diff options
author | cvs2svn <admin@example.com> | 2013-02-14 15:11:47 +0000 |
---|---|---|
committer | cvs2svn <admin@example.com> | 2013-02-14 15:11:47 +0000 |
commit | 293732ea9d538daf81033ab02d62cbe188088510 (patch) | |
tree | 525da9dbd0af5e16a24ff6e2bbd5d6952933391e | |
parent | 5bb3399db864c8865e0df73bd1564407bac5d182 (diff) | |
download | openbsd-293732ea9d538daf81033ab02d62cbe188088510.tar.gz openbsd-293732ea9d538daf81033ab02d62cbe188088510.tar.bz2 openbsd-293732ea9d538daf81033ab02d62cbe188088510.zip |
This commit was manufactured by cvs2git to create branch 'OPENSSL'.
-rw-r--r-- | src/lib/libssl/src/ssl/s3_cbc.c | 790 |
1 files changed, 790 insertions, 0 deletions
diff --git a/src/lib/libssl/src/ssl/s3_cbc.c b/src/lib/libssl/src/ssl/s3_cbc.c new file mode 100644 index 0000000000..443a31e746 --- /dev/null +++ b/src/lib/libssl/src/ssl/s3_cbc.c | |||
@@ -0,0 +1,790 @@ | |||
1 | /* ssl/s3_cbc.c */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 2012 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * openssl-core@openssl.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | #include "ssl_locl.h" | ||
57 | |||
58 | #include <openssl/md5.h> | ||
59 | #include <openssl/sha.h> | ||
60 | |||
61 | /* MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length | ||
62 | * field. (SHA-384/512 have 128-bit length.) */ | ||
63 | #define MAX_HASH_BIT_COUNT_BYTES 16 | ||
64 | |||
65 | /* MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support. | ||
66 | * Currently SHA-384/512 has a 128-byte block size and that's the largest | ||
67 | * supported by TLS.) */ | ||
68 | #define MAX_HASH_BLOCK_SIZE 128 | ||
69 | |||
70 | /* Some utility functions are needed: | ||
71 | * | ||
72 | * These macros return the given value with the MSB copied to all the other | ||
73 | * bits. They use the fact that arithmetic shift shifts-in the sign bit. | ||
74 | * However, this is not ensured by the C standard so you may need to replace | ||
75 | * them with something else on odd CPUs. */ | ||
76 | #define DUPLICATE_MSB_TO_ALL(x) ( (unsigned)( (int)(x) >> (sizeof(int)*8-1) ) ) | ||
77 | #define DUPLICATE_MSB_TO_ALL_8(x) ((unsigned char)(DUPLICATE_MSB_TO_ALL(x))) | ||
78 | |||
79 | /* constant_time_lt returns 0xff if a<b and 0x00 otherwise. */ | ||
80 | static unsigned constant_time_lt(unsigned a, unsigned b) | ||
81 | { | ||
82 | a -= b; | ||
83 | return DUPLICATE_MSB_TO_ALL(a); | ||
84 | } | ||
85 | |||
86 | /* constant_time_ge returns 0xff if a>=b and 0x00 otherwise. */ | ||
87 | static unsigned constant_time_ge(unsigned a, unsigned b) | ||
88 | { | ||
89 | a -= b; | ||
90 | return DUPLICATE_MSB_TO_ALL(~a); | ||
91 | } | ||
92 | |||
93 | /* constant_time_eq_8 returns 0xff if a==b and 0x00 otherwise. */ | ||
94 | static unsigned char constant_time_eq_8(unsigned a, unsigned b) | ||
95 | { | ||
96 | unsigned c = a ^ b; | ||
97 | c--; | ||
98 | return DUPLICATE_MSB_TO_ALL_8(c); | ||
99 | } | ||
100 | |||
101 | /* ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC | ||
102 | * record in |rec| by updating |rec->length| in constant time. | ||
103 | * | ||
104 | * block_size: the block size of the cipher used to encrypt the record. | ||
105 | * returns: | ||
106 | * 0: (in non-constant time) if the record is publicly invalid. | ||
107 | * 1: if the padding was valid | ||
108 | * -1: otherwise. */ | ||
109 | int ssl3_cbc_remove_padding(const SSL* s, | ||
110 | SSL3_RECORD *rec, | ||
111 | unsigned block_size, | ||
112 | unsigned mac_size) | ||
113 | { | ||
114 | unsigned padding_length, good; | ||
115 | const unsigned overhead = 1 /* padding length byte */ + mac_size; | ||
116 | |||
117 | /* These lengths are all public so we can test them in non-constant | ||
118 | * time. */ | ||
119 | if (overhead > rec->length) | ||
120 | return 0; | ||
121 | |||
122 | padding_length = rec->data[rec->length-1]; | ||
123 | good = constant_time_ge(rec->length, padding_length+overhead); | ||
124 | /* SSLv3 requires that the padding is minimal. */ | ||
125 | good &= constant_time_ge(block_size, padding_length+1); | ||
126 | padding_length = good & (padding_length+1); | ||
127 | rec->length -= padding_length; | ||
128 | rec->type |= padding_length<<8; /* kludge: pass padding length */ | ||
129 | return (int)((good & 1) | (~good & -1)); | ||
130 | } | ||
131 | |||
132 | /* tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC | ||
133 | * record in |rec| in constant time and returns 1 if the padding is valid and | ||
134 | * -1 otherwise. It also removes any explicit IV from the start of the record | ||
135 | * without leaking any timing about whether there was enough space after the | ||
136 | * padding was removed. | ||
137 | * | ||
138 | * block_size: the block size of the cipher used to encrypt the record. | ||
139 | * returns: | ||
140 | * 0: (in non-constant time) if the record is publicly invalid. | ||
141 | * 1: if the padding was valid | ||
142 | * -1: otherwise. */ | ||
143 | int tls1_cbc_remove_padding(const SSL* s, | ||
144 | SSL3_RECORD *rec, | ||
145 | unsigned block_size, | ||
146 | unsigned mac_size) | ||
147 | { | ||
148 | unsigned padding_length, good, to_check, i; | ||
149 | const unsigned overhead = 1 /* padding length byte */ + mac_size; | ||
150 | /* Check if version requires explicit IV */ | ||
151 | if (s->version >= TLS1_1_VERSION || s->version == DTLS1_BAD_VER) | ||
152 | { | ||
153 | /* These lengths are all public so we can test them in | ||
154 | * non-constant time. | ||
155 | */ | ||
156 | if (overhead + block_size > rec->length) | ||
157 | return 0; | ||
158 | /* We can now safely skip explicit IV */ | ||
159 | rec->data += block_size; | ||
160 | rec->input += block_size; | ||
161 | rec->length -= block_size; | ||
162 | } | ||
163 | else if (overhead > rec->length) | ||
164 | return 0; | ||
165 | |||
166 | padding_length = rec->data[rec->length-1]; | ||
167 | |||
168 | /* NB: if compression is in operation the first packet may not be of | ||
169 | * even length so the padding bug check cannot be performed. This bug | ||
170 | * workaround has been around since SSLeay so hopefully it is either | ||
171 | * fixed now or no buggy implementation supports compression [steve] | ||
172 | */ | ||
173 | if ( (s->options&SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand) | ||
174 | { | ||
175 | /* First packet is even in size, so check */ | ||
176 | if ((memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0",8) == 0) && | ||
177 | !(padding_length & 1)) | ||
178 | { | ||
179 | s->s3->flags|=TLS1_FLAGS_TLS_PADDING_BUG; | ||
180 | } | ||
181 | if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) && | ||
182 | padding_length > 0) | ||
183 | { | ||
184 | padding_length--; | ||
185 | } | ||
186 | } | ||
187 | |||
188 | if (EVP_CIPHER_flags(s->enc_read_ctx->cipher)&EVP_CIPH_FLAG_AEAD_CIPHER) | ||
189 | { | ||
190 | /* padding is already verified */ | ||
191 | rec->length -= padding_length + 1; | ||
192 | return 1; | ||
193 | } | ||
194 | |||
195 | good = constant_time_ge(rec->length, overhead+padding_length); | ||
196 | /* The padding consists of a length byte at the end of the record and | ||
197 | * then that many bytes of padding, all with the same value as the | ||
198 | * length byte. Thus, with the length byte included, there are i+1 | ||
199 | * bytes of padding. | ||
200 | * | ||
201 | * We can't check just |padding_length+1| bytes because that leaks | ||
202 | * decrypted information. Therefore we always have to check the maximum | ||
203 | * amount of padding possible. (Again, the length of the record is | ||
204 | * public information so we can use it.) */ | ||
205 | to_check = 255; /* maximum amount of padding. */ | ||
206 | if (to_check > rec->length-1) | ||
207 | to_check = rec->length-1; | ||
208 | |||
209 | for (i = 0; i < to_check; i++) | ||
210 | { | ||
211 | unsigned char mask = constant_time_ge(padding_length, i); | ||
212 | unsigned char b = rec->data[rec->length-1-i]; | ||
213 | /* The final |padding_length+1| bytes should all have the value | ||
214 | * |padding_length|. Therefore the XOR should be zero. */ | ||
215 | good &= ~(mask&(padding_length ^ b)); | ||
216 | } | ||
217 | |||
218 | /* If any of the final |padding_length+1| bytes had the wrong value, | ||
219 | * one or more of the lower eight bits of |good| will be cleared. We | ||
220 | * AND the bottom 8 bits together and duplicate the result to all the | ||
221 | * bits. */ | ||
222 | good &= good >> 4; | ||
223 | good &= good >> 2; | ||
224 | good &= good >> 1; | ||
225 | good <<= sizeof(good)*8-1; | ||
226 | good = DUPLICATE_MSB_TO_ALL(good); | ||
227 | |||
228 | padding_length = good & (padding_length+1); | ||
229 | rec->length -= padding_length; | ||
230 | rec->type |= padding_length<<8; /* kludge: pass padding length */ | ||
231 | |||
232 | return (int)((good & 1) | (~good & -1)); | ||
233 | } | ||
234 | |||
235 | /* ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in | ||
236 | * constant time (independent of the concrete value of rec->length, which may | ||
237 | * vary within a 256-byte window). | ||
238 | * | ||
239 | * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to | ||
240 | * this function. | ||
241 | * | ||
242 | * On entry: | ||
243 | * rec->orig_len >= md_size | ||
244 | * md_size <= EVP_MAX_MD_SIZE | ||
245 | * | ||
246 | * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with | ||
247 | * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into | ||
248 | * a single or pair of cache-lines, then the variable memory accesses don't | ||
249 | * actually affect the timing. CPUs with smaller cache-lines [if any] are | ||
250 | * not multi-core and are not considered vulnerable to cache-timing attacks. | ||
251 | */ | ||
252 | #define CBC_MAC_ROTATE_IN_PLACE | ||
253 | |||
254 | void ssl3_cbc_copy_mac(unsigned char* out, | ||
255 | const SSL3_RECORD *rec, | ||
256 | unsigned md_size,unsigned orig_len) | ||
257 | { | ||
258 | #if defined(CBC_MAC_ROTATE_IN_PLACE) | ||
259 | unsigned char rotated_mac_buf[64+EVP_MAX_MD_SIZE]; | ||
260 | unsigned char *rotated_mac; | ||
261 | #else | ||
262 | unsigned char rotated_mac[EVP_MAX_MD_SIZE]; | ||
263 | #endif | ||
264 | |||
265 | /* mac_end is the index of |rec->data| just after the end of the MAC. */ | ||
266 | unsigned mac_end = rec->length; | ||
267 | unsigned mac_start = mac_end - md_size; | ||
268 | /* scan_start contains the number of bytes that we can ignore because | ||
269 | * the MAC's position can only vary by 255 bytes. */ | ||
270 | unsigned scan_start = 0; | ||
271 | unsigned i, j; | ||
272 | unsigned div_spoiler; | ||
273 | unsigned rotate_offset; | ||
274 | |||
275 | OPENSSL_assert(orig_len >= md_size); | ||
276 | OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE); | ||
277 | |||
278 | #if defined(CBC_MAC_ROTATE_IN_PLACE) | ||
279 | rotated_mac = rotated_mac_buf + ((0-(size_t)rotated_mac_buf)&63); | ||
280 | #endif | ||
281 | |||
282 | /* This information is public so it's safe to branch based on it. */ | ||
283 | if (orig_len > md_size + 255 + 1) | ||
284 | scan_start = orig_len - (md_size + 255 + 1); | ||
285 | /* div_spoiler contains a multiple of md_size that is used to cause the | ||
286 | * modulo operation to be constant time. Without this, the time varies | ||
287 | * based on the amount of padding when running on Intel chips at least. | ||
288 | * | ||
289 | * The aim of right-shifting md_size is so that the compiler doesn't | ||
290 | * figure out that it can remove div_spoiler as that would require it | ||
291 | * to prove that md_size is always even, which I hope is beyond it. */ | ||
292 | div_spoiler = md_size >> 1; | ||
293 | div_spoiler <<= (sizeof(div_spoiler)-1)*8; | ||
294 | rotate_offset = (div_spoiler + mac_start - scan_start) % md_size; | ||
295 | |||
296 | memset(rotated_mac, 0, md_size); | ||
297 | for (i = scan_start, j = 0; i < orig_len; i++) | ||
298 | { | ||
299 | unsigned char mac_started = constant_time_ge(i, mac_start); | ||
300 | unsigned char mac_ended = constant_time_ge(i, mac_end); | ||
301 | unsigned char b = rec->data[i]; | ||
302 | rotated_mac[j++] |= b & mac_started & ~mac_ended; | ||
303 | j &= constant_time_lt(j,md_size); | ||
304 | } | ||
305 | |||
306 | /* Now rotate the MAC */ | ||
307 | #if defined(CBC_MAC_ROTATE_IN_PLACE) | ||
308 | j = 0; | ||
309 | for (i = 0; i < md_size; i++) | ||
310 | { | ||
311 | /* in case cache-line is 32 bytes, touch second line */ | ||
312 | ((volatile unsigned char *)rotated_mac)[rotate_offset^32]; | ||
313 | out[j++] = rotated_mac[rotate_offset++]; | ||
314 | rotate_offset &= constant_time_lt(rotate_offset,md_size); | ||
315 | } | ||
316 | #else | ||
317 | memset(out, 0, md_size); | ||
318 | rotate_offset = md_size - rotate_offset; | ||
319 | rotate_offset &= constant_time_lt(rotate_offset,md_size); | ||
320 | for (i = 0; i < md_size; i++) | ||
321 | { | ||
322 | for (j = 0; j < md_size; j++) | ||
323 | out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset); | ||
324 | rotate_offset++; | ||
325 | rotate_offset &= constant_time_lt(rotate_offset,md_size); | ||
326 | } | ||
327 | #endif | ||
328 | } | ||
329 | |||
330 | /* u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in | ||
331 | * little-endian order. The value of p is advanced by four. */ | ||
332 | #define u32toLE(n, p) \ | ||
333 | (*((p)++)=(unsigned char)(n), \ | ||
334 | *((p)++)=(unsigned char)(n>>8), \ | ||
335 | *((p)++)=(unsigned char)(n>>16), \ | ||
336 | *((p)++)=(unsigned char)(n>>24)) | ||
337 | |||
338 | /* These functions serialize the state of a hash and thus perform the standard | ||
339 | * "final" operation without adding the padding and length that such a function | ||
340 | * typically does. */ | ||
341 | static void tls1_md5_final_raw(void* ctx, unsigned char *md_out) | ||
342 | { | ||
343 | MD5_CTX *md5 = ctx; | ||
344 | u32toLE(md5->A, md_out); | ||
345 | u32toLE(md5->B, md_out); | ||
346 | u32toLE(md5->C, md_out); | ||
347 | u32toLE(md5->D, md_out); | ||
348 | } | ||
349 | |||
350 | static void tls1_sha1_final_raw(void* ctx, unsigned char *md_out) | ||
351 | { | ||
352 | SHA_CTX *sha1 = ctx; | ||
353 | l2n(sha1->h0, md_out); | ||
354 | l2n(sha1->h1, md_out); | ||
355 | l2n(sha1->h2, md_out); | ||
356 | l2n(sha1->h3, md_out); | ||
357 | l2n(sha1->h4, md_out); | ||
358 | } | ||
359 | #define LARGEST_DIGEST_CTX SHA_CTX | ||
360 | |||
361 | #ifndef OPENSSL_NO_SHA256 | ||
362 | static void tls1_sha256_final_raw(void* ctx, unsigned char *md_out) | ||
363 | { | ||
364 | SHA256_CTX *sha256 = ctx; | ||
365 | unsigned i; | ||
366 | |||
367 | for (i = 0; i < 8; i++) | ||
368 | { | ||
369 | l2n(sha256->h[i], md_out); | ||
370 | } | ||
371 | } | ||
372 | #undef LARGEST_DIGEST_CTX | ||
373 | #define LARGEST_DIGEST_CTX SHA256_CTX | ||
374 | #endif | ||
375 | |||
376 | #ifndef OPENSSL_NO_SHA512 | ||
377 | static void tls1_sha512_final_raw(void* ctx, unsigned char *md_out) | ||
378 | { | ||
379 | SHA512_CTX *sha512 = ctx; | ||
380 | unsigned i; | ||
381 | |||
382 | for (i = 0; i < 8; i++) | ||
383 | { | ||
384 | l2n8(sha512->h[i], md_out); | ||
385 | } | ||
386 | } | ||
387 | #undef LARGEST_DIGEST_CTX | ||
388 | #define LARGEST_DIGEST_CTX SHA512_CTX | ||
389 | #endif | ||
390 | |||
391 | /* ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function | ||
392 | * which ssl3_cbc_digest_record supports. */ | ||
393 | char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx) | ||
394 | { | ||
395 | #ifdef OPENSSL_FIPS | ||
396 | if (FIPS_mode()) | ||
397 | return 0; | ||
398 | #endif | ||
399 | switch (EVP_MD_CTX_type(ctx)) | ||
400 | { | ||
401 | case NID_md5: | ||
402 | case NID_sha1: | ||
403 | #ifndef OPENSSL_NO_SHA256 | ||
404 | case NID_sha224: | ||
405 | case NID_sha256: | ||
406 | #endif | ||
407 | #ifndef OPENSSL_NO_SHA512 | ||
408 | case NID_sha384: | ||
409 | case NID_sha512: | ||
410 | #endif | ||
411 | return 1; | ||
412 | default: | ||
413 | return 0; | ||
414 | } | ||
415 | } | ||
416 | |||
417 | /* ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS | ||
418 | * record. | ||
419 | * | ||
420 | * ctx: the EVP_MD_CTX from which we take the hash function. | ||
421 | * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX. | ||
422 | * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written. | ||
423 | * md_out_size: if non-NULL, the number of output bytes is written here. | ||
424 | * header: the 13-byte, TLS record header. | ||
425 | * data: the record data itself, less any preceeding explicit IV. | ||
426 | * data_plus_mac_size: the secret, reported length of the data and MAC | ||
427 | * once the padding has been removed. | ||
428 | * data_plus_mac_plus_padding_size: the public length of the whole | ||
429 | * record, including padding. | ||
430 | * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS. | ||
431 | * | ||
432 | * On entry: by virtue of having been through one of the remove_padding | ||
433 | * functions, above, we know that data_plus_mac_size is large enough to contain | ||
434 | * a padding byte and MAC. (If the padding was invalid, it might contain the | ||
435 | * padding too. ) */ | ||
436 | void ssl3_cbc_digest_record( | ||
437 | const EVP_MD_CTX *ctx, | ||
438 | unsigned char* md_out, | ||
439 | size_t* md_out_size, | ||
440 | const unsigned char header[13], | ||
441 | const unsigned char *data, | ||
442 | size_t data_plus_mac_size, | ||
443 | size_t data_plus_mac_plus_padding_size, | ||
444 | const unsigned char *mac_secret, | ||
445 | unsigned mac_secret_length, | ||
446 | char is_sslv3) | ||
447 | { | ||
448 | union { double align; | ||
449 | unsigned char c[sizeof(LARGEST_DIGEST_CTX)]; } md_state; | ||
450 | void (*md_final_raw)(void *ctx, unsigned char *md_out); | ||
451 | void (*md_transform)(void *ctx, const unsigned char *block); | ||
452 | unsigned md_size, md_block_size = 64; | ||
453 | unsigned sslv3_pad_length = 40, header_length, variance_blocks, | ||
454 | len, max_mac_bytes, num_blocks, | ||
455 | num_starting_blocks, k, mac_end_offset, c, index_a, index_b; | ||
456 | unsigned int bits; /* at most 18 bits */ | ||
457 | unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES]; | ||
458 | /* hmac_pad is the masked HMAC key. */ | ||
459 | unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE]; | ||
460 | unsigned char first_block[MAX_HASH_BLOCK_SIZE]; | ||
461 | unsigned char mac_out[EVP_MAX_MD_SIZE]; | ||
462 | unsigned i, j, md_out_size_u; | ||
463 | EVP_MD_CTX md_ctx; | ||
464 | /* mdLengthSize is the number of bytes in the length field that terminates | ||
465 | * the hash. */ | ||
466 | unsigned md_length_size = 8; | ||
467 | char length_is_big_endian = 1; | ||
468 | |||
469 | /* This is a, hopefully redundant, check that allows us to forget about | ||
470 | * many possible overflows later in this function. */ | ||
471 | OPENSSL_assert(data_plus_mac_plus_padding_size < 1024*1024); | ||
472 | |||
473 | switch (EVP_MD_CTX_type(ctx)) | ||
474 | { | ||
475 | case NID_md5: | ||
476 | MD5_Init((MD5_CTX*)md_state.c); | ||
477 | md_final_raw = tls1_md5_final_raw; | ||
478 | md_transform = (void(*)(void *ctx, const unsigned char *block)) MD5_Transform; | ||
479 | md_size = 16; | ||
480 | sslv3_pad_length = 48; | ||
481 | length_is_big_endian = 0; | ||
482 | break; | ||
483 | case NID_sha1: | ||
484 | SHA1_Init((SHA_CTX*)md_state.c); | ||
485 | md_final_raw = tls1_sha1_final_raw; | ||
486 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA1_Transform; | ||
487 | md_size = 20; | ||
488 | break; | ||
489 | #ifndef OPENSSL_NO_SHA256 | ||
490 | case NID_sha224: | ||
491 | SHA224_Init((SHA256_CTX*)md_state.c); | ||
492 | md_final_raw = tls1_sha256_final_raw; | ||
493 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform; | ||
494 | md_size = 224/8; | ||
495 | break; | ||
496 | case NID_sha256: | ||
497 | SHA256_Init((SHA256_CTX*)md_state.c); | ||
498 | md_final_raw = tls1_sha256_final_raw; | ||
499 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA256_Transform; | ||
500 | md_size = 32; | ||
501 | break; | ||
502 | #endif | ||
503 | #ifndef OPENSSL_NO_SHA512 | ||
504 | case NID_sha384: | ||
505 | SHA384_Init((SHA512_CTX*)md_state.c); | ||
506 | md_final_raw = tls1_sha512_final_raw; | ||
507 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform; | ||
508 | md_size = 384/8; | ||
509 | md_block_size = 128; | ||
510 | md_length_size = 16; | ||
511 | break; | ||
512 | case NID_sha512: | ||
513 | SHA512_Init((SHA512_CTX*)md_state.c); | ||
514 | md_final_raw = tls1_sha512_final_raw; | ||
515 | md_transform = (void(*)(void *ctx, const unsigned char *block)) SHA512_Transform; | ||
516 | md_size = 64; | ||
517 | md_block_size = 128; | ||
518 | md_length_size = 16; | ||
519 | break; | ||
520 | #endif | ||
521 | default: | ||
522 | /* ssl3_cbc_record_digest_supported should have been | ||
523 | * called first to check that the hash function is | ||
524 | * supported. */ | ||
525 | OPENSSL_assert(0); | ||
526 | if (md_out_size) | ||
527 | *md_out_size = -1; | ||
528 | return; | ||
529 | } | ||
530 | |||
531 | OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES); | ||
532 | OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE); | ||
533 | OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE); | ||
534 | |||
535 | header_length = 13; | ||
536 | if (is_sslv3) | ||
537 | { | ||
538 | header_length = | ||
539 | mac_secret_length + | ||
540 | sslv3_pad_length + | ||
541 | 8 /* sequence number */ + | ||
542 | 1 /* record type */ + | ||
543 | 2 /* record length */; | ||
544 | } | ||
545 | |||
546 | /* variance_blocks is the number of blocks of the hash that we have to | ||
547 | * calculate in constant time because they could be altered by the | ||
548 | * padding value. | ||
549 | * | ||
550 | * In SSLv3, the padding must be minimal so the end of the plaintext | ||
551 | * varies by, at most, 15+20 = 35 bytes. (We conservatively assume that | ||
552 | * the MAC size varies from 0..20 bytes.) In case the 9 bytes of hash | ||
553 | * termination (0x80 + 64-bit length) don't fit in the final block, we | ||
554 | * say that the final two blocks can vary based on the padding. | ||
555 | * | ||
556 | * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not | ||
557 | * required to be minimal. Therefore we say that the final six blocks | ||
558 | * can vary based on the padding. | ||
559 | * | ||
560 | * Later in the function, if the message is short and there obviously | ||
561 | * cannot be this many blocks then variance_blocks can be reduced. */ | ||
562 | variance_blocks = is_sslv3 ? 2 : 6; | ||
563 | /* From now on we're dealing with the MAC, which conceptually has 13 | ||
564 | * bytes of `header' before the start of the data (TLS) or 71/75 bytes | ||
565 | * (SSLv3) */ | ||
566 | len = data_plus_mac_plus_padding_size + header_length; | ||
567 | /* max_mac_bytes contains the maximum bytes of bytes in the MAC, including | ||
568 | * |header|, assuming that there's no padding. */ | ||
569 | max_mac_bytes = len - md_size - 1; | ||
570 | /* num_blocks is the maximum number of hash blocks. */ | ||
571 | num_blocks = (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size; | ||
572 | /* In order to calculate the MAC in constant time we have to handle | ||
573 | * the final blocks specially because the padding value could cause the | ||
574 | * end to appear somewhere in the final |variance_blocks| blocks and we | ||
575 | * can't leak where. However, |num_starting_blocks| worth of data can | ||
576 | * be hashed right away because no padding value can affect whether | ||
577 | * they are plaintext. */ | ||
578 | num_starting_blocks = 0; | ||
579 | /* k is the starting byte offset into the conceptual header||data where | ||
580 | * we start processing. */ | ||
581 | k = 0; | ||
582 | /* mac_end_offset is the index just past the end of the data to be | ||
583 | * MACed. */ | ||
584 | mac_end_offset = data_plus_mac_size + header_length - md_size; | ||
585 | /* c is the index of the 0x80 byte in the final hash block that | ||
586 | * contains application data. */ | ||
587 | c = mac_end_offset % md_block_size; | ||
588 | /* index_a is the hash block number that contains the 0x80 terminating | ||
589 | * value. */ | ||
590 | index_a = mac_end_offset / md_block_size; | ||
591 | /* index_b is the hash block number that contains the 64-bit hash | ||
592 | * length, in bits. */ | ||
593 | index_b = (mac_end_offset + md_length_size) / md_block_size; | ||
594 | /* bits is the hash-length in bits. It includes the additional hash | ||
595 | * block for the masked HMAC key, or whole of |header| in the case of | ||
596 | * SSLv3. */ | ||
597 | |||
598 | /* For SSLv3, if we're going to have any starting blocks then we need | ||
599 | * at least two because the header is larger than a single block. */ | ||
600 | if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) | ||
601 | { | ||
602 | num_starting_blocks = num_blocks - variance_blocks; | ||
603 | k = md_block_size*num_starting_blocks; | ||
604 | } | ||
605 | |||
606 | bits = 8*mac_end_offset; | ||
607 | if (!is_sslv3) | ||
608 | { | ||
609 | /* Compute the initial HMAC block. For SSLv3, the padding and | ||
610 | * secret bytes are included in |header| because they take more | ||
611 | * than a single block. */ | ||
612 | bits += 8*md_block_size; | ||
613 | memset(hmac_pad, 0, md_block_size); | ||
614 | OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad)); | ||
615 | memcpy(hmac_pad, mac_secret, mac_secret_length); | ||
616 | for (i = 0; i < md_block_size; i++) | ||
617 | hmac_pad[i] ^= 0x36; | ||
618 | |||
619 | md_transform(md_state.c, hmac_pad); | ||
620 | } | ||
621 | |||
622 | if (length_is_big_endian) | ||
623 | { | ||
624 | memset(length_bytes,0,md_length_size-4); | ||
625 | length_bytes[md_length_size-4] = (unsigned char)(bits>>24); | ||
626 | length_bytes[md_length_size-3] = (unsigned char)(bits>>16); | ||
627 | length_bytes[md_length_size-2] = (unsigned char)(bits>>8); | ||
628 | length_bytes[md_length_size-1] = (unsigned char)bits; | ||
629 | } | ||
630 | else | ||
631 | { | ||
632 | memset(length_bytes,0,md_length_size); | ||
633 | length_bytes[md_length_size-5] = (unsigned char)(bits>>24); | ||
634 | length_bytes[md_length_size-6] = (unsigned char)(bits>>16); | ||
635 | length_bytes[md_length_size-7] = (unsigned char)(bits>>8); | ||
636 | length_bytes[md_length_size-8] = (unsigned char)bits; | ||
637 | } | ||
638 | |||
639 | if (k > 0) | ||
640 | { | ||
641 | if (is_sslv3) | ||
642 | { | ||
643 | /* The SSLv3 header is larger than a single block. | ||
644 | * overhang is the number of bytes beyond a single | ||
645 | * block that the header consumes: either 7 bytes | ||
646 | * (SHA1) or 11 bytes (MD5). */ | ||
647 | unsigned overhang = header_length-md_block_size; | ||
648 | md_transform(md_state.c, header); | ||
649 | memcpy(first_block, header + md_block_size, overhang); | ||
650 | memcpy(first_block + overhang, data, md_block_size-overhang); | ||
651 | md_transform(md_state.c, first_block); | ||
652 | for (i = 1; i < k/md_block_size - 1; i++) | ||
653 | md_transform(md_state.c, data + md_block_size*i - overhang); | ||
654 | } | ||
655 | else | ||
656 | { | ||
657 | /* k is a multiple of md_block_size. */ | ||
658 | memcpy(first_block, header, 13); | ||
659 | memcpy(first_block+13, data, md_block_size-13); | ||
660 | md_transform(md_state.c, first_block); | ||
661 | for (i = 1; i < k/md_block_size; i++) | ||
662 | md_transform(md_state.c, data + md_block_size*i - 13); | ||
663 | } | ||
664 | } | ||
665 | |||
666 | memset(mac_out, 0, sizeof(mac_out)); | ||
667 | |||
668 | /* We now process the final hash blocks. For each block, we construct | ||
669 | * it in constant time. If the |i==index_a| then we'll include the 0x80 | ||
670 | * bytes and zero pad etc. For each block we selectively copy it, in | ||
671 | * constant time, to |mac_out|. */ | ||
672 | for (i = num_starting_blocks; i <= num_starting_blocks+variance_blocks; i++) | ||
673 | { | ||
674 | unsigned char block[MAX_HASH_BLOCK_SIZE]; | ||
675 | unsigned char is_block_a = constant_time_eq_8(i, index_a); | ||
676 | unsigned char is_block_b = constant_time_eq_8(i, index_b); | ||
677 | for (j = 0; j < md_block_size; j++) | ||
678 | { | ||
679 | unsigned char b = 0, is_past_c, is_past_cp1; | ||
680 | if (k < header_length) | ||
681 | b = header[k]; | ||
682 | else if (k < data_plus_mac_plus_padding_size + header_length) | ||
683 | b = data[k-header_length]; | ||
684 | k++; | ||
685 | |||
686 | is_past_c = is_block_a & constant_time_ge(j, c); | ||
687 | is_past_cp1 = is_block_a & constant_time_ge(j, c+1); | ||
688 | /* If this is the block containing the end of the | ||
689 | * application data, and we are at the offset for the | ||
690 | * 0x80 value, then overwrite b with 0x80. */ | ||
691 | b = (b&~is_past_c) | (0x80&is_past_c); | ||
692 | /* If this the the block containing the end of the | ||
693 | * application data and we're past the 0x80 value then | ||
694 | * just write zero. */ | ||
695 | b = b&~is_past_cp1; | ||
696 | /* If this is index_b (the final block), but not | ||
697 | * index_a (the end of the data), then the 64-bit | ||
698 | * length didn't fit into index_a and we're having to | ||
699 | * add an extra block of zeros. */ | ||
700 | b &= ~is_block_b | is_block_a; | ||
701 | |||
702 | /* The final bytes of one of the blocks contains the | ||
703 | * length. */ | ||
704 | if (j >= md_block_size - md_length_size) | ||
705 | { | ||
706 | /* If this is index_b, write a length byte. */ | ||
707 | b = (b&~is_block_b) | (is_block_b&length_bytes[j-(md_block_size-md_length_size)]); | ||
708 | } | ||
709 | block[j] = b; | ||
710 | } | ||
711 | |||
712 | md_transform(md_state.c, block); | ||
713 | md_final_raw(md_state.c, block); | ||
714 | /* If this is index_b, copy the hash value to |mac_out|. */ | ||
715 | for (j = 0; j < md_size; j++) | ||
716 | mac_out[j] |= block[j]&is_block_b; | ||
717 | } | ||
718 | |||
719 | EVP_MD_CTX_init(&md_ctx); | ||
720 | EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */); | ||
721 | if (is_sslv3) | ||
722 | { | ||
723 | /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */ | ||
724 | memset(hmac_pad, 0x5c, sslv3_pad_length); | ||
725 | |||
726 | EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length); | ||
727 | EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length); | ||
728 | EVP_DigestUpdate(&md_ctx, mac_out, md_size); | ||
729 | } | ||
730 | else | ||
731 | { | ||
732 | /* Complete the HMAC in the standard manner. */ | ||
733 | for (i = 0; i < md_block_size; i++) | ||
734 | hmac_pad[i] ^= 0x6a; | ||
735 | |||
736 | EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size); | ||
737 | EVP_DigestUpdate(&md_ctx, mac_out, md_size); | ||
738 | } | ||
739 | EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u); | ||
740 | if (md_out_size) | ||
741 | *md_out_size = md_out_size_u; | ||
742 | EVP_MD_CTX_cleanup(&md_ctx); | ||
743 | } | ||
744 | |||
745 | #ifdef OPENSSL_FIPS | ||
746 | |||
747 | /* Due to the need to use EVP in FIPS mode we can't reimplement digests but | ||
748 | * we can ensure the number of blocks processed is equal for all cases | ||
749 | * by digesting additional data. | ||
750 | */ | ||
751 | |||
752 | void tls_fips_digest_extra( | ||
753 | const EVP_CIPHER_CTX *cipher_ctx, EVP_MD_CTX *mac_ctx, | ||
754 | const unsigned char *data, size_t data_len, size_t orig_len) | ||
755 | { | ||
756 | size_t block_size, digest_pad, blocks_data, blocks_orig; | ||
757 | if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE) | ||
758 | return; | ||
759 | block_size = EVP_MD_CTX_block_size(mac_ctx); | ||
760 | /* We are in FIPS mode if we get this far so we know we have only SHA* | ||
761 | * digests and TLS to deal with. | ||
762 | * Minimum digest padding length is 17 for SHA384/SHA512 and 9 | ||
763 | * otherwise. | ||
764 | * Additional header is 13 bytes. To get the number of digest blocks | ||
765 | * processed round up the amount of data plus padding to the nearest | ||
766 | * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise. | ||
767 | * So we have: | ||
768 | * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size | ||
769 | * equivalently: | ||
770 | * blocks = (payload_len + digest_pad + 12)/block_size + 1 | ||
771 | * HMAC adds a constant overhead. | ||
772 | * We're ultimately only interested in differences so this becomes | ||
773 | * blocks = (payload_len + 29)/128 | ||
774 | * for SHA384/SHA512 and | ||
775 | * blocks = (payload_len + 21)/64 | ||
776 | * otherwise. | ||
777 | */ | ||
778 | digest_pad = block_size == 64 ? 21 : 29; | ||
779 | blocks_orig = (orig_len + digest_pad)/block_size; | ||
780 | blocks_data = (data_len + digest_pad)/block_size; | ||
781 | /* MAC enough blocks to make up the difference between the original | ||
782 | * and actual lengths plus one extra block to ensure this is never a | ||
783 | * no op. The "data" pointer should always have enough space to | ||
784 | * perform this operation as it is large enough for a maximum | ||
785 | * length TLS buffer. | ||
786 | */ | ||
787 | EVP_DigestSignUpdate(mac_ctx, data, | ||
788 | (blocks_orig - blocks_data + 1) * block_size); | ||
789 | } | ||
790 | #endif | ||