diff options
author | tb <> | 2023-11-19 15:41:46 +0000 |
---|---|---|
committer | tb <> | 2023-11-19 15:41:46 +0000 |
commit | 6b9527d672af48cf8c311feff15bb4caba9f091d (patch) | |
tree | e66b5f1e9b181e631c66bf994f2e98bf8a183747 | |
parent | 4cf4424a3359af61c21d44599d9308b33fc67c49 (diff) | |
download | openbsd-6b9527d672af48cf8c311feff15bb4caba9f091d.tar.gz openbsd-6b9527d672af48cf8c311feff15bb4caba9f091d.tar.bz2 openbsd-6b9527d672af48cf8c311feff15bb4caba9f091d.zip |
Unifdef OPENSSL_NO_ENGINE in engine.h
Also rip out all the gross, useless comments. There's still too much
garbage in here...
ok jsing
-rw-r--r-- | src/lib/libcrypto/engine/engine.h | 574 |
1 files changed, 8 insertions, 566 deletions
diff --git a/src/lib/libcrypto/engine/engine.h b/src/lib/libcrypto/engine/engine.h index 1e04b61e57..bb5112a02b 100644 --- a/src/lib/libcrypto/engine/engine.h +++ b/src/lib/libcrypto/engine/engine.h | |||
@@ -1,4 +1,4 @@ | |||
1 | /* $OpenBSD: engine.h,v 1.42 2023/08/04 05:44:51 tb Exp $ */ | 1 | /* $OpenBSD: engine.h,v 1.43 2023/11/19 15:41:46 tb Exp $ */ |
2 | /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL | 2 | /* Written by Geoff Thorpe (geoff@geoffthorpe.net) for the OpenSSL |
3 | * project 2000. | 3 | * project 2000. |
4 | */ | 4 | */ |
@@ -89,8 +89,6 @@ | |||
89 | extern "C" { | 89 | extern "C" { |
90 | #endif | 90 | #endif |
91 | 91 | ||
92 | /* These flags are used to control combinations of algorithm (methods) | ||
93 | * by bitwise "OR"ing. */ | ||
94 | #define ENGINE_METHOD_RSA (unsigned int)0x0001 | 92 | #define ENGINE_METHOD_RSA (unsigned int)0x0001 |
95 | #define ENGINE_METHOD_DSA (unsigned int)0x0002 | 93 | #define ENGINE_METHOD_DSA (unsigned int)0x0002 |
96 | #define ENGINE_METHOD_DH (unsigned int)0x0004 | 94 | #define ENGINE_METHOD_DH (unsigned int)0x0004 |
@@ -101,145 +99,43 @@ extern "C" { | |||
101 | #define ENGINE_METHOD_PKEY_METHS (unsigned int)0x0200 | 99 | #define ENGINE_METHOD_PKEY_METHS (unsigned int)0x0200 |
102 | #define ENGINE_METHOD_PKEY_ASN1_METHS (unsigned int)0x0400 | 100 | #define ENGINE_METHOD_PKEY_ASN1_METHS (unsigned int)0x0400 |
103 | #define ENGINE_METHOD_EC (unsigned int)0x0800 | 101 | #define ENGINE_METHOD_EC (unsigned int)0x0800 |
104 | /* Obvious all-or-nothing cases. */ | ||
105 | #define ENGINE_METHOD_ALL (unsigned int)0xFFFF | 102 | #define ENGINE_METHOD_ALL (unsigned int)0xFFFF |
106 | #define ENGINE_METHOD_NONE (unsigned int)0x0000 | 103 | #define ENGINE_METHOD_NONE (unsigned int)0x0000 |
107 | 104 | ||
108 | /* This(ese) flag(s) controls behaviour of the ENGINE_TABLE mechanism used | ||
109 | * internally to control registration of ENGINE implementations, and can be set | ||
110 | * by ENGINE_set_table_flags(). The "NOINIT" flag prevents attempts to | ||
111 | * initialise registered ENGINEs if they are not already initialised. */ | ||
112 | #define ENGINE_TABLE_FLAG_NOINIT (unsigned int)0x0001 | 105 | #define ENGINE_TABLE_FLAG_NOINIT (unsigned int)0x0001 |
113 | 106 | ||
114 | /* ENGINE flags that can be set by ENGINE_set_flags(). */ | ||
115 | /* #define ENGINE_FLAGS_MALLOCED 0x0001 */ /* Not used */ | ||
116 | |||
117 | /* This flag is for ENGINEs that wish to handle the various 'CMD'-related | ||
118 | * control commands on their own. Without this flag, ENGINE_ctrl() handles these | ||
119 | * control commands on behalf of the ENGINE using their "cmd_defns" data. */ | ||
120 | #define ENGINE_FLAGS_MANUAL_CMD_CTRL (int)0x0002 | 107 | #define ENGINE_FLAGS_MANUAL_CMD_CTRL (int)0x0002 |
121 | |||
122 | /* This flag is for ENGINEs who return new duplicate structures when found via | ||
123 | * "ENGINE_by_id()". When an ENGINE must store state (eg. if ENGINE_ctrl() | ||
124 | * commands are called in sequence as part of some stateful process like | ||
125 | * key-generation setup and execution), it can set this flag - then each attempt | ||
126 | * to obtain the ENGINE will result in it being copied into a new structure. | ||
127 | * Normally, ENGINEs don't declare this flag so ENGINE_by_id() just increments | ||
128 | * the existing ENGINE's structural reference count. */ | ||
129 | #define ENGINE_FLAGS_BY_ID_COPY (int)0x0004 | 108 | #define ENGINE_FLAGS_BY_ID_COPY (int)0x0004 |
130 | |||
131 | /* This flag if for an ENGINE that does not want its methods registered as | ||
132 | * part of ENGINE_register_all_complete() for example if the methods are | ||
133 | * not usable as default methods. | ||
134 | */ | ||
135 | |||
136 | #define ENGINE_FLAGS_NO_REGISTER_ALL (int)0x0008 | 109 | #define ENGINE_FLAGS_NO_REGISTER_ALL (int)0x0008 |
137 | |||
138 | /* ENGINEs can support their own command types, and these flags are used in | ||
139 | * ENGINE_CTRL_GET_CMD_FLAGS to indicate to the caller what kind of input each | ||
140 | * command expects. Currently only numeric and string input is supported. If a | ||
141 | * control command supports none of the _NUMERIC, _STRING, or _NO_INPUT options, | ||
142 | * then it is regarded as an "internal" control command - and not for use in | ||
143 | * config setting situations. As such, they're not available to the | ||
144 | * ENGINE_ctrl_cmd_string() function, only raw ENGINE_ctrl() access. Changes to | ||
145 | * this list of 'command types' should be reflected carefully in | ||
146 | * ENGINE_cmd_is_executable() and ENGINE_ctrl_cmd_string(). */ | ||
147 | |||
148 | /* accepts a 'long' input value (3rd parameter to ENGINE_ctrl) */ | ||
149 | #define ENGINE_CMD_FLAG_NUMERIC (unsigned int)0x0001 | 110 | #define ENGINE_CMD_FLAG_NUMERIC (unsigned int)0x0001 |
150 | /* accepts string input (cast from 'void*' to 'const char *', 4th parameter to | ||
151 | * ENGINE_ctrl) */ | ||
152 | #define ENGINE_CMD_FLAG_STRING (unsigned int)0x0002 | 111 | #define ENGINE_CMD_FLAG_STRING (unsigned int)0x0002 |
153 | /* Indicates that the control command takes *no* input. Ie. the control command | ||
154 | * is unparameterised. */ | ||
155 | #define ENGINE_CMD_FLAG_NO_INPUT (unsigned int)0x0004 | 112 | #define ENGINE_CMD_FLAG_NO_INPUT (unsigned int)0x0004 |
156 | /* Indicates that the control command is internal. This control command won't | ||
157 | * be shown in any output, and is only usable through the ENGINE_ctrl_cmd() | ||
158 | * function. */ | ||
159 | #define ENGINE_CMD_FLAG_INTERNAL (unsigned int)0x0008 | 113 | #define ENGINE_CMD_FLAG_INTERNAL (unsigned int)0x0008 |
160 | 114 | ||
161 | /* NB: These 3 control commands are deprecated and should not be used. ENGINEs | ||
162 | * relying on these commands should compile conditional support for | ||
163 | * compatibility (eg. if these symbols are defined) but should also migrate the | ||
164 | * same functionality to their own ENGINE-specific control functions that can be | ||
165 | * "discovered" by calling applications. The fact these control commands | ||
166 | * wouldn't be "executable" (ie. usable by text-based config) doesn't change the | ||
167 | * fact that application code can find and use them without requiring per-ENGINE | ||
168 | * hacking. */ | ||
169 | |||
170 | /* These flags are used to tell the ctrl function what should be done. | ||
171 | * All command numbers are shared between all engines, even if some don't | ||
172 | * make sense to some engines. In such a case, they do nothing but return | ||
173 | * the error ENGINE_R_CTRL_COMMAND_NOT_IMPLEMENTED. */ | ||
174 | #define ENGINE_CTRL_SET_LOGSTREAM 1 | 115 | #define ENGINE_CTRL_SET_LOGSTREAM 1 |
175 | #define ENGINE_CTRL_SET_PASSWORD_CALLBACK 2 | 116 | #define ENGINE_CTRL_SET_PASSWORD_CALLBACK 2 |
176 | #define ENGINE_CTRL_HUP 3 /* Close and reinitialise any | 117 | #define ENGINE_CTRL_HUP 3 |
177 | handles/connections etc. */ | 118 | #define ENGINE_CTRL_SET_USER_INTERFACE 4 |
178 | #define ENGINE_CTRL_SET_USER_INTERFACE 4 /* Alternative to callback */ | 119 | #define ENGINE_CTRL_SET_CALLBACK_DATA 5 |
179 | #define ENGINE_CTRL_SET_CALLBACK_DATA 5 /* User-specific data, used | 120 | #define ENGINE_CTRL_LOAD_CONFIGURATION 6 |
180 | when calling the password | 121 | #define ENGINE_CTRL_LOAD_SECTION 7 |
181 | callback and the user | ||
182 | interface */ | ||
183 | #define ENGINE_CTRL_LOAD_CONFIGURATION 6 /* Load a configuration, given | ||
184 | a string that represents a | ||
185 | file name or so */ | ||
186 | #define ENGINE_CTRL_LOAD_SECTION 7 /* Load data from a given | ||
187 | section in the already loaded | ||
188 | configuration */ | ||
189 | 122 | ||
190 | /* These control commands allow an application to deal with an arbitrary engine | ||
191 | * in a dynamic way. Warn: Negative return values indicate errors FOR THESE | ||
192 | * COMMANDS because zero is used to indicate 'end-of-list'. Other commands, | ||
193 | * including ENGINE-specific command types, return zero for an error. | ||
194 | * | ||
195 | * An ENGINE can choose to implement these ctrl functions, and can internally | ||
196 | * manage things however it chooses - it does so by setting the | ||
197 | * ENGINE_FLAGS_MANUAL_CMD_CTRL flag (using ENGINE_set_flags()). Otherwise the | ||
198 | * ENGINE_ctrl() code handles this on the ENGINE's behalf using the cmd_defns | ||
199 | * data (set using ENGINE_set_cmd_defns()). This means an ENGINE's ctrl() | ||
200 | * handler need only implement its own commands - the above "meta" commands will | ||
201 | * be taken care of. */ | ||
202 | |||
203 | /* Returns non-zero if the supplied ENGINE has a ctrl() handler. If "not", then | ||
204 | * all the remaining control commands will return failure, so it is worth | ||
205 | * checking this first if the caller is trying to "discover" the engine's | ||
206 | * capabilities and doesn't want errors generated unnecessarily. */ | ||
207 | #define ENGINE_CTRL_HAS_CTRL_FUNCTION 10 | 123 | #define ENGINE_CTRL_HAS_CTRL_FUNCTION 10 |
208 | /* Returns a positive command number for the first command supported by the | ||
209 | * engine. Returns zero if no ctrl commands are supported. */ | ||
210 | #define ENGINE_CTRL_GET_FIRST_CMD_TYPE 11 | 124 | #define ENGINE_CTRL_GET_FIRST_CMD_TYPE 11 |
211 | /* The 'long' argument specifies a command implemented by the engine, and the | ||
212 | * return value is the next command supported, or zero if there are no more. */ | ||
213 | #define ENGINE_CTRL_GET_NEXT_CMD_TYPE 12 | 125 | #define ENGINE_CTRL_GET_NEXT_CMD_TYPE 12 |
214 | /* The 'void*' argument is a command name (cast from 'const char *'), and the | ||
215 | * return value is the command that corresponds to it. */ | ||
216 | #define ENGINE_CTRL_GET_CMD_FROM_NAME 13 | 126 | #define ENGINE_CTRL_GET_CMD_FROM_NAME 13 |
217 | /* The next two allow a command to be converted into its corresponding string | ||
218 | * form. In each case, the 'long' argument supplies the command. In the NAME_LEN | ||
219 | * case, the return value is the length of the command name (not counting a | ||
220 | * trailing EOL). In the NAME case, the 'void*' argument must be a string buffer | ||
221 | * large enough, and it will be populated with the name of the command (WITH a | ||
222 | * trailing EOL). */ | ||
223 | #define ENGINE_CTRL_GET_NAME_LEN_FROM_CMD 14 | 127 | #define ENGINE_CTRL_GET_NAME_LEN_FROM_CMD 14 |
224 | #define ENGINE_CTRL_GET_NAME_FROM_CMD 15 | 128 | #define ENGINE_CTRL_GET_NAME_FROM_CMD 15 |
225 | /* The next two are similar but give a "short description" of a command. */ | ||
226 | #define ENGINE_CTRL_GET_DESC_LEN_FROM_CMD 16 | 129 | #define ENGINE_CTRL_GET_DESC_LEN_FROM_CMD 16 |
227 | #define ENGINE_CTRL_GET_DESC_FROM_CMD 17 | 130 | #define ENGINE_CTRL_GET_DESC_FROM_CMD 17 |
228 | /* With this command, the return value is the OR'd combination of | ||
229 | * ENGINE_CMD_FLAG_*** values that indicate what kind of input a given | ||
230 | * engine-specific ctrl command expects. */ | ||
231 | #define ENGINE_CTRL_GET_CMD_FLAGS 18 | 131 | #define ENGINE_CTRL_GET_CMD_FLAGS 18 |
232 | 132 | ||
233 | /* ENGINE implementations should start the numbering of their own control | ||
234 | * commands from this value. (ie. ENGINE_CMD_BASE, ENGINE_CMD_BASE + 1, etc). */ | ||
235 | #define ENGINE_CMD_BASE 200 | 133 | #define ENGINE_CMD_BASE 200 |
236 | 134 | ||
237 | /* | 135 | /* |
238 | * Prototypes for the stub functions in engine_stubs.c. They are provided to | 136 | * Prototypes for the stub functions in engine_stubs.c. They are provided to |
239 | * build M2Crypto, Dovecot, apr-utils without patching. All the other garbage | 137 | * build M2Crypto, Dovecot, apr-utils without patching. |
240 | * can hopefully go away soon. | ||
241 | */ | 138 | */ |
242 | #ifdef OPENSSL_NO_ENGINE | ||
243 | void ENGINE_load_builtin_engines(void); | 139 | void ENGINE_load_builtin_engines(void); |
244 | void ENGINE_load_dynamic(void); | 140 | void ENGINE_load_dynamic(void); |
245 | void ENGINE_load_openssl(void); | 141 | void ENGINE_load_openssl(void); |
@@ -261,7 +157,7 @@ int ENGINE_set_default(ENGINE *engine, unsigned int flags); | |||
261 | ENGINE *ENGINE_get_default_RSA(void); | 157 | ENGINE *ENGINE_get_default_RSA(void); |
262 | int ENGINE_set_default_RSA(ENGINE *engine); | 158 | int ENGINE_set_default_RSA(ENGINE *engine); |
263 | 159 | ||
264 | int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name, long i, void *p, | 160 | int ENGINE_ctrl_cmd(ENGINE *engine, const char *cmd_name, long i, void *p, |
265 | void (*f)(void), int cmd_optional); | 161 | void (*f)(void), int cmd_optional); |
266 | int ENGINE_ctrl_cmd_string(ENGINE *engine, const char *cmd, const char *arg, | 162 | int ENGINE_ctrl_cmd_string(ENGINE *engine, const char *cmd, const char *arg, |
267 | int cmd_optional); | 163 | int cmd_optional); |
@@ -270,460 +166,6 @@ EVP_PKEY *ENGINE_load_private_key(ENGINE *engine, const char *key_id, | |||
270 | UI_METHOD *ui_method, void *callback_data); | 166 | UI_METHOD *ui_method, void *callback_data); |
271 | EVP_PKEY *ENGINE_load_public_key(ENGINE *engine, const char *key_id, | 167 | EVP_PKEY *ENGINE_load_public_key(ENGINE *engine, const char *key_id, |
272 | UI_METHOD *ui_method, void *callback_data); | 168 | UI_METHOD *ui_method, void *callback_data); |
273 | #else | ||
274 | /* If an ENGINE supports its own specific control commands and wishes the | ||
275 | * framework to handle the above 'ENGINE_CMD_***'-manipulation commands on its | ||
276 | * behalf, it should supply a null-terminated array of ENGINE_CMD_DEFN entries | ||
277 | * to ENGINE_set_cmd_defns(). It should also implement a ctrl() handler that | ||
278 | * supports the stated commands (ie. the "cmd_num" entries as described by the | ||
279 | * array). NB: The array must be ordered in increasing order of cmd_num. | ||
280 | * "null-terminated" means that the last ENGINE_CMD_DEFN element has cmd_num set | ||
281 | * to zero and/or cmd_name set to NULL. */ | ||
282 | typedef struct ENGINE_CMD_DEFN_st { | ||
283 | unsigned int cmd_num; /* The command number */ | ||
284 | const char *cmd_name; /* The command name itself */ | ||
285 | const char *cmd_desc; /* A short description of the command */ | ||
286 | unsigned int cmd_flags; /* The input the command expects */ | ||
287 | } ENGINE_CMD_DEFN; | ||
288 | |||
289 | /* Generic function pointer */ | ||
290 | typedef int (*ENGINE_GEN_FUNC_PTR)(void); | ||
291 | /* Generic function pointer taking no arguments */ | ||
292 | typedef int (*ENGINE_GEN_INT_FUNC_PTR)(ENGINE *); | ||
293 | /* Specific control function pointer */ | ||
294 | typedef int (*ENGINE_CTRL_FUNC_PTR)(ENGINE *, int, long, void *, | ||
295 | void (*f)(void)); | ||
296 | /* Generic load_key function pointer */ | ||
297 | typedef EVP_PKEY * (*ENGINE_LOAD_KEY_PTR)(ENGINE *, const char *, | ||
298 | UI_METHOD *ui_method, void *callback_data); | ||
299 | typedef int (*ENGINE_SSL_CLIENT_CERT_PTR)(ENGINE *, SSL *ssl, | ||
300 | STACK_OF(X509_NAME) *ca_dn, X509 **pcert, EVP_PKEY **pkey, | ||
301 | STACK_OF(X509) **pother, UI_METHOD *ui_method, void *callback_data); | ||
302 | |||
303 | /* These callback types are for an ENGINE's handler for cipher and digest logic. | ||
304 | * These handlers have these prototypes; | ||
305 | * int foo(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid); | ||
306 | * int foo(ENGINE *e, const EVP_MD **digest, const int **nids, int nid); | ||
307 | * Looking at how to implement these handlers in the case of cipher support, if | ||
308 | * the framework wants the EVP_CIPHER for 'nid', it will call; | ||
309 | * foo(e, &p_evp_cipher, NULL, nid); (return zero for failure) | ||
310 | * If the framework wants a list of supported 'nid's, it will call; | ||
311 | * foo(e, NULL, &p_nids, 0); (returns number of 'nids' or -1 for error) | ||
312 | */ | ||
313 | /* Returns to a pointer to the array of supported cipher 'nid's. If the second | ||
314 | * parameter is non-NULL it is set to the size of the returned array. */ | ||
315 | typedef int (*ENGINE_CIPHERS_PTR)(ENGINE *, const EVP_CIPHER **, | ||
316 | const int **, int); | ||
317 | typedef int (*ENGINE_DIGESTS_PTR)(ENGINE *, const EVP_MD **, const int **, int); | ||
318 | typedef int (*ENGINE_PKEY_METHS_PTR)(ENGINE *, EVP_PKEY_METHOD **, | ||
319 | const int **, int); | ||
320 | typedef int (*ENGINE_PKEY_ASN1_METHS_PTR)(ENGINE *, EVP_PKEY_ASN1_METHOD **, | ||
321 | const int **, int); | ||
322 | |||
323 | /* STRUCTURE functions ... all of these functions deal with pointers to ENGINE | ||
324 | * structures where the pointers have a "structural reference". This means that | ||
325 | * their reference is to allowed access to the structure but it does not imply | ||
326 | * that the structure is functional. To simply increment or decrement the | ||
327 | * structural reference count, use ENGINE_by_id and ENGINE_free. NB: This is not | ||
328 | * required when iterating using ENGINE_get_next as it will automatically | ||
329 | * decrement the structural reference count of the "current" ENGINE and | ||
330 | * increment the structural reference count of the ENGINE it returns (unless it | ||
331 | * is NULL). */ | ||
332 | |||
333 | /* Get the first/last "ENGINE" type available. */ | ||
334 | ENGINE *ENGINE_get_first(void); | ||
335 | ENGINE *ENGINE_get_last(void); | ||
336 | /* Iterate to the next/previous "ENGINE" type (NULL = end of the list). */ | ||
337 | ENGINE *ENGINE_get_next(ENGINE *e); | ||
338 | ENGINE *ENGINE_get_prev(ENGINE *e); | ||
339 | /* Add another "ENGINE" type into the array. */ | ||
340 | int ENGINE_add(ENGINE *e); | ||
341 | /* Remove an existing "ENGINE" type from the array. */ | ||
342 | int ENGINE_remove(ENGINE *e); | ||
343 | /* Retrieve an engine from the list by its unique "id" value. */ | ||
344 | ENGINE *ENGINE_by_id(const char *id); | ||
345 | /* Add all the built-in engines. */ | ||
346 | void ENGINE_load_openssl(void); | ||
347 | void ENGINE_load_dynamic(void); | ||
348 | #ifndef OPENSSL_NO_STATIC_ENGINE | ||
349 | void ENGINE_load_padlock(void); | ||
350 | #endif | ||
351 | void ENGINE_load_builtin_engines(void); | ||
352 | |||
353 | /* Get and set global flags (ENGINE_TABLE_FLAG_***) for the implementation | ||
354 | * "registry" handling. */ | ||
355 | unsigned int ENGINE_get_table_flags(void); | ||
356 | void ENGINE_set_table_flags(unsigned int flags); | ||
357 | |||
358 | /* Manage registration of ENGINEs per "table". For each type, there are 3 | ||
359 | * functions; | ||
360 | * ENGINE_register_***(e) - registers the implementation from 'e' (if it has one) | ||
361 | * ENGINE_unregister_***(e) - unregister the implementation from 'e' | ||
362 | * ENGINE_register_all_***() - call ENGINE_register_***() for each 'e' in the list | ||
363 | * Cleanup is automatically registered from each table when required, so | ||
364 | * ENGINE_cleanup() will reverse any "register" operations. */ | ||
365 | |||
366 | int ENGINE_register_RSA(ENGINE *e); | ||
367 | void ENGINE_unregister_RSA(ENGINE *e); | ||
368 | void ENGINE_register_all_RSA(void); | ||
369 | |||
370 | int ENGINE_register_DSA(ENGINE *e); | ||
371 | void ENGINE_unregister_DSA(ENGINE *e); | ||
372 | void ENGINE_register_all_DSA(void); | ||
373 | |||
374 | int ENGINE_register_EC(ENGINE *e); | ||
375 | void ENGINE_unregister_EC(ENGINE *e); | ||
376 | void ENGINE_register_all_EC(void); | ||
377 | |||
378 | int ENGINE_register_DH(ENGINE *e); | ||
379 | void ENGINE_unregister_DH(ENGINE *e); | ||
380 | void ENGINE_register_all_DH(void); | ||
381 | |||
382 | int ENGINE_register_RAND(ENGINE *e); | ||
383 | void ENGINE_unregister_RAND(ENGINE *e); | ||
384 | void ENGINE_register_all_RAND(void); | ||
385 | |||
386 | int ENGINE_register_STORE(ENGINE *e); | ||
387 | void ENGINE_unregister_STORE(ENGINE *e); | ||
388 | void ENGINE_register_all_STORE(void); | ||
389 | |||
390 | int ENGINE_register_ciphers(ENGINE *e); | ||
391 | void ENGINE_unregister_ciphers(ENGINE *e); | ||
392 | void ENGINE_register_all_ciphers(void); | ||
393 | |||
394 | int ENGINE_register_digests(ENGINE *e); | ||
395 | void ENGINE_unregister_digests(ENGINE *e); | ||
396 | void ENGINE_register_all_digests(void); | ||
397 | |||
398 | int ENGINE_register_pkey_meths(ENGINE *e); | ||
399 | void ENGINE_unregister_pkey_meths(ENGINE *e); | ||
400 | void ENGINE_register_all_pkey_meths(void); | ||
401 | |||
402 | int ENGINE_register_pkey_asn1_meths(ENGINE *e); | ||
403 | void ENGINE_unregister_pkey_asn1_meths(ENGINE *e); | ||
404 | void ENGINE_register_all_pkey_asn1_meths(void); | ||
405 | |||
406 | /* These functions register all support from the above categories. Note, use of | ||
407 | * these functions can result in static linkage of code your application may not | ||
408 | * need. If you only need a subset of functionality, consider using more | ||
409 | * selective initialisation. */ | ||
410 | int ENGINE_register_complete(ENGINE *e); | ||
411 | int ENGINE_register_all_complete(void); | ||
412 | |||
413 | /* Send parametrised control commands to the engine. The possibilities to send | ||
414 | * down an integer, a pointer to data or a function pointer are provided. Any of | ||
415 | * the parameters may or may not be NULL, depending on the command number. In | ||
416 | * actuality, this function only requires a structural (rather than functional) | ||
417 | * reference to an engine, but many control commands may require the engine be | ||
418 | * functional. The caller should be aware of trying commands that require an | ||
419 | * operational ENGINE, and only use functional references in such situations. */ | ||
420 | int ENGINE_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)(void)); | ||
421 | |||
422 | /* This function tests if an ENGINE-specific command is usable as a "setting". | ||
423 | * Eg. in an application's config file that gets processed through | ||
424 | * ENGINE_ctrl_cmd_string(). If this returns zero, it is not available to | ||
425 | * ENGINE_ctrl_cmd_string(), only ENGINE_ctrl(). */ | ||
426 | int ENGINE_cmd_is_executable(ENGINE *e, int cmd); | ||
427 | |||
428 | /* This function works like ENGINE_ctrl() with the exception of taking a | ||
429 | * command name instead of a command number, and can handle optional commands. | ||
430 | * See the comment on ENGINE_ctrl_cmd_string() for an explanation on how to | ||
431 | * use the cmd_name and cmd_optional. */ | ||
432 | int ENGINE_ctrl_cmd(ENGINE *e, const char *cmd_name, | ||
433 | long i, void *p, void (*f)(void), int cmd_optional); | ||
434 | |||
435 | /* This function passes a command-name and argument to an ENGINE. The cmd_name | ||
436 | * is converted to a command number and the control command is called using | ||
437 | * 'arg' as an argument (unless the ENGINE doesn't support such a command, in | ||
438 | * which case no control command is called). The command is checked for input | ||
439 | * flags, and if necessary the argument will be converted to a numeric value. If | ||
440 | * cmd_optional is non-zero, then if the ENGINE doesn't support the given | ||
441 | * cmd_name the return value will be success anyway. This function is intended | ||
442 | * for applications to use so that users (or config files) can supply | ||
443 | * engine-specific config data to the ENGINE at run-time to control behaviour of | ||
444 | * specific engines. As such, it shouldn't be used for calling ENGINE_ctrl() | ||
445 | * functions that return data, deal with binary data, or that are otherwise | ||
446 | * supposed to be used directly through ENGINE_ctrl() in application code. Any | ||
447 | * "return" data from an ENGINE_ctrl() operation in this function will be lost - | ||
448 | * the return value is interpreted as failure if the return value is zero, | ||
449 | * success otherwise, and this function returns a boolean value as a result. In | ||
450 | * other words, vendors of 'ENGINE'-enabled devices should write ENGINE | ||
451 | * implementations with parameterisations that work in this scheme, so that | ||
452 | * compliant ENGINE-based applications can work consistently with the same | ||
453 | * configuration for the same ENGINE-enabled devices, across applications. */ | ||
454 | int ENGINE_ctrl_cmd_string(ENGINE *e, const char *cmd_name, const char *arg, | ||
455 | int cmd_optional); | ||
456 | |||
457 | /* These functions are useful for manufacturing new ENGINE structures. They | ||
458 | * don't address reference counting at all - one uses them to populate an ENGINE | ||
459 | * structure with personalised implementations of things prior to using it | ||
460 | * directly or adding it to the builtin ENGINE list in OpenSSL. These are also | ||
461 | * here so that the ENGINE structure doesn't have to be exposed and break binary | ||
462 | * compatibility! */ | ||
463 | ENGINE *ENGINE_new(void); | ||
464 | int ENGINE_free(ENGINE *e); | ||
465 | int ENGINE_up_ref(ENGINE *e); | ||
466 | int ENGINE_set_id(ENGINE *e, const char *id); | ||
467 | int ENGINE_set_name(ENGINE *e, const char *name); | ||
468 | int ENGINE_set_RSA(ENGINE *e, const RSA_METHOD *rsa_meth); | ||
469 | int ENGINE_set_DSA(ENGINE *e, const DSA_METHOD *dsa_meth); | ||
470 | int ENGINE_set_EC(ENGINE *e, const EC_KEY_METHOD *ec_meth); | ||
471 | int ENGINE_set_DH(ENGINE *e, const DH_METHOD *dh_meth); | ||
472 | int ENGINE_set_RAND(ENGINE *e, const RAND_METHOD *rand_meth); | ||
473 | int ENGINE_set_STORE(ENGINE *e, const STORE_METHOD *store_meth); | ||
474 | int ENGINE_set_destroy_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR destroy_f); | ||
475 | int ENGINE_set_init_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR init_f); | ||
476 | int ENGINE_set_finish_function(ENGINE *e, ENGINE_GEN_INT_FUNC_PTR finish_f); | ||
477 | int ENGINE_set_ctrl_function(ENGINE *e, ENGINE_CTRL_FUNC_PTR ctrl_f); | ||
478 | int ENGINE_set_load_privkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpriv_f); | ||
479 | int ENGINE_set_load_pubkey_function(ENGINE *e, ENGINE_LOAD_KEY_PTR loadpub_f); | ||
480 | int ENGINE_set_load_ssl_client_cert_function(ENGINE *e, | ||
481 | ENGINE_SSL_CLIENT_CERT_PTR loadssl_f); | ||
482 | int ENGINE_set_ciphers(ENGINE *e, ENGINE_CIPHERS_PTR f); | ||
483 | int ENGINE_set_digests(ENGINE *e, ENGINE_DIGESTS_PTR f); | ||
484 | int ENGINE_set_pkey_meths(ENGINE *e, ENGINE_PKEY_METHS_PTR f); | ||
485 | int ENGINE_set_pkey_asn1_meths(ENGINE *e, ENGINE_PKEY_ASN1_METHS_PTR f); | ||
486 | int ENGINE_set_flags(ENGINE *e, int flags); | ||
487 | int ENGINE_set_cmd_defns(ENGINE *e, const ENGINE_CMD_DEFN *defns); | ||
488 | /* These functions allow control over any per-structure ENGINE data. */ | ||
489 | int ENGINE_get_ex_new_index(long argl, void *argp, CRYPTO_EX_new *new_func, | ||
490 | CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func); | ||
491 | int ENGINE_set_ex_data(ENGINE *e, int idx, void *arg); | ||
492 | void *ENGINE_get_ex_data(const ENGINE *e, int idx); | ||
493 | |||
494 | /* This function cleans up anything that needs it. Eg. the ENGINE_add() function | ||
495 | * automatically ensures the list cleanup function is registered to be called | ||
496 | * from ENGINE_cleanup(). Similarly, all ENGINE_register_*** functions ensure | ||
497 | * ENGINE_cleanup() will clean up after them. */ | ||
498 | void ENGINE_cleanup(void); | ||
499 | |||
500 | /* These return values from within the ENGINE structure. These can be useful | ||
501 | * with functional references as well as structural references - it depends | ||
502 | * which you obtained. Using the result for functional purposes if you only | ||
503 | * obtained a structural reference may be problematic! */ | ||
504 | const char *ENGINE_get_id(const ENGINE *e); | ||
505 | const char *ENGINE_get_name(const ENGINE *e); | ||
506 | const RSA_METHOD *ENGINE_get_RSA(const ENGINE *e); | ||
507 | const DSA_METHOD *ENGINE_get_DSA(const ENGINE *e); | ||
508 | const EC_KEY_METHOD *ENGINE_get_EC(const ENGINE *e); | ||
509 | const DH_METHOD *ENGINE_get_DH(const ENGINE *e); | ||
510 | const RAND_METHOD *ENGINE_get_RAND(const ENGINE *e); | ||
511 | const STORE_METHOD *ENGINE_get_STORE(const ENGINE *e); | ||
512 | ENGINE_GEN_INT_FUNC_PTR ENGINE_get_destroy_function(const ENGINE *e); | ||
513 | ENGINE_GEN_INT_FUNC_PTR ENGINE_get_init_function(const ENGINE *e); | ||
514 | ENGINE_GEN_INT_FUNC_PTR ENGINE_get_finish_function(const ENGINE *e); | ||
515 | ENGINE_CTRL_FUNC_PTR ENGINE_get_ctrl_function(const ENGINE *e); | ||
516 | ENGINE_LOAD_KEY_PTR ENGINE_get_load_privkey_function(const ENGINE *e); | ||
517 | ENGINE_LOAD_KEY_PTR ENGINE_get_load_pubkey_function(const ENGINE *e); | ||
518 | ENGINE_SSL_CLIENT_CERT_PTR ENGINE_get_ssl_client_cert_function(const ENGINE *e); | ||
519 | ENGINE_CIPHERS_PTR ENGINE_get_ciphers(const ENGINE *e); | ||
520 | ENGINE_DIGESTS_PTR ENGINE_get_digests(const ENGINE *e); | ||
521 | ENGINE_PKEY_METHS_PTR ENGINE_get_pkey_meths(const ENGINE *e); | ||
522 | ENGINE_PKEY_ASN1_METHS_PTR ENGINE_get_pkey_asn1_meths(const ENGINE *e); | ||
523 | const EVP_CIPHER *ENGINE_get_cipher(ENGINE *e, int nid); | ||
524 | const EVP_MD *ENGINE_get_digest(ENGINE *e, int nid); | ||
525 | const EVP_PKEY_METHOD *ENGINE_get_pkey_meth(ENGINE *e, int nid); | ||
526 | const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth(ENGINE *e, int nid); | ||
527 | const EVP_PKEY_ASN1_METHOD *ENGINE_get_pkey_asn1_meth_str(ENGINE *e, | ||
528 | const char *str, int len); | ||
529 | const EVP_PKEY_ASN1_METHOD *ENGINE_pkey_asn1_find_str(ENGINE **pe, | ||
530 | const char *str, int len); | ||
531 | const ENGINE_CMD_DEFN *ENGINE_get_cmd_defns(const ENGINE *e); | ||
532 | int ENGINE_get_flags(const ENGINE *e); | ||
533 | |||
534 | /* FUNCTIONAL functions. These functions deal with ENGINE structures | ||
535 | * that have (or will) be initialised for use. Broadly speaking, the | ||
536 | * structural functions are useful for iterating the list of available | ||
537 | * engine types, creating new engine types, and other "list" operations. | ||
538 | * These functions actually deal with ENGINEs that are to be used. As | ||
539 | * such these functions can fail (if applicable) when particular | ||
540 | * engines are unavailable - eg. if a hardware accelerator is not | ||
541 | * attached or not functioning correctly. Each ENGINE has 2 reference | ||
542 | * counts; structural and functional. Every time a functional reference | ||
543 | * is obtained or released, a corresponding structural reference is | ||
544 | * automatically obtained or released too. */ | ||
545 | |||
546 | /* Initialise a engine type for use (or up its reference count if it's | ||
547 | * already in use). This will fail if the engine is not currently | ||
548 | * operational and cannot initialise. */ | ||
549 | int ENGINE_init(ENGINE *e); | ||
550 | /* Free a functional reference to a engine type. This does not require | ||
551 | * a corresponding call to ENGINE_free as it also releases a structural | ||
552 | * reference. */ | ||
553 | int ENGINE_finish(ENGINE *e); | ||
554 | |||
555 | /* The following functions handle keys that are stored in some secondary | ||
556 | * location, handled by the engine. The storage may be on a card or | ||
557 | * whatever. */ | ||
558 | EVP_PKEY *ENGINE_load_private_key(ENGINE *e, const char *key_id, | ||
559 | UI_METHOD *ui_method, void *callback_data); | ||
560 | EVP_PKEY *ENGINE_load_public_key(ENGINE *e, const char *key_id, | ||
561 | UI_METHOD *ui_method, void *callback_data); | ||
562 | int ENGINE_load_ssl_client_cert(ENGINE *e, SSL *s, | ||
563 | STACK_OF(X509_NAME) *ca_dn, X509 **pcert, EVP_PKEY **ppkey, | ||
564 | STACK_OF(X509) **pother, | ||
565 | UI_METHOD *ui_method, void *callback_data); | ||
566 | |||
567 | /* This returns a pointer for the current ENGINE structure that | ||
568 | * is (by default) performing any RSA operations. The value returned | ||
569 | * is an incremented reference, so it should be free'd (ENGINE_finish) | ||
570 | * before it is discarded. */ | ||
571 | ENGINE *ENGINE_get_default_RSA(void); | ||
572 | /* Same for the other "methods" */ | ||
573 | ENGINE *ENGINE_get_default_DSA(void); | ||
574 | ENGINE *ENGINE_get_default_EC(void); | ||
575 | ENGINE *ENGINE_get_default_DH(void); | ||
576 | ENGINE *ENGINE_get_default_RAND(void); | ||
577 | /* These functions can be used to get a functional reference to perform | ||
578 | * ciphering or digesting corresponding to "nid". */ | ||
579 | ENGINE *ENGINE_get_cipher_engine(int nid); | ||
580 | ENGINE *ENGINE_get_digest_engine(int nid); | ||
581 | ENGINE *ENGINE_get_pkey_meth_engine(int nid); | ||
582 | ENGINE *ENGINE_get_pkey_asn1_meth_engine(int nid); | ||
583 | |||
584 | /* This sets a new default ENGINE structure for performing RSA | ||
585 | * operations. If the result is non-zero (success) then the ENGINE | ||
586 | * structure will have had its reference count up'd so the caller | ||
587 | * should still free their own reference 'e'. */ | ||
588 | int ENGINE_set_default_RSA(ENGINE *e); | ||
589 | int ENGINE_set_default_string(ENGINE *e, const char *def_list); | ||
590 | /* Same for the other "methods" */ | ||
591 | int ENGINE_set_default_DSA(ENGINE *e); | ||
592 | int ENGINE_set_default_EC(ENGINE *e); | ||
593 | int ENGINE_set_default_DH(ENGINE *e); | ||
594 | int ENGINE_set_default_RAND(ENGINE *e); | ||
595 | int ENGINE_set_default_ciphers(ENGINE *e); | ||
596 | int ENGINE_set_default_digests(ENGINE *e); | ||
597 | int ENGINE_set_default_pkey_meths(ENGINE *e); | ||
598 | int ENGINE_set_default_pkey_asn1_meths(ENGINE *e); | ||
599 | |||
600 | /* The combination "set" - the flags are bitwise "OR"d from the | ||
601 | * ENGINE_METHOD_*** defines above. As with the "ENGINE_register_complete()" | ||
602 | * function, this function can result in unnecessary static linkage. If your | ||
603 | * application requires only specific functionality, consider using more | ||
604 | * selective functions. */ | ||
605 | int ENGINE_set_default(ENGINE *e, unsigned int flags); | ||
606 | |||
607 | void ENGINE_add_conf_module(void); | ||
608 | |||
609 | /* Deprecated functions ... */ | ||
610 | /* int ENGINE_clear_defaults(void); */ | ||
611 | |||
612 | /**************************/ | ||
613 | /* DYNAMIC ENGINE SUPPORT */ | ||
614 | /**************************/ | ||
615 | |||
616 | /* Binary/behaviour compatibility levels */ | ||
617 | #define OSSL_DYNAMIC_VERSION (unsigned long)0x00020000 | ||
618 | /* Binary versions older than this are too old for us (whether we're a loader or | ||
619 | * a loadee) */ | ||
620 | #define OSSL_DYNAMIC_OLDEST (unsigned long)0x00020000 | ||
621 | |||
622 | /* When compiling an ENGINE entirely as an external shared library, loadable by | ||
623 | * the "dynamic" ENGINE, these types are needed. The 'dynamic_fns' structure | ||
624 | * type provides the calling application's (or library's) error functionality | ||
625 | * and memory management function pointers to the loaded library. These should | ||
626 | * be used/set in the loaded library code so that the loading application's | ||
627 | * 'state' will be used/changed in all operations. The 'static_state' pointer | ||
628 | * allows the loaded library to know if it shares the same static data as the | ||
629 | * calling application (or library), and thus whether these callbacks need to be | ||
630 | * set or not. */ | ||
631 | typedef void *(*dyn_MEM_malloc_cb)(size_t); | ||
632 | typedef void *(*dyn_MEM_realloc_cb)(void *, size_t); | ||
633 | typedef void (*dyn_MEM_free_cb)(void *); | ||
634 | typedef struct st_dynamic_MEM_fns { | ||
635 | dyn_MEM_malloc_cb malloc_cb; | ||
636 | dyn_MEM_realloc_cb realloc_cb; | ||
637 | dyn_MEM_free_cb free_cb; | ||
638 | } dynamic_MEM_fns; | ||
639 | /* FIXME: Perhaps the memory and locking code (crypto.h) should declare and use | ||
640 | * these types so we (and any other dependent code) can simplify a bit?? */ | ||
641 | typedef void (*dyn_lock_locking_cb)(int, int, const char *, int); | ||
642 | typedef int (*dyn_lock_add_lock_cb)(int*, int, int, const char *, int); | ||
643 | typedef struct CRYPTO_dynlock_value *(*dyn_dynlock_create_cb)( | ||
644 | const char *, int); | ||
645 | typedef void (*dyn_dynlock_lock_cb)(int, struct CRYPTO_dynlock_value *, | ||
646 | const char *, int); | ||
647 | typedef void (*dyn_dynlock_destroy_cb)(struct CRYPTO_dynlock_value *, | ||
648 | const char *, int); | ||
649 | typedef struct st_dynamic_LOCK_fns { | ||
650 | dyn_lock_locking_cb lock_locking_cb; | ||
651 | dyn_lock_add_lock_cb lock_add_lock_cb; | ||
652 | dyn_dynlock_create_cb dynlock_create_cb; | ||
653 | dyn_dynlock_lock_cb dynlock_lock_cb; | ||
654 | dyn_dynlock_destroy_cb dynlock_destroy_cb; | ||
655 | } dynamic_LOCK_fns; | ||
656 | /* The top-level structure */ | ||
657 | typedef struct st_dynamic_fns { | ||
658 | void *static_state; | ||
659 | const ERR_FNS *err_fns; | ||
660 | const CRYPTO_EX_DATA_IMPL *ex_data_fns; | ||
661 | dynamic_MEM_fns mem_fns; | ||
662 | dynamic_LOCK_fns lock_fns; | ||
663 | } dynamic_fns; | ||
664 | |||
665 | /* The version checking function should be of this prototype. NB: The | ||
666 | * ossl_version value passed in is the OSSL_DYNAMIC_VERSION of the loading code. | ||
667 | * If this function returns zero, it indicates a (potential) version | ||
668 | * incompatibility and the loaded library doesn't believe it can proceed. | ||
669 | * Otherwise, the returned value is the (latest) version supported by the | ||
670 | * loading library. The loader may still decide that the loaded code's version | ||
671 | * is unsatisfactory and could veto the load. The function is expected to | ||
672 | * be implemented with the symbol name "v_check", and a default implementation | ||
673 | * can be fully instantiated with IMPLEMENT_DYNAMIC_CHECK_FN(). */ | ||
674 | typedef unsigned long (*dynamic_v_check_fn)(unsigned long ossl_version); | ||
675 | #define IMPLEMENT_DYNAMIC_CHECK_FN() \ | ||
676 | extern unsigned long v_check(unsigned long v); \ | ||
677 | extern unsigned long v_check(unsigned long v) { \ | ||
678 | if(v >= OSSL_DYNAMIC_OLDEST) return OSSL_DYNAMIC_VERSION; \ | ||
679 | return 0; } | ||
680 | |||
681 | /* This function is passed the ENGINE structure to initialise with its own | ||
682 | * function and command settings. It should not adjust the structural or | ||
683 | * functional reference counts. If this function returns zero, (a) the load will | ||
684 | * be aborted, (b) the previous ENGINE state will be memcpy'd back onto the | ||
685 | * structure, and (c) the shared library will be unloaded. So implementations | ||
686 | * should do their own internal cleanup in failure circumstances otherwise they | ||
687 | * could leak. The 'id' parameter, if non-NULL, represents the ENGINE id that | ||
688 | * the loader is looking for. If this is NULL, the shared library can choose to | ||
689 | * return failure or to initialise a 'default' ENGINE. If non-NULL, the shared | ||
690 | * library must initialise only an ENGINE matching the passed 'id'. The function | ||
691 | * is expected to be implemented with the symbol name "bind_engine". A standard | ||
692 | * implementation can be instantiated with IMPLEMENT_DYNAMIC_BIND_FN(fn) where | ||
693 | * the parameter 'fn' is a callback function that populates the ENGINE structure | ||
694 | * and returns an int value (zero for failure). 'fn' should have prototype; | ||
695 | * [static] int fn(ENGINE *e, const char *id); */ | ||
696 | typedef int (*dynamic_bind_engine)(ENGINE *e, const char *id, | ||
697 | const dynamic_fns *fns); | ||
698 | #define IMPLEMENT_DYNAMIC_BIND_FN(fn) \ | ||
699 | extern \ | ||
700 | int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns); \ | ||
701 | extern \ | ||
702 | int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) { \ | ||
703 | if(ENGINE_get_static_state() == fns->static_state) goto skip_cbs; \ | ||
704 | if(!CRYPTO_set_mem_functions(fns->mem_fns.malloc_cb, \ | ||
705 | fns->mem_fns.realloc_cb, fns->mem_fns.free_cb)) \ | ||
706 | return 0; \ | ||
707 | if(!CRYPTO_set_ex_data_implementation(fns->ex_data_fns)) \ | ||
708 | return 0; \ | ||
709 | if(!ERR_set_implementation(fns->err_fns)) return 0; \ | ||
710 | skip_cbs: \ | ||
711 | if(!fn(e,id)) return 0; \ | ||
712 | return 1; } | ||
713 | |||
714 | /* If the loading application (or library) and the loaded ENGINE library share | ||
715 | * the same static data (eg. they're both dynamically linked to the same | ||
716 | * libcrypto.so) we need a way to avoid trying to set system callbacks - this | ||
717 | * would fail, and for the same reason that it's unnecessary to try. If the | ||
718 | * loaded ENGINE has (or gets from through the loader) its own copy of the | ||
719 | * libcrypto static data, we will need to set the callbacks. The easiest way to | ||
720 | * detect this is to have a function that returns a pointer to some static data | ||
721 | * and let the loading application and loaded ENGINE compare their respective | ||
722 | * values. */ | ||
723 | void *ENGINE_get_static_state(void); | ||
724 | |||
725 | void ERR_load_ENGINE_strings(void); | ||
726 | #endif | ||
727 | 169 | ||
728 | /* Error codes for the ENGINE functions. */ | 170 | /* Error codes for the ENGINE functions. */ |
729 | 171 | ||