diff options
author | tb <> | 2023-04-11 10:08:44 +0000 |
---|---|---|
committer | tb <> | 2023-04-11 10:08:44 +0000 |
commit | 2fc970f40eeb1044a661fa924f93ab9668d3910c (patch) | |
tree | 1a8331f19d48335fd135b93854c36f2ea3244918 /src/lib/libcrypto/bn/bn_sqrt.c | |
parent | 8ba2869b3fad78a19522d1476fb6f12dc9bee1c3 (diff) | |
download | openbsd-2fc970f40eeb1044a661fa924f93ab9668d3910c.tar.gz openbsd-2fc970f40eeb1044a661fa924f93ab9668d3910c.tar.bz2 openbsd-2fc970f40eeb1044a661fa924f93ab9668d3910c.zip |
Add a new implementation of BN_mod_sqrt()
This is a reimplementation from scratch of the Tonelli-Shanks algorithm
based on Henri Cohen "A Course in Computational Algebraic Number Theory",
Springer GTM 138, section 1.5.1. It is API compatible with the previous
implementation, so no documentation change is required.
Contrary to the old implementation, this does not have any infinite loops
and has various additional sanity checks to prevent misbehavior in case
the input modulus is not a prime. It contains extensive comments and the
individual parts of the algorithm are split into digestible chunks instead
of having one huge function.
One difference of note is that it BN_mod_sqrt() now always returns the
smaller of the two possible answers. In other words, while its core is
non-deterministic, its answer is not.
ok jsing
Diffstat (limited to 'src/lib/libcrypto/bn/bn_sqrt.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_sqrt.c | 409 |
1 files changed, 0 insertions, 409 deletions
diff --git a/src/lib/libcrypto/bn/bn_sqrt.c b/src/lib/libcrypto/bn/bn_sqrt.c deleted file mode 100644 index 3d9f017f59..0000000000 --- a/src/lib/libcrypto/bn/bn_sqrt.c +++ /dev/null | |||
@@ -1,409 +0,0 @@ | |||
1 | /* $OpenBSD: bn_sqrt.c,v 1.16 2023/03/27 10:25:02 tb Exp $ */ | ||
2 | /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> | ||
3 | * and Bodo Moeller for the OpenSSL project. */ | ||
4 | /* ==================================================================== | ||
5 | * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. | ||
6 | * | ||
7 | * Redistribution and use in source and binary forms, with or without | ||
8 | * modification, are permitted provided that the following conditions | ||
9 | * are met: | ||
10 | * | ||
11 | * 1. Redistributions of source code must retain the above copyright | ||
12 | * notice, this list of conditions and the following disclaimer. | ||
13 | * | ||
14 | * 2. Redistributions in binary form must reproduce the above copyright | ||
15 | * notice, this list of conditions and the following disclaimer in | ||
16 | * the documentation and/or other materials provided with the | ||
17 | * distribution. | ||
18 | * | ||
19 | * 3. All advertising materials mentioning features or use of this | ||
20 | * software must display the following acknowledgment: | ||
21 | * "This product includes software developed by the OpenSSL Project | ||
22 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
23 | * | ||
24 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
25 | * endorse or promote products derived from this software without | ||
26 | * prior written permission. For written permission, please contact | ||
27 | * openssl-core@openssl.org. | ||
28 | * | ||
29 | * 5. Products derived from this software may not be called "OpenSSL" | ||
30 | * nor may "OpenSSL" appear in their names without prior written | ||
31 | * permission of the OpenSSL Project. | ||
32 | * | ||
33 | * 6. Redistributions of any form whatsoever must retain the following | ||
34 | * acknowledgment: | ||
35 | * "This product includes software developed by the OpenSSL Project | ||
36 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
37 | * | ||
38 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
39 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
40 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
41 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
42 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
43 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
44 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
45 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
46 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
47 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
48 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
49 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
50 | * ==================================================================== | ||
51 | * | ||
52 | * This product includes cryptographic software written by Eric Young | ||
53 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
54 | * Hudson (tjh@cryptsoft.com). | ||
55 | * | ||
56 | */ | ||
57 | |||
58 | #include <openssl/err.h> | ||
59 | |||
60 | #include "bn_local.h" | ||
61 | |||
62 | /* | ||
63 | * Returns 'ret' such that ret^2 == a (mod p), if it exists, using the | ||
64 | * Tonelli-Shanks algorithm following Henri Cohen, "A Course in Computational | ||
65 | * Algebraic Number Theory", algorithm 1.5.1, Springer, Berlin, 1996. | ||
66 | * | ||
67 | * Note: 'p' must be prime! | ||
68 | */ | ||
69 | |||
70 | BIGNUM * | ||
71 | BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
72 | { | ||
73 | BIGNUM *ret = in; | ||
74 | int err = 1; | ||
75 | int r; | ||
76 | BIGNUM *A, *b, *q, *t, *x, *y; | ||
77 | int e, i, j; | ||
78 | |||
79 | if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { | ||
80 | if (BN_abs_is_word(p, 2)) { | ||
81 | if (ret == NULL) | ||
82 | ret = BN_new(); | ||
83 | if (ret == NULL) | ||
84 | goto end; | ||
85 | if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { | ||
86 | if (ret != in) | ||
87 | BN_free(ret); | ||
88 | return NULL; | ||
89 | } | ||
90 | return ret; | ||
91 | } | ||
92 | |||
93 | BNerror(BN_R_P_IS_NOT_PRIME); | ||
94 | return (NULL); | ||
95 | } | ||
96 | |||
97 | if (BN_is_zero(a) || BN_is_one(a)) { | ||
98 | if (ret == NULL) | ||
99 | ret = BN_new(); | ||
100 | if (ret == NULL) | ||
101 | goto end; | ||
102 | if (!BN_set_word(ret, BN_is_one(a))) { | ||
103 | if (ret != in) | ||
104 | BN_free(ret); | ||
105 | return NULL; | ||
106 | } | ||
107 | return ret; | ||
108 | } | ||
109 | |||
110 | BN_CTX_start(ctx); | ||
111 | if ((A = BN_CTX_get(ctx)) == NULL) | ||
112 | goto end; | ||
113 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
114 | goto end; | ||
115 | if ((q = BN_CTX_get(ctx)) == NULL) | ||
116 | goto end; | ||
117 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
118 | goto end; | ||
119 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
120 | goto end; | ||
121 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
122 | goto end; | ||
123 | |||
124 | if (ret == NULL) | ||
125 | ret = BN_new(); | ||
126 | if (ret == NULL) | ||
127 | goto end; | ||
128 | |||
129 | /* A = a mod p */ | ||
130 | if (!BN_nnmod(A, a, p, ctx)) | ||
131 | goto end; | ||
132 | |||
133 | /* now write |p| - 1 as 2^e*q where q is odd */ | ||
134 | e = 1; | ||
135 | while (!BN_is_bit_set(p, e)) | ||
136 | e++; | ||
137 | /* we'll set q later (if needed) */ | ||
138 | |||
139 | if (e == 1) { | ||
140 | /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse | ||
141 | * modulo (|p|-1)/2, and square roots can be computed | ||
142 | * directly by modular exponentiation. | ||
143 | * We have | ||
144 | * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), | ||
145 | * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. | ||
146 | */ | ||
147 | if (!BN_rshift(q, p, 2)) | ||
148 | goto end; | ||
149 | q->neg = 0; | ||
150 | if (!BN_add_word(q, 1)) | ||
151 | goto end; | ||
152 | if (!BN_mod_exp_ct(ret, A, q, p, ctx)) | ||
153 | goto end; | ||
154 | err = 0; | ||
155 | goto vrfy; | ||
156 | } | ||
157 | |||
158 | if (e == 2) { | ||
159 | /* |p| == 5 (mod 8) | ||
160 | * | ||
161 | * In this case 2 is always a non-square since | ||
162 | * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime. | ||
163 | * So if a really is a square, then 2*a is a non-square. | ||
164 | * Thus for | ||
165 | * b := (2*a)^((|p|-5)/8), | ||
166 | * i := (2*a)*b^2 | ||
167 | * we have | ||
168 | * i^2 = (2*a)^((1 + (|p|-5)/4)*2) | ||
169 | * = (2*a)^((p-1)/2) | ||
170 | * = -1; | ||
171 | * so if we set | ||
172 | * x := a*b*(i-1), | ||
173 | * then | ||
174 | * x^2 = a^2 * b^2 * (i^2 - 2*i + 1) | ||
175 | * = a^2 * b^2 * (-2*i) | ||
176 | * = a*(-i)*(2*a*b^2) | ||
177 | * = a*(-i)*i | ||
178 | * = a. | ||
179 | * | ||
180 | * (This is due to A.O.L. Atkin, | ||
181 | * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, | ||
182 | * November 1992.) | ||
183 | */ | ||
184 | |||
185 | /* t := 2*a */ | ||
186 | if (!BN_mod_lshift1_quick(t, A, p)) | ||
187 | goto end; | ||
188 | |||
189 | /* b := (2*a)^((|p|-5)/8) */ | ||
190 | if (!BN_rshift(q, p, 3)) | ||
191 | goto end; | ||
192 | q->neg = 0; | ||
193 | if (!BN_mod_exp_ct(b, t, q, p, ctx)) | ||
194 | goto end; | ||
195 | |||
196 | /* y := b^2 */ | ||
197 | if (!BN_mod_sqr(y, b, p, ctx)) | ||
198 | goto end; | ||
199 | |||
200 | /* t := (2*a)*b^2 - 1*/ | ||
201 | if (!BN_mod_mul(t, t, y, p, ctx)) | ||
202 | goto end; | ||
203 | if (!BN_sub_word(t, 1)) | ||
204 | goto end; | ||
205 | |||
206 | /* x = a*b*t */ | ||
207 | if (!BN_mod_mul(x, A, b, p, ctx)) | ||
208 | goto end; | ||
209 | if (!BN_mod_mul(x, x, t, p, ctx)) | ||
210 | goto end; | ||
211 | |||
212 | if (!bn_copy(ret, x)) | ||
213 | goto end; | ||
214 | err = 0; | ||
215 | goto vrfy; | ||
216 | } | ||
217 | |||
218 | /* e > 2, so we really have to use the Tonelli/Shanks algorithm. | ||
219 | * First, find some y that is not a square. */ | ||
220 | if (!bn_copy(q, p)) /* use 'q' as temp */ | ||
221 | goto end; | ||
222 | q->neg = 0; | ||
223 | i = 2; | ||
224 | do { | ||
225 | /* For efficiency, try small numbers first; | ||
226 | * if this fails, try random numbers. | ||
227 | */ | ||
228 | if (i < 22) { | ||
229 | if (!BN_set_word(y, i)) | ||
230 | goto end; | ||
231 | } else { | ||
232 | if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) | ||
233 | goto end; | ||
234 | if (BN_ucmp(y, p) >= 0) { | ||
235 | if (p->neg) { | ||
236 | if (!BN_add(y, y, p)) | ||
237 | goto end; | ||
238 | } else { | ||
239 | if (!BN_sub(y, y, p)) | ||
240 | goto end; | ||
241 | } | ||
242 | } | ||
243 | /* now 0 <= y < |p| */ | ||
244 | if (BN_is_zero(y)) | ||
245 | if (!BN_set_word(y, i)) | ||
246 | goto end; | ||
247 | } | ||
248 | |||
249 | r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */ | ||
250 | if (r < -1) | ||
251 | goto end; | ||
252 | if (r == 0) { | ||
253 | /* m divides p */ | ||
254 | BNerror(BN_R_P_IS_NOT_PRIME); | ||
255 | goto end; | ||
256 | } | ||
257 | } while (r == 1 && ++i < 82); | ||
258 | |||
259 | if (r != -1) { | ||
260 | /* Many rounds and still no non-square -- this is more likely | ||
261 | * a bug than just bad luck. | ||
262 | * Even if p is not prime, we should have found some y | ||
263 | * such that r == -1. | ||
264 | */ | ||
265 | BNerror(BN_R_TOO_MANY_ITERATIONS); | ||
266 | goto end; | ||
267 | } | ||
268 | |||
269 | /* Here's our actual 'q': */ | ||
270 | if (!BN_rshift(q, q, e)) | ||
271 | goto end; | ||
272 | |||
273 | /* Now that we have some non-square, we can find an element | ||
274 | * of order 2^e by computing its q'th power. */ | ||
275 | if (!BN_mod_exp_ct(y, y, q, p, ctx)) | ||
276 | goto end; | ||
277 | if (BN_is_one(y)) { | ||
278 | BNerror(BN_R_P_IS_NOT_PRIME); | ||
279 | goto end; | ||
280 | } | ||
281 | |||
282 | /* Now we know that (if p is indeed prime) there is an integer | ||
283 | * k, 0 <= k < 2^e, such that | ||
284 | * | ||
285 | * a^q * y^k == 1 (mod p). | ||
286 | * | ||
287 | * As a^q is a square and y is not, k must be even. | ||
288 | * q+1 is even, too, so there is an element | ||
289 | * | ||
290 | * X := a^((q+1)/2) * y^(k/2), | ||
291 | * | ||
292 | * and it satisfies | ||
293 | * | ||
294 | * X^2 = a^q * a * y^k | ||
295 | * = a, | ||
296 | * | ||
297 | * so it is the square root that we are looking for. | ||
298 | */ | ||
299 | |||
300 | /* t := (q-1)/2 (note that q is odd) */ | ||
301 | if (!BN_rshift1(t, q)) | ||
302 | goto end; | ||
303 | |||
304 | /* x := a^((q-1)/2) */ | ||
305 | if (BN_is_zero(t)) { /* special case: p = 2^e + 1 */ | ||
306 | if (!BN_nnmod(t, A, p, ctx)) | ||
307 | goto end; | ||
308 | if (BN_is_zero(t)) { | ||
309 | /* special case: a == 0 (mod p) */ | ||
310 | BN_zero(ret); | ||
311 | err = 0; | ||
312 | goto end; | ||
313 | } else if (!BN_one(x)) | ||
314 | goto end; | ||
315 | } else { | ||
316 | if (!BN_mod_exp_ct(x, A, t, p, ctx)) | ||
317 | goto end; | ||
318 | if (BN_is_zero(x)) { | ||
319 | /* special case: a == 0 (mod p) */ | ||
320 | BN_zero(ret); | ||
321 | err = 0; | ||
322 | goto end; | ||
323 | } | ||
324 | } | ||
325 | |||
326 | /* b := a*x^2 (= a^q) */ | ||
327 | if (!BN_mod_sqr(b, x, p, ctx)) | ||
328 | goto end; | ||
329 | if (!BN_mod_mul(b, b, A, p, ctx)) | ||
330 | goto end; | ||
331 | |||
332 | /* x := a*x (= a^((q+1)/2)) */ | ||
333 | if (!BN_mod_mul(x, x, A, p, ctx)) | ||
334 | goto end; | ||
335 | |||
336 | while (1) { | ||
337 | /* Now b is a^q * y^k for some even k (0 <= k < 2^E | ||
338 | * where E refers to the original value of e, which we | ||
339 | * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). | ||
340 | * | ||
341 | * We have a*b = x^2, | ||
342 | * y^2^(e-1) = -1, | ||
343 | * b^2^(e-1) = 1. | ||
344 | */ | ||
345 | |||
346 | if (BN_is_one(b)) { | ||
347 | if (!bn_copy(ret, x)) | ||
348 | goto end; | ||
349 | err = 0; | ||
350 | goto vrfy; | ||
351 | } | ||
352 | |||
353 | /* Find the smallest i with 0 < i < e such that b^(2^i) = 1. */ | ||
354 | for (i = 1; i < e; i++) { | ||
355 | if (i == 1) { | ||
356 | if (!BN_mod_sqr(t, b, p, ctx)) | ||
357 | goto end; | ||
358 | } else { | ||
359 | if (!BN_mod_sqr(t, t, p, ctx)) | ||
360 | goto end; | ||
361 | } | ||
362 | if (BN_is_one(t)) | ||
363 | break; | ||
364 | } | ||
365 | if (i >= e) { | ||
366 | BNerror(BN_R_NOT_A_SQUARE); | ||
367 | goto end; | ||
368 | } | ||
369 | |||
370 | /* t := y^2^(e - i - 1) */ | ||
371 | if (!bn_copy(t, y)) | ||
372 | goto end; | ||
373 | for (j = e - i - 1; j > 0; j--) { | ||
374 | if (!BN_mod_sqr(t, t, p, ctx)) | ||
375 | goto end; | ||
376 | } | ||
377 | if (!BN_mod_mul(y, t, t, p, ctx)) | ||
378 | goto end; | ||
379 | if (!BN_mod_mul(x, x, t, p, ctx)) | ||
380 | goto end; | ||
381 | if (!BN_mod_mul(b, b, y, p, ctx)) | ||
382 | goto end; | ||
383 | e = i; | ||
384 | } | ||
385 | |||
386 | vrfy: | ||
387 | if (!err) { | ||
388 | /* verify the result -- the input might have been not a square | ||
389 | * (test added in 0.9.8) */ | ||
390 | |||
391 | if (!BN_mod_sqr(x, ret, p, ctx)) | ||
392 | err = 1; | ||
393 | |||
394 | if (!err && 0 != BN_cmp(x, A)) { | ||
395 | BNerror(BN_R_NOT_A_SQUARE); | ||
396 | err = 1; | ||
397 | } | ||
398 | } | ||
399 | |||
400 | end: | ||
401 | if (err) { | ||
402 | if (ret != NULL && ret != in) { | ||
403 | BN_free(ret); | ||
404 | } | ||
405 | ret = NULL; | ||
406 | } | ||
407 | BN_CTX_end(ctx); | ||
408 | return ret; | ||
409 | } | ||