* -- Trace setup --------------------------------------------------------- */
2595
2596/* Ensure there are enough stack slots for call arguments. */
2597static Reg asm_setup_call_slots(ASMState *as, IRIns *ir, const CCallInfo *ci)
2598{
2599 IRRef args[CCI_NARGS_MAX];
2600 uint32_t nargs = (int)CCI_NARGS(ci);
2601 int nslots = 0;
2602 asm_collectargs(as, ir, ci, args);
2603#if LJ_64
2604 if (LJ_ABI_WIN) {
2605 nslots = (int)(nargs*2); /* Only matters for more than four args. */
2606 } else {
2607 uint32_t i;
2608 int ngpr = 6, nfpr = 8;
2609 for (i = 0; i < nargs; i++)
2610 if (irt_isfp(IR(args[i])->t)) {
2611 if (nfpr > 0) nfpr--; else nslots += 2;
2612 } else {
2613 if (ngpr > 0) ngpr--; else nslots += 2;
2614 }
2615 }
2616 if (nslots > as->evenspill) /* Leave room for args in stack slots. */
2617 as->evenspill = nslots;
2618 return irt_isfp(ir->t) ? REGSP_HINT(RID_FPRET) : REGSP_HINT(RID_RET);
2619#else
2620 if ((ci->flags & CCI_FASTCALL)) {
2621 lua_assert(nargs <= 2);
2622 } else {
2623 uint32_t i;
2624 for (i = 0; i < nargs; i++)
2625 nslots += irt_isnum(IR(args[i])->t) ? 2 : 1;
2626 if (nslots > as->evenspill) /* Leave room for args. */
2627 as->evenspill = nslots;
2628 }
2629 return irt_isfp(ir->t) ? REGSP_INIT : REGSP_HINT(RID_RET);
2630#endif
2631}
2632
2633/* Target-specific setup. */
2634static void asm_setup_target(ASMState *as)
2635{
2636 asm_exitstub_setup(as, as->T->nsnap);
2637}
2638
2639/* -- Trace patching ------------------------------------------------------ */
2640
2641/* Patch exit jumps of existing machine code to a new target. */
2642void lj_asm_patchexit(jit_State *J, GCtrace *T, ExitNo exitno, MCode *target)
2643{
2644 MCode *p = T->mcode;
2645 MCode *mcarea = lj_mcode_patch(J, p, 0);
2646 MSize len = T->szmcode;
2647 MCode *px = exitstub_addr(J, exitno) - 6;
2648 MCode *pe = p+len-6;
2649 uint32_t stateaddr = u32ptr(&J2G(J)->vmstate);
2650 if (len > 5 && p[len-5] == XI_JMP && p+len-6 + *(int32_t *)(p+len-4) == px)
2651 *(int32_t *)(p+len-4) = jmprel(p+len, target);
2652 /* Do not patch parent exit for a stack check. Skip beyond vmstate update. */
2653 for (; p < pe; p++)
2654 if (*(uint32_t *)(p+(LJ_64 ? 3 : 2)) == stateaddr && p[0] == XI_MOVmi) {
2655 p += LJ_64 ? 11 : 10;
2656 break;
2657 }
2658 lua_assert(p < pe);
2659 for (; p < pe; p++) {
2660 if ((*(uint16_t *)p & 0xf0ff) == 0x800f && p + *(int32_t *)(p+2) == px) {
2661 *(int32_t *)(p+2) = jmprel(p+6, target);
2662 p += 5;
2663 }
2664 }
2665 lj_mcode_patch(J, mcarea, 1);
2666 VG_INVALIDATE(T->mcode, T->szmcode);
2667}
2668
diff --git a/src/lj_emit_x86.h b/src/lj_emit_x86.h
new file mode 100644
index 00000000..c781e3d3
--- /dev/null
+++ b/src/lj_emit_x86.h
@@ -0,0 +1,456 @@
1/*
2** x86/x64 instruction emitter.
3** Copyright (C) 2005-2011 Mike Pall. See Copyright Notice in luajit.h
4*/
5
6/* -- Emit basic instructions --------------------------------------------- */
7
8#define MODRM(mode, r1, r2) ((MCode)((mode)+(((r1)&7)<<3)+((r2)&7)))
9
10#if LJ_64
11#define REXRB(p, rr, rb) \
12 { MCode rex = 0x40 + (((rr)>>1)&4) + (((rb)>>3)&1); \
13 if (rex != 0x40) *--(p) = rex; }
14#define FORCE_REX 0x200
15#define REX_64 (FORCE_REX|0x080000)
16#else
17#define REXRB(p, rr, rb) ((void)0)
18#define FORCE_REX 0
19#define REX_64 0
20#endif
21
22#define emit_i8(as, i) (*--as->mcp = (MCode)(i))
23#define emit_i32(as, i) (*(int32_t *)(as->mcp-4) = (i), as->mcp -= 4)
24#define emit_u32(as, u) (*(uint32_t *)(as->mcp-4) = (u), as->mcp -= 4)
25
26#define emit_x87op(as, xo) \
27 (*(uint16_t *)(as->mcp-2) = (uint16_t)(xo), as->mcp -= 2)
28
29/* op */
30static LJ_AINLINE MCode *emit_op(x86Op xo, Reg rr, Reg rb, Reg rx,
31 MCode *p, int delta)
32{
33 int n = (int8_t)xo;
34#if defined(__GNUC__)
35 if (__builtin_constant_p(xo) && n == -2)
36 p[delta-2] = (MCode)(xo >> 24);
37 else if (__builtin_constant_p(xo) && n == -3)
38 *(uint16_t *)(p+delta-3) = (uint16_t)(xo >> 16);
39 else
40#endif
41 *(uint32_t *)(p+delta-5) = (uint32_t)xo;
42 p += n + delta;
43#if LJ_64
44 {
45 uint32_t rex = 0x40 + ((rr>>1)&(4+(FORCE_REX>>1)))+((rx>>2)&2)+((rb>>3)&1);
46 if (rex != 0x40) {
47 rex |= (rr >> 16);
48 if (n == -4) { *p = (MCode)rex; rex = (MCode)(xo >> 8); }
49 else if ((xo & 0xffffff) == 0x6600fd) { *p = (MCode)rex; rex = 0x66; }
50 *--p = (MCode)rex;
51 }
52 }
53#else
54 UNUSED(rr); UNUSED(rb); UNUSED(rx);
55#endif
56 return p;
57}
58
59/* op + modrm */
60#define emit_opm(xo, mode, rr, rb, p, delta) \
61 (p[(delta)-1] = MODRM((mode), (rr), (rb)), \
62 emit_op((xo), (rr), (rb), 0, (p), (delta)))
63
64/* op + modrm + sib */
65#define emit_opmx(xo, mode, scale, rr, rb, rx, p) \
66 (p[-1] = MODRM((scale), (rx), (rb)), \
67 p[-2] = MODRM((mode), (rr), RID_ESP), \
68 emit_op((xo), (rr), (rb), (rx), (p), -1))
69
70/* op r1, r2 */
71static void emit_rr(ASMState *as, x86Op xo, Reg r1, Reg r2)
72{
73 MCode *p = as->mcp;
74 as->mcp = emit_opm(xo, XM_REG, r1, r2, p, 0);
75}
76
77#if LJ_64 && defined(LUA_USE_ASSERT)
78/* [addr] is sign-extended in x64 and must be in lower 2G (not 4G). */
79static int32_t ptr2addr(const void *p)
80{
81 lua_assert((uintptr_t)p < (uintptr_t)0x80000000);
82 return i32ptr(p);
83}
84#else
85#define ptr2addr(p) (i32ptr((p)))
86#endif
87
88/* op r, [addr] */
89static void emit_rma(ASMState *as, x86Op xo, Reg rr, const void *addr)
90{
91 MCode *p = as->mcp;
92 *(int32_t *)(p-4) = ptr2addr(addr);
93#if LJ_64
94 p[-5] = MODRM(XM_SCALE1, RID_ESP, RID_EBP);
95 as->mcp = emit_opm(xo, XM_OFS0, rr, RID_ESP, p, -5);
96#else
97 as->mcp = emit_opm(xo, XM_OFS0, rr, RID_EBP, p, -4);
98#endif
99}
100
101/* op r, [base+ofs] */
102static void emit_rmro(ASMState *as, x86Op xo, Reg rr, Reg rb, int32_t ofs)
103{
104 MCode *p = as->mcp;
105 x86Mode mode;
106 if (ra_hasreg(rb)) {
107 if (ofs == 0 && (rb&7) != RID_EBP) {
108 mode = XM_OFS0;
109 } else if (checki8(ofs)) {
110 *--p = (MCode)ofs;
111 mode = XM_OFS8;
112 } else {
113 p -= 4;
114 *(int32_t *)p = ofs;
115 mode = XM_OFS32;
116 }
117 if ((rb&7) == RID_ESP)
118 *--p = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
119 } else {
120 *(int32_t *)(p-4) = ofs;
121#if LJ_64
122 p[-5] = MODRM(XM_SCALE1, RID_ESP, RID_EBP);
123 p -= 5;
124 rb = RID_ESP;
125#else
126 p -= 4;
127 rb = RID_EBP;
128#endif
129 mode = XM_OFS0;
130 }
131 as->mcp = emit_opm(xo, mode, rr, rb, p, 0);
132}
133
134/* op r, [base+idx*scale+ofs] */
135static void emit_rmrxo(ASMState *as, x86Op xo, Reg rr, Reg rb, Reg rx,
136 x86Mode scale, int32_t ofs)
137{
138 MCode *p = as->mcp;
139 x86Mode mode;
140 if (ofs == 0 && (rb&7) != RID_EBP) {
141 mode = XM_OFS0;
142 } else if (checki8(ofs)) {
143 mode = XM_OFS8;
144 *--p = (MCode)ofs;
145 } else {
146 mode = XM_OFS32;
147 p -= 4;
148 *(int32_t *)p = ofs;
149 }
150 as->mcp = emit_opmx(xo, mode, scale, rr, rb, rx, p);
151}
152
153/* op r, i */
154static void emit_gri(ASMState *as, x86Group xg, Reg rb, int32_t i)
155{
156 MCode *p = as->mcp;
157 x86Op xo;
158 if (checki8(i)) {
159 *--p = (MCode)i;
160 xo = XG_TOXOi8(xg);
161 } else {
162 p -= 4;
163 *(int32_t *)p = i;
164 xo = XG_TOXOi(xg);
165 }
166 as->mcp = emit_opm(xo, XM_REG, (Reg)(xg & 7) | (rb & REX_64), rb, p, 0);
167}
168
169/* op [base+ofs], i */
170static void emit_gmroi(ASMState *as, x86Group xg, Reg rb, int32_t ofs,
171 int32_t i)
172{
173 x86Op xo;
174 if (checki8(i)) {
175 emit_i8(as, i);
176 xo = XG_TOXOi8(xg);
177 } else {
178 emit_i32(as, i);
179 xo = XG_TOXOi(xg);
180 }
181 emit_rmro(as, xo, (Reg)(xg & 7), rb, ofs);
182}
183
184#define emit_shifti(as, xg, r, i) \
185 (emit_i8(as, (i)), emit_rr(as, XO_SHIFTi, (Reg)(xg), (r)))
186
187/* op r, rm/mrm */
188static void emit_mrm(ASMState *as, x86Op xo, Reg rr, Reg rb)
189{
190 MCode *p = as->mcp;
191 x86Mode mode = XM_REG;
192 if (rb == RID_MRM) {
193 rb = as->mrm.base;
194 if (rb == RID_NONE) {
195 rb = RID_EBP;
196 mode = XM_OFS0;
197 p -= 4;
198 *(int32_t *)p = as->mrm.ofs;
199 if (as->mrm.idx != RID_NONE)
200 goto mrmidx;
201#if LJ_64
202 *--p = MODRM(XM_SCALE1, RID_ESP, RID_EBP);
203 rb = RID_ESP;
204#endif
205 } else {
206 if (as->mrm.ofs == 0 && (rb&7) != RID_EBP) {
207 mode = XM_OFS0;
208 } else if (checki8(as->mrm.ofs)) {
209 *--p = (MCode)as->mrm.ofs;
210 mode = XM_OFS8;
211 } else {
212 p -= 4;
213 *(int32_t *)p = as->mrm.ofs;
214 mode = XM_OFS32;
215 }
216 if (as->mrm.idx != RID_NONE) {
217 mrmidx:
218 as->mcp = emit_opmx(xo, mode, as->mrm.scale, rr, rb, as->mrm.idx, p);
219 return;
220 }
221 if ((rb&7) == RID_ESP)
222 *--p = MODRM(XM_SCALE1, RID_ESP, RID_ESP);
223 }
224 }
225 as->mcp = emit_opm(xo, mode, rr, rb, p, 0);
226}
227
228/* op rm/mrm, i */
229static void emit_gmrmi(ASMState *as, x86Group xg, Reg rb, int32_t i)
230{
231 x86Op xo;
232 if (checki8(i)) {
233 emit_i8(as, i);
234 xo = XG_TOXOi8(xg);
235 } else {
236 emit_i32(as, i);
237 xo = XG_TOXOi(xg);
238 }
239 emit_mrm(as, xo, (Reg)(xg & 7) | (rb & REX_64), (rb & ~REX_64));
240}
241
242/* -- Emit loads/stores --------------------------------------------------- */
243
244/* Instruction selection for XMM moves. */
245#define XMM_MOVRR(as) ((as->flags & JIT_F_SPLIT_XMM) ? XO_MOVSD : XO_MOVAPS)
246#define XMM_MOVRM(as) ((as->flags & JIT_F_SPLIT_XMM) ? XO_MOVLPD : XO_MOVSD)
247
248/* mov [base+ofs], i */
249static void emit_movmroi(ASMState *as, Reg base, int32_t ofs, int32_t i)
250{
251 emit_i32(as, i);
252 emit_rmro(as, XO_MOVmi, 0, base, ofs);
253}
254
255/* mov [base+ofs], r */
256#define emit_movtomro(as, r, base, ofs) \
257 emit_rmro(as, XO_MOVto, (r), (base), (ofs))
258
259/* Get/set global_State fields. */
260#define emit_opgl(as, xo, r, field) \
261 emit_rma(as, (xo), (r), (void *)&J2G(as->J)->field)
262#define emit_getgl(as, r, field) emit_opgl(as, XO_MOV, (r), field)
263#define emit_setgl(as, r, field) emit_opgl(as, XO_MOVto, (r), field)
264#define emit_setgli(as, field, i) \
265 (emit_i32(as, i), emit_opgl(as, XO_MOVmi, 0, field))
266
267/* mov r, i / xor r, r */
268static void emit_loadi(ASMState *as, Reg r, int32_t i)
269{
270 /* XOR r,r is shorter, but modifies the flags. This is bad for HIOP. */
271 if (i == 0 && !(LJ_32 && (IR(as->curins)->o == IR_HIOP ||
272 (as->curins+1 < as->T->nins &&
273 IR(as->curins+1)->o == IR_HIOP)))) {
274 emit_rr(as, XO_ARITH(XOg_XOR), r, r);
275 } else {
276 MCode *p = as->mcp;
277 *(int32_t *)(p-4) = i;
278 p[-5] = (MCode)(XI_MOVri+(r&7));
279 p -= 5;
280 REXRB(p, 0, r);
281 as->mcp = p;
282 }
283}
284
285/* mov r, addr */
286#define emit_loada(as, r, addr) \
287 emit_loadi(as, (r), ptr2addr((addr)))
288
289#if LJ_64
290/* mov r, imm64 or shorter 32 bit extended load. */
291static void emit_loadu64(ASMState *as, Reg r, uint64_t u64)
292{
293 if (checku32(u64)) { /* 32 bit load clears upper 32 bits. */
294 emit_loadi(as, r, (int32_t)u64);
295 } else if (checki32((int64_t)u64)) { /* Sign-extended 32 bit load. */
296 MCode *p = as->mcp;
297 *(int32_t *)(p-4) = (int32_t)u64;
298 as->mcp = emit_opm(XO_MOVmi, XM_REG, REX_64, r, p, -4);
299 } else { /* Full-size 64 bit load. */
300 MCode *p = as->mcp;
301 *(uint64_t *)(p-8) = u64;
302 p[-9] = (MCode)(XI_MOVri+(r&7));
303 p[-10] = 0x48 + ((r>>3)&1);
304 p -= 10;
305 as->mcp = p;
306 }
307}
308#endif
309
310/* movsd r, [&tv->n] / xorps r, r */
311static void emit_loadn(ASMState *as, Reg r, cTValue *tv)
312{
313 if (tvispzero(tv)) /* Use xor only for +0. */
314 emit_rr(as, XO_XORPS, r, r);
315 else
316 emit_rma(as, XMM_MOVRM(as), r, &tv->n);
317}
318
319/* -- Emit control-flow instructions -------------------------------------- */
320
321/* Label for short jumps. */
322typedef MCode *MCLabel;
323
324#if LJ_32 && LJ_HASFFI
325/* jmp short target */
326static void emit_sjmp(ASMState *as, MCLabel target)
327{
328 MCode *p = as->mcp;
329 ptrdiff_t delta = target - p;
330 lua_assert(delta == (int8_t)delta);
331 p[-1] = (MCode)(int8_t)delta;
332 p[-2] = XI_JMPs;
333 as->mcp = p - 2;
334}
335#endif
336
337/* jcc short target */
338static void emit_sjcc(ASMState *as, int cc, MCLabel target)
339{
340 MCode *p = as->mcp;
341 ptrdiff_t delta = target - p;
342 lua_assert(delta == (int8_t)delta);
343 p[-1] = (MCode)(int8_t)delta;
344 p[-2] = (MCode)(XI_JCCs+(cc&15));
345 as->mcp = p - 2;
346}
347
348/* jcc short (pending target) */
349static MCLabel emit_sjcc_label(ASMState *as, int cc)
350{
351 MCode *p = as->mcp;
352 p[-1] = 0;
353 p[-2] = (MCode)(XI_JCCs+(cc&15));
354 as->mcp = p - 2;
355 return p;
356}
357
358/* Fixup jcc short target. */
359static void emit_sfixup(ASMState *as, MCLabel source)
360{
361 source[-1] = (MCode)(as->mcp-source);
362}
363
364/* Return label pointing to current PC. */
365#define emit_label(as) ((as)->mcp)
366
367/* Compute relative 32 bit offset for jump and call instructions. */
368static LJ_AINLINE int32_t jmprel(MCode *p, MCode *target)
369{
370 ptrdiff_t delta = target - p;
371 lua_assert(delta == (int32_t)delta);
372 return (int32_t)delta;
373}
374
375/* jcc target */
376static void emit_jcc(ASMState *as, int cc, MCode *target)
377{
378 MCode *p = as->mcp;
379 *(int32_t *)(p-4) = jmprel(p, target);
380 p[-5] = (MCode)(XI_JCCn+(cc&15));
381 p[-6] = 0x0f;
382 as->mcp = p - 6;
383}
384
385/* call target */
386static void emit_call_(ASMState *as, MCode *target)
387{
388 MCode *p = as->mcp;
389#if LJ_64
390 if (target-p != (int32_t)(target-p)) {
391 /* Assumes RID_RET is never an argument to calls and always clobbered. */
392 emit_rr(as, XO_GROUP5, XOg_CALL, RID_RET);
393 emit_loadu64(as, RID_RET, (uint64_t)target);
394 return;
395 }
396#endif
397 *(int32_t *)(p-4) = jmprel(p, target);
398 p[-5] = XI_CALL;
399 as->mcp = p - 5;
400}
401
402#define emit_call(as, f) emit_call_(as, (MCode *)(void *)(f))
403
404/* -- Emit generic operations --------------------------------------------- */
405
406/* Use 64 bit operations to handle 64 bit IR types. */
407#if LJ_64
408#define REX_64IR(ir, r) ((r) + (irt_is64((ir)->t) ? REX_64 : 0))
409#else
410#define REX_64IR(ir, r) (r)
411#endif
412
413/* Generic move between two regs. */
414static void emit_movrr(ASMState *as, IRIns *ir, Reg dst, Reg src)
415{
416 UNUSED(ir);
417 if (dst < RID_MAX_GPR)
418 emit_rr(as, XO_MOV, REX_64IR(ir, dst), src);
419 else
420 emit_rr(as, XMM_MOVRR(as), dst, src);
421}
422
423/* Generic load of register from stack slot. */
424static void emit_spload(ASMState *as, IRIns *ir, Reg r, int32_t ofs)
425{
426 if (r < RID_MAX_GPR)
427 emit_rmro(as, XO_MOV, REX_64IR(ir, r), RID_ESP, ofs);
428 else
429 emit_rmro(as, irt_isnum(ir->t) ? XMM_MOVRM(as) : XO_MOVSS, r, RID_ESP, ofs);
430}
431
432/* Generic store of register to stack slot. */
433static void emit_spstore(ASMState *as, IRIns *ir, Reg r, int32_t ofs)
434{
435 if (r < RID_MAX_GPR)
436 emit_rmro(as, XO_MOVto, REX_64IR(ir, r), RID_ESP, ofs);
437 else
438 emit_rmro(as, irt_isnum(ir->t) ? XO_MOVSDto : XO_MOVSSto, r, RID_ESP, ofs);
439}
440
441/* Add offset to pointer. */
442static void emit_addptr(ASMState *as, Reg r, int32_t ofs)
443{
444 if (ofs) {
445 if ((as->flags & JIT_F_LEA_AGU))
446 emit_rmro(as, XO_LEA, r, r, ofs);
447 else
448 emit_gri(as, XG_ARITHi(XOg_ADD), r, ofs);
449 }
450}
451
452#define emit_spsub(as, ofs) emit_addptr(as, RID_ESP|REX_64, -(ofs))
453
454/* Prefer rematerialization of BASE/L from global_State over spills. */
455#define emit_canremat(ref) ((ref) <= REF_BASE)
456