diff options
author | cvs2svn <admin@example.com> | 2014-02-27 21:04:58 +0000 |
---|---|---|
committer | cvs2svn <admin@example.com> | 2014-02-27 21:04:58 +0000 |
commit | 726818f36b5221c023cd04c4b90bdbc08e94cd96 (patch) | |
tree | cf8221f3aa5bf5a578ddf1ecf5677ad08c04d342 /src/lib/libcrypto/bn/bn_exp.c | |
parent | 3b6d92e82b1421b811bcdec7f7fdfb31eeef18de (diff) | |
download | openbsd-OPENBSD_5_5_BASE.tar.gz openbsd-OPENBSD_5_5_BASE.tar.bz2 openbsd-OPENBSD_5_5_BASE.zip |
This commit was manufactured by cvs2git to create tag 'OPENBSD_5_5_BASE'.OPENBSD_5_5_BASE
Diffstat (limited to 'src/lib/libcrypto/bn/bn_exp.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_exp.c | 1097 |
1 files changed, 0 insertions, 1097 deletions
diff --git a/src/lib/libcrypto/bn/bn_exp.c b/src/lib/libcrypto/bn/bn_exp.c deleted file mode 100644 index 2abf6fd678..0000000000 --- a/src/lib/libcrypto/bn/bn_exp.c +++ /dev/null | |||
@@ -1,1097 +0,0 @@ | |||
1 | /* crypto/bn/bn_exp.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | |||
113 | #include "cryptlib.h" | ||
114 | #include "bn_lcl.h" | ||
115 | |||
116 | #include <stdlib.h> | ||
117 | #ifdef _WIN32 | ||
118 | # include <malloc.h> | ||
119 | # ifndef alloca | ||
120 | # define alloca _alloca | ||
121 | # endif | ||
122 | #elif defined(__GNUC__) | ||
123 | # ifndef alloca | ||
124 | # define alloca(s) __builtin_alloca((s)) | ||
125 | # endif | ||
126 | #endif | ||
127 | |||
128 | /* maximum precomputation table size for *variable* sliding windows */ | ||
129 | #define TABLE_SIZE 32 | ||
130 | |||
131 | /* this one works - simple but works */ | ||
132 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
133 | { | ||
134 | int i,bits,ret=0; | ||
135 | BIGNUM *v,*rr; | ||
136 | |||
137 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
138 | { | ||
139 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
140 | BNerr(BN_F_BN_EXP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
141 | return -1; | ||
142 | } | ||
143 | |||
144 | BN_CTX_start(ctx); | ||
145 | if ((r == a) || (r == p)) | ||
146 | rr = BN_CTX_get(ctx); | ||
147 | else | ||
148 | rr = r; | ||
149 | v = BN_CTX_get(ctx); | ||
150 | if (rr == NULL || v == NULL) goto err; | ||
151 | |||
152 | if (BN_copy(v,a) == NULL) goto err; | ||
153 | bits=BN_num_bits(p); | ||
154 | |||
155 | if (BN_is_odd(p)) | ||
156 | { if (BN_copy(rr,a) == NULL) goto err; } | ||
157 | else { if (!BN_one(rr)) goto err; } | ||
158 | |||
159 | for (i=1; i<bits; i++) | ||
160 | { | ||
161 | if (!BN_sqr(v,v,ctx)) goto err; | ||
162 | if (BN_is_bit_set(p,i)) | ||
163 | { | ||
164 | if (!BN_mul(rr,rr,v,ctx)) goto err; | ||
165 | } | ||
166 | } | ||
167 | ret=1; | ||
168 | err: | ||
169 | if (r != rr) BN_copy(r,rr); | ||
170 | BN_CTX_end(ctx); | ||
171 | bn_check_top(r); | ||
172 | return(ret); | ||
173 | } | ||
174 | |||
175 | |||
176 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
177 | BN_CTX *ctx) | ||
178 | { | ||
179 | int ret; | ||
180 | |||
181 | bn_check_top(a); | ||
182 | bn_check_top(p); | ||
183 | bn_check_top(m); | ||
184 | |||
185 | /* For even modulus m = 2^k*m_odd, it might make sense to compute | ||
186 | * a^p mod m_odd and a^p mod 2^k separately (with Montgomery | ||
187 | * exponentiation for the odd part), using appropriate exponent | ||
188 | * reductions, and combine the results using the CRT. | ||
189 | * | ||
190 | * For now, we use Montgomery only if the modulus is odd; otherwise, | ||
191 | * exponentiation using the reciprocal-based quick remaindering | ||
192 | * algorithm is used. | ||
193 | * | ||
194 | * (Timing obtained with expspeed.c [computations a^p mod m | ||
195 | * where a, p, m are of the same length: 256, 512, 1024, 2048, | ||
196 | * 4096, 8192 bits], compared to the running time of the | ||
197 | * standard algorithm: | ||
198 | * | ||
199 | * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] | ||
200 | * 55 .. 77 % [UltraSparc processor, but | ||
201 | * debug-solaris-sparcv8-gcc conf.] | ||
202 | * | ||
203 | * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] | ||
204 | * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] | ||
205 | * | ||
206 | * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont | ||
207 | * at 2048 and more bits, but at 512 and 1024 bits, it was | ||
208 | * slower even than the standard algorithm! | ||
209 | * | ||
210 | * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] | ||
211 | * should be obtained when the new Montgomery reduction code | ||
212 | * has been integrated into OpenSSL.) | ||
213 | */ | ||
214 | |||
215 | #define MONT_MUL_MOD | ||
216 | #define MONT_EXP_WORD | ||
217 | #define RECP_MUL_MOD | ||
218 | |||
219 | #ifdef MONT_MUL_MOD | ||
220 | /* I have finally been able to take out this pre-condition of | ||
221 | * the top bit being set. It was caused by an error in BN_div | ||
222 | * with negatives. There was also another problem when for a^b%m | ||
223 | * a >= m. eay 07-May-97 */ | ||
224 | /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ | ||
225 | |||
226 | if (BN_is_odd(m)) | ||
227 | { | ||
228 | # ifdef MONT_EXP_WORD | ||
229 | if (a->top == 1 && !a->neg && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)) | ||
230 | { | ||
231 | BN_ULONG A = a->d[0]; | ||
232 | ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL); | ||
233 | } | ||
234 | else | ||
235 | # endif | ||
236 | ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL); | ||
237 | } | ||
238 | else | ||
239 | #endif | ||
240 | #ifdef RECP_MUL_MOD | ||
241 | { ret=BN_mod_exp_recp(r,a,p,m,ctx); } | ||
242 | #else | ||
243 | { ret=BN_mod_exp_simple(r,a,p,m,ctx); } | ||
244 | #endif | ||
245 | |||
246 | bn_check_top(r); | ||
247 | return(ret); | ||
248 | } | ||
249 | |||
250 | |||
251 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
252 | const BIGNUM *m, BN_CTX *ctx) | ||
253 | { | ||
254 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
255 | int start=1; | ||
256 | BIGNUM *aa; | ||
257 | /* Table of variables obtained from 'ctx' */ | ||
258 | BIGNUM *val[TABLE_SIZE]; | ||
259 | BN_RECP_CTX recp; | ||
260 | |||
261 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
262 | { | ||
263 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
264 | BNerr(BN_F_BN_MOD_EXP_RECP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
265 | return -1; | ||
266 | } | ||
267 | |||
268 | bits=BN_num_bits(p); | ||
269 | |||
270 | if (bits == 0) | ||
271 | { | ||
272 | ret = BN_one(r); | ||
273 | return ret; | ||
274 | } | ||
275 | |||
276 | BN_CTX_start(ctx); | ||
277 | aa = BN_CTX_get(ctx); | ||
278 | val[0] = BN_CTX_get(ctx); | ||
279 | if(!aa || !val[0]) goto err; | ||
280 | |||
281 | BN_RECP_CTX_init(&recp); | ||
282 | if (m->neg) | ||
283 | { | ||
284 | /* ignore sign of 'm' */ | ||
285 | if (!BN_copy(aa, m)) goto err; | ||
286 | aa->neg = 0; | ||
287 | if (BN_RECP_CTX_set(&recp,aa,ctx) <= 0) goto err; | ||
288 | } | ||
289 | else | ||
290 | { | ||
291 | if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err; | ||
292 | } | ||
293 | |||
294 | if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */ | ||
295 | if (BN_is_zero(val[0])) | ||
296 | { | ||
297 | BN_zero(r); | ||
298 | ret = 1; | ||
299 | goto err; | ||
300 | } | ||
301 | |||
302 | window = BN_window_bits_for_exponent_size(bits); | ||
303 | if (window > 1) | ||
304 | { | ||
305 | if (!BN_mod_mul_reciprocal(aa,val[0],val[0],&recp,ctx)) | ||
306 | goto err; /* 2 */ | ||
307 | j=1<<(window-1); | ||
308 | for (i=1; i<j; i++) | ||
309 | { | ||
310 | if(((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
311 | !BN_mod_mul_reciprocal(val[i],val[i-1], | ||
312 | aa,&recp,ctx)) | ||
313 | goto err; | ||
314 | } | ||
315 | } | ||
316 | |||
317 | start=1; /* This is used to avoid multiplication etc | ||
318 | * when there is only the value '1' in the | ||
319 | * buffer. */ | ||
320 | wvalue=0; /* The 'value' of the window */ | ||
321 | wstart=bits-1; /* The top bit of the window */ | ||
322 | wend=0; /* The bottom bit of the window */ | ||
323 | |||
324 | if (!BN_one(r)) goto err; | ||
325 | |||
326 | for (;;) | ||
327 | { | ||
328 | if (BN_is_bit_set(p,wstart) == 0) | ||
329 | { | ||
330 | if (!start) | ||
331 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | ||
332 | goto err; | ||
333 | if (wstart == 0) break; | ||
334 | wstart--; | ||
335 | continue; | ||
336 | } | ||
337 | /* We now have wstart on a 'set' bit, we now need to work out | ||
338 | * how bit a window to do. To do this we need to scan | ||
339 | * forward until the last set bit before the end of the | ||
340 | * window */ | ||
341 | j=wstart; | ||
342 | wvalue=1; | ||
343 | wend=0; | ||
344 | for (i=1; i<window; i++) | ||
345 | { | ||
346 | if (wstart-i < 0) break; | ||
347 | if (BN_is_bit_set(p,wstart-i)) | ||
348 | { | ||
349 | wvalue<<=(i-wend); | ||
350 | wvalue|=1; | ||
351 | wend=i; | ||
352 | } | ||
353 | } | ||
354 | |||
355 | /* wend is the size of the current window */ | ||
356 | j=wend+1; | ||
357 | /* add the 'bytes above' */ | ||
358 | if (!start) | ||
359 | for (i=0; i<j; i++) | ||
360 | { | ||
361 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | ||
362 | goto err; | ||
363 | } | ||
364 | |||
365 | /* wvalue will be an odd number < 2^window */ | ||
366 | if (!BN_mod_mul_reciprocal(r,r,val[wvalue>>1],&recp,ctx)) | ||
367 | goto err; | ||
368 | |||
369 | /* move the 'window' down further */ | ||
370 | wstart-=wend+1; | ||
371 | wvalue=0; | ||
372 | start=0; | ||
373 | if (wstart < 0) break; | ||
374 | } | ||
375 | ret=1; | ||
376 | err: | ||
377 | BN_CTX_end(ctx); | ||
378 | BN_RECP_CTX_free(&recp); | ||
379 | bn_check_top(r); | ||
380 | return(ret); | ||
381 | } | ||
382 | |||
383 | |||
384 | int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
385 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
386 | { | ||
387 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
388 | int start=1; | ||
389 | BIGNUM *d,*r; | ||
390 | const BIGNUM *aa; | ||
391 | /* Table of variables obtained from 'ctx' */ | ||
392 | BIGNUM *val[TABLE_SIZE]; | ||
393 | BN_MONT_CTX *mont=NULL; | ||
394 | |||
395 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
396 | { | ||
397 | return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); | ||
398 | } | ||
399 | |||
400 | bn_check_top(a); | ||
401 | bn_check_top(p); | ||
402 | bn_check_top(m); | ||
403 | |||
404 | if (!BN_is_odd(m)) | ||
405 | { | ||
406 | BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
407 | return(0); | ||
408 | } | ||
409 | bits=BN_num_bits(p); | ||
410 | if (bits == 0) | ||
411 | { | ||
412 | ret = BN_one(rr); | ||
413 | return ret; | ||
414 | } | ||
415 | |||
416 | BN_CTX_start(ctx); | ||
417 | d = BN_CTX_get(ctx); | ||
418 | r = BN_CTX_get(ctx); | ||
419 | val[0] = BN_CTX_get(ctx); | ||
420 | if (!d || !r || !val[0]) goto err; | ||
421 | |||
422 | /* If this is not done, things will break in the montgomery | ||
423 | * part */ | ||
424 | |||
425 | if (in_mont != NULL) | ||
426 | mont=in_mont; | ||
427 | else | ||
428 | { | ||
429 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
430 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | ||
431 | } | ||
432 | |||
433 | if (a->neg || BN_ucmp(a,m) >= 0) | ||
434 | { | ||
435 | if (!BN_nnmod(val[0],a,m,ctx)) | ||
436 | goto err; | ||
437 | aa= val[0]; | ||
438 | } | ||
439 | else | ||
440 | aa=a; | ||
441 | if (BN_is_zero(aa)) | ||
442 | { | ||
443 | BN_zero(rr); | ||
444 | ret = 1; | ||
445 | goto err; | ||
446 | } | ||
447 | if (!BN_to_montgomery(val[0],aa,mont,ctx)) goto err; /* 1 */ | ||
448 | |||
449 | window = BN_window_bits_for_exponent_size(bits); | ||
450 | if (window > 1) | ||
451 | { | ||
452 | if (!BN_mod_mul_montgomery(d,val[0],val[0],mont,ctx)) goto err; /* 2 */ | ||
453 | j=1<<(window-1); | ||
454 | for (i=1; i<j; i++) | ||
455 | { | ||
456 | if(((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
457 | !BN_mod_mul_montgomery(val[i],val[i-1], | ||
458 | d,mont,ctx)) | ||
459 | goto err; | ||
460 | } | ||
461 | } | ||
462 | |||
463 | start=1; /* This is used to avoid multiplication etc | ||
464 | * when there is only the value '1' in the | ||
465 | * buffer. */ | ||
466 | wvalue=0; /* The 'value' of the window */ | ||
467 | wstart=bits-1; /* The top bit of the window */ | ||
468 | wend=0; /* The bottom bit of the window */ | ||
469 | |||
470 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | ||
471 | for (;;) | ||
472 | { | ||
473 | if (BN_is_bit_set(p,wstart) == 0) | ||
474 | { | ||
475 | if (!start) | ||
476 | { | ||
477 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
478 | goto err; | ||
479 | } | ||
480 | if (wstart == 0) break; | ||
481 | wstart--; | ||
482 | continue; | ||
483 | } | ||
484 | /* We now have wstart on a 'set' bit, we now need to work out | ||
485 | * how bit a window to do. To do this we need to scan | ||
486 | * forward until the last set bit before the end of the | ||
487 | * window */ | ||
488 | j=wstart; | ||
489 | wvalue=1; | ||
490 | wend=0; | ||
491 | for (i=1; i<window; i++) | ||
492 | { | ||
493 | if (wstart-i < 0) break; | ||
494 | if (BN_is_bit_set(p,wstart-i)) | ||
495 | { | ||
496 | wvalue<<=(i-wend); | ||
497 | wvalue|=1; | ||
498 | wend=i; | ||
499 | } | ||
500 | } | ||
501 | |||
502 | /* wend is the size of the current window */ | ||
503 | j=wend+1; | ||
504 | /* add the 'bytes above' */ | ||
505 | if (!start) | ||
506 | for (i=0; i<j; i++) | ||
507 | { | ||
508 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
509 | goto err; | ||
510 | } | ||
511 | |||
512 | /* wvalue will be an odd number < 2^window */ | ||
513 | if (!BN_mod_mul_montgomery(r,r,val[wvalue>>1],mont,ctx)) | ||
514 | goto err; | ||
515 | |||
516 | /* move the 'window' down further */ | ||
517 | wstart-=wend+1; | ||
518 | wvalue=0; | ||
519 | start=0; | ||
520 | if (wstart < 0) break; | ||
521 | } | ||
522 | if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; | ||
523 | ret=1; | ||
524 | err: | ||
525 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
526 | BN_CTX_end(ctx); | ||
527 | bn_check_top(rr); | ||
528 | return(ret); | ||
529 | } | ||
530 | |||
531 | |||
532 | /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout | ||
533 | * so that accessing any of these table values shows the same access pattern as far | ||
534 | * as cache lines are concerned. The following functions are used to transfer a BIGNUM | ||
535 | * from/to that table. */ | ||
536 | |||
537 | static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top, unsigned char *buf, int idx, int width) | ||
538 | { | ||
539 | size_t i, j; | ||
540 | |||
541 | if (top > b->top) | ||
542 | top = b->top; /* this works because 'buf' is explicitly zeroed */ | ||
543 | for (i = 0, j=idx; i < top * sizeof b->d[0]; i++, j+=width) | ||
544 | { | ||
545 | buf[j] = ((unsigned char*)b->d)[i]; | ||
546 | } | ||
547 | |||
548 | return 1; | ||
549 | } | ||
550 | |||
551 | static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width) | ||
552 | { | ||
553 | size_t i, j; | ||
554 | |||
555 | if (bn_wexpand(b, top) == NULL) | ||
556 | return 0; | ||
557 | |||
558 | for (i=0, j=idx; i < top * sizeof b->d[0]; i++, j+=width) | ||
559 | { | ||
560 | ((unsigned char*)b->d)[i] = buf[j]; | ||
561 | } | ||
562 | |||
563 | b->top = top; | ||
564 | bn_correct_top(b); | ||
565 | return 1; | ||
566 | } | ||
567 | |||
568 | /* Given a pointer value, compute the next address that is a cache line multiple. */ | ||
569 | #define MOD_EXP_CTIME_ALIGN(x_) \ | ||
570 | ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) | ||
571 | |||
572 | /* This variant of BN_mod_exp_mont() uses fixed windows and the special | ||
573 | * precomputation memory layout to limit data-dependency to a minimum | ||
574 | * to protect secret exponents (cf. the hyper-threading timing attacks | ||
575 | * pointed out by Colin Percival, | ||
576 | * http://www.daemonology.net/hyperthreading-considered-harmful/) | ||
577 | */ | ||
578 | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
579 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
580 | { | ||
581 | int i,bits,ret=0,window,wvalue; | ||
582 | int top; | ||
583 | BN_MONT_CTX *mont=NULL; | ||
584 | |||
585 | int numPowers; | ||
586 | unsigned char *powerbufFree=NULL; | ||
587 | int powerbufLen = 0; | ||
588 | unsigned char *powerbuf=NULL; | ||
589 | BIGNUM tmp, am; | ||
590 | |||
591 | bn_check_top(a); | ||
592 | bn_check_top(p); | ||
593 | bn_check_top(m); | ||
594 | |||
595 | top = m->top; | ||
596 | |||
597 | if (!(m->d[0] & 1)) | ||
598 | { | ||
599 | BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
600 | return(0); | ||
601 | } | ||
602 | bits=BN_num_bits(p); | ||
603 | if (bits == 0) | ||
604 | { | ||
605 | ret = BN_one(rr); | ||
606 | return ret; | ||
607 | } | ||
608 | |||
609 | BN_CTX_start(ctx); | ||
610 | |||
611 | /* Allocate a montgomery context if it was not supplied by the caller. | ||
612 | * If this is not done, things will break in the montgomery part. | ||
613 | */ | ||
614 | if (in_mont != NULL) | ||
615 | mont=in_mont; | ||
616 | else | ||
617 | { | ||
618 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
619 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | ||
620 | } | ||
621 | |||
622 | /* Get the window size to use with size of p. */ | ||
623 | window = BN_window_bits_for_ctime_exponent_size(bits); | ||
624 | #if defined(OPENSSL_BN_ASM_MONT5) | ||
625 | if (window==6 && bits<=1024) window=5; /* ~5% improvement of 2048-bit RSA sign */ | ||
626 | #endif | ||
627 | |||
628 | /* Allocate a buffer large enough to hold all of the pre-computed | ||
629 | * powers of am, am itself and tmp. | ||
630 | */ | ||
631 | numPowers = 1 << window; | ||
632 | powerbufLen = sizeof(m->d[0])*(top*numPowers + | ||
633 | ((2*top)>numPowers?(2*top):numPowers)); | ||
634 | #ifdef alloca | ||
635 | if (powerbufLen < 3072) | ||
636 | powerbufFree = alloca(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH); | ||
637 | else | ||
638 | #endif | ||
639 | if ((powerbufFree=(unsigned char*)OPENSSL_malloc(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) | ||
640 | goto err; | ||
641 | |||
642 | powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); | ||
643 | memset(powerbuf, 0, powerbufLen); | ||
644 | |||
645 | #ifdef alloca | ||
646 | if (powerbufLen < 3072) | ||
647 | powerbufFree = NULL; | ||
648 | #endif | ||
649 | |||
650 | /* lay down tmp and am right after powers table */ | ||
651 | tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0])*top*numPowers); | ||
652 | am.d = tmp.d + top; | ||
653 | tmp.top = am.top = 0; | ||
654 | tmp.dmax = am.dmax = top; | ||
655 | tmp.neg = am.neg = 0; | ||
656 | tmp.flags = am.flags = BN_FLG_STATIC_DATA; | ||
657 | |||
658 | /* prepare a^0 in Montgomery domain */ | ||
659 | #if 1 | ||
660 | if (!BN_to_montgomery(&tmp,BN_value_one(),mont,ctx)) goto err; | ||
661 | #else | ||
662 | tmp.d[0] = (0-m->d[0])&BN_MASK2; /* 2^(top*BN_BITS2) - m */ | ||
663 | for (i=1;i<top;i++) | ||
664 | tmp.d[i] = (~m->d[i])&BN_MASK2; | ||
665 | tmp.top = top; | ||
666 | #endif | ||
667 | |||
668 | /* prepare a^1 in Montgomery domain */ | ||
669 | if (a->neg || BN_ucmp(a,m) >= 0) | ||
670 | { | ||
671 | if (!BN_mod(&am,a,m,ctx)) goto err; | ||
672 | if (!BN_to_montgomery(&am,&am,mont,ctx)) goto err; | ||
673 | } | ||
674 | else if (!BN_to_montgomery(&am,a,mont,ctx)) goto err; | ||
675 | |||
676 | #if defined(OPENSSL_BN_ASM_MONT5) | ||
677 | /* This optimization uses ideas from http://eprint.iacr.org/2011/239, | ||
678 | * specifically optimization of cache-timing attack countermeasures | ||
679 | * and pre-computation optimization. */ | ||
680 | |||
681 | /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as | ||
682 | * 512-bit RSA is hardly relevant, we omit it to spare size... */ | ||
683 | if (window==5) | ||
684 | { | ||
685 | void bn_mul_mont_gather5(BN_ULONG *rp,const BN_ULONG *ap, | ||
686 | const void *table,const BN_ULONG *np, | ||
687 | const BN_ULONG *n0,int num,int power); | ||
688 | void bn_scatter5(const BN_ULONG *inp,size_t num, | ||
689 | void *table,size_t power); | ||
690 | void bn_gather5(BN_ULONG *out,size_t num, | ||
691 | void *table,size_t power); | ||
692 | |||
693 | BN_ULONG *np=mont->N.d, *n0=mont->n0; | ||
694 | |||
695 | /* BN_to_montgomery can contaminate words above .top | ||
696 | * [in BN_DEBUG[_DEBUG] build]... */ | ||
697 | for (i=am.top; i<top; i++) am.d[i]=0; | ||
698 | for (i=tmp.top; i<top; i++) tmp.d[i]=0; | ||
699 | |||
700 | bn_scatter5(tmp.d,top,powerbuf,0); | ||
701 | bn_scatter5(am.d,am.top,powerbuf,1); | ||
702 | bn_mul_mont(tmp.d,am.d,am.d,np,n0,top); | ||
703 | bn_scatter5(tmp.d,top,powerbuf,2); | ||
704 | |||
705 | #if 0 | ||
706 | for (i=3; i<32; i++) | ||
707 | { | ||
708 | /* Calculate a^i = a^(i-1) * a */ | ||
709 | bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np,n0,top,i-1); | ||
710 | bn_scatter5(tmp.d,top,powerbuf,i); | ||
711 | } | ||
712 | #else | ||
713 | /* same as above, but uses squaring for 1/2 of operations */ | ||
714 | for (i=4; i<32; i*=2) | ||
715 | { | ||
716 | bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); | ||
717 | bn_scatter5(tmp.d,top,powerbuf,i); | ||
718 | } | ||
719 | for (i=3; i<8; i+=2) | ||
720 | { | ||
721 | int j; | ||
722 | bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np,n0,top,i-1); | ||
723 | bn_scatter5(tmp.d,top,powerbuf,i); | ||
724 | for (j=2*i; j<32; j*=2) | ||
725 | { | ||
726 | bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); | ||
727 | bn_scatter5(tmp.d,top,powerbuf,j); | ||
728 | } | ||
729 | } | ||
730 | for (; i<16; i+=2) | ||
731 | { | ||
732 | bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np,n0,top,i-1); | ||
733 | bn_scatter5(tmp.d,top,powerbuf,i); | ||
734 | bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); | ||
735 | bn_scatter5(tmp.d,top,powerbuf,2*i); | ||
736 | } | ||
737 | for (; i<32; i+=2) | ||
738 | { | ||
739 | bn_mul_mont_gather5(tmp.d,am.d,powerbuf,np,n0,top,i-1); | ||
740 | bn_scatter5(tmp.d,top,powerbuf,i); | ||
741 | } | ||
742 | #endif | ||
743 | bits--; | ||
744 | for (wvalue=0, i=bits%5; i>=0; i--,bits--) | ||
745 | wvalue = (wvalue<<1)+BN_is_bit_set(p,bits); | ||
746 | bn_gather5(tmp.d,top,powerbuf,wvalue); | ||
747 | |||
748 | /* Scan the exponent one window at a time starting from the most | ||
749 | * significant bits. | ||
750 | */ | ||
751 | while (bits >= 0) | ||
752 | { | ||
753 | for (wvalue=0, i=0; i<5; i++,bits--) | ||
754 | wvalue = (wvalue<<1)+BN_is_bit_set(p,bits); | ||
755 | |||
756 | bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); | ||
757 | bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); | ||
758 | bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); | ||
759 | bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); | ||
760 | bn_mul_mont(tmp.d,tmp.d,tmp.d,np,n0,top); | ||
761 | bn_mul_mont_gather5(tmp.d,tmp.d,powerbuf,np,n0,top,wvalue); | ||
762 | } | ||
763 | |||
764 | tmp.top=top; | ||
765 | bn_correct_top(&tmp); | ||
766 | } | ||
767 | else | ||
768 | #endif | ||
769 | { | ||
770 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, numPowers)) goto err; | ||
771 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, numPowers)) goto err; | ||
772 | |||
773 | /* If the window size is greater than 1, then calculate | ||
774 | * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) | ||
775 | * (even powers could instead be computed as (a^(i/2))^2 | ||
776 | * to use the slight performance advantage of sqr over mul). | ||
777 | */ | ||
778 | if (window > 1) | ||
779 | { | ||
780 | if (!BN_mod_mul_montgomery(&tmp,&am,&am,mont,ctx)) goto err; | ||
781 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2, numPowers)) goto err; | ||
782 | for (i=3; i<numPowers; i++) | ||
783 | { | ||
784 | /* Calculate a^i = a^(i-1) * a */ | ||
785 | if (!BN_mod_mul_montgomery(&tmp,&am,&tmp,mont,ctx)) | ||
786 | goto err; | ||
787 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i, numPowers)) goto err; | ||
788 | } | ||
789 | } | ||
790 | |||
791 | bits--; | ||
792 | for (wvalue=0, i=bits%window; i>=0; i--,bits--) | ||
793 | wvalue = (wvalue<<1)+BN_is_bit_set(p,bits); | ||
794 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp,top,powerbuf,wvalue,numPowers)) goto err; | ||
795 | |||
796 | /* Scan the exponent one window at a time starting from the most | ||
797 | * significant bits. | ||
798 | */ | ||
799 | while (bits >= 0) | ||
800 | { | ||
801 | wvalue=0; /* The 'value' of the window */ | ||
802 | |||
803 | /* Scan the window, squaring the result as we go */ | ||
804 | for (i=0; i<window; i++,bits--) | ||
805 | { | ||
806 | if (!BN_mod_mul_montgomery(&tmp,&tmp,&tmp,mont,ctx)) goto err; | ||
807 | wvalue = (wvalue<<1)+BN_is_bit_set(p,bits); | ||
808 | } | ||
809 | |||
810 | /* Fetch the appropriate pre-computed value from the pre-buf */ | ||
811 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue, numPowers)) goto err; | ||
812 | |||
813 | /* Multiply the result into the intermediate result */ | ||
814 | if (!BN_mod_mul_montgomery(&tmp,&tmp,&am,mont,ctx)) goto err; | ||
815 | } | ||
816 | } | ||
817 | |||
818 | /* Convert the final result from montgomery to standard format */ | ||
819 | if (!BN_from_montgomery(rr,&tmp,mont,ctx)) goto err; | ||
820 | ret=1; | ||
821 | err: | ||
822 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
823 | if (powerbuf!=NULL) | ||
824 | { | ||
825 | OPENSSL_cleanse(powerbuf,powerbufLen); | ||
826 | if (powerbufFree) OPENSSL_free(powerbufFree); | ||
827 | } | ||
828 | BN_CTX_end(ctx); | ||
829 | return(ret); | ||
830 | } | ||
831 | |||
832 | int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, | ||
833 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
834 | { | ||
835 | BN_MONT_CTX *mont = NULL; | ||
836 | int b, bits, ret=0; | ||
837 | int r_is_one; | ||
838 | BN_ULONG w, next_w; | ||
839 | BIGNUM *d, *r, *t; | ||
840 | BIGNUM *swap_tmp; | ||
841 | #define BN_MOD_MUL_WORD(r, w, m) \ | ||
842 | (BN_mul_word(r, (w)) && \ | ||
843 | (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ | ||
844 | (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) | ||
845 | /* BN_MOD_MUL_WORD is only used with 'w' large, | ||
846 | * so the BN_ucmp test is probably more overhead | ||
847 | * than always using BN_mod (which uses BN_copy if | ||
848 | * a similar test returns true). */ | ||
849 | /* We can use BN_mod and do not need BN_nnmod because our | ||
850 | * accumulator is never negative (the result of BN_mod does | ||
851 | * not depend on the sign of the modulus). | ||
852 | */ | ||
853 | #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ | ||
854 | (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) | ||
855 | |||
856 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
857 | { | ||
858 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
859 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
860 | return -1; | ||
861 | } | ||
862 | |||
863 | bn_check_top(p); | ||
864 | bn_check_top(m); | ||
865 | |||
866 | if (!BN_is_odd(m)) | ||
867 | { | ||
868 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
869 | return(0); | ||
870 | } | ||
871 | if (m->top == 1) | ||
872 | a %= m->d[0]; /* make sure that 'a' is reduced */ | ||
873 | |||
874 | bits = BN_num_bits(p); | ||
875 | if (bits == 0) | ||
876 | { | ||
877 | ret = BN_one(rr); | ||
878 | return ret; | ||
879 | } | ||
880 | if (a == 0) | ||
881 | { | ||
882 | BN_zero(rr); | ||
883 | ret = 1; | ||
884 | return ret; | ||
885 | } | ||
886 | |||
887 | BN_CTX_start(ctx); | ||
888 | d = BN_CTX_get(ctx); | ||
889 | r = BN_CTX_get(ctx); | ||
890 | t = BN_CTX_get(ctx); | ||
891 | if (d == NULL || r == NULL || t == NULL) goto err; | ||
892 | |||
893 | if (in_mont != NULL) | ||
894 | mont=in_mont; | ||
895 | else | ||
896 | { | ||
897 | if ((mont = BN_MONT_CTX_new()) == NULL) goto err; | ||
898 | if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; | ||
899 | } | ||
900 | |||
901 | r_is_one = 1; /* except for Montgomery factor */ | ||
902 | |||
903 | /* bits-1 >= 0 */ | ||
904 | |||
905 | /* The result is accumulated in the product r*w. */ | ||
906 | w = a; /* bit 'bits-1' of 'p' is always set */ | ||
907 | for (b = bits-2; b >= 0; b--) | ||
908 | { | ||
909 | /* First, square r*w. */ | ||
910 | next_w = w*w; | ||
911 | if ((next_w/w) != w) /* overflow */ | ||
912 | { | ||
913 | if (r_is_one) | ||
914 | { | ||
915 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
916 | r_is_one = 0; | ||
917 | } | ||
918 | else | ||
919 | { | ||
920 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
921 | } | ||
922 | next_w = 1; | ||
923 | } | ||
924 | w = next_w; | ||
925 | if (!r_is_one) | ||
926 | { | ||
927 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err; | ||
928 | } | ||
929 | |||
930 | /* Second, multiply r*w by 'a' if exponent bit is set. */ | ||
931 | if (BN_is_bit_set(p, b)) | ||
932 | { | ||
933 | next_w = w*a; | ||
934 | if ((next_w/a) != w) /* overflow */ | ||
935 | { | ||
936 | if (r_is_one) | ||
937 | { | ||
938 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
939 | r_is_one = 0; | ||
940 | } | ||
941 | else | ||
942 | { | ||
943 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
944 | } | ||
945 | next_w = a; | ||
946 | } | ||
947 | w = next_w; | ||
948 | } | ||
949 | } | ||
950 | |||
951 | /* Finally, set r:=r*w. */ | ||
952 | if (w != 1) | ||
953 | { | ||
954 | if (r_is_one) | ||
955 | { | ||
956 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
957 | r_is_one = 0; | ||
958 | } | ||
959 | else | ||
960 | { | ||
961 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
962 | } | ||
963 | } | ||
964 | |||
965 | if (r_is_one) /* can happen only if a == 1*/ | ||
966 | { | ||
967 | if (!BN_one(rr)) goto err; | ||
968 | } | ||
969 | else | ||
970 | { | ||
971 | if (!BN_from_montgomery(rr, r, mont, ctx)) goto err; | ||
972 | } | ||
973 | ret = 1; | ||
974 | err: | ||
975 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
976 | BN_CTX_end(ctx); | ||
977 | bn_check_top(rr); | ||
978 | return(ret); | ||
979 | } | ||
980 | |||
981 | |||
982 | /* The old fallback, simple version :-) */ | ||
983 | int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
984 | const BIGNUM *m, BN_CTX *ctx) | ||
985 | { | ||
986 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
987 | int start=1; | ||
988 | BIGNUM *d; | ||
989 | /* Table of variables obtained from 'ctx' */ | ||
990 | BIGNUM *val[TABLE_SIZE]; | ||
991 | |||
992 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
993 | { | ||
994 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
995 | BNerr(BN_F_BN_MOD_EXP_SIMPLE,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
996 | return -1; | ||
997 | } | ||
998 | |||
999 | bits=BN_num_bits(p); | ||
1000 | |||
1001 | if (bits == 0) | ||
1002 | { | ||
1003 | ret = BN_one(r); | ||
1004 | return ret; | ||
1005 | } | ||
1006 | |||
1007 | BN_CTX_start(ctx); | ||
1008 | d = BN_CTX_get(ctx); | ||
1009 | val[0] = BN_CTX_get(ctx); | ||
1010 | if(!d || !val[0]) goto err; | ||
1011 | |||
1012 | if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */ | ||
1013 | if (BN_is_zero(val[0])) | ||
1014 | { | ||
1015 | BN_zero(r); | ||
1016 | ret = 1; | ||
1017 | goto err; | ||
1018 | } | ||
1019 | |||
1020 | window = BN_window_bits_for_exponent_size(bits); | ||
1021 | if (window > 1) | ||
1022 | { | ||
1023 | if (!BN_mod_mul(d,val[0],val[0],m,ctx)) | ||
1024 | goto err; /* 2 */ | ||
1025 | j=1<<(window-1); | ||
1026 | for (i=1; i<j; i++) | ||
1027 | { | ||
1028 | if(((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
1029 | !BN_mod_mul(val[i],val[i-1],d,m,ctx)) | ||
1030 | goto err; | ||
1031 | } | ||
1032 | } | ||
1033 | |||
1034 | start=1; /* This is used to avoid multiplication etc | ||
1035 | * when there is only the value '1' in the | ||
1036 | * buffer. */ | ||
1037 | wvalue=0; /* The 'value' of the window */ | ||
1038 | wstart=bits-1; /* The top bit of the window */ | ||
1039 | wend=0; /* The bottom bit of the window */ | ||
1040 | |||
1041 | if (!BN_one(r)) goto err; | ||
1042 | |||
1043 | for (;;) | ||
1044 | { | ||
1045 | if (BN_is_bit_set(p,wstart) == 0) | ||
1046 | { | ||
1047 | if (!start) | ||
1048 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
1049 | goto err; | ||
1050 | if (wstart == 0) break; | ||
1051 | wstart--; | ||
1052 | continue; | ||
1053 | } | ||
1054 | /* We now have wstart on a 'set' bit, we now need to work out | ||
1055 | * how bit a window to do. To do this we need to scan | ||
1056 | * forward until the last set bit before the end of the | ||
1057 | * window */ | ||
1058 | j=wstart; | ||
1059 | wvalue=1; | ||
1060 | wend=0; | ||
1061 | for (i=1; i<window; i++) | ||
1062 | { | ||
1063 | if (wstart-i < 0) break; | ||
1064 | if (BN_is_bit_set(p,wstart-i)) | ||
1065 | { | ||
1066 | wvalue<<=(i-wend); | ||
1067 | wvalue|=1; | ||
1068 | wend=i; | ||
1069 | } | ||
1070 | } | ||
1071 | |||
1072 | /* wend is the size of the current window */ | ||
1073 | j=wend+1; | ||
1074 | /* add the 'bytes above' */ | ||
1075 | if (!start) | ||
1076 | for (i=0; i<j; i++) | ||
1077 | { | ||
1078 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
1079 | goto err; | ||
1080 | } | ||
1081 | |||
1082 | /* wvalue will be an odd number < 2^window */ | ||
1083 | if (!BN_mod_mul(r,r,val[wvalue>>1],m,ctx)) | ||
1084 | goto err; | ||
1085 | |||
1086 | /* move the 'window' down further */ | ||
1087 | wstart-=wend+1; | ||
1088 | wvalue=0; | ||
1089 | start=0; | ||
1090 | if (wstart < 0) break; | ||
1091 | } | ||
1092 | ret=1; | ||
1093 | err: | ||
1094 | BN_CTX_end(ctx); | ||
1095 | bn_check_top(r); | ||
1096 | return(ret); | ||
1097 | } | ||