diff options
author | tb <> | 2018-07-10 21:55:49 +0000 |
---|---|---|
committer | tb <> | 2018-07-10 21:55:49 +0000 |
commit | 0b6b704dd844fd7a8f8afc5534d7f341f709693e (patch) | |
tree | e43f68a4593596665ff34a3a61c5898373d7f72d | |
parent | fb314014bb665ac1760452bb6b491d58b505d4d2 (diff) | |
download | openbsd-0b6b704dd844fd7a8f8afc5534d7f341f709693e.tar.gz openbsd-0b6b704dd844fd7a8f8afc5534d7f341f709693e.tar.bz2 openbsd-0b6b704dd844fd7a8f8afc5534d7f341f709693e.zip |
ECC constant time scalar multiplication support. First step in overhauling
the EC module.
From Billy Brumley and his team, via
https://github.com/libressl-portable/openbsd/pull/94
With tweaks from jsing and me.
ok jsing
-rw-r--r-- | src/lib/libcrypto/ec/ec2_smpl.c | 12 | ||||
-rw-r--r-- | src/lib/libcrypto/ec/ec_lcl.h | 17 | ||||
-rw-r--r-- | src/lib/libcrypto/ec/ec_lib.c | 99 | ||||
-rw-r--r-- | src/lib/libcrypto/ec/ecp_mont.c | 5 | ||||
-rw-r--r-- | src/lib/libcrypto/ec/ecp_smpl.c | 250 |
5 files changed, 337 insertions, 46 deletions
diff --git a/src/lib/libcrypto/ec/ec2_smpl.c b/src/lib/libcrypto/ec/ec2_smpl.c index 6157599990..358664afc1 100644 --- a/src/lib/libcrypto/ec/ec2_smpl.c +++ b/src/lib/libcrypto/ec/ec2_smpl.c | |||
@@ -1,4 +1,4 @@ | |||
1 | /* $OpenBSD: ec2_smpl.c,v 1.15 2017/01/29 17:49:23 beck Exp $ */ | 1 | /* $OpenBSD: ec2_smpl.c,v 1.16 2018/07/10 21:55:49 tb Exp $ */ |
2 | /* ==================================================================== | 2 | /* ==================================================================== |
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | 3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
4 | * | 4 | * |
@@ -107,15 +107,11 @@ EC_GF2m_simple_method(void) | |||
107 | .point_cmp = ec_GF2m_simple_cmp, | 107 | .point_cmp = ec_GF2m_simple_cmp, |
108 | .make_affine = ec_GF2m_simple_make_affine, | 108 | .make_affine = ec_GF2m_simple_make_affine, |
109 | .points_make_affine = ec_GF2m_simple_points_make_affine, | 109 | .points_make_affine = ec_GF2m_simple_points_make_affine, |
110 | 110 | .mul_generator_ct = ec_GFp_simple_mul_generator_ct, | |
111 | /* | 111 | .mul_single_ct = ec_GFp_simple_mul_single_ct, |
112 | * the following three method functions are defined in | 112 | .mul_double_nonct = ec_GFp_simple_mul_double_nonct, |
113 | * ec2_mult.c | ||
114 | */ | ||
115 | .mul = ec_GF2m_simple_mul, | ||
116 | .precompute_mult = ec_GF2m_precompute_mult, | 113 | .precompute_mult = ec_GF2m_precompute_mult, |
117 | .have_precompute_mult = ec_GF2m_have_precompute_mult, | 114 | .have_precompute_mult = ec_GF2m_have_precompute_mult, |
118 | |||
119 | .field_mul = ec_GF2m_simple_field_mul, | 115 | .field_mul = ec_GF2m_simple_field_mul, |
120 | .field_sqr = ec_GF2m_simple_field_sqr, | 116 | .field_sqr = ec_GF2m_simple_field_sqr, |
121 | .field_div = ec_GF2m_simple_field_div, | 117 | .field_div = ec_GF2m_simple_field_div, |
diff --git a/src/lib/libcrypto/ec/ec_lcl.h b/src/lib/libcrypto/ec/ec_lcl.h index e1c91e67ab..4916d3a14a 100644 --- a/src/lib/libcrypto/ec/ec_lcl.h +++ b/src/lib/libcrypto/ec/ec_lcl.h | |||
@@ -1,4 +1,4 @@ | |||
1 | /* $OpenBSD: ec_lcl.h,v 1.7 2016/12/21 15:49:29 jsing Exp $ */ | 1 | /* $OpenBSD: ec_lcl.h,v 1.8 2018/07/10 21:55:49 tb Exp $ */ |
2 | /* | 2 | /* |
3 | * Originally written by Bodo Moeller for the OpenSSL project. | 3 | * Originally written by Bodo Moeller for the OpenSSL project. |
4 | */ | 4 | */ |
@@ -160,10 +160,12 @@ struct ec_method_st { | |||
160 | int (*make_affine)(const EC_GROUP *, EC_POINT *, BN_CTX *); | 160 | int (*make_affine)(const EC_GROUP *, EC_POINT *, BN_CTX *); |
161 | int (*points_make_affine)(const EC_GROUP *, size_t num, EC_POINT *[], BN_CTX *); | 161 | int (*points_make_affine)(const EC_GROUP *, size_t num, EC_POINT *[], BN_CTX *); |
162 | 162 | ||
163 | /* used by EC_POINTs_mul, EC_POINT_mul, EC_POINT_precompute_mult, EC_POINT_have_precompute_mult | 163 | /* used by EC_POINTs_mul, EC_POINT_mul, EC_POINT_precompute_mult, EC_POINT_have_precompute_mult */ |
164 | * (default implementations are used if the 'mul' pointer is 0): */ | 164 | int (*mul_generator_ct)(const EC_GROUP *, EC_POINT *r, const BIGNUM *scalar, BN_CTX *); |
165 | int (*mul)(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | 165 | int (*mul_single_ct)(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, |
166 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *); | 166 | const EC_POINT *point, BN_CTX *); |
167 | int (*mul_double_nonct)(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, | ||
168 | const BIGNUM *p_scalar, const EC_POINT *point, BN_CTX *); | ||
167 | int (*precompute_mult)(EC_GROUP *group, BN_CTX *); | 169 | int (*precompute_mult)(EC_GROUP *group, BN_CTX *); |
168 | int (*have_precompute_mult)(const EC_GROUP *group); | 170 | int (*have_precompute_mult)(const EC_GROUP *group); |
169 | 171 | ||
@@ -337,6 +339,11 @@ int ec_GFp_simple_make_affine(const EC_GROUP *, EC_POINT *, BN_CTX *); | |||
337 | int ec_GFp_simple_points_make_affine(const EC_GROUP *, size_t num, EC_POINT *[], BN_CTX *); | 339 | int ec_GFp_simple_points_make_affine(const EC_GROUP *, size_t num, EC_POINT *[], BN_CTX *); |
338 | int ec_GFp_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); | 340 | int ec_GFp_simple_field_mul(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *); |
339 | int ec_GFp_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); | 341 | int ec_GFp_simple_field_sqr(const EC_GROUP *, BIGNUM *r, const BIGNUM *a, BN_CTX *); |
342 | int ec_GFp_simple_mul_generator_ct(const EC_GROUP *, EC_POINT *r, const BIGNUM *scalar, BN_CTX *); | ||
343 | int ec_GFp_simple_mul_single_ct(const EC_GROUP *, EC_POINT *r, const BIGNUM *scalar, | ||
344 | const EC_POINT *point, BN_CTX *); | ||
345 | int ec_GFp_simple_mul_double_nonct(const EC_GROUP *, EC_POINT *r, const BIGNUM *g_scalar, | ||
346 | const BIGNUM *p_scalar, const EC_POINT *point, BN_CTX *); | ||
340 | 347 | ||
341 | 348 | ||
342 | /* method functions in ecp_mont.c */ | 349 | /* method functions in ecp_mont.c */ |
diff --git a/src/lib/libcrypto/ec/ec_lib.c b/src/lib/libcrypto/ec/ec_lib.c index 0d062111b5..5580375321 100644 --- a/src/lib/libcrypto/ec/ec_lib.c +++ b/src/lib/libcrypto/ec/ec_lib.c | |||
@@ -1,4 +1,4 @@ | |||
1 | /* $OpenBSD: ec_lib.c,v 1.24 2017/05/02 03:59:44 deraadt Exp $ */ | 1 | /* $OpenBSD: ec_lib.c,v 1.25 2018/07/10 21:55:49 tb Exp $ */ |
2 | /* | 2 | /* |
3 | * Originally written by Bodo Moeller for the OpenSSL project. | 3 | * Originally written by Bodo Moeller for the OpenSSL project. |
4 | */ | 4 | */ |
@@ -1026,47 +1026,88 @@ EC_POINTs_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], | |||
1026 | } | 1026 | } |
1027 | 1027 | ||
1028 | 1028 | ||
1029 | /* Functions for point multiplication. | 1029 | /* Functions for point multiplication */ |
1030 | * | ||
1031 | * If group->meth->mul is 0, we use the wNAF-based implementations in ec_mult.c; | ||
1032 | * otherwise we dispatch through methods. | ||
1033 | */ | ||
1034 | |||
1035 | int | 1030 | int |
1036 | EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | 1031 | EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, |
1037 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) | 1032 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) |
1038 | { | 1033 | { |
1039 | if (group->meth->mul == 0) | 1034 | /* |
1040 | /* use default */ | 1035 | * The function pointers must be set, and only support num == 0 and |
1041 | return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); | 1036 | * num == 1. |
1042 | 1037 | */ | |
1043 | return group->meth->mul(group, r, scalar, num, points, scalars, ctx); | 1038 | if (group->meth->mul_generator_ct == NULL || |
1039 | group->meth->mul_single_ct == NULL || | ||
1040 | group->meth->mul_double_nonct == NULL || | ||
1041 | num > 1) { | ||
1042 | ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
1043 | return 0; | ||
1044 | } | ||
1045 | |||
1046 | /* Either bP or aG + bP, this is sane. */ | ||
1047 | if (num == 1 && points != NULL && scalars != NULL) | ||
1048 | return EC_POINT_mul(group, r, scalar, points[0], scalars[0], | ||
1049 | ctx); | ||
1050 | |||
1051 | /* aG, this is sane */ | ||
1052 | if (scalar != NULL && points == NULL && scalars == NULL) | ||
1053 | return EC_POINT_mul(group, r, scalar, NULL, NULL, ctx); | ||
1054 | |||
1055 | /* anything else is an error */ | ||
1056 | ECerror(ERR_R_EC_LIB); | ||
1057 | return 0; | ||
1044 | } | 1058 | } |
1045 | 1059 | ||
1046 | int | 1060 | int |
1047 | EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, | 1061 | EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, |
1048 | const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx) | 1062 | const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx) |
1049 | { | 1063 | { |
1050 | /* just a convenient interface to EC_POINTs_mul() */ | 1064 | if (group->meth->mul_generator_ct == NULL || |
1051 | 1065 | group->meth->mul_single_ct == NULL || | |
1052 | const EC_POINT *points[1]; | 1066 | group->meth->mul_double_nonct == NULL) { |
1053 | const BIGNUM *scalars[1]; | 1067 | ECerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
1054 | 1068 | return 0; | |
1055 | points[0] = point; | 1069 | } |
1056 | scalars[0] = p_scalar; | 1070 | if (g_scalar != NULL && point == NULL && p_scalar == NULL) { |
1057 | 1071 | /* | |
1058 | return EC_POINTs_mul(group, r, g_scalar, | 1072 | * In this case we want to compute g_scalar * GeneratorPoint: |
1059 | (point != NULL && p_scalar != NULL), | 1073 | * this codepath is reached most prominently by (ephemeral) key |
1060 | points, scalars, ctx); | 1074 | * generation of EC cryptosystems (i.e. ECDSA keygen and sign |
1075 | * setup, ECDH keygen/first half), where the scalar is always | ||
1076 | * secret. This is why we ignore if BN_FLG_CONSTTIME is actually | ||
1077 | * set and we always call the constant time version. | ||
1078 | */ | ||
1079 | return group->meth->mul_generator_ct(group, r, g_scalar, ctx); | ||
1080 | } | ||
1081 | if (g_scalar == NULL && point != NULL && p_scalar != NULL) { | ||
1082 | /* In this case we want to compute p_scalar * GenericPoint: | ||
1083 | * this codepath is reached most prominently by the second half | ||
1084 | * of ECDH, where the secret scalar is multiplied by the peer's | ||
1085 | * public point. To protect the secret scalar, we ignore if | ||
1086 | * BN_FLG_CONSTTIME is actually set and we always call the | ||
1087 | * constant time version. | ||
1088 | */ | ||
1089 | return group->meth->mul_single_ct(group, r, p_scalar, point, | ||
1090 | ctx); | ||
1091 | } | ||
1092 | if (g_scalar != NULL && point != NULL && p_scalar != NULL) { | ||
1093 | /* | ||
1094 | * In this case we want to compute | ||
1095 | * g_scalar * GeneratorPoint + p_scalar * GenericPoint: | ||
1096 | * this codepath is reached most prominently by ECDSA signature | ||
1097 | * verification. So we call the non-ct version. | ||
1098 | */ | ||
1099 | return group->meth->mul_double_nonct(group, r, g_scalar, | ||
1100 | p_scalar, point, ctx); | ||
1101 | } | ||
1102 | |||
1103 | /* Anything else is an error. */ | ||
1104 | ECerror(ERR_R_EC_LIB); | ||
1105 | return 0; | ||
1061 | } | 1106 | } |
1062 | 1107 | ||
1063 | int | 1108 | int |
1064 | EC_GROUP_precompute_mult(EC_GROUP * group, BN_CTX * ctx) | 1109 | EC_GROUP_precompute_mult(EC_GROUP * group, BN_CTX * ctx) |
1065 | { | 1110 | { |
1066 | if (group->meth->mul == 0) | ||
1067 | /* use default */ | ||
1068 | return ec_wNAF_precompute_mult(group, ctx); | ||
1069 | |||
1070 | if (group->meth->precompute_mult != 0) | 1111 | if (group->meth->precompute_mult != 0) |
1071 | return group->meth->precompute_mult(group, ctx); | 1112 | return group->meth->precompute_mult(group, ctx); |
1072 | else | 1113 | else |
@@ -1076,10 +1117,6 @@ EC_GROUP_precompute_mult(EC_GROUP * group, BN_CTX * ctx) | |||
1076 | int | 1117 | int |
1077 | EC_GROUP_have_precompute_mult(const EC_GROUP * group) | 1118 | EC_GROUP_have_precompute_mult(const EC_GROUP * group) |
1078 | { | 1119 | { |
1079 | if (group->meth->mul == 0) | ||
1080 | /* use default */ | ||
1081 | return ec_wNAF_have_precompute_mult(group); | ||
1082 | |||
1083 | if (group->meth->have_precompute_mult != 0) | 1120 | if (group->meth->have_precompute_mult != 0) |
1084 | return group->meth->have_precompute_mult(group); | 1121 | return group->meth->have_precompute_mult(group); |
1085 | else | 1122 | else |
diff --git a/src/lib/libcrypto/ec/ecp_mont.c b/src/lib/libcrypto/ec/ecp_mont.c index 68fc26de1e..8b4c529222 100644 --- a/src/lib/libcrypto/ec/ecp_mont.c +++ b/src/lib/libcrypto/ec/ecp_mont.c | |||
@@ -1,4 +1,4 @@ | |||
1 | /* $OpenBSD: ecp_mont.c,v 1.11 2017/01/29 17:49:23 beck Exp $ */ | 1 | /* $OpenBSD: ecp_mont.c,v 1.12 2018/07/10 21:55:49 tb Exp $ */ |
2 | /* | 2 | /* |
3 | * Originally written by Bodo Moeller for the OpenSSL project. | 3 | * Originally written by Bodo Moeller for the OpenSSL project. |
4 | */ | 4 | */ |
@@ -102,6 +102,9 @@ EC_GFp_mont_method(void) | |||
102 | .point_cmp = ec_GFp_simple_cmp, | 102 | .point_cmp = ec_GFp_simple_cmp, |
103 | .make_affine = ec_GFp_simple_make_affine, | 103 | .make_affine = ec_GFp_simple_make_affine, |
104 | .points_make_affine = ec_GFp_simple_points_make_affine, | 104 | .points_make_affine = ec_GFp_simple_points_make_affine, |
105 | .mul_generator_ct = ec_GFp_simple_mul_generator_ct, | ||
106 | .mul_single_ct = ec_GFp_simple_mul_single_ct, | ||
107 | .mul_double_nonct = ec_GFp_simple_mul_double_nonct, | ||
105 | .field_mul = ec_GFp_mont_field_mul, | 108 | .field_mul = ec_GFp_mont_field_mul, |
106 | .field_sqr = ec_GFp_mont_field_sqr, | 109 | .field_sqr = ec_GFp_mont_field_sqr, |
107 | .field_encode = ec_GFp_mont_field_encode, | 110 | .field_encode = ec_GFp_mont_field_encode, |
diff --git a/src/lib/libcrypto/ec/ecp_smpl.c b/src/lib/libcrypto/ec/ecp_smpl.c index ddba49c693..402ee2294d 100644 --- a/src/lib/libcrypto/ec/ecp_smpl.c +++ b/src/lib/libcrypto/ec/ecp_smpl.c | |||
@@ -1,4 +1,4 @@ | |||
1 | /* $OpenBSD: ecp_smpl.c,v 1.17 2017/01/29 17:49:23 beck Exp $ */ | 1 | /* $OpenBSD: ecp_smpl.c,v 1.18 2018/07/10 21:55:49 tb Exp $ */ |
2 | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | 2 | /* Includes code written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> |
3 | * for the OpenSSL project. | 3 | * for the OpenSSL project. |
4 | * Includes code written by Bodo Moeller for the OpenSSL project. | 4 | * Includes code written by Bodo Moeller for the OpenSSL project. |
@@ -103,6 +103,9 @@ EC_GFp_simple_method(void) | |||
103 | .point_cmp = ec_GFp_simple_cmp, | 103 | .point_cmp = ec_GFp_simple_cmp, |
104 | .make_affine = ec_GFp_simple_make_affine, | 104 | .make_affine = ec_GFp_simple_make_affine, |
105 | .points_make_affine = ec_GFp_simple_points_make_affine, | 105 | .points_make_affine = ec_GFp_simple_points_make_affine, |
106 | .mul_generator_ct = ec_GFp_simple_mul_generator_ct, | ||
107 | .mul_single_ct = ec_GFp_simple_mul_single_ct, | ||
108 | .mul_double_nonct = ec_GFp_simple_mul_double_nonct, | ||
106 | .field_mul = ec_GFp_simple_field_mul, | 109 | .field_mul = ec_GFp_simple_field_mul, |
107 | .field_sqr = ec_GFp_simple_field_sqr | 110 | .field_sqr = ec_GFp_simple_field_sqr |
108 | }; | 111 | }; |
@@ -1409,3 +1412,248 @@ ec_GFp_simple_field_sqr(const EC_GROUP * group, BIGNUM * r, const BIGNUM * a, BN | |||
1409 | { | 1412 | { |
1410 | return BN_mod_sqr(r, a, &group->field, ctx); | 1413 | return BN_mod_sqr(r, a, &group->field, ctx); |
1411 | } | 1414 | } |
1415 | |||
1416 | #define EC_POINT_BN_set_flags(P, flags) do { \ | ||
1417 | BN_set_flags(&(P)->X, (flags)); \ | ||
1418 | BN_set_flags(&(P)->Y, (flags)); \ | ||
1419 | BN_set_flags(&(P)->Z, (flags)); \ | ||
1420 | } while(0) | ||
1421 | |||
1422 | #define EC_POINT_CSWAP(c, a, b, w, t) do { \ | ||
1423 | if (!BN_swap_ct(c, &(a)->X, &(b)->X, w) || \ | ||
1424 | !BN_swap_ct(c, &(a)->Y, &(b)->Y, w) || \ | ||
1425 | !BN_swap_ct(c, &(a)->Z, &(b)->Z, w)) \ | ||
1426 | goto err; \ | ||
1427 | t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \ | ||
1428 | (a)->Z_is_one ^= (t); \ | ||
1429 | (b)->Z_is_one ^= (t); \ | ||
1430 | } while(0) | ||
1431 | |||
1432 | /* | ||
1433 | * This function computes (in constant time) a point multiplication over the | ||
1434 | * EC group. | ||
1435 | * | ||
1436 | * At a high level, it is Montgomery ladder with conditional swaps. | ||
1437 | * | ||
1438 | * It performs either a fixed point multiplication | ||
1439 | * (scalar * generator) | ||
1440 | * when point is NULL, or a variable point multiplication | ||
1441 | * (scalar * point) | ||
1442 | * when point is not NULL. | ||
1443 | * | ||
1444 | * scalar should be in the range [0,n) otherwise all constant time bets are off. | ||
1445 | * | ||
1446 | * NB: This says nothing about EC_POINT_add and EC_POINT_dbl, | ||
1447 | * which of course are not constant time themselves. | ||
1448 | * | ||
1449 | * The product is stored in r. | ||
1450 | * | ||
1451 | * Returns 1 on success, 0 otherwise. | ||
1452 | */ | ||
1453 | static int | ||
1454 | ec_GFp_simple_mul_ct(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
1455 | const EC_POINT *point, BN_CTX *ctx) | ||
1456 | { | ||
1457 | int i, cardinality_bits, group_top, kbit, pbit, Z_is_one; | ||
1458 | EC_POINT *s = NULL; | ||
1459 | BIGNUM *k = NULL; | ||
1460 | BIGNUM *lambda = NULL; | ||
1461 | BIGNUM *cardinality = NULL; | ||
1462 | BN_CTX *new_ctx = NULL; | ||
1463 | int ret = 0; | ||
1464 | |||
1465 | if (ctx == NULL && (ctx = new_ctx = BN_CTX_new()) == NULL) | ||
1466 | return 0; | ||
1467 | |||
1468 | BN_CTX_start(ctx); | ||
1469 | |||
1470 | if ((s = EC_POINT_new(group)) == NULL) | ||
1471 | goto err; | ||
1472 | |||
1473 | if (point == NULL) { | ||
1474 | if (!EC_POINT_copy(s, group->generator)) | ||
1475 | goto err; | ||
1476 | } else { | ||
1477 | if (!EC_POINT_copy(s, point)) | ||
1478 | goto err; | ||
1479 | } | ||
1480 | |||
1481 | EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME); | ||
1482 | |||
1483 | if ((cardinality = BN_CTX_get(ctx)) == NULL) | ||
1484 | goto err; | ||
1485 | if ((lambda = BN_CTX_get(ctx)) == NULL) | ||
1486 | goto err; | ||
1487 | if ((k = BN_CTX_get(ctx)) == NULL) | ||
1488 | goto err; | ||
1489 | if (!BN_mul(cardinality, &group->order, &group->cofactor, ctx)) | ||
1490 | goto err; | ||
1491 | |||
1492 | /* | ||
1493 | * Group cardinalities are often on a word boundary. | ||
1494 | * So when we pad the scalar, some timing diff might | ||
1495 | * pop if it needs to be expanded due to carries. | ||
1496 | * So expand ahead of time. | ||
1497 | */ | ||
1498 | cardinality_bits = BN_num_bits(cardinality); | ||
1499 | group_top = cardinality->top; | ||
1500 | if ((bn_wexpand(k, group_top + 1) == NULL) || | ||
1501 | (bn_wexpand(lambda, group_top + 1) == NULL)) | ||
1502 | goto err; | ||
1503 | |||
1504 | if (!BN_copy(k, scalar)) | ||
1505 | goto err; | ||
1506 | |||
1507 | BN_set_flags(k, BN_FLG_CONSTTIME); | ||
1508 | |||
1509 | if (BN_num_bits(k) > cardinality_bits || BN_is_negative(k)) { | ||
1510 | /* | ||
1511 | * This is an unusual input, and we don't guarantee | ||
1512 | * constant-timeness | ||
1513 | */ | ||
1514 | if (!BN_nnmod(k, k, cardinality, ctx)) | ||
1515 | goto err; | ||
1516 | } | ||
1517 | |||
1518 | if (!BN_add(lambda, k, cardinality)) | ||
1519 | goto err; | ||
1520 | BN_set_flags(lambda, BN_FLG_CONSTTIME); | ||
1521 | if (!BN_add(k, lambda, cardinality)) | ||
1522 | goto err; | ||
1523 | /* | ||
1524 | * lambda := scalar + cardinality | ||
1525 | * k := scalar + 2*cardinality | ||
1526 | */ | ||
1527 | kbit = BN_is_bit_set(lambda, cardinality_bits); | ||
1528 | if (!BN_swap_ct(kbit, k, lambda, group_top + 1)) | ||
1529 | goto err; | ||
1530 | |||
1531 | group_top = group->field.top; | ||
1532 | if ((bn_wexpand(&s->X, group_top) == NULL) || | ||
1533 | (bn_wexpand(&s->Y, group_top) == NULL) || | ||
1534 | (bn_wexpand(&s->Z, group_top) == NULL) || | ||
1535 | (bn_wexpand(&r->X, group_top) == NULL) || | ||
1536 | (bn_wexpand(&r->Y, group_top) == NULL) || | ||
1537 | (bn_wexpand(&r->Z, group_top) == NULL)) | ||
1538 | goto err; | ||
1539 | |||
1540 | /* top bit is a 1, in a fixed pos */ | ||
1541 | if (!EC_POINT_copy(r, s)) | ||
1542 | goto err; | ||
1543 | |||
1544 | EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME); | ||
1545 | |||
1546 | if (!EC_POINT_dbl(group, s, s, ctx)) | ||
1547 | goto err; | ||
1548 | |||
1549 | pbit = 0; | ||
1550 | |||
1551 | /* | ||
1552 | * The ladder step, with branches, is | ||
1553 | * | ||
1554 | * k[i] == 0: S = add(R, S), R = dbl(R) | ||
1555 | * k[i] == 1: R = add(S, R), S = dbl(S) | ||
1556 | * | ||
1557 | * Swapping R, S conditionally on k[i] leaves you with state | ||
1558 | * | ||
1559 | * k[i] == 0: T, U = R, S | ||
1560 | * k[i] == 1: T, U = S, R | ||
1561 | * | ||
1562 | * Then perform the ECC ops. | ||
1563 | * | ||
1564 | * U = add(T, U) | ||
1565 | * T = dbl(T) | ||
1566 | * | ||
1567 | * Which leaves you with state | ||
1568 | * | ||
1569 | * k[i] == 0: U = add(R, S), T = dbl(R) | ||
1570 | * k[i] == 1: U = add(S, R), T = dbl(S) | ||
1571 | * | ||
1572 | * Swapping T, U conditionally on k[i] leaves you with state | ||
1573 | * | ||
1574 | * k[i] == 0: R, S = T, U | ||
1575 | * k[i] == 1: R, S = U, T | ||
1576 | * | ||
1577 | * Which leaves you with state | ||
1578 | * | ||
1579 | * k[i] == 0: S = add(R, S), R = dbl(R) | ||
1580 | * k[i] == 1: R = add(S, R), S = dbl(S) | ||
1581 | * | ||
1582 | * So we get the same logic, but instead of a branch it's a | ||
1583 | * conditional swap, followed by ECC ops, then another conditional swap. | ||
1584 | * | ||
1585 | * Optimization: The end of iteration i and start of i-1 looks like | ||
1586 | * | ||
1587 | * ... | ||
1588 | * CSWAP(k[i], R, S) | ||
1589 | * ECC | ||
1590 | * CSWAP(k[i], R, S) | ||
1591 | * (next iteration) | ||
1592 | * CSWAP(k[i-1], R, S) | ||
1593 | * ECC | ||
1594 | * CSWAP(k[i-1], R, S) | ||
1595 | * ... | ||
1596 | * | ||
1597 | * So instead of two contiguous swaps, you can merge the condition | ||
1598 | * bits and do a single swap. | ||
1599 | * | ||
1600 | * k[i] k[i-1] Outcome | ||
1601 | * 0 0 No Swap | ||
1602 | * 0 1 Swap | ||
1603 | * 1 0 Swap | ||
1604 | * 1 1 No Swap | ||
1605 | * | ||
1606 | * This is XOR. pbit tracks the previous bit of k. | ||
1607 | */ | ||
1608 | |||
1609 | for (i = cardinality_bits - 1; i >= 0; i--) { | ||
1610 | kbit = BN_is_bit_set(k, i) ^ pbit; | ||
1611 | EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); | ||
1612 | if (!EC_POINT_add(group, s, r, s, ctx)) | ||
1613 | goto err; | ||
1614 | if (!EC_POINT_dbl(group, r, r, ctx)) | ||
1615 | goto err; | ||
1616 | /* | ||
1617 | * pbit logic merges this cswap with that of the | ||
1618 | * next iteration | ||
1619 | */ | ||
1620 | pbit ^= kbit; | ||
1621 | } | ||
1622 | /* one final cswap to move the right value into r */ | ||
1623 | EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); | ||
1624 | |||
1625 | ret = 1; | ||
1626 | |||
1627 | err: | ||
1628 | EC_POINT_free(s); | ||
1629 | if (ctx != NULL) | ||
1630 | BN_CTX_end(ctx); | ||
1631 | BN_CTX_free(new_ctx); | ||
1632 | |||
1633 | return ret; | ||
1634 | } | ||
1635 | |||
1636 | #undef EC_POINT_BN_set_flags | ||
1637 | #undef EC_POINT_CSWAP | ||
1638 | |||
1639 | int | ||
1640 | ec_GFp_simple_mul_generator_ct(const EC_GROUP *group, EC_POINT *r, | ||
1641 | const BIGNUM *scalar, BN_CTX *ctx) | ||
1642 | { | ||
1643 | return ec_GFp_simple_mul_ct(group, r, scalar, NULL, ctx); | ||
1644 | } | ||
1645 | |||
1646 | int | ||
1647 | ec_GFp_simple_mul_single_ct(const EC_GROUP *group, EC_POINT *r, | ||
1648 | const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) | ||
1649 | { | ||
1650 | return ec_GFp_simple_mul_ct(group, r, scalar, point, ctx); | ||
1651 | } | ||
1652 | |||
1653 | int | ||
1654 | ec_GFp_simple_mul_double_nonct(const EC_GROUP *group, EC_POINT *r, | ||
1655 | const BIGNUM *g_scalar, const BIGNUM *p_scalar, const EC_POINT *point, | ||
1656 | BN_CTX *ctx) | ||
1657 | { | ||
1658 | return ec_wNAF_mul(group, r, g_scalar, 1, &point, &p_scalar, ctx); | ||
1659 | } | ||