diff options
author | jsing <> | 2014-04-21 15:39:52 +0000 |
---|---|---|
committer | jsing <> | 2014-04-21 15:39:52 +0000 |
commit | 9b613c3b503b4d43b4887cdf6a970503312b364f (patch) | |
tree | 5061a725ebf8b95e2ec5deb1a93f1ba043db4ec8 | |
parent | 4a1cabf252e81d8cf554c92fe0d6b88aa14cf747 (diff) | |
download | openbsd-9b613c3b503b4d43b4887cdf6a970503312b364f.tar.gz openbsd-9b613c3b503b4d43b4887cdf6a970503312b364f.tar.bz2 openbsd-9b613c3b503b4d43b4887cdf6a970503312b364f.zip |
KNF.
28 files changed, 3224 insertions, 3140 deletions
diff --git a/src/lib/libcrypto/pem/pem.h b/src/lib/libcrypto/pem/pem.h index e27440330c..4af2db4b3c 100644 --- a/src/lib/libcrypto/pem/pem.h +++ b/src/lib/libcrypto/pem/pem.h | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -139,12 +139,11 @@ extern "C" { | |||
139 | 139 | ||
140 | /* Note that this structure is initialised by PEM_SealInit and cleaned up | 140 | /* Note that this structure is initialised by PEM_SealInit and cleaned up |
141 | by PEM_SealFinal (at least for now) */ | 141 | by PEM_SealFinal (at least for now) */ |
142 | typedef struct PEM_Encode_Seal_st | 142 | typedef struct PEM_Encode_Seal_st { |
143 | { | ||
144 | EVP_ENCODE_CTX encode; | 143 | EVP_ENCODE_CTX encode; |
145 | EVP_MD_CTX md; | 144 | EVP_MD_CTX md; |
146 | EVP_CIPHER_CTX cipher; | 145 | EVP_CIPHER_CTX cipher; |
147 | } PEM_ENCODE_SEAL_CTX; | 146 | } PEM_ENCODE_SEAL_CTX; |
148 | 147 | ||
149 | /* enc_type is one off */ | 148 | /* enc_type is one off */ |
150 | #define PEM_TYPE_ENCRYPTED 10 | 149 | #define PEM_TYPE_ENCRYPTED 10 |
@@ -152,24 +151,22 @@ typedef struct PEM_Encode_Seal_st | |||
152 | #define PEM_TYPE_MIC_CLEAR 30 | 151 | #define PEM_TYPE_MIC_CLEAR 30 |
153 | #define PEM_TYPE_CLEAR 40 | 152 | #define PEM_TYPE_CLEAR 40 |
154 | 153 | ||
155 | typedef struct pem_recip_st | 154 | typedef struct pem_recip_st { |
156 | { | ||
157 | char *name; | 155 | char *name; |
158 | X509_NAME *dn; | 156 | X509_NAME *dn; |
159 | 157 | ||
160 | int cipher; | 158 | int cipher; |
161 | int key_enc; | 159 | int key_enc; |
162 | /* char iv[8]; unused and wrong size */ | 160 | /* char iv[8]; unused and wrong size */ |
163 | } PEM_USER; | 161 | } PEM_USER; |
164 | 162 | ||
165 | typedef struct pem_ctx_st | 163 | typedef struct pem_ctx_st { |
166 | { | ||
167 | int type; /* what type of object */ | 164 | int type; /* what type of object */ |
168 | 165 | ||
169 | struct { | 166 | struct { |
170 | int version; | 167 | int version; |
171 | int mode; | 168 | int mode; |
172 | } proc_type; | 169 | } proc_type; |
173 | 170 | ||
174 | char *domain; | 171 | char *domain; |
175 | 172 | ||
@@ -177,14 +174,14 @@ typedef struct pem_ctx_st | |||
177 | int cipher; | 174 | int cipher; |
178 | /* unused, and wrong size | 175 | /* unused, and wrong size |
179 | unsigned char iv[8]; */ | 176 | unsigned char iv[8]; */ |
180 | } DEK_info; | 177 | } DEK_info; |
181 | 178 | ||
182 | PEM_USER *originator; | 179 | PEM_USER *originator; |
183 | 180 | ||
184 | int num_recipient; | 181 | int num_recipient; |
185 | PEM_USER **recipient; | 182 | PEM_USER **recipient; |
186 | 183 | ||
187 | /* XXX(ben): don#t think this is used! | 184 | /* XXX(ben): don#t think this is used! |
188 | STACK *x509_chain; / * certificate chain */ | 185 | STACK *x509_chain; / * certificate chain */ |
189 | EVP_MD *md; /* signature type */ | 186 | EVP_MD *md; /* signature type */ |
190 | 187 | ||
@@ -198,11 +195,10 @@ typedef struct pem_ctx_st | |||
198 | /* unused, and wrong size | 195 | /* unused, and wrong size |
199 | unsigned char iv[8]; */ | 196 | unsigned char iv[8]; */ |
200 | 197 | ||
201 | |||
202 | int data_enc; /* is the data encrypted */ | 198 | int data_enc; /* is the data encrypted */ |
203 | int data_len; | 199 | int data_len; |
204 | unsigned char *data; | 200 | unsigned char *data; |
205 | } PEM_CTX; | 201 | } PEM_CTX; |
206 | 202 | ||
207 | /* These macros make the PEM_read/PEM_write functions easier to maintain and | 203 | /* These macros make the PEM_read/PEM_write functions easier to maintain and |
208 | * write. Now they are all implemented with either: | 204 | * write. Now they are all implemented with either: |
@@ -223,7 +219,7 @@ typedef struct pem_ctx_st | |||
223 | type *PEM_read_##name(FILE *fp, type **x, pem_password_cb *cb, void *u)\ | 219 | type *PEM_read_##name(FILE *fp, type **x, pem_password_cb *cb, void *u)\ |
224 | { \ | 220 | { \ |
225 | return PEM_ASN1_read((d2i_of_void *)d2i_##asn1, str,fp,(void **)x,cb,u); \ | 221 | return PEM_ASN1_read((d2i_of_void *)d2i_##asn1, str,fp,(void **)x,cb,u); \ |
226 | } | 222 | } |
227 | 223 | ||
228 | #define IMPLEMENT_PEM_write_fp(name, type, str, asn1) \ | 224 | #define IMPLEMENT_PEM_write_fp(name, type, str, asn1) \ |
229 | int PEM_write_##name(FILE *fp, type *x) \ | 225 | int PEM_write_##name(FILE *fp, type *x) \ |
@@ -289,23 +285,23 @@ int PEM_write_bio_##name(BIO *bp, type *x, const EVP_CIPHER *enc, \ | |||
289 | 285 | ||
290 | #define IMPLEMENT_PEM_write(name, type, str, asn1) \ | 286 | #define IMPLEMENT_PEM_write(name, type, str, asn1) \ |
291 | IMPLEMENT_PEM_write_bio(name, type, str, asn1) \ | 287 | IMPLEMENT_PEM_write_bio(name, type, str, asn1) \ |
292 | IMPLEMENT_PEM_write_fp(name, type, str, asn1) | 288 | IMPLEMENT_PEM_write_fp(name, type, str, asn1) |
293 | 289 | ||
294 | #define IMPLEMENT_PEM_write_const(name, type, str, asn1) \ | 290 | #define IMPLEMENT_PEM_write_const(name, type, str, asn1) \ |
295 | IMPLEMENT_PEM_write_bio_const(name, type, str, asn1) \ | 291 | IMPLEMENT_PEM_write_bio_const(name, type, str, asn1) \ |
296 | IMPLEMENT_PEM_write_fp_const(name, type, str, asn1) | 292 | IMPLEMENT_PEM_write_fp_const(name, type, str, asn1) |
297 | 293 | ||
298 | #define IMPLEMENT_PEM_write_cb(name, type, str, asn1) \ | 294 | #define IMPLEMENT_PEM_write_cb(name, type, str, asn1) \ |
299 | IMPLEMENT_PEM_write_cb_bio(name, type, str, asn1) \ | 295 | IMPLEMENT_PEM_write_cb_bio(name, type, str, asn1) \ |
300 | IMPLEMENT_PEM_write_cb_fp(name, type, str, asn1) | 296 | IMPLEMENT_PEM_write_cb_fp(name, type, str, asn1) |
301 | 297 | ||
302 | #define IMPLEMENT_PEM_write_cb_const(name, type, str, asn1) \ | 298 | #define IMPLEMENT_PEM_write_cb_const(name, type, str, asn1) \ |
303 | IMPLEMENT_PEM_write_cb_bio_const(name, type, str, asn1) \ | 299 | IMPLEMENT_PEM_write_cb_bio_const(name, type, str, asn1) \ |
304 | IMPLEMENT_PEM_write_cb_fp_const(name, type, str, asn1) | 300 | IMPLEMENT_PEM_write_cb_fp_const(name, type, str, asn1) |
305 | 301 | ||
306 | #define IMPLEMENT_PEM_read(name, type, str, asn1) \ | 302 | #define IMPLEMENT_PEM_read(name, type, str, asn1) \ |
307 | IMPLEMENT_PEM_read_bio(name, type, str, asn1) \ | 303 | IMPLEMENT_PEM_read_bio(name, type, str, asn1) \ |
308 | IMPLEMENT_PEM_read_fp(name, type, str, asn1) | 304 | IMPLEMENT_PEM_read_fp(name, type, str, asn1) |
309 | 305 | ||
310 | #define IMPLEMENT_PEM_rw(name, type, str, asn1) \ | 306 | #define IMPLEMENT_PEM_rw(name, type, str, asn1) \ |
311 | IMPLEMENT_PEM_read(name, type, str, asn1) \ | 307 | IMPLEMENT_PEM_read(name, type, str, asn1) \ |
@@ -369,7 +365,7 @@ int PEM_write_bio_##name(BIO *bp, type *x, const EVP_CIPHER *enc, \ | |||
369 | 365 | ||
370 | #define DECLARE_PEM_write(name, type) \ | 366 | #define DECLARE_PEM_write(name, type) \ |
371 | DECLARE_PEM_write_bio(name, type) \ | 367 | DECLARE_PEM_write_bio(name, type) \ |
372 | DECLARE_PEM_write_fp(name, type) | 368 | DECLARE_PEM_write_fp(name, type) |
373 | 369 | ||
374 | #define DECLARE_PEM_write_const(name, type) \ | 370 | #define DECLARE_PEM_write_const(name, type) \ |
375 | DECLARE_PEM_write_bio_const(name, type) \ | 371 | DECLARE_PEM_write_bio_const(name, type) \ |
@@ -377,7 +373,7 @@ int PEM_write_bio_##name(BIO *bp, type *x, const EVP_CIPHER *enc, \ | |||
377 | 373 | ||
378 | #define DECLARE_PEM_write_cb(name, type) \ | 374 | #define DECLARE_PEM_write_cb(name, type) \ |
379 | DECLARE_PEM_write_cb_bio(name, type) \ | 375 | DECLARE_PEM_write_cb_bio(name, type) \ |
380 | DECLARE_PEM_write_cb_fp(name, type) | 376 | DECLARE_PEM_write_cb_fp(name, type) |
381 | 377 | ||
382 | #define DECLARE_PEM_read(name, type) \ | 378 | #define DECLARE_PEM_read(name, type) \ |
383 | DECLARE_PEM_read_bio(name, type) \ | 379 | DECLARE_PEM_read_bio(name, type) \ |
@@ -404,50 +400,52 @@ typedef int pem_password_cb(char *buf, int size, int rwflag); | |||
404 | #endif | 400 | #endif |
405 | 401 | ||
406 | int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher); | 402 | int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher); |
407 | int PEM_do_header (EVP_CIPHER_INFO *cipher, unsigned char *data,long *len, | 403 | int PEM_do_header (EVP_CIPHER_INFO *cipher, unsigned char *data, long *len, |
408 | pem_password_cb *callback,void *u); | 404 | pem_password_cb *callback, void *u); |
409 | 405 | ||
410 | #ifndef OPENSSL_NO_BIO | 406 | #ifndef OPENSSL_NO_BIO |
411 | int PEM_read_bio(BIO *bp, char **name, char **header, | 407 | int PEM_read_bio(BIO *bp, char **name, char **header, |
412 | unsigned char **data,long *len); | 408 | unsigned char **data, long *len); |
413 | int PEM_write_bio(BIO *bp,const char *name,char *hdr,unsigned char *data, | 409 | int PEM_write_bio(BIO *bp, const char *name, char *hdr, unsigned char *data, |
414 | long len); | 410 | long len); |
415 | int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, const char *name, BIO *bp, | 411 | int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, |
416 | pem_password_cb *cb, void *u); | 412 | const char *name, BIO *bp, pem_password_cb *cb, void *u); |
417 | void * PEM_ASN1_read_bio(d2i_of_void *d2i, const char *name, BIO *bp, | 413 | void * PEM_ASN1_read_bio(d2i_of_void *d2i, const char *name, BIO *bp, |
418 | void **x, pem_password_cb *cb, void *u); | 414 | void **x, pem_password_cb *cb, void *u); |
419 | int PEM_ASN1_write_bio(i2d_of_void *i2d,const char *name,BIO *bp, void *x, | 415 | int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, void *x, |
420 | const EVP_CIPHER *enc,unsigned char *kstr,int klen, | 416 | const EVP_CIPHER *enc, unsigned char *kstr, int klen, |
421 | pem_password_cb *cb, void *u); | 417 | pem_password_cb *cb, void *u); |
422 | 418 | ||
423 | STACK_OF(X509_INFO) * PEM_X509_INFO_read_bio(BIO *bp, STACK_OF(X509_INFO) *sk, pem_password_cb *cb, void *u); | 419 | STACK_OF(X509_INFO) * PEM_X509_INFO_read_bio(BIO *bp, |
424 | int PEM_X509_INFO_write_bio(BIO *bp,X509_INFO *xi, EVP_CIPHER *enc, | 420 | STACK_OF(X509_INFO) *sk, pem_password_cb *cb, void *u); |
425 | unsigned char *kstr, int klen, pem_password_cb *cd, void *u); | 421 | int PEM_X509_INFO_write_bio(BIO *bp, X509_INFO *xi, EVP_CIPHER *enc, |
422 | unsigned char *kstr, int klen, pem_password_cb *cd, void *u); | ||
426 | #endif | 423 | #endif |
427 | 424 | ||
428 | int PEM_read(FILE *fp, char **name, char **header, | 425 | int PEM_read(FILE *fp, char **name, char **header, |
429 | unsigned char **data,long *len); | 426 | unsigned char **data, long *len); |
430 | int PEM_write(FILE *fp,char *name,char *hdr,unsigned char *data,long len); | 427 | int PEM_write(FILE *fp, char *name, char *hdr, unsigned char *data, |
428 | long len); | ||
431 | void * PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, | 429 | void * PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, |
432 | pem_password_cb *cb, void *u); | 430 | pem_password_cb *cb, void *u); |
433 | int PEM_ASN1_write(i2d_of_void *i2d,const char *name,FILE *fp, | 431 | int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, |
434 | void *x,const EVP_CIPHER *enc,unsigned char *kstr, | 432 | void *x, const EVP_CIPHER *enc, unsigned char *kstr, |
435 | int klen,pem_password_cb *callback, void *u); | 433 | int klen, pem_password_cb *callback, void *u); |
436 | STACK_OF(X509_INFO) * PEM_X509_INFO_read(FILE *fp, STACK_OF(X509_INFO) *sk, | 434 | STACK_OF(X509_INFO) * PEM_X509_INFO_read(FILE *fp, STACK_OF(X509_INFO) *sk, |
437 | pem_password_cb *cb, void *u); | 435 | pem_password_cb *cb, void *u); |
438 | 436 | ||
439 | int PEM_SealInit(PEM_ENCODE_SEAL_CTX *ctx, EVP_CIPHER *type, | 437 | int PEM_SealInit(PEM_ENCODE_SEAL_CTX *ctx, EVP_CIPHER *type, |
440 | EVP_MD *md_type, unsigned char **ek, int *ekl, | 438 | EVP_MD *md_type, unsigned char **ek, int *ekl, |
441 | unsigned char *iv, EVP_PKEY **pubk, int npubk); | 439 | unsigned char *iv, EVP_PKEY **pubk, int npubk); |
442 | void PEM_SealUpdate(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *out, int *outl, | 440 | void PEM_SealUpdate(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *out, int *outl, |
443 | unsigned char *in, int inl); | 441 | unsigned char *in, int inl); |
444 | int PEM_SealFinal(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *sig,int *sigl, | 442 | int PEM_SealFinal(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *sig, int *sigl, |
445 | unsigned char *out, int *outl, EVP_PKEY *priv); | 443 | unsigned char *out, int *outl, EVP_PKEY *priv); |
446 | 444 | ||
447 | void PEM_SignInit(EVP_MD_CTX *ctx, EVP_MD *type); | 445 | void PEM_SignInit(EVP_MD_CTX *ctx, EVP_MD *type); |
448 | void PEM_SignUpdate(EVP_MD_CTX *ctx,unsigned char *d,unsigned int cnt); | 446 | void PEM_SignUpdate(EVP_MD_CTX *ctx, unsigned char *d, unsigned int cnt); |
449 | int PEM_SignFinal(EVP_MD_CTX *ctx, unsigned char *sigret, | 447 | int PEM_SignFinal(EVP_MD_CTX *ctx, unsigned char *sigret, |
450 | unsigned int *siglen, EVP_PKEY *pkey); | 448 | unsigned int *siglen, EVP_PKEY *pkey); |
451 | 449 | ||
452 | int PEM_def_callback(char *buf, int num, int w, void *key); | 450 | int PEM_def_callback(char *buf, int num, int w, void *key); |
453 | void PEM_proc_type(char *buf, int type); | 451 | void PEM_proc_type(char *buf, int type); |
@@ -509,32 +507,34 @@ DECLARE_PEM_rw_cb(PrivateKey, EVP_PKEY) | |||
509 | DECLARE_PEM_rw(PUBKEY, EVP_PKEY) | 507 | DECLARE_PEM_rw(PUBKEY, EVP_PKEY) |
510 | 508 | ||
511 | int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid, | 509 | int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid, |
512 | char *kstr, int klen, | 510 | char *kstr, int klen, |
513 | pem_password_cb *cb, void *u); | 511 | pem_password_cb *cb, void *u); |
514 | int PEM_write_bio_PKCS8PrivateKey(BIO *, EVP_PKEY *, const EVP_CIPHER *, | 512 | int PEM_write_bio_PKCS8PrivateKey(BIO *, EVP_PKEY *, const EVP_CIPHER *, |
515 | char *, int, pem_password_cb *, void *); | 513 | char *, int, pem_password_cb *, void *); |
516 | int i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, | 514 | int i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, |
517 | char *kstr, int klen, | 515 | char *kstr, int klen, |
518 | pem_password_cb *cb, void *u); | 516 | pem_password_cb *cb, void *u); |
519 | int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid, | 517 | int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid, |
520 | char *kstr, int klen, | 518 | char *kstr, int klen, |
521 | pem_password_cb *cb, void *u); | 519 | pem_password_cb *cb, void *u); |
522 | EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u); | 520 | EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, |
521 | void *u); | ||
523 | 522 | ||
524 | int i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, | 523 | int i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, |
525 | char *kstr, int klen, | 524 | char *kstr, int klen, |
526 | pem_password_cb *cb, void *u); | 525 | pem_password_cb *cb, void *u); |
527 | int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid, | 526 | int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid, |
528 | char *kstr, int klen, | 527 | char *kstr, int klen, |
529 | pem_password_cb *cb, void *u); | 528 | pem_password_cb *cb, void *u); |
530 | int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, | 529 | int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, |
531 | char *kstr, int klen, | 530 | char *kstr, int klen, |
532 | pem_password_cb *cb, void *u); | 531 | pem_password_cb *cb, void *u); |
533 | 532 | ||
534 | EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u); | 533 | EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, |
534 | void *u); | ||
535 | 535 | ||
536 | int PEM_write_PKCS8PrivateKey(FILE *fp,EVP_PKEY *x,const EVP_CIPHER *enc, | 536 | int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, |
537 | char *kstr,int klen, pem_password_cb *cd, void *u); | 537 | char *kstr, int klen, pem_password_cb *cd, void *u); |
538 | 538 | ||
539 | EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x); | 539 | EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x); |
540 | int PEM_write_bio_Parameters(BIO *bp, EVP_PKEY *x); | 540 | int PEM_write_bio_Parameters(BIO *bp, EVP_PKEY *x); |
@@ -548,8 +548,8 @@ int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk); | |||
548 | int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk); | 548 | int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk); |
549 | #ifndef OPENSSL_NO_RC4 | 549 | #ifndef OPENSSL_NO_RC4 |
550 | EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u); | 550 | EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u); |
551 | int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, | 551 | int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, pem_password_cb *cb, |
552 | pem_password_cb *cb, void *u); | 552 | void *u); |
553 | #endif | 553 | #endif |
554 | 554 | ||
555 | 555 | ||
diff --git a/src/lib/libcrypto/pem/pem2.h b/src/lib/libcrypto/pem/pem2.h index f31790d69c..84897d5ec3 100644 --- a/src/lib/libcrypto/pem/pem2.h +++ b/src/lib/libcrypto/pem/pem2.h | |||
@@ -6,7 +6,7 @@ | |||
6 | * are met: | 6 | * are met: |
7 | * | 7 | * |
8 | * 1. Redistributions of source code must retain the above copyright | 8 | * 1. Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. | 9 | * notice, this list of conditions and the following disclaimer. |
10 | * | 10 | * |
11 | * 2. Redistributions in binary form must reproduce the above copyright | 11 | * 2. Redistributions in binary form must reproduce the above copyright |
12 | * notice, this list of conditions and the following disclaimer in | 12 | * notice, this list of conditions and the following disclaimer in |
diff --git a/src/lib/libcrypto/pem/pem_all.c b/src/lib/libcrypto/pem/pem_all.c index 6ff6be7fbe..8b54d1a698 100644 --- a/src/lib/libcrypto/pem/pem_all.c +++ b/src/lib/libcrypto/pem/pem_all.c | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -63,7 +63,7 @@ | |||
63 | * are met: | 63 | * are met: |
64 | * | 64 | * |
65 | * 1. Redistributions of source code must retain the above copyright | 65 | * 1. Redistributions of source code must retain the above copyright |
66 | * notice, this list of conditions and the following disclaimer. | 66 | * notice, this list of conditions and the following disclaimer. |
67 | * | 67 | * |
68 | * 2. Redistributions in binary form must reproduce the above copyright | 68 | * 2. Redistributions in binary form must reproduce the above copyright |
69 | * notice, this list of conditions and the following disclaimer in | 69 | * notice, this list of conditions and the following disclaimer in |
@@ -146,7 +146,7 @@ IMPLEMENT_PEM_rw(X509_CRL, X509_CRL, PEM_STRING_X509_CRL, X509_CRL) | |||
146 | IMPLEMENT_PEM_rw(PKCS7, PKCS7, PEM_STRING_PKCS7, PKCS7) | 146 | IMPLEMENT_PEM_rw(PKCS7, PKCS7, PEM_STRING_PKCS7, PKCS7) |
147 | 147 | ||
148 | IMPLEMENT_PEM_rw(NETSCAPE_CERT_SEQUENCE, NETSCAPE_CERT_SEQUENCE, | 148 | IMPLEMENT_PEM_rw(NETSCAPE_CERT_SEQUENCE, NETSCAPE_CERT_SEQUENCE, |
149 | PEM_STRING_X509, NETSCAPE_CERT_SEQUENCE) | 149 | PEM_STRING_X509, NETSCAPE_CERT_SEQUENCE) |
150 | 150 | ||
151 | 151 | ||
152 | #ifndef OPENSSL_NO_RSA | 152 | #ifndef OPENSSL_NO_RSA |
@@ -159,34 +159,40 @@ IMPLEMENT_PEM_rw(NETSCAPE_CERT_SEQUENCE, NETSCAPE_CERT_SEQUENCE, | |||
159 | * transparently. | 159 | * transparently. |
160 | */ | 160 | */ |
161 | 161 | ||
162 | static RSA *pkey_get_rsa(EVP_PKEY *key, RSA **rsa) | 162 | static RSA * |
163 | pkey_get_rsa(EVP_PKEY *key, RSA **rsa) | ||
163 | { | 164 | { |
164 | RSA *rtmp; | 165 | RSA *rtmp; |
165 | if(!key) return NULL; | 166 | |
167 | if (!key) | ||
168 | return NULL; | ||
166 | rtmp = EVP_PKEY_get1_RSA(key); | 169 | rtmp = EVP_PKEY_get1_RSA(key); |
167 | EVP_PKEY_free(key); | 170 | EVP_PKEY_free(key); |
168 | if(!rtmp) return NULL; | 171 | if (!rtmp) |
169 | if(rsa) { | 172 | return NULL; |
173 | if (rsa) { | ||
170 | RSA_free(*rsa); | 174 | RSA_free(*rsa); |
171 | *rsa = rtmp; | 175 | *rsa = rtmp; |
172 | } | 176 | } |
173 | return rtmp; | 177 | return rtmp; |
174 | } | 178 | } |
175 | 179 | ||
176 | RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **rsa, pem_password_cb *cb, | 180 | RSA * |
177 | void *u) | 181 | PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **rsa, pem_password_cb *cb, void *u) |
178 | { | 182 | { |
179 | EVP_PKEY *pktmp; | 183 | EVP_PKEY *pktmp; |
184 | |||
180 | pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u); | 185 | pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u); |
181 | return pkey_get_rsa(pktmp, rsa); | 186 | return pkey_get_rsa(pktmp, rsa); |
182 | } | 187 | } |
183 | 188 | ||
184 | #ifndef OPENSSL_NO_FP_API | 189 | #ifndef OPENSSL_NO_FP_API |
185 | 190 | ||
186 | RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **rsa, pem_password_cb *cb, | 191 | RSA * |
187 | void *u) | 192 | PEM_read_RSAPrivateKey(FILE *fp, RSA **rsa, pem_password_cb *cb, void *u) |
188 | { | 193 | { |
189 | EVP_PKEY *pktmp; | 194 | EVP_PKEY *pktmp; |
195 | |||
190 | pktmp = PEM_read_PrivateKey(fp, NULL, cb, u); | 196 | pktmp = PEM_read_PrivateKey(fp, NULL, cb, u); |
191 | return pkey_get_rsa(pktmp, rsa); | 197 | return pkey_get_rsa(pktmp, rsa); |
192 | } | 198 | } |
@@ -202,24 +208,29 @@ IMPLEMENT_PEM_rw(RSA_PUBKEY, RSA, PEM_STRING_PUBLIC, RSA_PUBKEY) | |||
202 | 208 | ||
203 | #ifndef OPENSSL_NO_DSA | 209 | #ifndef OPENSSL_NO_DSA |
204 | 210 | ||
205 | static DSA *pkey_get_dsa(EVP_PKEY *key, DSA **dsa) | 211 | static DSA * |
212 | pkey_get_dsa(EVP_PKEY *key, DSA **dsa) | ||
206 | { | 213 | { |
207 | DSA *dtmp; | 214 | DSA *dtmp; |
208 | if(!key) return NULL; | 215 | |
216 | if (!key) | ||
217 | return NULL; | ||
209 | dtmp = EVP_PKEY_get1_DSA(key); | 218 | dtmp = EVP_PKEY_get1_DSA(key); |
210 | EVP_PKEY_free(key); | 219 | EVP_PKEY_free(key); |
211 | if(!dtmp) return NULL; | 220 | if (!dtmp) |
212 | if(dsa) { | 221 | return NULL; |
222 | if (dsa) { | ||
213 | DSA_free(*dsa); | 223 | DSA_free(*dsa); |
214 | *dsa = dtmp; | 224 | *dsa = dtmp; |
215 | } | 225 | } |
216 | return dtmp; | 226 | return dtmp; |
217 | } | 227 | } |
218 | 228 | ||
219 | DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **dsa, pem_password_cb *cb, | 229 | DSA * |
220 | void *u) | 230 | PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **dsa, pem_password_cb *cb, void *u) |
221 | { | 231 | { |
222 | EVP_PKEY *pktmp; | 232 | EVP_PKEY *pktmp; |
233 | |||
223 | pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u); | 234 | pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u); |
224 | return pkey_get_dsa(pktmp, dsa); /* will free pktmp */ | 235 | return pkey_get_dsa(pktmp, dsa); /* will free pktmp */ |
225 | } | 236 | } |
@@ -230,10 +241,11 @@ IMPLEMENT_PEM_rw(DSA_PUBKEY, DSA, PEM_STRING_PUBLIC, DSA_PUBKEY) | |||
230 | 241 | ||
231 | #ifndef OPENSSL_NO_FP_API | 242 | #ifndef OPENSSL_NO_FP_API |
232 | 243 | ||
233 | DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **dsa, pem_password_cb *cb, | 244 | DSA * |
234 | void *u) | 245 | PEM_read_DSAPrivateKey(FILE *fp, DSA **dsa, pem_password_cb *cb, void *u) |
235 | { | 246 | { |
236 | EVP_PKEY *pktmp; | 247 | EVP_PKEY *pktmp; |
248 | |||
237 | pktmp = PEM_read_PrivateKey(fp, NULL, cb, u); | 249 | pktmp = PEM_read_PrivateKey(fp, NULL, cb, u); |
238 | return pkey_get_dsa(pktmp, dsa); /* will free pktmp */ | 250 | return pkey_get_dsa(pktmp, dsa); /* will free pktmp */ |
239 | } | 251 | } |
@@ -246,43 +258,47 @@ IMPLEMENT_PEM_rw_const(DSAparams, DSA, PEM_STRING_DSAPARAMS, DSAparams) | |||
246 | 258 | ||
247 | 259 | ||
248 | #ifndef OPENSSL_NO_EC | 260 | #ifndef OPENSSL_NO_EC |
249 | static EC_KEY *pkey_get_eckey(EVP_PKEY *key, EC_KEY **eckey) | 261 | static EC_KEY * |
262 | pkey_get_eckey(EVP_PKEY *key, EC_KEY **eckey) | ||
250 | { | 263 | { |
251 | EC_KEY *dtmp; | 264 | EC_KEY *dtmp; |
252 | if(!key) return NULL; | 265 | |
266 | if (!key) | ||
267 | return NULL; | ||
253 | dtmp = EVP_PKEY_get1_EC_KEY(key); | 268 | dtmp = EVP_PKEY_get1_EC_KEY(key); |
254 | EVP_PKEY_free(key); | 269 | EVP_PKEY_free(key); |
255 | if(!dtmp) return NULL; | 270 | if (!dtmp) |
256 | if(eckey) | 271 | return NULL; |
257 | { | 272 | if (eckey) { |
258 | EC_KEY_free(*eckey); | 273 | EC_KEY_free(*eckey); |
259 | *eckey = dtmp; | 274 | *eckey = dtmp; |
260 | } | 275 | } |
261 | return dtmp; | 276 | return dtmp; |
262 | } | 277 | } |
263 | 278 | ||
264 | EC_KEY *PEM_read_bio_ECPrivateKey(BIO *bp, EC_KEY **key, pem_password_cb *cb, | 279 | EC_KEY * |
265 | void *u) | 280 | PEM_read_bio_ECPrivateKey(BIO *bp, EC_KEY **key, pem_password_cb *cb, void *u) |
266 | { | 281 | { |
267 | EVP_PKEY *pktmp; | 282 | EVP_PKEY *pktmp; |
268 | pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u); | 283 | pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u); |
269 | return pkey_get_eckey(pktmp, key); /* will free pktmp */ | 284 | return pkey_get_eckey(pktmp, key); /* will free pktmp */ |
270 | } | 285 | } |
271 | 286 | ||
272 | IMPLEMENT_PEM_rw_const(ECPKParameters, EC_GROUP, PEM_STRING_ECPARAMETERS, ECPKParameters) | 287 | IMPLEMENT_PEM_rw_const(ECPKParameters, EC_GROUP, PEM_STRING_ECPARAMETERS, |
288 | ECPKParameters) | ||
273 | 289 | ||
274 | 290 | IMPLEMENT_PEM_write_cb(ECPrivateKey, EC_KEY, PEM_STRING_ECPRIVATEKEY, | |
275 | 291 | ECPrivateKey) | |
276 | IMPLEMENT_PEM_write_cb(ECPrivateKey, EC_KEY, PEM_STRING_ECPRIVATEKEY, ECPrivateKey) | ||
277 | 292 | ||
278 | IMPLEMENT_PEM_rw(EC_PUBKEY, EC_KEY, PEM_STRING_PUBLIC, EC_PUBKEY) | 293 | IMPLEMENT_PEM_rw(EC_PUBKEY, EC_KEY, PEM_STRING_PUBLIC, EC_PUBKEY) |
279 | 294 | ||
280 | #ifndef OPENSSL_NO_FP_API | 295 | #ifndef OPENSSL_NO_FP_API |
281 | 296 | ||
282 | EC_KEY *PEM_read_ECPrivateKey(FILE *fp, EC_KEY **eckey, pem_password_cb *cb, | 297 | EC_KEY * |
283 | void *u) | 298 | PEM_read_ECPrivateKey(FILE *fp, EC_KEY **eckey, pem_password_cb *cb, void *u) |
284 | { | 299 | { |
285 | EVP_PKEY *pktmp; | 300 | EVP_PKEY *pktmp; |
301 | |||
286 | pktmp = PEM_read_PrivateKey(fp, NULL, cb, u); | 302 | pktmp = PEM_read_PrivateKey(fp, NULL, cb, u); |
287 | return pkey_get_eckey(pktmp, eckey); /* will free pktmp */ | 303 | return pkey_get_eckey(pktmp, eckey); /* will free pktmp */ |
288 | } | 304 | } |
diff --git a/src/lib/libcrypto/pem/pem_err.c b/src/lib/libcrypto/pem/pem_err.c index d644aeedd4..8fa292fa38 100644 --- a/src/lib/libcrypto/pem/pem_err.c +++ b/src/lib/libcrypto/pem/pem_err.c | |||
@@ -7,7 +7,7 @@ | |||
7 | * are met: | 7 | * are met: |
8 | * | 8 | * |
9 | * 1. Redistributions of source code must retain the above copyright | 9 | * 1. Redistributions of source code must retain the above copyright |
10 | * notice, this list of conditions and the following disclaimer. | 10 | * notice, this list of conditions and the following disclaimer. |
11 | * | 11 | * |
12 | * 2. Redistributions in binary form must reproduce the above copyright | 12 | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in | 13 | * notice, this list of conditions and the following disclaimer in |
@@ -68,94 +68,91 @@ | |||
68 | #define ERR_FUNC(func) ERR_PACK(ERR_LIB_PEM,func,0) | 68 | #define ERR_FUNC(func) ERR_PACK(ERR_LIB_PEM,func,0) |
69 | #define ERR_REASON(reason) ERR_PACK(ERR_LIB_PEM,0,reason) | 69 | #define ERR_REASON(reason) ERR_PACK(ERR_LIB_PEM,0,reason) |
70 | 70 | ||
71 | static ERR_STRING_DATA PEM_str_functs[]= | 71 | static ERR_STRING_DATA PEM_str_functs[] = { |
72 | { | 72 | {ERR_FUNC(PEM_F_B2I_DSS), "B2I_DSS"}, |
73 | {ERR_FUNC(PEM_F_B2I_DSS), "B2I_DSS"}, | 73 | {ERR_FUNC(PEM_F_B2I_PVK_BIO), "b2i_PVK_bio"}, |
74 | {ERR_FUNC(PEM_F_B2I_PVK_BIO), "b2i_PVK_bio"}, | 74 | {ERR_FUNC(PEM_F_B2I_RSA), "B2I_RSA"}, |
75 | {ERR_FUNC(PEM_F_B2I_RSA), "B2I_RSA"}, | 75 | {ERR_FUNC(PEM_F_CHECK_BITLEN_DSA), "CHECK_BITLEN_DSA"}, |
76 | {ERR_FUNC(PEM_F_CHECK_BITLEN_DSA), "CHECK_BITLEN_DSA"}, | 76 | {ERR_FUNC(PEM_F_CHECK_BITLEN_RSA), "CHECK_BITLEN_RSA"}, |
77 | {ERR_FUNC(PEM_F_CHECK_BITLEN_RSA), "CHECK_BITLEN_RSA"}, | 77 | {ERR_FUNC(PEM_F_D2I_PKCS8PRIVATEKEY_BIO), "d2i_PKCS8PrivateKey_bio"}, |
78 | {ERR_FUNC(PEM_F_D2I_PKCS8PRIVATEKEY_BIO), "d2i_PKCS8PrivateKey_bio"}, | 78 | {ERR_FUNC(PEM_F_D2I_PKCS8PRIVATEKEY_FP), "d2i_PKCS8PrivateKey_fp"}, |
79 | {ERR_FUNC(PEM_F_D2I_PKCS8PRIVATEKEY_FP), "d2i_PKCS8PrivateKey_fp"}, | 79 | {ERR_FUNC(PEM_F_DO_B2I), "DO_B2I"}, |
80 | {ERR_FUNC(PEM_F_DO_B2I), "DO_B2I"}, | 80 | {ERR_FUNC(PEM_F_DO_B2I_BIO), "DO_B2I_BIO"}, |
81 | {ERR_FUNC(PEM_F_DO_B2I_BIO), "DO_B2I_BIO"}, | 81 | {ERR_FUNC(PEM_F_DO_BLOB_HEADER), "DO_BLOB_HEADER"}, |
82 | {ERR_FUNC(PEM_F_DO_BLOB_HEADER), "DO_BLOB_HEADER"}, | 82 | {ERR_FUNC(PEM_F_DO_PK8PKEY), "DO_PK8PKEY"}, |
83 | {ERR_FUNC(PEM_F_DO_PK8PKEY), "DO_PK8PKEY"}, | 83 | {ERR_FUNC(PEM_F_DO_PK8PKEY_FP), "DO_PK8PKEY_FP"}, |
84 | {ERR_FUNC(PEM_F_DO_PK8PKEY_FP), "DO_PK8PKEY_FP"}, | 84 | {ERR_FUNC(PEM_F_DO_PVK_BODY), "DO_PVK_BODY"}, |
85 | {ERR_FUNC(PEM_F_DO_PVK_BODY), "DO_PVK_BODY"}, | 85 | {ERR_FUNC(PEM_F_DO_PVK_HEADER), "DO_PVK_HEADER"}, |
86 | {ERR_FUNC(PEM_F_DO_PVK_HEADER), "DO_PVK_HEADER"}, | 86 | {ERR_FUNC(PEM_F_I2B_PVK), "I2B_PVK"}, |
87 | {ERR_FUNC(PEM_F_I2B_PVK), "I2B_PVK"}, | 87 | {ERR_FUNC(PEM_F_I2B_PVK_BIO), "i2b_PVK_bio"}, |
88 | {ERR_FUNC(PEM_F_I2B_PVK_BIO), "i2b_PVK_bio"}, | 88 | {ERR_FUNC(PEM_F_LOAD_IV), "LOAD_IV"}, |
89 | {ERR_FUNC(PEM_F_LOAD_IV), "LOAD_IV"}, | 89 | {ERR_FUNC(PEM_F_PEM_ASN1_READ), "PEM_ASN1_read"}, |
90 | {ERR_FUNC(PEM_F_PEM_ASN1_READ), "PEM_ASN1_read"}, | 90 | {ERR_FUNC(PEM_F_PEM_ASN1_READ_BIO), "PEM_ASN1_read_bio"}, |
91 | {ERR_FUNC(PEM_F_PEM_ASN1_READ_BIO), "PEM_ASN1_read_bio"}, | 91 | {ERR_FUNC(PEM_F_PEM_ASN1_WRITE), "PEM_ASN1_write"}, |
92 | {ERR_FUNC(PEM_F_PEM_ASN1_WRITE), "PEM_ASN1_write"}, | 92 | {ERR_FUNC(PEM_F_PEM_ASN1_WRITE_BIO), "PEM_ASN1_write_bio"}, |
93 | {ERR_FUNC(PEM_F_PEM_ASN1_WRITE_BIO), "PEM_ASN1_write_bio"}, | 93 | {ERR_FUNC(PEM_F_PEM_DEF_CALLBACK), "PEM_def_callback"}, |
94 | {ERR_FUNC(PEM_F_PEM_DEF_CALLBACK), "PEM_def_callback"}, | 94 | {ERR_FUNC(PEM_F_PEM_DO_HEADER), "PEM_do_header"}, |
95 | {ERR_FUNC(PEM_F_PEM_DO_HEADER), "PEM_do_header"}, | 95 | {ERR_FUNC(PEM_F_PEM_F_PEM_WRITE_PKCS8PRIVATEKEY), "PEM_F_PEM_WRITE_PKCS8PRIVATEKEY"}, |
96 | {ERR_FUNC(PEM_F_PEM_F_PEM_WRITE_PKCS8PRIVATEKEY), "PEM_F_PEM_WRITE_PKCS8PRIVATEKEY"}, | 96 | {ERR_FUNC(PEM_F_PEM_GET_EVP_CIPHER_INFO), "PEM_get_EVP_CIPHER_INFO"}, |
97 | {ERR_FUNC(PEM_F_PEM_GET_EVP_CIPHER_INFO), "PEM_get_EVP_CIPHER_INFO"}, | 97 | {ERR_FUNC(PEM_F_PEM_PK8PKEY), "PEM_PK8PKEY"}, |
98 | {ERR_FUNC(PEM_F_PEM_PK8PKEY), "PEM_PK8PKEY"}, | 98 | {ERR_FUNC(PEM_F_PEM_READ), "PEM_read"}, |
99 | {ERR_FUNC(PEM_F_PEM_READ), "PEM_read"}, | 99 | {ERR_FUNC(PEM_F_PEM_READ_BIO), "PEM_read_bio"}, |
100 | {ERR_FUNC(PEM_F_PEM_READ_BIO), "PEM_read_bio"}, | 100 | {ERR_FUNC(PEM_F_PEM_READ_BIO_PARAMETERS), "PEM_read_bio_Parameters"}, |
101 | {ERR_FUNC(PEM_F_PEM_READ_BIO_PARAMETERS), "PEM_read_bio_Parameters"}, | 101 | {ERR_FUNC(PEM_F_PEM_READ_BIO_PRIVATEKEY), "PEM_READ_BIO_PRIVATEKEY"}, |
102 | {ERR_FUNC(PEM_F_PEM_READ_BIO_PRIVATEKEY), "PEM_READ_BIO_PRIVATEKEY"}, | 102 | {ERR_FUNC(PEM_F_PEM_READ_PRIVATEKEY), "PEM_READ_PRIVATEKEY"}, |
103 | {ERR_FUNC(PEM_F_PEM_READ_PRIVATEKEY), "PEM_READ_PRIVATEKEY"}, | 103 | {ERR_FUNC(PEM_F_PEM_SEALFINAL), "PEM_SealFinal"}, |
104 | {ERR_FUNC(PEM_F_PEM_SEALFINAL), "PEM_SealFinal"}, | 104 | {ERR_FUNC(PEM_F_PEM_SEALINIT), "PEM_SealInit"}, |
105 | {ERR_FUNC(PEM_F_PEM_SEALINIT), "PEM_SealInit"}, | 105 | {ERR_FUNC(PEM_F_PEM_SIGNFINAL), "PEM_SignFinal"}, |
106 | {ERR_FUNC(PEM_F_PEM_SIGNFINAL), "PEM_SignFinal"}, | 106 | {ERR_FUNC(PEM_F_PEM_WRITE), "PEM_write"}, |
107 | {ERR_FUNC(PEM_F_PEM_WRITE), "PEM_write"}, | 107 | {ERR_FUNC(PEM_F_PEM_WRITE_BIO), "PEM_write_bio"}, |
108 | {ERR_FUNC(PEM_F_PEM_WRITE_BIO), "PEM_write_bio"}, | 108 | {ERR_FUNC(PEM_F_PEM_WRITE_PRIVATEKEY), "PEM_WRITE_PRIVATEKEY"}, |
109 | {ERR_FUNC(PEM_F_PEM_WRITE_PRIVATEKEY), "PEM_WRITE_PRIVATEKEY"}, | 109 | {ERR_FUNC(PEM_F_PEM_X509_INFO_READ), "PEM_X509_INFO_read"}, |
110 | {ERR_FUNC(PEM_F_PEM_X509_INFO_READ), "PEM_X509_INFO_read"}, | 110 | {ERR_FUNC(PEM_F_PEM_X509_INFO_READ_BIO), "PEM_X509_INFO_read_bio"}, |
111 | {ERR_FUNC(PEM_F_PEM_X509_INFO_READ_BIO), "PEM_X509_INFO_read_bio"}, | 111 | {ERR_FUNC(PEM_F_PEM_X509_INFO_WRITE_BIO), "PEM_X509_INFO_write_bio"}, |
112 | {ERR_FUNC(PEM_F_PEM_X509_INFO_WRITE_BIO), "PEM_X509_INFO_write_bio"}, | 112 | {0, NULL} |
113 | {0,NULL} | 113 | }; |
114 | }; | ||
115 | 114 | ||
116 | static ERR_STRING_DATA PEM_str_reasons[]= | 115 | static ERR_STRING_DATA PEM_str_reasons[] = { |
117 | { | 116 | {ERR_REASON(PEM_R_BAD_BASE64_DECODE) , "bad base64 decode"}, |
118 | {ERR_REASON(PEM_R_BAD_BASE64_DECODE) ,"bad base64 decode"}, | 117 | {ERR_REASON(PEM_R_BAD_DECRYPT) , "bad decrypt"}, |
119 | {ERR_REASON(PEM_R_BAD_DECRYPT) ,"bad decrypt"}, | 118 | {ERR_REASON(PEM_R_BAD_END_LINE) , "bad end line"}, |
120 | {ERR_REASON(PEM_R_BAD_END_LINE) ,"bad end line"}, | 119 | {ERR_REASON(PEM_R_BAD_IV_CHARS) , "bad iv chars"}, |
121 | {ERR_REASON(PEM_R_BAD_IV_CHARS) ,"bad iv chars"}, | 120 | {ERR_REASON(PEM_R_BAD_MAGIC_NUMBER) , "bad magic number"}, |
122 | {ERR_REASON(PEM_R_BAD_MAGIC_NUMBER) ,"bad magic number"}, | 121 | {ERR_REASON(PEM_R_BAD_PASSWORD_READ) , "bad password read"}, |
123 | {ERR_REASON(PEM_R_BAD_PASSWORD_READ) ,"bad password read"}, | 122 | {ERR_REASON(PEM_R_BAD_VERSION_NUMBER) , "bad version number"}, |
124 | {ERR_REASON(PEM_R_BAD_VERSION_NUMBER) ,"bad version number"}, | 123 | {ERR_REASON(PEM_R_BIO_WRITE_FAILURE) , "bio write failure"}, |
125 | {ERR_REASON(PEM_R_BIO_WRITE_FAILURE) ,"bio write failure"}, | 124 | {ERR_REASON(PEM_R_CIPHER_IS_NULL) , "cipher is null"}, |
126 | {ERR_REASON(PEM_R_CIPHER_IS_NULL) ,"cipher is null"}, | 125 | {ERR_REASON(PEM_R_ERROR_CONVERTING_PRIVATE_KEY), "error converting private key"}, |
127 | {ERR_REASON(PEM_R_ERROR_CONVERTING_PRIVATE_KEY),"error converting private key"}, | 126 | {ERR_REASON(PEM_R_EXPECTING_PRIVATE_KEY_BLOB), "expecting private key blob"}, |
128 | {ERR_REASON(PEM_R_EXPECTING_PRIVATE_KEY_BLOB),"expecting private key blob"}, | 127 | {ERR_REASON(PEM_R_EXPECTING_PUBLIC_KEY_BLOB), "expecting public key blob"}, |
129 | {ERR_REASON(PEM_R_EXPECTING_PUBLIC_KEY_BLOB),"expecting public key blob"}, | 128 | {ERR_REASON(PEM_R_INCONSISTENT_HEADER) , "inconsistent header"}, |
130 | {ERR_REASON(PEM_R_INCONSISTENT_HEADER) ,"inconsistent header"}, | 129 | {ERR_REASON(PEM_R_KEYBLOB_HEADER_PARSE_ERROR), "keyblob header parse error"}, |
131 | {ERR_REASON(PEM_R_KEYBLOB_HEADER_PARSE_ERROR),"keyblob header parse error"}, | 130 | {ERR_REASON(PEM_R_KEYBLOB_TOO_SHORT) , "keyblob too short"}, |
132 | {ERR_REASON(PEM_R_KEYBLOB_TOO_SHORT) ,"keyblob too short"}, | 131 | {ERR_REASON(PEM_R_NOT_DEK_INFO) , "not dek info"}, |
133 | {ERR_REASON(PEM_R_NOT_DEK_INFO) ,"not dek info"}, | 132 | {ERR_REASON(PEM_R_NOT_ENCRYPTED) , "not encrypted"}, |
134 | {ERR_REASON(PEM_R_NOT_ENCRYPTED) ,"not encrypted"}, | 133 | {ERR_REASON(PEM_R_NOT_PROC_TYPE) , "not proc type"}, |
135 | {ERR_REASON(PEM_R_NOT_PROC_TYPE) ,"not proc type"}, | 134 | {ERR_REASON(PEM_R_NO_START_LINE) , "no start line"}, |
136 | {ERR_REASON(PEM_R_NO_START_LINE) ,"no start line"}, | 135 | {ERR_REASON(PEM_R_PROBLEMS_GETTING_PASSWORD), "problems getting password"}, |
137 | {ERR_REASON(PEM_R_PROBLEMS_GETTING_PASSWORD),"problems getting password"}, | 136 | {ERR_REASON(PEM_R_PUBLIC_KEY_NO_RSA) , "public key no rsa"}, |
138 | {ERR_REASON(PEM_R_PUBLIC_KEY_NO_RSA) ,"public key no rsa"}, | 137 | {ERR_REASON(PEM_R_PVK_DATA_TOO_SHORT) , "pvk data too short"}, |
139 | {ERR_REASON(PEM_R_PVK_DATA_TOO_SHORT) ,"pvk data too short"}, | 138 | {ERR_REASON(PEM_R_PVK_TOO_SHORT) , "pvk too short"}, |
140 | {ERR_REASON(PEM_R_PVK_TOO_SHORT) ,"pvk too short"}, | 139 | {ERR_REASON(PEM_R_READ_KEY) , "read key"}, |
141 | {ERR_REASON(PEM_R_READ_KEY) ,"read key"}, | 140 | {ERR_REASON(PEM_R_SHORT_HEADER) , "short header"}, |
142 | {ERR_REASON(PEM_R_SHORT_HEADER) ,"short header"}, | 141 | {ERR_REASON(PEM_R_UNSUPPORTED_CIPHER) , "unsupported cipher"}, |
143 | {ERR_REASON(PEM_R_UNSUPPORTED_CIPHER) ,"unsupported cipher"}, | 142 | {ERR_REASON(PEM_R_UNSUPPORTED_ENCRYPTION), "unsupported encryption"}, |
144 | {ERR_REASON(PEM_R_UNSUPPORTED_ENCRYPTION),"unsupported encryption"}, | 143 | {ERR_REASON(PEM_R_UNSUPPORTED_KEY_COMPONENTS), "unsupported key components"}, |
145 | {ERR_REASON(PEM_R_UNSUPPORTED_KEY_COMPONENTS),"unsupported key components"}, | 144 | {0, NULL} |
146 | {0,NULL} | 145 | }; |
147 | }; | ||
148 | 146 | ||
149 | #endif | 147 | #endif |
150 | 148 | ||
151 | void ERR_load_PEM_strings(void) | 149 | void |
152 | { | 150 | ERR_load_PEM_strings(void) |
151 | { | ||
153 | #ifndef OPENSSL_NO_ERR | 152 | #ifndef OPENSSL_NO_ERR |
154 | 153 | if (ERR_func_error_string(PEM_str_functs[0].error) == NULL) { | |
155 | if (ERR_func_error_string(PEM_str_functs[0].error) == NULL) | 154 | ERR_load_strings(0, PEM_str_functs); |
156 | { | 155 | ERR_load_strings(0, PEM_str_reasons); |
157 | ERR_load_strings(0,PEM_str_functs); | ||
158 | ERR_load_strings(0,PEM_str_reasons); | ||
159 | } | ||
160 | #endif | ||
161 | } | 156 | } |
157 | #endif | ||
158 | } | ||
diff --git a/src/lib/libcrypto/pem/pem_info.c b/src/lib/libcrypto/pem/pem_info.c index 4351260dfb..967d6d2d41 100644 --- a/src/lib/libcrypto/pem/pem_info.c +++ b/src/lib/libcrypto/pem/pem_info.c | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -71,324 +71,315 @@ | |||
71 | #endif | 71 | #endif |
72 | 72 | ||
73 | #ifndef OPENSSL_NO_FP_API | 73 | #ifndef OPENSSL_NO_FP_API |
74 | STACK_OF(X509_INFO) *PEM_X509_INFO_read(FILE *fp, STACK_OF(X509_INFO) *sk, pem_password_cb *cb, void *u) | 74 | STACK_OF(X509_INFO) * |
75 | { | 75 | PEM_X509_INFO_read(FILE *fp, STACK_OF(X509_INFO) *sk, pem_password_cb *cb, |
76 | BIO *b; | 76 | void *u) |
77 | STACK_OF(X509_INFO) *ret; | 77 | { |
78 | BIO *b; | ||
79 | STACK_OF(X509_INFO) *ret; | ||
78 | 80 | ||
79 | if ((b=BIO_new(BIO_s_file())) == NULL) | 81 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
80 | { | 82 | PEMerr(PEM_F_PEM_X509_INFO_READ, ERR_R_BUF_LIB); |
81 | PEMerr(PEM_F_PEM_X509_INFO_READ,ERR_R_BUF_LIB); | 83 | return (0); |
82 | return(0); | ||
83 | } | ||
84 | BIO_set_fp(b,fp,BIO_NOCLOSE); | ||
85 | ret=PEM_X509_INFO_read_bio(b,sk,cb,u); | ||
86 | BIO_free(b); | ||
87 | return(ret); | ||
88 | } | 84 | } |
85 | BIO_set_fp(b, fp, BIO_NOCLOSE); | ||
86 | ret = PEM_X509_INFO_read_bio(b, sk, cb, u); | ||
87 | BIO_free(b); | ||
88 | return (ret); | ||
89 | } | ||
89 | #endif | 90 | #endif |
90 | 91 | ||
91 | STACK_OF(X509_INFO) *PEM_X509_INFO_read_bio(BIO *bp, STACK_OF(X509_INFO) *sk, pem_password_cb *cb, void *u) | 92 | STACK_OF(X509_INFO) * |
92 | { | 93 | PEM_X509_INFO_read_bio(BIO *bp, STACK_OF(X509_INFO) *sk, pem_password_cb *cb, |
93 | X509_INFO *xi=NULL; | 94 | void *u) |
94 | char *name=NULL,*header=NULL; | 95 | { |
96 | X509_INFO *xi = NULL; | ||
97 | char *name = NULL, *header = NULL; | ||
95 | void *pp; | 98 | void *pp; |
96 | unsigned char *data=NULL; | 99 | unsigned char *data = NULL; |
97 | const unsigned char *p; | 100 | const unsigned char *p; |
98 | long len,error=0; | 101 | long len, error = 0; |
99 | int ok=0; | 102 | int ok = 0; |
100 | STACK_OF(X509_INFO) *ret=NULL; | 103 | STACK_OF(X509_INFO) *ret = NULL; |
101 | unsigned int i,raw,ptype; | 104 | unsigned int i, raw, ptype; |
102 | d2i_of_void *d2i = 0; | 105 | d2i_of_void *d2i = 0; |
103 | 106 | ||
104 | if (sk == NULL) | 107 | if (sk == NULL) { |
105 | { | 108 | if ((ret = sk_X509_INFO_new_null()) == NULL) { |
106 | if ((ret=sk_X509_INFO_new_null()) == NULL) | 109 | PEMerr(PEM_F_PEM_X509_INFO_READ_BIO, |
107 | { | 110 | ERR_R_MALLOC_FAILURE); |
108 | PEMerr(PEM_F_PEM_X509_INFO_READ_BIO,ERR_R_MALLOC_FAILURE); | ||
109 | goto err; | 111 | goto err; |
110 | } | ||
111 | } | 112 | } |
112 | else | 113 | } else |
113 | ret=sk; | 114 | ret = sk; |
114 | 115 | ||
115 | if ((xi=X509_INFO_new()) == NULL) goto err; | 116 | if ((xi = X509_INFO_new()) == NULL) |
116 | for (;;) | 117 | goto err; |
117 | { | 118 | for (;;) { |
118 | raw=0; | 119 | raw = 0; |
119 | ptype = 0; | 120 | ptype = 0; |
120 | i=PEM_read_bio(bp,&name,&header,&data,&len); | 121 | i = PEM_read_bio(bp, &name, &header, &data, &len); |
121 | if (i == 0) | 122 | if (i == 0) { |
122 | { | 123 | error = ERR_GET_REASON(ERR_peek_last_error()); |
123 | error=ERR_GET_REASON(ERR_peek_last_error()); | 124 | if (error == PEM_R_NO_START_LINE) { |
124 | if (error == PEM_R_NO_START_LINE) | ||
125 | { | ||
126 | ERR_clear_error(); | 125 | ERR_clear_error(); |
127 | break; | 126 | break; |
128 | } | ||
129 | goto err; | ||
130 | } | 127 | } |
128 | goto err; | ||
129 | } | ||
131 | start: | 130 | start: |
132 | if ( (strcmp(name,PEM_STRING_X509) == 0) || | 131 | if ((strcmp(name, PEM_STRING_X509) == 0) || |
133 | (strcmp(name,PEM_STRING_X509_OLD) == 0)) | 132 | (strcmp(name, PEM_STRING_X509_OLD) == 0)) { |
134 | { | 133 | d2i = (D2I_OF(void))d2i_X509; |
135 | d2i=(D2I_OF(void))d2i_X509; | 134 | if (xi->x509 != NULL) { |
136 | if (xi->x509 != NULL) | 135 | if (!sk_X509_INFO_push(ret, xi)) |
137 | { | 136 | goto err; |
138 | if (!sk_X509_INFO_push(ret,xi)) goto err; | 137 | if ((xi = X509_INFO_new()) == NULL) |
139 | if ((xi=X509_INFO_new()) == NULL) goto err; | 138 | goto err; |
140 | goto start; | 139 | goto start; |
141 | } | ||
142 | pp=&(xi->x509); | ||
143 | } | 140 | } |
144 | else if ((strcmp(name,PEM_STRING_X509_TRUSTED) == 0)) | 141 | pp = &(xi->x509); |
145 | { | 142 | } else if ((strcmp(name, PEM_STRING_X509_TRUSTED) == 0)) { |
146 | d2i=(D2I_OF(void))d2i_X509_AUX; | 143 | d2i = (D2I_OF(void))d2i_X509_AUX; |
147 | if (xi->x509 != NULL) | 144 | if (xi->x509 != NULL) { |
148 | { | 145 | if (!sk_X509_INFO_push(ret, xi)) |
149 | if (!sk_X509_INFO_push(ret,xi)) goto err; | 146 | goto err; |
150 | if ((xi=X509_INFO_new()) == NULL) goto err; | 147 | if ((xi = X509_INFO_new()) == NULL) |
148 | goto err; | ||
151 | goto start; | 149 | goto start; |
152 | } | ||
153 | pp=&(xi->x509); | ||
154 | } | 150 | } |
155 | else if (strcmp(name,PEM_STRING_X509_CRL) == 0) | 151 | pp = &(xi->x509); |
156 | { | 152 | } else if (strcmp(name, PEM_STRING_X509_CRL) == 0) { |
157 | d2i=(D2I_OF(void))d2i_X509_CRL; | 153 | d2i = (D2I_OF(void))d2i_X509_CRL; |
158 | if (xi->crl != NULL) | 154 | if (xi->crl != NULL) { |
159 | { | 155 | if (!sk_X509_INFO_push(ret, xi)) |
160 | if (!sk_X509_INFO_push(ret,xi)) goto err; | 156 | goto err; |
161 | if ((xi=X509_INFO_new()) == NULL) goto err; | 157 | if ((xi = X509_INFO_new()) == NULL) |
158 | goto err; | ||
162 | goto start; | 159 | goto start; |
163 | } | ||
164 | pp=&(xi->crl); | ||
165 | } | 160 | } |
166 | else | 161 | pp = &(xi->crl); |
162 | } else | ||
167 | #ifndef OPENSSL_NO_RSA | 163 | #ifndef OPENSSL_NO_RSA |
168 | if (strcmp(name,PEM_STRING_RSA) == 0) | 164 | if (strcmp(name, PEM_STRING_RSA) == 0) { |
169 | { | 165 | d2i = (D2I_OF(void))d2i_RSAPrivateKey; |
170 | d2i=(D2I_OF(void))d2i_RSAPrivateKey; | 166 | if (xi->x_pkey != NULL) { |
171 | if (xi->x_pkey != NULL) | 167 | if (!sk_X509_INFO_push(ret, xi)) |
172 | { | 168 | goto err; |
173 | if (!sk_X509_INFO_push(ret,xi)) goto err; | 169 | if ((xi = X509_INFO_new()) == NULL) |
174 | if ((xi=X509_INFO_new()) == NULL) goto err; | 170 | goto err; |
175 | goto start; | 171 | goto start; |
176 | } | 172 | } |
177 | 173 | ||
178 | xi->enc_data=NULL; | 174 | xi->enc_data = NULL; |
179 | xi->enc_len=0; | 175 | xi->enc_len = 0; |
180 | 176 | ||
181 | xi->x_pkey=X509_PKEY_new(); | 177 | xi->x_pkey = X509_PKEY_new(); |
182 | ptype=EVP_PKEY_RSA; | 178 | ptype = EVP_PKEY_RSA; |
183 | pp=&xi->x_pkey->dec_pkey; | 179 | pp = &xi->x_pkey->dec_pkey; |
184 | if ((int)strlen(header) > 10) /* assume encrypted */ | 180 | if ((int)strlen(header) > 10) /* assume encrypted */ |
185 | raw=1; | 181 | raw = 1; |
186 | } | 182 | } else |
187 | else | ||
188 | #endif | 183 | #endif |
189 | #ifndef OPENSSL_NO_DSA | 184 | #ifndef OPENSSL_NO_DSA |
190 | if (strcmp(name,PEM_STRING_DSA) == 0) | 185 | if (strcmp(name, PEM_STRING_DSA) == 0) { |
191 | { | 186 | d2i = (D2I_OF(void))d2i_DSAPrivateKey; |
192 | d2i=(D2I_OF(void))d2i_DSAPrivateKey; | 187 | if (xi->x_pkey != NULL) { |
193 | if (xi->x_pkey != NULL) | 188 | if (!sk_X509_INFO_push(ret, xi)) |
194 | { | 189 | goto err; |
195 | if (!sk_X509_INFO_push(ret,xi)) goto err; | 190 | if ((xi = X509_INFO_new()) == NULL) |
196 | if ((xi=X509_INFO_new()) == NULL) goto err; | 191 | goto err; |
197 | goto start; | 192 | goto start; |
198 | } | 193 | } |
199 | 194 | ||
200 | xi->enc_data=NULL; | 195 | xi->enc_data = NULL; |
201 | xi->enc_len=0; | 196 | xi->enc_len = 0; |
202 | 197 | ||
203 | xi->x_pkey=X509_PKEY_new(); | 198 | xi->x_pkey = X509_PKEY_new(); |
204 | ptype = EVP_PKEY_DSA; | 199 | ptype = EVP_PKEY_DSA; |
205 | pp=&xi->x_pkey->dec_pkey; | 200 | pp = &xi->x_pkey->dec_pkey; |
206 | if ((int)strlen(header) > 10) /* assume encrypted */ | 201 | if ((int)strlen(header) > 10) /* assume encrypted */ |
207 | raw=1; | 202 | raw = 1; |
208 | } | 203 | } else |
209 | else | ||
210 | #endif | 204 | #endif |
211 | #ifndef OPENSSL_NO_EC | 205 | #ifndef OPENSSL_NO_EC |
212 | if (strcmp(name,PEM_STRING_ECPRIVATEKEY) == 0) | 206 | if (strcmp(name, PEM_STRING_ECPRIVATEKEY) == 0) { |
213 | { | 207 | d2i = (D2I_OF(void))d2i_ECPrivateKey; |
214 | d2i=(D2I_OF(void))d2i_ECPrivateKey; | 208 | if (xi->x_pkey != NULL) { |
215 | if (xi->x_pkey != NULL) | 209 | if (!sk_X509_INFO_push(ret, xi)) |
216 | { | 210 | goto err; |
217 | if (!sk_X509_INFO_push(ret,xi)) goto err; | 211 | if ((xi = X509_INFO_new()) == NULL) |
218 | if ((xi=X509_INFO_new()) == NULL) goto err; | 212 | goto err; |
219 | goto start; | 213 | goto start; |
220 | } | ||
221 | |||
222 | xi->enc_data=NULL; | ||
223 | xi->enc_len=0; | ||
224 | |||
225 | xi->x_pkey=X509_PKEY_new(); | ||
226 | ptype = EVP_PKEY_EC; | ||
227 | pp=&xi->x_pkey->dec_pkey; | ||
228 | if ((int)strlen(header) > 10) /* assume encrypted */ | ||
229 | raw=1; | ||
230 | } | 214 | } |
231 | else | 215 | |
216 | xi->enc_data = NULL; | ||
217 | xi->enc_len = 0; | ||
218 | |||
219 | xi->x_pkey = X509_PKEY_new(); | ||
220 | ptype = EVP_PKEY_EC; | ||
221 | pp = &xi->x_pkey->dec_pkey; | ||
222 | if ((int)strlen(header) > 10) /* assume encrypted */ | ||
223 | raw = 1; | ||
224 | } else | ||
232 | #endif | 225 | #endif |
233 | { | 226 | { |
234 | d2i=NULL; | 227 | d2i = NULL; |
235 | pp=NULL; | 228 | pp = NULL; |
236 | } | 229 | } |
237 | 230 | ||
238 | if (d2i != NULL) | 231 | if (d2i != NULL) { |
239 | { | 232 | if (!raw) { |
240 | if (!raw) | ||
241 | { | ||
242 | EVP_CIPHER_INFO cipher; | 233 | EVP_CIPHER_INFO cipher; |
243 | 234 | ||
244 | if (!PEM_get_EVP_CIPHER_INFO(header,&cipher)) | 235 | if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) |
245 | goto err; | 236 | goto err; |
246 | if (!PEM_do_header(&cipher,data,&len,cb,u)) | 237 | if (!PEM_do_header(&cipher, data, &len, cb, u)) |
247 | goto err; | 238 | goto err; |
248 | p=data; | 239 | p = data; |
249 | if (ptype) | 240 | if (ptype) { |
250 | { | 241 | if (!d2i_PrivateKey(ptype, pp, &p, |
251 | if (!d2i_PrivateKey(ptype, pp, &p, len)) | 242 | len)) { |
252 | { | 243 | PEMerr(PEM_F_PEM_X509_INFO_READ_BIO, ERR_R_ASN1_LIB); |
253 | PEMerr(PEM_F_PEM_X509_INFO_READ_BIO,ERR_R_ASN1_LIB); | ||
254 | goto err; | 244 | goto err; |
255 | } | ||
256 | } | 245 | } |
257 | else if (d2i(pp,&p,len) == NULL) | 246 | } else if (d2i(pp, &p, len) == NULL) { |
258 | { | 247 | PEMerr(PEM_F_PEM_X509_INFO_READ_BIO, ERR_R_ASN1_LIB); |
259 | PEMerr(PEM_F_PEM_X509_INFO_READ_BIO,ERR_R_ASN1_LIB); | ||
260 | goto err; | 248 | goto err; |
261 | } | ||
262 | } | 249 | } |
263 | else | 250 | } else { /* encrypted RSA data */ |
264 | { /* encrypted RSA data */ | ||
265 | if (!PEM_get_EVP_CIPHER_INFO(header, | 251 | if (!PEM_get_EVP_CIPHER_INFO(header, |
266 | &xi->enc_cipher)) goto err; | 252 | &xi->enc_cipher)) |
267 | xi->enc_data=(char *)data; | 253 | goto err; |
268 | xi->enc_len=(int)len; | 254 | xi->enc_data = (char *)data; |
269 | data=NULL; | 255 | xi->enc_len = (int)len; |
270 | } | 256 | data = NULL; |
271 | } | 257 | } |
272 | else { | 258 | } else { |
273 | /* unknown */ | 259 | /* unknown */ |
274 | } | ||
275 | if (name != NULL) free(name); | ||
276 | if (header != NULL) free(header); | ||
277 | if (data != NULL) free(data); | ||
278 | name=NULL; | ||
279 | header=NULL; | ||
280 | data=NULL; | ||
281 | } | 260 | } |
261 | if (name != NULL) | ||
262 | free(name); | ||
263 | if (header != NULL) | ||
264 | free(header); | ||
265 | if (data != NULL) | ||
266 | free(data); | ||
267 | name = NULL; | ||
268 | header = NULL; | ||
269 | data = NULL; | ||
270 | } | ||
282 | 271 | ||
283 | /* if the last one hasn't been pushed yet and there is anything | 272 | /* if the last one hasn't been pushed yet and there is anything |
284 | * in it then add it to the stack ... | 273 | * in it then add it to the stack ... |
285 | */ | 274 | */ |
286 | if ((xi->x509 != NULL) || (xi->crl != NULL) || | 275 | if ((xi->x509 != NULL) || (xi->crl != NULL) || |
287 | (xi->x_pkey != NULL) || (xi->enc_data != NULL)) | 276 | (xi->x_pkey != NULL) || (xi->enc_data != NULL)) { |
288 | { | 277 | if (!sk_X509_INFO_push(ret, xi)) |
289 | if (!sk_X509_INFO_push(ret,xi)) goto err; | 278 | goto err; |
290 | xi=NULL; | 279 | xi = NULL; |
291 | } | 280 | } |
292 | ok=1; | 281 | ok = 1; |
282 | |||
293 | err: | 283 | err: |
294 | if (xi != NULL) X509_INFO_free(xi); | 284 | if (xi != NULL) |
295 | if (!ok) | 285 | X509_INFO_free(xi); |
296 | { | 286 | if (!ok) { |
297 | for (i=0; ((int)i)<sk_X509_INFO_num(ret); i++) | 287 | for (i = 0; ((int)i) < sk_X509_INFO_num(ret); i++) { |
298 | { | 288 | xi = sk_X509_INFO_value(ret, i); |
299 | xi=sk_X509_INFO_value(ret,i); | ||
300 | X509_INFO_free(xi); | 289 | X509_INFO_free(xi); |
301 | } | ||
302 | if (ret != sk) sk_X509_INFO_free(ret); | ||
303 | ret=NULL; | ||
304 | } | 290 | } |
305 | 291 | if (ret != sk) | |
306 | if (name != NULL) free(name); | 292 | sk_X509_INFO_free(ret); |
307 | if (header != NULL) free(header); | 293 | ret = NULL; |
308 | if (data != NULL) free(data); | ||
309 | return(ret); | ||
310 | } | 294 | } |
311 | 295 | ||
296 | if (name != NULL) | ||
297 | free(name); | ||
298 | if (header != NULL) | ||
299 | free(header); | ||
300 | if (data != NULL) | ||
301 | free(data); | ||
302 | return (ret); | ||
303 | } | ||
304 | |||
312 | 305 | ||
313 | /* A TJH addition */ | 306 | /* A TJH addition */ |
314 | int PEM_X509_INFO_write_bio(BIO *bp, X509_INFO *xi, EVP_CIPHER *enc, | 307 | int |
315 | unsigned char *kstr, int klen, pem_password_cb *cb, void *u) | 308 | PEM_X509_INFO_write_bio(BIO *bp, X509_INFO *xi, EVP_CIPHER *enc, |
316 | { | 309 | unsigned char *kstr, int klen, pem_password_cb *cb, void *u) |
310 | { | ||
317 | EVP_CIPHER_CTX ctx; | 311 | EVP_CIPHER_CTX ctx; |
318 | int i,ret=0; | 312 | int i, ret = 0; |
319 | unsigned char *data=NULL; | 313 | unsigned char *data = NULL; |
320 | const char *objstr=NULL; | 314 | const char *objstr = NULL; |
321 | char buf[PEM_BUFSIZE]; | 315 | char buf[PEM_BUFSIZE]; |
322 | unsigned char *iv=NULL; | 316 | unsigned char *iv = NULL; |
323 | 317 | ||
324 | if (enc != NULL) | 318 | if (enc != NULL) { |
325 | { | 319 | objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc)); |
326 | objstr=OBJ_nid2sn(EVP_CIPHER_nid(enc)); | 320 | if (objstr == NULL) { |
327 | if (objstr == NULL) | 321 | PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO, |
328 | { | 322 | PEM_R_UNSUPPORTED_CIPHER); |
329 | PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO,PEM_R_UNSUPPORTED_CIPHER); | ||
330 | goto err; | 323 | goto err; |
331 | } | ||
332 | } | 324 | } |
325 | } | ||
333 | 326 | ||
334 | /* now for the fun part ... if we have a private key then | 327 | /* now for the fun part ... if we have a private key then |
335 | * we have to be able to handle a not-yet-decrypted key | 328 | * we have to be able to handle a not-yet-decrypted key |
336 | * being written out correctly ... if it is decrypted or | 329 | * being written out correctly ... if it is decrypted or |
337 | * it is non-encrypted then we use the base code | 330 | * it is non-encrypted then we use the base code |
338 | */ | 331 | */ |
339 | if (xi->x_pkey!=NULL) | 332 | if (xi->x_pkey != NULL) { |
340 | { | 333 | if ((xi->enc_data != NULL) && (xi->enc_len > 0) ) { |
341 | if ( (xi->enc_data!=NULL) && (xi->enc_len>0) ) | 334 | if (enc == NULL) { |
342 | { | 335 | PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO, |
343 | if (enc == NULL) | 336 | PEM_R_CIPHER_IS_NULL); |
344 | { | ||
345 | PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO,PEM_R_CIPHER_IS_NULL); | ||
346 | goto err; | 337 | goto err; |
347 | } | 338 | } |
348 | 339 | ||
349 | /* copy from weirdo names into more normal things */ | 340 | /* copy from weirdo names into more normal things */ |
350 | iv=xi->enc_cipher.iv; | 341 | iv = xi->enc_cipher.iv; |
351 | data=(unsigned char *)xi->enc_data; | 342 | data = (unsigned char *)xi->enc_data; |
352 | i=xi->enc_len; | 343 | i = xi->enc_len; |
353 | 344 | ||
354 | /* we take the encryption data from the | 345 | /* we take the encryption data from the |
355 | * internal stuff rather than what the | 346 | * internal stuff rather than what the |
356 | * user has passed us ... as we have to | 347 | * user has passed us ... as we have to |
357 | * match exactly for some strange reason | 348 | * match exactly for some strange reason |
358 | */ | 349 | */ |
359 | objstr=OBJ_nid2sn( | 350 | objstr = OBJ_nid2sn( |
360 | EVP_CIPHER_nid(xi->enc_cipher.cipher)); | 351 | EVP_CIPHER_nid(xi->enc_cipher.cipher)); |
361 | if (objstr == NULL) | 352 | if (objstr == NULL) { |
362 | { | 353 | PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO, |
363 | PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO,PEM_R_UNSUPPORTED_CIPHER); | 354 | PEM_R_UNSUPPORTED_CIPHER); |
364 | goto err; | 355 | goto err; |
365 | } | 356 | } |
366 | 357 | ||
367 | /* create the right magic header stuff */ | 358 | /* create the right magic header stuff */ |
368 | OPENSSL_assert(strlen(objstr)+23+2*enc->iv_len+13 <= sizeof buf); | 359 | OPENSSL_assert(strlen(objstr) + 23 + |
369 | buf[0]='\0'; | 360 | 2 * enc->iv_len + 13 <= sizeof buf); |
370 | PEM_proc_type(buf,PEM_TYPE_ENCRYPTED); | 361 | buf[0] = '\0'; |
371 | PEM_dek_info(buf,objstr,enc->iv_len,(char *)iv); | 362 | PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); |
363 | PEM_dek_info(buf, objstr, enc->iv_len, (char *)iv); | ||
372 | 364 | ||
373 | /* use the normal code to write things out */ | 365 | /* use the normal code to write things out */ |
374 | i=PEM_write_bio(bp,PEM_STRING_RSA,buf,data,i); | 366 | i = PEM_write_bio(bp, PEM_STRING_RSA, buf, data, i); |
375 | if (i <= 0) goto err; | 367 | if (i <= 0) |
376 | } | 368 | goto err; |
377 | else | 369 | } else { |
378 | { | ||
379 | /* Add DSA/DH */ | 370 | /* Add DSA/DH */ |
380 | #ifndef OPENSSL_NO_RSA | 371 | #ifndef OPENSSL_NO_RSA |
381 | /* normal optionally encrypted stuff */ | 372 | /* normal optionally encrypted stuff */ |
382 | if (PEM_write_bio_RSAPrivateKey(bp, | 373 | if (PEM_write_bio_RSAPrivateKey(bp, |
383 | xi->x_pkey->dec_pkey->pkey.rsa, | 374 | xi->x_pkey->dec_pkey->pkey.rsa, |
384 | enc,kstr,klen,cb,u)<=0) | 375 | enc, kstr, klen, cb, u) <= 0) |
385 | goto err; | 376 | goto err; |
386 | #endif | 377 | #endif |
387 | } | ||
388 | } | 378 | } |
379 | } | ||
389 | 380 | ||
390 | /* if we have a certificate then write it out now */ | 381 | /* if we have a certificate then write it out now */ |
391 | if ((xi->x509 != NULL) && (PEM_write_bio_X509(bp,xi->x509) <= 0)) | 382 | if ((xi->x509 != NULL) && (PEM_write_bio_X509(bp, xi->x509) <= 0)) |
392 | goto err; | 383 | goto err; |
393 | 384 | ||
394 | /* we are ignoring anything else that is loaded into the X509_INFO | 385 | /* we are ignoring anything else that is loaded into the X509_INFO |
@@ -397,10 +388,10 @@ int PEM_X509_INFO_write_bio(BIO *bp, X509_INFO *xi, EVP_CIPHER *enc, | |||
397 | * base library --tjh | 388 | * base library --tjh |
398 | */ | 389 | */ |
399 | 390 | ||
400 | ret=1; | 391 | ret = 1; |
401 | 392 | ||
402 | err: | 393 | err: |
403 | OPENSSL_cleanse((char *)&ctx,sizeof(ctx)); | 394 | OPENSSL_cleanse((char *)&ctx, sizeof(ctx)); |
404 | OPENSSL_cleanse(buf,PEM_BUFSIZE); | 395 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
405 | return(ret); | 396 | return (ret); |
406 | } | 397 | } |
diff --git a/src/lib/libcrypto/pem/pem_lib.c b/src/lib/libcrypto/pem/pem_lib.c index 93736455fa..9d5d8e714c 100644 --- a/src/lib/libcrypto/pem/pem_lib.c +++ b/src/lib/libcrypto/pem/pem_lib.c | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -74,132 +74,132 @@ | |||
74 | #include <openssl/engine.h> | 74 | #include <openssl/engine.h> |
75 | #endif | 75 | #endif |
76 | 76 | ||
77 | const char PEM_version[]="PEM" OPENSSL_VERSION_PTEXT; | 77 | const char PEM_version[] = "PEM" OPENSSL_VERSION_PTEXT; |
78 | 78 | ||
79 | #define MIN_LENGTH 4 | 79 | #define MIN_LENGTH 4 |
80 | 80 | ||
81 | static int load_iv(char **fromp,unsigned char *to, int num); | 81 | static int load_iv(char **fromp, unsigned char *to, int num); |
82 | static int check_pem(const char *nm, const char *name); | 82 | static int check_pem(const char *nm, const char *name); |
83 | int pem_check_suffix(const char *pem_str, const char *suffix); | 83 | int pem_check_suffix(const char *pem_str, const char *suffix); |
84 | 84 | ||
85 | int PEM_def_callback(char *buf, int num, int w, void *key) | 85 | int |
86 | { | 86 | PEM_def_callback(char *buf, int num, int w, void *key) |
87 | { | ||
87 | #ifdef OPENSSL_NO_FP_API | 88 | #ifdef OPENSSL_NO_FP_API |
88 | /* We should not ever call the default callback routine from | 89 | /* We should not ever call the default callback routine from |
89 | * windows. */ | 90 | * windows. */ |
90 | PEMerr(PEM_F_PEM_DEF_CALLBACK,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 91 | PEMerr(PEM_F_PEM_DEF_CALLBACK, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
91 | return(-1); | 92 | return (-1); |
92 | #else | 93 | #else |
93 | int i,j; | 94 | int i, j; |
94 | const char *prompt; | 95 | const char *prompt; |
95 | if(key) { | 96 | |
96 | i=strlen(key); | 97 | if (key) { |
97 | i=(i > num)?num:i; | 98 | i = strlen(key); |
98 | memcpy(buf,key,i); | 99 | i = (i > num) ? num : i; |
99 | return(i); | 100 | memcpy(buf, key, i); |
101 | return (i); | ||
100 | } | 102 | } |
101 | 103 | ||
102 | prompt=EVP_get_pw_prompt(); | 104 | prompt = EVP_get_pw_prompt(); |
103 | if (prompt == NULL) | 105 | if (prompt == NULL) |
104 | prompt="Enter PEM pass phrase:"; | 106 | prompt = "Enter PEM pass phrase:"; |
105 | 107 | ||
106 | for (;;) | 108 | for (;;) { |
107 | { | 109 | i = EVP_read_pw_string_min(buf, MIN_LENGTH, num, prompt, w); |
108 | i=EVP_read_pw_string_min(buf,MIN_LENGTH,num,prompt,w); | 110 | if (i != 0) { |
109 | if (i != 0) | 111 | PEMerr(PEM_F_PEM_DEF_CALLBACK, |
110 | { | 112 | PEM_R_PROBLEMS_GETTING_PASSWORD); |
111 | PEMerr(PEM_F_PEM_DEF_CALLBACK,PEM_R_PROBLEMS_GETTING_PASSWORD); | 113 | memset(buf, 0, (unsigned int)num); |
112 | memset(buf,0,(unsigned int)num); | 114 | return (-1); |
113 | return(-1); | 115 | } |
114 | } | 116 | j = strlen(buf); |
115 | j=strlen(buf); | 117 | if (j < MIN_LENGTH) { |
116 | if (j < MIN_LENGTH) | 118 | fprintf(stderr, "phrase is too short, needs to be at least %d chars\n", MIN_LENGTH); |
117 | { | 119 | } else |
118 | fprintf(stderr,"phrase is too short, needs to be at least %d chars\n",MIN_LENGTH); | ||
119 | } | ||
120 | else | ||
121 | break; | 120 | break; |
122 | } | ||
123 | return(j); | ||
124 | #endif | ||
125 | } | 121 | } |
122 | return (j); | ||
123 | #endif | ||
124 | } | ||
126 | 125 | ||
127 | void PEM_proc_type(char *buf, int type) | 126 | void |
128 | { | 127 | PEM_proc_type(char *buf, int type) |
128 | { | ||
129 | const char *str; | 129 | const char *str; |
130 | 130 | ||
131 | if (type == PEM_TYPE_ENCRYPTED) | 131 | if (type == PEM_TYPE_ENCRYPTED) |
132 | str="ENCRYPTED"; | 132 | str = "ENCRYPTED"; |
133 | else if (type == PEM_TYPE_MIC_CLEAR) | 133 | else if (type == PEM_TYPE_MIC_CLEAR) |
134 | str="MIC-CLEAR"; | 134 | str = "MIC-CLEAR"; |
135 | else if (type == PEM_TYPE_MIC_ONLY) | 135 | else if (type == PEM_TYPE_MIC_ONLY) |
136 | str="MIC-ONLY"; | 136 | str = "MIC-ONLY"; |
137 | else | 137 | else |
138 | str="BAD-TYPE"; | 138 | str = "BAD-TYPE"; |
139 | 139 | ||
140 | strlcat(buf,"Proc-Type: 4,",PEM_BUFSIZE); | 140 | strlcat(buf, "Proc-Type: 4,", PEM_BUFSIZE); |
141 | strlcat(buf,str,PEM_BUFSIZE); | 141 | strlcat(buf, str, PEM_BUFSIZE); |
142 | strlcat(buf,"\n",PEM_BUFSIZE); | 142 | strlcat(buf, "\n", PEM_BUFSIZE); |
143 | } | 143 | } |
144 | 144 | ||
145 | void PEM_dek_info(char *buf, const char *type, int len, char *str) | 145 | void |
146 | { | 146 | PEM_dek_info(char *buf, const char *type, int len, char *str) |
147 | static const unsigned char map[17]="0123456789ABCDEF"; | 147 | { |
148 | static const unsigned char map[17] = "0123456789ABCDEF"; | ||
148 | long i; | 149 | long i; |
149 | int j; | 150 | int j; |
150 | 151 | ||
151 | strlcat(buf,"DEK-Info: ",PEM_BUFSIZE); | 152 | strlcat(buf, "DEK-Info: ", PEM_BUFSIZE); |
152 | strlcat(buf,type,PEM_BUFSIZE); | 153 | strlcat(buf, type, PEM_BUFSIZE); |
153 | strlcat(buf,",",PEM_BUFSIZE); | 154 | strlcat(buf, ",", PEM_BUFSIZE); |
154 | j=strlen(buf); | 155 | j = strlen(buf); |
155 | if (j + (len * 2) + 1 > PEM_BUFSIZE) | 156 | if (j + (len * 2) + 1 > PEM_BUFSIZE) |
156 | return; | 157 | return; |
157 | for (i=0; i<len; i++) | 158 | for (i = 0; i < len; i++) { |
158 | { | 159 | buf[j + i * 2] = map[(str[i] >> 4) & 0x0f]; |
159 | buf[j+i*2] =map[(str[i]>>4)&0x0f]; | 160 | buf[j + i * 2 + 1] = map[(str[i]) & 0x0f]; |
160 | buf[j+i*2+1]=map[(str[i] )&0x0f]; | ||
161 | } | ||
162 | buf[j+i*2]='\n'; | ||
163 | buf[j+i*2+1]='\0'; | ||
164 | } | 161 | } |
162 | buf[j + i * 2] = '\n'; | ||
163 | buf[j + i * 2 + 1] = '\0'; | ||
164 | } | ||
165 | 165 | ||
166 | #ifndef OPENSSL_NO_FP_API | 166 | #ifndef OPENSSL_NO_FP_API |
167 | void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, | 167 | void * |
168 | pem_password_cb *cb, void *u) | 168 | PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, |
169 | { | 169 | pem_password_cb *cb, void *u) |
170 | BIO *b; | 170 | { |
171 | void *ret; | 171 | BIO *b; |
172 | 172 | void *ret; | |
173 | if ((b=BIO_new(BIO_s_file())) == NULL) | 173 | |
174 | { | 174 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
175 | PEMerr(PEM_F_PEM_ASN1_READ,ERR_R_BUF_LIB); | 175 | PEMerr(PEM_F_PEM_ASN1_READ, ERR_R_BUF_LIB); |
176 | return(0); | 176 | return (0); |
177 | } | ||
178 | BIO_set_fp(b,fp,BIO_NOCLOSE); | ||
179 | ret=PEM_ASN1_read_bio(d2i,name,b,x,cb,u); | ||
180 | BIO_free(b); | ||
181 | return(ret); | ||
182 | } | 177 | } |
178 | BIO_set_fp(b, fp, BIO_NOCLOSE); | ||
179 | ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u); | ||
180 | BIO_free(b); | ||
181 | return (ret); | ||
182 | } | ||
183 | #endif | 183 | #endif |
184 | 184 | ||
185 | static int check_pem(const char *nm, const char *name) | 185 | static int |
186 | check_pem(const char *nm, const char *name) | ||
186 | { | 187 | { |
187 | /* Normal matching nm and name */ | 188 | /* Normal matching nm and name */ |
188 | if (!strcmp(nm,name)) return 1; | 189 | if (!strcmp(nm, name)) |
190 | return 1; | ||
189 | 191 | ||
190 | /* Make PEM_STRING_EVP_PKEY match any private key */ | 192 | /* Make PEM_STRING_EVP_PKEY match any private key */ |
191 | 193 | ||
192 | if(!strcmp(name,PEM_STRING_EVP_PKEY)) | 194 | if (!strcmp(name, PEM_STRING_EVP_PKEY)) { |
193 | { | ||
194 | int slen; | 195 | int slen; |
195 | const EVP_PKEY_ASN1_METHOD *ameth; | 196 | const EVP_PKEY_ASN1_METHOD *ameth; |
196 | if(!strcmp(nm,PEM_STRING_PKCS8)) | 197 | if (!strcmp(nm, PEM_STRING_PKCS8)) |
197 | return 1; | 198 | return 1; |
198 | if(!strcmp(nm,PEM_STRING_PKCS8INF)) | 199 | if (!strcmp(nm, PEM_STRING_PKCS8INF)) |
199 | return 1; | 200 | return 1; |
200 | slen = pem_check_suffix(nm, "PRIVATE KEY"); | 201 | slen = pem_check_suffix(nm, "PRIVATE KEY"); |
201 | if (slen > 0) | 202 | if (slen > 0) { |
202 | { | ||
203 | /* NB: ENGINE implementations wont contain | 203 | /* NB: ENGINE implementations wont contain |
204 | * a deprecated old private key decode function | 204 | * a deprecated old private key decode function |
205 | * so don't look for them. | 205 | * so don't look for them. |
@@ -207,21 +207,18 @@ static int check_pem(const char *nm, const char *name) | |||
207 | ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); | 207 | ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); |
208 | if (ameth && ameth->old_priv_decode) | 208 | if (ameth && ameth->old_priv_decode) |
209 | return 1; | 209 | return 1; |
210 | } | ||
211 | return 0; | ||
212 | } | 210 | } |
211 | return 0; | ||
212 | } | ||
213 | 213 | ||
214 | if(!strcmp(name,PEM_STRING_PARAMETERS)) | 214 | if (!strcmp(name, PEM_STRING_PARAMETERS)) { |
215 | { | ||
216 | int slen; | 215 | int slen; |
217 | const EVP_PKEY_ASN1_METHOD *ameth; | 216 | const EVP_PKEY_ASN1_METHOD *ameth; |
218 | slen = pem_check_suffix(nm, "PARAMETERS"); | 217 | slen = pem_check_suffix(nm, "PARAMETERS"); |
219 | if (slen > 0) | 218 | if (slen > 0) { |
220 | { | ||
221 | ENGINE *e; | 219 | ENGINE *e; |
222 | ameth = EVP_PKEY_asn1_find_str(&e, nm, slen); | 220 | ameth = EVP_PKEY_asn1_find_str(&e, nm, slen); |
223 | if (ameth) | 221 | if (ameth) { |
224 | { | ||
225 | int r; | 222 | int r; |
226 | if (ameth->param_decode) | 223 | if (ameth->param_decode) |
227 | r = 1; | 224 | r = 1; |
@@ -232,68 +229,79 @@ static int check_pem(const char *nm, const char *name) | |||
232 | ENGINE_finish(e); | 229 | ENGINE_finish(e); |
233 | #endif | 230 | #endif |
234 | return r; | 231 | return r; |
235 | } | ||
236 | } | 232 | } |
237 | return 0; | ||
238 | } | 233 | } |
234 | return 0; | ||
235 | } | ||
239 | 236 | ||
240 | /* Permit older strings */ | 237 | /* Permit older strings */ |
241 | 238 | ||
242 | if(!strcmp(nm,PEM_STRING_X509_OLD) && | 239 | if (!strcmp(nm, PEM_STRING_X509_OLD) && |
243 | !strcmp(name,PEM_STRING_X509)) return 1; | 240 | !strcmp(name, PEM_STRING_X509)) |
241 | return 1; | ||
244 | 242 | ||
245 | if(!strcmp(nm,PEM_STRING_X509_REQ_OLD) && | 243 | if (!strcmp(nm, PEM_STRING_X509_REQ_OLD) && |
246 | !strcmp(name,PEM_STRING_X509_REQ)) return 1; | 244 | !strcmp(name, PEM_STRING_X509_REQ)) |
245 | return 1; | ||
247 | 246 | ||
248 | /* Allow normal certs to be read as trusted certs */ | 247 | /* Allow normal certs to be read as trusted certs */ |
249 | if(!strcmp(nm,PEM_STRING_X509) && | 248 | if (!strcmp(nm, PEM_STRING_X509) && |
250 | !strcmp(name,PEM_STRING_X509_TRUSTED)) return 1; | 249 | !strcmp(name, PEM_STRING_X509_TRUSTED)) |
250 | return 1; | ||
251 | 251 | ||
252 | if(!strcmp(nm,PEM_STRING_X509_OLD) && | 252 | if (!strcmp(nm, PEM_STRING_X509_OLD) && |
253 | !strcmp(name,PEM_STRING_X509_TRUSTED)) return 1; | 253 | !strcmp(name, PEM_STRING_X509_TRUSTED)) |
254 | return 1; | ||
254 | 255 | ||
255 | /* Some CAs use PKCS#7 with CERTIFICATE headers */ | 256 | /* Some CAs use PKCS#7 with CERTIFICATE headers */ |
256 | if(!strcmp(nm, PEM_STRING_X509) && | 257 | if (!strcmp(nm, PEM_STRING_X509) && |
257 | !strcmp(name, PEM_STRING_PKCS7)) return 1; | 258 | !strcmp(name, PEM_STRING_PKCS7)) |
259 | return 1; | ||
258 | 260 | ||
259 | if(!strcmp(nm, PEM_STRING_PKCS7_SIGNED) && | 261 | if (!strcmp(nm, PEM_STRING_PKCS7_SIGNED) && |
260 | !strcmp(name, PEM_STRING_PKCS7)) return 1; | 262 | !strcmp(name, PEM_STRING_PKCS7)) |
263 | return 1; | ||
261 | 264 | ||
262 | #ifndef OPENSSL_NO_CMS | 265 | #ifndef OPENSSL_NO_CMS |
263 | if(!strcmp(nm, PEM_STRING_X509) && | 266 | if (!strcmp(nm, PEM_STRING_X509) && |
264 | !strcmp(name, PEM_STRING_CMS)) return 1; | 267 | !strcmp(name, PEM_STRING_CMS)) |
268 | return 1; | ||
265 | /* Allow CMS to be read from PKCS#7 headers */ | 269 | /* Allow CMS to be read from PKCS#7 headers */ |
266 | if(!strcmp(nm, PEM_STRING_PKCS7) && | 270 | if (!strcmp(nm, PEM_STRING_PKCS7) && |
267 | !strcmp(name, PEM_STRING_CMS)) return 1; | 271 | !strcmp(name, PEM_STRING_CMS)) |
272 | return 1; | ||
268 | #endif | 273 | #endif |
269 | 274 | ||
270 | return 0; | 275 | return 0; |
271 | } | 276 | } |
272 | 277 | ||
273 | int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, const char *name, BIO *bp, | 278 | int |
274 | pem_password_cb *cb, void *u) | 279 | PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, |
275 | { | 280 | const char *name, BIO *bp, pem_password_cb *cb, void *u) |
281 | { | ||
276 | EVP_CIPHER_INFO cipher; | 282 | EVP_CIPHER_INFO cipher; |
277 | char *nm=NULL,*header=NULL; | 283 | char *nm = NULL, *header = NULL; |
278 | unsigned char *data=NULL; | 284 | unsigned char *data = NULL; |
279 | long len; | 285 | long len; |
280 | int ret = 0; | 286 | int ret = 0; |
281 | 287 | ||
282 | for (;;) | 288 | for (;;) { |
283 | { | 289 | if (!PEM_read_bio(bp, &nm, &header, &data, &len)) { |
284 | if (!PEM_read_bio(bp,&nm,&header,&data,&len)) { | 290 | if (ERR_GET_REASON(ERR_peek_error()) == |
285 | if(ERR_GET_REASON(ERR_peek_error()) == | 291 | PEM_R_NO_START_LINE) |
286 | PEM_R_NO_START_LINE) | ||
287 | ERR_add_error_data(2, "Expecting: ", name); | 292 | ERR_add_error_data(2, "Expecting: ", name); |
288 | return 0; | 293 | return 0; |
289 | } | 294 | } |
290 | if(check_pem(nm, name)) break; | 295 | if (check_pem(nm, name)) |
296 | break; | ||
291 | free(nm); | 297 | free(nm); |
292 | free(header); | 298 | free(header); |
293 | free(data); | 299 | free(data); |
294 | } | 300 | } |
295 | if (!PEM_get_EVP_CIPHER_INFO(header,&cipher)) goto err; | 301 | if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) |
296 | if (!PEM_do_header(&cipher,data,&len,cb,u)) goto err; | 302 | goto err; |
303 | if (!PEM_do_header(&cipher, data, &len, cb, u)) | ||
304 | goto err; | ||
297 | 305 | ||
298 | *pdata = data; | 306 | *pdata = data; |
299 | *plen = len; | 307 | *plen = len; |
@@ -304,532 +312,553 @@ int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, const char | |||
304 | ret = 1; | 312 | ret = 1; |
305 | 313 | ||
306 | err: | 314 | err: |
307 | if (!ret || !pnm) free(nm); | 315 | if (!ret || !pnm) |
316 | free(nm); | ||
308 | free(header); | 317 | free(header); |
309 | if (!ret) free(data); | 318 | if (!ret) |
319 | free(data); | ||
310 | return ret; | 320 | return ret; |
311 | } | 321 | } |
312 | 322 | ||
313 | #ifndef OPENSSL_NO_FP_API | 323 | #ifndef OPENSSL_NO_FP_API |
314 | int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, | 324 | int |
315 | void *x, const EVP_CIPHER *enc, unsigned char *kstr, | 325 | PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, void *x, |
316 | int klen, pem_password_cb *callback, void *u) | 326 | const EVP_CIPHER *enc, unsigned char *kstr, int klen, |
317 | { | 327 | pem_password_cb *callback, void *u) |
318 | BIO *b; | 328 | { |
319 | int ret; | 329 | BIO *b; |
320 | 330 | int ret; | |
321 | if ((b=BIO_new(BIO_s_file())) == NULL) | 331 | |
322 | { | 332 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
323 | PEMerr(PEM_F_PEM_ASN1_WRITE,ERR_R_BUF_LIB); | 333 | PEMerr(PEM_F_PEM_ASN1_WRITE, ERR_R_BUF_LIB); |
324 | return(0); | 334 | return (0); |
325 | } | 335 | } |
326 | BIO_set_fp(b,fp,BIO_NOCLOSE); | 336 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
327 | ret=PEM_ASN1_write_bio(i2d,name,b,x,enc,kstr,klen,callback,u); | 337 | ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u); |
328 | BIO_free(b); | 338 | BIO_free(b); |
329 | return(ret); | 339 | return (ret); |
330 | } | 340 | } |
331 | #endif | 341 | #endif |
332 | 342 | ||
333 | int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, | 343 | int |
334 | void *x, const EVP_CIPHER *enc, unsigned char *kstr, | 344 | PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, void *x, |
335 | int klen, pem_password_cb *callback, void *u) | 345 | const EVP_CIPHER *enc, unsigned char *kstr, int klen, |
336 | { | 346 | pem_password_cb *callback, void *u) |
347 | { | ||
337 | EVP_CIPHER_CTX ctx; | 348 | EVP_CIPHER_CTX ctx; |
338 | int dsize=0,i,j,ret=0; | 349 | int dsize = 0, i, j, ret = 0; |
339 | unsigned char *p,*data=NULL; | 350 | unsigned char *p, *data = NULL; |
340 | const char *objstr=NULL; | 351 | const char *objstr = NULL; |
341 | char buf[PEM_BUFSIZE]; | 352 | char buf[PEM_BUFSIZE]; |
342 | unsigned char key[EVP_MAX_KEY_LENGTH]; | 353 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
343 | unsigned char iv[EVP_MAX_IV_LENGTH]; | 354 | unsigned char iv[EVP_MAX_IV_LENGTH]; |
344 | 355 | ||
345 | if (enc != NULL) | 356 | if (enc != NULL) { |
346 | { | 357 | objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc)); |
347 | objstr=OBJ_nid2sn(EVP_CIPHER_nid(enc)); | 358 | if (objstr == NULL) { |
348 | if (objstr == NULL) | 359 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, |
349 | { | 360 | PEM_R_UNSUPPORTED_CIPHER); |
350 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO,PEM_R_UNSUPPORTED_CIPHER); | ||
351 | goto err; | 361 | goto err; |
352 | } | ||
353 | } | 362 | } |
363 | } | ||
354 | 364 | ||
355 | if ((dsize=i2d(x,NULL)) < 0) | 365 | if ((dsize = i2d(x, NULL)) < 0) { |
356 | { | 366 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_ASN1_LIB); |
357 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO,ERR_R_ASN1_LIB); | 367 | dsize = 0; |
358 | dsize=0; | ||
359 | goto err; | 368 | goto err; |
360 | } | 369 | } |
361 | /* dzise + 8 bytes are needed */ | 370 | /* dzise + 8 bytes are needed */ |
362 | /* actually it needs the cipher block size extra... */ | 371 | /* actually it needs the cipher block size extra... */ |
363 | data=(unsigned char *)malloc((unsigned int)dsize+20); | 372 | data = (unsigned char *)malloc((unsigned int)dsize + 20); |
364 | if (data == NULL) | 373 | if (data == NULL) { |
365 | { | 374 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_MALLOC_FAILURE); |
366 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO,ERR_R_MALLOC_FAILURE); | ||
367 | goto err; | 375 | goto err; |
368 | } | 376 | } |
369 | p=data; | 377 | p = data; |
370 | i=i2d(x,&p); | 378 | i = i2d(x, &p); |
371 | 379 | ||
372 | if (enc != NULL) | 380 | if (enc != NULL) { |
373 | { | 381 | if (kstr == NULL) { |
374 | if (kstr == NULL) | ||
375 | { | ||
376 | if (callback == NULL) | 382 | if (callback == NULL) |
377 | klen=PEM_def_callback(buf,PEM_BUFSIZE,1,u); | 383 | klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u); |
378 | else | 384 | else |
379 | klen=(*callback)(buf,PEM_BUFSIZE,1,u); | 385 | klen = (*callback)(buf, PEM_BUFSIZE, 1, u); |
380 | if (klen <= 0) | 386 | if (klen <= 0) { |
381 | { | 387 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, |
382 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO,PEM_R_READ_KEY); | 388 | PEM_R_READ_KEY); |
383 | goto err; | 389 | goto err; |
384 | } | ||
385 | kstr=(unsigned char *)buf; | ||
386 | } | 390 | } |
391 | kstr = (unsigned char *)buf; | ||
392 | } | ||
387 | OPENSSL_assert(enc->iv_len <= (int)sizeof(iv)); | 393 | OPENSSL_assert(enc->iv_len <= (int)sizeof(iv)); |
388 | if (RAND_pseudo_bytes(iv,enc->iv_len) < 0) /* Generate a salt */ | 394 | if (RAND_pseudo_bytes(iv, enc->iv_len) < 0) /* Generate a salt */ |
389 | goto err; | 395 | goto err; |
390 | /* The 'iv' is used as the iv and as a salt. It is | 396 | /* The 'iv' is used as the iv and as a salt. It is |
391 | * NOT taken from the BytesToKey function */ | 397 | * NOT taken from the BytesToKey function */ |
392 | if (!EVP_BytesToKey(enc,EVP_md5(),iv,kstr,klen,1,key,NULL)) | 398 | if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, |
399 | key, NULL)) | ||
393 | goto err; | 400 | goto err; |
394 | 401 | ||
395 | if (kstr == (unsigned char *)buf) OPENSSL_cleanse(buf,PEM_BUFSIZE); | 402 | if (kstr == (unsigned char *)buf) |
403 | OPENSSL_cleanse(buf, PEM_BUFSIZE); | ||
396 | 404 | ||
397 | OPENSSL_assert(strlen(objstr)+23+2*enc->iv_len+13 <= sizeof buf); | 405 | OPENSSL_assert(strlen(objstr) + 23 + |
406 | 2 * enc->iv_len + 13 <= sizeof buf); | ||
398 | 407 | ||
399 | buf[0]='\0'; | 408 | buf[0] = '\0'; |
400 | PEM_proc_type(buf,PEM_TYPE_ENCRYPTED); | 409 | PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); |
401 | PEM_dek_info(buf,objstr,enc->iv_len,(char *)iv); | 410 | PEM_dek_info(buf, objstr, enc->iv_len, (char *)iv); |
402 | /* k=strlen(buf); */ | 411 | /* k=strlen(buf); */ |
403 | 412 | ||
404 | EVP_CIPHER_CTX_init(&ctx); | 413 | EVP_CIPHER_CTX_init(&ctx); |
405 | ret = 1; | 414 | ret = 1; |
406 | if (!EVP_EncryptInit_ex(&ctx,enc,NULL,key,iv) | 415 | if (!EVP_EncryptInit_ex(&ctx, enc, NULL, key, iv) || |
407 | || !EVP_EncryptUpdate(&ctx,data,&j,data,i) | 416 | !EVP_EncryptUpdate(&ctx, data, &j, data, i) || |
408 | || !EVP_EncryptFinal_ex(&ctx,&(data[j]),&i)) | 417 | !EVP_EncryptFinal_ex(&ctx, &(data[j]), &i)) |
409 | ret = 0; | 418 | ret = 0; |
410 | EVP_CIPHER_CTX_cleanup(&ctx); | 419 | EVP_CIPHER_CTX_cleanup(&ctx); |
411 | if (ret == 0) | 420 | if (ret == 0) |
412 | goto err; | 421 | goto err; |
413 | i+=j; | 422 | i += j; |
414 | } | 423 | } else { |
415 | else | 424 | ret = 1; |
416 | { | 425 | buf[0] = '\0'; |
417 | ret=1; | 426 | } |
418 | buf[0]='\0'; | 427 | i = PEM_write_bio(bp, name, buf, data, i); |
419 | } | 428 | if (i <= 0) |
420 | i=PEM_write_bio(bp,name,buf,data,i); | 429 | ret = 0; |
421 | if (i <= 0) ret=0; | ||
422 | err: | 430 | err: |
423 | OPENSSL_cleanse(key,sizeof(key)); | 431 | OPENSSL_cleanse(key, sizeof(key)); |
424 | OPENSSL_cleanse(iv,sizeof(iv)); | 432 | OPENSSL_cleanse(iv, sizeof(iv)); |
425 | OPENSSL_cleanse((char *)&ctx,sizeof(ctx)); | 433 | OPENSSL_cleanse((char *)&ctx, sizeof(ctx)); |
426 | OPENSSL_cleanse(buf,PEM_BUFSIZE); | 434 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
427 | if (data != NULL) | 435 | if (data != NULL) { |
428 | { | 436 | OPENSSL_cleanse(data, (unsigned int)dsize); |
429 | OPENSSL_cleanse(data,(unsigned int)dsize); | ||
430 | free(data); | 437 | free(data); |
431 | } | ||
432 | return(ret); | ||
433 | } | 438 | } |
439 | return (ret); | ||
440 | } | ||
434 | 441 | ||
435 | int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen, | 442 | int |
436 | pem_password_cb *callback,void *u) | 443 | PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen, |
437 | { | 444 | pem_password_cb *callback, void *u) |
438 | int i,j,o,klen; | 445 | { |
446 | int i, j, o, klen; | ||
439 | long len; | 447 | long len; |
440 | EVP_CIPHER_CTX ctx; | 448 | EVP_CIPHER_CTX ctx; |
441 | unsigned char key[EVP_MAX_KEY_LENGTH]; | 449 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
442 | char buf[PEM_BUFSIZE]; | 450 | char buf[PEM_BUFSIZE]; |
443 | 451 | ||
444 | len= *plen; | 452 | len = *plen; |
445 | 453 | ||
446 | if (cipher->cipher == NULL) return(1); | 454 | if (cipher->cipher == NULL) |
455 | return (1); | ||
447 | if (callback == NULL) | 456 | if (callback == NULL) |
448 | klen=PEM_def_callback(buf,PEM_BUFSIZE,0,u); | 457 | klen = PEM_def_callback(buf, PEM_BUFSIZE, 0, u); |
449 | else | 458 | else |
450 | klen=callback(buf,PEM_BUFSIZE,0,u); | 459 | klen = callback(buf, PEM_BUFSIZE, 0, u); |
451 | if (klen <= 0) | 460 | if (klen <= 0) { |
452 | { | 461 | PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_PASSWORD_READ); |
453 | PEMerr(PEM_F_PEM_DO_HEADER,PEM_R_BAD_PASSWORD_READ); | 462 | return (0); |
454 | return(0); | 463 | } |
455 | } | 464 | if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]), |
456 | if (!EVP_BytesToKey(cipher->cipher,EVP_md5(),&(cipher->iv[0]), | 465 | (unsigned char *)buf, klen, 1, key, NULL)) |
457 | (unsigned char *)buf,klen,1,key,NULL)) | ||
458 | return 0; | 466 | return 0; |
459 | 467 | ||
460 | j=(int)len; | 468 | j = (int)len; |
461 | EVP_CIPHER_CTX_init(&ctx); | 469 | EVP_CIPHER_CTX_init(&ctx); |
462 | o = EVP_DecryptInit_ex(&ctx,cipher->cipher,NULL, key,&(cipher->iv[0])); | 470 | o = EVP_DecryptInit_ex(&ctx, cipher->cipher, NULL, key, |
471 | &(cipher->iv[0])); | ||
463 | if (o) | 472 | if (o) |
464 | o = EVP_DecryptUpdate(&ctx,data,&i,data,j); | 473 | o = EVP_DecryptUpdate(&ctx, data, &i, data, j); |
465 | if (o) | 474 | if (o) |
466 | o = EVP_DecryptFinal_ex(&ctx,&(data[i]),&j); | 475 | o = EVP_DecryptFinal_ex(&ctx, &(data[i]), &j); |
467 | EVP_CIPHER_CTX_cleanup(&ctx); | 476 | EVP_CIPHER_CTX_cleanup(&ctx); |
468 | OPENSSL_cleanse((char *)buf,sizeof(buf)); | 477 | OPENSSL_cleanse((char *)buf, sizeof(buf)); |
469 | OPENSSL_cleanse((char *)key,sizeof(key)); | 478 | OPENSSL_cleanse((char *)key, sizeof(key)); |
470 | j+=i; | 479 | j += i; |
471 | if (!o) | 480 | if (!o) { |
472 | { | 481 | PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_DECRYPT); |
473 | PEMerr(PEM_F_PEM_DO_HEADER,PEM_R_BAD_DECRYPT); | 482 | return (0); |
474 | return(0); | ||
475 | } | ||
476 | *plen=j; | ||
477 | return(1); | ||
478 | } | 483 | } |
484 | *plen = j; | ||
485 | return (1); | ||
486 | } | ||
479 | 487 | ||
480 | int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher) | 488 | int |
481 | { | 489 | PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher) |
482 | const EVP_CIPHER *enc=NULL; | 490 | { |
483 | char *p,c; | 491 | const EVP_CIPHER *enc = NULL; |
492 | char *p, c; | ||
484 | char **header_pp = &header; | 493 | char **header_pp = &header; |
485 | 494 | ||
486 | cipher->cipher=NULL; | 495 | cipher->cipher = NULL; |
487 | if ((header == NULL) || (*header == '\0') || (*header == '\n')) | 496 | if ((header == NULL) || (*header == '\0') || (*header == '\n')) |
488 | return(1); | 497 | return (1); |
489 | if (strncmp(header,"Proc-Type: ",11) != 0) | 498 | if (strncmp(header, "Proc-Type: ", 11) != 0) { |
490 | { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO,PEM_R_NOT_PROC_TYPE); return(0); } | 499 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_PROC_TYPE); |
491 | header+=11; | 500 | return (0); |
492 | if (*header != '4') return(0); header++; | 501 | } |
493 | if (*header != ',') return(0); header++; | 502 | header += 11; |
494 | if (strncmp(header,"ENCRYPTED",9) != 0) | 503 | if (*header != '4') |
495 | { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO,PEM_R_NOT_ENCRYPTED); return(0); } | 504 | return(0); |
505 | header++; | ||
506 | if (*header != ',') | ||
507 | return(0); | ||
508 | header++; | ||
509 | if (strncmp(header, "ENCRYPTED", 9) != 0) { | ||
510 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_ENCRYPTED); | ||
511 | return (0); | ||
512 | } | ||
496 | for (; (*header != '\n') && (*header != '\0'); header++) | 513 | for (; (*header != '\n') && (*header != '\0'); header++) |
497 | ; | 514 | ; |
498 | if (*header == '\0') | 515 | if (*header == '\0') { |
499 | { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO,PEM_R_SHORT_HEADER); return(0); } | 516 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_SHORT_HEADER); |
517 | return (0); | ||
518 | } | ||
500 | header++; | 519 | header++; |
501 | if (strncmp(header,"DEK-Info: ",10) != 0) | 520 | if (strncmp(header, "DEK-Info: ", 10) != 0) { |
502 | { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO,PEM_R_NOT_DEK_INFO); return(0); } | 521 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_DEK_INFO); |
503 | header+=10; | 522 | return (0); |
523 | } | ||
524 | header += 10; | ||
504 | 525 | ||
505 | p=header; | 526 | p = header; |
506 | for (;;) | 527 | for (;;) { |
507 | { | ||
508 | c= *header; | 528 | c= *header; |
509 | if (!( ((c >= 'A') && (c <= 'Z')) || (c == '-') || | 529 | if (!( ((c >= 'A') && (c <= 'Z')) || (c == '-') || |
510 | ((c >= '0') && (c <= '9')))) | 530 | ((c >= '0') && (c <= '9')))) |
511 | break; | 531 | break; |
512 | header++; | 532 | header++; |
513 | } | 533 | } |
514 | *header='\0'; | 534 | *header = '\0'; |
515 | cipher->cipher=enc=EVP_get_cipherbyname(p); | 535 | cipher->cipher = enc = EVP_get_cipherbyname(p); |
516 | *header=c; | 536 | *header = c; |
517 | header++; | 537 | header++; |
518 | 538 | ||
519 | if (enc == NULL) | 539 | if (enc == NULL) { |
520 | { | 540 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, |
521 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO,PEM_R_UNSUPPORTED_ENCRYPTION); | 541 | PEM_R_UNSUPPORTED_ENCRYPTION); |
522 | return(0); | 542 | return (0); |
523 | } | ||
524 | if (!load_iv(header_pp,&(cipher->iv[0]),enc->iv_len)) | ||
525 | return(0); | ||
526 | |||
527 | return(1); | ||
528 | } | 543 | } |
544 | if (!load_iv(header_pp, &(cipher->iv[0]), enc->iv_len)) | ||
545 | return (0); | ||
546 | |||
547 | return (1); | ||
548 | } | ||
529 | 549 | ||
530 | static int load_iv(char **fromp, unsigned char *to, int num) | 550 | static int |
531 | { | 551 | load_iv(char **fromp, unsigned char *to, int num) |
532 | int v,i; | 552 | { |
553 | int v, i; | ||
533 | char *from; | 554 | char *from; |
534 | 555 | ||
535 | from= *fromp; | 556 | from= *fromp; |
536 | for (i=0; i<num; i++) to[i]=0; | 557 | for (i = 0; i < num; i++) |
537 | num*=2; | 558 | to[i] = 0; |
538 | for (i=0; i<num; i++) | 559 | num *= 2; |
539 | { | 560 | for (i = 0; i < num; i++) { |
540 | if ((*from >= '0') && (*from <= '9')) | 561 | if ((*from >= '0') && (*from <= '9')) |
541 | v= *from-'0'; | 562 | v = *from - '0'; |
542 | else if ((*from >= 'A') && (*from <= 'F')) | 563 | else if ((*from >= 'A') && (*from <= 'F')) |
543 | v= *from-'A'+10; | 564 | v = *from - 'A' + 10; |
544 | else if ((*from >= 'a') && (*from <= 'f')) | 565 | else if ((*from >= 'a') && (*from <= 'f')) |
545 | v= *from-'a'+10; | 566 | v = *from - 'a' + 10; |
546 | else | 567 | else { |
547 | { | 568 | PEMerr(PEM_F_LOAD_IV, PEM_R_BAD_IV_CHARS); |
548 | PEMerr(PEM_F_LOAD_IV,PEM_R_BAD_IV_CHARS); | 569 | return (0); |
549 | return(0); | ||
550 | } | ||
551 | from++; | ||
552 | to[i/2]|=v<<(long)((!(i&1))*4); | ||
553 | } | 570 | } |
554 | 571 | from++; | |
555 | *fromp=from; | 572 | to[i / 2] |= v << (long)((!(i & 1)) * 4); |
556 | return(1); | ||
557 | } | 573 | } |
558 | 574 | ||
575 | *fromp = from; | ||
576 | return (1); | ||
577 | } | ||
578 | |||
559 | #ifndef OPENSSL_NO_FP_API | 579 | #ifndef OPENSSL_NO_FP_API |
560 | int PEM_write(FILE *fp, char *name, char *header, unsigned char *data, | 580 | int |
561 | long len) | 581 | PEM_write(FILE *fp, char *name, char *header, unsigned char *data, long len) |
562 | { | 582 | { |
563 | BIO *b; | 583 | BIO *b; |
564 | int ret; | 584 | int ret; |
565 | 585 | ||
566 | if ((b=BIO_new(BIO_s_file())) == NULL) | 586 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
567 | { | 587 | PEMerr(PEM_F_PEM_WRITE, ERR_R_BUF_LIB); |
568 | PEMerr(PEM_F_PEM_WRITE,ERR_R_BUF_LIB); | 588 | return (0); |
569 | return(0); | 589 | } |
570 | } | 590 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
571 | BIO_set_fp(b,fp,BIO_NOCLOSE); | 591 | ret = PEM_write_bio(b, name, header, data, len); |
572 | ret=PEM_write_bio(b, name, header, data,len); | 592 | BIO_free(b); |
573 | BIO_free(b); | 593 | return (ret); |
574 | return(ret); | 594 | } |
575 | } | ||
576 | #endif | 595 | #endif |
577 | 596 | ||
578 | int PEM_write_bio(BIO *bp, const char *name, char *header, unsigned char *data, | 597 | int |
579 | long len) | 598 | PEM_write_bio(BIO *bp, const char *name, char *header, unsigned char *data, |
580 | { | 599 | long len) |
581 | int nlen,n,i,j,outl; | 600 | { |
601 | int nlen, n, i, j, outl; | ||
582 | unsigned char *buf = NULL; | 602 | unsigned char *buf = NULL; |
583 | EVP_ENCODE_CTX ctx; | 603 | EVP_ENCODE_CTX ctx; |
584 | int reason=ERR_R_BUF_LIB; | 604 | int reason = ERR_R_BUF_LIB; |
585 | 605 | ||
586 | EVP_EncodeInit(&ctx); | 606 | EVP_EncodeInit(&ctx); |
587 | nlen=strlen(name); | 607 | nlen = strlen(name); |
588 | 608 | ||
589 | if ( (BIO_write(bp,"-----BEGIN ",11) != 11) || | 609 | if ((BIO_write(bp, "-----BEGIN ", 11) != 11) || |
590 | (BIO_write(bp,name,nlen) != nlen) || | 610 | (BIO_write(bp, name, nlen) != nlen) || |
591 | (BIO_write(bp,"-----\n",6) != 6)) | 611 | (BIO_write(bp, "-----\n", 6) != 6)) |
592 | goto err; | 612 | goto err; |
593 | 613 | ||
594 | i=strlen(header); | 614 | i = strlen(header); |
595 | if (i > 0) | 615 | if (i > 0) { |
596 | { | 616 | if ((BIO_write(bp, header, i) != i) || |
597 | if ( (BIO_write(bp,header,i) != i) || | 617 | (BIO_write(bp, "\n", 1) != 1)) |
598 | (BIO_write(bp,"\n",1) != 1)) | ||
599 | goto err; | 618 | goto err; |
600 | } | 619 | } |
601 | 620 | ||
602 | buf = malloc(PEM_BUFSIZE*8); | 621 | buf = malloc(PEM_BUFSIZE * 8); |
603 | if (buf == NULL) | 622 | if (buf == NULL) { |
604 | { | 623 | reason = ERR_R_MALLOC_FAILURE; |
605 | reason=ERR_R_MALLOC_FAILURE; | ||
606 | goto err; | 624 | goto err; |
607 | } | 625 | } |
608 | 626 | ||
609 | i=j=0; | 627 | i = j = 0; |
610 | while (len > 0) | 628 | while (len > 0) { |
611 | { | 629 | n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len); |
612 | n=(int)((len>(PEM_BUFSIZE*5))?(PEM_BUFSIZE*5):len); | 630 | EVP_EncodeUpdate(&ctx, buf, &outl, &(data[j]), n); |
613 | EVP_EncodeUpdate(&ctx,buf,&outl,&(data[j]),n); | 631 | if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl)) |
614 | if ((outl) && (BIO_write(bp,(char *)buf,outl) != outl)) | ||
615 | goto err; | 632 | goto err; |
616 | i+=outl; | 633 | i += outl; |
617 | len-=n; | 634 | len -= n; |
618 | j+=n; | 635 | j += n; |
619 | } | 636 | } |
620 | EVP_EncodeFinal(&ctx,buf,&outl); | 637 | EVP_EncodeFinal(&ctx, buf, &outl); |
621 | if ((outl > 0) && (BIO_write(bp,(char *)buf,outl) != outl)) goto err; | 638 | if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl)) |
622 | OPENSSL_cleanse(buf, PEM_BUFSIZE*8); | 639 | goto err; |
640 | OPENSSL_cleanse(buf, PEM_BUFSIZE * 8); | ||
623 | free(buf); | 641 | free(buf); |
624 | buf = NULL; | 642 | buf = NULL; |
625 | if ( (BIO_write(bp,"-----END ",9) != 9) || | 643 | if ((BIO_write(bp, "-----END ", 9) != 9) || |
626 | (BIO_write(bp,name,nlen) != nlen) || | 644 | (BIO_write(bp, name, nlen) != nlen) || |
627 | (BIO_write(bp,"-----\n",6) != 6)) | 645 | (BIO_write(bp, "-----\n", 6) != 6)) |
628 | goto err; | 646 | goto err; |
629 | return(i+outl); | 647 | return (i + outl); |
648 | |||
630 | err: | 649 | err: |
631 | if (buf) { | 650 | if (buf) { |
632 | OPENSSL_cleanse(buf, PEM_BUFSIZE*8); | 651 | OPENSSL_cleanse(buf, PEM_BUFSIZE * 8); |
633 | free(buf); | 652 | free(buf); |
634 | } | 653 | } |
635 | PEMerr(PEM_F_PEM_WRITE_BIO,reason); | 654 | PEMerr(PEM_F_PEM_WRITE_BIO, reason); |
636 | return(0); | 655 | return (0); |
637 | } | 656 | } |
638 | 657 | ||
639 | #ifndef OPENSSL_NO_FP_API | 658 | #ifndef OPENSSL_NO_FP_API |
640 | int PEM_read(FILE *fp, char **name, char **header, unsigned char **data, | 659 | int |
641 | long *len) | 660 | PEM_read(FILE *fp, char **name, char **header, unsigned char **data, long *len) |
642 | { | 661 | { |
643 | BIO *b; | 662 | BIO *b; |
644 | int ret; | 663 | int ret; |
645 | 664 | ||
646 | if ((b=BIO_new(BIO_s_file())) == NULL) | 665 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
647 | { | 666 | PEMerr(PEM_F_PEM_READ, ERR_R_BUF_LIB); |
648 | PEMerr(PEM_F_PEM_READ,ERR_R_BUF_LIB); | 667 | return (0); |
649 | return(0); | 668 | } |
650 | } | 669 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
651 | BIO_set_fp(b,fp,BIO_NOCLOSE); | 670 | ret = PEM_read_bio(b, name, header, data, len); |
652 | ret=PEM_read_bio(b, name, header, data,len); | 671 | BIO_free(b); |
653 | BIO_free(b); | 672 | return (ret); |
654 | return(ret); | 673 | } |
655 | } | ||
656 | #endif | 674 | #endif |
657 | 675 | ||
658 | int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data, | 676 | int |
659 | long *len) | 677 | PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data, |
660 | { | 678 | long *len) |
679 | { | ||
661 | EVP_ENCODE_CTX ctx; | 680 | EVP_ENCODE_CTX ctx; |
662 | int end=0,i,k,bl=0,hl=0,nohead=0; | 681 | int end = 0, i, k, bl = 0, hl = 0, nohead = 0; |
663 | char buf[256]; | 682 | char buf[256]; |
664 | BUF_MEM *nameB; | 683 | BUF_MEM *nameB; |
665 | BUF_MEM *headerB; | 684 | BUF_MEM *headerB; |
666 | BUF_MEM *dataB,*tmpB; | 685 | BUF_MEM *dataB, *tmpB; |
667 | 686 | ||
668 | nameB=BUF_MEM_new(); | 687 | nameB = BUF_MEM_new(); |
669 | headerB=BUF_MEM_new(); | 688 | headerB = BUF_MEM_new(); |
670 | dataB=BUF_MEM_new(); | 689 | dataB = BUF_MEM_new(); |
671 | if ((nameB == NULL) || (headerB == NULL) || (dataB == NULL)) | 690 | if ((nameB == NULL) || (headerB == NULL) || (dataB == NULL)) { |
672 | { | ||
673 | BUF_MEM_free(nameB); | 691 | BUF_MEM_free(nameB); |
674 | BUF_MEM_free(headerB); | 692 | BUF_MEM_free(headerB); |
675 | BUF_MEM_free(dataB); | 693 | BUF_MEM_free(dataB); |
676 | PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE); | 694 | PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); |
677 | return(0); | 695 | return (0); |
678 | } | 696 | } |
679 | 697 | ||
680 | buf[254]='\0'; | 698 | buf[254] = '\0'; |
681 | for (;;) | 699 | for (;;) { |
682 | { | 700 | i = BIO_gets(bp, buf, 254); |
683 | i=BIO_gets(bp,buf,254); | ||
684 | 701 | ||
685 | if (i <= 0) | 702 | if (i <= 0) { |
686 | { | 703 | PEMerr(PEM_F_PEM_READ_BIO, PEM_R_NO_START_LINE); |
687 | PEMerr(PEM_F_PEM_READ_BIO,PEM_R_NO_START_LINE); | ||
688 | goto err; | 704 | goto err; |
689 | } | 705 | } |
690 | 706 | ||
691 | while ((i >= 0) && (buf[i] <= ' ')) i--; | 707 | while ((i >= 0) && (buf[i] <= ' ')) |
692 | buf[++i]='\n'; buf[++i]='\0'; | 708 | i--; |
709 | buf[++i] = '\n'; | ||
710 | buf[++i] = '\0'; | ||
693 | 711 | ||
694 | if (strncmp(buf,"-----BEGIN ",11) == 0) | 712 | if (strncmp(buf, "-----BEGIN ", 11) == 0) { |
695 | { | 713 | i = strlen(&(buf[11])); |
696 | i=strlen(&(buf[11])); | ||
697 | 714 | ||
698 | if (strncmp(&(buf[11+i-6]),"-----\n",6) != 0) | 715 | if (strncmp(&(buf[11 + i - 6]), "-----\n", 6) != 0) |
699 | continue; | 716 | continue; |
700 | if (!BUF_MEM_grow(nameB,i+9)) | 717 | if (!BUF_MEM_grow(nameB, i + 9)) { |
701 | { | 718 | PEMerr(PEM_F_PEM_READ_BIO, |
702 | PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE); | 719 | ERR_R_MALLOC_FAILURE); |
703 | goto err; | 720 | goto err; |
704 | } | ||
705 | memcpy(nameB->data,&(buf[11]),i-6); | ||
706 | nameB->data[i-6]='\0'; | ||
707 | break; | ||
708 | } | 721 | } |
722 | memcpy(nameB->data, &(buf[11]), i - 6); | ||
723 | nameB->data[i - 6] = '\0'; | ||
724 | break; | ||
709 | } | 725 | } |
710 | hl=0; | 726 | } |
711 | if (!BUF_MEM_grow(headerB,256)) | 727 | hl = 0; |
712 | { PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE); goto err; } | 728 | if (!BUF_MEM_grow(headerB, 256)) { |
713 | headerB->data[0]='\0'; | 729 | PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); |
714 | for (;;) | 730 | goto err; |
715 | { | 731 | } |
716 | i=BIO_gets(bp,buf,254); | 732 | headerB->data[0] = '\0'; |
717 | if (i <= 0) break; | 733 | for (;;) { |
718 | 734 | i = BIO_gets(bp, buf, 254); | |
719 | while ((i >= 0) && (buf[i] <= ' ')) i--; | 735 | if (i <= 0) |
720 | buf[++i]='\n'; buf[++i]='\0'; | ||
721 | |||
722 | if (buf[0] == '\n') break; | ||
723 | if (!BUF_MEM_grow(headerB,hl+i+9)) | ||
724 | { PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE); goto err; } | ||
725 | if (strncmp(buf,"-----END ",9) == 0) | ||
726 | { | ||
727 | nohead=1; | ||
728 | break; | 736 | break; |
729 | } | 737 | |
730 | memcpy(&(headerB->data[hl]),buf,i); | 738 | while ((i >= 0) && (buf[i] <= ' ')) |
731 | headerB->data[hl+i]='\0'; | 739 | i--; |
732 | hl+=i; | 740 | buf[++i] = '\n'; |
741 | buf[++i] = '\0'; | ||
742 | |||
743 | if (buf[0] == '\n') | ||
744 | break; | ||
745 | if (!BUF_MEM_grow(headerB, hl + i + 9)) { | ||
746 | PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); | ||
747 | goto err; | ||
733 | } | 748 | } |
749 | if (strncmp(buf, "-----END ", 9) == 0) { | ||
750 | nohead = 1; | ||
751 | break; | ||
752 | } | ||
753 | memcpy(&(headerB->data[hl]), buf, i); | ||
754 | headerB->data[hl + i] = '\0'; | ||
755 | hl += i; | ||
756 | } | ||
757 | |||
758 | bl = 0; | ||
759 | if (!BUF_MEM_grow(dataB, 1024)) { | ||
760 | PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); | ||
761 | goto err; | ||
762 | } | ||
763 | dataB->data[0] = '\0'; | ||
764 | if (!nohead) { | ||
765 | for (;;) { | ||
766 | i = BIO_gets(bp, buf, 254); | ||
767 | if (i <= 0) | ||
768 | break; | ||
769 | |||
770 | while ((i >= 0) && (buf[i] <= ' ')) | ||
771 | i--; | ||
772 | buf[++i] = '\n'; | ||
773 | buf[++i] = '\0'; | ||
734 | 774 | ||
735 | bl=0; | 775 | if (i != 65) |
736 | if (!BUF_MEM_grow(dataB,1024)) | 776 | end = 1; |
737 | { PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE); goto err; } | 777 | if (strncmp(buf, "-----END ", 9) == 0) |
738 | dataB->data[0]='\0'; | ||
739 | if (!nohead) | ||
740 | { | ||
741 | for (;;) | ||
742 | { | ||
743 | i=BIO_gets(bp,buf,254); | ||
744 | if (i <= 0) break; | ||
745 | |||
746 | while ((i >= 0) && (buf[i] <= ' ')) i--; | ||
747 | buf[++i]='\n'; buf[++i]='\0'; | ||
748 | |||
749 | if (i != 65) end=1; | ||
750 | if (strncmp(buf,"-----END ",9) == 0) | ||
751 | break; | 778 | break; |
752 | if (i > 65) break; | 779 | if (i > 65) |
753 | if (!BUF_MEM_grow_clean(dataB,i+bl+9)) | 780 | break; |
754 | { | 781 | if (!BUF_MEM_grow_clean(dataB, i + bl + 9)) { |
755 | PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE); | 782 | PEMerr(PEM_F_PEM_READ_BIO, |
783 | ERR_R_MALLOC_FAILURE); | ||
756 | goto err; | 784 | goto err; |
757 | } | 785 | } |
758 | memcpy(&(dataB->data[bl]),buf,i); | 786 | memcpy(&(dataB->data[bl]), buf, i); |
759 | dataB->data[bl+i]='\0'; | 787 | dataB->data[bl + i] = '\0'; |
760 | bl+=i; | 788 | bl += i; |
761 | if (end) | 789 | if (end) { |
762 | { | 790 | buf[0] = '\0'; |
763 | buf[0]='\0'; | 791 | i = BIO_gets(bp, buf, 254); |
764 | i=BIO_gets(bp,buf,254); | 792 | if (i <= 0) |
765 | if (i <= 0) break; | 793 | break; |
766 | 794 | ||
767 | while ((i >= 0) && (buf[i] <= ' ')) i--; | 795 | while ((i >= 0) && (buf[i] <= ' ')) |
768 | buf[++i]='\n'; buf[++i]='\0'; | 796 | i--; |
797 | buf[++i] = '\n'; | ||
798 | buf[++i] = '\0'; | ||
769 | 799 | ||
770 | break; | 800 | break; |
771 | } | ||
772 | } | 801 | } |
773 | } | 802 | } |
774 | else | 803 | } else { |
775 | { | 804 | tmpB = headerB; |
776 | tmpB=headerB; | 805 | headerB = dataB; |
777 | headerB=dataB; | 806 | dataB = tmpB; |
778 | dataB=tmpB; | 807 | bl = hl; |
779 | bl=hl; | 808 | } |
780 | } | 809 | i = strlen(nameB->data); |
781 | i=strlen(nameB->data); | 810 | if ((strncmp(buf, "-----END ", 9) != 0) || |
782 | if ( (strncmp(buf,"-----END ",9) != 0) || | 811 | (strncmp(nameB->data, &(buf[9]), i) != 0) || |
783 | (strncmp(nameB->data,&(buf[9]),i) != 0) || | 812 | (strncmp(&(buf[9 + i]), "-----\n", 6) != 0)) { |
784 | (strncmp(&(buf[9+i]),"-----\n",6) != 0)) | 813 | PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_END_LINE); |
785 | { | ||
786 | PEMerr(PEM_F_PEM_READ_BIO,PEM_R_BAD_END_LINE); | ||
787 | goto err; | 814 | goto err; |
788 | } | 815 | } |
789 | 816 | ||
790 | EVP_DecodeInit(&ctx); | 817 | EVP_DecodeInit(&ctx); |
791 | i=EVP_DecodeUpdate(&ctx, | 818 | i = EVP_DecodeUpdate(&ctx, |
792 | (unsigned char *)dataB->data,&bl, | 819 | (unsigned char *)dataB->data, &bl, |
793 | (unsigned char *)dataB->data,bl); | 820 | (unsigned char *)dataB->data, bl); |
794 | if (i < 0) | 821 | if (i < 0) { |
795 | { | 822 | PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_BASE64_DECODE); |
796 | PEMerr(PEM_F_PEM_READ_BIO,PEM_R_BAD_BASE64_DECODE); | ||
797 | goto err; | 823 | goto err; |
798 | } | 824 | } |
799 | i=EVP_DecodeFinal(&ctx,(unsigned char *)&(dataB->data[bl]),&k); | 825 | i = EVP_DecodeFinal(&ctx, (unsigned char *)&(dataB->data[bl]), &k); |
800 | if (i < 0) | 826 | if (i < 0) { |
801 | { | 827 | PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_BASE64_DECODE); |
802 | PEMerr(PEM_F_PEM_READ_BIO,PEM_R_BAD_BASE64_DECODE); | ||
803 | goto err; | 828 | goto err; |
804 | } | 829 | } |
805 | bl+=k; | 830 | bl += k; |
806 | 831 | ||
807 | if (bl == 0) goto err; | 832 | if (bl == 0) |
808 | *name=nameB->data; | 833 | goto err; |
809 | *header=headerB->data; | 834 | *name = nameB->data; |
810 | *data=(unsigned char *)dataB->data; | 835 | *header = headerB->data; |
811 | *len=bl; | 836 | *data = (unsigned char *)dataB->data; |
837 | *len = bl; | ||
812 | free(nameB); | 838 | free(nameB); |
813 | free(headerB); | 839 | free(headerB); |
814 | free(dataB); | 840 | free(dataB); |
815 | return(1); | 841 | return (1); |
842 | |||
816 | err: | 843 | err: |
817 | BUF_MEM_free(nameB); | 844 | BUF_MEM_free(nameB); |
818 | BUF_MEM_free(headerB); | 845 | BUF_MEM_free(headerB); |
819 | BUF_MEM_free(dataB); | 846 | BUF_MEM_free(dataB); |
820 | return(0); | 847 | return (0); |
821 | } | 848 | } |
822 | 849 | ||
823 | /* Check pem string and return prefix length. | 850 | /* Check pem string and return prefix length. |
824 | * If for example the pem_str == "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" | 851 | * If for example the pem_str == "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" |
825 | * the return value is 3 for the string "RSA". | 852 | * the return value is 3 for the string "RSA". |
826 | */ | 853 | */ |
827 | 854 | ||
828 | int pem_check_suffix(const char *pem_str, const char *suffix) | 855 | int |
829 | { | 856 | pem_check_suffix(const char *pem_str, const char *suffix) |
857 | { | ||
830 | int pem_len = strlen(pem_str); | 858 | int pem_len = strlen(pem_str); |
831 | int suffix_len = strlen(suffix); | 859 | int suffix_len = strlen(suffix); |
832 | const char *p; | 860 | const char *p; |
861 | |||
833 | if (suffix_len + 1 >= pem_len) | 862 | if (suffix_len + 1 >= pem_len) |
834 | return 0; | 863 | return 0; |
835 | p = pem_str + pem_len - suffix_len; | 864 | p = pem_str + pem_len - suffix_len; |
@@ -839,5 +868,4 @@ int pem_check_suffix(const char *pem_str, const char *suffix) | |||
839 | if (*p != ' ') | 868 | if (*p != ' ') |
840 | return 0; | 869 | return 0; |
841 | return p - pem_str; | 870 | return p - pem_str; |
842 | } | 871 | } |
843 | |||
diff --git a/src/lib/libcrypto/pem/pem_oth.c b/src/lib/libcrypto/pem/pem_oth.c index 69d281aa9d..5787dc2f3d 100644 --- a/src/lib/libcrypto/pem/pem_oth.c +++ b/src/lib/libcrypto/pem/pem_oth.c | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -67,20 +67,21 @@ | |||
67 | 67 | ||
68 | /* Handle 'other' PEMs: not private keys */ | 68 | /* Handle 'other' PEMs: not private keys */ |
69 | 69 | ||
70 | void *PEM_ASN1_read_bio(d2i_of_void *d2i, const char *name, BIO *bp, void **x, | 70 | void * |
71 | pem_password_cb *cb, void *u) | 71 | PEM_ASN1_read_bio(d2i_of_void *d2i, const char *name, BIO *bp, void **x, |
72 | { | 72 | pem_password_cb *cb, void *u) |
73 | const unsigned char *p=NULL; | 73 | { |
74 | unsigned char *data=NULL; | 74 | const unsigned char *p = NULL; |
75 | unsigned char *data = NULL; | ||
75 | long len; | 76 | long len; |
76 | char *ret=NULL; | 77 | char *ret = NULL; |
77 | 78 | ||
78 | if (!PEM_bytes_read_bio(&data, &len, NULL, name, bp, cb, u)) | 79 | if (!PEM_bytes_read_bio(&data, &len, NULL, name, bp, cb, u)) |
79 | return NULL; | 80 | return NULL; |
80 | p = data; | 81 | p = data; |
81 | ret=d2i(x,&p,len); | 82 | ret = d2i(x, &p, len); |
82 | if (ret == NULL) | 83 | if (ret == NULL) |
83 | PEMerr(PEM_F_PEM_ASN1_READ_BIO,ERR_R_ASN1_LIB); | 84 | PEMerr(PEM_F_PEM_ASN1_READ_BIO, ERR_R_ASN1_LIB); |
84 | free(data); | 85 | free(data); |
85 | return(ret); | 86 | return (ret); |
86 | } | 87 | } |
diff --git a/src/lib/libcrypto/pem/pem_pk8.c b/src/lib/libcrypto/pem/pem_pk8.c index 6deab8c338..228ecfceaf 100644 --- a/src/lib/libcrypto/pem/pem_pk8.c +++ b/src/lib/libcrypto/pem/pem_pk8.c | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -66,14 +66,10 @@ | |||
66 | #include <openssl/pkcs12.h> | 66 | #include <openssl/pkcs12.h> |
67 | #include <openssl/pem.h> | 67 | #include <openssl/pem.h> |
68 | 68 | ||
69 | static int do_pk8pkey(BIO *bp, EVP_PKEY *x, int isder, | 69 | static int do_pk8pkey(BIO *bp, EVP_PKEY *x, int isder, int nid, |
70 | int nid, const EVP_CIPHER *enc, | 70 | const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb, void *u); |
71 | char *kstr, int klen, | 71 | static int do_pk8pkey_fp(FILE *bp, EVP_PKEY *x, int isder, int nid, |
72 | pem_password_cb *cb, void *u); | 72 | const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb, void *u); |
73 | static int do_pk8pkey_fp(FILE *bp, EVP_PKEY *x, int isder, | ||
74 | int nid, const EVP_CIPHER *enc, | ||
75 | char *kstr, int klen, | ||
76 | pem_password_cb *cb, void *u); | ||
77 | 73 | ||
78 | /* These functions write a private key in PKCS#8 format: it is a "drop in" | 74 | /* These functions write a private key in PKCS#8 format: it is a "drop in" |
79 | * replacement for PEM_write_bio_PrivateKey() and friends. As usual if 'enc' | 75 | * replacement for PEM_write_bio_PrivateKey() and friends. As usual if 'enc' |
@@ -81,98 +77,114 @@ static int do_pk8pkey_fp(FILE *bp, EVP_PKEY *x, int isder, | |||
81 | * uses PKCS#5 v1.5 PBE algorithms whereas the others use PKCS#5 v2.0. | 77 | * uses PKCS#5 v1.5 PBE algorithms whereas the others use PKCS#5 v2.0. |
82 | */ | 78 | */ |
83 | 79 | ||
84 | int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid, | 80 | int |
85 | char *kstr, int klen, | 81 | PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid, char *kstr, |
86 | pem_password_cb *cb, void *u) | 82 | int klen, pem_password_cb *cb, void *u) |
87 | { | 83 | { |
88 | return do_pk8pkey(bp, x, 0, nid, NULL, kstr, klen, cb, u); | 84 | return do_pk8pkey(bp, x, 0, nid, NULL, kstr, klen, cb, u); |
89 | } | 85 | } |
90 | 86 | ||
91 | int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, | 87 | int |
92 | char *kstr, int klen, | 88 | PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, |
93 | pem_password_cb *cb, void *u) | 89 | char *kstr, int klen, pem_password_cb *cb, void *u) |
94 | { | 90 | { |
95 | return do_pk8pkey(bp, x, 0, -1, enc, kstr, klen, cb, u); | 91 | return do_pk8pkey(bp, x, 0, -1, enc, kstr, klen, cb, u); |
96 | } | 92 | } |
97 | 93 | ||
98 | int i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, | 94 | int |
99 | char *kstr, int klen, | 95 | i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, |
100 | pem_password_cb *cb, void *u) | 96 | char *kstr, int klen, pem_password_cb *cb, void *u) |
101 | { | 97 | { |
102 | return do_pk8pkey(bp, x, 1, -1, enc, kstr, klen, cb, u); | 98 | return do_pk8pkey(bp, x, 1, -1, enc, kstr, klen, cb, u); |
103 | } | 99 | } |
104 | 100 | ||
105 | int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid, | 101 | int |
106 | char *kstr, int klen, | 102 | i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid, |
107 | pem_password_cb *cb, void *u) | 103 | char *kstr, int klen, pem_password_cb *cb, void *u) |
108 | { | 104 | { |
109 | return do_pk8pkey(bp, x, 1, nid, NULL, kstr, klen, cb, u); | 105 | return do_pk8pkey(bp, x, 1, nid, NULL, kstr, klen, cb, u); |
110 | } | 106 | } |
111 | 107 | ||
112 | static int do_pk8pkey(BIO *bp, EVP_PKEY *x, int isder, int nid, const EVP_CIPHER *enc, | 108 | static int |
113 | char *kstr, int klen, | 109 | do_pk8pkey(BIO *bp, EVP_PKEY *x, int isder, int nid, const EVP_CIPHER *enc, |
114 | pem_password_cb *cb, void *u) | 110 | char *kstr, int klen, pem_password_cb *cb, void *u) |
115 | { | 111 | { |
116 | X509_SIG *p8; | 112 | X509_SIG *p8; |
117 | PKCS8_PRIV_KEY_INFO *p8inf; | 113 | PKCS8_PRIV_KEY_INFO *p8inf; |
118 | char buf[PEM_BUFSIZE]; | 114 | char buf[PEM_BUFSIZE]; |
119 | int ret; | 115 | int ret; |
120 | if(!(p8inf = EVP_PKEY2PKCS8(x))) { | 116 | |
117 | if (!(p8inf = EVP_PKEY2PKCS8(x))) { | ||
121 | PEMerr(PEM_F_DO_PK8PKEY, | 118 | PEMerr(PEM_F_DO_PK8PKEY, |
122 | PEM_R_ERROR_CONVERTING_PRIVATE_KEY); | 119 | PEM_R_ERROR_CONVERTING_PRIVATE_KEY); |
123 | return 0; | 120 | return 0; |
124 | } | 121 | } |
125 | if(enc || (nid != -1)) { | 122 | if (enc || (nid != -1)) { |
126 | if(!kstr) { | 123 | if (!kstr) { |
127 | if(!cb) klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u); | 124 | if (!cb) |
128 | else klen = cb(buf, PEM_BUFSIZE, 1, u); | 125 | klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u); |
129 | if(klen <= 0) { | 126 | else |
130 | PEMerr(PEM_F_DO_PK8PKEY,PEM_R_READ_KEY); | 127 | klen = cb(buf, PEM_BUFSIZE, 1, u); |
128 | if (klen <= 0) { | ||
129 | PEMerr(PEM_F_DO_PK8PKEY, PEM_R_READ_KEY); | ||
131 | PKCS8_PRIV_KEY_INFO_free(p8inf); | 130 | PKCS8_PRIV_KEY_INFO_free(p8inf); |
132 | return 0; | 131 | return 0; |
133 | } | 132 | } |
134 | 133 | ||
135 | kstr = buf; | 134 | kstr = buf; |
136 | } | 135 | } |
137 | p8 = PKCS8_encrypt(nid, enc, kstr, klen, NULL, 0, 0, p8inf); | 136 | p8 = PKCS8_encrypt(nid, enc, kstr, klen, NULL, 0, 0, p8inf); |
138 | if(kstr == buf) OPENSSL_cleanse(buf, klen); | 137 | if (kstr == buf) |
138 | OPENSSL_cleanse(buf, klen); | ||
139 | PKCS8_PRIV_KEY_INFO_free(p8inf); | 139 | PKCS8_PRIV_KEY_INFO_free(p8inf); |
140 | if(isder) ret = i2d_PKCS8_bio(bp, p8); | 140 | if (isder) |
141 | else ret = PEM_write_bio_PKCS8(bp, p8); | 141 | ret = i2d_PKCS8_bio(bp, p8); |
142 | else | ||
143 | ret = PEM_write_bio_PKCS8(bp, p8); | ||
142 | X509_SIG_free(p8); | 144 | X509_SIG_free(p8); |
143 | return ret; | 145 | return ret; |
144 | } else { | 146 | } else { |
145 | if(isder) ret = i2d_PKCS8_PRIV_KEY_INFO_bio(bp, p8inf); | 147 | if (isder) |
146 | else ret = PEM_write_bio_PKCS8_PRIV_KEY_INFO(bp, p8inf); | 148 | ret = i2d_PKCS8_PRIV_KEY_INFO_bio(bp, p8inf); |
149 | else | ||
150 | ret = PEM_write_bio_PKCS8_PRIV_KEY_INFO(bp, p8inf); | ||
147 | PKCS8_PRIV_KEY_INFO_free(p8inf); | 151 | PKCS8_PRIV_KEY_INFO_free(p8inf); |
148 | return ret; | 152 | return ret; |
149 | } | 153 | } |
150 | } | 154 | } |
151 | 155 | ||
152 | EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u) | 156 | EVP_PKEY * |
157 | d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u) | ||
153 | { | 158 | { |
154 | PKCS8_PRIV_KEY_INFO *p8inf = NULL; | 159 | PKCS8_PRIV_KEY_INFO *p8inf = NULL; |
155 | X509_SIG *p8 = NULL; | 160 | X509_SIG *p8 = NULL; |
156 | int klen; | 161 | int klen; |
157 | EVP_PKEY *ret; | 162 | EVP_PKEY *ret; |
158 | char psbuf[PEM_BUFSIZE]; | 163 | char psbuf[PEM_BUFSIZE]; |
164 | |||
159 | p8 = d2i_PKCS8_bio(bp, NULL); | 165 | p8 = d2i_PKCS8_bio(bp, NULL); |
160 | if(!p8) return NULL; | 166 | if (!p8) |
161 | if (cb) klen=cb(psbuf,PEM_BUFSIZE,0,u); | 167 | return NULL; |
162 | else klen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u); | 168 | if (cb) |
169 | klen = cb(psbuf, PEM_BUFSIZE, 0, u); | ||
170 | else | ||
171 | klen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u); | ||
163 | if (klen <= 0) { | 172 | if (klen <= 0) { |
164 | PEMerr(PEM_F_D2I_PKCS8PRIVATEKEY_BIO, PEM_R_BAD_PASSWORD_READ); | 173 | PEMerr(PEM_F_D2I_PKCS8PRIVATEKEY_BIO, PEM_R_BAD_PASSWORD_READ); |
165 | X509_SIG_free(p8); | 174 | X509_SIG_free(p8); |
166 | return NULL; | 175 | return NULL; |
167 | } | 176 | } |
168 | p8inf = PKCS8_decrypt(p8, psbuf, klen); | 177 | p8inf = PKCS8_decrypt(p8, psbuf, klen); |
169 | X509_SIG_free(p8); | 178 | X509_SIG_free(p8); |
170 | if(!p8inf) return NULL; | 179 | if (!p8inf) |
180 | return NULL; | ||
171 | ret = EVP_PKCS82PKEY(p8inf); | 181 | ret = EVP_PKCS82PKEY(p8inf); |
172 | PKCS8_PRIV_KEY_INFO_free(p8inf); | 182 | PKCS8_PRIV_KEY_INFO_free(p8inf); |
173 | if(!ret) return NULL; | 183 | if (!ret) |
174 | if(x) { | 184 | return NULL; |
175 | if(*x) EVP_PKEY_free(*x); | 185 | if (x) { |
186 | if (*x) | ||
187 | EVP_PKEY_free(*x); | ||
176 | *x = ret; | 188 | *x = ret; |
177 | } | 189 | } |
178 | return ret; | 190 | return ret; |
@@ -180,55 +192,59 @@ EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, vo | |||
180 | 192 | ||
181 | #ifndef OPENSSL_NO_FP_API | 193 | #ifndef OPENSSL_NO_FP_API |
182 | 194 | ||
183 | int i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, | 195 | int |
184 | char *kstr, int klen, | 196 | i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, |
185 | pem_password_cb *cb, void *u) | 197 | char *kstr, int klen, pem_password_cb *cb, void *u) |
186 | { | 198 | { |
187 | return do_pk8pkey_fp(fp, x, 1, -1, enc, kstr, klen, cb, u); | 199 | return do_pk8pkey_fp(fp, x, 1, -1, enc, kstr, klen, cb, u); |
188 | } | 200 | } |
189 | 201 | ||
190 | int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid, | 202 | int |
191 | char *kstr, int klen, | 203 | i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid, char *kstr, |
192 | pem_password_cb *cb, void *u) | 204 | int klen, pem_password_cb *cb, void *u) |
193 | { | 205 | { |
194 | return do_pk8pkey_fp(fp, x, 1, nid, NULL, kstr, klen, cb, u); | 206 | return do_pk8pkey_fp(fp, x, 1, nid, NULL, kstr, klen, cb, u); |
195 | } | 207 | } |
196 | 208 | ||
197 | int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, | 209 | int |
198 | char *kstr, int klen, | 210 | PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, char *kstr, |
199 | pem_password_cb *cb, void *u) | 211 | int klen, pem_password_cb *cb, void *u) |
200 | { | 212 | { |
201 | return do_pk8pkey_fp(fp, x, 0, nid, NULL, kstr, klen, cb, u); | 213 | return do_pk8pkey_fp(fp, x, 0, nid, NULL, kstr, klen, cb, u); |
202 | } | 214 | } |
203 | 215 | ||
204 | int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, | 216 | int |
205 | char *kstr, int klen, pem_password_cb *cb, void *u) | 217 | PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, |
218 | char *kstr, int klen, pem_password_cb *cb, void *u) | ||
206 | { | 219 | { |
207 | return do_pk8pkey_fp(fp, x, 0, -1, enc, kstr, klen, cb, u); | 220 | return do_pk8pkey_fp(fp, x, 0, -1, enc, kstr, klen, cb, u); |
208 | } | 221 | } |
209 | 222 | ||
210 | static int do_pk8pkey_fp(FILE *fp, EVP_PKEY *x, int isder, int nid, const EVP_CIPHER *enc, | 223 | static int |
211 | char *kstr, int klen, | 224 | do_pk8pkey_fp(FILE *fp, EVP_PKEY *x, int isder, int nid, const EVP_CIPHER *enc, |
212 | pem_password_cb *cb, void *u) | 225 | char *kstr, int klen, pem_password_cb *cb, void *u) |
213 | { | 226 | { |
214 | BIO *bp; | 227 | BIO *bp; |
215 | int ret; | 228 | int ret; |
216 | if(!(bp = BIO_new_fp(fp, BIO_NOCLOSE))) { | 229 | |
217 | PEMerr(PEM_F_DO_PK8PKEY_FP,ERR_R_BUF_LIB); | 230 | if (!(bp = BIO_new_fp(fp, BIO_NOCLOSE))) { |
218 | return(0); | 231 | PEMerr(PEM_F_DO_PK8PKEY_FP, ERR_R_BUF_LIB); |
232 | return (0); | ||
219 | } | 233 | } |
220 | ret = do_pk8pkey(bp, x, isder, nid, enc, kstr, klen, cb, u); | 234 | ret = do_pk8pkey(bp, x, isder, nid, enc, kstr, klen, cb, u); |
221 | BIO_free(bp); | 235 | BIO_free(bp); |
222 | return ret; | 236 | return ret; |
223 | } | 237 | } |
224 | 238 | ||
225 | EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u) | 239 | EVP_PKEY * |
240 | d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u) | ||
226 | { | 241 | { |
227 | BIO *bp; | 242 | BIO *bp; |
228 | EVP_PKEY *ret; | 243 | EVP_PKEY *ret; |
229 | if(!(bp = BIO_new_fp(fp, BIO_NOCLOSE))) { | 244 | |
230 | PEMerr(PEM_F_D2I_PKCS8PRIVATEKEY_FP,ERR_R_BUF_LIB); | 245 | if (!(bp = BIO_new_fp(fp, BIO_NOCLOSE))) { |
231 | return NULL; | 246 | PEMerr(PEM_F_D2I_PKCS8PRIVATEKEY_FP, ERR_R_BUF_LIB); |
247 | return NULL; | ||
232 | } | 248 | } |
233 | ret = d2i_PKCS8PrivateKey_bio(bp, x, cb, u); | 249 | ret = d2i_PKCS8PrivateKey_bio(bp, x, cb, u); |
234 | BIO_free(bp); | 250 | BIO_free(bp); |
@@ -239,4 +255,4 @@ EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, vo | |||
239 | 255 | ||
240 | IMPLEMENT_PEM_rw(PKCS8, X509_SIG, PEM_STRING_PKCS8, X509_SIG) | 256 | IMPLEMENT_PEM_rw(PKCS8, X509_SIG, PEM_STRING_PKCS8, X509_SIG) |
241 | IMPLEMENT_PEM_rw(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO, PEM_STRING_PKCS8INF, | 257 | IMPLEMENT_PEM_rw(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO, PEM_STRING_PKCS8INF, |
242 | PKCS8_PRIV_KEY_INFO) | 258 | PKCS8_PRIV_KEY_INFO) |
diff --git a/src/lib/libcrypto/pem/pem_pkey.c b/src/lib/libcrypto/pem/pem_pkey.c index 5274447b24..9aaff6e514 100644 --- a/src/lib/libcrypto/pem/pem_pkey.c +++ b/src/lib/libcrypto/pem/pem_pkey.c | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -72,173 +72,182 @@ | |||
72 | 72 | ||
73 | int pem_check_suffix(const char *pem_str, const char *suffix); | 73 | int pem_check_suffix(const char *pem_str, const char *suffix); |
74 | 74 | ||
75 | EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u) | 75 | EVP_PKEY * |
76 | { | 76 | PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u) |
77 | char *nm=NULL; | 77 | { |
78 | const unsigned char *p=NULL; | 78 | char *nm = NULL; |
79 | unsigned char *data=NULL; | 79 | const unsigned char *p = NULL; |
80 | unsigned char *data = NULL; | ||
80 | long len; | 81 | long len; |
81 | int slen; | 82 | int slen; |
82 | EVP_PKEY *ret=NULL; | 83 | EVP_PKEY *ret = NULL; |
83 | 84 | ||
84 | if (!PEM_bytes_read_bio(&data, &len, &nm, PEM_STRING_EVP_PKEY, bp, cb, u)) | 85 | if (!PEM_bytes_read_bio(&data, &len, &nm, PEM_STRING_EVP_PKEY, |
86 | bp, cb, u)) | ||
85 | return NULL; | 87 | return NULL; |
86 | p = data; | 88 | p = data; |
87 | 89 | ||
88 | if (strcmp(nm,PEM_STRING_PKCS8INF) == 0) { | 90 | if (strcmp(nm, PEM_STRING_PKCS8INF) == 0) { |
89 | PKCS8_PRIV_KEY_INFO *p8inf; | 91 | PKCS8_PRIV_KEY_INFO *p8inf; |
90 | p8inf=d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, len); | 92 | p8inf = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, len); |
91 | if(!p8inf) goto p8err; | 93 | if (!p8inf) |
94 | goto p8err; | ||
92 | ret = EVP_PKCS82PKEY(p8inf); | 95 | ret = EVP_PKCS82PKEY(p8inf); |
93 | if(x) { | 96 | if (x) { |
94 | if(*x) EVP_PKEY_free((EVP_PKEY *)*x); | 97 | if (*x) |
98 | EVP_PKEY_free((EVP_PKEY *)*x); | ||
95 | *x = ret; | 99 | *x = ret; |
96 | } | 100 | } |
97 | PKCS8_PRIV_KEY_INFO_free(p8inf); | 101 | PKCS8_PRIV_KEY_INFO_free(p8inf); |
98 | } else if (strcmp(nm,PEM_STRING_PKCS8) == 0) { | 102 | } else if (strcmp(nm, PEM_STRING_PKCS8) == 0) { |
99 | PKCS8_PRIV_KEY_INFO *p8inf; | 103 | PKCS8_PRIV_KEY_INFO *p8inf; |
100 | X509_SIG *p8; | 104 | X509_SIG *p8; |
101 | int klen; | 105 | int klen; |
102 | char psbuf[PEM_BUFSIZE]; | 106 | char psbuf[PEM_BUFSIZE]; |
103 | p8 = d2i_X509_SIG(NULL, &p, len); | 107 | p8 = d2i_X509_SIG(NULL, &p, len); |
104 | if(!p8) goto p8err; | 108 | if (!p8) |
105 | if (cb) klen=cb(psbuf,PEM_BUFSIZE,0,u); | 109 | goto p8err; |
106 | else klen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u); | 110 | if (cb) |
111 | klen = cb(psbuf, PEM_BUFSIZE, 0, u); | ||
112 | else | ||
113 | klen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u); | ||
107 | if (klen <= 0) { | 114 | if (klen <= 0) { |
108 | PEMerr(PEM_F_PEM_READ_BIO_PRIVATEKEY, | 115 | PEMerr(PEM_F_PEM_READ_BIO_PRIVATEKEY, |
109 | PEM_R_BAD_PASSWORD_READ); | 116 | PEM_R_BAD_PASSWORD_READ); |
110 | X509_SIG_free(p8); | 117 | X509_SIG_free(p8); |
111 | goto err; | 118 | goto err; |
112 | } | 119 | } |
113 | p8inf = PKCS8_decrypt(p8, psbuf, klen); | 120 | p8inf = PKCS8_decrypt(p8, psbuf, klen); |
114 | X509_SIG_free(p8); | 121 | X509_SIG_free(p8); |
115 | if(!p8inf) goto p8err; | 122 | if (!p8inf) |
123 | goto p8err; | ||
116 | ret = EVP_PKCS82PKEY(p8inf); | 124 | ret = EVP_PKCS82PKEY(p8inf); |
117 | if(x) { | 125 | if (x) { |
118 | if(*x) EVP_PKEY_free((EVP_PKEY *)*x); | 126 | if (*x) |
127 | EVP_PKEY_free((EVP_PKEY *)*x); | ||
119 | *x = ret; | 128 | *x = ret; |
120 | } | 129 | } |
121 | PKCS8_PRIV_KEY_INFO_free(p8inf); | 130 | PKCS8_PRIV_KEY_INFO_free(p8inf); |
122 | } else if ((slen = pem_check_suffix(nm, "PRIVATE KEY")) > 0) | 131 | } else if ((slen = pem_check_suffix(nm, "PRIVATE KEY")) > 0) { |
123 | { | ||
124 | const EVP_PKEY_ASN1_METHOD *ameth; | 132 | const EVP_PKEY_ASN1_METHOD *ameth; |
125 | ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); | 133 | ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); |
126 | if (!ameth || !ameth->old_priv_decode) | 134 | if (!ameth || !ameth->old_priv_decode) |
127 | goto p8err; | 135 | goto p8err; |
128 | ret=d2i_PrivateKey(ameth->pkey_id,x,&p,len); | 136 | ret = d2i_PrivateKey(ameth->pkey_id, x,&p, len); |
129 | } | 137 | } |
138 | |||
130 | p8err: | 139 | p8err: |
131 | if (ret == NULL) | 140 | if (ret == NULL) |
132 | PEMerr(PEM_F_PEM_READ_BIO_PRIVATEKEY,ERR_R_ASN1_LIB); | 141 | PEMerr(PEM_F_PEM_READ_BIO_PRIVATEKEY, ERR_R_ASN1_LIB); |
133 | err: | 142 | err: |
134 | free(nm); | 143 | free(nm); |
135 | OPENSSL_cleanse(data, len); | 144 | OPENSSL_cleanse(data, len); |
136 | free(data); | 145 | free(data); |
137 | return(ret); | 146 | return (ret); |
138 | } | 147 | } |
139 | 148 | ||
140 | int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, | 149 | int |
141 | unsigned char *kstr, int klen, | 150 | PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, |
142 | pem_password_cb *cb, void *u) | 151 | unsigned char *kstr, int klen, pem_password_cb *cb, void *u) |
143 | { | 152 | { |
144 | char pem_str[80]; | 153 | char pem_str[80]; |
154 | |||
145 | if (!x->ameth || x->ameth->priv_encode) | 155 | if (!x->ameth || x->ameth->priv_encode) |
146 | return PEM_write_bio_PKCS8PrivateKey(bp, x, enc, | 156 | return PEM_write_bio_PKCS8PrivateKey(bp, x, enc, |
147 | (char *)kstr, klen, | 157 | (char *)kstr, klen, cb, u); |
148 | cb, u); | ||
149 | 158 | ||
150 | (void) snprintf(pem_str, sizeof(pem_str), "%s PRIVATE KEY", | 159 | (void) snprintf(pem_str, sizeof(pem_str), "%s PRIVATE KEY", |
151 | x->ameth->pem_str); | 160 | x->ameth->pem_str); |
152 | return PEM_ASN1_write_bio((i2d_of_void *)i2d_PrivateKey, | 161 | return PEM_ASN1_write_bio((i2d_of_void *)i2d_PrivateKey, |
153 | pem_str,bp,x,enc,kstr,klen,cb,u); | 162 | pem_str, bp, x,enc, kstr, klen, cb, u); |
154 | } | 163 | } |
155 | 164 | ||
156 | EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x) | 165 | EVP_PKEY * |
157 | { | 166 | PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x) |
158 | char *nm=NULL; | 167 | { |
159 | const unsigned char *p=NULL; | 168 | char *nm = NULL; |
160 | unsigned char *data=NULL; | 169 | const unsigned char *p = NULL; |
170 | unsigned char *data = NULL; | ||
161 | long len; | 171 | long len; |
162 | int slen; | 172 | int slen; |
163 | EVP_PKEY *ret=NULL; | 173 | EVP_PKEY *ret = NULL; |
164 | 174 | ||
165 | if (!PEM_bytes_read_bio(&data, &len, &nm, PEM_STRING_PARAMETERS, | 175 | if (!PEM_bytes_read_bio(&data, &len, &nm, PEM_STRING_PARAMETERS, |
166 | bp, 0, NULL)) | 176 | bp, 0, NULL)) |
167 | return NULL; | 177 | return NULL; |
168 | p = data; | 178 | p = data; |
169 | 179 | ||
170 | if ((slen = pem_check_suffix(nm, "PARAMETERS")) > 0) | 180 | if ((slen = pem_check_suffix(nm, "PARAMETERS")) > 0) { |
171 | { | ||
172 | ret = EVP_PKEY_new(); | 181 | ret = EVP_PKEY_new(); |
173 | if (!ret) | 182 | if (!ret) |
174 | goto err; | 183 | goto err; |
175 | if (!EVP_PKEY_set_type_str(ret, nm, slen) | 184 | if (!EVP_PKEY_set_type_str(ret, nm, slen) || |
176 | || !ret->ameth->param_decode | 185 | !ret->ameth->param_decode || |
177 | || !ret->ameth->param_decode(ret, &p, len)) | 186 | !ret->ameth->param_decode(ret, &p, len)) { |
178 | { | ||
179 | EVP_PKEY_free(ret); | 187 | EVP_PKEY_free(ret); |
180 | ret = NULL; | 188 | ret = NULL; |
181 | goto err; | 189 | goto err; |
182 | } | 190 | } |
183 | if(x) | 191 | if (x) { |
184 | { | 192 | if (*x) |
185 | if(*x) EVP_PKEY_free((EVP_PKEY *)*x); | 193 | EVP_PKEY_free((EVP_PKEY *)*x); |
186 | *x = ret; | 194 | *x = ret; |
187 | } | ||
188 | } | 195 | } |
196 | } | ||
197 | |||
189 | err: | 198 | err: |
190 | if (ret == NULL) | 199 | if (ret == NULL) |
191 | PEMerr(PEM_F_PEM_READ_BIO_PARAMETERS,ERR_R_ASN1_LIB); | 200 | PEMerr(PEM_F_PEM_READ_BIO_PARAMETERS, ERR_R_ASN1_LIB); |
192 | free(nm); | 201 | free(nm); |
193 | free(data); | 202 | free(data); |
194 | return(ret); | 203 | return (ret); |
195 | } | 204 | } |
196 | 205 | ||
197 | int PEM_write_bio_Parameters(BIO *bp, EVP_PKEY *x) | 206 | int |
198 | { | 207 | PEM_write_bio_Parameters(BIO *bp, EVP_PKEY *x) |
208 | { | ||
199 | char pem_str[80]; | 209 | char pem_str[80]; |
210 | |||
200 | if (!x->ameth || !x->ameth->param_encode) | 211 | if (!x->ameth || !x->ameth->param_encode) |
201 | return 0; | 212 | return 0; |
202 | 213 | ||
203 | (void) snprintf(pem_str, sizeof(pem_str), "%s PARAMETERS", | 214 | (void) snprintf(pem_str, sizeof(pem_str), "%s PARAMETERS", |
204 | x->ameth->pem_str); | 215 | x->ameth->pem_str); |
205 | return PEM_ASN1_write_bio( | 216 | return PEM_ASN1_write_bio((i2d_of_void *)x->ameth->param_encode, |
206 | (i2d_of_void *)x->ameth->param_encode, | 217 | pem_str, bp, x,NULL, NULL, 0,0, NULL); |
207 | pem_str,bp,x,NULL,NULL,0,0,NULL); | 218 | } |
208 | } | ||
209 | 219 | ||
210 | #ifndef OPENSSL_NO_FP_API | 220 | #ifndef OPENSSL_NO_FP_API |
211 | EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u) | 221 | EVP_PKEY * |
212 | { | 222 | PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u) |
213 | BIO *b; | 223 | { |
214 | EVP_PKEY *ret; | 224 | BIO *b; |
215 | 225 | EVP_PKEY *ret; | |
216 | if ((b=BIO_new(BIO_s_file())) == NULL) | 226 | |
217 | { | 227 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
218 | PEMerr(PEM_F_PEM_READ_PRIVATEKEY,ERR_R_BUF_LIB); | 228 | PEMerr(PEM_F_PEM_READ_PRIVATEKEY, ERR_R_BUF_LIB); |
219 | return(0); | 229 | return (0); |
220 | } | ||
221 | BIO_set_fp(b,fp,BIO_NOCLOSE); | ||
222 | ret=PEM_read_bio_PrivateKey(b,x,cb,u); | ||
223 | BIO_free(b); | ||
224 | return(ret); | ||
225 | } | 230 | } |
226 | 231 | BIO_set_fp(b, fp, BIO_NOCLOSE); | |
227 | int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, | 232 | ret = PEM_read_bio_PrivateKey(b, x,cb, u); |
228 | unsigned char *kstr, int klen, | 233 | BIO_free(b); |
229 | pem_password_cb *cb, void *u) | 234 | return (ret); |
230 | { | 235 | } |
231 | BIO *b; | 236 | |
232 | int ret; | 237 | int |
233 | 238 | PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, | |
234 | if ((b=BIO_new_fp(fp, BIO_NOCLOSE)) == NULL) | 239 | unsigned char *kstr, int klen, pem_password_cb *cb, void *u) |
235 | { | 240 | { |
236 | PEMerr(PEM_F_PEM_WRITE_PRIVATEKEY,ERR_R_BUF_LIB); | 241 | BIO *b; |
237 | return 0; | 242 | int ret; |
238 | } | 243 | |
239 | ret=PEM_write_bio_PrivateKey(b, x, enc, kstr, klen, cb, u); | 244 | if ((b = BIO_new_fp(fp, BIO_NOCLOSE)) == NULL) { |
240 | BIO_free(b); | 245 | PEMerr(PEM_F_PEM_WRITE_PRIVATEKEY, ERR_R_BUF_LIB); |
241 | return ret; | 246 | return 0; |
242 | } | 247 | } |
248 | ret = PEM_write_bio_PrivateKey(b, x, enc, kstr, klen, cb, u); | ||
249 | BIO_free(b); | ||
250 | return ret; | ||
251 | } | ||
243 | 252 | ||
244 | #endif | 253 | #endif |
diff --git a/src/lib/libcrypto/pem/pem_seal.c b/src/lib/libcrypto/pem/pem_seal.c index bac7b16b44..e39de08c9a 100644 --- a/src/lib/libcrypto/pem/pem_seal.c +++ b/src/lib/libcrypto/pem/pem_seal.c | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -67,125 +67,129 @@ | |||
67 | #include <openssl/pem.h> | 67 | #include <openssl/pem.h> |
68 | #include <openssl/rsa.h> | 68 | #include <openssl/rsa.h> |
69 | 69 | ||
70 | int PEM_SealInit(PEM_ENCODE_SEAL_CTX *ctx, EVP_CIPHER *type, EVP_MD *md_type, | 70 | int |
71 | unsigned char **ek, int *ekl, unsigned char *iv, EVP_PKEY **pubk, | 71 | PEM_SealInit(PEM_ENCODE_SEAL_CTX *ctx, EVP_CIPHER *type, EVP_MD *md_type, |
72 | int npubk) | 72 | unsigned char **ek, int *ekl, unsigned char *iv, EVP_PKEY **pubk, int npubk) |
73 | { | 73 | { |
74 | unsigned char key[EVP_MAX_KEY_LENGTH]; | 74 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
75 | int ret= -1; | 75 | int ret = -1; |
76 | int i,j,max=0; | 76 | int i, j, max = 0; |
77 | char *s=NULL; | 77 | char *s = NULL; |
78 | 78 | ||
79 | for (i=0; i<npubk; i++) | 79 | for (i = 0; i < npubk; i++) { |
80 | { | 80 | if (pubk[i]->type != EVP_PKEY_RSA) { |
81 | if (pubk[i]->type != EVP_PKEY_RSA) | 81 | PEMerr(PEM_F_PEM_SEALINIT, PEM_R_PUBLIC_KEY_NO_RSA); |
82 | { | ||
83 | PEMerr(PEM_F_PEM_SEALINIT,PEM_R_PUBLIC_KEY_NO_RSA); | ||
84 | goto err; | 82 | goto err; |
85 | } | ||
86 | j=RSA_size(pubk[i]->pkey.rsa); | ||
87 | if (j > max) max=j; | ||
88 | } | 83 | } |
89 | s=(char *)malloc(max*2); | 84 | j = RSA_size(pubk[i]->pkey.rsa); |
90 | if (s == NULL) | 85 | if (j > max) |
91 | { | 86 | max = j; |
92 | PEMerr(PEM_F_PEM_SEALINIT,ERR_R_MALLOC_FAILURE); | 87 | } |
88 | s = (char *)malloc(max*2); | ||
89 | if (s == NULL) { | ||
90 | PEMerr(PEM_F_PEM_SEALINIT, ERR_R_MALLOC_FAILURE); | ||
93 | goto err; | 91 | goto err; |
94 | } | 92 | } |
95 | 93 | ||
96 | EVP_EncodeInit(&ctx->encode); | 94 | EVP_EncodeInit(&ctx->encode); |
97 | 95 | ||
98 | EVP_MD_CTX_init(&ctx->md); | 96 | EVP_MD_CTX_init(&ctx->md); |
99 | if (!EVP_SignInit(&ctx->md,md_type)) | 97 | if (!EVP_SignInit(&ctx->md, md_type)) |
100 | goto err; | 98 | goto err; |
101 | 99 | ||
102 | EVP_CIPHER_CTX_init(&ctx->cipher); | 100 | EVP_CIPHER_CTX_init(&ctx->cipher); |
103 | ret=EVP_SealInit(&ctx->cipher,type,ek,ekl,iv,pubk,npubk); | 101 | ret = EVP_SealInit(&ctx->cipher, type, ek, ekl, iv, pubk, npubk); |
104 | if (ret <= 0) goto err; | 102 | if (ret <= 0) |
103 | goto err; | ||
105 | 104 | ||
106 | /* base64 encode the keys */ | 105 | /* base64 encode the keys */ |
107 | for (i=0; i<npubk; i++) | 106 | for (i = 0; i < npubk; i++) { |
108 | { | 107 | j = EVP_EncodeBlock((unsigned char *)s, ek[i], |
109 | j=EVP_EncodeBlock((unsigned char *)s,ek[i], | 108 | RSA_size(pubk[i]->pkey.rsa)); |
110 | RSA_size(pubk[i]->pkey.rsa)); | 109 | ekl[i] = j; |
111 | ekl[i]=j; | 110 | memcpy(ek[i], s, j + 1); |
112 | memcpy(ek[i],s,j+1); | ||
113 | } | ||
114 | |||
115 | ret=npubk; | ||
116 | err: | ||
117 | if (s != NULL) free(s); | ||
118 | OPENSSL_cleanse(key,EVP_MAX_KEY_LENGTH); | ||
119 | return(ret); | ||
120 | } | 111 | } |
121 | 112 | ||
122 | void PEM_SealUpdate(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *out, int *outl, | 113 | ret = npubk; |
123 | unsigned char *in, int inl) | 114 | |
124 | { | 115 | err: |
116 | if (s != NULL) | ||
117 | free(s); | ||
118 | OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); | ||
119 | return (ret); | ||
120 | } | ||
121 | |||
122 | void | ||
123 | PEM_SealUpdate(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *out, int *outl, | ||
124 | unsigned char *in, int inl) | ||
125 | { | ||
125 | unsigned char buffer[1600]; | 126 | unsigned char buffer[1600]; |
126 | int i,j; | 127 | int i, j; |
127 | 128 | ||
128 | *outl=0; | 129 | *outl = 0; |
129 | EVP_SignUpdate(&ctx->md,in,inl); | 130 | EVP_SignUpdate(&ctx->md, in, inl); |
130 | for (;;) | 131 | for (;;) { |
131 | { | 132 | if (inl <= 0) |
132 | if (inl <= 0) break; | 133 | break; |
133 | if (inl > 1200) | 134 | if (inl > 1200) |
134 | i=1200; | 135 | i = 1200; |
135 | else | 136 | else |
136 | i=inl; | 137 | i = inl; |
137 | EVP_EncryptUpdate(&ctx->cipher,buffer,&j,in,i); | 138 | EVP_EncryptUpdate(&ctx->cipher, buffer, &j, in, i); |
138 | EVP_EncodeUpdate(&ctx->encode,out,&j,buffer,j); | 139 | EVP_EncodeUpdate(&ctx->encode, out, &j, buffer, j); |
139 | *outl+=j; | 140 | *outl += j; |
140 | out+=j; | 141 | out += j; |
141 | in+=i; | 142 | in += i; |
142 | inl-=i; | 143 | inl -= i; |
143 | } | ||
144 | } | 144 | } |
145 | 145 | } | |
146 | int PEM_SealFinal(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *sig, int *sigl, | 146 | |
147 | unsigned char *out, int *outl, EVP_PKEY *priv) | 147 | int |
148 | { | 148 | PEM_SealFinal(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *sig, int *sigl, |
149 | unsigned char *s=NULL; | 149 | unsigned char *out, int *outl, EVP_PKEY *priv) |
150 | int ret=0,j; | 150 | { |
151 | unsigned char *s = NULL; | ||
152 | int ret = 0, j; | ||
151 | unsigned int i; | 153 | unsigned int i; |
152 | 154 | ||
153 | if (priv->type != EVP_PKEY_RSA) | 155 | if (priv->type != EVP_PKEY_RSA) { |
154 | { | 156 | PEMerr(PEM_F_PEM_SEALFINAL, PEM_R_PUBLIC_KEY_NO_RSA); |
155 | PEMerr(PEM_F_PEM_SEALFINAL,PEM_R_PUBLIC_KEY_NO_RSA); | ||
156 | goto err; | 157 | goto err; |
157 | } | 158 | } |
158 | i=RSA_size(priv->pkey.rsa); | 159 | i = RSA_size(priv->pkey.rsa); |
159 | if (i < 100) i=100; | 160 | if (i < 100) |
160 | s=(unsigned char *)malloc(i*2); | 161 | i = 100; |
161 | if (s == NULL) | 162 | s = (unsigned char *)malloc(i*2); |
162 | { | 163 | if (s == NULL) { |
163 | PEMerr(PEM_F_PEM_SEALFINAL,ERR_R_MALLOC_FAILURE); | 164 | PEMerr(PEM_F_PEM_SEALFINAL, ERR_R_MALLOC_FAILURE); |
164 | goto err; | 165 | goto err; |
165 | } | 166 | } |
166 | 167 | ||
167 | if (!EVP_EncryptFinal_ex(&ctx->cipher,s,(int *)&i)) | 168 | if (!EVP_EncryptFinal_ex(&ctx->cipher, s, (int *)&i)) |
168 | goto err; | 169 | goto err; |
169 | EVP_EncodeUpdate(&ctx->encode,out,&j,s,i); | 170 | EVP_EncodeUpdate(&ctx->encode, out, &j, s, i); |
170 | *outl=j; | 171 | *outl = j; |
171 | out+=j; | 172 | out += j; |
172 | EVP_EncodeFinal(&ctx->encode,out,&j); | 173 | EVP_EncodeFinal(&ctx->encode, out, &j); |
173 | *outl+=j; | 174 | *outl += j; |
174 | 175 | ||
175 | if (!EVP_SignFinal(&ctx->md,s,&i,priv)) goto err; | 176 | if (!EVP_SignFinal(&ctx->md, s,&i, priv)) |
176 | *sigl=EVP_EncodeBlock(sig,s,i); | 177 | goto err; |
178 | *sigl = EVP_EncodeBlock(sig, s, i); | ||
179 | |||
180 | ret = 1; | ||
177 | 181 | ||
178 | ret=1; | ||
179 | err: | 182 | err: |
180 | EVP_MD_CTX_cleanup(&ctx->md); | 183 | EVP_MD_CTX_cleanup(&ctx->md); |
181 | EVP_CIPHER_CTX_cleanup(&ctx->cipher); | 184 | EVP_CIPHER_CTX_cleanup(&ctx->cipher); |
182 | if (s != NULL) free(s); | 185 | if (s != NULL) |
183 | return(ret); | 186 | free(s); |
184 | } | 187 | return (ret); |
188 | } | ||
185 | #else /* !OPENSSL_NO_RSA */ | 189 | #else /* !OPENSSL_NO_RSA */ |
186 | 190 | ||
187 | # if PEDANTIC | 191 | # if PEDANTIC |
188 | static void *dummy=&dummy; | 192 | static void *dummy = &dummy; |
189 | # endif | 193 | # endif |
190 | 194 | ||
191 | #endif | 195 | #endif |
diff --git a/src/lib/libcrypto/pem/pem_sign.c b/src/lib/libcrypto/pem/pem_sign.c index cbd3cd0793..ab3e5ebc64 100644 --- a/src/lib/libcrypto/pem/pem_sign.c +++ b/src/lib/libcrypto/pem/pem_sign.c | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -64,39 +64,43 @@ | |||
64 | #include <openssl/x509.h> | 64 | #include <openssl/x509.h> |
65 | #include <openssl/pem.h> | 65 | #include <openssl/pem.h> |
66 | 66 | ||
67 | void PEM_SignInit(EVP_MD_CTX *ctx, EVP_MD *type) | 67 | void |
68 | { | 68 | PEM_SignInit(EVP_MD_CTX *ctx, EVP_MD *type) |
69 | { | ||
69 | EVP_DigestInit_ex(ctx, type, NULL); | 70 | EVP_DigestInit_ex(ctx, type, NULL); |
70 | } | 71 | } |
71 | 72 | ||
72 | void PEM_SignUpdate(EVP_MD_CTX *ctx, unsigned char *data, | 73 | void |
73 | unsigned int count) | 74 | PEM_SignUpdate(EVP_MD_CTX *ctx, unsigned char *data, |
74 | { | 75 | unsigned int count) |
75 | EVP_DigestUpdate(ctx,data,count); | 76 | { |
76 | } | 77 | EVP_DigestUpdate(ctx, data, count); |
78 | } | ||
77 | 79 | ||
78 | int PEM_SignFinal(EVP_MD_CTX *ctx, unsigned char *sigret, unsigned int *siglen, | 80 | int |
79 | EVP_PKEY *pkey) | 81 | PEM_SignFinal(EVP_MD_CTX *ctx, unsigned char *sigret, unsigned int *siglen, |
80 | { | 82 | EVP_PKEY *pkey) |
83 | { | ||
81 | unsigned char *m; | 84 | unsigned char *m; |
82 | int i,ret=0; | 85 | int i, ret = 0; |
83 | unsigned int m_len; | 86 | unsigned int m_len; |
84 | 87 | ||
85 | m=(unsigned char *)malloc(EVP_PKEY_size(pkey)+2); | 88 | m = (unsigned char *)malloc(EVP_PKEY_size(pkey) + 2); |
86 | if (m == NULL) | 89 | if (m == NULL) { |
87 | { | 90 | PEMerr(PEM_F_PEM_SIGNFINAL, ERR_R_MALLOC_FAILURE); |
88 | PEMerr(PEM_F_PEM_SIGNFINAL,ERR_R_MALLOC_FAILURE); | 91 | goto err; |
92 | } | ||
93 | |||
94 | if (EVP_SignFinal(ctx, m,&m_len, pkey) <= 0) | ||
89 | goto err; | 95 | goto err; |
90 | } | ||
91 | 96 | ||
92 | if (EVP_SignFinal(ctx,m,&m_len,pkey) <= 0) goto err; | 97 | i = EVP_EncodeBlock(sigret, m, m_len); |
98 | *siglen = i; | ||
99 | ret = 1; | ||
93 | 100 | ||
94 | i=EVP_EncodeBlock(sigret,m,m_len); | ||
95 | *siglen=i; | ||
96 | ret=1; | ||
97 | err: | 101 | err: |
98 | /* ctx has been zeroed by EVP_SignFinal() */ | 102 | /* ctx has been zeroed by EVP_SignFinal() */ |
99 | if (m != NULL) free(m); | 103 | if (m != NULL) |
100 | return(ret); | 104 | free(m); |
101 | } | 105 | return (ret); |
102 | 106 | } | |
diff --git a/src/lib/libcrypto/pem/pem_x509.c b/src/lib/libcrypto/pem/pem_x509.c index b531057dc9..57b7d1d53b 100644 --- a/src/lib/libcrypto/pem/pem_x509.c +++ b/src/lib/libcrypto/pem/pem_x509.c | |||
@@ -10,7 +10,7 @@ | |||
10 | * are met: | 10 | * are met: |
11 | * | 11 | * |
12 | * 1. Redistributions of source code must retain the above copyright | 12 | * 1. Redistributions of source code must retain the above copyright |
13 | * notice, this list of conditions and the following disclaimer. | 13 | * notice, this list of conditions and the following disclaimer. |
14 | * | 14 | * |
15 | * 2. Redistributions in binary form must reproduce the above copyright | 15 | * 2. Redistributions in binary form must reproduce the above copyright |
16 | * notice, this list of conditions and the following disclaimer in | 16 | * notice, this list of conditions and the following disclaimer in |
@@ -65,4 +65,3 @@ | |||
65 | #include <openssl/pem.h> | 65 | #include <openssl/pem.h> |
66 | 66 | ||
67 | IMPLEMENT_PEM_rw(X509, X509, PEM_STRING_X509, X509) | 67 | IMPLEMENT_PEM_rw(X509, X509, PEM_STRING_X509, X509) |
68 | |||
diff --git a/src/lib/libcrypto/pem/pem_xaux.c b/src/lib/libcrypto/pem/pem_xaux.c index 328f796200..ae381ce54b 100644 --- a/src/lib/libcrypto/pem/pem_xaux.c +++ b/src/lib/libcrypto/pem/pem_xaux.c | |||
@@ -10,7 +10,7 @@ | |||
10 | * are met: | 10 | * are met: |
11 | * | 11 | * |
12 | * 1. Redistributions of source code must retain the above copyright | 12 | * 1. Redistributions of source code must retain the above copyright |
13 | * notice, this list of conditions and the following disclaimer. | 13 | * notice, this list of conditions and the following disclaimer. |
14 | * | 14 | * |
15 | * 2. Redistributions in binary form must reproduce the above copyright | 15 | * 2. Redistributions in binary form must reproduce the above copyright |
16 | * notice, this list of conditions and the following disclaimer in | 16 | * notice, this list of conditions and the following disclaimer in |
@@ -65,4 +65,5 @@ | |||
65 | #include <openssl/pem.h> | 65 | #include <openssl/pem.h> |
66 | 66 | ||
67 | IMPLEMENT_PEM_rw(X509_AUX, X509, PEM_STRING_X509_TRUSTED, X509_AUX) | 67 | IMPLEMENT_PEM_rw(X509_AUX, X509, PEM_STRING_X509_TRUSTED, X509_AUX) |
68 | IMPLEMENT_PEM_rw(X509_CERT_PAIR, X509_CERT_PAIR, PEM_STRING_X509_PAIR, X509_CERT_PAIR) | 68 | IMPLEMENT_PEM_rw(X509_CERT_PAIR, X509_CERT_PAIR, PEM_STRING_X509_PAIR, |
69 | X509_CERT_PAIR) | ||
diff --git a/src/lib/libcrypto/pem/pvkfmt.c b/src/lib/libcrypto/pem/pvkfmt.c index 59af2020ab..a7815a2372 100644 --- a/src/lib/libcrypto/pem/pvkfmt.c +++ b/src/lib/libcrypto/pem/pvkfmt.c | |||
@@ -9,7 +9,7 @@ | |||
9 | * are met: | 9 | * are met: |
10 | * | 10 | * |
11 | * 1. Redistributions of source code must retain the above copyright | 11 | * 1. Redistributions of source code must retain the above copyright |
12 | * notice, this list of conditions and the following disclaimer. | 12 | * notice, this list of conditions and the following disclaimer. |
13 | * | 13 | * |
14 | * 2. Redistributions in binary form must reproduce the above copyright | 14 | * 2. Redistributions in binary form must reproduce the above copyright |
15 | * notice, this list of conditions and the following disclaimer in | 15 | * notice, this list of conditions and the following disclaimer in |
@@ -71,27 +71,31 @@ | |||
71 | * format | 71 | * format |
72 | */ | 72 | */ |
73 | 73 | ||
74 | static unsigned int read_ledword(const unsigned char **in) | 74 | static unsigned int |
75 | { | 75 | read_ledword(const unsigned char **in) |
76 | { | ||
76 | const unsigned char *p = *in; | 77 | const unsigned char *p = *in; |
77 | unsigned int ret; | 78 | unsigned int ret; |
79 | |||
78 | ret = *p++; | 80 | ret = *p++; |
79 | ret |= (*p++ << 8); | 81 | ret |= (*p++ << 8); |
80 | ret |= (*p++ << 16); | 82 | ret |= (*p++ << 16); |
81 | ret |= (*p++ << 24); | 83 | ret |= (*p++ << 24); |
82 | *in = p; | 84 | *in = p; |
83 | return ret; | 85 | return ret; |
84 | } | 86 | } |
85 | 87 | ||
86 | /* Read a BIGNUM in little endian format. The docs say that this should take up | 88 | /* Read a BIGNUM in little endian format. The docs say that this should take up |
87 | * bitlen/8 bytes. | 89 | * bitlen/8 bytes. |
88 | */ | 90 | */ |
89 | 91 | ||
90 | static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r) | 92 | static int |
91 | { | 93 | read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r) |
94 | { | ||
92 | const unsigned char *p; | 95 | const unsigned char *p; |
93 | unsigned char *tmpbuf, *q; | 96 | unsigned char *tmpbuf, *q; |
94 | unsigned int i; | 97 | unsigned int i; |
98 | |||
95 | p = *in + nbyte - 1; | 99 | p = *in + nbyte - 1; |
96 | tmpbuf = malloc(nbyte); | 100 | tmpbuf = malloc(nbyte); |
97 | if (!tmpbuf) | 101 | if (!tmpbuf) |
@@ -101,14 +105,12 @@ static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r) | |||
101 | *q++ = *p--; | 105 | *q++ = *p--; |
102 | *r = BN_bin2bn(tmpbuf, nbyte, NULL); | 106 | *r = BN_bin2bn(tmpbuf, nbyte, NULL); |
103 | free(tmpbuf); | 107 | free(tmpbuf); |
104 | if (*r) | 108 | if (*r) { |
105 | { | ||
106 | *in += nbyte; | 109 | *in += nbyte; |
107 | return 1; | 110 | return 1; |
108 | } | 111 | } else |
109 | else | ||
110 | return 0; | 112 | return 0; |
111 | } | 113 | } |
112 | 114 | ||
113 | 115 | ||
114 | /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */ | 116 | /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */ |
@@ -132,106 +134,96 @@ static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r) | |||
132 | #define PVK_SALTLEN 0x10 | 134 | #define PVK_SALTLEN 0x10 |
133 | 135 | ||
134 | static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length, | 136 | static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length, |
135 | unsigned int bitlen, int ispub); | 137 | unsigned int bitlen, int ispub); |
136 | static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, | 138 | static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, |
137 | unsigned int bitlen, int ispub); | 139 | unsigned int bitlen, int ispub); |
138 | 140 | ||
139 | static int do_blob_header(const unsigned char **in, unsigned int length, | 141 | static int |
140 | unsigned int *pmagic, unsigned int *pbitlen, | 142 | do_blob_header(const unsigned char **in, unsigned int length, |
141 | int *pisdss, int *pispub) | 143 | unsigned int *pmagic, unsigned int *pbitlen, int *pisdss, int *pispub) |
142 | { | 144 | { |
143 | const unsigned char *p = *in; | 145 | const unsigned char *p = *in; |
146 | |||
144 | if (length < 16) | 147 | if (length < 16) |
145 | return 0; | 148 | return 0; |
146 | /* bType */ | 149 | /* bType */ |
147 | if (*p == MS_PUBLICKEYBLOB) | 150 | if (*p == MS_PUBLICKEYBLOB) { |
148 | { | 151 | if (*pispub == 0) { |
149 | if (*pispub == 0) | ||
150 | { | ||
151 | PEMerr(PEM_F_DO_BLOB_HEADER, | 152 | PEMerr(PEM_F_DO_BLOB_HEADER, |
152 | PEM_R_EXPECTING_PRIVATE_KEY_BLOB); | 153 | PEM_R_EXPECTING_PRIVATE_KEY_BLOB); |
153 | return 0; | 154 | return 0; |
154 | } | ||
155 | *pispub = 1; | ||
156 | } | 155 | } |
157 | else if (*p == MS_PRIVATEKEYBLOB) | 156 | *pispub = 1; |
158 | { | 157 | } else if (*p == MS_PRIVATEKEYBLOB) { |
159 | if (*pispub == 1) | 158 | if (*pispub == 1) { |
160 | { | ||
161 | PEMerr(PEM_F_DO_BLOB_HEADER, | 159 | PEMerr(PEM_F_DO_BLOB_HEADER, |
162 | PEM_R_EXPECTING_PUBLIC_KEY_BLOB); | 160 | PEM_R_EXPECTING_PUBLIC_KEY_BLOB); |
163 | return 0; | 161 | return 0; |
164 | } | ||
165 | *pispub = 0; | ||
166 | } | 162 | } |
167 | else | 163 | *pispub = 0; |
164 | } else | ||
168 | return 0; | 165 | return 0; |
169 | p++; | 166 | p++; |
170 | /* Version */ | 167 | /* Version */ |
171 | if (*p++ != 0x2) | 168 | if (*p++ != 0x2) { |
172 | { | ||
173 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER); | 169 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER); |
174 | return 0; | 170 | return 0; |
175 | } | 171 | } |
176 | /* Ignore reserved, aiKeyAlg */ | 172 | /* Ignore reserved, aiKeyAlg */ |
177 | p+= 6; | 173 | p += 6; |
178 | *pmagic = read_ledword(&p); | 174 | *pmagic = read_ledword(&p); |
179 | *pbitlen = read_ledword(&p); | 175 | *pbitlen = read_ledword(&p); |
180 | *pisdss = 0; | 176 | *pisdss = 0; |
181 | switch (*pmagic) | 177 | switch (*pmagic) { |
182 | { | ||
183 | 178 | ||
184 | case MS_DSS1MAGIC: | 179 | case MS_DSS1MAGIC: |
185 | *pisdss = 1; | 180 | *pisdss = 1; |
186 | case MS_RSA1MAGIC: | 181 | case MS_RSA1MAGIC: |
187 | if (*pispub == 0) | 182 | if (*pispub == 0) { |
188 | { | ||
189 | PEMerr(PEM_F_DO_BLOB_HEADER, | 183 | PEMerr(PEM_F_DO_BLOB_HEADER, |
190 | PEM_R_EXPECTING_PRIVATE_KEY_BLOB); | 184 | PEM_R_EXPECTING_PRIVATE_KEY_BLOB); |
191 | return 0; | 185 | return 0; |
192 | } | 186 | } |
193 | break; | 187 | break; |
194 | 188 | ||
195 | case MS_DSS2MAGIC: | 189 | case MS_DSS2MAGIC: |
196 | *pisdss = 1; | 190 | *pisdss = 1; |
197 | case MS_RSA2MAGIC: | 191 | case MS_RSA2MAGIC: |
198 | if (*pispub == 1) | 192 | if (*pispub == 1) { |
199 | { | ||
200 | PEMerr(PEM_F_DO_BLOB_HEADER, | 193 | PEMerr(PEM_F_DO_BLOB_HEADER, |
201 | PEM_R_EXPECTING_PUBLIC_KEY_BLOB); | 194 | PEM_R_EXPECTING_PUBLIC_KEY_BLOB); |
202 | return 0; | 195 | return 0; |
203 | } | 196 | } |
204 | break; | 197 | break; |
205 | 198 | ||
206 | default: | 199 | default: |
207 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER); | 200 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER); |
208 | return -1; | 201 | return -1; |
209 | } | 202 | } |
210 | *in = p; | 203 | *in = p; |
211 | return 1; | 204 | return 1; |
212 | } | 205 | } |
213 | 206 | ||
214 | static unsigned int blob_length(unsigned bitlen, int isdss, int ispub) | 207 | static unsigned int |
215 | { | 208 | blob_length(unsigned bitlen, int isdss, int ispub) |
209 | { | ||
216 | unsigned int nbyte, hnbyte; | 210 | unsigned int nbyte, hnbyte; |
211 | |||
217 | nbyte = (bitlen + 7) >> 3; | 212 | nbyte = (bitlen + 7) >> 3; |
218 | hnbyte = (bitlen + 15) >> 4; | 213 | hnbyte = (bitlen + 15) >> 4; |
219 | if (isdss) | 214 | if (isdss) { |
220 | { | ||
221 | 215 | ||
222 | /* Expected length: 20 for q + 3 components bitlen each + 24 | 216 | /* Expected length: 20 for q + 3 components bitlen each + 24 |
223 | * for seed structure. | 217 | * for seed structure. |
224 | */ | 218 | */ |
225 | if (ispub) | 219 | if (ispub) |
226 | return 44 + 3 * nbyte; | 220 | return 44 + 3 * nbyte; |
227 | /* Expected length: 20 for q, priv, 2 bitlen components + 24 | 221 | /* Expected length: 20 for q, priv, 2 bitlen components + 24 |
228 | * for seed structure. | 222 | * for seed structure. |
229 | */ | 223 | */ |
230 | else | 224 | else |
231 | return 64 + 2 * nbyte; | 225 | return 64 + 2 * nbyte; |
232 | } | 226 | } else { |
233 | else | ||
234 | { | ||
235 | /* Expected length: 4 for 'e' + 'n' */ | 227 | /* Expected length: 4 for 'e' + 'n' */ |
236 | if (ispub) | 228 | if (ispub) |
237 | return 4 + nbyte; | 229 | return 4 + nbyte; |
@@ -239,83 +231,83 @@ static unsigned int blob_length(unsigned bitlen, int isdss, int ispub) | |||
239 | /* Expected length: 4 for 'e' and 7 other components. | 231 | /* Expected length: 4 for 'e' and 7 other components. |
240 | * 2 components are bitlen size, 5 are bitlen/2 | 232 | * 2 components are bitlen size, 5 are bitlen/2 |
241 | */ | 233 | */ |
242 | return 4 + 2*nbyte + 5*hnbyte; | 234 | return 4 + 2*nbyte + 5*hnbyte; |
243 | } | ||
244 | |||
245 | } | 235 | } |
246 | 236 | ||
247 | static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length, | 237 | } |
248 | int ispub) | 238 | |
249 | { | 239 | static EVP_PKEY * |
240 | do_b2i(const unsigned char **in, unsigned int length, int ispub) | ||
241 | { | ||
250 | const unsigned char *p = *in; | 242 | const unsigned char *p = *in; |
251 | unsigned int bitlen, magic; | 243 | unsigned int bitlen, magic; |
252 | int isdss; | 244 | int isdss; |
253 | if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) | 245 | |
254 | { | 246 | if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) { |
255 | PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR); | 247 | PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR); |
256 | return NULL; | 248 | return NULL; |
257 | } | 249 | } |
258 | length -= 16; | 250 | length -= 16; |
259 | if (length < blob_length(bitlen, isdss, ispub)) | 251 | if (length < blob_length(bitlen, isdss, ispub)) { |
260 | { | ||
261 | PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT); | 252 | PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT); |
262 | return NULL; | 253 | return NULL; |
263 | } | 254 | } |
264 | if (isdss) | 255 | if (isdss) |
265 | return b2i_dss(&p, length, bitlen, ispub); | 256 | return b2i_dss(&p, length, bitlen, ispub); |
266 | else | 257 | else |
267 | return b2i_rsa(&p, length, bitlen, ispub); | 258 | return b2i_rsa(&p, length, bitlen, ispub); |
268 | } | 259 | } |
269 | 260 | ||
270 | static EVP_PKEY *do_b2i_bio(BIO *in, int ispub) | 261 | static EVP_PKEY * |
271 | { | 262 | do_b2i_bio(BIO *in, int ispub) |
263 | { | ||
272 | const unsigned char *p; | 264 | const unsigned char *p; |
273 | unsigned char hdr_buf[16], *buf = NULL; | 265 | unsigned char hdr_buf[16], *buf = NULL; |
274 | unsigned int bitlen, magic, length; | 266 | unsigned int bitlen, magic, length; |
275 | int isdss; | 267 | int isdss; |
276 | EVP_PKEY *ret = NULL; | 268 | EVP_PKEY *ret = NULL; |
277 | if (BIO_read(in, hdr_buf, 16) != 16) | 269 | |
278 | { | 270 | if (BIO_read(in, hdr_buf, 16) != 16) { |
279 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); | 271 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); |
280 | return NULL; | 272 | return NULL; |
281 | } | 273 | } |
282 | p = hdr_buf; | 274 | p = hdr_buf; |
283 | if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0) | 275 | if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0) |
284 | return NULL; | 276 | return NULL; |
285 | 277 | ||
286 | length = blob_length(bitlen, isdss, ispub); | 278 | length = blob_length(bitlen, isdss, ispub); |
287 | buf = malloc(length); | 279 | buf = malloc(length); |
288 | if (!buf) | 280 | if (!buf) { |
289 | { | ||
290 | PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE); | 281 | PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE); |
291 | goto err; | 282 | goto err; |
292 | } | 283 | } |
293 | p = buf; | 284 | p = buf; |
294 | if (BIO_read(in, buf, length) != (int)length) | 285 | if (BIO_read(in, buf, length) != (int)length) { |
295 | { | ||
296 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); | 286 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); |
297 | goto err; | 287 | goto err; |
298 | } | 288 | } |
299 | 289 | ||
300 | if (isdss) | 290 | if (isdss) |
301 | ret = b2i_dss(&p, length, bitlen, ispub); | 291 | ret = b2i_dss(&p, length, bitlen, ispub); |
302 | else | 292 | else |
303 | ret = b2i_rsa(&p, length, bitlen, ispub); | 293 | ret = b2i_rsa(&p, length, bitlen, ispub); |
304 | 294 | ||
305 | err: | 295 | err: |
306 | if (buf) | 296 | if (buf) |
307 | free(buf); | 297 | free(buf); |
308 | return ret; | 298 | return ret; |
309 | } | 299 | } |
310 | 300 | ||
311 | static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, | 301 | static EVP_PKEY * |
312 | unsigned int bitlen, int ispub) | 302 | b2i_dss(const unsigned char **in, unsigned int length, unsigned int bitlen, |
313 | { | 303 | int ispub) |
304 | { | ||
314 | const unsigned char *p = *in; | 305 | const unsigned char *p = *in; |
315 | EVP_PKEY *ret = NULL; | 306 | EVP_PKEY *ret = NULL; |
316 | DSA *dsa = NULL; | 307 | DSA *dsa = NULL; |
317 | BN_CTX *ctx = NULL; | 308 | BN_CTX *ctx = NULL; |
318 | unsigned int nbyte; | 309 | unsigned int nbyte; |
310 | |||
319 | nbyte = (bitlen + 7) >> 3; | 311 | nbyte = (bitlen + 7) >> 3; |
320 | 312 | ||
321 | dsa = DSA_new(); | 313 | dsa = DSA_new(); |
@@ -328,13 +320,10 @@ static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, | |||
328 | goto memerr; | 320 | goto memerr; |
329 | if (!read_lebn(&p, nbyte, &dsa->g)) | 321 | if (!read_lebn(&p, nbyte, &dsa->g)) |
330 | goto memerr; | 322 | goto memerr; |
331 | if (ispub) | 323 | if (ispub) { |
332 | { | ||
333 | if (!read_lebn(&p, nbyte, &dsa->pub_key)) | 324 | if (!read_lebn(&p, nbyte, &dsa->pub_key)) |
334 | goto memerr; | 325 | goto memerr; |
335 | } | 326 | } else { |
336 | else | ||
337 | { | ||
338 | if (!read_lebn(&p, 20, &dsa->priv_key)) | 327 | if (!read_lebn(&p, 20, &dsa->priv_key)) |
339 | goto memerr; | 328 | goto memerr; |
340 | /* Calculate public key */ | 329 | /* Calculate public key */ |
@@ -342,20 +331,18 @@ static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, | |||
342 | goto memerr; | 331 | goto memerr; |
343 | if (!(ctx = BN_CTX_new())) | 332 | if (!(ctx = BN_CTX_new())) |
344 | goto memerr; | 333 | goto memerr; |
345 | |||
346 | if (!BN_mod_exp(dsa->pub_key, dsa->g, | 334 | if (!BN_mod_exp(dsa->pub_key, dsa->g, |
347 | dsa->priv_key, dsa->p, ctx)) | 335 | dsa->priv_key, dsa->p, ctx)) |
348 | |||
349 | goto memerr; | 336 | goto memerr; |
350 | BN_CTX_free(ctx); | 337 | BN_CTX_free(ctx); |
351 | } | 338 | } |
352 | 339 | ||
353 | EVP_PKEY_set1_DSA(ret, dsa); | 340 | EVP_PKEY_set1_DSA(ret, dsa); |
354 | DSA_free(dsa); | 341 | DSA_free(dsa); |
355 | *in = p; | 342 | *in = p; |
356 | return ret; | 343 | return ret; |
357 | 344 | ||
358 | memerr: | 345 | memerr: |
359 | PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE); | 346 | PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE); |
360 | if (dsa) | 347 | if (dsa) |
361 | DSA_free(dsa); | 348 | DSA_free(dsa); |
@@ -364,16 +351,17 @@ static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, | |||
364 | if (ctx) | 351 | if (ctx) |
365 | BN_CTX_free(ctx); | 352 | BN_CTX_free(ctx); |
366 | return NULL; | 353 | return NULL; |
367 | } | 354 | } |
368 | 355 | ||
369 | static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length, | 356 | static EVP_PKEY * |
370 | unsigned int bitlen, int ispub) | 357 | b2i_rsa(const unsigned char **in, unsigned int length, unsigned int bitlen, |
371 | 358 | int ispub) | |
372 | { | 359 | { |
373 | const unsigned char *p = *in; | 360 | const unsigned char *p = *in; |
374 | EVP_PKEY *ret = NULL; | 361 | EVP_PKEY *ret = NULL; |
375 | RSA *rsa = NULL; | 362 | RSA *rsa = NULL; |
376 | unsigned int nbyte, hnbyte; | 363 | unsigned int nbyte, hnbyte; |
364 | |||
377 | nbyte = (bitlen + 7) >> 3; | 365 | nbyte = (bitlen + 7) >> 3; |
378 | hnbyte = (bitlen + 15) >> 4; | 366 | hnbyte = (bitlen + 15) >> 4; |
379 | rsa = RSA_new(); | 367 | rsa = RSA_new(); |
@@ -387,8 +375,7 @@ static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length, | |||
387 | goto memerr; | 375 | goto memerr; |
388 | if (!read_lebn(&p, nbyte, &rsa->n)) | 376 | if (!read_lebn(&p, nbyte, &rsa->n)) |
389 | goto memerr; | 377 | goto memerr; |
390 | if (!ispub) | 378 | if (!ispub) { |
391 | { | ||
392 | if (!read_lebn(&p, hnbyte, &rsa->p)) | 379 | if (!read_lebn(&p, hnbyte, &rsa->p)) |
393 | goto memerr; | 380 | goto memerr; |
394 | if (!read_lebn(&p, hnbyte, &rsa->q)) | 381 | if (!read_lebn(&p, hnbyte, &rsa->q)) |
@@ -401,78 +388,83 @@ static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length, | |||
401 | goto memerr; | 388 | goto memerr; |
402 | if (!read_lebn(&p, nbyte, &rsa->d)) | 389 | if (!read_lebn(&p, nbyte, &rsa->d)) |
403 | goto memerr; | 390 | goto memerr; |
404 | } | 391 | } |
405 | 392 | ||
406 | EVP_PKEY_set1_RSA(ret, rsa); | 393 | EVP_PKEY_set1_RSA(ret, rsa); |
407 | RSA_free(rsa); | 394 | RSA_free(rsa); |
408 | *in = p; | 395 | *in = p; |
409 | return ret; | 396 | return ret; |
410 | memerr: | 397 | |
398 | memerr: | ||
411 | PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE); | 399 | PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE); |
412 | if (rsa) | 400 | if (rsa) |
413 | RSA_free(rsa); | 401 | RSA_free(rsa); |
414 | if (ret) | 402 | if (ret) |
415 | EVP_PKEY_free(ret); | 403 | EVP_PKEY_free(ret); |
416 | return NULL; | 404 | return NULL; |
417 | } | 405 | } |
418 | 406 | ||
419 | EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length) | 407 | EVP_PKEY * |
420 | { | 408 | b2i_PrivateKey(const unsigned char **in, long length) |
409 | { | ||
421 | return do_b2i(in, length, 0); | 410 | return do_b2i(in, length, 0); |
422 | } | 411 | } |
423 | 412 | ||
424 | EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length) | 413 | EVP_PKEY * |
425 | { | 414 | b2i_PublicKey(const unsigned char **in, long length) |
415 | { | ||
426 | return do_b2i(in, length, 1); | 416 | return do_b2i(in, length, 1); |
427 | } | 417 | } |
428 | 418 | ||
429 | 419 | EVP_PKEY * | |
430 | EVP_PKEY *b2i_PrivateKey_bio(BIO *in) | 420 | b2i_PrivateKey_bio(BIO *in) |
431 | { | 421 | { |
432 | return do_b2i_bio(in, 0); | 422 | return do_b2i_bio(in, 0); |
433 | } | 423 | } |
434 | 424 | ||
435 | EVP_PKEY *b2i_PublicKey_bio(BIO *in) | 425 | EVP_PKEY * |
436 | { | 426 | b2i_PublicKey_bio(BIO *in) |
427 | { | ||
437 | return do_b2i_bio(in, 1); | 428 | return do_b2i_bio(in, 1); |
438 | } | 429 | } |
439 | 430 | ||
440 | static void write_ledword(unsigned char **out, unsigned int dw) | 431 | static void |
441 | { | 432 | write_ledword(unsigned char **out, unsigned int dw) |
433 | { | ||
442 | unsigned char *p = *out; | 434 | unsigned char *p = *out; |
435 | |||
443 | *p++ = dw & 0xff; | 436 | *p++ = dw & 0xff; |
444 | *p++ = (dw>>8) & 0xff; | 437 | *p++ = (dw >> 8) & 0xff; |
445 | *p++ = (dw>>16) & 0xff; | 438 | *p++ = (dw >> 16) & 0xff; |
446 | *p++ = (dw>>24) & 0xff; | 439 | *p++ = (dw >> 24) & 0xff; |
447 | *out = p; | 440 | *out = p; |
448 | } | 441 | } |
449 | 442 | ||
450 | static void write_lebn(unsigned char **out, const BIGNUM *bn, int len) | 443 | static void |
451 | { | 444 | write_lebn(unsigned char **out, const BIGNUM *bn, int len) |
445 | { | ||
452 | int nb, i; | 446 | int nb, i; |
453 | unsigned char *p = *out, *q, c; | 447 | unsigned char *p = *out, *q, c; |
448 | |||
454 | nb = BN_num_bytes(bn); | 449 | nb = BN_num_bytes(bn); |
455 | BN_bn2bin(bn, p); | 450 | BN_bn2bin(bn, p); |
456 | q = p + nb - 1; | 451 | q = p + nb - 1; |
457 | /* In place byte order reversal */ | 452 | /* In place byte order reversal */ |
458 | for (i = 0; i < nb/2; i++) | 453 | for (i = 0; i < nb / 2; i++) { |
459 | { | ||
460 | c = *p; | 454 | c = *p; |
461 | *p++ = *q; | 455 | *p++ = *q; |
462 | *q-- = c; | 456 | *q-- = c; |
463 | } | 457 | } |
464 | *out += nb; | 458 | *out += nb; |
465 | /* Pad with zeroes if we have to */ | 459 | /* Pad with zeroes if we have to */ |
466 | if (len > 0) | 460 | if (len > 0) { |
467 | { | ||
468 | len -= nb; | 461 | len -= nb; |
469 | if (len > 0) | 462 | if (len > 0) { |
470 | { | ||
471 | memset(*out, 0, len); | 463 | memset(*out, 0, len); |
472 | *out += len; | 464 | *out += len; |
473 | } | ||
474 | } | 465 | } |
475 | } | 466 | } |
467 | } | ||
476 | 468 | ||
477 | 469 | ||
478 | static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic); | 470 | static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic); |
@@ -480,40 +472,37 @@ static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic); | |||
480 | 472 | ||
481 | static void write_rsa(unsigned char **out, RSA *rsa, int ispub); | 473 | static void write_rsa(unsigned char **out, RSA *rsa, int ispub); |
482 | static void write_dsa(unsigned char **out, DSA *dsa, int ispub); | 474 | static void write_dsa(unsigned char **out, DSA *dsa, int ispub); |
483 | 475 | ||
484 | static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub) | 476 | static int |
485 | { | 477 | do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub) |
478 | { | ||
486 | unsigned char *p; | 479 | unsigned char *p; |
487 | unsigned int bitlen, magic = 0, keyalg; | 480 | unsigned int bitlen, magic = 0, keyalg; |
488 | int outlen, noinc = 0; | 481 | int outlen, noinc = 0; |
489 | if (pk->type == EVP_PKEY_DSA) | 482 | |
490 | { | 483 | if (pk->type == EVP_PKEY_DSA) { |
491 | bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic); | 484 | bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic); |
492 | keyalg = MS_KEYALG_DSS_SIGN; | 485 | keyalg = MS_KEYALG_DSS_SIGN; |
493 | } | 486 | } else if (pk->type == EVP_PKEY_RSA) { |
494 | else if (pk->type == EVP_PKEY_RSA) | ||
495 | { | ||
496 | bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic); | 487 | bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic); |
497 | keyalg = MS_KEYALG_RSA_KEYX; | 488 | keyalg = MS_KEYALG_RSA_KEYX; |
498 | } | 489 | } else |
499 | else | ||
500 | return -1; | 490 | return -1; |
501 | if (bitlen == 0) | 491 | if (bitlen == 0) |
502 | return -1; | 492 | return -1; |
503 | outlen = 16 + blob_length(bitlen, | 493 | outlen = 16 + blob_length(bitlen, |
504 | keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub); | 494 | keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub); |
505 | if (out == NULL) | 495 | if (out == NULL) |
506 | return outlen; | 496 | return outlen; |
507 | if (*out) | 497 | if (*out) |
508 | p = *out; | 498 | p = *out; |
509 | else | 499 | else { |
510 | { | ||
511 | p = malloc(outlen); | 500 | p = malloc(outlen); |
512 | if (!p) | 501 | if (!p) |
513 | return -1; | 502 | return -1; |
514 | *out = p; | 503 | *out = p; |
515 | noinc = 1; | 504 | noinc = 1; |
516 | } | 505 | } |
517 | if (ispub) | 506 | if (ispub) |
518 | *p++ = MS_PUBLICKEYBLOB; | 507 | *p++ = MS_PUBLICKEYBLOB; |
519 | else | 508 | else |
@@ -531,12 +520,14 @@ static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub) | |||
531 | if (!noinc) | 520 | if (!noinc) |
532 | *out += outlen; | 521 | *out += outlen; |
533 | return outlen; | 522 | return outlen; |
534 | } | 523 | } |
535 | 524 | ||
536 | static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub) | 525 | static int |
537 | { | 526 | do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub) |
527 | { | ||
538 | unsigned char *tmp = NULL; | 528 | unsigned char *tmp = NULL; |
539 | int outlen, wrlen; | 529 | int outlen, wrlen; |
530 | |||
540 | outlen = do_i2b(&tmp, pk, ispub); | 531 | outlen = do_i2b(&tmp, pk, ispub); |
541 | if (outlen < 0) | 532 | if (outlen < 0) |
542 | return -1; | 533 | return -1; |
@@ -545,72 +536,73 @@ static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub) | |||
545 | if (wrlen == outlen) | 536 | if (wrlen == outlen) |
546 | return outlen; | 537 | return outlen; |
547 | return -1; | 538 | return -1; |
548 | } | 539 | } |
549 | 540 | ||
550 | static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic) | 541 | static int |
551 | { | 542 | check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic) |
543 | { | ||
552 | int bitlen; | 544 | int bitlen; |
545 | |||
553 | bitlen = BN_num_bits(dsa->p); | 546 | bitlen = BN_num_bits(dsa->p); |
554 | if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160) | 547 | if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160) || |
555 | || (BN_num_bits(dsa->g) > bitlen)) | 548 | (BN_num_bits(dsa->g) > bitlen)) |
556 | goto badkey; | 549 | goto badkey; |
557 | if (ispub) | 550 | if (ispub) { |
558 | { | ||
559 | if (BN_num_bits(dsa->pub_key) > bitlen) | 551 | if (BN_num_bits(dsa->pub_key) > bitlen) |
560 | goto badkey; | 552 | goto badkey; |
561 | *pmagic = MS_DSS1MAGIC; | 553 | *pmagic = MS_DSS1MAGIC; |
562 | } | 554 | } else { |
563 | else | ||
564 | { | ||
565 | if (BN_num_bits(dsa->priv_key) > 160) | 555 | if (BN_num_bits(dsa->priv_key) > 160) |
566 | goto badkey; | 556 | goto badkey; |
567 | *pmagic = MS_DSS2MAGIC; | 557 | *pmagic = MS_DSS2MAGIC; |
568 | } | 558 | } |
569 | 559 | ||
570 | return bitlen; | 560 | return bitlen; |
571 | badkey: | 561 | |
562 | badkey: | ||
572 | PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); | 563 | PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); |
573 | return 0; | 564 | return 0; |
574 | } | 565 | } |
575 | 566 | ||
576 | static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic) | 567 | static int |
577 | { | 568 | check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic) |
569 | { | ||
578 | int nbyte, hnbyte, bitlen; | 570 | int nbyte, hnbyte, bitlen; |
571 | |||
579 | if (BN_num_bits(rsa->e) > 32) | 572 | if (BN_num_bits(rsa->e) > 32) |
580 | goto badkey; | 573 | goto badkey; |
581 | bitlen = BN_num_bits(rsa->n); | 574 | bitlen = BN_num_bits(rsa->n); |
582 | nbyte = BN_num_bytes(rsa->n); | 575 | nbyte = BN_num_bytes(rsa->n); |
583 | hnbyte = (BN_num_bits(rsa->n) + 15) >> 4; | 576 | hnbyte = (BN_num_bits(rsa->n) + 15) >> 4; |
584 | if (ispub) | 577 | if (ispub) { |
585 | { | ||
586 | *pmagic = MS_RSA1MAGIC; | 578 | *pmagic = MS_RSA1MAGIC; |
587 | return bitlen; | 579 | return bitlen; |
588 | } | 580 | } else { |
589 | else | ||
590 | { | ||
591 | *pmagic = MS_RSA2MAGIC; | 581 | *pmagic = MS_RSA2MAGIC; |
592 | /* For private key each component must fit within nbyte or | 582 | /* For private key each component must fit within nbyte or |
593 | * hnbyte. | 583 | * hnbyte. |
594 | */ | 584 | */ |
595 | if (BN_num_bytes(rsa->d) > nbyte) | 585 | if (BN_num_bytes(rsa->d) > nbyte) |
596 | goto badkey; | 586 | goto badkey; |
597 | if ((BN_num_bytes(rsa->iqmp) > hnbyte) | 587 | if ((BN_num_bytes(rsa->iqmp) > hnbyte) || |
598 | || (BN_num_bytes(rsa->p) > hnbyte) | 588 | (BN_num_bytes(rsa->p) > hnbyte) || |
599 | || (BN_num_bytes(rsa->q) > hnbyte) | 589 | (BN_num_bytes(rsa->q) > hnbyte) || |
600 | || (BN_num_bytes(rsa->dmp1) > hnbyte) | 590 | (BN_num_bytes(rsa->dmp1) > hnbyte) || |
601 | || (BN_num_bytes(rsa->dmq1) > hnbyte)) | 591 | (BN_num_bytes(rsa->dmq1) > hnbyte)) |
602 | goto badkey; | 592 | goto badkey; |
603 | } | 593 | } |
604 | return bitlen; | 594 | return bitlen; |
605 | badkey: | 595 | |
596 | badkey: | ||
606 | PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); | 597 | PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); |
607 | return 0; | 598 | return 0; |
608 | } | 599 | } |
609 | |||
610 | 600 | ||
611 | static void write_rsa(unsigned char **out, RSA *rsa, int ispub) | 601 | static void |
612 | { | 602 | write_rsa(unsigned char **out, RSA *rsa, int ispub) |
603 | { | ||
613 | int nbyte, hnbyte; | 604 | int nbyte, hnbyte; |
605 | |||
614 | nbyte = BN_num_bytes(rsa->n); | 606 | nbyte = BN_num_bytes(rsa->n); |
615 | hnbyte = (BN_num_bits(rsa->n) + 15) >> 4; | 607 | hnbyte = (BN_num_bits(rsa->n) + 15) >> 4; |
616 | write_lebn(out, rsa->e, 4); | 608 | write_lebn(out, rsa->e, 4); |
@@ -623,12 +615,13 @@ static void write_rsa(unsigned char **out, RSA *rsa, int ispub) | |||
623 | write_lebn(out, rsa->dmq1, hnbyte); | 615 | write_lebn(out, rsa->dmq1, hnbyte); |
624 | write_lebn(out, rsa->iqmp, hnbyte); | 616 | write_lebn(out, rsa->iqmp, hnbyte); |
625 | write_lebn(out, rsa->d, nbyte); | 617 | write_lebn(out, rsa->d, nbyte); |
626 | } | 618 | } |
627 | 619 | ||
628 | 620 | static void | |
629 | static void write_dsa(unsigned char **out, DSA *dsa, int ispub) | 621 | write_dsa(unsigned char **out, DSA *dsa, int ispub) |
630 | { | 622 | { |
631 | int nbyte; | 623 | int nbyte; |
624 | |||
632 | nbyte = BN_num_bytes(dsa->p); | 625 | nbyte = BN_num_bytes(dsa->p); |
633 | write_lebn(out, dsa->p, nbyte); | 626 | write_lebn(out, dsa->p, nbyte); |
634 | write_lebn(out, dsa->q, 20); | 627 | write_lebn(out, dsa->q, 20); |
@@ -641,52 +634,47 @@ static void write_dsa(unsigned char **out, DSA *dsa, int ispub) | |||
641 | memset(*out, 0xff, 24); | 634 | memset(*out, 0xff, 24); |
642 | *out += 24; | 635 | *out += 24; |
643 | return; | 636 | return; |
644 | } | 637 | } |
645 | |||
646 | 638 | ||
647 | int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk) | 639 | int |
648 | { | 640 | i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk) |
641 | { | ||
649 | return do_i2b_bio(out, pk, 0); | 642 | return do_i2b_bio(out, pk, 0); |
650 | } | 643 | } |
651 | 644 | ||
652 | int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk) | 645 | int |
653 | { | 646 | i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk) |
647 | { | ||
654 | return do_i2b_bio(out, pk, 1); | 648 | return do_i2b_bio(out, pk, 1); |
655 | } | 649 | } |
656 | 650 | ||
657 | #ifndef OPENSSL_NO_RC4 | 651 | #ifndef OPENSSL_NO_RC4 |
658 | 652 | ||
659 | static int do_PVK_header(const unsigned char **in, unsigned int length, | 653 | static int |
660 | int skip_magic, | 654 | do_PVK_header(const unsigned char **in, unsigned int length, int skip_magic, |
661 | unsigned int *psaltlen, unsigned int *pkeylen) | 655 | unsigned int *psaltlen, unsigned int *pkeylen) |
662 | 656 | { | |
663 | { | ||
664 | const unsigned char *p = *in; | 657 | const unsigned char *p = *in; |
665 | unsigned int pvk_magic, is_encrypted; | 658 | unsigned int pvk_magic, is_encrypted; |
666 | if (skip_magic) | 659 | |
667 | { | 660 | if (skip_magic) { |
668 | if (length < 20) | 661 | if (length < 20) { |
669 | { | ||
670 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); | 662 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); |
671 | return 0; | 663 | return 0; |
672 | } | ||
673 | length -= 20; | ||
674 | } | 664 | } |
675 | else | 665 | length -= 20; |
676 | { | 666 | } else { |
677 | if (length < 24) | 667 | if (length < 24) { |
678 | { | ||
679 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); | 668 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); |
680 | return 0; | 669 | return 0; |
681 | } | 670 | } |
682 | length -= 24; | 671 | length -= 24; |
683 | pvk_magic = read_ledword(&p); | 672 | pvk_magic = read_ledword(&p); |
684 | if (pvk_magic != MS_PVKMAGIC) | 673 | if (pvk_magic != MS_PVKMAGIC) { |
685 | { | ||
686 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER); | 674 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER); |
687 | return 0; | 675 | return 0; |
688 | } | ||
689 | } | 676 | } |
677 | } | ||
690 | /* Skip reserved */ | 678 | /* Skip reserved */ |
691 | p += 4; | 679 | p += 4; |
692 | /*keytype = */read_ledword(&p); | 680 | /*keytype = */read_ledword(&p); |
@@ -694,64 +682,61 @@ static int do_PVK_header(const unsigned char **in, unsigned int length, | |||
694 | *psaltlen = read_ledword(&p); | 682 | *psaltlen = read_ledword(&p); |
695 | *pkeylen = read_ledword(&p); | 683 | *pkeylen = read_ledword(&p); |
696 | 684 | ||
697 | if (is_encrypted && !*psaltlen) | 685 | if (is_encrypted && !*psaltlen) { |
698 | { | ||
699 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER); | 686 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER); |
700 | return 0; | 687 | return 0; |
701 | } | 688 | } |
702 | 689 | ||
703 | *in = p; | 690 | *in = p; |
704 | return 1; | 691 | return 1; |
705 | } | 692 | } |
706 | 693 | ||
707 | static int derive_pvk_key(unsigned char *key, | 694 | static int |
708 | const unsigned char *salt, unsigned int saltlen, | 695 | derive_pvk_key(unsigned char *key, const unsigned char *salt, |
709 | const unsigned char *pass, int passlen) | 696 | unsigned int saltlen, const unsigned char *pass, int passlen) |
710 | { | 697 | { |
711 | EVP_MD_CTX mctx; | 698 | EVP_MD_CTX mctx; |
712 | int rv = 1; | 699 | int rv = 1; |
700 | |||
713 | EVP_MD_CTX_init(&mctx); | 701 | EVP_MD_CTX_init(&mctx); |
714 | if (!EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL) | 702 | if (!EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL) || |
715 | || !EVP_DigestUpdate(&mctx, salt, saltlen) | 703 | !EVP_DigestUpdate(&mctx, salt, saltlen) || |
716 | || !EVP_DigestUpdate(&mctx, pass, passlen) | 704 | !EVP_DigestUpdate(&mctx, pass, passlen) || |
717 | || !EVP_DigestFinal_ex(&mctx, key, NULL)) | 705 | !EVP_DigestFinal_ex(&mctx, key, NULL)) |
718 | rv = 0; | 706 | rv = 0; |
719 | 707 | ||
720 | EVP_MD_CTX_cleanup(&mctx); | 708 | EVP_MD_CTX_cleanup(&mctx); |
721 | return rv; | 709 | return rv; |
722 | } | 710 | } |
723 | |||
724 | 711 | ||
725 | static EVP_PKEY *do_PVK_body(const unsigned char **in, | 712 | static EVP_PKEY * |
726 | unsigned int saltlen, unsigned int keylen, | 713 | do_PVK_body(const unsigned char **in, unsigned int saltlen, |
727 | pem_password_cb *cb, void *u) | 714 | unsigned int keylen, pem_password_cb *cb, void *u) |
728 | { | 715 | { |
729 | EVP_PKEY *ret = NULL; | 716 | EVP_PKEY *ret = NULL; |
730 | const unsigned char *p = *in; | 717 | const unsigned char *p = *in; |
731 | unsigned int magic; | 718 | unsigned int magic; |
732 | unsigned char *enctmp = NULL, *q; | 719 | unsigned char *enctmp = NULL, *q; |
720 | |||
733 | EVP_CIPHER_CTX cctx; | 721 | EVP_CIPHER_CTX cctx; |
734 | EVP_CIPHER_CTX_init(&cctx); | 722 | EVP_CIPHER_CTX_init(&cctx); |
735 | if (saltlen) | 723 | if (saltlen) { |
736 | { | ||
737 | char psbuf[PEM_BUFSIZE]; | 724 | char psbuf[PEM_BUFSIZE]; |
738 | unsigned char keybuf[20]; | 725 | unsigned char keybuf[20]; |
739 | int enctmplen, inlen; | 726 | int enctmplen, inlen; |
740 | if (cb) | 727 | if (cb) |
741 | inlen=cb(psbuf,PEM_BUFSIZE,0,u); | 728 | inlen = cb(psbuf, PEM_BUFSIZE, 0, u); |
742 | else | 729 | else |
743 | inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u); | 730 | inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u); |
744 | if (inlen <= 0) | 731 | if (inlen <= 0) { |
745 | { | 732 | PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_PASSWORD_READ); |
746 | PEMerr(PEM_F_DO_PVK_BODY,PEM_R_BAD_PASSWORD_READ); | ||
747 | return NULL; | 733 | return NULL; |
748 | } | 734 | } |
749 | enctmp = malloc(keylen + 8); | 735 | enctmp = malloc(keylen + 8); |
750 | if (!enctmp) | 736 | if (!enctmp) { |
751 | { | ||
752 | PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE); | 737 | PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE); |
753 | return NULL; | 738 | return NULL; |
754 | } | 739 | } |
755 | if (!derive_pvk_key(keybuf, p, saltlen, | 740 | if (!derive_pvk_key(keybuf, p, saltlen, |
756 | (unsigned char *)psbuf, inlen)) { | 741 | (unsigned char *)psbuf, inlen)) { |
757 | free(enctmp); | 742 | free(enctmp); |
@@ -770,88 +755,84 @@ static EVP_PKEY *do_PVK_body(const unsigned char **in, | |||
770 | if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen)) | 755 | if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen)) |
771 | goto err; | 756 | goto err; |
772 | magic = read_ledword((const unsigned char **)&q); | 757 | magic = read_ledword((const unsigned char **)&q); |
773 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) | 758 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { |
774 | { | ||
775 | q = enctmp + 8; | 759 | q = enctmp + 8; |
776 | memset(keybuf + 5, 0, 11); | 760 | memset(keybuf + 5, 0, 11); |
777 | if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, | 761 | if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, |
778 | NULL)) | 762 | NULL)) |
779 | goto err; | 763 | goto err; |
780 | OPENSSL_cleanse(keybuf, 20); | 764 | OPENSSL_cleanse(keybuf, 20); |
781 | if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen)) | 765 | if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen)) |
782 | goto err; | 766 | goto err; |
783 | if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, | 767 | if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, |
784 | &enctmplen)) | 768 | &enctmplen)) |
785 | goto err; | 769 | goto err; |
786 | magic = read_ledword((const unsigned char **)&q); | 770 | magic = read_ledword((const unsigned char **)&q); |
787 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) | 771 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { |
788 | { | ||
789 | PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT); | 772 | PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT); |
790 | goto err; | 773 | goto err; |
791 | } | ||
792 | } | 774 | } |
793 | else | 775 | } else |
794 | OPENSSL_cleanse(keybuf, 20); | 776 | OPENSSL_cleanse(keybuf, 20); |
795 | p = enctmp; | 777 | p = enctmp; |
796 | } | 778 | } |
797 | 779 | ||
798 | ret = b2i_PrivateKey(&p, keylen); | 780 | ret = b2i_PrivateKey(&p, keylen); |
799 | err: | 781 | |
782 | err: | ||
800 | EVP_CIPHER_CTX_cleanup(&cctx); | 783 | EVP_CIPHER_CTX_cleanup(&cctx); |
801 | if (enctmp && saltlen) | 784 | if (enctmp && saltlen) |
802 | free(enctmp); | 785 | free(enctmp); |
803 | return ret; | 786 | return ret; |
804 | } | 787 | } |
805 | 788 | ||
806 | 789 | ||
807 | EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u) | 790 | EVP_PKEY * |
808 | { | 791 | b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u) |
792 | { | ||
809 | unsigned char pvk_hdr[24], *buf = NULL; | 793 | unsigned char pvk_hdr[24], *buf = NULL; |
810 | const unsigned char *p; | 794 | const unsigned char *p; |
811 | int buflen; | 795 | int buflen; |
812 | EVP_PKEY *ret = NULL; | 796 | EVP_PKEY *ret = NULL; |
813 | unsigned int saltlen, keylen; | 797 | unsigned int saltlen, keylen; |
814 | if (BIO_read(in, pvk_hdr, 24) != 24) | 798 | |
815 | { | 799 | if (BIO_read(in, pvk_hdr, 24) != 24) { |
816 | PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); | 800 | PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); |
817 | return NULL; | 801 | return NULL; |
818 | } | 802 | } |
819 | p = pvk_hdr; | 803 | p = pvk_hdr; |
820 | 804 | ||
821 | if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen)) | 805 | if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen)) |
822 | return 0; | 806 | return 0; |
823 | buflen = (int) keylen + saltlen; | 807 | buflen = (int) keylen + saltlen; |
824 | buf = malloc(buflen); | 808 | buf = malloc(buflen); |
825 | if (!buf) | 809 | if (!buf) { |
826 | { | ||
827 | PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE); | 810 | PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE); |
828 | return 0; | 811 | return 0; |
829 | } | 812 | } |
830 | p = buf; | 813 | p = buf; |
831 | if (BIO_read(in, buf, buflen) != buflen) | 814 | if (BIO_read(in, buf, buflen) != buflen) { |
832 | { | ||
833 | PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); | 815 | PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); |
834 | goto err; | 816 | goto err; |
835 | } | 817 | } |
836 | ret = do_PVK_body(&p, saltlen, keylen, cb, u); | 818 | ret = do_PVK_body(&p, saltlen, keylen, cb, u); |
837 | 819 | ||
838 | err: | 820 | err: |
839 | if (buf) | 821 | if (buf) { |
840 | { | ||
841 | OPENSSL_cleanse(buf, buflen); | 822 | OPENSSL_cleanse(buf, buflen); |
842 | free(buf); | 823 | free(buf); |
843 | } | ||
844 | return ret; | ||
845 | } | 824 | } |
825 | return ret; | ||
826 | } | ||
846 | 827 | ||
847 | 828 | static int | |
848 | 829 | i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel, pem_password_cb *cb, | |
849 | static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel, | 830 | void *u) |
850 | pem_password_cb *cb, void *u) | 831 | { |
851 | { | ||
852 | int outlen = 24, pklen; | 832 | int outlen = 24, pklen; |
853 | unsigned char *p, *salt = NULL; | 833 | unsigned char *p, *salt = NULL; |
854 | EVP_CIPHER_CTX cctx; | 834 | EVP_CIPHER_CTX cctx; |
835 | |||
855 | EVP_CIPHER_CTX_init(&cctx); | 836 | EVP_CIPHER_CTX_init(&cctx); |
856 | if (enclevel) | 837 | if (enclevel) |
857 | outlen += PVK_SALTLEN; | 838 | outlen += PVK_SALTLEN; |
@@ -863,16 +844,14 @@ static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel, | |||
863 | return outlen; | 844 | return outlen; |
864 | if (*out) | 845 | if (*out) |
865 | p = *out; | 846 | p = *out; |
866 | else | 847 | else { |
867 | { | ||
868 | p = malloc(outlen); | 848 | p = malloc(outlen); |
869 | if (!p) | 849 | if (!p) { |
870 | { | 850 | PEMerr(PEM_F_I2B_PVK, ERR_R_MALLOC_FAILURE); |
871 | PEMerr(PEM_F_I2B_PVK,ERR_R_MALLOC_FAILURE); | ||
872 | return -1; | 851 | return -1; |
873 | } | ||
874 | *out = p; | ||
875 | } | 852 | } |
853 | *out = p; | ||
854 | } | ||
876 | 855 | ||
877 | write_ledword(&p, MS_PVKMAGIC); | 856 | write_ledword(&p, MS_PVKMAGIC); |
878 | write_ledword(&p, 0); | 857 | write_ledword(&p, 0); |
@@ -881,34 +860,31 @@ static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel, | |||
881 | else | 860 | else |
882 | write_ledword(&p, MS_KEYTYPE_KEYX); | 861 | write_ledword(&p, MS_KEYTYPE_KEYX); |
883 | write_ledword(&p, enclevel ? 1 : 0); | 862 | write_ledword(&p, enclevel ? 1 : 0); |
884 | write_ledword(&p, enclevel ? PVK_SALTLEN: 0); | 863 | write_ledword(&p, enclevel ? PVK_SALTLEN : 0); |
885 | write_ledword(&p, pklen); | 864 | write_ledword(&p, pklen); |
886 | if (enclevel) | 865 | if (enclevel) { |
887 | { | ||
888 | if (RAND_bytes(p, PVK_SALTLEN) <= 0) | 866 | if (RAND_bytes(p, PVK_SALTLEN) <= 0) |
889 | goto error; | 867 | goto error; |
890 | salt = p; | 868 | salt = p; |
891 | p += PVK_SALTLEN; | 869 | p += PVK_SALTLEN; |
892 | } | 870 | } |
893 | do_i2b(&p, pk, 0); | 871 | do_i2b(&p, pk, 0); |
894 | if (enclevel == 0) | 872 | if (enclevel == 0) |
895 | return outlen; | 873 | return outlen; |
896 | else | 874 | else { |
897 | { | ||
898 | char psbuf[PEM_BUFSIZE]; | 875 | char psbuf[PEM_BUFSIZE]; |
899 | unsigned char keybuf[20]; | 876 | unsigned char keybuf[20]; |
900 | int enctmplen, inlen; | 877 | int enctmplen, inlen; |
901 | if (cb) | 878 | if (cb) |
902 | inlen=cb(psbuf,PEM_BUFSIZE,1,u); | 879 | inlen = cb(psbuf, PEM_BUFSIZE, 1, u); |
903 | else | 880 | else |
904 | inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,1,u); | 881 | inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 1, u); |
905 | if (inlen <= 0) | 882 | if (inlen <= 0) { |
906 | { | 883 | PEMerr(PEM_F_I2B_PVK, PEM_R_BAD_PASSWORD_READ); |
907 | PEMerr(PEM_F_I2B_PVK,PEM_R_BAD_PASSWORD_READ); | ||
908 | goto error; | 884 | goto error; |
909 | } | 885 | } |
910 | if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN, | 886 | if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN, |
911 | (unsigned char *)psbuf, inlen)) | 887 | (unsigned char *)psbuf, inlen)) |
912 | goto error; | 888 | goto error; |
913 | if (enclevel == 1) | 889 | if (enclevel == 1) |
914 | memset(keybuf + 5, 0, 11); | 890 | memset(keybuf + 5, 0, 11); |
@@ -920,32 +896,32 @@ static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel, | |||
920 | goto error; | 896 | goto error; |
921 | if (!EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen)) | 897 | if (!EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen)) |
922 | goto error; | 898 | goto error; |
923 | } | 899 | } |
924 | EVP_CIPHER_CTX_cleanup(&cctx); | 900 | EVP_CIPHER_CTX_cleanup(&cctx); |
925 | return outlen; | 901 | return outlen; |
926 | 902 | ||
927 | error: | 903 | error: |
928 | EVP_CIPHER_CTX_cleanup(&cctx); | 904 | EVP_CIPHER_CTX_cleanup(&cctx); |
929 | return -1; | 905 | return -1; |
930 | } | 906 | } |
931 | 907 | ||
932 | int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, | 908 | int |
933 | pem_password_cb *cb, void *u) | 909 | i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, pem_password_cb *cb, void *u) |
934 | { | 910 | { |
935 | unsigned char *tmp = NULL; | 911 | unsigned char *tmp = NULL; |
936 | int outlen, wrlen; | 912 | int outlen, wrlen; |
913 | |||
937 | outlen = i2b_PVK(&tmp, pk, enclevel, cb, u); | 914 | outlen = i2b_PVK(&tmp, pk, enclevel, cb, u); |
938 | if (outlen < 0) | 915 | if (outlen < 0) |
939 | return -1; | 916 | return -1; |
940 | wrlen = BIO_write(out, tmp, outlen); | 917 | wrlen = BIO_write(out, tmp, outlen); |
941 | free(tmp); | 918 | free(tmp); |
942 | if (wrlen == outlen) | 919 | if (wrlen == outlen) { |
943 | { | ||
944 | PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE); | 920 | PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE); |
945 | return outlen; | 921 | return outlen; |
946 | } | ||
947 | return -1; | ||
948 | } | 922 | } |
923 | return -1; | ||
924 | } | ||
949 | 925 | ||
950 | #endif | 926 | #endif |
951 | 927 | ||
diff --git a/src/lib/libssl/src/crypto/pem/pem.h b/src/lib/libssl/src/crypto/pem/pem.h index e27440330c..4af2db4b3c 100644 --- a/src/lib/libssl/src/crypto/pem/pem.h +++ b/src/lib/libssl/src/crypto/pem/pem.h | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -139,12 +139,11 @@ extern "C" { | |||
139 | 139 | ||
140 | /* Note that this structure is initialised by PEM_SealInit and cleaned up | 140 | /* Note that this structure is initialised by PEM_SealInit and cleaned up |
141 | by PEM_SealFinal (at least for now) */ | 141 | by PEM_SealFinal (at least for now) */ |
142 | typedef struct PEM_Encode_Seal_st | 142 | typedef struct PEM_Encode_Seal_st { |
143 | { | ||
144 | EVP_ENCODE_CTX encode; | 143 | EVP_ENCODE_CTX encode; |
145 | EVP_MD_CTX md; | 144 | EVP_MD_CTX md; |
146 | EVP_CIPHER_CTX cipher; | 145 | EVP_CIPHER_CTX cipher; |
147 | } PEM_ENCODE_SEAL_CTX; | 146 | } PEM_ENCODE_SEAL_CTX; |
148 | 147 | ||
149 | /* enc_type is one off */ | 148 | /* enc_type is one off */ |
150 | #define PEM_TYPE_ENCRYPTED 10 | 149 | #define PEM_TYPE_ENCRYPTED 10 |
@@ -152,24 +151,22 @@ typedef struct PEM_Encode_Seal_st | |||
152 | #define PEM_TYPE_MIC_CLEAR 30 | 151 | #define PEM_TYPE_MIC_CLEAR 30 |
153 | #define PEM_TYPE_CLEAR 40 | 152 | #define PEM_TYPE_CLEAR 40 |
154 | 153 | ||
155 | typedef struct pem_recip_st | 154 | typedef struct pem_recip_st { |
156 | { | ||
157 | char *name; | 155 | char *name; |
158 | X509_NAME *dn; | 156 | X509_NAME *dn; |
159 | 157 | ||
160 | int cipher; | 158 | int cipher; |
161 | int key_enc; | 159 | int key_enc; |
162 | /* char iv[8]; unused and wrong size */ | 160 | /* char iv[8]; unused and wrong size */ |
163 | } PEM_USER; | 161 | } PEM_USER; |
164 | 162 | ||
165 | typedef struct pem_ctx_st | 163 | typedef struct pem_ctx_st { |
166 | { | ||
167 | int type; /* what type of object */ | 164 | int type; /* what type of object */ |
168 | 165 | ||
169 | struct { | 166 | struct { |
170 | int version; | 167 | int version; |
171 | int mode; | 168 | int mode; |
172 | } proc_type; | 169 | } proc_type; |
173 | 170 | ||
174 | char *domain; | 171 | char *domain; |
175 | 172 | ||
@@ -177,14 +174,14 @@ typedef struct pem_ctx_st | |||
177 | int cipher; | 174 | int cipher; |
178 | /* unused, and wrong size | 175 | /* unused, and wrong size |
179 | unsigned char iv[8]; */ | 176 | unsigned char iv[8]; */ |
180 | } DEK_info; | 177 | } DEK_info; |
181 | 178 | ||
182 | PEM_USER *originator; | 179 | PEM_USER *originator; |
183 | 180 | ||
184 | int num_recipient; | 181 | int num_recipient; |
185 | PEM_USER **recipient; | 182 | PEM_USER **recipient; |
186 | 183 | ||
187 | /* XXX(ben): don#t think this is used! | 184 | /* XXX(ben): don#t think this is used! |
188 | STACK *x509_chain; / * certificate chain */ | 185 | STACK *x509_chain; / * certificate chain */ |
189 | EVP_MD *md; /* signature type */ | 186 | EVP_MD *md; /* signature type */ |
190 | 187 | ||
@@ -198,11 +195,10 @@ typedef struct pem_ctx_st | |||
198 | /* unused, and wrong size | 195 | /* unused, and wrong size |
199 | unsigned char iv[8]; */ | 196 | unsigned char iv[8]; */ |
200 | 197 | ||
201 | |||
202 | int data_enc; /* is the data encrypted */ | 198 | int data_enc; /* is the data encrypted */ |
203 | int data_len; | 199 | int data_len; |
204 | unsigned char *data; | 200 | unsigned char *data; |
205 | } PEM_CTX; | 201 | } PEM_CTX; |
206 | 202 | ||
207 | /* These macros make the PEM_read/PEM_write functions easier to maintain and | 203 | /* These macros make the PEM_read/PEM_write functions easier to maintain and |
208 | * write. Now they are all implemented with either: | 204 | * write. Now they are all implemented with either: |
@@ -223,7 +219,7 @@ typedef struct pem_ctx_st | |||
223 | type *PEM_read_##name(FILE *fp, type **x, pem_password_cb *cb, void *u)\ | 219 | type *PEM_read_##name(FILE *fp, type **x, pem_password_cb *cb, void *u)\ |
224 | { \ | 220 | { \ |
225 | return PEM_ASN1_read((d2i_of_void *)d2i_##asn1, str,fp,(void **)x,cb,u); \ | 221 | return PEM_ASN1_read((d2i_of_void *)d2i_##asn1, str,fp,(void **)x,cb,u); \ |
226 | } | 222 | } |
227 | 223 | ||
228 | #define IMPLEMENT_PEM_write_fp(name, type, str, asn1) \ | 224 | #define IMPLEMENT_PEM_write_fp(name, type, str, asn1) \ |
229 | int PEM_write_##name(FILE *fp, type *x) \ | 225 | int PEM_write_##name(FILE *fp, type *x) \ |
@@ -289,23 +285,23 @@ int PEM_write_bio_##name(BIO *bp, type *x, const EVP_CIPHER *enc, \ | |||
289 | 285 | ||
290 | #define IMPLEMENT_PEM_write(name, type, str, asn1) \ | 286 | #define IMPLEMENT_PEM_write(name, type, str, asn1) \ |
291 | IMPLEMENT_PEM_write_bio(name, type, str, asn1) \ | 287 | IMPLEMENT_PEM_write_bio(name, type, str, asn1) \ |
292 | IMPLEMENT_PEM_write_fp(name, type, str, asn1) | 288 | IMPLEMENT_PEM_write_fp(name, type, str, asn1) |
293 | 289 | ||
294 | #define IMPLEMENT_PEM_write_const(name, type, str, asn1) \ | 290 | #define IMPLEMENT_PEM_write_const(name, type, str, asn1) \ |
295 | IMPLEMENT_PEM_write_bio_const(name, type, str, asn1) \ | 291 | IMPLEMENT_PEM_write_bio_const(name, type, str, asn1) \ |
296 | IMPLEMENT_PEM_write_fp_const(name, type, str, asn1) | 292 | IMPLEMENT_PEM_write_fp_const(name, type, str, asn1) |
297 | 293 | ||
298 | #define IMPLEMENT_PEM_write_cb(name, type, str, asn1) \ | 294 | #define IMPLEMENT_PEM_write_cb(name, type, str, asn1) \ |
299 | IMPLEMENT_PEM_write_cb_bio(name, type, str, asn1) \ | 295 | IMPLEMENT_PEM_write_cb_bio(name, type, str, asn1) \ |
300 | IMPLEMENT_PEM_write_cb_fp(name, type, str, asn1) | 296 | IMPLEMENT_PEM_write_cb_fp(name, type, str, asn1) |
301 | 297 | ||
302 | #define IMPLEMENT_PEM_write_cb_const(name, type, str, asn1) \ | 298 | #define IMPLEMENT_PEM_write_cb_const(name, type, str, asn1) \ |
303 | IMPLEMENT_PEM_write_cb_bio_const(name, type, str, asn1) \ | 299 | IMPLEMENT_PEM_write_cb_bio_const(name, type, str, asn1) \ |
304 | IMPLEMENT_PEM_write_cb_fp_const(name, type, str, asn1) | 300 | IMPLEMENT_PEM_write_cb_fp_const(name, type, str, asn1) |
305 | 301 | ||
306 | #define IMPLEMENT_PEM_read(name, type, str, asn1) \ | 302 | #define IMPLEMENT_PEM_read(name, type, str, asn1) \ |
307 | IMPLEMENT_PEM_read_bio(name, type, str, asn1) \ | 303 | IMPLEMENT_PEM_read_bio(name, type, str, asn1) \ |
308 | IMPLEMENT_PEM_read_fp(name, type, str, asn1) | 304 | IMPLEMENT_PEM_read_fp(name, type, str, asn1) |
309 | 305 | ||
310 | #define IMPLEMENT_PEM_rw(name, type, str, asn1) \ | 306 | #define IMPLEMENT_PEM_rw(name, type, str, asn1) \ |
311 | IMPLEMENT_PEM_read(name, type, str, asn1) \ | 307 | IMPLEMENT_PEM_read(name, type, str, asn1) \ |
@@ -369,7 +365,7 @@ int PEM_write_bio_##name(BIO *bp, type *x, const EVP_CIPHER *enc, \ | |||
369 | 365 | ||
370 | #define DECLARE_PEM_write(name, type) \ | 366 | #define DECLARE_PEM_write(name, type) \ |
371 | DECLARE_PEM_write_bio(name, type) \ | 367 | DECLARE_PEM_write_bio(name, type) \ |
372 | DECLARE_PEM_write_fp(name, type) | 368 | DECLARE_PEM_write_fp(name, type) |
373 | 369 | ||
374 | #define DECLARE_PEM_write_const(name, type) \ | 370 | #define DECLARE_PEM_write_const(name, type) \ |
375 | DECLARE_PEM_write_bio_const(name, type) \ | 371 | DECLARE_PEM_write_bio_const(name, type) \ |
@@ -377,7 +373,7 @@ int PEM_write_bio_##name(BIO *bp, type *x, const EVP_CIPHER *enc, \ | |||
377 | 373 | ||
378 | #define DECLARE_PEM_write_cb(name, type) \ | 374 | #define DECLARE_PEM_write_cb(name, type) \ |
379 | DECLARE_PEM_write_cb_bio(name, type) \ | 375 | DECLARE_PEM_write_cb_bio(name, type) \ |
380 | DECLARE_PEM_write_cb_fp(name, type) | 376 | DECLARE_PEM_write_cb_fp(name, type) |
381 | 377 | ||
382 | #define DECLARE_PEM_read(name, type) \ | 378 | #define DECLARE_PEM_read(name, type) \ |
383 | DECLARE_PEM_read_bio(name, type) \ | 379 | DECLARE_PEM_read_bio(name, type) \ |
@@ -404,50 +400,52 @@ typedef int pem_password_cb(char *buf, int size, int rwflag); | |||
404 | #endif | 400 | #endif |
405 | 401 | ||
406 | int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher); | 402 | int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher); |
407 | int PEM_do_header (EVP_CIPHER_INFO *cipher, unsigned char *data,long *len, | 403 | int PEM_do_header (EVP_CIPHER_INFO *cipher, unsigned char *data, long *len, |
408 | pem_password_cb *callback,void *u); | 404 | pem_password_cb *callback, void *u); |
409 | 405 | ||
410 | #ifndef OPENSSL_NO_BIO | 406 | #ifndef OPENSSL_NO_BIO |
411 | int PEM_read_bio(BIO *bp, char **name, char **header, | 407 | int PEM_read_bio(BIO *bp, char **name, char **header, |
412 | unsigned char **data,long *len); | 408 | unsigned char **data, long *len); |
413 | int PEM_write_bio(BIO *bp,const char *name,char *hdr,unsigned char *data, | 409 | int PEM_write_bio(BIO *bp, const char *name, char *hdr, unsigned char *data, |
414 | long len); | 410 | long len); |
415 | int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, const char *name, BIO *bp, | 411 | int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, |
416 | pem_password_cb *cb, void *u); | 412 | const char *name, BIO *bp, pem_password_cb *cb, void *u); |
417 | void * PEM_ASN1_read_bio(d2i_of_void *d2i, const char *name, BIO *bp, | 413 | void * PEM_ASN1_read_bio(d2i_of_void *d2i, const char *name, BIO *bp, |
418 | void **x, pem_password_cb *cb, void *u); | 414 | void **x, pem_password_cb *cb, void *u); |
419 | int PEM_ASN1_write_bio(i2d_of_void *i2d,const char *name,BIO *bp, void *x, | 415 | int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, void *x, |
420 | const EVP_CIPHER *enc,unsigned char *kstr,int klen, | 416 | const EVP_CIPHER *enc, unsigned char *kstr, int klen, |
421 | pem_password_cb *cb, void *u); | 417 | pem_password_cb *cb, void *u); |
422 | 418 | ||
423 | STACK_OF(X509_INFO) * PEM_X509_INFO_read_bio(BIO *bp, STACK_OF(X509_INFO) *sk, pem_password_cb *cb, void *u); | 419 | STACK_OF(X509_INFO) * PEM_X509_INFO_read_bio(BIO *bp, |
424 | int PEM_X509_INFO_write_bio(BIO *bp,X509_INFO *xi, EVP_CIPHER *enc, | 420 | STACK_OF(X509_INFO) *sk, pem_password_cb *cb, void *u); |
425 | unsigned char *kstr, int klen, pem_password_cb *cd, void *u); | 421 | int PEM_X509_INFO_write_bio(BIO *bp, X509_INFO *xi, EVP_CIPHER *enc, |
422 | unsigned char *kstr, int klen, pem_password_cb *cd, void *u); | ||
426 | #endif | 423 | #endif |
427 | 424 | ||
428 | int PEM_read(FILE *fp, char **name, char **header, | 425 | int PEM_read(FILE *fp, char **name, char **header, |
429 | unsigned char **data,long *len); | 426 | unsigned char **data, long *len); |
430 | int PEM_write(FILE *fp,char *name,char *hdr,unsigned char *data,long len); | 427 | int PEM_write(FILE *fp, char *name, char *hdr, unsigned char *data, |
428 | long len); | ||
431 | void * PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, | 429 | void * PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, |
432 | pem_password_cb *cb, void *u); | 430 | pem_password_cb *cb, void *u); |
433 | int PEM_ASN1_write(i2d_of_void *i2d,const char *name,FILE *fp, | 431 | int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, |
434 | void *x,const EVP_CIPHER *enc,unsigned char *kstr, | 432 | void *x, const EVP_CIPHER *enc, unsigned char *kstr, |
435 | int klen,pem_password_cb *callback, void *u); | 433 | int klen, pem_password_cb *callback, void *u); |
436 | STACK_OF(X509_INFO) * PEM_X509_INFO_read(FILE *fp, STACK_OF(X509_INFO) *sk, | 434 | STACK_OF(X509_INFO) * PEM_X509_INFO_read(FILE *fp, STACK_OF(X509_INFO) *sk, |
437 | pem_password_cb *cb, void *u); | 435 | pem_password_cb *cb, void *u); |
438 | 436 | ||
439 | int PEM_SealInit(PEM_ENCODE_SEAL_CTX *ctx, EVP_CIPHER *type, | 437 | int PEM_SealInit(PEM_ENCODE_SEAL_CTX *ctx, EVP_CIPHER *type, |
440 | EVP_MD *md_type, unsigned char **ek, int *ekl, | 438 | EVP_MD *md_type, unsigned char **ek, int *ekl, |
441 | unsigned char *iv, EVP_PKEY **pubk, int npubk); | 439 | unsigned char *iv, EVP_PKEY **pubk, int npubk); |
442 | void PEM_SealUpdate(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *out, int *outl, | 440 | void PEM_SealUpdate(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *out, int *outl, |
443 | unsigned char *in, int inl); | 441 | unsigned char *in, int inl); |
444 | int PEM_SealFinal(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *sig,int *sigl, | 442 | int PEM_SealFinal(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *sig, int *sigl, |
445 | unsigned char *out, int *outl, EVP_PKEY *priv); | 443 | unsigned char *out, int *outl, EVP_PKEY *priv); |
446 | 444 | ||
447 | void PEM_SignInit(EVP_MD_CTX *ctx, EVP_MD *type); | 445 | void PEM_SignInit(EVP_MD_CTX *ctx, EVP_MD *type); |
448 | void PEM_SignUpdate(EVP_MD_CTX *ctx,unsigned char *d,unsigned int cnt); | 446 | void PEM_SignUpdate(EVP_MD_CTX *ctx, unsigned char *d, unsigned int cnt); |
449 | int PEM_SignFinal(EVP_MD_CTX *ctx, unsigned char *sigret, | 447 | int PEM_SignFinal(EVP_MD_CTX *ctx, unsigned char *sigret, |
450 | unsigned int *siglen, EVP_PKEY *pkey); | 448 | unsigned int *siglen, EVP_PKEY *pkey); |
451 | 449 | ||
452 | int PEM_def_callback(char *buf, int num, int w, void *key); | 450 | int PEM_def_callback(char *buf, int num, int w, void *key); |
453 | void PEM_proc_type(char *buf, int type); | 451 | void PEM_proc_type(char *buf, int type); |
@@ -509,32 +507,34 @@ DECLARE_PEM_rw_cb(PrivateKey, EVP_PKEY) | |||
509 | DECLARE_PEM_rw(PUBKEY, EVP_PKEY) | 507 | DECLARE_PEM_rw(PUBKEY, EVP_PKEY) |
510 | 508 | ||
511 | int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid, | 509 | int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid, |
512 | char *kstr, int klen, | 510 | char *kstr, int klen, |
513 | pem_password_cb *cb, void *u); | 511 | pem_password_cb *cb, void *u); |
514 | int PEM_write_bio_PKCS8PrivateKey(BIO *, EVP_PKEY *, const EVP_CIPHER *, | 512 | int PEM_write_bio_PKCS8PrivateKey(BIO *, EVP_PKEY *, const EVP_CIPHER *, |
515 | char *, int, pem_password_cb *, void *); | 513 | char *, int, pem_password_cb *, void *); |
516 | int i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, | 514 | int i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, |
517 | char *kstr, int klen, | 515 | char *kstr, int klen, |
518 | pem_password_cb *cb, void *u); | 516 | pem_password_cb *cb, void *u); |
519 | int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid, | 517 | int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid, |
520 | char *kstr, int klen, | 518 | char *kstr, int klen, |
521 | pem_password_cb *cb, void *u); | 519 | pem_password_cb *cb, void *u); |
522 | EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u); | 520 | EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, |
521 | void *u); | ||
523 | 522 | ||
524 | int i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, | 523 | int i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, |
525 | char *kstr, int klen, | 524 | char *kstr, int klen, |
526 | pem_password_cb *cb, void *u); | 525 | pem_password_cb *cb, void *u); |
527 | int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid, | 526 | int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid, |
528 | char *kstr, int klen, | 527 | char *kstr, int klen, |
529 | pem_password_cb *cb, void *u); | 528 | pem_password_cb *cb, void *u); |
530 | int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, | 529 | int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, |
531 | char *kstr, int klen, | 530 | char *kstr, int klen, |
532 | pem_password_cb *cb, void *u); | 531 | pem_password_cb *cb, void *u); |
533 | 532 | ||
534 | EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u); | 533 | EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, |
534 | void *u); | ||
535 | 535 | ||
536 | int PEM_write_PKCS8PrivateKey(FILE *fp,EVP_PKEY *x,const EVP_CIPHER *enc, | 536 | int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, |
537 | char *kstr,int klen, pem_password_cb *cd, void *u); | 537 | char *kstr, int klen, pem_password_cb *cd, void *u); |
538 | 538 | ||
539 | EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x); | 539 | EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x); |
540 | int PEM_write_bio_Parameters(BIO *bp, EVP_PKEY *x); | 540 | int PEM_write_bio_Parameters(BIO *bp, EVP_PKEY *x); |
@@ -548,8 +548,8 @@ int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk); | |||
548 | int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk); | 548 | int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk); |
549 | #ifndef OPENSSL_NO_RC4 | 549 | #ifndef OPENSSL_NO_RC4 |
550 | EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u); | 550 | EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u); |
551 | int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, | 551 | int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, pem_password_cb *cb, |
552 | pem_password_cb *cb, void *u); | 552 | void *u); |
553 | #endif | 553 | #endif |
554 | 554 | ||
555 | 555 | ||
diff --git a/src/lib/libssl/src/crypto/pem/pem2.h b/src/lib/libssl/src/crypto/pem/pem2.h index f31790d69c..84897d5ec3 100644 --- a/src/lib/libssl/src/crypto/pem/pem2.h +++ b/src/lib/libssl/src/crypto/pem/pem2.h | |||
@@ -6,7 +6,7 @@ | |||
6 | * are met: | 6 | * are met: |
7 | * | 7 | * |
8 | * 1. Redistributions of source code must retain the above copyright | 8 | * 1. Redistributions of source code must retain the above copyright |
9 | * notice, this list of conditions and the following disclaimer. | 9 | * notice, this list of conditions and the following disclaimer. |
10 | * | 10 | * |
11 | * 2. Redistributions in binary form must reproduce the above copyright | 11 | * 2. Redistributions in binary form must reproduce the above copyright |
12 | * notice, this list of conditions and the following disclaimer in | 12 | * notice, this list of conditions and the following disclaimer in |
diff --git a/src/lib/libssl/src/crypto/pem/pem_all.c b/src/lib/libssl/src/crypto/pem/pem_all.c index 6ff6be7fbe..8b54d1a698 100644 --- a/src/lib/libssl/src/crypto/pem/pem_all.c +++ b/src/lib/libssl/src/crypto/pem/pem_all.c | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -63,7 +63,7 @@ | |||
63 | * are met: | 63 | * are met: |
64 | * | 64 | * |
65 | * 1. Redistributions of source code must retain the above copyright | 65 | * 1. Redistributions of source code must retain the above copyright |
66 | * notice, this list of conditions and the following disclaimer. | 66 | * notice, this list of conditions and the following disclaimer. |
67 | * | 67 | * |
68 | * 2. Redistributions in binary form must reproduce the above copyright | 68 | * 2. Redistributions in binary form must reproduce the above copyright |
69 | * notice, this list of conditions and the following disclaimer in | 69 | * notice, this list of conditions and the following disclaimer in |
@@ -146,7 +146,7 @@ IMPLEMENT_PEM_rw(X509_CRL, X509_CRL, PEM_STRING_X509_CRL, X509_CRL) | |||
146 | IMPLEMENT_PEM_rw(PKCS7, PKCS7, PEM_STRING_PKCS7, PKCS7) | 146 | IMPLEMENT_PEM_rw(PKCS7, PKCS7, PEM_STRING_PKCS7, PKCS7) |
147 | 147 | ||
148 | IMPLEMENT_PEM_rw(NETSCAPE_CERT_SEQUENCE, NETSCAPE_CERT_SEQUENCE, | 148 | IMPLEMENT_PEM_rw(NETSCAPE_CERT_SEQUENCE, NETSCAPE_CERT_SEQUENCE, |
149 | PEM_STRING_X509, NETSCAPE_CERT_SEQUENCE) | 149 | PEM_STRING_X509, NETSCAPE_CERT_SEQUENCE) |
150 | 150 | ||
151 | 151 | ||
152 | #ifndef OPENSSL_NO_RSA | 152 | #ifndef OPENSSL_NO_RSA |
@@ -159,34 +159,40 @@ IMPLEMENT_PEM_rw(NETSCAPE_CERT_SEQUENCE, NETSCAPE_CERT_SEQUENCE, | |||
159 | * transparently. | 159 | * transparently. |
160 | */ | 160 | */ |
161 | 161 | ||
162 | static RSA *pkey_get_rsa(EVP_PKEY *key, RSA **rsa) | 162 | static RSA * |
163 | pkey_get_rsa(EVP_PKEY *key, RSA **rsa) | ||
163 | { | 164 | { |
164 | RSA *rtmp; | 165 | RSA *rtmp; |
165 | if(!key) return NULL; | 166 | |
167 | if (!key) | ||
168 | return NULL; | ||
166 | rtmp = EVP_PKEY_get1_RSA(key); | 169 | rtmp = EVP_PKEY_get1_RSA(key); |
167 | EVP_PKEY_free(key); | 170 | EVP_PKEY_free(key); |
168 | if(!rtmp) return NULL; | 171 | if (!rtmp) |
169 | if(rsa) { | 172 | return NULL; |
173 | if (rsa) { | ||
170 | RSA_free(*rsa); | 174 | RSA_free(*rsa); |
171 | *rsa = rtmp; | 175 | *rsa = rtmp; |
172 | } | 176 | } |
173 | return rtmp; | 177 | return rtmp; |
174 | } | 178 | } |
175 | 179 | ||
176 | RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **rsa, pem_password_cb *cb, | 180 | RSA * |
177 | void *u) | 181 | PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **rsa, pem_password_cb *cb, void *u) |
178 | { | 182 | { |
179 | EVP_PKEY *pktmp; | 183 | EVP_PKEY *pktmp; |
184 | |||
180 | pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u); | 185 | pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u); |
181 | return pkey_get_rsa(pktmp, rsa); | 186 | return pkey_get_rsa(pktmp, rsa); |
182 | } | 187 | } |
183 | 188 | ||
184 | #ifndef OPENSSL_NO_FP_API | 189 | #ifndef OPENSSL_NO_FP_API |
185 | 190 | ||
186 | RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **rsa, pem_password_cb *cb, | 191 | RSA * |
187 | void *u) | 192 | PEM_read_RSAPrivateKey(FILE *fp, RSA **rsa, pem_password_cb *cb, void *u) |
188 | { | 193 | { |
189 | EVP_PKEY *pktmp; | 194 | EVP_PKEY *pktmp; |
195 | |||
190 | pktmp = PEM_read_PrivateKey(fp, NULL, cb, u); | 196 | pktmp = PEM_read_PrivateKey(fp, NULL, cb, u); |
191 | return pkey_get_rsa(pktmp, rsa); | 197 | return pkey_get_rsa(pktmp, rsa); |
192 | } | 198 | } |
@@ -202,24 +208,29 @@ IMPLEMENT_PEM_rw(RSA_PUBKEY, RSA, PEM_STRING_PUBLIC, RSA_PUBKEY) | |||
202 | 208 | ||
203 | #ifndef OPENSSL_NO_DSA | 209 | #ifndef OPENSSL_NO_DSA |
204 | 210 | ||
205 | static DSA *pkey_get_dsa(EVP_PKEY *key, DSA **dsa) | 211 | static DSA * |
212 | pkey_get_dsa(EVP_PKEY *key, DSA **dsa) | ||
206 | { | 213 | { |
207 | DSA *dtmp; | 214 | DSA *dtmp; |
208 | if(!key) return NULL; | 215 | |
216 | if (!key) | ||
217 | return NULL; | ||
209 | dtmp = EVP_PKEY_get1_DSA(key); | 218 | dtmp = EVP_PKEY_get1_DSA(key); |
210 | EVP_PKEY_free(key); | 219 | EVP_PKEY_free(key); |
211 | if(!dtmp) return NULL; | 220 | if (!dtmp) |
212 | if(dsa) { | 221 | return NULL; |
222 | if (dsa) { | ||
213 | DSA_free(*dsa); | 223 | DSA_free(*dsa); |
214 | *dsa = dtmp; | 224 | *dsa = dtmp; |
215 | } | 225 | } |
216 | return dtmp; | 226 | return dtmp; |
217 | } | 227 | } |
218 | 228 | ||
219 | DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **dsa, pem_password_cb *cb, | 229 | DSA * |
220 | void *u) | 230 | PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **dsa, pem_password_cb *cb, void *u) |
221 | { | 231 | { |
222 | EVP_PKEY *pktmp; | 232 | EVP_PKEY *pktmp; |
233 | |||
223 | pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u); | 234 | pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u); |
224 | return pkey_get_dsa(pktmp, dsa); /* will free pktmp */ | 235 | return pkey_get_dsa(pktmp, dsa); /* will free pktmp */ |
225 | } | 236 | } |
@@ -230,10 +241,11 @@ IMPLEMENT_PEM_rw(DSA_PUBKEY, DSA, PEM_STRING_PUBLIC, DSA_PUBKEY) | |||
230 | 241 | ||
231 | #ifndef OPENSSL_NO_FP_API | 242 | #ifndef OPENSSL_NO_FP_API |
232 | 243 | ||
233 | DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **dsa, pem_password_cb *cb, | 244 | DSA * |
234 | void *u) | 245 | PEM_read_DSAPrivateKey(FILE *fp, DSA **dsa, pem_password_cb *cb, void *u) |
235 | { | 246 | { |
236 | EVP_PKEY *pktmp; | 247 | EVP_PKEY *pktmp; |
248 | |||
237 | pktmp = PEM_read_PrivateKey(fp, NULL, cb, u); | 249 | pktmp = PEM_read_PrivateKey(fp, NULL, cb, u); |
238 | return pkey_get_dsa(pktmp, dsa); /* will free pktmp */ | 250 | return pkey_get_dsa(pktmp, dsa); /* will free pktmp */ |
239 | } | 251 | } |
@@ -246,43 +258,47 @@ IMPLEMENT_PEM_rw_const(DSAparams, DSA, PEM_STRING_DSAPARAMS, DSAparams) | |||
246 | 258 | ||
247 | 259 | ||
248 | #ifndef OPENSSL_NO_EC | 260 | #ifndef OPENSSL_NO_EC |
249 | static EC_KEY *pkey_get_eckey(EVP_PKEY *key, EC_KEY **eckey) | 261 | static EC_KEY * |
262 | pkey_get_eckey(EVP_PKEY *key, EC_KEY **eckey) | ||
250 | { | 263 | { |
251 | EC_KEY *dtmp; | 264 | EC_KEY *dtmp; |
252 | if(!key) return NULL; | 265 | |
266 | if (!key) | ||
267 | return NULL; | ||
253 | dtmp = EVP_PKEY_get1_EC_KEY(key); | 268 | dtmp = EVP_PKEY_get1_EC_KEY(key); |
254 | EVP_PKEY_free(key); | 269 | EVP_PKEY_free(key); |
255 | if(!dtmp) return NULL; | 270 | if (!dtmp) |
256 | if(eckey) | 271 | return NULL; |
257 | { | 272 | if (eckey) { |
258 | EC_KEY_free(*eckey); | 273 | EC_KEY_free(*eckey); |
259 | *eckey = dtmp; | 274 | *eckey = dtmp; |
260 | } | 275 | } |
261 | return dtmp; | 276 | return dtmp; |
262 | } | 277 | } |
263 | 278 | ||
264 | EC_KEY *PEM_read_bio_ECPrivateKey(BIO *bp, EC_KEY **key, pem_password_cb *cb, | 279 | EC_KEY * |
265 | void *u) | 280 | PEM_read_bio_ECPrivateKey(BIO *bp, EC_KEY **key, pem_password_cb *cb, void *u) |
266 | { | 281 | { |
267 | EVP_PKEY *pktmp; | 282 | EVP_PKEY *pktmp; |
268 | pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u); | 283 | pktmp = PEM_read_bio_PrivateKey(bp, NULL, cb, u); |
269 | return pkey_get_eckey(pktmp, key); /* will free pktmp */ | 284 | return pkey_get_eckey(pktmp, key); /* will free pktmp */ |
270 | } | 285 | } |
271 | 286 | ||
272 | IMPLEMENT_PEM_rw_const(ECPKParameters, EC_GROUP, PEM_STRING_ECPARAMETERS, ECPKParameters) | 287 | IMPLEMENT_PEM_rw_const(ECPKParameters, EC_GROUP, PEM_STRING_ECPARAMETERS, |
288 | ECPKParameters) | ||
273 | 289 | ||
274 | 290 | IMPLEMENT_PEM_write_cb(ECPrivateKey, EC_KEY, PEM_STRING_ECPRIVATEKEY, | |
275 | 291 | ECPrivateKey) | |
276 | IMPLEMENT_PEM_write_cb(ECPrivateKey, EC_KEY, PEM_STRING_ECPRIVATEKEY, ECPrivateKey) | ||
277 | 292 | ||
278 | IMPLEMENT_PEM_rw(EC_PUBKEY, EC_KEY, PEM_STRING_PUBLIC, EC_PUBKEY) | 293 | IMPLEMENT_PEM_rw(EC_PUBKEY, EC_KEY, PEM_STRING_PUBLIC, EC_PUBKEY) |
279 | 294 | ||
280 | #ifndef OPENSSL_NO_FP_API | 295 | #ifndef OPENSSL_NO_FP_API |
281 | 296 | ||
282 | EC_KEY *PEM_read_ECPrivateKey(FILE *fp, EC_KEY **eckey, pem_password_cb *cb, | 297 | EC_KEY * |
283 | void *u) | 298 | PEM_read_ECPrivateKey(FILE *fp, EC_KEY **eckey, pem_password_cb *cb, void *u) |
284 | { | 299 | { |
285 | EVP_PKEY *pktmp; | 300 | EVP_PKEY *pktmp; |
301 | |||
286 | pktmp = PEM_read_PrivateKey(fp, NULL, cb, u); | 302 | pktmp = PEM_read_PrivateKey(fp, NULL, cb, u); |
287 | return pkey_get_eckey(pktmp, eckey); /* will free pktmp */ | 303 | return pkey_get_eckey(pktmp, eckey); /* will free pktmp */ |
288 | } | 304 | } |
diff --git a/src/lib/libssl/src/crypto/pem/pem_err.c b/src/lib/libssl/src/crypto/pem/pem_err.c index d644aeedd4..8fa292fa38 100644 --- a/src/lib/libssl/src/crypto/pem/pem_err.c +++ b/src/lib/libssl/src/crypto/pem/pem_err.c | |||
@@ -7,7 +7,7 @@ | |||
7 | * are met: | 7 | * are met: |
8 | * | 8 | * |
9 | * 1. Redistributions of source code must retain the above copyright | 9 | * 1. Redistributions of source code must retain the above copyright |
10 | * notice, this list of conditions and the following disclaimer. | 10 | * notice, this list of conditions and the following disclaimer. |
11 | * | 11 | * |
12 | * 2. Redistributions in binary form must reproduce the above copyright | 12 | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in | 13 | * notice, this list of conditions and the following disclaimer in |
@@ -68,94 +68,91 @@ | |||
68 | #define ERR_FUNC(func) ERR_PACK(ERR_LIB_PEM,func,0) | 68 | #define ERR_FUNC(func) ERR_PACK(ERR_LIB_PEM,func,0) |
69 | #define ERR_REASON(reason) ERR_PACK(ERR_LIB_PEM,0,reason) | 69 | #define ERR_REASON(reason) ERR_PACK(ERR_LIB_PEM,0,reason) |
70 | 70 | ||
71 | static ERR_STRING_DATA PEM_str_functs[]= | 71 | static ERR_STRING_DATA PEM_str_functs[] = { |
72 | { | 72 | {ERR_FUNC(PEM_F_B2I_DSS), "B2I_DSS"}, |
73 | {ERR_FUNC(PEM_F_B2I_DSS), "B2I_DSS"}, | 73 | {ERR_FUNC(PEM_F_B2I_PVK_BIO), "b2i_PVK_bio"}, |
74 | {ERR_FUNC(PEM_F_B2I_PVK_BIO), "b2i_PVK_bio"}, | 74 | {ERR_FUNC(PEM_F_B2I_RSA), "B2I_RSA"}, |
75 | {ERR_FUNC(PEM_F_B2I_RSA), "B2I_RSA"}, | 75 | {ERR_FUNC(PEM_F_CHECK_BITLEN_DSA), "CHECK_BITLEN_DSA"}, |
76 | {ERR_FUNC(PEM_F_CHECK_BITLEN_DSA), "CHECK_BITLEN_DSA"}, | 76 | {ERR_FUNC(PEM_F_CHECK_BITLEN_RSA), "CHECK_BITLEN_RSA"}, |
77 | {ERR_FUNC(PEM_F_CHECK_BITLEN_RSA), "CHECK_BITLEN_RSA"}, | 77 | {ERR_FUNC(PEM_F_D2I_PKCS8PRIVATEKEY_BIO), "d2i_PKCS8PrivateKey_bio"}, |
78 | {ERR_FUNC(PEM_F_D2I_PKCS8PRIVATEKEY_BIO), "d2i_PKCS8PrivateKey_bio"}, | 78 | {ERR_FUNC(PEM_F_D2I_PKCS8PRIVATEKEY_FP), "d2i_PKCS8PrivateKey_fp"}, |
79 | {ERR_FUNC(PEM_F_D2I_PKCS8PRIVATEKEY_FP), "d2i_PKCS8PrivateKey_fp"}, | 79 | {ERR_FUNC(PEM_F_DO_B2I), "DO_B2I"}, |
80 | {ERR_FUNC(PEM_F_DO_B2I), "DO_B2I"}, | 80 | {ERR_FUNC(PEM_F_DO_B2I_BIO), "DO_B2I_BIO"}, |
81 | {ERR_FUNC(PEM_F_DO_B2I_BIO), "DO_B2I_BIO"}, | 81 | {ERR_FUNC(PEM_F_DO_BLOB_HEADER), "DO_BLOB_HEADER"}, |
82 | {ERR_FUNC(PEM_F_DO_BLOB_HEADER), "DO_BLOB_HEADER"}, | 82 | {ERR_FUNC(PEM_F_DO_PK8PKEY), "DO_PK8PKEY"}, |
83 | {ERR_FUNC(PEM_F_DO_PK8PKEY), "DO_PK8PKEY"}, | 83 | {ERR_FUNC(PEM_F_DO_PK8PKEY_FP), "DO_PK8PKEY_FP"}, |
84 | {ERR_FUNC(PEM_F_DO_PK8PKEY_FP), "DO_PK8PKEY_FP"}, | 84 | {ERR_FUNC(PEM_F_DO_PVK_BODY), "DO_PVK_BODY"}, |
85 | {ERR_FUNC(PEM_F_DO_PVK_BODY), "DO_PVK_BODY"}, | 85 | {ERR_FUNC(PEM_F_DO_PVK_HEADER), "DO_PVK_HEADER"}, |
86 | {ERR_FUNC(PEM_F_DO_PVK_HEADER), "DO_PVK_HEADER"}, | 86 | {ERR_FUNC(PEM_F_I2B_PVK), "I2B_PVK"}, |
87 | {ERR_FUNC(PEM_F_I2B_PVK), "I2B_PVK"}, | 87 | {ERR_FUNC(PEM_F_I2B_PVK_BIO), "i2b_PVK_bio"}, |
88 | {ERR_FUNC(PEM_F_I2B_PVK_BIO), "i2b_PVK_bio"}, | 88 | {ERR_FUNC(PEM_F_LOAD_IV), "LOAD_IV"}, |
89 | {ERR_FUNC(PEM_F_LOAD_IV), "LOAD_IV"}, | 89 | {ERR_FUNC(PEM_F_PEM_ASN1_READ), "PEM_ASN1_read"}, |
90 | {ERR_FUNC(PEM_F_PEM_ASN1_READ), "PEM_ASN1_read"}, | 90 | {ERR_FUNC(PEM_F_PEM_ASN1_READ_BIO), "PEM_ASN1_read_bio"}, |
91 | {ERR_FUNC(PEM_F_PEM_ASN1_READ_BIO), "PEM_ASN1_read_bio"}, | 91 | {ERR_FUNC(PEM_F_PEM_ASN1_WRITE), "PEM_ASN1_write"}, |
92 | {ERR_FUNC(PEM_F_PEM_ASN1_WRITE), "PEM_ASN1_write"}, | 92 | {ERR_FUNC(PEM_F_PEM_ASN1_WRITE_BIO), "PEM_ASN1_write_bio"}, |
93 | {ERR_FUNC(PEM_F_PEM_ASN1_WRITE_BIO), "PEM_ASN1_write_bio"}, | 93 | {ERR_FUNC(PEM_F_PEM_DEF_CALLBACK), "PEM_def_callback"}, |
94 | {ERR_FUNC(PEM_F_PEM_DEF_CALLBACK), "PEM_def_callback"}, | 94 | {ERR_FUNC(PEM_F_PEM_DO_HEADER), "PEM_do_header"}, |
95 | {ERR_FUNC(PEM_F_PEM_DO_HEADER), "PEM_do_header"}, | 95 | {ERR_FUNC(PEM_F_PEM_F_PEM_WRITE_PKCS8PRIVATEKEY), "PEM_F_PEM_WRITE_PKCS8PRIVATEKEY"}, |
96 | {ERR_FUNC(PEM_F_PEM_F_PEM_WRITE_PKCS8PRIVATEKEY), "PEM_F_PEM_WRITE_PKCS8PRIVATEKEY"}, | 96 | {ERR_FUNC(PEM_F_PEM_GET_EVP_CIPHER_INFO), "PEM_get_EVP_CIPHER_INFO"}, |
97 | {ERR_FUNC(PEM_F_PEM_GET_EVP_CIPHER_INFO), "PEM_get_EVP_CIPHER_INFO"}, | 97 | {ERR_FUNC(PEM_F_PEM_PK8PKEY), "PEM_PK8PKEY"}, |
98 | {ERR_FUNC(PEM_F_PEM_PK8PKEY), "PEM_PK8PKEY"}, | 98 | {ERR_FUNC(PEM_F_PEM_READ), "PEM_read"}, |
99 | {ERR_FUNC(PEM_F_PEM_READ), "PEM_read"}, | 99 | {ERR_FUNC(PEM_F_PEM_READ_BIO), "PEM_read_bio"}, |
100 | {ERR_FUNC(PEM_F_PEM_READ_BIO), "PEM_read_bio"}, | 100 | {ERR_FUNC(PEM_F_PEM_READ_BIO_PARAMETERS), "PEM_read_bio_Parameters"}, |
101 | {ERR_FUNC(PEM_F_PEM_READ_BIO_PARAMETERS), "PEM_read_bio_Parameters"}, | 101 | {ERR_FUNC(PEM_F_PEM_READ_BIO_PRIVATEKEY), "PEM_READ_BIO_PRIVATEKEY"}, |
102 | {ERR_FUNC(PEM_F_PEM_READ_BIO_PRIVATEKEY), "PEM_READ_BIO_PRIVATEKEY"}, | 102 | {ERR_FUNC(PEM_F_PEM_READ_PRIVATEKEY), "PEM_READ_PRIVATEKEY"}, |
103 | {ERR_FUNC(PEM_F_PEM_READ_PRIVATEKEY), "PEM_READ_PRIVATEKEY"}, | 103 | {ERR_FUNC(PEM_F_PEM_SEALFINAL), "PEM_SealFinal"}, |
104 | {ERR_FUNC(PEM_F_PEM_SEALFINAL), "PEM_SealFinal"}, | 104 | {ERR_FUNC(PEM_F_PEM_SEALINIT), "PEM_SealInit"}, |
105 | {ERR_FUNC(PEM_F_PEM_SEALINIT), "PEM_SealInit"}, | 105 | {ERR_FUNC(PEM_F_PEM_SIGNFINAL), "PEM_SignFinal"}, |
106 | {ERR_FUNC(PEM_F_PEM_SIGNFINAL), "PEM_SignFinal"}, | 106 | {ERR_FUNC(PEM_F_PEM_WRITE), "PEM_write"}, |
107 | {ERR_FUNC(PEM_F_PEM_WRITE), "PEM_write"}, | 107 | {ERR_FUNC(PEM_F_PEM_WRITE_BIO), "PEM_write_bio"}, |
108 | {ERR_FUNC(PEM_F_PEM_WRITE_BIO), "PEM_write_bio"}, | 108 | {ERR_FUNC(PEM_F_PEM_WRITE_PRIVATEKEY), "PEM_WRITE_PRIVATEKEY"}, |
109 | {ERR_FUNC(PEM_F_PEM_WRITE_PRIVATEKEY), "PEM_WRITE_PRIVATEKEY"}, | 109 | {ERR_FUNC(PEM_F_PEM_X509_INFO_READ), "PEM_X509_INFO_read"}, |
110 | {ERR_FUNC(PEM_F_PEM_X509_INFO_READ), "PEM_X509_INFO_read"}, | 110 | {ERR_FUNC(PEM_F_PEM_X509_INFO_READ_BIO), "PEM_X509_INFO_read_bio"}, |
111 | {ERR_FUNC(PEM_F_PEM_X509_INFO_READ_BIO), "PEM_X509_INFO_read_bio"}, | 111 | {ERR_FUNC(PEM_F_PEM_X509_INFO_WRITE_BIO), "PEM_X509_INFO_write_bio"}, |
112 | {ERR_FUNC(PEM_F_PEM_X509_INFO_WRITE_BIO), "PEM_X509_INFO_write_bio"}, | 112 | {0, NULL} |
113 | {0,NULL} | 113 | }; |
114 | }; | ||
115 | 114 | ||
116 | static ERR_STRING_DATA PEM_str_reasons[]= | 115 | static ERR_STRING_DATA PEM_str_reasons[] = { |
117 | { | 116 | {ERR_REASON(PEM_R_BAD_BASE64_DECODE) , "bad base64 decode"}, |
118 | {ERR_REASON(PEM_R_BAD_BASE64_DECODE) ,"bad base64 decode"}, | 117 | {ERR_REASON(PEM_R_BAD_DECRYPT) , "bad decrypt"}, |
119 | {ERR_REASON(PEM_R_BAD_DECRYPT) ,"bad decrypt"}, | 118 | {ERR_REASON(PEM_R_BAD_END_LINE) , "bad end line"}, |
120 | {ERR_REASON(PEM_R_BAD_END_LINE) ,"bad end line"}, | 119 | {ERR_REASON(PEM_R_BAD_IV_CHARS) , "bad iv chars"}, |
121 | {ERR_REASON(PEM_R_BAD_IV_CHARS) ,"bad iv chars"}, | 120 | {ERR_REASON(PEM_R_BAD_MAGIC_NUMBER) , "bad magic number"}, |
122 | {ERR_REASON(PEM_R_BAD_MAGIC_NUMBER) ,"bad magic number"}, | 121 | {ERR_REASON(PEM_R_BAD_PASSWORD_READ) , "bad password read"}, |
123 | {ERR_REASON(PEM_R_BAD_PASSWORD_READ) ,"bad password read"}, | 122 | {ERR_REASON(PEM_R_BAD_VERSION_NUMBER) , "bad version number"}, |
124 | {ERR_REASON(PEM_R_BAD_VERSION_NUMBER) ,"bad version number"}, | 123 | {ERR_REASON(PEM_R_BIO_WRITE_FAILURE) , "bio write failure"}, |
125 | {ERR_REASON(PEM_R_BIO_WRITE_FAILURE) ,"bio write failure"}, | 124 | {ERR_REASON(PEM_R_CIPHER_IS_NULL) , "cipher is null"}, |
126 | {ERR_REASON(PEM_R_CIPHER_IS_NULL) ,"cipher is null"}, | 125 | {ERR_REASON(PEM_R_ERROR_CONVERTING_PRIVATE_KEY), "error converting private key"}, |
127 | {ERR_REASON(PEM_R_ERROR_CONVERTING_PRIVATE_KEY),"error converting private key"}, | 126 | {ERR_REASON(PEM_R_EXPECTING_PRIVATE_KEY_BLOB), "expecting private key blob"}, |
128 | {ERR_REASON(PEM_R_EXPECTING_PRIVATE_KEY_BLOB),"expecting private key blob"}, | 127 | {ERR_REASON(PEM_R_EXPECTING_PUBLIC_KEY_BLOB), "expecting public key blob"}, |
129 | {ERR_REASON(PEM_R_EXPECTING_PUBLIC_KEY_BLOB),"expecting public key blob"}, | 128 | {ERR_REASON(PEM_R_INCONSISTENT_HEADER) , "inconsistent header"}, |
130 | {ERR_REASON(PEM_R_INCONSISTENT_HEADER) ,"inconsistent header"}, | 129 | {ERR_REASON(PEM_R_KEYBLOB_HEADER_PARSE_ERROR), "keyblob header parse error"}, |
131 | {ERR_REASON(PEM_R_KEYBLOB_HEADER_PARSE_ERROR),"keyblob header parse error"}, | 130 | {ERR_REASON(PEM_R_KEYBLOB_TOO_SHORT) , "keyblob too short"}, |
132 | {ERR_REASON(PEM_R_KEYBLOB_TOO_SHORT) ,"keyblob too short"}, | 131 | {ERR_REASON(PEM_R_NOT_DEK_INFO) , "not dek info"}, |
133 | {ERR_REASON(PEM_R_NOT_DEK_INFO) ,"not dek info"}, | 132 | {ERR_REASON(PEM_R_NOT_ENCRYPTED) , "not encrypted"}, |
134 | {ERR_REASON(PEM_R_NOT_ENCRYPTED) ,"not encrypted"}, | 133 | {ERR_REASON(PEM_R_NOT_PROC_TYPE) , "not proc type"}, |
135 | {ERR_REASON(PEM_R_NOT_PROC_TYPE) ,"not proc type"}, | 134 | {ERR_REASON(PEM_R_NO_START_LINE) , "no start line"}, |
136 | {ERR_REASON(PEM_R_NO_START_LINE) ,"no start line"}, | 135 | {ERR_REASON(PEM_R_PROBLEMS_GETTING_PASSWORD), "problems getting password"}, |
137 | {ERR_REASON(PEM_R_PROBLEMS_GETTING_PASSWORD),"problems getting password"}, | 136 | {ERR_REASON(PEM_R_PUBLIC_KEY_NO_RSA) , "public key no rsa"}, |
138 | {ERR_REASON(PEM_R_PUBLIC_KEY_NO_RSA) ,"public key no rsa"}, | 137 | {ERR_REASON(PEM_R_PVK_DATA_TOO_SHORT) , "pvk data too short"}, |
139 | {ERR_REASON(PEM_R_PVK_DATA_TOO_SHORT) ,"pvk data too short"}, | 138 | {ERR_REASON(PEM_R_PVK_TOO_SHORT) , "pvk too short"}, |
140 | {ERR_REASON(PEM_R_PVK_TOO_SHORT) ,"pvk too short"}, | 139 | {ERR_REASON(PEM_R_READ_KEY) , "read key"}, |
141 | {ERR_REASON(PEM_R_READ_KEY) ,"read key"}, | 140 | {ERR_REASON(PEM_R_SHORT_HEADER) , "short header"}, |
142 | {ERR_REASON(PEM_R_SHORT_HEADER) ,"short header"}, | 141 | {ERR_REASON(PEM_R_UNSUPPORTED_CIPHER) , "unsupported cipher"}, |
143 | {ERR_REASON(PEM_R_UNSUPPORTED_CIPHER) ,"unsupported cipher"}, | 142 | {ERR_REASON(PEM_R_UNSUPPORTED_ENCRYPTION), "unsupported encryption"}, |
144 | {ERR_REASON(PEM_R_UNSUPPORTED_ENCRYPTION),"unsupported encryption"}, | 143 | {ERR_REASON(PEM_R_UNSUPPORTED_KEY_COMPONENTS), "unsupported key components"}, |
145 | {ERR_REASON(PEM_R_UNSUPPORTED_KEY_COMPONENTS),"unsupported key components"}, | 144 | {0, NULL} |
146 | {0,NULL} | 145 | }; |
147 | }; | ||
148 | 146 | ||
149 | #endif | 147 | #endif |
150 | 148 | ||
151 | void ERR_load_PEM_strings(void) | 149 | void |
152 | { | 150 | ERR_load_PEM_strings(void) |
151 | { | ||
153 | #ifndef OPENSSL_NO_ERR | 152 | #ifndef OPENSSL_NO_ERR |
154 | 153 | if (ERR_func_error_string(PEM_str_functs[0].error) == NULL) { | |
155 | if (ERR_func_error_string(PEM_str_functs[0].error) == NULL) | 154 | ERR_load_strings(0, PEM_str_functs); |
156 | { | 155 | ERR_load_strings(0, PEM_str_reasons); |
157 | ERR_load_strings(0,PEM_str_functs); | ||
158 | ERR_load_strings(0,PEM_str_reasons); | ||
159 | } | ||
160 | #endif | ||
161 | } | 156 | } |
157 | #endif | ||
158 | } | ||
diff --git a/src/lib/libssl/src/crypto/pem/pem_info.c b/src/lib/libssl/src/crypto/pem/pem_info.c index 4351260dfb..967d6d2d41 100644 --- a/src/lib/libssl/src/crypto/pem/pem_info.c +++ b/src/lib/libssl/src/crypto/pem/pem_info.c | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -71,324 +71,315 @@ | |||
71 | #endif | 71 | #endif |
72 | 72 | ||
73 | #ifndef OPENSSL_NO_FP_API | 73 | #ifndef OPENSSL_NO_FP_API |
74 | STACK_OF(X509_INFO) *PEM_X509_INFO_read(FILE *fp, STACK_OF(X509_INFO) *sk, pem_password_cb *cb, void *u) | 74 | STACK_OF(X509_INFO) * |
75 | { | 75 | PEM_X509_INFO_read(FILE *fp, STACK_OF(X509_INFO) *sk, pem_password_cb *cb, |
76 | BIO *b; | 76 | void *u) |
77 | STACK_OF(X509_INFO) *ret; | 77 | { |
78 | BIO *b; | ||
79 | STACK_OF(X509_INFO) *ret; | ||
78 | 80 | ||
79 | if ((b=BIO_new(BIO_s_file())) == NULL) | 81 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
80 | { | 82 | PEMerr(PEM_F_PEM_X509_INFO_READ, ERR_R_BUF_LIB); |
81 | PEMerr(PEM_F_PEM_X509_INFO_READ,ERR_R_BUF_LIB); | 83 | return (0); |
82 | return(0); | ||
83 | } | ||
84 | BIO_set_fp(b,fp,BIO_NOCLOSE); | ||
85 | ret=PEM_X509_INFO_read_bio(b,sk,cb,u); | ||
86 | BIO_free(b); | ||
87 | return(ret); | ||
88 | } | 84 | } |
85 | BIO_set_fp(b, fp, BIO_NOCLOSE); | ||
86 | ret = PEM_X509_INFO_read_bio(b, sk, cb, u); | ||
87 | BIO_free(b); | ||
88 | return (ret); | ||
89 | } | ||
89 | #endif | 90 | #endif |
90 | 91 | ||
91 | STACK_OF(X509_INFO) *PEM_X509_INFO_read_bio(BIO *bp, STACK_OF(X509_INFO) *sk, pem_password_cb *cb, void *u) | 92 | STACK_OF(X509_INFO) * |
92 | { | 93 | PEM_X509_INFO_read_bio(BIO *bp, STACK_OF(X509_INFO) *sk, pem_password_cb *cb, |
93 | X509_INFO *xi=NULL; | 94 | void *u) |
94 | char *name=NULL,*header=NULL; | 95 | { |
96 | X509_INFO *xi = NULL; | ||
97 | char *name = NULL, *header = NULL; | ||
95 | void *pp; | 98 | void *pp; |
96 | unsigned char *data=NULL; | 99 | unsigned char *data = NULL; |
97 | const unsigned char *p; | 100 | const unsigned char *p; |
98 | long len,error=0; | 101 | long len, error = 0; |
99 | int ok=0; | 102 | int ok = 0; |
100 | STACK_OF(X509_INFO) *ret=NULL; | 103 | STACK_OF(X509_INFO) *ret = NULL; |
101 | unsigned int i,raw,ptype; | 104 | unsigned int i, raw, ptype; |
102 | d2i_of_void *d2i = 0; | 105 | d2i_of_void *d2i = 0; |
103 | 106 | ||
104 | if (sk == NULL) | 107 | if (sk == NULL) { |
105 | { | 108 | if ((ret = sk_X509_INFO_new_null()) == NULL) { |
106 | if ((ret=sk_X509_INFO_new_null()) == NULL) | 109 | PEMerr(PEM_F_PEM_X509_INFO_READ_BIO, |
107 | { | 110 | ERR_R_MALLOC_FAILURE); |
108 | PEMerr(PEM_F_PEM_X509_INFO_READ_BIO,ERR_R_MALLOC_FAILURE); | ||
109 | goto err; | 111 | goto err; |
110 | } | ||
111 | } | 112 | } |
112 | else | 113 | } else |
113 | ret=sk; | 114 | ret = sk; |
114 | 115 | ||
115 | if ((xi=X509_INFO_new()) == NULL) goto err; | 116 | if ((xi = X509_INFO_new()) == NULL) |
116 | for (;;) | 117 | goto err; |
117 | { | 118 | for (;;) { |
118 | raw=0; | 119 | raw = 0; |
119 | ptype = 0; | 120 | ptype = 0; |
120 | i=PEM_read_bio(bp,&name,&header,&data,&len); | 121 | i = PEM_read_bio(bp, &name, &header, &data, &len); |
121 | if (i == 0) | 122 | if (i == 0) { |
122 | { | 123 | error = ERR_GET_REASON(ERR_peek_last_error()); |
123 | error=ERR_GET_REASON(ERR_peek_last_error()); | 124 | if (error == PEM_R_NO_START_LINE) { |
124 | if (error == PEM_R_NO_START_LINE) | ||
125 | { | ||
126 | ERR_clear_error(); | 125 | ERR_clear_error(); |
127 | break; | 126 | break; |
128 | } | ||
129 | goto err; | ||
130 | } | 127 | } |
128 | goto err; | ||
129 | } | ||
131 | start: | 130 | start: |
132 | if ( (strcmp(name,PEM_STRING_X509) == 0) || | 131 | if ((strcmp(name, PEM_STRING_X509) == 0) || |
133 | (strcmp(name,PEM_STRING_X509_OLD) == 0)) | 132 | (strcmp(name, PEM_STRING_X509_OLD) == 0)) { |
134 | { | 133 | d2i = (D2I_OF(void))d2i_X509; |
135 | d2i=(D2I_OF(void))d2i_X509; | 134 | if (xi->x509 != NULL) { |
136 | if (xi->x509 != NULL) | 135 | if (!sk_X509_INFO_push(ret, xi)) |
137 | { | 136 | goto err; |
138 | if (!sk_X509_INFO_push(ret,xi)) goto err; | 137 | if ((xi = X509_INFO_new()) == NULL) |
139 | if ((xi=X509_INFO_new()) == NULL) goto err; | 138 | goto err; |
140 | goto start; | 139 | goto start; |
141 | } | ||
142 | pp=&(xi->x509); | ||
143 | } | 140 | } |
144 | else if ((strcmp(name,PEM_STRING_X509_TRUSTED) == 0)) | 141 | pp = &(xi->x509); |
145 | { | 142 | } else if ((strcmp(name, PEM_STRING_X509_TRUSTED) == 0)) { |
146 | d2i=(D2I_OF(void))d2i_X509_AUX; | 143 | d2i = (D2I_OF(void))d2i_X509_AUX; |
147 | if (xi->x509 != NULL) | 144 | if (xi->x509 != NULL) { |
148 | { | 145 | if (!sk_X509_INFO_push(ret, xi)) |
149 | if (!sk_X509_INFO_push(ret,xi)) goto err; | 146 | goto err; |
150 | if ((xi=X509_INFO_new()) == NULL) goto err; | 147 | if ((xi = X509_INFO_new()) == NULL) |
148 | goto err; | ||
151 | goto start; | 149 | goto start; |
152 | } | ||
153 | pp=&(xi->x509); | ||
154 | } | 150 | } |
155 | else if (strcmp(name,PEM_STRING_X509_CRL) == 0) | 151 | pp = &(xi->x509); |
156 | { | 152 | } else if (strcmp(name, PEM_STRING_X509_CRL) == 0) { |
157 | d2i=(D2I_OF(void))d2i_X509_CRL; | 153 | d2i = (D2I_OF(void))d2i_X509_CRL; |
158 | if (xi->crl != NULL) | 154 | if (xi->crl != NULL) { |
159 | { | 155 | if (!sk_X509_INFO_push(ret, xi)) |
160 | if (!sk_X509_INFO_push(ret,xi)) goto err; | 156 | goto err; |
161 | if ((xi=X509_INFO_new()) == NULL) goto err; | 157 | if ((xi = X509_INFO_new()) == NULL) |
158 | goto err; | ||
162 | goto start; | 159 | goto start; |
163 | } | ||
164 | pp=&(xi->crl); | ||
165 | } | 160 | } |
166 | else | 161 | pp = &(xi->crl); |
162 | } else | ||
167 | #ifndef OPENSSL_NO_RSA | 163 | #ifndef OPENSSL_NO_RSA |
168 | if (strcmp(name,PEM_STRING_RSA) == 0) | 164 | if (strcmp(name, PEM_STRING_RSA) == 0) { |
169 | { | 165 | d2i = (D2I_OF(void))d2i_RSAPrivateKey; |
170 | d2i=(D2I_OF(void))d2i_RSAPrivateKey; | 166 | if (xi->x_pkey != NULL) { |
171 | if (xi->x_pkey != NULL) | 167 | if (!sk_X509_INFO_push(ret, xi)) |
172 | { | 168 | goto err; |
173 | if (!sk_X509_INFO_push(ret,xi)) goto err; | 169 | if ((xi = X509_INFO_new()) == NULL) |
174 | if ((xi=X509_INFO_new()) == NULL) goto err; | 170 | goto err; |
175 | goto start; | 171 | goto start; |
176 | } | 172 | } |
177 | 173 | ||
178 | xi->enc_data=NULL; | 174 | xi->enc_data = NULL; |
179 | xi->enc_len=0; | 175 | xi->enc_len = 0; |
180 | 176 | ||
181 | xi->x_pkey=X509_PKEY_new(); | 177 | xi->x_pkey = X509_PKEY_new(); |
182 | ptype=EVP_PKEY_RSA; | 178 | ptype = EVP_PKEY_RSA; |
183 | pp=&xi->x_pkey->dec_pkey; | 179 | pp = &xi->x_pkey->dec_pkey; |
184 | if ((int)strlen(header) > 10) /* assume encrypted */ | 180 | if ((int)strlen(header) > 10) /* assume encrypted */ |
185 | raw=1; | 181 | raw = 1; |
186 | } | 182 | } else |
187 | else | ||
188 | #endif | 183 | #endif |
189 | #ifndef OPENSSL_NO_DSA | 184 | #ifndef OPENSSL_NO_DSA |
190 | if (strcmp(name,PEM_STRING_DSA) == 0) | 185 | if (strcmp(name, PEM_STRING_DSA) == 0) { |
191 | { | 186 | d2i = (D2I_OF(void))d2i_DSAPrivateKey; |
192 | d2i=(D2I_OF(void))d2i_DSAPrivateKey; | 187 | if (xi->x_pkey != NULL) { |
193 | if (xi->x_pkey != NULL) | 188 | if (!sk_X509_INFO_push(ret, xi)) |
194 | { | 189 | goto err; |
195 | if (!sk_X509_INFO_push(ret,xi)) goto err; | 190 | if ((xi = X509_INFO_new()) == NULL) |
196 | if ((xi=X509_INFO_new()) == NULL) goto err; | 191 | goto err; |
197 | goto start; | 192 | goto start; |
198 | } | 193 | } |
199 | 194 | ||
200 | xi->enc_data=NULL; | 195 | xi->enc_data = NULL; |
201 | xi->enc_len=0; | 196 | xi->enc_len = 0; |
202 | 197 | ||
203 | xi->x_pkey=X509_PKEY_new(); | 198 | xi->x_pkey = X509_PKEY_new(); |
204 | ptype = EVP_PKEY_DSA; | 199 | ptype = EVP_PKEY_DSA; |
205 | pp=&xi->x_pkey->dec_pkey; | 200 | pp = &xi->x_pkey->dec_pkey; |
206 | if ((int)strlen(header) > 10) /* assume encrypted */ | 201 | if ((int)strlen(header) > 10) /* assume encrypted */ |
207 | raw=1; | 202 | raw = 1; |
208 | } | 203 | } else |
209 | else | ||
210 | #endif | 204 | #endif |
211 | #ifndef OPENSSL_NO_EC | 205 | #ifndef OPENSSL_NO_EC |
212 | if (strcmp(name,PEM_STRING_ECPRIVATEKEY) == 0) | 206 | if (strcmp(name, PEM_STRING_ECPRIVATEKEY) == 0) { |
213 | { | 207 | d2i = (D2I_OF(void))d2i_ECPrivateKey; |
214 | d2i=(D2I_OF(void))d2i_ECPrivateKey; | 208 | if (xi->x_pkey != NULL) { |
215 | if (xi->x_pkey != NULL) | 209 | if (!sk_X509_INFO_push(ret, xi)) |
216 | { | 210 | goto err; |
217 | if (!sk_X509_INFO_push(ret,xi)) goto err; | 211 | if ((xi = X509_INFO_new()) == NULL) |
218 | if ((xi=X509_INFO_new()) == NULL) goto err; | 212 | goto err; |
219 | goto start; | 213 | goto start; |
220 | } | ||
221 | |||
222 | xi->enc_data=NULL; | ||
223 | xi->enc_len=0; | ||
224 | |||
225 | xi->x_pkey=X509_PKEY_new(); | ||
226 | ptype = EVP_PKEY_EC; | ||
227 | pp=&xi->x_pkey->dec_pkey; | ||
228 | if ((int)strlen(header) > 10) /* assume encrypted */ | ||
229 | raw=1; | ||
230 | } | 214 | } |
231 | else | 215 | |
216 | xi->enc_data = NULL; | ||
217 | xi->enc_len = 0; | ||
218 | |||
219 | xi->x_pkey = X509_PKEY_new(); | ||
220 | ptype = EVP_PKEY_EC; | ||
221 | pp = &xi->x_pkey->dec_pkey; | ||
222 | if ((int)strlen(header) > 10) /* assume encrypted */ | ||
223 | raw = 1; | ||
224 | } else | ||
232 | #endif | 225 | #endif |
233 | { | 226 | { |
234 | d2i=NULL; | 227 | d2i = NULL; |
235 | pp=NULL; | 228 | pp = NULL; |
236 | } | 229 | } |
237 | 230 | ||
238 | if (d2i != NULL) | 231 | if (d2i != NULL) { |
239 | { | 232 | if (!raw) { |
240 | if (!raw) | ||
241 | { | ||
242 | EVP_CIPHER_INFO cipher; | 233 | EVP_CIPHER_INFO cipher; |
243 | 234 | ||
244 | if (!PEM_get_EVP_CIPHER_INFO(header,&cipher)) | 235 | if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) |
245 | goto err; | 236 | goto err; |
246 | if (!PEM_do_header(&cipher,data,&len,cb,u)) | 237 | if (!PEM_do_header(&cipher, data, &len, cb, u)) |
247 | goto err; | 238 | goto err; |
248 | p=data; | 239 | p = data; |
249 | if (ptype) | 240 | if (ptype) { |
250 | { | 241 | if (!d2i_PrivateKey(ptype, pp, &p, |
251 | if (!d2i_PrivateKey(ptype, pp, &p, len)) | 242 | len)) { |
252 | { | 243 | PEMerr(PEM_F_PEM_X509_INFO_READ_BIO, ERR_R_ASN1_LIB); |
253 | PEMerr(PEM_F_PEM_X509_INFO_READ_BIO,ERR_R_ASN1_LIB); | ||
254 | goto err; | 244 | goto err; |
255 | } | ||
256 | } | 245 | } |
257 | else if (d2i(pp,&p,len) == NULL) | 246 | } else if (d2i(pp, &p, len) == NULL) { |
258 | { | 247 | PEMerr(PEM_F_PEM_X509_INFO_READ_BIO, ERR_R_ASN1_LIB); |
259 | PEMerr(PEM_F_PEM_X509_INFO_READ_BIO,ERR_R_ASN1_LIB); | ||
260 | goto err; | 248 | goto err; |
261 | } | ||
262 | } | 249 | } |
263 | else | 250 | } else { /* encrypted RSA data */ |
264 | { /* encrypted RSA data */ | ||
265 | if (!PEM_get_EVP_CIPHER_INFO(header, | 251 | if (!PEM_get_EVP_CIPHER_INFO(header, |
266 | &xi->enc_cipher)) goto err; | 252 | &xi->enc_cipher)) |
267 | xi->enc_data=(char *)data; | 253 | goto err; |
268 | xi->enc_len=(int)len; | 254 | xi->enc_data = (char *)data; |
269 | data=NULL; | 255 | xi->enc_len = (int)len; |
270 | } | 256 | data = NULL; |
271 | } | 257 | } |
272 | else { | 258 | } else { |
273 | /* unknown */ | 259 | /* unknown */ |
274 | } | ||
275 | if (name != NULL) free(name); | ||
276 | if (header != NULL) free(header); | ||
277 | if (data != NULL) free(data); | ||
278 | name=NULL; | ||
279 | header=NULL; | ||
280 | data=NULL; | ||
281 | } | 260 | } |
261 | if (name != NULL) | ||
262 | free(name); | ||
263 | if (header != NULL) | ||
264 | free(header); | ||
265 | if (data != NULL) | ||
266 | free(data); | ||
267 | name = NULL; | ||
268 | header = NULL; | ||
269 | data = NULL; | ||
270 | } | ||
282 | 271 | ||
283 | /* if the last one hasn't been pushed yet and there is anything | 272 | /* if the last one hasn't been pushed yet and there is anything |
284 | * in it then add it to the stack ... | 273 | * in it then add it to the stack ... |
285 | */ | 274 | */ |
286 | if ((xi->x509 != NULL) || (xi->crl != NULL) || | 275 | if ((xi->x509 != NULL) || (xi->crl != NULL) || |
287 | (xi->x_pkey != NULL) || (xi->enc_data != NULL)) | 276 | (xi->x_pkey != NULL) || (xi->enc_data != NULL)) { |
288 | { | 277 | if (!sk_X509_INFO_push(ret, xi)) |
289 | if (!sk_X509_INFO_push(ret,xi)) goto err; | 278 | goto err; |
290 | xi=NULL; | 279 | xi = NULL; |
291 | } | 280 | } |
292 | ok=1; | 281 | ok = 1; |
282 | |||
293 | err: | 283 | err: |
294 | if (xi != NULL) X509_INFO_free(xi); | 284 | if (xi != NULL) |
295 | if (!ok) | 285 | X509_INFO_free(xi); |
296 | { | 286 | if (!ok) { |
297 | for (i=0; ((int)i)<sk_X509_INFO_num(ret); i++) | 287 | for (i = 0; ((int)i) < sk_X509_INFO_num(ret); i++) { |
298 | { | 288 | xi = sk_X509_INFO_value(ret, i); |
299 | xi=sk_X509_INFO_value(ret,i); | ||
300 | X509_INFO_free(xi); | 289 | X509_INFO_free(xi); |
301 | } | ||
302 | if (ret != sk) sk_X509_INFO_free(ret); | ||
303 | ret=NULL; | ||
304 | } | 290 | } |
305 | 291 | if (ret != sk) | |
306 | if (name != NULL) free(name); | 292 | sk_X509_INFO_free(ret); |
307 | if (header != NULL) free(header); | 293 | ret = NULL; |
308 | if (data != NULL) free(data); | ||
309 | return(ret); | ||
310 | } | 294 | } |
311 | 295 | ||
296 | if (name != NULL) | ||
297 | free(name); | ||
298 | if (header != NULL) | ||
299 | free(header); | ||
300 | if (data != NULL) | ||
301 | free(data); | ||
302 | return (ret); | ||
303 | } | ||
304 | |||
312 | 305 | ||
313 | /* A TJH addition */ | 306 | /* A TJH addition */ |
314 | int PEM_X509_INFO_write_bio(BIO *bp, X509_INFO *xi, EVP_CIPHER *enc, | 307 | int |
315 | unsigned char *kstr, int klen, pem_password_cb *cb, void *u) | 308 | PEM_X509_INFO_write_bio(BIO *bp, X509_INFO *xi, EVP_CIPHER *enc, |
316 | { | 309 | unsigned char *kstr, int klen, pem_password_cb *cb, void *u) |
310 | { | ||
317 | EVP_CIPHER_CTX ctx; | 311 | EVP_CIPHER_CTX ctx; |
318 | int i,ret=0; | 312 | int i, ret = 0; |
319 | unsigned char *data=NULL; | 313 | unsigned char *data = NULL; |
320 | const char *objstr=NULL; | 314 | const char *objstr = NULL; |
321 | char buf[PEM_BUFSIZE]; | 315 | char buf[PEM_BUFSIZE]; |
322 | unsigned char *iv=NULL; | 316 | unsigned char *iv = NULL; |
323 | 317 | ||
324 | if (enc != NULL) | 318 | if (enc != NULL) { |
325 | { | 319 | objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc)); |
326 | objstr=OBJ_nid2sn(EVP_CIPHER_nid(enc)); | 320 | if (objstr == NULL) { |
327 | if (objstr == NULL) | 321 | PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO, |
328 | { | 322 | PEM_R_UNSUPPORTED_CIPHER); |
329 | PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO,PEM_R_UNSUPPORTED_CIPHER); | ||
330 | goto err; | 323 | goto err; |
331 | } | ||
332 | } | 324 | } |
325 | } | ||
333 | 326 | ||
334 | /* now for the fun part ... if we have a private key then | 327 | /* now for the fun part ... if we have a private key then |
335 | * we have to be able to handle a not-yet-decrypted key | 328 | * we have to be able to handle a not-yet-decrypted key |
336 | * being written out correctly ... if it is decrypted or | 329 | * being written out correctly ... if it is decrypted or |
337 | * it is non-encrypted then we use the base code | 330 | * it is non-encrypted then we use the base code |
338 | */ | 331 | */ |
339 | if (xi->x_pkey!=NULL) | 332 | if (xi->x_pkey != NULL) { |
340 | { | 333 | if ((xi->enc_data != NULL) && (xi->enc_len > 0) ) { |
341 | if ( (xi->enc_data!=NULL) && (xi->enc_len>0) ) | 334 | if (enc == NULL) { |
342 | { | 335 | PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO, |
343 | if (enc == NULL) | 336 | PEM_R_CIPHER_IS_NULL); |
344 | { | ||
345 | PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO,PEM_R_CIPHER_IS_NULL); | ||
346 | goto err; | 337 | goto err; |
347 | } | 338 | } |
348 | 339 | ||
349 | /* copy from weirdo names into more normal things */ | 340 | /* copy from weirdo names into more normal things */ |
350 | iv=xi->enc_cipher.iv; | 341 | iv = xi->enc_cipher.iv; |
351 | data=(unsigned char *)xi->enc_data; | 342 | data = (unsigned char *)xi->enc_data; |
352 | i=xi->enc_len; | 343 | i = xi->enc_len; |
353 | 344 | ||
354 | /* we take the encryption data from the | 345 | /* we take the encryption data from the |
355 | * internal stuff rather than what the | 346 | * internal stuff rather than what the |
356 | * user has passed us ... as we have to | 347 | * user has passed us ... as we have to |
357 | * match exactly for some strange reason | 348 | * match exactly for some strange reason |
358 | */ | 349 | */ |
359 | objstr=OBJ_nid2sn( | 350 | objstr = OBJ_nid2sn( |
360 | EVP_CIPHER_nid(xi->enc_cipher.cipher)); | 351 | EVP_CIPHER_nid(xi->enc_cipher.cipher)); |
361 | if (objstr == NULL) | 352 | if (objstr == NULL) { |
362 | { | 353 | PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO, |
363 | PEMerr(PEM_F_PEM_X509_INFO_WRITE_BIO,PEM_R_UNSUPPORTED_CIPHER); | 354 | PEM_R_UNSUPPORTED_CIPHER); |
364 | goto err; | 355 | goto err; |
365 | } | 356 | } |
366 | 357 | ||
367 | /* create the right magic header stuff */ | 358 | /* create the right magic header stuff */ |
368 | OPENSSL_assert(strlen(objstr)+23+2*enc->iv_len+13 <= sizeof buf); | 359 | OPENSSL_assert(strlen(objstr) + 23 + |
369 | buf[0]='\0'; | 360 | 2 * enc->iv_len + 13 <= sizeof buf); |
370 | PEM_proc_type(buf,PEM_TYPE_ENCRYPTED); | 361 | buf[0] = '\0'; |
371 | PEM_dek_info(buf,objstr,enc->iv_len,(char *)iv); | 362 | PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); |
363 | PEM_dek_info(buf, objstr, enc->iv_len, (char *)iv); | ||
372 | 364 | ||
373 | /* use the normal code to write things out */ | 365 | /* use the normal code to write things out */ |
374 | i=PEM_write_bio(bp,PEM_STRING_RSA,buf,data,i); | 366 | i = PEM_write_bio(bp, PEM_STRING_RSA, buf, data, i); |
375 | if (i <= 0) goto err; | 367 | if (i <= 0) |
376 | } | 368 | goto err; |
377 | else | 369 | } else { |
378 | { | ||
379 | /* Add DSA/DH */ | 370 | /* Add DSA/DH */ |
380 | #ifndef OPENSSL_NO_RSA | 371 | #ifndef OPENSSL_NO_RSA |
381 | /* normal optionally encrypted stuff */ | 372 | /* normal optionally encrypted stuff */ |
382 | if (PEM_write_bio_RSAPrivateKey(bp, | 373 | if (PEM_write_bio_RSAPrivateKey(bp, |
383 | xi->x_pkey->dec_pkey->pkey.rsa, | 374 | xi->x_pkey->dec_pkey->pkey.rsa, |
384 | enc,kstr,klen,cb,u)<=0) | 375 | enc, kstr, klen, cb, u) <= 0) |
385 | goto err; | 376 | goto err; |
386 | #endif | 377 | #endif |
387 | } | ||
388 | } | 378 | } |
379 | } | ||
389 | 380 | ||
390 | /* if we have a certificate then write it out now */ | 381 | /* if we have a certificate then write it out now */ |
391 | if ((xi->x509 != NULL) && (PEM_write_bio_X509(bp,xi->x509) <= 0)) | 382 | if ((xi->x509 != NULL) && (PEM_write_bio_X509(bp, xi->x509) <= 0)) |
392 | goto err; | 383 | goto err; |
393 | 384 | ||
394 | /* we are ignoring anything else that is loaded into the X509_INFO | 385 | /* we are ignoring anything else that is loaded into the X509_INFO |
@@ -397,10 +388,10 @@ int PEM_X509_INFO_write_bio(BIO *bp, X509_INFO *xi, EVP_CIPHER *enc, | |||
397 | * base library --tjh | 388 | * base library --tjh |
398 | */ | 389 | */ |
399 | 390 | ||
400 | ret=1; | 391 | ret = 1; |
401 | 392 | ||
402 | err: | 393 | err: |
403 | OPENSSL_cleanse((char *)&ctx,sizeof(ctx)); | 394 | OPENSSL_cleanse((char *)&ctx, sizeof(ctx)); |
404 | OPENSSL_cleanse(buf,PEM_BUFSIZE); | 395 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
405 | return(ret); | 396 | return (ret); |
406 | } | 397 | } |
diff --git a/src/lib/libssl/src/crypto/pem/pem_lib.c b/src/lib/libssl/src/crypto/pem/pem_lib.c index 93736455fa..9d5d8e714c 100644 --- a/src/lib/libssl/src/crypto/pem/pem_lib.c +++ b/src/lib/libssl/src/crypto/pem/pem_lib.c | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -74,132 +74,132 @@ | |||
74 | #include <openssl/engine.h> | 74 | #include <openssl/engine.h> |
75 | #endif | 75 | #endif |
76 | 76 | ||
77 | const char PEM_version[]="PEM" OPENSSL_VERSION_PTEXT; | 77 | const char PEM_version[] = "PEM" OPENSSL_VERSION_PTEXT; |
78 | 78 | ||
79 | #define MIN_LENGTH 4 | 79 | #define MIN_LENGTH 4 |
80 | 80 | ||
81 | static int load_iv(char **fromp,unsigned char *to, int num); | 81 | static int load_iv(char **fromp, unsigned char *to, int num); |
82 | static int check_pem(const char *nm, const char *name); | 82 | static int check_pem(const char *nm, const char *name); |
83 | int pem_check_suffix(const char *pem_str, const char *suffix); | 83 | int pem_check_suffix(const char *pem_str, const char *suffix); |
84 | 84 | ||
85 | int PEM_def_callback(char *buf, int num, int w, void *key) | 85 | int |
86 | { | 86 | PEM_def_callback(char *buf, int num, int w, void *key) |
87 | { | ||
87 | #ifdef OPENSSL_NO_FP_API | 88 | #ifdef OPENSSL_NO_FP_API |
88 | /* We should not ever call the default callback routine from | 89 | /* We should not ever call the default callback routine from |
89 | * windows. */ | 90 | * windows. */ |
90 | PEMerr(PEM_F_PEM_DEF_CALLBACK,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 91 | PEMerr(PEM_F_PEM_DEF_CALLBACK, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
91 | return(-1); | 92 | return (-1); |
92 | #else | 93 | #else |
93 | int i,j; | 94 | int i, j; |
94 | const char *prompt; | 95 | const char *prompt; |
95 | if(key) { | 96 | |
96 | i=strlen(key); | 97 | if (key) { |
97 | i=(i > num)?num:i; | 98 | i = strlen(key); |
98 | memcpy(buf,key,i); | 99 | i = (i > num) ? num : i; |
99 | return(i); | 100 | memcpy(buf, key, i); |
101 | return (i); | ||
100 | } | 102 | } |
101 | 103 | ||
102 | prompt=EVP_get_pw_prompt(); | 104 | prompt = EVP_get_pw_prompt(); |
103 | if (prompt == NULL) | 105 | if (prompt == NULL) |
104 | prompt="Enter PEM pass phrase:"; | 106 | prompt = "Enter PEM pass phrase:"; |
105 | 107 | ||
106 | for (;;) | 108 | for (;;) { |
107 | { | 109 | i = EVP_read_pw_string_min(buf, MIN_LENGTH, num, prompt, w); |
108 | i=EVP_read_pw_string_min(buf,MIN_LENGTH,num,prompt,w); | 110 | if (i != 0) { |
109 | if (i != 0) | 111 | PEMerr(PEM_F_PEM_DEF_CALLBACK, |
110 | { | 112 | PEM_R_PROBLEMS_GETTING_PASSWORD); |
111 | PEMerr(PEM_F_PEM_DEF_CALLBACK,PEM_R_PROBLEMS_GETTING_PASSWORD); | 113 | memset(buf, 0, (unsigned int)num); |
112 | memset(buf,0,(unsigned int)num); | 114 | return (-1); |
113 | return(-1); | 115 | } |
114 | } | 116 | j = strlen(buf); |
115 | j=strlen(buf); | 117 | if (j < MIN_LENGTH) { |
116 | if (j < MIN_LENGTH) | 118 | fprintf(stderr, "phrase is too short, needs to be at least %d chars\n", MIN_LENGTH); |
117 | { | 119 | } else |
118 | fprintf(stderr,"phrase is too short, needs to be at least %d chars\n",MIN_LENGTH); | ||
119 | } | ||
120 | else | ||
121 | break; | 120 | break; |
122 | } | ||
123 | return(j); | ||
124 | #endif | ||
125 | } | 121 | } |
122 | return (j); | ||
123 | #endif | ||
124 | } | ||
126 | 125 | ||
127 | void PEM_proc_type(char *buf, int type) | 126 | void |
128 | { | 127 | PEM_proc_type(char *buf, int type) |
128 | { | ||
129 | const char *str; | 129 | const char *str; |
130 | 130 | ||
131 | if (type == PEM_TYPE_ENCRYPTED) | 131 | if (type == PEM_TYPE_ENCRYPTED) |
132 | str="ENCRYPTED"; | 132 | str = "ENCRYPTED"; |
133 | else if (type == PEM_TYPE_MIC_CLEAR) | 133 | else if (type == PEM_TYPE_MIC_CLEAR) |
134 | str="MIC-CLEAR"; | 134 | str = "MIC-CLEAR"; |
135 | else if (type == PEM_TYPE_MIC_ONLY) | 135 | else if (type == PEM_TYPE_MIC_ONLY) |
136 | str="MIC-ONLY"; | 136 | str = "MIC-ONLY"; |
137 | else | 137 | else |
138 | str="BAD-TYPE"; | 138 | str = "BAD-TYPE"; |
139 | 139 | ||
140 | strlcat(buf,"Proc-Type: 4,",PEM_BUFSIZE); | 140 | strlcat(buf, "Proc-Type: 4,", PEM_BUFSIZE); |
141 | strlcat(buf,str,PEM_BUFSIZE); | 141 | strlcat(buf, str, PEM_BUFSIZE); |
142 | strlcat(buf,"\n",PEM_BUFSIZE); | 142 | strlcat(buf, "\n", PEM_BUFSIZE); |
143 | } | 143 | } |
144 | 144 | ||
145 | void PEM_dek_info(char *buf, const char *type, int len, char *str) | 145 | void |
146 | { | 146 | PEM_dek_info(char *buf, const char *type, int len, char *str) |
147 | static const unsigned char map[17]="0123456789ABCDEF"; | 147 | { |
148 | static const unsigned char map[17] = "0123456789ABCDEF"; | ||
148 | long i; | 149 | long i; |
149 | int j; | 150 | int j; |
150 | 151 | ||
151 | strlcat(buf,"DEK-Info: ",PEM_BUFSIZE); | 152 | strlcat(buf, "DEK-Info: ", PEM_BUFSIZE); |
152 | strlcat(buf,type,PEM_BUFSIZE); | 153 | strlcat(buf, type, PEM_BUFSIZE); |
153 | strlcat(buf,",",PEM_BUFSIZE); | 154 | strlcat(buf, ",", PEM_BUFSIZE); |
154 | j=strlen(buf); | 155 | j = strlen(buf); |
155 | if (j + (len * 2) + 1 > PEM_BUFSIZE) | 156 | if (j + (len * 2) + 1 > PEM_BUFSIZE) |
156 | return; | 157 | return; |
157 | for (i=0; i<len; i++) | 158 | for (i = 0; i < len; i++) { |
158 | { | 159 | buf[j + i * 2] = map[(str[i] >> 4) & 0x0f]; |
159 | buf[j+i*2] =map[(str[i]>>4)&0x0f]; | 160 | buf[j + i * 2 + 1] = map[(str[i]) & 0x0f]; |
160 | buf[j+i*2+1]=map[(str[i] )&0x0f]; | ||
161 | } | ||
162 | buf[j+i*2]='\n'; | ||
163 | buf[j+i*2+1]='\0'; | ||
164 | } | 161 | } |
162 | buf[j + i * 2] = '\n'; | ||
163 | buf[j + i * 2 + 1] = '\0'; | ||
164 | } | ||
165 | 165 | ||
166 | #ifndef OPENSSL_NO_FP_API | 166 | #ifndef OPENSSL_NO_FP_API |
167 | void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, | 167 | void * |
168 | pem_password_cb *cb, void *u) | 168 | PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, |
169 | { | 169 | pem_password_cb *cb, void *u) |
170 | BIO *b; | 170 | { |
171 | void *ret; | 171 | BIO *b; |
172 | 172 | void *ret; | |
173 | if ((b=BIO_new(BIO_s_file())) == NULL) | 173 | |
174 | { | 174 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
175 | PEMerr(PEM_F_PEM_ASN1_READ,ERR_R_BUF_LIB); | 175 | PEMerr(PEM_F_PEM_ASN1_READ, ERR_R_BUF_LIB); |
176 | return(0); | 176 | return (0); |
177 | } | ||
178 | BIO_set_fp(b,fp,BIO_NOCLOSE); | ||
179 | ret=PEM_ASN1_read_bio(d2i,name,b,x,cb,u); | ||
180 | BIO_free(b); | ||
181 | return(ret); | ||
182 | } | 177 | } |
178 | BIO_set_fp(b, fp, BIO_NOCLOSE); | ||
179 | ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u); | ||
180 | BIO_free(b); | ||
181 | return (ret); | ||
182 | } | ||
183 | #endif | 183 | #endif |
184 | 184 | ||
185 | static int check_pem(const char *nm, const char *name) | 185 | static int |
186 | check_pem(const char *nm, const char *name) | ||
186 | { | 187 | { |
187 | /* Normal matching nm and name */ | 188 | /* Normal matching nm and name */ |
188 | if (!strcmp(nm,name)) return 1; | 189 | if (!strcmp(nm, name)) |
190 | return 1; | ||
189 | 191 | ||
190 | /* Make PEM_STRING_EVP_PKEY match any private key */ | 192 | /* Make PEM_STRING_EVP_PKEY match any private key */ |
191 | 193 | ||
192 | if(!strcmp(name,PEM_STRING_EVP_PKEY)) | 194 | if (!strcmp(name, PEM_STRING_EVP_PKEY)) { |
193 | { | ||
194 | int slen; | 195 | int slen; |
195 | const EVP_PKEY_ASN1_METHOD *ameth; | 196 | const EVP_PKEY_ASN1_METHOD *ameth; |
196 | if(!strcmp(nm,PEM_STRING_PKCS8)) | 197 | if (!strcmp(nm, PEM_STRING_PKCS8)) |
197 | return 1; | 198 | return 1; |
198 | if(!strcmp(nm,PEM_STRING_PKCS8INF)) | 199 | if (!strcmp(nm, PEM_STRING_PKCS8INF)) |
199 | return 1; | 200 | return 1; |
200 | slen = pem_check_suffix(nm, "PRIVATE KEY"); | 201 | slen = pem_check_suffix(nm, "PRIVATE KEY"); |
201 | if (slen > 0) | 202 | if (slen > 0) { |
202 | { | ||
203 | /* NB: ENGINE implementations wont contain | 203 | /* NB: ENGINE implementations wont contain |
204 | * a deprecated old private key decode function | 204 | * a deprecated old private key decode function |
205 | * so don't look for them. | 205 | * so don't look for them. |
@@ -207,21 +207,18 @@ static int check_pem(const char *nm, const char *name) | |||
207 | ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); | 207 | ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); |
208 | if (ameth && ameth->old_priv_decode) | 208 | if (ameth && ameth->old_priv_decode) |
209 | return 1; | 209 | return 1; |
210 | } | ||
211 | return 0; | ||
212 | } | 210 | } |
211 | return 0; | ||
212 | } | ||
213 | 213 | ||
214 | if(!strcmp(name,PEM_STRING_PARAMETERS)) | 214 | if (!strcmp(name, PEM_STRING_PARAMETERS)) { |
215 | { | ||
216 | int slen; | 215 | int slen; |
217 | const EVP_PKEY_ASN1_METHOD *ameth; | 216 | const EVP_PKEY_ASN1_METHOD *ameth; |
218 | slen = pem_check_suffix(nm, "PARAMETERS"); | 217 | slen = pem_check_suffix(nm, "PARAMETERS"); |
219 | if (slen > 0) | 218 | if (slen > 0) { |
220 | { | ||
221 | ENGINE *e; | 219 | ENGINE *e; |
222 | ameth = EVP_PKEY_asn1_find_str(&e, nm, slen); | 220 | ameth = EVP_PKEY_asn1_find_str(&e, nm, slen); |
223 | if (ameth) | 221 | if (ameth) { |
224 | { | ||
225 | int r; | 222 | int r; |
226 | if (ameth->param_decode) | 223 | if (ameth->param_decode) |
227 | r = 1; | 224 | r = 1; |
@@ -232,68 +229,79 @@ static int check_pem(const char *nm, const char *name) | |||
232 | ENGINE_finish(e); | 229 | ENGINE_finish(e); |
233 | #endif | 230 | #endif |
234 | return r; | 231 | return r; |
235 | } | ||
236 | } | 232 | } |
237 | return 0; | ||
238 | } | 233 | } |
234 | return 0; | ||
235 | } | ||
239 | 236 | ||
240 | /* Permit older strings */ | 237 | /* Permit older strings */ |
241 | 238 | ||
242 | if(!strcmp(nm,PEM_STRING_X509_OLD) && | 239 | if (!strcmp(nm, PEM_STRING_X509_OLD) && |
243 | !strcmp(name,PEM_STRING_X509)) return 1; | 240 | !strcmp(name, PEM_STRING_X509)) |
241 | return 1; | ||
244 | 242 | ||
245 | if(!strcmp(nm,PEM_STRING_X509_REQ_OLD) && | 243 | if (!strcmp(nm, PEM_STRING_X509_REQ_OLD) && |
246 | !strcmp(name,PEM_STRING_X509_REQ)) return 1; | 244 | !strcmp(name, PEM_STRING_X509_REQ)) |
245 | return 1; | ||
247 | 246 | ||
248 | /* Allow normal certs to be read as trusted certs */ | 247 | /* Allow normal certs to be read as trusted certs */ |
249 | if(!strcmp(nm,PEM_STRING_X509) && | 248 | if (!strcmp(nm, PEM_STRING_X509) && |
250 | !strcmp(name,PEM_STRING_X509_TRUSTED)) return 1; | 249 | !strcmp(name, PEM_STRING_X509_TRUSTED)) |
250 | return 1; | ||
251 | 251 | ||
252 | if(!strcmp(nm,PEM_STRING_X509_OLD) && | 252 | if (!strcmp(nm, PEM_STRING_X509_OLD) && |
253 | !strcmp(name,PEM_STRING_X509_TRUSTED)) return 1; | 253 | !strcmp(name, PEM_STRING_X509_TRUSTED)) |
254 | return 1; | ||
254 | 255 | ||
255 | /* Some CAs use PKCS#7 with CERTIFICATE headers */ | 256 | /* Some CAs use PKCS#7 with CERTIFICATE headers */ |
256 | if(!strcmp(nm, PEM_STRING_X509) && | 257 | if (!strcmp(nm, PEM_STRING_X509) && |
257 | !strcmp(name, PEM_STRING_PKCS7)) return 1; | 258 | !strcmp(name, PEM_STRING_PKCS7)) |
259 | return 1; | ||
258 | 260 | ||
259 | if(!strcmp(nm, PEM_STRING_PKCS7_SIGNED) && | 261 | if (!strcmp(nm, PEM_STRING_PKCS7_SIGNED) && |
260 | !strcmp(name, PEM_STRING_PKCS7)) return 1; | 262 | !strcmp(name, PEM_STRING_PKCS7)) |
263 | return 1; | ||
261 | 264 | ||
262 | #ifndef OPENSSL_NO_CMS | 265 | #ifndef OPENSSL_NO_CMS |
263 | if(!strcmp(nm, PEM_STRING_X509) && | 266 | if (!strcmp(nm, PEM_STRING_X509) && |
264 | !strcmp(name, PEM_STRING_CMS)) return 1; | 267 | !strcmp(name, PEM_STRING_CMS)) |
268 | return 1; | ||
265 | /* Allow CMS to be read from PKCS#7 headers */ | 269 | /* Allow CMS to be read from PKCS#7 headers */ |
266 | if(!strcmp(nm, PEM_STRING_PKCS7) && | 270 | if (!strcmp(nm, PEM_STRING_PKCS7) && |
267 | !strcmp(name, PEM_STRING_CMS)) return 1; | 271 | !strcmp(name, PEM_STRING_CMS)) |
272 | return 1; | ||
268 | #endif | 273 | #endif |
269 | 274 | ||
270 | return 0; | 275 | return 0; |
271 | } | 276 | } |
272 | 277 | ||
273 | int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, const char *name, BIO *bp, | 278 | int |
274 | pem_password_cb *cb, void *u) | 279 | PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, |
275 | { | 280 | const char *name, BIO *bp, pem_password_cb *cb, void *u) |
281 | { | ||
276 | EVP_CIPHER_INFO cipher; | 282 | EVP_CIPHER_INFO cipher; |
277 | char *nm=NULL,*header=NULL; | 283 | char *nm = NULL, *header = NULL; |
278 | unsigned char *data=NULL; | 284 | unsigned char *data = NULL; |
279 | long len; | 285 | long len; |
280 | int ret = 0; | 286 | int ret = 0; |
281 | 287 | ||
282 | for (;;) | 288 | for (;;) { |
283 | { | 289 | if (!PEM_read_bio(bp, &nm, &header, &data, &len)) { |
284 | if (!PEM_read_bio(bp,&nm,&header,&data,&len)) { | 290 | if (ERR_GET_REASON(ERR_peek_error()) == |
285 | if(ERR_GET_REASON(ERR_peek_error()) == | 291 | PEM_R_NO_START_LINE) |
286 | PEM_R_NO_START_LINE) | ||
287 | ERR_add_error_data(2, "Expecting: ", name); | 292 | ERR_add_error_data(2, "Expecting: ", name); |
288 | return 0; | 293 | return 0; |
289 | } | 294 | } |
290 | if(check_pem(nm, name)) break; | 295 | if (check_pem(nm, name)) |
296 | break; | ||
291 | free(nm); | 297 | free(nm); |
292 | free(header); | 298 | free(header); |
293 | free(data); | 299 | free(data); |
294 | } | 300 | } |
295 | if (!PEM_get_EVP_CIPHER_INFO(header,&cipher)) goto err; | 301 | if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) |
296 | if (!PEM_do_header(&cipher,data,&len,cb,u)) goto err; | 302 | goto err; |
303 | if (!PEM_do_header(&cipher, data, &len, cb, u)) | ||
304 | goto err; | ||
297 | 305 | ||
298 | *pdata = data; | 306 | *pdata = data; |
299 | *plen = len; | 307 | *plen = len; |
@@ -304,532 +312,553 @@ int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, const char | |||
304 | ret = 1; | 312 | ret = 1; |
305 | 313 | ||
306 | err: | 314 | err: |
307 | if (!ret || !pnm) free(nm); | 315 | if (!ret || !pnm) |
316 | free(nm); | ||
308 | free(header); | 317 | free(header); |
309 | if (!ret) free(data); | 318 | if (!ret) |
319 | free(data); | ||
310 | return ret; | 320 | return ret; |
311 | } | 321 | } |
312 | 322 | ||
313 | #ifndef OPENSSL_NO_FP_API | 323 | #ifndef OPENSSL_NO_FP_API |
314 | int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, | 324 | int |
315 | void *x, const EVP_CIPHER *enc, unsigned char *kstr, | 325 | PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, void *x, |
316 | int klen, pem_password_cb *callback, void *u) | 326 | const EVP_CIPHER *enc, unsigned char *kstr, int klen, |
317 | { | 327 | pem_password_cb *callback, void *u) |
318 | BIO *b; | 328 | { |
319 | int ret; | 329 | BIO *b; |
320 | 330 | int ret; | |
321 | if ((b=BIO_new(BIO_s_file())) == NULL) | 331 | |
322 | { | 332 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
323 | PEMerr(PEM_F_PEM_ASN1_WRITE,ERR_R_BUF_LIB); | 333 | PEMerr(PEM_F_PEM_ASN1_WRITE, ERR_R_BUF_LIB); |
324 | return(0); | 334 | return (0); |
325 | } | 335 | } |
326 | BIO_set_fp(b,fp,BIO_NOCLOSE); | 336 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
327 | ret=PEM_ASN1_write_bio(i2d,name,b,x,enc,kstr,klen,callback,u); | 337 | ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u); |
328 | BIO_free(b); | 338 | BIO_free(b); |
329 | return(ret); | 339 | return (ret); |
330 | } | 340 | } |
331 | #endif | 341 | #endif |
332 | 342 | ||
333 | int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, | 343 | int |
334 | void *x, const EVP_CIPHER *enc, unsigned char *kstr, | 344 | PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, void *x, |
335 | int klen, pem_password_cb *callback, void *u) | 345 | const EVP_CIPHER *enc, unsigned char *kstr, int klen, |
336 | { | 346 | pem_password_cb *callback, void *u) |
347 | { | ||
337 | EVP_CIPHER_CTX ctx; | 348 | EVP_CIPHER_CTX ctx; |
338 | int dsize=0,i,j,ret=0; | 349 | int dsize = 0, i, j, ret = 0; |
339 | unsigned char *p,*data=NULL; | 350 | unsigned char *p, *data = NULL; |
340 | const char *objstr=NULL; | 351 | const char *objstr = NULL; |
341 | char buf[PEM_BUFSIZE]; | 352 | char buf[PEM_BUFSIZE]; |
342 | unsigned char key[EVP_MAX_KEY_LENGTH]; | 353 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
343 | unsigned char iv[EVP_MAX_IV_LENGTH]; | 354 | unsigned char iv[EVP_MAX_IV_LENGTH]; |
344 | 355 | ||
345 | if (enc != NULL) | 356 | if (enc != NULL) { |
346 | { | 357 | objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc)); |
347 | objstr=OBJ_nid2sn(EVP_CIPHER_nid(enc)); | 358 | if (objstr == NULL) { |
348 | if (objstr == NULL) | 359 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, |
349 | { | 360 | PEM_R_UNSUPPORTED_CIPHER); |
350 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO,PEM_R_UNSUPPORTED_CIPHER); | ||
351 | goto err; | 361 | goto err; |
352 | } | ||
353 | } | 362 | } |
363 | } | ||
354 | 364 | ||
355 | if ((dsize=i2d(x,NULL)) < 0) | 365 | if ((dsize = i2d(x, NULL)) < 0) { |
356 | { | 366 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_ASN1_LIB); |
357 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO,ERR_R_ASN1_LIB); | 367 | dsize = 0; |
358 | dsize=0; | ||
359 | goto err; | 368 | goto err; |
360 | } | 369 | } |
361 | /* dzise + 8 bytes are needed */ | 370 | /* dzise + 8 bytes are needed */ |
362 | /* actually it needs the cipher block size extra... */ | 371 | /* actually it needs the cipher block size extra... */ |
363 | data=(unsigned char *)malloc((unsigned int)dsize+20); | 372 | data = (unsigned char *)malloc((unsigned int)dsize + 20); |
364 | if (data == NULL) | 373 | if (data == NULL) { |
365 | { | 374 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_MALLOC_FAILURE); |
366 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO,ERR_R_MALLOC_FAILURE); | ||
367 | goto err; | 375 | goto err; |
368 | } | 376 | } |
369 | p=data; | 377 | p = data; |
370 | i=i2d(x,&p); | 378 | i = i2d(x, &p); |
371 | 379 | ||
372 | if (enc != NULL) | 380 | if (enc != NULL) { |
373 | { | 381 | if (kstr == NULL) { |
374 | if (kstr == NULL) | ||
375 | { | ||
376 | if (callback == NULL) | 382 | if (callback == NULL) |
377 | klen=PEM_def_callback(buf,PEM_BUFSIZE,1,u); | 383 | klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u); |
378 | else | 384 | else |
379 | klen=(*callback)(buf,PEM_BUFSIZE,1,u); | 385 | klen = (*callback)(buf, PEM_BUFSIZE, 1, u); |
380 | if (klen <= 0) | 386 | if (klen <= 0) { |
381 | { | 387 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, |
382 | PEMerr(PEM_F_PEM_ASN1_WRITE_BIO,PEM_R_READ_KEY); | 388 | PEM_R_READ_KEY); |
383 | goto err; | 389 | goto err; |
384 | } | ||
385 | kstr=(unsigned char *)buf; | ||
386 | } | 390 | } |
391 | kstr = (unsigned char *)buf; | ||
392 | } | ||
387 | OPENSSL_assert(enc->iv_len <= (int)sizeof(iv)); | 393 | OPENSSL_assert(enc->iv_len <= (int)sizeof(iv)); |
388 | if (RAND_pseudo_bytes(iv,enc->iv_len) < 0) /* Generate a salt */ | 394 | if (RAND_pseudo_bytes(iv, enc->iv_len) < 0) /* Generate a salt */ |
389 | goto err; | 395 | goto err; |
390 | /* The 'iv' is used as the iv and as a salt. It is | 396 | /* The 'iv' is used as the iv and as a salt. It is |
391 | * NOT taken from the BytesToKey function */ | 397 | * NOT taken from the BytesToKey function */ |
392 | if (!EVP_BytesToKey(enc,EVP_md5(),iv,kstr,klen,1,key,NULL)) | 398 | if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, |
399 | key, NULL)) | ||
393 | goto err; | 400 | goto err; |
394 | 401 | ||
395 | if (kstr == (unsigned char *)buf) OPENSSL_cleanse(buf,PEM_BUFSIZE); | 402 | if (kstr == (unsigned char *)buf) |
403 | OPENSSL_cleanse(buf, PEM_BUFSIZE); | ||
396 | 404 | ||
397 | OPENSSL_assert(strlen(objstr)+23+2*enc->iv_len+13 <= sizeof buf); | 405 | OPENSSL_assert(strlen(objstr) + 23 + |
406 | 2 * enc->iv_len + 13 <= sizeof buf); | ||
398 | 407 | ||
399 | buf[0]='\0'; | 408 | buf[0] = '\0'; |
400 | PEM_proc_type(buf,PEM_TYPE_ENCRYPTED); | 409 | PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); |
401 | PEM_dek_info(buf,objstr,enc->iv_len,(char *)iv); | 410 | PEM_dek_info(buf, objstr, enc->iv_len, (char *)iv); |
402 | /* k=strlen(buf); */ | 411 | /* k=strlen(buf); */ |
403 | 412 | ||
404 | EVP_CIPHER_CTX_init(&ctx); | 413 | EVP_CIPHER_CTX_init(&ctx); |
405 | ret = 1; | 414 | ret = 1; |
406 | if (!EVP_EncryptInit_ex(&ctx,enc,NULL,key,iv) | 415 | if (!EVP_EncryptInit_ex(&ctx, enc, NULL, key, iv) || |
407 | || !EVP_EncryptUpdate(&ctx,data,&j,data,i) | 416 | !EVP_EncryptUpdate(&ctx, data, &j, data, i) || |
408 | || !EVP_EncryptFinal_ex(&ctx,&(data[j]),&i)) | 417 | !EVP_EncryptFinal_ex(&ctx, &(data[j]), &i)) |
409 | ret = 0; | 418 | ret = 0; |
410 | EVP_CIPHER_CTX_cleanup(&ctx); | 419 | EVP_CIPHER_CTX_cleanup(&ctx); |
411 | if (ret == 0) | 420 | if (ret == 0) |
412 | goto err; | 421 | goto err; |
413 | i+=j; | 422 | i += j; |
414 | } | 423 | } else { |
415 | else | 424 | ret = 1; |
416 | { | 425 | buf[0] = '\0'; |
417 | ret=1; | 426 | } |
418 | buf[0]='\0'; | 427 | i = PEM_write_bio(bp, name, buf, data, i); |
419 | } | 428 | if (i <= 0) |
420 | i=PEM_write_bio(bp,name,buf,data,i); | 429 | ret = 0; |
421 | if (i <= 0) ret=0; | ||
422 | err: | 430 | err: |
423 | OPENSSL_cleanse(key,sizeof(key)); | 431 | OPENSSL_cleanse(key, sizeof(key)); |
424 | OPENSSL_cleanse(iv,sizeof(iv)); | 432 | OPENSSL_cleanse(iv, sizeof(iv)); |
425 | OPENSSL_cleanse((char *)&ctx,sizeof(ctx)); | 433 | OPENSSL_cleanse((char *)&ctx, sizeof(ctx)); |
426 | OPENSSL_cleanse(buf,PEM_BUFSIZE); | 434 | OPENSSL_cleanse(buf, PEM_BUFSIZE); |
427 | if (data != NULL) | 435 | if (data != NULL) { |
428 | { | 436 | OPENSSL_cleanse(data, (unsigned int)dsize); |
429 | OPENSSL_cleanse(data,(unsigned int)dsize); | ||
430 | free(data); | 437 | free(data); |
431 | } | ||
432 | return(ret); | ||
433 | } | 438 | } |
439 | return (ret); | ||
440 | } | ||
434 | 441 | ||
435 | int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen, | 442 | int |
436 | pem_password_cb *callback,void *u) | 443 | PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen, |
437 | { | 444 | pem_password_cb *callback, void *u) |
438 | int i,j,o,klen; | 445 | { |
446 | int i, j, o, klen; | ||
439 | long len; | 447 | long len; |
440 | EVP_CIPHER_CTX ctx; | 448 | EVP_CIPHER_CTX ctx; |
441 | unsigned char key[EVP_MAX_KEY_LENGTH]; | 449 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
442 | char buf[PEM_BUFSIZE]; | 450 | char buf[PEM_BUFSIZE]; |
443 | 451 | ||
444 | len= *plen; | 452 | len = *plen; |
445 | 453 | ||
446 | if (cipher->cipher == NULL) return(1); | 454 | if (cipher->cipher == NULL) |
455 | return (1); | ||
447 | if (callback == NULL) | 456 | if (callback == NULL) |
448 | klen=PEM_def_callback(buf,PEM_BUFSIZE,0,u); | 457 | klen = PEM_def_callback(buf, PEM_BUFSIZE, 0, u); |
449 | else | 458 | else |
450 | klen=callback(buf,PEM_BUFSIZE,0,u); | 459 | klen = callback(buf, PEM_BUFSIZE, 0, u); |
451 | if (klen <= 0) | 460 | if (klen <= 0) { |
452 | { | 461 | PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_PASSWORD_READ); |
453 | PEMerr(PEM_F_PEM_DO_HEADER,PEM_R_BAD_PASSWORD_READ); | 462 | return (0); |
454 | return(0); | 463 | } |
455 | } | 464 | if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]), |
456 | if (!EVP_BytesToKey(cipher->cipher,EVP_md5(),&(cipher->iv[0]), | 465 | (unsigned char *)buf, klen, 1, key, NULL)) |
457 | (unsigned char *)buf,klen,1,key,NULL)) | ||
458 | return 0; | 466 | return 0; |
459 | 467 | ||
460 | j=(int)len; | 468 | j = (int)len; |
461 | EVP_CIPHER_CTX_init(&ctx); | 469 | EVP_CIPHER_CTX_init(&ctx); |
462 | o = EVP_DecryptInit_ex(&ctx,cipher->cipher,NULL, key,&(cipher->iv[0])); | 470 | o = EVP_DecryptInit_ex(&ctx, cipher->cipher, NULL, key, |
471 | &(cipher->iv[0])); | ||
463 | if (o) | 472 | if (o) |
464 | o = EVP_DecryptUpdate(&ctx,data,&i,data,j); | 473 | o = EVP_DecryptUpdate(&ctx, data, &i, data, j); |
465 | if (o) | 474 | if (o) |
466 | o = EVP_DecryptFinal_ex(&ctx,&(data[i]),&j); | 475 | o = EVP_DecryptFinal_ex(&ctx, &(data[i]), &j); |
467 | EVP_CIPHER_CTX_cleanup(&ctx); | 476 | EVP_CIPHER_CTX_cleanup(&ctx); |
468 | OPENSSL_cleanse((char *)buf,sizeof(buf)); | 477 | OPENSSL_cleanse((char *)buf, sizeof(buf)); |
469 | OPENSSL_cleanse((char *)key,sizeof(key)); | 478 | OPENSSL_cleanse((char *)key, sizeof(key)); |
470 | j+=i; | 479 | j += i; |
471 | if (!o) | 480 | if (!o) { |
472 | { | 481 | PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_DECRYPT); |
473 | PEMerr(PEM_F_PEM_DO_HEADER,PEM_R_BAD_DECRYPT); | 482 | return (0); |
474 | return(0); | ||
475 | } | ||
476 | *plen=j; | ||
477 | return(1); | ||
478 | } | 483 | } |
484 | *plen = j; | ||
485 | return (1); | ||
486 | } | ||
479 | 487 | ||
480 | int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher) | 488 | int |
481 | { | 489 | PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher) |
482 | const EVP_CIPHER *enc=NULL; | 490 | { |
483 | char *p,c; | 491 | const EVP_CIPHER *enc = NULL; |
492 | char *p, c; | ||
484 | char **header_pp = &header; | 493 | char **header_pp = &header; |
485 | 494 | ||
486 | cipher->cipher=NULL; | 495 | cipher->cipher = NULL; |
487 | if ((header == NULL) || (*header == '\0') || (*header == '\n')) | 496 | if ((header == NULL) || (*header == '\0') || (*header == '\n')) |
488 | return(1); | 497 | return (1); |
489 | if (strncmp(header,"Proc-Type: ",11) != 0) | 498 | if (strncmp(header, "Proc-Type: ", 11) != 0) { |
490 | { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO,PEM_R_NOT_PROC_TYPE); return(0); } | 499 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_PROC_TYPE); |
491 | header+=11; | 500 | return (0); |
492 | if (*header != '4') return(0); header++; | 501 | } |
493 | if (*header != ',') return(0); header++; | 502 | header += 11; |
494 | if (strncmp(header,"ENCRYPTED",9) != 0) | 503 | if (*header != '4') |
495 | { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO,PEM_R_NOT_ENCRYPTED); return(0); } | 504 | return(0); |
505 | header++; | ||
506 | if (*header != ',') | ||
507 | return(0); | ||
508 | header++; | ||
509 | if (strncmp(header, "ENCRYPTED", 9) != 0) { | ||
510 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_ENCRYPTED); | ||
511 | return (0); | ||
512 | } | ||
496 | for (; (*header != '\n') && (*header != '\0'); header++) | 513 | for (; (*header != '\n') && (*header != '\0'); header++) |
497 | ; | 514 | ; |
498 | if (*header == '\0') | 515 | if (*header == '\0') { |
499 | { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO,PEM_R_SHORT_HEADER); return(0); } | 516 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_SHORT_HEADER); |
517 | return (0); | ||
518 | } | ||
500 | header++; | 519 | header++; |
501 | if (strncmp(header,"DEK-Info: ",10) != 0) | 520 | if (strncmp(header, "DEK-Info: ", 10) != 0) { |
502 | { PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO,PEM_R_NOT_DEK_INFO); return(0); } | 521 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_DEK_INFO); |
503 | header+=10; | 522 | return (0); |
523 | } | ||
524 | header += 10; | ||
504 | 525 | ||
505 | p=header; | 526 | p = header; |
506 | for (;;) | 527 | for (;;) { |
507 | { | ||
508 | c= *header; | 528 | c= *header; |
509 | if (!( ((c >= 'A') && (c <= 'Z')) || (c == '-') || | 529 | if (!( ((c >= 'A') && (c <= 'Z')) || (c == '-') || |
510 | ((c >= '0') && (c <= '9')))) | 530 | ((c >= '0') && (c <= '9')))) |
511 | break; | 531 | break; |
512 | header++; | 532 | header++; |
513 | } | 533 | } |
514 | *header='\0'; | 534 | *header = '\0'; |
515 | cipher->cipher=enc=EVP_get_cipherbyname(p); | 535 | cipher->cipher = enc = EVP_get_cipherbyname(p); |
516 | *header=c; | 536 | *header = c; |
517 | header++; | 537 | header++; |
518 | 538 | ||
519 | if (enc == NULL) | 539 | if (enc == NULL) { |
520 | { | 540 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, |
521 | PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO,PEM_R_UNSUPPORTED_ENCRYPTION); | 541 | PEM_R_UNSUPPORTED_ENCRYPTION); |
522 | return(0); | 542 | return (0); |
523 | } | ||
524 | if (!load_iv(header_pp,&(cipher->iv[0]),enc->iv_len)) | ||
525 | return(0); | ||
526 | |||
527 | return(1); | ||
528 | } | 543 | } |
544 | if (!load_iv(header_pp, &(cipher->iv[0]), enc->iv_len)) | ||
545 | return (0); | ||
546 | |||
547 | return (1); | ||
548 | } | ||
529 | 549 | ||
530 | static int load_iv(char **fromp, unsigned char *to, int num) | 550 | static int |
531 | { | 551 | load_iv(char **fromp, unsigned char *to, int num) |
532 | int v,i; | 552 | { |
553 | int v, i; | ||
533 | char *from; | 554 | char *from; |
534 | 555 | ||
535 | from= *fromp; | 556 | from= *fromp; |
536 | for (i=0; i<num; i++) to[i]=0; | 557 | for (i = 0; i < num; i++) |
537 | num*=2; | 558 | to[i] = 0; |
538 | for (i=0; i<num; i++) | 559 | num *= 2; |
539 | { | 560 | for (i = 0; i < num; i++) { |
540 | if ((*from >= '0') && (*from <= '9')) | 561 | if ((*from >= '0') && (*from <= '9')) |
541 | v= *from-'0'; | 562 | v = *from - '0'; |
542 | else if ((*from >= 'A') && (*from <= 'F')) | 563 | else if ((*from >= 'A') && (*from <= 'F')) |
543 | v= *from-'A'+10; | 564 | v = *from - 'A' + 10; |
544 | else if ((*from >= 'a') && (*from <= 'f')) | 565 | else if ((*from >= 'a') && (*from <= 'f')) |
545 | v= *from-'a'+10; | 566 | v = *from - 'a' + 10; |
546 | else | 567 | else { |
547 | { | 568 | PEMerr(PEM_F_LOAD_IV, PEM_R_BAD_IV_CHARS); |
548 | PEMerr(PEM_F_LOAD_IV,PEM_R_BAD_IV_CHARS); | 569 | return (0); |
549 | return(0); | ||
550 | } | ||
551 | from++; | ||
552 | to[i/2]|=v<<(long)((!(i&1))*4); | ||
553 | } | 570 | } |
554 | 571 | from++; | |
555 | *fromp=from; | 572 | to[i / 2] |= v << (long)((!(i & 1)) * 4); |
556 | return(1); | ||
557 | } | 573 | } |
558 | 574 | ||
575 | *fromp = from; | ||
576 | return (1); | ||
577 | } | ||
578 | |||
559 | #ifndef OPENSSL_NO_FP_API | 579 | #ifndef OPENSSL_NO_FP_API |
560 | int PEM_write(FILE *fp, char *name, char *header, unsigned char *data, | 580 | int |
561 | long len) | 581 | PEM_write(FILE *fp, char *name, char *header, unsigned char *data, long len) |
562 | { | 582 | { |
563 | BIO *b; | 583 | BIO *b; |
564 | int ret; | 584 | int ret; |
565 | 585 | ||
566 | if ((b=BIO_new(BIO_s_file())) == NULL) | 586 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
567 | { | 587 | PEMerr(PEM_F_PEM_WRITE, ERR_R_BUF_LIB); |
568 | PEMerr(PEM_F_PEM_WRITE,ERR_R_BUF_LIB); | 588 | return (0); |
569 | return(0); | 589 | } |
570 | } | 590 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
571 | BIO_set_fp(b,fp,BIO_NOCLOSE); | 591 | ret = PEM_write_bio(b, name, header, data, len); |
572 | ret=PEM_write_bio(b, name, header, data,len); | 592 | BIO_free(b); |
573 | BIO_free(b); | 593 | return (ret); |
574 | return(ret); | 594 | } |
575 | } | ||
576 | #endif | 595 | #endif |
577 | 596 | ||
578 | int PEM_write_bio(BIO *bp, const char *name, char *header, unsigned char *data, | 597 | int |
579 | long len) | 598 | PEM_write_bio(BIO *bp, const char *name, char *header, unsigned char *data, |
580 | { | 599 | long len) |
581 | int nlen,n,i,j,outl; | 600 | { |
601 | int nlen, n, i, j, outl; | ||
582 | unsigned char *buf = NULL; | 602 | unsigned char *buf = NULL; |
583 | EVP_ENCODE_CTX ctx; | 603 | EVP_ENCODE_CTX ctx; |
584 | int reason=ERR_R_BUF_LIB; | 604 | int reason = ERR_R_BUF_LIB; |
585 | 605 | ||
586 | EVP_EncodeInit(&ctx); | 606 | EVP_EncodeInit(&ctx); |
587 | nlen=strlen(name); | 607 | nlen = strlen(name); |
588 | 608 | ||
589 | if ( (BIO_write(bp,"-----BEGIN ",11) != 11) || | 609 | if ((BIO_write(bp, "-----BEGIN ", 11) != 11) || |
590 | (BIO_write(bp,name,nlen) != nlen) || | 610 | (BIO_write(bp, name, nlen) != nlen) || |
591 | (BIO_write(bp,"-----\n",6) != 6)) | 611 | (BIO_write(bp, "-----\n", 6) != 6)) |
592 | goto err; | 612 | goto err; |
593 | 613 | ||
594 | i=strlen(header); | 614 | i = strlen(header); |
595 | if (i > 0) | 615 | if (i > 0) { |
596 | { | 616 | if ((BIO_write(bp, header, i) != i) || |
597 | if ( (BIO_write(bp,header,i) != i) || | 617 | (BIO_write(bp, "\n", 1) != 1)) |
598 | (BIO_write(bp,"\n",1) != 1)) | ||
599 | goto err; | 618 | goto err; |
600 | } | 619 | } |
601 | 620 | ||
602 | buf = malloc(PEM_BUFSIZE*8); | 621 | buf = malloc(PEM_BUFSIZE * 8); |
603 | if (buf == NULL) | 622 | if (buf == NULL) { |
604 | { | 623 | reason = ERR_R_MALLOC_FAILURE; |
605 | reason=ERR_R_MALLOC_FAILURE; | ||
606 | goto err; | 624 | goto err; |
607 | } | 625 | } |
608 | 626 | ||
609 | i=j=0; | 627 | i = j = 0; |
610 | while (len > 0) | 628 | while (len > 0) { |
611 | { | 629 | n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len); |
612 | n=(int)((len>(PEM_BUFSIZE*5))?(PEM_BUFSIZE*5):len); | 630 | EVP_EncodeUpdate(&ctx, buf, &outl, &(data[j]), n); |
613 | EVP_EncodeUpdate(&ctx,buf,&outl,&(data[j]),n); | 631 | if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl)) |
614 | if ((outl) && (BIO_write(bp,(char *)buf,outl) != outl)) | ||
615 | goto err; | 632 | goto err; |
616 | i+=outl; | 633 | i += outl; |
617 | len-=n; | 634 | len -= n; |
618 | j+=n; | 635 | j += n; |
619 | } | 636 | } |
620 | EVP_EncodeFinal(&ctx,buf,&outl); | 637 | EVP_EncodeFinal(&ctx, buf, &outl); |
621 | if ((outl > 0) && (BIO_write(bp,(char *)buf,outl) != outl)) goto err; | 638 | if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl)) |
622 | OPENSSL_cleanse(buf, PEM_BUFSIZE*8); | 639 | goto err; |
640 | OPENSSL_cleanse(buf, PEM_BUFSIZE * 8); | ||
623 | free(buf); | 641 | free(buf); |
624 | buf = NULL; | 642 | buf = NULL; |
625 | if ( (BIO_write(bp,"-----END ",9) != 9) || | 643 | if ((BIO_write(bp, "-----END ", 9) != 9) || |
626 | (BIO_write(bp,name,nlen) != nlen) || | 644 | (BIO_write(bp, name, nlen) != nlen) || |
627 | (BIO_write(bp,"-----\n",6) != 6)) | 645 | (BIO_write(bp, "-----\n", 6) != 6)) |
628 | goto err; | 646 | goto err; |
629 | return(i+outl); | 647 | return (i + outl); |
648 | |||
630 | err: | 649 | err: |
631 | if (buf) { | 650 | if (buf) { |
632 | OPENSSL_cleanse(buf, PEM_BUFSIZE*8); | 651 | OPENSSL_cleanse(buf, PEM_BUFSIZE * 8); |
633 | free(buf); | 652 | free(buf); |
634 | } | 653 | } |
635 | PEMerr(PEM_F_PEM_WRITE_BIO,reason); | 654 | PEMerr(PEM_F_PEM_WRITE_BIO, reason); |
636 | return(0); | 655 | return (0); |
637 | } | 656 | } |
638 | 657 | ||
639 | #ifndef OPENSSL_NO_FP_API | 658 | #ifndef OPENSSL_NO_FP_API |
640 | int PEM_read(FILE *fp, char **name, char **header, unsigned char **data, | 659 | int |
641 | long *len) | 660 | PEM_read(FILE *fp, char **name, char **header, unsigned char **data, long *len) |
642 | { | 661 | { |
643 | BIO *b; | 662 | BIO *b; |
644 | int ret; | 663 | int ret; |
645 | 664 | ||
646 | if ((b=BIO_new(BIO_s_file())) == NULL) | 665 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
647 | { | 666 | PEMerr(PEM_F_PEM_READ, ERR_R_BUF_LIB); |
648 | PEMerr(PEM_F_PEM_READ,ERR_R_BUF_LIB); | 667 | return (0); |
649 | return(0); | 668 | } |
650 | } | 669 | BIO_set_fp(b, fp, BIO_NOCLOSE); |
651 | BIO_set_fp(b,fp,BIO_NOCLOSE); | 670 | ret = PEM_read_bio(b, name, header, data, len); |
652 | ret=PEM_read_bio(b, name, header, data,len); | 671 | BIO_free(b); |
653 | BIO_free(b); | 672 | return (ret); |
654 | return(ret); | 673 | } |
655 | } | ||
656 | #endif | 674 | #endif |
657 | 675 | ||
658 | int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data, | 676 | int |
659 | long *len) | 677 | PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data, |
660 | { | 678 | long *len) |
679 | { | ||
661 | EVP_ENCODE_CTX ctx; | 680 | EVP_ENCODE_CTX ctx; |
662 | int end=0,i,k,bl=0,hl=0,nohead=0; | 681 | int end = 0, i, k, bl = 0, hl = 0, nohead = 0; |
663 | char buf[256]; | 682 | char buf[256]; |
664 | BUF_MEM *nameB; | 683 | BUF_MEM *nameB; |
665 | BUF_MEM *headerB; | 684 | BUF_MEM *headerB; |
666 | BUF_MEM *dataB,*tmpB; | 685 | BUF_MEM *dataB, *tmpB; |
667 | 686 | ||
668 | nameB=BUF_MEM_new(); | 687 | nameB = BUF_MEM_new(); |
669 | headerB=BUF_MEM_new(); | 688 | headerB = BUF_MEM_new(); |
670 | dataB=BUF_MEM_new(); | 689 | dataB = BUF_MEM_new(); |
671 | if ((nameB == NULL) || (headerB == NULL) || (dataB == NULL)) | 690 | if ((nameB == NULL) || (headerB == NULL) || (dataB == NULL)) { |
672 | { | ||
673 | BUF_MEM_free(nameB); | 691 | BUF_MEM_free(nameB); |
674 | BUF_MEM_free(headerB); | 692 | BUF_MEM_free(headerB); |
675 | BUF_MEM_free(dataB); | 693 | BUF_MEM_free(dataB); |
676 | PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE); | 694 | PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); |
677 | return(0); | 695 | return (0); |
678 | } | 696 | } |
679 | 697 | ||
680 | buf[254]='\0'; | 698 | buf[254] = '\0'; |
681 | for (;;) | 699 | for (;;) { |
682 | { | 700 | i = BIO_gets(bp, buf, 254); |
683 | i=BIO_gets(bp,buf,254); | ||
684 | 701 | ||
685 | if (i <= 0) | 702 | if (i <= 0) { |
686 | { | 703 | PEMerr(PEM_F_PEM_READ_BIO, PEM_R_NO_START_LINE); |
687 | PEMerr(PEM_F_PEM_READ_BIO,PEM_R_NO_START_LINE); | ||
688 | goto err; | 704 | goto err; |
689 | } | 705 | } |
690 | 706 | ||
691 | while ((i >= 0) && (buf[i] <= ' ')) i--; | 707 | while ((i >= 0) && (buf[i] <= ' ')) |
692 | buf[++i]='\n'; buf[++i]='\0'; | 708 | i--; |
709 | buf[++i] = '\n'; | ||
710 | buf[++i] = '\0'; | ||
693 | 711 | ||
694 | if (strncmp(buf,"-----BEGIN ",11) == 0) | 712 | if (strncmp(buf, "-----BEGIN ", 11) == 0) { |
695 | { | 713 | i = strlen(&(buf[11])); |
696 | i=strlen(&(buf[11])); | ||
697 | 714 | ||
698 | if (strncmp(&(buf[11+i-6]),"-----\n",6) != 0) | 715 | if (strncmp(&(buf[11 + i - 6]), "-----\n", 6) != 0) |
699 | continue; | 716 | continue; |
700 | if (!BUF_MEM_grow(nameB,i+9)) | 717 | if (!BUF_MEM_grow(nameB, i + 9)) { |
701 | { | 718 | PEMerr(PEM_F_PEM_READ_BIO, |
702 | PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE); | 719 | ERR_R_MALLOC_FAILURE); |
703 | goto err; | 720 | goto err; |
704 | } | ||
705 | memcpy(nameB->data,&(buf[11]),i-6); | ||
706 | nameB->data[i-6]='\0'; | ||
707 | break; | ||
708 | } | 721 | } |
722 | memcpy(nameB->data, &(buf[11]), i - 6); | ||
723 | nameB->data[i - 6] = '\0'; | ||
724 | break; | ||
709 | } | 725 | } |
710 | hl=0; | 726 | } |
711 | if (!BUF_MEM_grow(headerB,256)) | 727 | hl = 0; |
712 | { PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE); goto err; } | 728 | if (!BUF_MEM_grow(headerB, 256)) { |
713 | headerB->data[0]='\0'; | 729 | PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); |
714 | for (;;) | 730 | goto err; |
715 | { | 731 | } |
716 | i=BIO_gets(bp,buf,254); | 732 | headerB->data[0] = '\0'; |
717 | if (i <= 0) break; | 733 | for (;;) { |
718 | 734 | i = BIO_gets(bp, buf, 254); | |
719 | while ((i >= 0) && (buf[i] <= ' ')) i--; | 735 | if (i <= 0) |
720 | buf[++i]='\n'; buf[++i]='\0'; | ||
721 | |||
722 | if (buf[0] == '\n') break; | ||
723 | if (!BUF_MEM_grow(headerB,hl+i+9)) | ||
724 | { PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE); goto err; } | ||
725 | if (strncmp(buf,"-----END ",9) == 0) | ||
726 | { | ||
727 | nohead=1; | ||
728 | break; | 736 | break; |
729 | } | 737 | |
730 | memcpy(&(headerB->data[hl]),buf,i); | 738 | while ((i >= 0) && (buf[i] <= ' ')) |
731 | headerB->data[hl+i]='\0'; | 739 | i--; |
732 | hl+=i; | 740 | buf[++i] = '\n'; |
741 | buf[++i] = '\0'; | ||
742 | |||
743 | if (buf[0] == '\n') | ||
744 | break; | ||
745 | if (!BUF_MEM_grow(headerB, hl + i + 9)) { | ||
746 | PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); | ||
747 | goto err; | ||
733 | } | 748 | } |
749 | if (strncmp(buf, "-----END ", 9) == 0) { | ||
750 | nohead = 1; | ||
751 | break; | ||
752 | } | ||
753 | memcpy(&(headerB->data[hl]), buf, i); | ||
754 | headerB->data[hl + i] = '\0'; | ||
755 | hl += i; | ||
756 | } | ||
757 | |||
758 | bl = 0; | ||
759 | if (!BUF_MEM_grow(dataB, 1024)) { | ||
760 | PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE); | ||
761 | goto err; | ||
762 | } | ||
763 | dataB->data[0] = '\0'; | ||
764 | if (!nohead) { | ||
765 | for (;;) { | ||
766 | i = BIO_gets(bp, buf, 254); | ||
767 | if (i <= 0) | ||
768 | break; | ||
769 | |||
770 | while ((i >= 0) && (buf[i] <= ' ')) | ||
771 | i--; | ||
772 | buf[++i] = '\n'; | ||
773 | buf[++i] = '\0'; | ||
734 | 774 | ||
735 | bl=0; | 775 | if (i != 65) |
736 | if (!BUF_MEM_grow(dataB,1024)) | 776 | end = 1; |
737 | { PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE); goto err; } | 777 | if (strncmp(buf, "-----END ", 9) == 0) |
738 | dataB->data[0]='\0'; | ||
739 | if (!nohead) | ||
740 | { | ||
741 | for (;;) | ||
742 | { | ||
743 | i=BIO_gets(bp,buf,254); | ||
744 | if (i <= 0) break; | ||
745 | |||
746 | while ((i >= 0) && (buf[i] <= ' ')) i--; | ||
747 | buf[++i]='\n'; buf[++i]='\0'; | ||
748 | |||
749 | if (i != 65) end=1; | ||
750 | if (strncmp(buf,"-----END ",9) == 0) | ||
751 | break; | 778 | break; |
752 | if (i > 65) break; | 779 | if (i > 65) |
753 | if (!BUF_MEM_grow_clean(dataB,i+bl+9)) | 780 | break; |
754 | { | 781 | if (!BUF_MEM_grow_clean(dataB, i + bl + 9)) { |
755 | PEMerr(PEM_F_PEM_READ_BIO,ERR_R_MALLOC_FAILURE); | 782 | PEMerr(PEM_F_PEM_READ_BIO, |
783 | ERR_R_MALLOC_FAILURE); | ||
756 | goto err; | 784 | goto err; |
757 | } | 785 | } |
758 | memcpy(&(dataB->data[bl]),buf,i); | 786 | memcpy(&(dataB->data[bl]), buf, i); |
759 | dataB->data[bl+i]='\0'; | 787 | dataB->data[bl + i] = '\0'; |
760 | bl+=i; | 788 | bl += i; |
761 | if (end) | 789 | if (end) { |
762 | { | 790 | buf[0] = '\0'; |
763 | buf[0]='\0'; | 791 | i = BIO_gets(bp, buf, 254); |
764 | i=BIO_gets(bp,buf,254); | 792 | if (i <= 0) |
765 | if (i <= 0) break; | 793 | break; |
766 | 794 | ||
767 | while ((i >= 0) && (buf[i] <= ' ')) i--; | 795 | while ((i >= 0) && (buf[i] <= ' ')) |
768 | buf[++i]='\n'; buf[++i]='\0'; | 796 | i--; |
797 | buf[++i] = '\n'; | ||
798 | buf[++i] = '\0'; | ||
769 | 799 | ||
770 | break; | 800 | break; |
771 | } | ||
772 | } | 801 | } |
773 | } | 802 | } |
774 | else | 803 | } else { |
775 | { | 804 | tmpB = headerB; |
776 | tmpB=headerB; | 805 | headerB = dataB; |
777 | headerB=dataB; | 806 | dataB = tmpB; |
778 | dataB=tmpB; | 807 | bl = hl; |
779 | bl=hl; | 808 | } |
780 | } | 809 | i = strlen(nameB->data); |
781 | i=strlen(nameB->data); | 810 | if ((strncmp(buf, "-----END ", 9) != 0) || |
782 | if ( (strncmp(buf,"-----END ",9) != 0) || | 811 | (strncmp(nameB->data, &(buf[9]), i) != 0) || |
783 | (strncmp(nameB->data,&(buf[9]),i) != 0) || | 812 | (strncmp(&(buf[9 + i]), "-----\n", 6) != 0)) { |
784 | (strncmp(&(buf[9+i]),"-----\n",6) != 0)) | 813 | PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_END_LINE); |
785 | { | ||
786 | PEMerr(PEM_F_PEM_READ_BIO,PEM_R_BAD_END_LINE); | ||
787 | goto err; | 814 | goto err; |
788 | } | 815 | } |
789 | 816 | ||
790 | EVP_DecodeInit(&ctx); | 817 | EVP_DecodeInit(&ctx); |
791 | i=EVP_DecodeUpdate(&ctx, | 818 | i = EVP_DecodeUpdate(&ctx, |
792 | (unsigned char *)dataB->data,&bl, | 819 | (unsigned char *)dataB->data, &bl, |
793 | (unsigned char *)dataB->data,bl); | 820 | (unsigned char *)dataB->data, bl); |
794 | if (i < 0) | 821 | if (i < 0) { |
795 | { | 822 | PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_BASE64_DECODE); |
796 | PEMerr(PEM_F_PEM_READ_BIO,PEM_R_BAD_BASE64_DECODE); | ||
797 | goto err; | 823 | goto err; |
798 | } | 824 | } |
799 | i=EVP_DecodeFinal(&ctx,(unsigned char *)&(dataB->data[bl]),&k); | 825 | i = EVP_DecodeFinal(&ctx, (unsigned char *)&(dataB->data[bl]), &k); |
800 | if (i < 0) | 826 | if (i < 0) { |
801 | { | 827 | PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_BASE64_DECODE); |
802 | PEMerr(PEM_F_PEM_READ_BIO,PEM_R_BAD_BASE64_DECODE); | ||
803 | goto err; | 828 | goto err; |
804 | } | 829 | } |
805 | bl+=k; | 830 | bl += k; |
806 | 831 | ||
807 | if (bl == 0) goto err; | 832 | if (bl == 0) |
808 | *name=nameB->data; | 833 | goto err; |
809 | *header=headerB->data; | 834 | *name = nameB->data; |
810 | *data=(unsigned char *)dataB->data; | 835 | *header = headerB->data; |
811 | *len=bl; | 836 | *data = (unsigned char *)dataB->data; |
837 | *len = bl; | ||
812 | free(nameB); | 838 | free(nameB); |
813 | free(headerB); | 839 | free(headerB); |
814 | free(dataB); | 840 | free(dataB); |
815 | return(1); | 841 | return (1); |
842 | |||
816 | err: | 843 | err: |
817 | BUF_MEM_free(nameB); | 844 | BUF_MEM_free(nameB); |
818 | BUF_MEM_free(headerB); | 845 | BUF_MEM_free(headerB); |
819 | BUF_MEM_free(dataB); | 846 | BUF_MEM_free(dataB); |
820 | return(0); | 847 | return (0); |
821 | } | 848 | } |
822 | 849 | ||
823 | /* Check pem string and return prefix length. | 850 | /* Check pem string and return prefix length. |
824 | * If for example the pem_str == "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" | 851 | * If for example the pem_str == "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" |
825 | * the return value is 3 for the string "RSA". | 852 | * the return value is 3 for the string "RSA". |
826 | */ | 853 | */ |
827 | 854 | ||
828 | int pem_check_suffix(const char *pem_str, const char *suffix) | 855 | int |
829 | { | 856 | pem_check_suffix(const char *pem_str, const char *suffix) |
857 | { | ||
830 | int pem_len = strlen(pem_str); | 858 | int pem_len = strlen(pem_str); |
831 | int suffix_len = strlen(suffix); | 859 | int suffix_len = strlen(suffix); |
832 | const char *p; | 860 | const char *p; |
861 | |||
833 | if (suffix_len + 1 >= pem_len) | 862 | if (suffix_len + 1 >= pem_len) |
834 | return 0; | 863 | return 0; |
835 | p = pem_str + pem_len - suffix_len; | 864 | p = pem_str + pem_len - suffix_len; |
@@ -839,5 +868,4 @@ int pem_check_suffix(const char *pem_str, const char *suffix) | |||
839 | if (*p != ' ') | 868 | if (*p != ' ') |
840 | return 0; | 869 | return 0; |
841 | return p - pem_str; | 870 | return p - pem_str; |
842 | } | 871 | } |
843 | |||
diff --git a/src/lib/libssl/src/crypto/pem/pem_oth.c b/src/lib/libssl/src/crypto/pem/pem_oth.c index 69d281aa9d..5787dc2f3d 100644 --- a/src/lib/libssl/src/crypto/pem/pem_oth.c +++ b/src/lib/libssl/src/crypto/pem/pem_oth.c | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -67,20 +67,21 @@ | |||
67 | 67 | ||
68 | /* Handle 'other' PEMs: not private keys */ | 68 | /* Handle 'other' PEMs: not private keys */ |
69 | 69 | ||
70 | void *PEM_ASN1_read_bio(d2i_of_void *d2i, const char *name, BIO *bp, void **x, | 70 | void * |
71 | pem_password_cb *cb, void *u) | 71 | PEM_ASN1_read_bio(d2i_of_void *d2i, const char *name, BIO *bp, void **x, |
72 | { | 72 | pem_password_cb *cb, void *u) |
73 | const unsigned char *p=NULL; | 73 | { |
74 | unsigned char *data=NULL; | 74 | const unsigned char *p = NULL; |
75 | unsigned char *data = NULL; | ||
75 | long len; | 76 | long len; |
76 | char *ret=NULL; | 77 | char *ret = NULL; |
77 | 78 | ||
78 | if (!PEM_bytes_read_bio(&data, &len, NULL, name, bp, cb, u)) | 79 | if (!PEM_bytes_read_bio(&data, &len, NULL, name, bp, cb, u)) |
79 | return NULL; | 80 | return NULL; |
80 | p = data; | 81 | p = data; |
81 | ret=d2i(x,&p,len); | 82 | ret = d2i(x, &p, len); |
82 | if (ret == NULL) | 83 | if (ret == NULL) |
83 | PEMerr(PEM_F_PEM_ASN1_READ_BIO,ERR_R_ASN1_LIB); | 84 | PEMerr(PEM_F_PEM_ASN1_READ_BIO, ERR_R_ASN1_LIB); |
84 | free(data); | 85 | free(data); |
85 | return(ret); | 86 | return (ret); |
86 | } | 87 | } |
diff --git a/src/lib/libssl/src/crypto/pem/pem_pk8.c b/src/lib/libssl/src/crypto/pem/pem_pk8.c index 6deab8c338..228ecfceaf 100644 --- a/src/lib/libssl/src/crypto/pem/pem_pk8.c +++ b/src/lib/libssl/src/crypto/pem/pem_pk8.c | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -66,14 +66,10 @@ | |||
66 | #include <openssl/pkcs12.h> | 66 | #include <openssl/pkcs12.h> |
67 | #include <openssl/pem.h> | 67 | #include <openssl/pem.h> |
68 | 68 | ||
69 | static int do_pk8pkey(BIO *bp, EVP_PKEY *x, int isder, | 69 | static int do_pk8pkey(BIO *bp, EVP_PKEY *x, int isder, int nid, |
70 | int nid, const EVP_CIPHER *enc, | 70 | const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb, void *u); |
71 | char *kstr, int klen, | 71 | static int do_pk8pkey_fp(FILE *bp, EVP_PKEY *x, int isder, int nid, |
72 | pem_password_cb *cb, void *u); | 72 | const EVP_CIPHER *enc, char *kstr, int klen, pem_password_cb *cb, void *u); |
73 | static int do_pk8pkey_fp(FILE *bp, EVP_PKEY *x, int isder, | ||
74 | int nid, const EVP_CIPHER *enc, | ||
75 | char *kstr, int klen, | ||
76 | pem_password_cb *cb, void *u); | ||
77 | 73 | ||
78 | /* These functions write a private key in PKCS#8 format: it is a "drop in" | 74 | /* These functions write a private key in PKCS#8 format: it is a "drop in" |
79 | * replacement for PEM_write_bio_PrivateKey() and friends. As usual if 'enc' | 75 | * replacement for PEM_write_bio_PrivateKey() and friends. As usual if 'enc' |
@@ -81,98 +77,114 @@ static int do_pk8pkey_fp(FILE *bp, EVP_PKEY *x, int isder, | |||
81 | * uses PKCS#5 v1.5 PBE algorithms whereas the others use PKCS#5 v2.0. | 77 | * uses PKCS#5 v1.5 PBE algorithms whereas the others use PKCS#5 v2.0. |
82 | */ | 78 | */ |
83 | 79 | ||
84 | int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid, | 80 | int |
85 | char *kstr, int klen, | 81 | PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid, char *kstr, |
86 | pem_password_cb *cb, void *u) | 82 | int klen, pem_password_cb *cb, void *u) |
87 | { | 83 | { |
88 | return do_pk8pkey(bp, x, 0, nid, NULL, kstr, klen, cb, u); | 84 | return do_pk8pkey(bp, x, 0, nid, NULL, kstr, klen, cb, u); |
89 | } | 85 | } |
90 | 86 | ||
91 | int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, | 87 | int |
92 | char *kstr, int klen, | 88 | PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, |
93 | pem_password_cb *cb, void *u) | 89 | char *kstr, int klen, pem_password_cb *cb, void *u) |
94 | { | 90 | { |
95 | return do_pk8pkey(bp, x, 0, -1, enc, kstr, klen, cb, u); | 91 | return do_pk8pkey(bp, x, 0, -1, enc, kstr, klen, cb, u); |
96 | } | 92 | } |
97 | 93 | ||
98 | int i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, | 94 | int |
99 | char *kstr, int klen, | 95 | i2d_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, |
100 | pem_password_cb *cb, void *u) | 96 | char *kstr, int klen, pem_password_cb *cb, void *u) |
101 | { | 97 | { |
102 | return do_pk8pkey(bp, x, 1, -1, enc, kstr, klen, cb, u); | 98 | return do_pk8pkey(bp, x, 1, -1, enc, kstr, klen, cb, u); |
103 | } | 99 | } |
104 | 100 | ||
105 | int i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid, | 101 | int |
106 | char *kstr, int klen, | 102 | i2d_PKCS8PrivateKey_nid_bio(BIO *bp, EVP_PKEY *x, int nid, |
107 | pem_password_cb *cb, void *u) | 103 | char *kstr, int klen, pem_password_cb *cb, void *u) |
108 | { | 104 | { |
109 | return do_pk8pkey(bp, x, 1, nid, NULL, kstr, klen, cb, u); | 105 | return do_pk8pkey(bp, x, 1, nid, NULL, kstr, klen, cb, u); |
110 | } | 106 | } |
111 | 107 | ||
112 | static int do_pk8pkey(BIO *bp, EVP_PKEY *x, int isder, int nid, const EVP_CIPHER *enc, | 108 | static int |
113 | char *kstr, int klen, | 109 | do_pk8pkey(BIO *bp, EVP_PKEY *x, int isder, int nid, const EVP_CIPHER *enc, |
114 | pem_password_cb *cb, void *u) | 110 | char *kstr, int klen, pem_password_cb *cb, void *u) |
115 | { | 111 | { |
116 | X509_SIG *p8; | 112 | X509_SIG *p8; |
117 | PKCS8_PRIV_KEY_INFO *p8inf; | 113 | PKCS8_PRIV_KEY_INFO *p8inf; |
118 | char buf[PEM_BUFSIZE]; | 114 | char buf[PEM_BUFSIZE]; |
119 | int ret; | 115 | int ret; |
120 | if(!(p8inf = EVP_PKEY2PKCS8(x))) { | 116 | |
117 | if (!(p8inf = EVP_PKEY2PKCS8(x))) { | ||
121 | PEMerr(PEM_F_DO_PK8PKEY, | 118 | PEMerr(PEM_F_DO_PK8PKEY, |
122 | PEM_R_ERROR_CONVERTING_PRIVATE_KEY); | 119 | PEM_R_ERROR_CONVERTING_PRIVATE_KEY); |
123 | return 0; | 120 | return 0; |
124 | } | 121 | } |
125 | if(enc || (nid != -1)) { | 122 | if (enc || (nid != -1)) { |
126 | if(!kstr) { | 123 | if (!kstr) { |
127 | if(!cb) klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u); | 124 | if (!cb) |
128 | else klen = cb(buf, PEM_BUFSIZE, 1, u); | 125 | klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u); |
129 | if(klen <= 0) { | 126 | else |
130 | PEMerr(PEM_F_DO_PK8PKEY,PEM_R_READ_KEY); | 127 | klen = cb(buf, PEM_BUFSIZE, 1, u); |
128 | if (klen <= 0) { | ||
129 | PEMerr(PEM_F_DO_PK8PKEY, PEM_R_READ_KEY); | ||
131 | PKCS8_PRIV_KEY_INFO_free(p8inf); | 130 | PKCS8_PRIV_KEY_INFO_free(p8inf); |
132 | return 0; | 131 | return 0; |
133 | } | 132 | } |
134 | 133 | ||
135 | kstr = buf; | 134 | kstr = buf; |
136 | } | 135 | } |
137 | p8 = PKCS8_encrypt(nid, enc, kstr, klen, NULL, 0, 0, p8inf); | 136 | p8 = PKCS8_encrypt(nid, enc, kstr, klen, NULL, 0, 0, p8inf); |
138 | if(kstr == buf) OPENSSL_cleanse(buf, klen); | 137 | if (kstr == buf) |
138 | OPENSSL_cleanse(buf, klen); | ||
139 | PKCS8_PRIV_KEY_INFO_free(p8inf); | 139 | PKCS8_PRIV_KEY_INFO_free(p8inf); |
140 | if(isder) ret = i2d_PKCS8_bio(bp, p8); | 140 | if (isder) |
141 | else ret = PEM_write_bio_PKCS8(bp, p8); | 141 | ret = i2d_PKCS8_bio(bp, p8); |
142 | else | ||
143 | ret = PEM_write_bio_PKCS8(bp, p8); | ||
142 | X509_SIG_free(p8); | 144 | X509_SIG_free(p8); |
143 | return ret; | 145 | return ret; |
144 | } else { | 146 | } else { |
145 | if(isder) ret = i2d_PKCS8_PRIV_KEY_INFO_bio(bp, p8inf); | 147 | if (isder) |
146 | else ret = PEM_write_bio_PKCS8_PRIV_KEY_INFO(bp, p8inf); | 148 | ret = i2d_PKCS8_PRIV_KEY_INFO_bio(bp, p8inf); |
149 | else | ||
150 | ret = PEM_write_bio_PKCS8_PRIV_KEY_INFO(bp, p8inf); | ||
147 | PKCS8_PRIV_KEY_INFO_free(p8inf); | 151 | PKCS8_PRIV_KEY_INFO_free(p8inf); |
148 | return ret; | 152 | return ret; |
149 | } | 153 | } |
150 | } | 154 | } |
151 | 155 | ||
152 | EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u) | 156 | EVP_PKEY * |
157 | d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u) | ||
153 | { | 158 | { |
154 | PKCS8_PRIV_KEY_INFO *p8inf = NULL; | 159 | PKCS8_PRIV_KEY_INFO *p8inf = NULL; |
155 | X509_SIG *p8 = NULL; | 160 | X509_SIG *p8 = NULL; |
156 | int klen; | 161 | int klen; |
157 | EVP_PKEY *ret; | 162 | EVP_PKEY *ret; |
158 | char psbuf[PEM_BUFSIZE]; | 163 | char psbuf[PEM_BUFSIZE]; |
164 | |||
159 | p8 = d2i_PKCS8_bio(bp, NULL); | 165 | p8 = d2i_PKCS8_bio(bp, NULL); |
160 | if(!p8) return NULL; | 166 | if (!p8) |
161 | if (cb) klen=cb(psbuf,PEM_BUFSIZE,0,u); | 167 | return NULL; |
162 | else klen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u); | 168 | if (cb) |
169 | klen = cb(psbuf, PEM_BUFSIZE, 0, u); | ||
170 | else | ||
171 | klen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u); | ||
163 | if (klen <= 0) { | 172 | if (klen <= 0) { |
164 | PEMerr(PEM_F_D2I_PKCS8PRIVATEKEY_BIO, PEM_R_BAD_PASSWORD_READ); | 173 | PEMerr(PEM_F_D2I_PKCS8PRIVATEKEY_BIO, PEM_R_BAD_PASSWORD_READ); |
165 | X509_SIG_free(p8); | 174 | X509_SIG_free(p8); |
166 | return NULL; | 175 | return NULL; |
167 | } | 176 | } |
168 | p8inf = PKCS8_decrypt(p8, psbuf, klen); | 177 | p8inf = PKCS8_decrypt(p8, psbuf, klen); |
169 | X509_SIG_free(p8); | 178 | X509_SIG_free(p8); |
170 | if(!p8inf) return NULL; | 179 | if (!p8inf) |
180 | return NULL; | ||
171 | ret = EVP_PKCS82PKEY(p8inf); | 181 | ret = EVP_PKCS82PKEY(p8inf); |
172 | PKCS8_PRIV_KEY_INFO_free(p8inf); | 182 | PKCS8_PRIV_KEY_INFO_free(p8inf); |
173 | if(!ret) return NULL; | 183 | if (!ret) |
174 | if(x) { | 184 | return NULL; |
175 | if(*x) EVP_PKEY_free(*x); | 185 | if (x) { |
186 | if (*x) | ||
187 | EVP_PKEY_free(*x); | ||
176 | *x = ret; | 188 | *x = ret; |
177 | } | 189 | } |
178 | return ret; | 190 | return ret; |
@@ -180,55 +192,59 @@ EVP_PKEY *d2i_PKCS8PrivateKey_bio(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, vo | |||
180 | 192 | ||
181 | #ifndef OPENSSL_NO_FP_API | 193 | #ifndef OPENSSL_NO_FP_API |
182 | 194 | ||
183 | int i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, | 195 | int |
184 | char *kstr, int klen, | 196 | i2d_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, |
185 | pem_password_cb *cb, void *u) | 197 | char *kstr, int klen, pem_password_cb *cb, void *u) |
186 | { | 198 | { |
187 | return do_pk8pkey_fp(fp, x, 1, -1, enc, kstr, klen, cb, u); | 199 | return do_pk8pkey_fp(fp, x, 1, -1, enc, kstr, klen, cb, u); |
188 | } | 200 | } |
189 | 201 | ||
190 | int i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid, | 202 | int |
191 | char *kstr, int klen, | 203 | i2d_PKCS8PrivateKey_nid_fp(FILE *fp, EVP_PKEY *x, int nid, char *kstr, |
192 | pem_password_cb *cb, void *u) | 204 | int klen, pem_password_cb *cb, void *u) |
193 | { | 205 | { |
194 | return do_pk8pkey_fp(fp, x, 1, nid, NULL, kstr, klen, cb, u); | 206 | return do_pk8pkey_fp(fp, x, 1, nid, NULL, kstr, klen, cb, u); |
195 | } | 207 | } |
196 | 208 | ||
197 | int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, | 209 | int |
198 | char *kstr, int klen, | 210 | PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid, char *kstr, |
199 | pem_password_cb *cb, void *u) | 211 | int klen, pem_password_cb *cb, void *u) |
200 | { | 212 | { |
201 | return do_pk8pkey_fp(fp, x, 0, nid, NULL, kstr, klen, cb, u); | 213 | return do_pk8pkey_fp(fp, x, 0, nid, NULL, kstr, klen, cb, u); |
202 | } | 214 | } |
203 | 215 | ||
204 | int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, | 216 | int |
205 | char *kstr, int klen, pem_password_cb *cb, void *u) | 217 | PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, |
218 | char *kstr, int klen, pem_password_cb *cb, void *u) | ||
206 | { | 219 | { |
207 | return do_pk8pkey_fp(fp, x, 0, -1, enc, kstr, klen, cb, u); | 220 | return do_pk8pkey_fp(fp, x, 0, -1, enc, kstr, klen, cb, u); |
208 | } | 221 | } |
209 | 222 | ||
210 | static int do_pk8pkey_fp(FILE *fp, EVP_PKEY *x, int isder, int nid, const EVP_CIPHER *enc, | 223 | static int |
211 | char *kstr, int klen, | 224 | do_pk8pkey_fp(FILE *fp, EVP_PKEY *x, int isder, int nid, const EVP_CIPHER *enc, |
212 | pem_password_cb *cb, void *u) | 225 | char *kstr, int klen, pem_password_cb *cb, void *u) |
213 | { | 226 | { |
214 | BIO *bp; | 227 | BIO *bp; |
215 | int ret; | 228 | int ret; |
216 | if(!(bp = BIO_new_fp(fp, BIO_NOCLOSE))) { | 229 | |
217 | PEMerr(PEM_F_DO_PK8PKEY_FP,ERR_R_BUF_LIB); | 230 | if (!(bp = BIO_new_fp(fp, BIO_NOCLOSE))) { |
218 | return(0); | 231 | PEMerr(PEM_F_DO_PK8PKEY_FP, ERR_R_BUF_LIB); |
232 | return (0); | ||
219 | } | 233 | } |
220 | ret = do_pk8pkey(bp, x, isder, nid, enc, kstr, klen, cb, u); | 234 | ret = do_pk8pkey(bp, x, isder, nid, enc, kstr, klen, cb, u); |
221 | BIO_free(bp); | 235 | BIO_free(bp); |
222 | return ret; | 236 | return ret; |
223 | } | 237 | } |
224 | 238 | ||
225 | EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u) | 239 | EVP_PKEY * |
240 | d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u) | ||
226 | { | 241 | { |
227 | BIO *bp; | 242 | BIO *bp; |
228 | EVP_PKEY *ret; | 243 | EVP_PKEY *ret; |
229 | if(!(bp = BIO_new_fp(fp, BIO_NOCLOSE))) { | 244 | |
230 | PEMerr(PEM_F_D2I_PKCS8PRIVATEKEY_FP,ERR_R_BUF_LIB); | 245 | if (!(bp = BIO_new_fp(fp, BIO_NOCLOSE))) { |
231 | return NULL; | 246 | PEMerr(PEM_F_D2I_PKCS8PRIVATEKEY_FP, ERR_R_BUF_LIB); |
247 | return NULL; | ||
232 | } | 248 | } |
233 | ret = d2i_PKCS8PrivateKey_bio(bp, x, cb, u); | 249 | ret = d2i_PKCS8PrivateKey_bio(bp, x, cb, u); |
234 | BIO_free(bp); | 250 | BIO_free(bp); |
@@ -239,4 +255,4 @@ EVP_PKEY *d2i_PKCS8PrivateKey_fp(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, vo | |||
239 | 255 | ||
240 | IMPLEMENT_PEM_rw(PKCS8, X509_SIG, PEM_STRING_PKCS8, X509_SIG) | 256 | IMPLEMENT_PEM_rw(PKCS8, X509_SIG, PEM_STRING_PKCS8, X509_SIG) |
241 | IMPLEMENT_PEM_rw(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO, PEM_STRING_PKCS8INF, | 257 | IMPLEMENT_PEM_rw(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO, PEM_STRING_PKCS8INF, |
242 | PKCS8_PRIV_KEY_INFO) | 258 | PKCS8_PRIV_KEY_INFO) |
diff --git a/src/lib/libssl/src/crypto/pem/pem_pkey.c b/src/lib/libssl/src/crypto/pem/pem_pkey.c index 5274447b24..9aaff6e514 100644 --- a/src/lib/libssl/src/crypto/pem/pem_pkey.c +++ b/src/lib/libssl/src/crypto/pem/pem_pkey.c | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -72,173 +72,182 @@ | |||
72 | 72 | ||
73 | int pem_check_suffix(const char *pem_str, const char *suffix); | 73 | int pem_check_suffix(const char *pem_str, const char *suffix); |
74 | 74 | ||
75 | EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u) | 75 | EVP_PKEY * |
76 | { | 76 | PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x, pem_password_cb *cb, void *u) |
77 | char *nm=NULL; | 77 | { |
78 | const unsigned char *p=NULL; | 78 | char *nm = NULL; |
79 | unsigned char *data=NULL; | 79 | const unsigned char *p = NULL; |
80 | unsigned char *data = NULL; | ||
80 | long len; | 81 | long len; |
81 | int slen; | 82 | int slen; |
82 | EVP_PKEY *ret=NULL; | 83 | EVP_PKEY *ret = NULL; |
83 | 84 | ||
84 | if (!PEM_bytes_read_bio(&data, &len, &nm, PEM_STRING_EVP_PKEY, bp, cb, u)) | 85 | if (!PEM_bytes_read_bio(&data, &len, &nm, PEM_STRING_EVP_PKEY, |
86 | bp, cb, u)) | ||
85 | return NULL; | 87 | return NULL; |
86 | p = data; | 88 | p = data; |
87 | 89 | ||
88 | if (strcmp(nm,PEM_STRING_PKCS8INF) == 0) { | 90 | if (strcmp(nm, PEM_STRING_PKCS8INF) == 0) { |
89 | PKCS8_PRIV_KEY_INFO *p8inf; | 91 | PKCS8_PRIV_KEY_INFO *p8inf; |
90 | p8inf=d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, len); | 92 | p8inf = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, len); |
91 | if(!p8inf) goto p8err; | 93 | if (!p8inf) |
94 | goto p8err; | ||
92 | ret = EVP_PKCS82PKEY(p8inf); | 95 | ret = EVP_PKCS82PKEY(p8inf); |
93 | if(x) { | 96 | if (x) { |
94 | if(*x) EVP_PKEY_free((EVP_PKEY *)*x); | 97 | if (*x) |
98 | EVP_PKEY_free((EVP_PKEY *)*x); | ||
95 | *x = ret; | 99 | *x = ret; |
96 | } | 100 | } |
97 | PKCS8_PRIV_KEY_INFO_free(p8inf); | 101 | PKCS8_PRIV_KEY_INFO_free(p8inf); |
98 | } else if (strcmp(nm,PEM_STRING_PKCS8) == 0) { | 102 | } else if (strcmp(nm, PEM_STRING_PKCS8) == 0) { |
99 | PKCS8_PRIV_KEY_INFO *p8inf; | 103 | PKCS8_PRIV_KEY_INFO *p8inf; |
100 | X509_SIG *p8; | 104 | X509_SIG *p8; |
101 | int klen; | 105 | int klen; |
102 | char psbuf[PEM_BUFSIZE]; | 106 | char psbuf[PEM_BUFSIZE]; |
103 | p8 = d2i_X509_SIG(NULL, &p, len); | 107 | p8 = d2i_X509_SIG(NULL, &p, len); |
104 | if(!p8) goto p8err; | 108 | if (!p8) |
105 | if (cb) klen=cb(psbuf,PEM_BUFSIZE,0,u); | 109 | goto p8err; |
106 | else klen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u); | 110 | if (cb) |
111 | klen = cb(psbuf, PEM_BUFSIZE, 0, u); | ||
112 | else | ||
113 | klen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u); | ||
107 | if (klen <= 0) { | 114 | if (klen <= 0) { |
108 | PEMerr(PEM_F_PEM_READ_BIO_PRIVATEKEY, | 115 | PEMerr(PEM_F_PEM_READ_BIO_PRIVATEKEY, |
109 | PEM_R_BAD_PASSWORD_READ); | 116 | PEM_R_BAD_PASSWORD_READ); |
110 | X509_SIG_free(p8); | 117 | X509_SIG_free(p8); |
111 | goto err; | 118 | goto err; |
112 | } | 119 | } |
113 | p8inf = PKCS8_decrypt(p8, psbuf, klen); | 120 | p8inf = PKCS8_decrypt(p8, psbuf, klen); |
114 | X509_SIG_free(p8); | 121 | X509_SIG_free(p8); |
115 | if(!p8inf) goto p8err; | 122 | if (!p8inf) |
123 | goto p8err; | ||
116 | ret = EVP_PKCS82PKEY(p8inf); | 124 | ret = EVP_PKCS82PKEY(p8inf); |
117 | if(x) { | 125 | if (x) { |
118 | if(*x) EVP_PKEY_free((EVP_PKEY *)*x); | 126 | if (*x) |
127 | EVP_PKEY_free((EVP_PKEY *)*x); | ||
119 | *x = ret; | 128 | *x = ret; |
120 | } | 129 | } |
121 | PKCS8_PRIV_KEY_INFO_free(p8inf); | 130 | PKCS8_PRIV_KEY_INFO_free(p8inf); |
122 | } else if ((slen = pem_check_suffix(nm, "PRIVATE KEY")) > 0) | 131 | } else if ((slen = pem_check_suffix(nm, "PRIVATE KEY")) > 0) { |
123 | { | ||
124 | const EVP_PKEY_ASN1_METHOD *ameth; | 132 | const EVP_PKEY_ASN1_METHOD *ameth; |
125 | ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); | 133 | ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); |
126 | if (!ameth || !ameth->old_priv_decode) | 134 | if (!ameth || !ameth->old_priv_decode) |
127 | goto p8err; | 135 | goto p8err; |
128 | ret=d2i_PrivateKey(ameth->pkey_id,x,&p,len); | 136 | ret = d2i_PrivateKey(ameth->pkey_id, x,&p, len); |
129 | } | 137 | } |
138 | |||
130 | p8err: | 139 | p8err: |
131 | if (ret == NULL) | 140 | if (ret == NULL) |
132 | PEMerr(PEM_F_PEM_READ_BIO_PRIVATEKEY,ERR_R_ASN1_LIB); | 141 | PEMerr(PEM_F_PEM_READ_BIO_PRIVATEKEY, ERR_R_ASN1_LIB); |
133 | err: | 142 | err: |
134 | free(nm); | 143 | free(nm); |
135 | OPENSSL_cleanse(data, len); | 144 | OPENSSL_cleanse(data, len); |
136 | free(data); | 145 | free(data); |
137 | return(ret); | 146 | return (ret); |
138 | } | 147 | } |
139 | 148 | ||
140 | int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, | 149 | int |
141 | unsigned char *kstr, int klen, | 150 | PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc, |
142 | pem_password_cb *cb, void *u) | 151 | unsigned char *kstr, int klen, pem_password_cb *cb, void *u) |
143 | { | 152 | { |
144 | char pem_str[80]; | 153 | char pem_str[80]; |
154 | |||
145 | if (!x->ameth || x->ameth->priv_encode) | 155 | if (!x->ameth || x->ameth->priv_encode) |
146 | return PEM_write_bio_PKCS8PrivateKey(bp, x, enc, | 156 | return PEM_write_bio_PKCS8PrivateKey(bp, x, enc, |
147 | (char *)kstr, klen, | 157 | (char *)kstr, klen, cb, u); |
148 | cb, u); | ||
149 | 158 | ||
150 | (void) snprintf(pem_str, sizeof(pem_str), "%s PRIVATE KEY", | 159 | (void) snprintf(pem_str, sizeof(pem_str), "%s PRIVATE KEY", |
151 | x->ameth->pem_str); | 160 | x->ameth->pem_str); |
152 | return PEM_ASN1_write_bio((i2d_of_void *)i2d_PrivateKey, | 161 | return PEM_ASN1_write_bio((i2d_of_void *)i2d_PrivateKey, |
153 | pem_str,bp,x,enc,kstr,klen,cb,u); | 162 | pem_str, bp, x,enc, kstr, klen, cb, u); |
154 | } | 163 | } |
155 | 164 | ||
156 | EVP_PKEY *PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x) | 165 | EVP_PKEY * |
157 | { | 166 | PEM_read_bio_Parameters(BIO *bp, EVP_PKEY **x) |
158 | char *nm=NULL; | 167 | { |
159 | const unsigned char *p=NULL; | 168 | char *nm = NULL; |
160 | unsigned char *data=NULL; | 169 | const unsigned char *p = NULL; |
170 | unsigned char *data = NULL; | ||
161 | long len; | 171 | long len; |
162 | int slen; | 172 | int slen; |
163 | EVP_PKEY *ret=NULL; | 173 | EVP_PKEY *ret = NULL; |
164 | 174 | ||
165 | if (!PEM_bytes_read_bio(&data, &len, &nm, PEM_STRING_PARAMETERS, | 175 | if (!PEM_bytes_read_bio(&data, &len, &nm, PEM_STRING_PARAMETERS, |
166 | bp, 0, NULL)) | 176 | bp, 0, NULL)) |
167 | return NULL; | 177 | return NULL; |
168 | p = data; | 178 | p = data; |
169 | 179 | ||
170 | if ((slen = pem_check_suffix(nm, "PARAMETERS")) > 0) | 180 | if ((slen = pem_check_suffix(nm, "PARAMETERS")) > 0) { |
171 | { | ||
172 | ret = EVP_PKEY_new(); | 181 | ret = EVP_PKEY_new(); |
173 | if (!ret) | 182 | if (!ret) |
174 | goto err; | 183 | goto err; |
175 | if (!EVP_PKEY_set_type_str(ret, nm, slen) | 184 | if (!EVP_PKEY_set_type_str(ret, nm, slen) || |
176 | || !ret->ameth->param_decode | 185 | !ret->ameth->param_decode || |
177 | || !ret->ameth->param_decode(ret, &p, len)) | 186 | !ret->ameth->param_decode(ret, &p, len)) { |
178 | { | ||
179 | EVP_PKEY_free(ret); | 187 | EVP_PKEY_free(ret); |
180 | ret = NULL; | 188 | ret = NULL; |
181 | goto err; | 189 | goto err; |
182 | } | 190 | } |
183 | if(x) | 191 | if (x) { |
184 | { | 192 | if (*x) |
185 | if(*x) EVP_PKEY_free((EVP_PKEY *)*x); | 193 | EVP_PKEY_free((EVP_PKEY *)*x); |
186 | *x = ret; | 194 | *x = ret; |
187 | } | ||
188 | } | 195 | } |
196 | } | ||
197 | |||
189 | err: | 198 | err: |
190 | if (ret == NULL) | 199 | if (ret == NULL) |
191 | PEMerr(PEM_F_PEM_READ_BIO_PARAMETERS,ERR_R_ASN1_LIB); | 200 | PEMerr(PEM_F_PEM_READ_BIO_PARAMETERS, ERR_R_ASN1_LIB); |
192 | free(nm); | 201 | free(nm); |
193 | free(data); | 202 | free(data); |
194 | return(ret); | 203 | return (ret); |
195 | } | 204 | } |
196 | 205 | ||
197 | int PEM_write_bio_Parameters(BIO *bp, EVP_PKEY *x) | 206 | int |
198 | { | 207 | PEM_write_bio_Parameters(BIO *bp, EVP_PKEY *x) |
208 | { | ||
199 | char pem_str[80]; | 209 | char pem_str[80]; |
210 | |||
200 | if (!x->ameth || !x->ameth->param_encode) | 211 | if (!x->ameth || !x->ameth->param_encode) |
201 | return 0; | 212 | return 0; |
202 | 213 | ||
203 | (void) snprintf(pem_str, sizeof(pem_str), "%s PARAMETERS", | 214 | (void) snprintf(pem_str, sizeof(pem_str), "%s PARAMETERS", |
204 | x->ameth->pem_str); | 215 | x->ameth->pem_str); |
205 | return PEM_ASN1_write_bio( | 216 | return PEM_ASN1_write_bio((i2d_of_void *)x->ameth->param_encode, |
206 | (i2d_of_void *)x->ameth->param_encode, | 217 | pem_str, bp, x,NULL, NULL, 0,0, NULL); |
207 | pem_str,bp,x,NULL,NULL,0,0,NULL); | 218 | } |
208 | } | ||
209 | 219 | ||
210 | #ifndef OPENSSL_NO_FP_API | 220 | #ifndef OPENSSL_NO_FP_API |
211 | EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u) | 221 | EVP_PKEY * |
212 | { | 222 | PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x, pem_password_cb *cb, void *u) |
213 | BIO *b; | 223 | { |
214 | EVP_PKEY *ret; | 224 | BIO *b; |
215 | 225 | EVP_PKEY *ret; | |
216 | if ((b=BIO_new(BIO_s_file())) == NULL) | 226 | |
217 | { | 227 | if ((b = BIO_new(BIO_s_file())) == NULL) { |
218 | PEMerr(PEM_F_PEM_READ_PRIVATEKEY,ERR_R_BUF_LIB); | 228 | PEMerr(PEM_F_PEM_READ_PRIVATEKEY, ERR_R_BUF_LIB); |
219 | return(0); | 229 | return (0); |
220 | } | ||
221 | BIO_set_fp(b,fp,BIO_NOCLOSE); | ||
222 | ret=PEM_read_bio_PrivateKey(b,x,cb,u); | ||
223 | BIO_free(b); | ||
224 | return(ret); | ||
225 | } | 230 | } |
226 | 231 | BIO_set_fp(b, fp, BIO_NOCLOSE); | |
227 | int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, | 232 | ret = PEM_read_bio_PrivateKey(b, x,cb, u); |
228 | unsigned char *kstr, int klen, | 233 | BIO_free(b); |
229 | pem_password_cb *cb, void *u) | 234 | return (ret); |
230 | { | 235 | } |
231 | BIO *b; | 236 | |
232 | int ret; | 237 | int |
233 | 238 | PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc, | |
234 | if ((b=BIO_new_fp(fp, BIO_NOCLOSE)) == NULL) | 239 | unsigned char *kstr, int klen, pem_password_cb *cb, void *u) |
235 | { | 240 | { |
236 | PEMerr(PEM_F_PEM_WRITE_PRIVATEKEY,ERR_R_BUF_LIB); | 241 | BIO *b; |
237 | return 0; | 242 | int ret; |
238 | } | 243 | |
239 | ret=PEM_write_bio_PrivateKey(b, x, enc, kstr, klen, cb, u); | 244 | if ((b = BIO_new_fp(fp, BIO_NOCLOSE)) == NULL) { |
240 | BIO_free(b); | 245 | PEMerr(PEM_F_PEM_WRITE_PRIVATEKEY, ERR_R_BUF_LIB); |
241 | return ret; | 246 | return 0; |
242 | } | 247 | } |
248 | ret = PEM_write_bio_PrivateKey(b, x, enc, kstr, klen, cb, u); | ||
249 | BIO_free(b); | ||
250 | return ret; | ||
251 | } | ||
243 | 252 | ||
244 | #endif | 253 | #endif |
diff --git a/src/lib/libssl/src/crypto/pem/pem_seal.c b/src/lib/libssl/src/crypto/pem/pem_seal.c index bac7b16b44..e39de08c9a 100644 --- a/src/lib/libssl/src/crypto/pem/pem_seal.c +++ b/src/lib/libssl/src/crypto/pem/pem_seal.c | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -67,125 +67,129 @@ | |||
67 | #include <openssl/pem.h> | 67 | #include <openssl/pem.h> |
68 | #include <openssl/rsa.h> | 68 | #include <openssl/rsa.h> |
69 | 69 | ||
70 | int PEM_SealInit(PEM_ENCODE_SEAL_CTX *ctx, EVP_CIPHER *type, EVP_MD *md_type, | 70 | int |
71 | unsigned char **ek, int *ekl, unsigned char *iv, EVP_PKEY **pubk, | 71 | PEM_SealInit(PEM_ENCODE_SEAL_CTX *ctx, EVP_CIPHER *type, EVP_MD *md_type, |
72 | int npubk) | 72 | unsigned char **ek, int *ekl, unsigned char *iv, EVP_PKEY **pubk, int npubk) |
73 | { | 73 | { |
74 | unsigned char key[EVP_MAX_KEY_LENGTH]; | 74 | unsigned char key[EVP_MAX_KEY_LENGTH]; |
75 | int ret= -1; | 75 | int ret = -1; |
76 | int i,j,max=0; | 76 | int i, j, max = 0; |
77 | char *s=NULL; | 77 | char *s = NULL; |
78 | 78 | ||
79 | for (i=0; i<npubk; i++) | 79 | for (i = 0; i < npubk; i++) { |
80 | { | 80 | if (pubk[i]->type != EVP_PKEY_RSA) { |
81 | if (pubk[i]->type != EVP_PKEY_RSA) | 81 | PEMerr(PEM_F_PEM_SEALINIT, PEM_R_PUBLIC_KEY_NO_RSA); |
82 | { | ||
83 | PEMerr(PEM_F_PEM_SEALINIT,PEM_R_PUBLIC_KEY_NO_RSA); | ||
84 | goto err; | 82 | goto err; |
85 | } | ||
86 | j=RSA_size(pubk[i]->pkey.rsa); | ||
87 | if (j > max) max=j; | ||
88 | } | 83 | } |
89 | s=(char *)malloc(max*2); | 84 | j = RSA_size(pubk[i]->pkey.rsa); |
90 | if (s == NULL) | 85 | if (j > max) |
91 | { | 86 | max = j; |
92 | PEMerr(PEM_F_PEM_SEALINIT,ERR_R_MALLOC_FAILURE); | 87 | } |
88 | s = (char *)malloc(max*2); | ||
89 | if (s == NULL) { | ||
90 | PEMerr(PEM_F_PEM_SEALINIT, ERR_R_MALLOC_FAILURE); | ||
93 | goto err; | 91 | goto err; |
94 | } | 92 | } |
95 | 93 | ||
96 | EVP_EncodeInit(&ctx->encode); | 94 | EVP_EncodeInit(&ctx->encode); |
97 | 95 | ||
98 | EVP_MD_CTX_init(&ctx->md); | 96 | EVP_MD_CTX_init(&ctx->md); |
99 | if (!EVP_SignInit(&ctx->md,md_type)) | 97 | if (!EVP_SignInit(&ctx->md, md_type)) |
100 | goto err; | 98 | goto err; |
101 | 99 | ||
102 | EVP_CIPHER_CTX_init(&ctx->cipher); | 100 | EVP_CIPHER_CTX_init(&ctx->cipher); |
103 | ret=EVP_SealInit(&ctx->cipher,type,ek,ekl,iv,pubk,npubk); | 101 | ret = EVP_SealInit(&ctx->cipher, type, ek, ekl, iv, pubk, npubk); |
104 | if (ret <= 0) goto err; | 102 | if (ret <= 0) |
103 | goto err; | ||
105 | 104 | ||
106 | /* base64 encode the keys */ | 105 | /* base64 encode the keys */ |
107 | for (i=0; i<npubk; i++) | 106 | for (i = 0; i < npubk; i++) { |
108 | { | 107 | j = EVP_EncodeBlock((unsigned char *)s, ek[i], |
109 | j=EVP_EncodeBlock((unsigned char *)s,ek[i], | 108 | RSA_size(pubk[i]->pkey.rsa)); |
110 | RSA_size(pubk[i]->pkey.rsa)); | 109 | ekl[i] = j; |
111 | ekl[i]=j; | 110 | memcpy(ek[i], s, j + 1); |
112 | memcpy(ek[i],s,j+1); | ||
113 | } | ||
114 | |||
115 | ret=npubk; | ||
116 | err: | ||
117 | if (s != NULL) free(s); | ||
118 | OPENSSL_cleanse(key,EVP_MAX_KEY_LENGTH); | ||
119 | return(ret); | ||
120 | } | 111 | } |
121 | 112 | ||
122 | void PEM_SealUpdate(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *out, int *outl, | 113 | ret = npubk; |
123 | unsigned char *in, int inl) | 114 | |
124 | { | 115 | err: |
116 | if (s != NULL) | ||
117 | free(s); | ||
118 | OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); | ||
119 | return (ret); | ||
120 | } | ||
121 | |||
122 | void | ||
123 | PEM_SealUpdate(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *out, int *outl, | ||
124 | unsigned char *in, int inl) | ||
125 | { | ||
125 | unsigned char buffer[1600]; | 126 | unsigned char buffer[1600]; |
126 | int i,j; | 127 | int i, j; |
127 | 128 | ||
128 | *outl=0; | 129 | *outl = 0; |
129 | EVP_SignUpdate(&ctx->md,in,inl); | 130 | EVP_SignUpdate(&ctx->md, in, inl); |
130 | for (;;) | 131 | for (;;) { |
131 | { | 132 | if (inl <= 0) |
132 | if (inl <= 0) break; | 133 | break; |
133 | if (inl > 1200) | 134 | if (inl > 1200) |
134 | i=1200; | 135 | i = 1200; |
135 | else | 136 | else |
136 | i=inl; | 137 | i = inl; |
137 | EVP_EncryptUpdate(&ctx->cipher,buffer,&j,in,i); | 138 | EVP_EncryptUpdate(&ctx->cipher, buffer, &j, in, i); |
138 | EVP_EncodeUpdate(&ctx->encode,out,&j,buffer,j); | 139 | EVP_EncodeUpdate(&ctx->encode, out, &j, buffer, j); |
139 | *outl+=j; | 140 | *outl += j; |
140 | out+=j; | 141 | out += j; |
141 | in+=i; | 142 | in += i; |
142 | inl-=i; | 143 | inl -= i; |
143 | } | ||
144 | } | 144 | } |
145 | 145 | } | |
146 | int PEM_SealFinal(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *sig, int *sigl, | 146 | |
147 | unsigned char *out, int *outl, EVP_PKEY *priv) | 147 | int |
148 | { | 148 | PEM_SealFinal(PEM_ENCODE_SEAL_CTX *ctx, unsigned char *sig, int *sigl, |
149 | unsigned char *s=NULL; | 149 | unsigned char *out, int *outl, EVP_PKEY *priv) |
150 | int ret=0,j; | 150 | { |
151 | unsigned char *s = NULL; | ||
152 | int ret = 0, j; | ||
151 | unsigned int i; | 153 | unsigned int i; |
152 | 154 | ||
153 | if (priv->type != EVP_PKEY_RSA) | 155 | if (priv->type != EVP_PKEY_RSA) { |
154 | { | 156 | PEMerr(PEM_F_PEM_SEALFINAL, PEM_R_PUBLIC_KEY_NO_RSA); |
155 | PEMerr(PEM_F_PEM_SEALFINAL,PEM_R_PUBLIC_KEY_NO_RSA); | ||
156 | goto err; | 157 | goto err; |
157 | } | 158 | } |
158 | i=RSA_size(priv->pkey.rsa); | 159 | i = RSA_size(priv->pkey.rsa); |
159 | if (i < 100) i=100; | 160 | if (i < 100) |
160 | s=(unsigned char *)malloc(i*2); | 161 | i = 100; |
161 | if (s == NULL) | 162 | s = (unsigned char *)malloc(i*2); |
162 | { | 163 | if (s == NULL) { |
163 | PEMerr(PEM_F_PEM_SEALFINAL,ERR_R_MALLOC_FAILURE); | 164 | PEMerr(PEM_F_PEM_SEALFINAL, ERR_R_MALLOC_FAILURE); |
164 | goto err; | 165 | goto err; |
165 | } | 166 | } |
166 | 167 | ||
167 | if (!EVP_EncryptFinal_ex(&ctx->cipher,s,(int *)&i)) | 168 | if (!EVP_EncryptFinal_ex(&ctx->cipher, s, (int *)&i)) |
168 | goto err; | 169 | goto err; |
169 | EVP_EncodeUpdate(&ctx->encode,out,&j,s,i); | 170 | EVP_EncodeUpdate(&ctx->encode, out, &j, s, i); |
170 | *outl=j; | 171 | *outl = j; |
171 | out+=j; | 172 | out += j; |
172 | EVP_EncodeFinal(&ctx->encode,out,&j); | 173 | EVP_EncodeFinal(&ctx->encode, out, &j); |
173 | *outl+=j; | 174 | *outl += j; |
174 | 175 | ||
175 | if (!EVP_SignFinal(&ctx->md,s,&i,priv)) goto err; | 176 | if (!EVP_SignFinal(&ctx->md, s,&i, priv)) |
176 | *sigl=EVP_EncodeBlock(sig,s,i); | 177 | goto err; |
178 | *sigl = EVP_EncodeBlock(sig, s, i); | ||
179 | |||
180 | ret = 1; | ||
177 | 181 | ||
178 | ret=1; | ||
179 | err: | 182 | err: |
180 | EVP_MD_CTX_cleanup(&ctx->md); | 183 | EVP_MD_CTX_cleanup(&ctx->md); |
181 | EVP_CIPHER_CTX_cleanup(&ctx->cipher); | 184 | EVP_CIPHER_CTX_cleanup(&ctx->cipher); |
182 | if (s != NULL) free(s); | 185 | if (s != NULL) |
183 | return(ret); | 186 | free(s); |
184 | } | 187 | return (ret); |
188 | } | ||
185 | #else /* !OPENSSL_NO_RSA */ | 189 | #else /* !OPENSSL_NO_RSA */ |
186 | 190 | ||
187 | # if PEDANTIC | 191 | # if PEDANTIC |
188 | static void *dummy=&dummy; | 192 | static void *dummy = &dummy; |
189 | # endif | 193 | # endif |
190 | 194 | ||
191 | #endif | 195 | #endif |
diff --git a/src/lib/libssl/src/crypto/pem/pem_sign.c b/src/lib/libssl/src/crypto/pem/pem_sign.c index cbd3cd0793..ab3e5ebc64 100644 --- a/src/lib/libssl/src/crypto/pem/pem_sign.c +++ b/src/lib/libssl/src/crypto/pem/pem_sign.c | |||
@@ -5,21 +5,21 @@ | |||
5 | * This package is an SSL implementation written | 5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). | 6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. | 7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * | 8 | * |
9 | * This library is free for commercial and non-commercial use as long as | 9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions | 10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, | 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms | 13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * | 15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. | 17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution | 18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. | 19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or | 20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. | 21 | * in documentation (online or textual) provided with the package. |
22 | * | 22 | * |
23 | * Redistribution and use in source and binary forms, with or without | 23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions | 24 | * modification, are permitted provided that the following conditions |
25 | * are met: | 25 | * are met: |
@@ -34,10 +34,10 @@ | |||
34 | * Eric Young (eay@cryptsoft.com)" | 34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library | 35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). | 36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: | 38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * | 40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
@@ -49,7 +49,7 @@ | |||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. | 51 | * SUCH DAMAGE. |
52 | * | 52 | * |
53 | * The licence and distribution terms for any publically available version or | 53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
@@ -64,39 +64,43 @@ | |||
64 | #include <openssl/x509.h> | 64 | #include <openssl/x509.h> |
65 | #include <openssl/pem.h> | 65 | #include <openssl/pem.h> |
66 | 66 | ||
67 | void PEM_SignInit(EVP_MD_CTX *ctx, EVP_MD *type) | 67 | void |
68 | { | 68 | PEM_SignInit(EVP_MD_CTX *ctx, EVP_MD *type) |
69 | { | ||
69 | EVP_DigestInit_ex(ctx, type, NULL); | 70 | EVP_DigestInit_ex(ctx, type, NULL); |
70 | } | 71 | } |
71 | 72 | ||
72 | void PEM_SignUpdate(EVP_MD_CTX *ctx, unsigned char *data, | 73 | void |
73 | unsigned int count) | 74 | PEM_SignUpdate(EVP_MD_CTX *ctx, unsigned char *data, |
74 | { | 75 | unsigned int count) |
75 | EVP_DigestUpdate(ctx,data,count); | 76 | { |
76 | } | 77 | EVP_DigestUpdate(ctx, data, count); |
78 | } | ||
77 | 79 | ||
78 | int PEM_SignFinal(EVP_MD_CTX *ctx, unsigned char *sigret, unsigned int *siglen, | 80 | int |
79 | EVP_PKEY *pkey) | 81 | PEM_SignFinal(EVP_MD_CTX *ctx, unsigned char *sigret, unsigned int *siglen, |
80 | { | 82 | EVP_PKEY *pkey) |
83 | { | ||
81 | unsigned char *m; | 84 | unsigned char *m; |
82 | int i,ret=0; | 85 | int i, ret = 0; |
83 | unsigned int m_len; | 86 | unsigned int m_len; |
84 | 87 | ||
85 | m=(unsigned char *)malloc(EVP_PKEY_size(pkey)+2); | 88 | m = (unsigned char *)malloc(EVP_PKEY_size(pkey) + 2); |
86 | if (m == NULL) | 89 | if (m == NULL) { |
87 | { | 90 | PEMerr(PEM_F_PEM_SIGNFINAL, ERR_R_MALLOC_FAILURE); |
88 | PEMerr(PEM_F_PEM_SIGNFINAL,ERR_R_MALLOC_FAILURE); | 91 | goto err; |
92 | } | ||
93 | |||
94 | if (EVP_SignFinal(ctx, m,&m_len, pkey) <= 0) | ||
89 | goto err; | 95 | goto err; |
90 | } | ||
91 | 96 | ||
92 | if (EVP_SignFinal(ctx,m,&m_len,pkey) <= 0) goto err; | 97 | i = EVP_EncodeBlock(sigret, m, m_len); |
98 | *siglen = i; | ||
99 | ret = 1; | ||
93 | 100 | ||
94 | i=EVP_EncodeBlock(sigret,m,m_len); | ||
95 | *siglen=i; | ||
96 | ret=1; | ||
97 | err: | 101 | err: |
98 | /* ctx has been zeroed by EVP_SignFinal() */ | 102 | /* ctx has been zeroed by EVP_SignFinal() */ |
99 | if (m != NULL) free(m); | 103 | if (m != NULL) |
100 | return(ret); | 104 | free(m); |
101 | } | 105 | return (ret); |
102 | 106 | } | |
diff --git a/src/lib/libssl/src/crypto/pem/pem_x509.c b/src/lib/libssl/src/crypto/pem/pem_x509.c index b531057dc9..57b7d1d53b 100644 --- a/src/lib/libssl/src/crypto/pem/pem_x509.c +++ b/src/lib/libssl/src/crypto/pem/pem_x509.c | |||
@@ -10,7 +10,7 @@ | |||
10 | * are met: | 10 | * are met: |
11 | * | 11 | * |
12 | * 1. Redistributions of source code must retain the above copyright | 12 | * 1. Redistributions of source code must retain the above copyright |
13 | * notice, this list of conditions and the following disclaimer. | 13 | * notice, this list of conditions and the following disclaimer. |
14 | * | 14 | * |
15 | * 2. Redistributions in binary form must reproduce the above copyright | 15 | * 2. Redistributions in binary form must reproduce the above copyright |
16 | * notice, this list of conditions and the following disclaimer in | 16 | * notice, this list of conditions and the following disclaimer in |
@@ -65,4 +65,3 @@ | |||
65 | #include <openssl/pem.h> | 65 | #include <openssl/pem.h> |
66 | 66 | ||
67 | IMPLEMENT_PEM_rw(X509, X509, PEM_STRING_X509, X509) | 67 | IMPLEMENT_PEM_rw(X509, X509, PEM_STRING_X509, X509) |
68 | |||
diff --git a/src/lib/libssl/src/crypto/pem/pem_xaux.c b/src/lib/libssl/src/crypto/pem/pem_xaux.c index 328f796200..ae381ce54b 100644 --- a/src/lib/libssl/src/crypto/pem/pem_xaux.c +++ b/src/lib/libssl/src/crypto/pem/pem_xaux.c | |||
@@ -10,7 +10,7 @@ | |||
10 | * are met: | 10 | * are met: |
11 | * | 11 | * |
12 | * 1. Redistributions of source code must retain the above copyright | 12 | * 1. Redistributions of source code must retain the above copyright |
13 | * notice, this list of conditions and the following disclaimer. | 13 | * notice, this list of conditions and the following disclaimer. |
14 | * | 14 | * |
15 | * 2. Redistributions in binary form must reproduce the above copyright | 15 | * 2. Redistributions in binary form must reproduce the above copyright |
16 | * notice, this list of conditions and the following disclaimer in | 16 | * notice, this list of conditions and the following disclaimer in |
@@ -65,4 +65,5 @@ | |||
65 | #include <openssl/pem.h> | 65 | #include <openssl/pem.h> |
66 | 66 | ||
67 | IMPLEMENT_PEM_rw(X509_AUX, X509, PEM_STRING_X509_TRUSTED, X509_AUX) | 67 | IMPLEMENT_PEM_rw(X509_AUX, X509, PEM_STRING_X509_TRUSTED, X509_AUX) |
68 | IMPLEMENT_PEM_rw(X509_CERT_PAIR, X509_CERT_PAIR, PEM_STRING_X509_PAIR, X509_CERT_PAIR) | 68 | IMPLEMENT_PEM_rw(X509_CERT_PAIR, X509_CERT_PAIR, PEM_STRING_X509_PAIR, |
69 | X509_CERT_PAIR) | ||
diff --git a/src/lib/libssl/src/crypto/pem/pvkfmt.c b/src/lib/libssl/src/crypto/pem/pvkfmt.c index 59af2020ab..a7815a2372 100644 --- a/src/lib/libssl/src/crypto/pem/pvkfmt.c +++ b/src/lib/libssl/src/crypto/pem/pvkfmt.c | |||
@@ -9,7 +9,7 @@ | |||
9 | * are met: | 9 | * are met: |
10 | * | 10 | * |
11 | * 1. Redistributions of source code must retain the above copyright | 11 | * 1. Redistributions of source code must retain the above copyright |
12 | * notice, this list of conditions and the following disclaimer. | 12 | * notice, this list of conditions and the following disclaimer. |
13 | * | 13 | * |
14 | * 2. Redistributions in binary form must reproduce the above copyright | 14 | * 2. Redistributions in binary form must reproduce the above copyright |
15 | * notice, this list of conditions and the following disclaimer in | 15 | * notice, this list of conditions and the following disclaimer in |
@@ -71,27 +71,31 @@ | |||
71 | * format | 71 | * format |
72 | */ | 72 | */ |
73 | 73 | ||
74 | static unsigned int read_ledword(const unsigned char **in) | 74 | static unsigned int |
75 | { | 75 | read_ledword(const unsigned char **in) |
76 | { | ||
76 | const unsigned char *p = *in; | 77 | const unsigned char *p = *in; |
77 | unsigned int ret; | 78 | unsigned int ret; |
79 | |||
78 | ret = *p++; | 80 | ret = *p++; |
79 | ret |= (*p++ << 8); | 81 | ret |= (*p++ << 8); |
80 | ret |= (*p++ << 16); | 82 | ret |= (*p++ << 16); |
81 | ret |= (*p++ << 24); | 83 | ret |= (*p++ << 24); |
82 | *in = p; | 84 | *in = p; |
83 | return ret; | 85 | return ret; |
84 | } | 86 | } |
85 | 87 | ||
86 | /* Read a BIGNUM in little endian format. The docs say that this should take up | 88 | /* Read a BIGNUM in little endian format. The docs say that this should take up |
87 | * bitlen/8 bytes. | 89 | * bitlen/8 bytes. |
88 | */ | 90 | */ |
89 | 91 | ||
90 | static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r) | 92 | static int |
91 | { | 93 | read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r) |
94 | { | ||
92 | const unsigned char *p; | 95 | const unsigned char *p; |
93 | unsigned char *tmpbuf, *q; | 96 | unsigned char *tmpbuf, *q; |
94 | unsigned int i; | 97 | unsigned int i; |
98 | |||
95 | p = *in + nbyte - 1; | 99 | p = *in + nbyte - 1; |
96 | tmpbuf = malloc(nbyte); | 100 | tmpbuf = malloc(nbyte); |
97 | if (!tmpbuf) | 101 | if (!tmpbuf) |
@@ -101,14 +105,12 @@ static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r) | |||
101 | *q++ = *p--; | 105 | *q++ = *p--; |
102 | *r = BN_bin2bn(tmpbuf, nbyte, NULL); | 106 | *r = BN_bin2bn(tmpbuf, nbyte, NULL); |
103 | free(tmpbuf); | 107 | free(tmpbuf); |
104 | if (*r) | 108 | if (*r) { |
105 | { | ||
106 | *in += nbyte; | 109 | *in += nbyte; |
107 | return 1; | 110 | return 1; |
108 | } | 111 | } else |
109 | else | ||
110 | return 0; | 112 | return 0; |
111 | } | 113 | } |
112 | 114 | ||
113 | 115 | ||
114 | /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */ | 116 | /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */ |
@@ -132,106 +134,96 @@ static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r) | |||
132 | #define PVK_SALTLEN 0x10 | 134 | #define PVK_SALTLEN 0x10 |
133 | 135 | ||
134 | static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length, | 136 | static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length, |
135 | unsigned int bitlen, int ispub); | 137 | unsigned int bitlen, int ispub); |
136 | static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, | 138 | static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, |
137 | unsigned int bitlen, int ispub); | 139 | unsigned int bitlen, int ispub); |
138 | 140 | ||
139 | static int do_blob_header(const unsigned char **in, unsigned int length, | 141 | static int |
140 | unsigned int *pmagic, unsigned int *pbitlen, | 142 | do_blob_header(const unsigned char **in, unsigned int length, |
141 | int *pisdss, int *pispub) | 143 | unsigned int *pmagic, unsigned int *pbitlen, int *pisdss, int *pispub) |
142 | { | 144 | { |
143 | const unsigned char *p = *in; | 145 | const unsigned char *p = *in; |
146 | |||
144 | if (length < 16) | 147 | if (length < 16) |
145 | return 0; | 148 | return 0; |
146 | /* bType */ | 149 | /* bType */ |
147 | if (*p == MS_PUBLICKEYBLOB) | 150 | if (*p == MS_PUBLICKEYBLOB) { |
148 | { | 151 | if (*pispub == 0) { |
149 | if (*pispub == 0) | ||
150 | { | ||
151 | PEMerr(PEM_F_DO_BLOB_HEADER, | 152 | PEMerr(PEM_F_DO_BLOB_HEADER, |
152 | PEM_R_EXPECTING_PRIVATE_KEY_BLOB); | 153 | PEM_R_EXPECTING_PRIVATE_KEY_BLOB); |
153 | return 0; | 154 | return 0; |
154 | } | ||
155 | *pispub = 1; | ||
156 | } | 155 | } |
157 | else if (*p == MS_PRIVATEKEYBLOB) | 156 | *pispub = 1; |
158 | { | 157 | } else if (*p == MS_PRIVATEKEYBLOB) { |
159 | if (*pispub == 1) | 158 | if (*pispub == 1) { |
160 | { | ||
161 | PEMerr(PEM_F_DO_BLOB_HEADER, | 159 | PEMerr(PEM_F_DO_BLOB_HEADER, |
162 | PEM_R_EXPECTING_PUBLIC_KEY_BLOB); | 160 | PEM_R_EXPECTING_PUBLIC_KEY_BLOB); |
163 | return 0; | 161 | return 0; |
164 | } | ||
165 | *pispub = 0; | ||
166 | } | 162 | } |
167 | else | 163 | *pispub = 0; |
164 | } else | ||
168 | return 0; | 165 | return 0; |
169 | p++; | 166 | p++; |
170 | /* Version */ | 167 | /* Version */ |
171 | if (*p++ != 0x2) | 168 | if (*p++ != 0x2) { |
172 | { | ||
173 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER); | 169 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER); |
174 | return 0; | 170 | return 0; |
175 | } | 171 | } |
176 | /* Ignore reserved, aiKeyAlg */ | 172 | /* Ignore reserved, aiKeyAlg */ |
177 | p+= 6; | 173 | p += 6; |
178 | *pmagic = read_ledword(&p); | 174 | *pmagic = read_ledword(&p); |
179 | *pbitlen = read_ledword(&p); | 175 | *pbitlen = read_ledword(&p); |
180 | *pisdss = 0; | 176 | *pisdss = 0; |
181 | switch (*pmagic) | 177 | switch (*pmagic) { |
182 | { | ||
183 | 178 | ||
184 | case MS_DSS1MAGIC: | 179 | case MS_DSS1MAGIC: |
185 | *pisdss = 1; | 180 | *pisdss = 1; |
186 | case MS_RSA1MAGIC: | 181 | case MS_RSA1MAGIC: |
187 | if (*pispub == 0) | 182 | if (*pispub == 0) { |
188 | { | ||
189 | PEMerr(PEM_F_DO_BLOB_HEADER, | 183 | PEMerr(PEM_F_DO_BLOB_HEADER, |
190 | PEM_R_EXPECTING_PRIVATE_KEY_BLOB); | 184 | PEM_R_EXPECTING_PRIVATE_KEY_BLOB); |
191 | return 0; | 185 | return 0; |
192 | } | 186 | } |
193 | break; | 187 | break; |
194 | 188 | ||
195 | case MS_DSS2MAGIC: | 189 | case MS_DSS2MAGIC: |
196 | *pisdss = 1; | 190 | *pisdss = 1; |
197 | case MS_RSA2MAGIC: | 191 | case MS_RSA2MAGIC: |
198 | if (*pispub == 1) | 192 | if (*pispub == 1) { |
199 | { | ||
200 | PEMerr(PEM_F_DO_BLOB_HEADER, | 193 | PEMerr(PEM_F_DO_BLOB_HEADER, |
201 | PEM_R_EXPECTING_PUBLIC_KEY_BLOB); | 194 | PEM_R_EXPECTING_PUBLIC_KEY_BLOB); |
202 | return 0; | 195 | return 0; |
203 | } | 196 | } |
204 | break; | 197 | break; |
205 | 198 | ||
206 | default: | 199 | default: |
207 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER); | 200 | PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER); |
208 | return -1; | 201 | return -1; |
209 | } | 202 | } |
210 | *in = p; | 203 | *in = p; |
211 | return 1; | 204 | return 1; |
212 | } | 205 | } |
213 | 206 | ||
214 | static unsigned int blob_length(unsigned bitlen, int isdss, int ispub) | 207 | static unsigned int |
215 | { | 208 | blob_length(unsigned bitlen, int isdss, int ispub) |
209 | { | ||
216 | unsigned int nbyte, hnbyte; | 210 | unsigned int nbyte, hnbyte; |
211 | |||
217 | nbyte = (bitlen + 7) >> 3; | 212 | nbyte = (bitlen + 7) >> 3; |
218 | hnbyte = (bitlen + 15) >> 4; | 213 | hnbyte = (bitlen + 15) >> 4; |
219 | if (isdss) | 214 | if (isdss) { |
220 | { | ||
221 | 215 | ||
222 | /* Expected length: 20 for q + 3 components bitlen each + 24 | 216 | /* Expected length: 20 for q + 3 components bitlen each + 24 |
223 | * for seed structure. | 217 | * for seed structure. |
224 | */ | 218 | */ |
225 | if (ispub) | 219 | if (ispub) |
226 | return 44 + 3 * nbyte; | 220 | return 44 + 3 * nbyte; |
227 | /* Expected length: 20 for q, priv, 2 bitlen components + 24 | 221 | /* Expected length: 20 for q, priv, 2 bitlen components + 24 |
228 | * for seed structure. | 222 | * for seed structure. |
229 | */ | 223 | */ |
230 | else | 224 | else |
231 | return 64 + 2 * nbyte; | 225 | return 64 + 2 * nbyte; |
232 | } | 226 | } else { |
233 | else | ||
234 | { | ||
235 | /* Expected length: 4 for 'e' + 'n' */ | 227 | /* Expected length: 4 for 'e' + 'n' */ |
236 | if (ispub) | 228 | if (ispub) |
237 | return 4 + nbyte; | 229 | return 4 + nbyte; |
@@ -239,83 +231,83 @@ static unsigned int blob_length(unsigned bitlen, int isdss, int ispub) | |||
239 | /* Expected length: 4 for 'e' and 7 other components. | 231 | /* Expected length: 4 for 'e' and 7 other components. |
240 | * 2 components are bitlen size, 5 are bitlen/2 | 232 | * 2 components are bitlen size, 5 are bitlen/2 |
241 | */ | 233 | */ |
242 | return 4 + 2*nbyte + 5*hnbyte; | 234 | return 4 + 2*nbyte + 5*hnbyte; |
243 | } | ||
244 | |||
245 | } | 235 | } |
246 | 236 | ||
247 | static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length, | 237 | } |
248 | int ispub) | 238 | |
249 | { | 239 | static EVP_PKEY * |
240 | do_b2i(const unsigned char **in, unsigned int length, int ispub) | ||
241 | { | ||
250 | const unsigned char *p = *in; | 242 | const unsigned char *p = *in; |
251 | unsigned int bitlen, magic; | 243 | unsigned int bitlen, magic; |
252 | int isdss; | 244 | int isdss; |
253 | if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) | 245 | |
254 | { | 246 | if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) { |
255 | PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR); | 247 | PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR); |
256 | return NULL; | 248 | return NULL; |
257 | } | 249 | } |
258 | length -= 16; | 250 | length -= 16; |
259 | if (length < blob_length(bitlen, isdss, ispub)) | 251 | if (length < blob_length(bitlen, isdss, ispub)) { |
260 | { | ||
261 | PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT); | 252 | PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT); |
262 | return NULL; | 253 | return NULL; |
263 | } | 254 | } |
264 | if (isdss) | 255 | if (isdss) |
265 | return b2i_dss(&p, length, bitlen, ispub); | 256 | return b2i_dss(&p, length, bitlen, ispub); |
266 | else | 257 | else |
267 | return b2i_rsa(&p, length, bitlen, ispub); | 258 | return b2i_rsa(&p, length, bitlen, ispub); |
268 | } | 259 | } |
269 | 260 | ||
270 | static EVP_PKEY *do_b2i_bio(BIO *in, int ispub) | 261 | static EVP_PKEY * |
271 | { | 262 | do_b2i_bio(BIO *in, int ispub) |
263 | { | ||
272 | const unsigned char *p; | 264 | const unsigned char *p; |
273 | unsigned char hdr_buf[16], *buf = NULL; | 265 | unsigned char hdr_buf[16], *buf = NULL; |
274 | unsigned int bitlen, magic, length; | 266 | unsigned int bitlen, magic, length; |
275 | int isdss; | 267 | int isdss; |
276 | EVP_PKEY *ret = NULL; | 268 | EVP_PKEY *ret = NULL; |
277 | if (BIO_read(in, hdr_buf, 16) != 16) | 269 | |
278 | { | 270 | if (BIO_read(in, hdr_buf, 16) != 16) { |
279 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); | 271 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); |
280 | return NULL; | 272 | return NULL; |
281 | } | 273 | } |
282 | p = hdr_buf; | 274 | p = hdr_buf; |
283 | if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0) | 275 | if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0) |
284 | return NULL; | 276 | return NULL; |
285 | 277 | ||
286 | length = blob_length(bitlen, isdss, ispub); | 278 | length = blob_length(bitlen, isdss, ispub); |
287 | buf = malloc(length); | 279 | buf = malloc(length); |
288 | if (!buf) | 280 | if (!buf) { |
289 | { | ||
290 | PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE); | 281 | PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE); |
291 | goto err; | 282 | goto err; |
292 | } | 283 | } |
293 | p = buf; | 284 | p = buf; |
294 | if (BIO_read(in, buf, length) != (int)length) | 285 | if (BIO_read(in, buf, length) != (int)length) { |
295 | { | ||
296 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); | 286 | PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT); |
297 | goto err; | 287 | goto err; |
298 | } | 288 | } |
299 | 289 | ||
300 | if (isdss) | 290 | if (isdss) |
301 | ret = b2i_dss(&p, length, bitlen, ispub); | 291 | ret = b2i_dss(&p, length, bitlen, ispub); |
302 | else | 292 | else |
303 | ret = b2i_rsa(&p, length, bitlen, ispub); | 293 | ret = b2i_rsa(&p, length, bitlen, ispub); |
304 | 294 | ||
305 | err: | 295 | err: |
306 | if (buf) | 296 | if (buf) |
307 | free(buf); | 297 | free(buf); |
308 | return ret; | 298 | return ret; |
309 | } | 299 | } |
310 | 300 | ||
311 | static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, | 301 | static EVP_PKEY * |
312 | unsigned int bitlen, int ispub) | 302 | b2i_dss(const unsigned char **in, unsigned int length, unsigned int bitlen, |
313 | { | 303 | int ispub) |
304 | { | ||
314 | const unsigned char *p = *in; | 305 | const unsigned char *p = *in; |
315 | EVP_PKEY *ret = NULL; | 306 | EVP_PKEY *ret = NULL; |
316 | DSA *dsa = NULL; | 307 | DSA *dsa = NULL; |
317 | BN_CTX *ctx = NULL; | 308 | BN_CTX *ctx = NULL; |
318 | unsigned int nbyte; | 309 | unsigned int nbyte; |
310 | |||
319 | nbyte = (bitlen + 7) >> 3; | 311 | nbyte = (bitlen + 7) >> 3; |
320 | 312 | ||
321 | dsa = DSA_new(); | 313 | dsa = DSA_new(); |
@@ -328,13 +320,10 @@ static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, | |||
328 | goto memerr; | 320 | goto memerr; |
329 | if (!read_lebn(&p, nbyte, &dsa->g)) | 321 | if (!read_lebn(&p, nbyte, &dsa->g)) |
330 | goto memerr; | 322 | goto memerr; |
331 | if (ispub) | 323 | if (ispub) { |
332 | { | ||
333 | if (!read_lebn(&p, nbyte, &dsa->pub_key)) | 324 | if (!read_lebn(&p, nbyte, &dsa->pub_key)) |
334 | goto memerr; | 325 | goto memerr; |
335 | } | 326 | } else { |
336 | else | ||
337 | { | ||
338 | if (!read_lebn(&p, 20, &dsa->priv_key)) | 327 | if (!read_lebn(&p, 20, &dsa->priv_key)) |
339 | goto memerr; | 328 | goto memerr; |
340 | /* Calculate public key */ | 329 | /* Calculate public key */ |
@@ -342,20 +331,18 @@ static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, | |||
342 | goto memerr; | 331 | goto memerr; |
343 | if (!(ctx = BN_CTX_new())) | 332 | if (!(ctx = BN_CTX_new())) |
344 | goto memerr; | 333 | goto memerr; |
345 | |||
346 | if (!BN_mod_exp(dsa->pub_key, dsa->g, | 334 | if (!BN_mod_exp(dsa->pub_key, dsa->g, |
347 | dsa->priv_key, dsa->p, ctx)) | 335 | dsa->priv_key, dsa->p, ctx)) |
348 | |||
349 | goto memerr; | 336 | goto memerr; |
350 | BN_CTX_free(ctx); | 337 | BN_CTX_free(ctx); |
351 | } | 338 | } |
352 | 339 | ||
353 | EVP_PKEY_set1_DSA(ret, dsa); | 340 | EVP_PKEY_set1_DSA(ret, dsa); |
354 | DSA_free(dsa); | 341 | DSA_free(dsa); |
355 | *in = p; | 342 | *in = p; |
356 | return ret; | 343 | return ret; |
357 | 344 | ||
358 | memerr: | 345 | memerr: |
359 | PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE); | 346 | PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE); |
360 | if (dsa) | 347 | if (dsa) |
361 | DSA_free(dsa); | 348 | DSA_free(dsa); |
@@ -364,16 +351,17 @@ static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length, | |||
364 | if (ctx) | 351 | if (ctx) |
365 | BN_CTX_free(ctx); | 352 | BN_CTX_free(ctx); |
366 | return NULL; | 353 | return NULL; |
367 | } | 354 | } |
368 | 355 | ||
369 | static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length, | 356 | static EVP_PKEY * |
370 | unsigned int bitlen, int ispub) | 357 | b2i_rsa(const unsigned char **in, unsigned int length, unsigned int bitlen, |
371 | 358 | int ispub) | |
372 | { | 359 | { |
373 | const unsigned char *p = *in; | 360 | const unsigned char *p = *in; |
374 | EVP_PKEY *ret = NULL; | 361 | EVP_PKEY *ret = NULL; |
375 | RSA *rsa = NULL; | 362 | RSA *rsa = NULL; |
376 | unsigned int nbyte, hnbyte; | 363 | unsigned int nbyte, hnbyte; |
364 | |||
377 | nbyte = (bitlen + 7) >> 3; | 365 | nbyte = (bitlen + 7) >> 3; |
378 | hnbyte = (bitlen + 15) >> 4; | 366 | hnbyte = (bitlen + 15) >> 4; |
379 | rsa = RSA_new(); | 367 | rsa = RSA_new(); |
@@ -387,8 +375,7 @@ static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length, | |||
387 | goto memerr; | 375 | goto memerr; |
388 | if (!read_lebn(&p, nbyte, &rsa->n)) | 376 | if (!read_lebn(&p, nbyte, &rsa->n)) |
389 | goto memerr; | 377 | goto memerr; |
390 | if (!ispub) | 378 | if (!ispub) { |
391 | { | ||
392 | if (!read_lebn(&p, hnbyte, &rsa->p)) | 379 | if (!read_lebn(&p, hnbyte, &rsa->p)) |
393 | goto memerr; | 380 | goto memerr; |
394 | if (!read_lebn(&p, hnbyte, &rsa->q)) | 381 | if (!read_lebn(&p, hnbyte, &rsa->q)) |
@@ -401,78 +388,83 @@ static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length, | |||
401 | goto memerr; | 388 | goto memerr; |
402 | if (!read_lebn(&p, nbyte, &rsa->d)) | 389 | if (!read_lebn(&p, nbyte, &rsa->d)) |
403 | goto memerr; | 390 | goto memerr; |
404 | } | 391 | } |
405 | 392 | ||
406 | EVP_PKEY_set1_RSA(ret, rsa); | 393 | EVP_PKEY_set1_RSA(ret, rsa); |
407 | RSA_free(rsa); | 394 | RSA_free(rsa); |
408 | *in = p; | 395 | *in = p; |
409 | return ret; | 396 | return ret; |
410 | memerr: | 397 | |
398 | memerr: | ||
411 | PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE); | 399 | PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE); |
412 | if (rsa) | 400 | if (rsa) |
413 | RSA_free(rsa); | 401 | RSA_free(rsa); |
414 | if (ret) | 402 | if (ret) |
415 | EVP_PKEY_free(ret); | 403 | EVP_PKEY_free(ret); |
416 | return NULL; | 404 | return NULL; |
417 | } | 405 | } |
418 | 406 | ||
419 | EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length) | 407 | EVP_PKEY * |
420 | { | 408 | b2i_PrivateKey(const unsigned char **in, long length) |
409 | { | ||
421 | return do_b2i(in, length, 0); | 410 | return do_b2i(in, length, 0); |
422 | } | 411 | } |
423 | 412 | ||
424 | EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length) | 413 | EVP_PKEY * |
425 | { | 414 | b2i_PublicKey(const unsigned char **in, long length) |
415 | { | ||
426 | return do_b2i(in, length, 1); | 416 | return do_b2i(in, length, 1); |
427 | } | 417 | } |
428 | 418 | ||
429 | 419 | EVP_PKEY * | |
430 | EVP_PKEY *b2i_PrivateKey_bio(BIO *in) | 420 | b2i_PrivateKey_bio(BIO *in) |
431 | { | 421 | { |
432 | return do_b2i_bio(in, 0); | 422 | return do_b2i_bio(in, 0); |
433 | } | 423 | } |
434 | 424 | ||
435 | EVP_PKEY *b2i_PublicKey_bio(BIO *in) | 425 | EVP_PKEY * |
436 | { | 426 | b2i_PublicKey_bio(BIO *in) |
427 | { | ||
437 | return do_b2i_bio(in, 1); | 428 | return do_b2i_bio(in, 1); |
438 | } | 429 | } |
439 | 430 | ||
440 | static void write_ledword(unsigned char **out, unsigned int dw) | 431 | static void |
441 | { | 432 | write_ledword(unsigned char **out, unsigned int dw) |
433 | { | ||
442 | unsigned char *p = *out; | 434 | unsigned char *p = *out; |
435 | |||
443 | *p++ = dw & 0xff; | 436 | *p++ = dw & 0xff; |
444 | *p++ = (dw>>8) & 0xff; | 437 | *p++ = (dw >> 8) & 0xff; |
445 | *p++ = (dw>>16) & 0xff; | 438 | *p++ = (dw >> 16) & 0xff; |
446 | *p++ = (dw>>24) & 0xff; | 439 | *p++ = (dw >> 24) & 0xff; |
447 | *out = p; | 440 | *out = p; |
448 | } | 441 | } |
449 | 442 | ||
450 | static void write_lebn(unsigned char **out, const BIGNUM *bn, int len) | 443 | static void |
451 | { | 444 | write_lebn(unsigned char **out, const BIGNUM *bn, int len) |
445 | { | ||
452 | int nb, i; | 446 | int nb, i; |
453 | unsigned char *p = *out, *q, c; | 447 | unsigned char *p = *out, *q, c; |
448 | |||
454 | nb = BN_num_bytes(bn); | 449 | nb = BN_num_bytes(bn); |
455 | BN_bn2bin(bn, p); | 450 | BN_bn2bin(bn, p); |
456 | q = p + nb - 1; | 451 | q = p + nb - 1; |
457 | /* In place byte order reversal */ | 452 | /* In place byte order reversal */ |
458 | for (i = 0; i < nb/2; i++) | 453 | for (i = 0; i < nb / 2; i++) { |
459 | { | ||
460 | c = *p; | 454 | c = *p; |
461 | *p++ = *q; | 455 | *p++ = *q; |
462 | *q-- = c; | 456 | *q-- = c; |
463 | } | 457 | } |
464 | *out += nb; | 458 | *out += nb; |
465 | /* Pad with zeroes if we have to */ | 459 | /* Pad with zeroes if we have to */ |
466 | if (len > 0) | 460 | if (len > 0) { |
467 | { | ||
468 | len -= nb; | 461 | len -= nb; |
469 | if (len > 0) | 462 | if (len > 0) { |
470 | { | ||
471 | memset(*out, 0, len); | 463 | memset(*out, 0, len); |
472 | *out += len; | 464 | *out += len; |
473 | } | ||
474 | } | 465 | } |
475 | } | 466 | } |
467 | } | ||
476 | 468 | ||
477 | 469 | ||
478 | static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic); | 470 | static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic); |
@@ -480,40 +472,37 @@ static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic); | |||
480 | 472 | ||
481 | static void write_rsa(unsigned char **out, RSA *rsa, int ispub); | 473 | static void write_rsa(unsigned char **out, RSA *rsa, int ispub); |
482 | static void write_dsa(unsigned char **out, DSA *dsa, int ispub); | 474 | static void write_dsa(unsigned char **out, DSA *dsa, int ispub); |
483 | 475 | ||
484 | static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub) | 476 | static int |
485 | { | 477 | do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub) |
478 | { | ||
486 | unsigned char *p; | 479 | unsigned char *p; |
487 | unsigned int bitlen, magic = 0, keyalg; | 480 | unsigned int bitlen, magic = 0, keyalg; |
488 | int outlen, noinc = 0; | 481 | int outlen, noinc = 0; |
489 | if (pk->type == EVP_PKEY_DSA) | 482 | |
490 | { | 483 | if (pk->type == EVP_PKEY_DSA) { |
491 | bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic); | 484 | bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic); |
492 | keyalg = MS_KEYALG_DSS_SIGN; | 485 | keyalg = MS_KEYALG_DSS_SIGN; |
493 | } | 486 | } else if (pk->type == EVP_PKEY_RSA) { |
494 | else if (pk->type == EVP_PKEY_RSA) | ||
495 | { | ||
496 | bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic); | 487 | bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic); |
497 | keyalg = MS_KEYALG_RSA_KEYX; | 488 | keyalg = MS_KEYALG_RSA_KEYX; |
498 | } | 489 | } else |
499 | else | ||
500 | return -1; | 490 | return -1; |
501 | if (bitlen == 0) | 491 | if (bitlen == 0) |
502 | return -1; | 492 | return -1; |
503 | outlen = 16 + blob_length(bitlen, | 493 | outlen = 16 + blob_length(bitlen, |
504 | keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub); | 494 | keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub); |
505 | if (out == NULL) | 495 | if (out == NULL) |
506 | return outlen; | 496 | return outlen; |
507 | if (*out) | 497 | if (*out) |
508 | p = *out; | 498 | p = *out; |
509 | else | 499 | else { |
510 | { | ||
511 | p = malloc(outlen); | 500 | p = malloc(outlen); |
512 | if (!p) | 501 | if (!p) |
513 | return -1; | 502 | return -1; |
514 | *out = p; | 503 | *out = p; |
515 | noinc = 1; | 504 | noinc = 1; |
516 | } | 505 | } |
517 | if (ispub) | 506 | if (ispub) |
518 | *p++ = MS_PUBLICKEYBLOB; | 507 | *p++ = MS_PUBLICKEYBLOB; |
519 | else | 508 | else |
@@ -531,12 +520,14 @@ static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub) | |||
531 | if (!noinc) | 520 | if (!noinc) |
532 | *out += outlen; | 521 | *out += outlen; |
533 | return outlen; | 522 | return outlen; |
534 | } | 523 | } |
535 | 524 | ||
536 | static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub) | 525 | static int |
537 | { | 526 | do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub) |
527 | { | ||
538 | unsigned char *tmp = NULL; | 528 | unsigned char *tmp = NULL; |
539 | int outlen, wrlen; | 529 | int outlen, wrlen; |
530 | |||
540 | outlen = do_i2b(&tmp, pk, ispub); | 531 | outlen = do_i2b(&tmp, pk, ispub); |
541 | if (outlen < 0) | 532 | if (outlen < 0) |
542 | return -1; | 533 | return -1; |
@@ -545,72 +536,73 @@ static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub) | |||
545 | if (wrlen == outlen) | 536 | if (wrlen == outlen) |
546 | return outlen; | 537 | return outlen; |
547 | return -1; | 538 | return -1; |
548 | } | 539 | } |
549 | 540 | ||
550 | static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic) | 541 | static int |
551 | { | 542 | check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic) |
543 | { | ||
552 | int bitlen; | 544 | int bitlen; |
545 | |||
553 | bitlen = BN_num_bits(dsa->p); | 546 | bitlen = BN_num_bits(dsa->p); |
554 | if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160) | 547 | if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160) || |
555 | || (BN_num_bits(dsa->g) > bitlen)) | 548 | (BN_num_bits(dsa->g) > bitlen)) |
556 | goto badkey; | 549 | goto badkey; |
557 | if (ispub) | 550 | if (ispub) { |
558 | { | ||
559 | if (BN_num_bits(dsa->pub_key) > bitlen) | 551 | if (BN_num_bits(dsa->pub_key) > bitlen) |
560 | goto badkey; | 552 | goto badkey; |
561 | *pmagic = MS_DSS1MAGIC; | 553 | *pmagic = MS_DSS1MAGIC; |
562 | } | 554 | } else { |
563 | else | ||
564 | { | ||
565 | if (BN_num_bits(dsa->priv_key) > 160) | 555 | if (BN_num_bits(dsa->priv_key) > 160) |
566 | goto badkey; | 556 | goto badkey; |
567 | *pmagic = MS_DSS2MAGIC; | 557 | *pmagic = MS_DSS2MAGIC; |
568 | } | 558 | } |
569 | 559 | ||
570 | return bitlen; | 560 | return bitlen; |
571 | badkey: | 561 | |
562 | badkey: | ||
572 | PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); | 563 | PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); |
573 | return 0; | 564 | return 0; |
574 | } | 565 | } |
575 | 566 | ||
576 | static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic) | 567 | static int |
577 | { | 568 | check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic) |
569 | { | ||
578 | int nbyte, hnbyte, bitlen; | 570 | int nbyte, hnbyte, bitlen; |
571 | |||
579 | if (BN_num_bits(rsa->e) > 32) | 572 | if (BN_num_bits(rsa->e) > 32) |
580 | goto badkey; | 573 | goto badkey; |
581 | bitlen = BN_num_bits(rsa->n); | 574 | bitlen = BN_num_bits(rsa->n); |
582 | nbyte = BN_num_bytes(rsa->n); | 575 | nbyte = BN_num_bytes(rsa->n); |
583 | hnbyte = (BN_num_bits(rsa->n) + 15) >> 4; | 576 | hnbyte = (BN_num_bits(rsa->n) + 15) >> 4; |
584 | if (ispub) | 577 | if (ispub) { |
585 | { | ||
586 | *pmagic = MS_RSA1MAGIC; | 578 | *pmagic = MS_RSA1MAGIC; |
587 | return bitlen; | 579 | return bitlen; |
588 | } | 580 | } else { |
589 | else | ||
590 | { | ||
591 | *pmagic = MS_RSA2MAGIC; | 581 | *pmagic = MS_RSA2MAGIC; |
592 | /* For private key each component must fit within nbyte or | 582 | /* For private key each component must fit within nbyte or |
593 | * hnbyte. | 583 | * hnbyte. |
594 | */ | 584 | */ |
595 | if (BN_num_bytes(rsa->d) > nbyte) | 585 | if (BN_num_bytes(rsa->d) > nbyte) |
596 | goto badkey; | 586 | goto badkey; |
597 | if ((BN_num_bytes(rsa->iqmp) > hnbyte) | 587 | if ((BN_num_bytes(rsa->iqmp) > hnbyte) || |
598 | || (BN_num_bytes(rsa->p) > hnbyte) | 588 | (BN_num_bytes(rsa->p) > hnbyte) || |
599 | || (BN_num_bytes(rsa->q) > hnbyte) | 589 | (BN_num_bytes(rsa->q) > hnbyte) || |
600 | || (BN_num_bytes(rsa->dmp1) > hnbyte) | 590 | (BN_num_bytes(rsa->dmp1) > hnbyte) || |
601 | || (BN_num_bytes(rsa->dmq1) > hnbyte)) | 591 | (BN_num_bytes(rsa->dmq1) > hnbyte)) |
602 | goto badkey; | 592 | goto badkey; |
603 | } | 593 | } |
604 | return bitlen; | 594 | return bitlen; |
605 | badkey: | 595 | |
596 | badkey: | ||
606 | PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); | 597 | PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS); |
607 | return 0; | 598 | return 0; |
608 | } | 599 | } |
609 | |||
610 | 600 | ||
611 | static void write_rsa(unsigned char **out, RSA *rsa, int ispub) | 601 | static void |
612 | { | 602 | write_rsa(unsigned char **out, RSA *rsa, int ispub) |
603 | { | ||
613 | int nbyte, hnbyte; | 604 | int nbyte, hnbyte; |
605 | |||
614 | nbyte = BN_num_bytes(rsa->n); | 606 | nbyte = BN_num_bytes(rsa->n); |
615 | hnbyte = (BN_num_bits(rsa->n) + 15) >> 4; | 607 | hnbyte = (BN_num_bits(rsa->n) + 15) >> 4; |
616 | write_lebn(out, rsa->e, 4); | 608 | write_lebn(out, rsa->e, 4); |
@@ -623,12 +615,13 @@ static void write_rsa(unsigned char **out, RSA *rsa, int ispub) | |||
623 | write_lebn(out, rsa->dmq1, hnbyte); | 615 | write_lebn(out, rsa->dmq1, hnbyte); |
624 | write_lebn(out, rsa->iqmp, hnbyte); | 616 | write_lebn(out, rsa->iqmp, hnbyte); |
625 | write_lebn(out, rsa->d, nbyte); | 617 | write_lebn(out, rsa->d, nbyte); |
626 | } | 618 | } |
627 | 619 | ||
628 | 620 | static void | |
629 | static void write_dsa(unsigned char **out, DSA *dsa, int ispub) | 621 | write_dsa(unsigned char **out, DSA *dsa, int ispub) |
630 | { | 622 | { |
631 | int nbyte; | 623 | int nbyte; |
624 | |||
632 | nbyte = BN_num_bytes(dsa->p); | 625 | nbyte = BN_num_bytes(dsa->p); |
633 | write_lebn(out, dsa->p, nbyte); | 626 | write_lebn(out, dsa->p, nbyte); |
634 | write_lebn(out, dsa->q, 20); | 627 | write_lebn(out, dsa->q, 20); |
@@ -641,52 +634,47 @@ static void write_dsa(unsigned char **out, DSA *dsa, int ispub) | |||
641 | memset(*out, 0xff, 24); | 634 | memset(*out, 0xff, 24); |
642 | *out += 24; | 635 | *out += 24; |
643 | return; | 636 | return; |
644 | } | 637 | } |
645 | |||
646 | 638 | ||
647 | int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk) | 639 | int |
648 | { | 640 | i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk) |
641 | { | ||
649 | return do_i2b_bio(out, pk, 0); | 642 | return do_i2b_bio(out, pk, 0); |
650 | } | 643 | } |
651 | 644 | ||
652 | int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk) | 645 | int |
653 | { | 646 | i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk) |
647 | { | ||
654 | return do_i2b_bio(out, pk, 1); | 648 | return do_i2b_bio(out, pk, 1); |
655 | } | 649 | } |
656 | 650 | ||
657 | #ifndef OPENSSL_NO_RC4 | 651 | #ifndef OPENSSL_NO_RC4 |
658 | 652 | ||
659 | static int do_PVK_header(const unsigned char **in, unsigned int length, | 653 | static int |
660 | int skip_magic, | 654 | do_PVK_header(const unsigned char **in, unsigned int length, int skip_magic, |
661 | unsigned int *psaltlen, unsigned int *pkeylen) | 655 | unsigned int *psaltlen, unsigned int *pkeylen) |
662 | 656 | { | |
663 | { | ||
664 | const unsigned char *p = *in; | 657 | const unsigned char *p = *in; |
665 | unsigned int pvk_magic, is_encrypted; | 658 | unsigned int pvk_magic, is_encrypted; |
666 | if (skip_magic) | 659 | |
667 | { | 660 | if (skip_magic) { |
668 | if (length < 20) | 661 | if (length < 20) { |
669 | { | ||
670 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); | 662 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); |
671 | return 0; | 663 | return 0; |
672 | } | ||
673 | length -= 20; | ||
674 | } | 664 | } |
675 | else | 665 | length -= 20; |
676 | { | 666 | } else { |
677 | if (length < 24) | 667 | if (length < 24) { |
678 | { | ||
679 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); | 668 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT); |
680 | return 0; | 669 | return 0; |
681 | } | 670 | } |
682 | length -= 24; | 671 | length -= 24; |
683 | pvk_magic = read_ledword(&p); | 672 | pvk_magic = read_ledword(&p); |
684 | if (pvk_magic != MS_PVKMAGIC) | 673 | if (pvk_magic != MS_PVKMAGIC) { |
685 | { | ||
686 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER); | 674 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER); |
687 | return 0; | 675 | return 0; |
688 | } | ||
689 | } | 676 | } |
677 | } | ||
690 | /* Skip reserved */ | 678 | /* Skip reserved */ |
691 | p += 4; | 679 | p += 4; |
692 | /*keytype = */read_ledword(&p); | 680 | /*keytype = */read_ledword(&p); |
@@ -694,64 +682,61 @@ static int do_PVK_header(const unsigned char **in, unsigned int length, | |||
694 | *psaltlen = read_ledword(&p); | 682 | *psaltlen = read_ledword(&p); |
695 | *pkeylen = read_ledword(&p); | 683 | *pkeylen = read_ledword(&p); |
696 | 684 | ||
697 | if (is_encrypted && !*psaltlen) | 685 | if (is_encrypted && !*psaltlen) { |
698 | { | ||
699 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER); | 686 | PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER); |
700 | return 0; | 687 | return 0; |
701 | } | 688 | } |
702 | 689 | ||
703 | *in = p; | 690 | *in = p; |
704 | return 1; | 691 | return 1; |
705 | } | 692 | } |
706 | 693 | ||
707 | static int derive_pvk_key(unsigned char *key, | 694 | static int |
708 | const unsigned char *salt, unsigned int saltlen, | 695 | derive_pvk_key(unsigned char *key, const unsigned char *salt, |
709 | const unsigned char *pass, int passlen) | 696 | unsigned int saltlen, const unsigned char *pass, int passlen) |
710 | { | 697 | { |
711 | EVP_MD_CTX mctx; | 698 | EVP_MD_CTX mctx; |
712 | int rv = 1; | 699 | int rv = 1; |
700 | |||
713 | EVP_MD_CTX_init(&mctx); | 701 | EVP_MD_CTX_init(&mctx); |
714 | if (!EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL) | 702 | if (!EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL) || |
715 | || !EVP_DigestUpdate(&mctx, salt, saltlen) | 703 | !EVP_DigestUpdate(&mctx, salt, saltlen) || |
716 | || !EVP_DigestUpdate(&mctx, pass, passlen) | 704 | !EVP_DigestUpdate(&mctx, pass, passlen) || |
717 | || !EVP_DigestFinal_ex(&mctx, key, NULL)) | 705 | !EVP_DigestFinal_ex(&mctx, key, NULL)) |
718 | rv = 0; | 706 | rv = 0; |
719 | 707 | ||
720 | EVP_MD_CTX_cleanup(&mctx); | 708 | EVP_MD_CTX_cleanup(&mctx); |
721 | return rv; | 709 | return rv; |
722 | } | 710 | } |
723 | |||
724 | 711 | ||
725 | static EVP_PKEY *do_PVK_body(const unsigned char **in, | 712 | static EVP_PKEY * |
726 | unsigned int saltlen, unsigned int keylen, | 713 | do_PVK_body(const unsigned char **in, unsigned int saltlen, |
727 | pem_password_cb *cb, void *u) | 714 | unsigned int keylen, pem_password_cb *cb, void *u) |
728 | { | 715 | { |
729 | EVP_PKEY *ret = NULL; | 716 | EVP_PKEY *ret = NULL; |
730 | const unsigned char *p = *in; | 717 | const unsigned char *p = *in; |
731 | unsigned int magic; | 718 | unsigned int magic; |
732 | unsigned char *enctmp = NULL, *q; | 719 | unsigned char *enctmp = NULL, *q; |
720 | |||
733 | EVP_CIPHER_CTX cctx; | 721 | EVP_CIPHER_CTX cctx; |
734 | EVP_CIPHER_CTX_init(&cctx); | 722 | EVP_CIPHER_CTX_init(&cctx); |
735 | if (saltlen) | 723 | if (saltlen) { |
736 | { | ||
737 | char psbuf[PEM_BUFSIZE]; | 724 | char psbuf[PEM_BUFSIZE]; |
738 | unsigned char keybuf[20]; | 725 | unsigned char keybuf[20]; |
739 | int enctmplen, inlen; | 726 | int enctmplen, inlen; |
740 | if (cb) | 727 | if (cb) |
741 | inlen=cb(psbuf,PEM_BUFSIZE,0,u); | 728 | inlen = cb(psbuf, PEM_BUFSIZE, 0, u); |
742 | else | 729 | else |
743 | inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u); | 730 | inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 0, u); |
744 | if (inlen <= 0) | 731 | if (inlen <= 0) { |
745 | { | 732 | PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_PASSWORD_READ); |
746 | PEMerr(PEM_F_DO_PVK_BODY,PEM_R_BAD_PASSWORD_READ); | ||
747 | return NULL; | 733 | return NULL; |
748 | } | 734 | } |
749 | enctmp = malloc(keylen + 8); | 735 | enctmp = malloc(keylen + 8); |
750 | if (!enctmp) | 736 | if (!enctmp) { |
751 | { | ||
752 | PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE); | 737 | PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE); |
753 | return NULL; | 738 | return NULL; |
754 | } | 739 | } |
755 | if (!derive_pvk_key(keybuf, p, saltlen, | 740 | if (!derive_pvk_key(keybuf, p, saltlen, |
756 | (unsigned char *)psbuf, inlen)) { | 741 | (unsigned char *)psbuf, inlen)) { |
757 | free(enctmp); | 742 | free(enctmp); |
@@ -770,88 +755,84 @@ static EVP_PKEY *do_PVK_body(const unsigned char **in, | |||
770 | if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen)) | 755 | if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen)) |
771 | goto err; | 756 | goto err; |
772 | magic = read_ledword((const unsigned char **)&q); | 757 | magic = read_ledword((const unsigned char **)&q); |
773 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) | 758 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { |
774 | { | ||
775 | q = enctmp + 8; | 759 | q = enctmp + 8; |
776 | memset(keybuf + 5, 0, 11); | 760 | memset(keybuf + 5, 0, 11); |
777 | if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, | 761 | if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, |
778 | NULL)) | 762 | NULL)) |
779 | goto err; | 763 | goto err; |
780 | OPENSSL_cleanse(keybuf, 20); | 764 | OPENSSL_cleanse(keybuf, 20); |
781 | if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen)) | 765 | if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen)) |
782 | goto err; | 766 | goto err; |
783 | if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, | 767 | if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, |
784 | &enctmplen)) | 768 | &enctmplen)) |
785 | goto err; | 769 | goto err; |
786 | magic = read_ledword((const unsigned char **)&q); | 770 | magic = read_ledword((const unsigned char **)&q); |
787 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) | 771 | if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC) { |
788 | { | ||
789 | PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT); | 772 | PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT); |
790 | goto err; | 773 | goto err; |
791 | } | ||
792 | } | 774 | } |
793 | else | 775 | } else |
794 | OPENSSL_cleanse(keybuf, 20); | 776 | OPENSSL_cleanse(keybuf, 20); |
795 | p = enctmp; | 777 | p = enctmp; |
796 | } | 778 | } |
797 | 779 | ||
798 | ret = b2i_PrivateKey(&p, keylen); | 780 | ret = b2i_PrivateKey(&p, keylen); |
799 | err: | 781 | |
782 | err: | ||
800 | EVP_CIPHER_CTX_cleanup(&cctx); | 783 | EVP_CIPHER_CTX_cleanup(&cctx); |
801 | if (enctmp && saltlen) | 784 | if (enctmp && saltlen) |
802 | free(enctmp); | 785 | free(enctmp); |
803 | return ret; | 786 | return ret; |
804 | } | 787 | } |
805 | 788 | ||
806 | 789 | ||
807 | EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u) | 790 | EVP_PKEY * |
808 | { | 791 | b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u) |
792 | { | ||
809 | unsigned char pvk_hdr[24], *buf = NULL; | 793 | unsigned char pvk_hdr[24], *buf = NULL; |
810 | const unsigned char *p; | 794 | const unsigned char *p; |
811 | int buflen; | 795 | int buflen; |
812 | EVP_PKEY *ret = NULL; | 796 | EVP_PKEY *ret = NULL; |
813 | unsigned int saltlen, keylen; | 797 | unsigned int saltlen, keylen; |
814 | if (BIO_read(in, pvk_hdr, 24) != 24) | 798 | |
815 | { | 799 | if (BIO_read(in, pvk_hdr, 24) != 24) { |
816 | PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); | 800 | PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); |
817 | return NULL; | 801 | return NULL; |
818 | } | 802 | } |
819 | p = pvk_hdr; | 803 | p = pvk_hdr; |
820 | 804 | ||
821 | if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen)) | 805 | if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen)) |
822 | return 0; | 806 | return 0; |
823 | buflen = (int) keylen + saltlen; | 807 | buflen = (int) keylen + saltlen; |
824 | buf = malloc(buflen); | 808 | buf = malloc(buflen); |
825 | if (!buf) | 809 | if (!buf) { |
826 | { | ||
827 | PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE); | 810 | PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE); |
828 | return 0; | 811 | return 0; |
829 | } | 812 | } |
830 | p = buf; | 813 | p = buf; |
831 | if (BIO_read(in, buf, buflen) != buflen) | 814 | if (BIO_read(in, buf, buflen) != buflen) { |
832 | { | ||
833 | PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); | 815 | PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT); |
834 | goto err; | 816 | goto err; |
835 | } | 817 | } |
836 | ret = do_PVK_body(&p, saltlen, keylen, cb, u); | 818 | ret = do_PVK_body(&p, saltlen, keylen, cb, u); |
837 | 819 | ||
838 | err: | 820 | err: |
839 | if (buf) | 821 | if (buf) { |
840 | { | ||
841 | OPENSSL_cleanse(buf, buflen); | 822 | OPENSSL_cleanse(buf, buflen); |
842 | free(buf); | 823 | free(buf); |
843 | } | ||
844 | return ret; | ||
845 | } | 824 | } |
825 | return ret; | ||
826 | } | ||
846 | 827 | ||
847 | 828 | static int | |
848 | 829 | i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel, pem_password_cb *cb, | |
849 | static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel, | 830 | void *u) |
850 | pem_password_cb *cb, void *u) | 831 | { |
851 | { | ||
852 | int outlen = 24, pklen; | 832 | int outlen = 24, pklen; |
853 | unsigned char *p, *salt = NULL; | 833 | unsigned char *p, *salt = NULL; |
854 | EVP_CIPHER_CTX cctx; | 834 | EVP_CIPHER_CTX cctx; |
835 | |||
855 | EVP_CIPHER_CTX_init(&cctx); | 836 | EVP_CIPHER_CTX_init(&cctx); |
856 | if (enclevel) | 837 | if (enclevel) |
857 | outlen += PVK_SALTLEN; | 838 | outlen += PVK_SALTLEN; |
@@ -863,16 +844,14 @@ static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel, | |||
863 | return outlen; | 844 | return outlen; |
864 | if (*out) | 845 | if (*out) |
865 | p = *out; | 846 | p = *out; |
866 | else | 847 | else { |
867 | { | ||
868 | p = malloc(outlen); | 848 | p = malloc(outlen); |
869 | if (!p) | 849 | if (!p) { |
870 | { | 850 | PEMerr(PEM_F_I2B_PVK, ERR_R_MALLOC_FAILURE); |
871 | PEMerr(PEM_F_I2B_PVK,ERR_R_MALLOC_FAILURE); | ||
872 | return -1; | 851 | return -1; |
873 | } | ||
874 | *out = p; | ||
875 | } | 852 | } |
853 | *out = p; | ||
854 | } | ||
876 | 855 | ||
877 | write_ledword(&p, MS_PVKMAGIC); | 856 | write_ledword(&p, MS_PVKMAGIC); |
878 | write_ledword(&p, 0); | 857 | write_ledword(&p, 0); |
@@ -881,34 +860,31 @@ static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel, | |||
881 | else | 860 | else |
882 | write_ledword(&p, MS_KEYTYPE_KEYX); | 861 | write_ledword(&p, MS_KEYTYPE_KEYX); |
883 | write_ledword(&p, enclevel ? 1 : 0); | 862 | write_ledword(&p, enclevel ? 1 : 0); |
884 | write_ledword(&p, enclevel ? PVK_SALTLEN: 0); | 863 | write_ledword(&p, enclevel ? PVK_SALTLEN : 0); |
885 | write_ledword(&p, pklen); | 864 | write_ledword(&p, pklen); |
886 | if (enclevel) | 865 | if (enclevel) { |
887 | { | ||
888 | if (RAND_bytes(p, PVK_SALTLEN) <= 0) | 866 | if (RAND_bytes(p, PVK_SALTLEN) <= 0) |
889 | goto error; | 867 | goto error; |
890 | salt = p; | 868 | salt = p; |
891 | p += PVK_SALTLEN; | 869 | p += PVK_SALTLEN; |
892 | } | 870 | } |
893 | do_i2b(&p, pk, 0); | 871 | do_i2b(&p, pk, 0); |
894 | if (enclevel == 0) | 872 | if (enclevel == 0) |
895 | return outlen; | 873 | return outlen; |
896 | else | 874 | else { |
897 | { | ||
898 | char psbuf[PEM_BUFSIZE]; | 875 | char psbuf[PEM_BUFSIZE]; |
899 | unsigned char keybuf[20]; | 876 | unsigned char keybuf[20]; |
900 | int enctmplen, inlen; | 877 | int enctmplen, inlen; |
901 | if (cb) | 878 | if (cb) |
902 | inlen=cb(psbuf,PEM_BUFSIZE,1,u); | 879 | inlen = cb(psbuf, PEM_BUFSIZE, 1, u); |
903 | else | 880 | else |
904 | inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,1,u); | 881 | inlen = PEM_def_callback(psbuf, PEM_BUFSIZE, 1, u); |
905 | if (inlen <= 0) | 882 | if (inlen <= 0) { |
906 | { | 883 | PEMerr(PEM_F_I2B_PVK, PEM_R_BAD_PASSWORD_READ); |
907 | PEMerr(PEM_F_I2B_PVK,PEM_R_BAD_PASSWORD_READ); | ||
908 | goto error; | 884 | goto error; |
909 | } | 885 | } |
910 | if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN, | 886 | if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN, |
911 | (unsigned char *)psbuf, inlen)) | 887 | (unsigned char *)psbuf, inlen)) |
912 | goto error; | 888 | goto error; |
913 | if (enclevel == 1) | 889 | if (enclevel == 1) |
914 | memset(keybuf + 5, 0, 11); | 890 | memset(keybuf + 5, 0, 11); |
@@ -920,32 +896,32 @@ static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel, | |||
920 | goto error; | 896 | goto error; |
921 | if (!EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen)) | 897 | if (!EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen)) |
922 | goto error; | 898 | goto error; |
923 | } | 899 | } |
924 | EVP_CIPHER_CTX_cleanup(&cctx); | 900 | EVP_CIPHER_CTX_cleanup(&cctx); |
925 | return outlen; | 901 | return outlen; |
926 | 902 | ||
927 | error: | 903 | error: |
928 | EVP_CIPHER_CTX_cleanup(&cctx); | 904 | EVP_CIPHER_CTX_cleanup(&cctx); |
929 | return -1; | 905 | return -1; |
930 | } | 906 | } |
931 | 907 | ||
932 | int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, | 908 | int |
933 | pem_password_cb *cb, void *u) | 909 | i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel, pem_password_cb *cb, void *u) |
934 | { | 910 | { |
935 | unsigned char *tmp = NULL; | 911 | unsigned char *tmp = NULL; |
936 | int outlen, wrlen; | 912 | int outlen, wrlen; |
913 | |||
937 | outlen = i2b_PVK(&tmp, pk, enclevel, cb, u); | 914 | outlen = i2b_PVK(&tmp, pk, enclevel, cb, u); |
938 | if (outlen < 0) | 915 | if (outlen < 0) |
939 | return -1; | 916 | return -1; |
940 | wrlen = BIO_write(out, tmp, outlen); | 917 | wrlen = BIO_write(out, tmp, outlen); |
941 | free(tmp); | 918 | free(tmp); |
942 | if (wrlen == outlen) | 919 | if (wrlen == outlen) { |
943 | { | ||
944 | PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE); | 920 | PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE); |
945 | return outlen; | 921 | return outlen; |
946 | } | ||
947 | return -1; | ||
948 | } | 922 | } |
923 | return -1; | ||
924 | } | ||
949 | 925 | ||
950 | #endif | 926 | #endif |
951 | 927 | ||