summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/bn
diff options
context:
space:
mode:
authorjsing <>2025-05-25 05:12:05 +0000
committerjsing <>2025-05-25 05:12:05 +0000
commit2f7bf75477a5741ad76c3c793c7ed887b41fcceb (patch)
treed2a89424948ea33ced8fe1bb82297f1988893a57 /src/lib/libcrypto/bn
parentaada760c0a63cc97f8def7686fe6d76d3a3cc4d9 (diff)
downloadopenbsd-2f7bf75477a5741ad76c3c793c7ed887b41fcceb.tar.gz
openbsd-2f7bf75477a5741ad76c3c793c7ed887b41fcceb.tar.bz2
openbsd-2f7bf75477a5741ad76c3c793c7ed887b41fcceb.zip
Implement EC field element operations.
Provide EC_FIELD_ELEMENT and EC_FIELD_MODULUS, which allow for operations on fixed width fields in constant time. These can in turn be used to implement Elliptic Curve cryptography for prime fields, without needing to use BN. This will improve the code, reduces timing leaks and enable further optimisation. ok beck@ tb@
Diffstat (limited to 'src/lib/libcrypto/bn')
-rw-r--r--src/lib/libcrypto/bn/bn_internal.h4
-rw-r--r--src/lib/libcrypto/bn/bn_mont.c71
2 files changed, 45 insertions, 30 deletions
diff --git a/src/lib/libcrypto/bn/bn_internal.h b/src/lib/libcrypto/bn/bn_internal.h
index b6e903553f..a1f1515b57 100644
--- a/src/lib/libcrypto/bn/bn_internal.h
+++ b/src/lib/libcrypto/bn/bn_internal.h
@@ -1,4 +1,4 @@
1/* $OpenBSD: bn_internal.h,v 1.18 2025/05/25 04:58:32 jsing Exp $ */ 1/* $OpenBSD: bn_internal.h,v 1.19 2025/05/25 05:12:05 jsing Exp $ */
2/* 2/*
3 * Copyright (c) 2023 Joel Sing <jsing@openbsd.org> 3 * Copyright (c) 2023 Joel Sing <jsing@openbsd.org>
4 * 4 *
@@ -45,6 +45,8 @@ void bn_mod_mul_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
45void bn_montgomery_multiply_words(BN_ULONG *rp, const BN_ULONG *ap, 45void bn_montgomery_multiply_words(BN_ULONG *rp, const BN_ULONG *ap,
46 const BN_ULONG *bp, const BN_ULONG *np, BN_ULONG *tp, BN_ULONG n0, 46 const BN_ULONG *bp, const BN_ULONG *np, BN_ULONG *tp, BN_ULONG n0,
47 int n_len); 47 int n_len);
48void bn_montgomery_reduce_words(BN_ULONG *r, BN_ULONG *a, const BN_ULONG *n,
49 BN_ULONG n0, int n_len);
48 50
49#ifndef HAVE_BN_CT_NE_ZERO 51#ifndef HAVE_BN_CT_NE_ZERO
50static inline int 52static inline int
diff --git a/src/lib/libcrypto/bn/bn_mont.c b/src/lib/libcrypto/bn/bn_mont.c
index ce88b23ca9..950846fa5b 100644
--- a/src/lib/libcrypto/bn/bn_mont.c
+++ b/src/lib/libcrypto/bn/bn_mont.c
@@ -1,4 +1,4 @@
1/* $OpenBSD: bn_mont.c,v 1.67 2025/05/25 04:58:32 jsing Exp $ */ 1/* $OpenBSD: bn_mont.c,v 1.68 2025/05/25 05:12:05 jsing Exp $ */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) 2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved. 3 * All rights reserved.
4 * 4 *
@@ -316,6 +316,44 @@ BN_MONT_CTX_set_locked(BN_MONT_CTX **pmctx, int lock, const BIGNUM *mod,
316LCRYPTO_ALIAS(BN_MONT_CTX_set_locked); 316LCRYPTO_ALIAS(BN_MONT_CTX_set_locked);
317 317
318/* 318/*
319 * bn_montgomery_reduce_words() performs Montgomery reduction, reducing the input
320 * from its Montgomery form aR to a, returning the result in r. a must be twice
321 * the length of the modulus. Note that the input is mutated in the process of
322 * performing the reduction.
323 */
324void
325bn_montgomery_reduce_words(BN_ULONG *r, BN_ULONG *a, const BN_ULONG *n,
326 BN_ULONG n0, int n_len)
327{
328 BN_ULONG v, mask;
329 BN_ULONG carry = 0;
330 int i;
331
332 /* Add multiples of the modulus, so that it becomes divisible by R. */
333 for (i = 0; i < n_len; i++) {
334 v = bn_mul_add_words(&a[i], n, n_len, a[i] * n0);
335 bn_addw_addw(v, a[i + n_len], carry, &carry, &a[i + n_len]);
336 }
337
338 /* Divide by R (this is the equivalent of right shifting by n_len). */
339 a = &a[n_len];
340
341 /*
342 * The output is now in the range of [0, 2N). Attempt to reduce once by
343 * subtracting the modulus. If the reduction was necessary then the
344 * result is already in r, otherwise copy the value prior to reduction
345 * from the top half of a.
346 */
347 mask = carry - bn_sub_words(r, a, n, n_len);
348
349 for (i = 0; i < n_len; i++) {
350 *r = (*r & ~mask) | (*a & mask);
351 r++;
352 a++;
353 }
354}
355
356/*
319 * bn_montgomery_reduce() performs Montgomery reduction, reducing the input 357 * bn_montgomery_reduce() performs Montgomery reduction, reducing the input
320 * from its Montgomery form aR to a, returning the result in r. Note that the 358 * from its Montgomery form aR to a, returning the result in r. Note that the
321 * input is mutated in the process of performing the reduction, destroying its 359 * input is mutated in the process of performing the reduction, destroying its
@@ -325,7 +363,6 @@ static int
325bn_montgomery_reduce(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mctx) 363bn_montgomery_reduce(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mctx)
326{ 364{
327 BIGNUM *n; 365 BIGNUM *n;
328 BN_ULONG *ap, *rp, n0, v, carry, mask;
329 int i, max, n_len; 366 int i, max, n_len;
330 367
331 n = &mctx->N; 368 n = &mctx->N;
@@ -341,7 +378,8 @@ bn_montgomery_reduce(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mctx)
341 378
342 /* 379 /*
343 * Expand a to twice the length of the modulus, zero if necessary. 380 * Expand a to twice the length of the modulus, zero if necessary.
344 * XXX - make this a requirement of the caller. 381 * XXX - make this a requirement of the caller or use a temporary
382 * allocation.
345 */ 383 */
346 if ((max = 2 * n_len) < n_len) 384 if ((max = 2 * n_len) < n_len)
347 return 0; 385 return 0;
@@ -350,33 +388,8 @@ bn_montgomery_reduce(BIGNUM *r, BIGNUM *a, BN_MONT_CTX *mctx)
350 for (i = a->top; i < max; i++) 388 for (i = a->top; i < max; i++)
351 a->d[i] = 0; 389 a->d[i] = 0;
352 390
353 carry = 0; 391 bn_montgomery_reduce_words(r->d, a->d, n->d, mctx->n0[0], n_len);
354 n0 = mctx->n0[0];
355
356 /* Add multiples of the modulus, so that it becomes divisible by R. */
357 for (i = 0; i < n_len; i++) {
358 v = bn_mul_add_words(&a->d[i], n->d, n_len, a->d[i] * n0);
359 bn_addw_addw(v, a->d[i + n_len], carry, &carry,
360 &a->d[i + n_len]);
361 }
362
363 /* Divide by R (this is the equivalent of right shifting by n_len). */
364 ap = &a->d[n_len];
365
366 /*
367 * The output is now in the range of [0, 2N). Attempt to reduce once by
368 * subtracting the modulus. If the reduction was necessary then the
369 * result is already in r, otherwise copy the value prior to reduction
370 * from the top half of a.
371 */
372 mask = carry - bn_sub_words(r->d, ap, n->d, n_len);
373 392
374 rp = r->d;
375 for (i = 0; i < n_len; i++) {
376 *rp = (*rp & ~mask) | (*ap & mask);
377 rp++;
378 ap++;
379 }
380 r->top = n_len; 393 r->top = n_len;
381 394
382 bn_correct_top(r); 395 bn_correct_top(r);