diff options
author | cvs2svn <admin@example.com> | 2015-08-02 21:54:22 +0000 |
---|---|---|
committer | cvs2svn <admin@example.com> | 2015-08-02 21:54:22 +0000 |
commit | ed3760bf4be4a96a89233fb8f8b84a0d44725862 (patch) | |
tree | 5609c82060f75c53af0a7641d9b33a88574876cd /src/lib/libcrypto/ec/ec2_mult.c | |
parent | f8b563fb5ba1524c821d37308f4e6abfc866bc3f (diff) | |
download | openbsd-OPENBSD_5_8_BASE.tar.gz openbsd-OPENBSD_5_8_BASE.tar.bz2 openbsd-OPENBSD_5_8_BASE.zip |
This commit was manufactured by cvs2git to create tag 'OPENBSD_5_8_BASE'.OPENBSD_5_8_BASE
Diffstat (limited to 'src/lib/libcrypto/ec/ec2_mult.c')
-rw-r--r-- | src/lib/libcrypto/ec/ec2_mult.c | 446 |
1 files changed, 0 insertions, 446 deletions
diff --git a/src/lib/libcrypto/ec/ec2_mult.c b/src/lib/libcrypto/ec/ec2_mult.c deleted file mode 100644 index 8f0091efe1..0000000000 --- a/src/lib/libcrypto/ec/ec2_mult.c +++ /dev/null | |||
@@ -1,446 +0,0 @@ | |||
1 | /* $OpenBSD: ec2_mult.c,v 1.7 2015/02/09 15:49:22 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * The software is originally written by Sheueling Chang Shantz and | ||
13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
14 | * | ||
15 | */ | ||
16 | /* ==================================================================== | ||
17 | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. | ||
18 | * | ||
19 | * Redistribution and use in source and binary forms, with or without | ||
20 | * modification, are permitted provided that the following conditions | ||
21 | * are met: | ||
22 | * | ||
23 | * 1. Redistributions of source code must retain the above copyright | ||
24 | * notice, this list of conditions and the following disclaimer. | ||
25 | * | ||
26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
27 | * notice, this list of conditions and the following disclaimer in | ||
28 | * the documentation and/or other materials provided with the | ||
29 | * distribution. | ||
30 | * | ||
31 | * 3. All advertising materials mentioning features or use of this | ||
32 | * software must display the following acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
35 | * | ||
36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
37 | * endorse or promote products derived from this software without | ||
38 | * prior written permission. For written permission, please contact | ||
39 | * openssl-core@openssl.org. | ||
40 | * | ||
41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
42 | * nor may "OpenSSL" appear in their names without prior written | ||
43 | * permission of the OpenSSL Project. | ||
44 | * | ||
45 | * 6. Redistributions of any form whatsoever must retain the following | ||
46 | * acknowledgment: | ||
47 | * "This product includes software developed by the OpenSSL Project | ||
48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
62 | * ==================================================================== | ||
63 | * | ||
64 | * This product includes cryptographic software written by Eric Young | ||
65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
66 | * Hudson (tjh@cryptsoft.com). | ||
67 | * | ||
68 | */ | ||
69 | |||
70 | #include <openssl/opensslconf.h> | ||
71 | |||
72 | #include <openssl/err.h> | ||
73 | |||
74 | #include "ec_lcl.h" | ||
75 | |||
76 | #ifndef OPENSSL_NO_EC2M | ||
77 | |||
78 | |||
79 | /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective | ||
80 | * coordinates. | ||
81 | * Uses algorithm Mdouble in appendix of | ||
82 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
83 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
84 | * modified to not require precomputation of c=b^{2^{m-1}}. | ||
85 | */ | ||
86 | static int | ||
87 | gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx) | ||
88 | { | ||
89 | BIGNUM *t1; | ||
90 | int ret = 0; | ||
91 | |||
92 | /* Since Mdouble is static we can guarantee that ctx != NULL. */ | ||
93 | BN_CTX_start(ctx); | ||
94 | if ((t1 = BN_CTX_get(ctx)) == NULL) | ||
95 | goto err; | ||
96 | |||
97 | if (!group->meth->field_sqr(group, x, x, ctx)) | ||
98 | goto err; | ||
99 | if (!group->meth->field_sqr(group, t1, z, ctx)) | ||
100 | goto err; | ||
101 | if (!group->meth->field_mul(group, z, x, t1, ctx)) | ||
102 | goto err; | ||
103 | if (!group->meth->field_sqr(group, x, x, ctx)) | ||
104 | goto err; | ||
105 | if (!group->meth->field_sqr(group, t1, t1, ctx)) | ||
106 | goto err; | ||
107 | if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) | ||
108 | goto err; | ||
109 | if (!BN_GF2m_add(x, x, t1)) | ||
110 | goto err; | ||
111 | |||
112 | ret = 1; | ||
113 | |||
114 | err: | ||
115 | BN_CTX_end(ctx); | ||
116 | return ret; | ||
117 | } | ||
118 | |||
119 | /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery | ||
120 | * projective coordinates. | ||
121 | * Uses algorithm Madd in appendix of | ||
122 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
123 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
124 | */ | ||
125 | static int | ||
126 | gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1, | ||
127 | const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx) | ||
128 | { | ||
129 | BIGNUM *t1, *t2; | ||
130 | int ret = 0; | ||
131 | |||
132 | /* Since Madd is static we can guarantee that ctx != NULL. */ | ||
133 | BN_CTX_start(ctx); | ||
134 | if ((t1 = BN_CTX_get(ctx)) == NULL) | ||
135 | goto err; | ||
136 | if ((t2 = BN_CTX_get(ctx)) == NULL) | ||
137 | goto err; | ||
138 | |||
139 | if (!BN_copy(t1, x)) | ||
140 | goto err; | ||
141 | if (!group->meth->field_mul(group, x1, x1, z2, ctx)) | ||
142 | goto err; | ||
143 | if (!group->meth->field_mul(group, z1, z1, x2, ctx)) | ||
144 | goto err; | ||
145 | if (!group->meth->field_mul(group, t2, x1, z1, ctx)) | ||
146 | goto err; | ||
147 | if (!BN_GF2m_add(z1, z1, x1)) | ||
148 | goto err; | ||
149 | if (!group->meth->field_sqr(group, z1, z1, ctx)) | ||
150 | goto err; | ||
151 | if (!group->meth->field_mul(group, x1, z1, t1, ctx)) | ||
152 | goto err; | ||
153 | if (!BN_GF2m_add(x1, x1, t2)) | ||
154 | goto err; | ||
155 | |||
156 | ret = 1; | ||
157 | |||
158 | err: | ||
159 | BN_CTX_end(ctx); | ||
160 | return ret; | ||
161 | } | ||
162 | |||
163 | /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) | ||
164 | * using Montgomery point multiplication algorithm Mxy() in appendix of | ||
165 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
166 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
167 | * Returns: | ||
168 | * 0 on error | ||
169 | * 1 if return value should be the point at infinity | ||
170 | * 2 otherwise | ||
171 | */ | ||
172 | static int | ||
173 | gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1, | ||
174 | BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx) | ||
175 | { | ||
176 | BIGNUM *t3, *t4, *t5; | ||
177 | int ret = 0; | ||
178 | |||
179 | if (BN_is_zero(z1)) { | ||
180 | BN_zero(x2); | ||
181 | BN_zero(z2); | ||
182 | return 1; | ||
183 | } | ||
184 | if (BN_is_zero(z2)) { | ||
185 | if (!BN_copy(x2, x)) | ||
186 | return 0; | ||
187 | if (!BN_GF2m_add(z2, x, y)) | ||
188 | return 0; | ||
189 | return 2; | ||
190 | } | ||
191 | /* Since Mxy is static we can guarantee that ctx != NULL. */ | ||
192 | BN_CTX_start(ctx); | ||
193 | if ((t3 = BN_CTX_get(ctx)) == NULL) | ||
194 | goto err; | ||
195 | if ((t4 = BN_CTX_get(ctx)) == NULL) | ||
196 | goto err; | ||
197 | if ((t5 = BN_CTX_get(ctx)) == NULL) | ||
198 | goto err; | ||
199 | |||
200 | if (!BN_one(t5)) | ||
201 | goto err; | ||
202 | |||
203 | if (!group->meth->field_mul(group, t3, z1, z2, ctx)) | ||
204 | goto err; | ||
205 | |||
206 | if (!group->meth->field_mul(group, z1, z1, x, ctx)) | ||
207 | goto err; | ||
208 | if (!BN_GF2m_add(z1, z1, x1)) | ||
209 | goto err; | ||
210 | if (!group->meth->field_mul(group, z2, z2, x, ctx)) | ||
211 | goto err; | ||
212 | if (!group->meth->field_mul(group, x1, z2, x1, ctx)) | ||
213 | goto err; | ||
214 | if (!BN_GF2m_add(z2, z2, x2)) | ||
215 | goto err; | ||
216 | |||
217 | if (!group->meth->field_mul(group, z2, z2, z1, ctx)) | ||
218 | goto err; | ||
219 | if (!group->meth->field_sqr(group, t4, x, ctx)) | ||
220 | goto err; | ||
221 | if (!BN_GF2m_add(t4, t4, y)) | ||
222 | goto err; | ||
223 | if (!group->meth->field_mul(group, t4, t4, t3, ctx)) | ||
224 | goto err; | ||
225 | if (!BN_GF2m_add(t4, t4, z2)) | ||
226 | goto err; | ||
227 | |||
228 | if (!group->meth->field_mul(group, t3, t3, x, ctx)) | ||
229 | goto err; | ||
230 | if (!group->meth->field_div(group, t3, t5, t3, ctx)) | ||
231 | goto err; | ||
232 | if (!group->meth->field_mul(group, t4, t3, t4, ctx)) | ||
233 | goto err; | ||
234 | if (!group->meth->field_mul(group, x2, x1, t3, ctx)) | ||
235 | goto err; | ||
236 | if (!BN_GF2m_add(z2, x2, x)) | ||
237 | goto err; | ||
238 | |||
239 | if (!group->meth->field_mul(group, z2, z2, t4, ctx)) | ||
240 | goto err; | ||
241 | if (!BN_GF2m_add(z2, z2, y)) | ||
242 | goto err; | ||
243 | |||
244 | ret = 2; | ||
245 | |||
246 | err: | ||
247 | BN_CTX_end(ctx); | ||
248 | return ret; | ||
249 | } | ||
250 | |||
251 | |||
252 | /* Computes scalar*point and stores the result in r. | ||
253 | * point can not equal r. | ||
254 | * Uses a modified algorithm 2P of | ||
255 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
256 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
257 | * | ||
258 | * To protect against side-channel attack the function uses constant time swap, | ||
259 | * avoiding conditional branches. | ||
260 | */ | ||
261 | static int | ||
262 | ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, | ||
263 | const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) | ||
264 | { | ||
265 | BIGNUM *x1, *x2, *z1, *z2; | ||
266 | int ret = 0, i; | ||
267 | BN_ULONG mask, word; | ||
268 | |||
269 | if (r == point) { | ||
270 | ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT); | ||
271 | return 0; | ||
272 | } | ||
273 | /* if result should be point at infinity */ | ||
274 | if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || | ||
275 | EC_POINT_is_at_infinity(group, point) > 0) { | ||
276 | return EC_POINT_set_to_infinity(group, r); | ||
277 | } | ||
278 | /* only support affine coordinates */ | ||
279 | if (!point->Z_is_one) | ||
280 | return 0; | ||
281 | |||
282 | /* Since point_multiply is static we can guarantee that ctx != NULL. */ | ||
283 | BN_CTX_start(ctx); | ||
284 | if ((x1 = BN_CTX_get(ctx)) == NULL) | ||
285 | goto err; | ||
286 | if ((z1 = BN_CTX_get(ctx)) == NULL) | ||
287 | goto err; | ||
288 | |||
289 | x2 = &r->X; | ||
290 | z2 = &r->Y; | ||
291 | |||
292 | bn_wexpand(x1, group->field.top); | ||
293 | bn_wexpand(z1, group->field.top); | ||
294 | bn_wexpand(x2, group->field.top); | ||
295 | bn_wexpand(z2, group->field.top); | ||
296 | |||
297 | if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) | ||
298 | goto err; /* x1 = x */ | ||
299 | if (!BN_one(z1)) | ||
300 | goto err; /* z1 = 1 */ | ||
301 | if (!group->meth->field_sqr(group, z2, x1, ctx)) | ||
302 | goto err; /* z2 = x1^2 = x^2 */ | ||
303 | if (!group->meth->field_sqr(group, x2, z2, ctx)) | ||
304 | goto err; | ||
305 | if (!BN_GF2m_add(x2, x2, &group->b)) | ||
306 | goto err; /* x2 = x^4 + b */ | ||
307 | |||
308 | /* find top most bit and go one past it */ | ||
309 | i = scalar->top - 1; | ||
310 | mask = BN_TBIT; | ||
311 | word = scalar->d[i]; | ||
312 | while (!(word & mask)) | ||
313 | mask >>= 1; | ||
314 | mask >>= 1; | ||
315 | /* if top most bit was at word break, go to next word */ | ||
316 | if (!mask) { | ||
317 | i--; | ||
318 | mask = BN_TBIT; | ||
319 | } | ||
320 | for (; i >= 0; i--) { | ||
321 | word = scalar->d[i]; | ||
322 | while (mask) { | ||
323 | BN_consttime_swap(word & mask, x1, x2, group->field.top); | ||
324 | BN_consttime_swap(word & mask, z1, z2, group->field.top); | ||
325 | if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) | ||
326 | goto err; | ||
327 | if (!gf2m_Mdouble(group, x1, z1, ctx)) | ||
328 | goto err; | ||
329 | BN_consttime_swap(word & mask, x1, x2, group->field.top); | ||
330 | BN_consttime_swap(word & mask, z1, z2, group->field.top); | ||
331 | mask >>= 1; | ||
332 | } | ||
333 | mask = BN_TBIT; | ||
334 | } | ||
335 | |||
336 | /* convert out of "projective" coordinates */ | ||
337 | i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); | ||
338 | if (i == 0) | ||
339 | goto err; | ||
340 | else if (i == 1) { | ||
341 | if (!EC_POINT_set_to_infinity(group, r)) | ||
342 | goto err; | ||
343 | } else { | ||
344 | if (!BN_one(&r->Z)) | ||
345 | goto err; | ||
346 | r->Z_is_one = 1; | ||
347 | } | ||
348 | |||
349 | /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ | ||
350 | BN_set_negative(&r->X, 0); | ||
351 | BN_set_negative(&r->Y, 0); | ||
352 | |||
353 | ret = 1; | ||
354 | |||
355 | err: | ||
356 | BN_CTX_end(ctx); | ||
357 | return ret; | ||
358 | } | ||
359 | |||
360 | |||
361 | /* Computes the sum | ||
362 | * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1] | ||
363 | * gracefully ignoring NULL scalar values. | ||
364 | */ | ||
365 | int | ||
366 | ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
367 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) | ||
368 | { | ||
369 | BN_CTX *new_ctx = NULL; | ||
370 | int ret = 0; | ||
371 | size_t i; | ||
372 | EC_POINT *p = NULL; | ||
373 | EC_POINT *acc = NULL; | ||
374 | |||
375 | if (ctx == NULL) { | ||
376 | ctx = new_ctx = BN_CTX_new(); | ||
377 | if (ctx == NULL) | ||
378 | return 0; | ||
379 | } | ||
380 | /* | ||
381 | * This implementation is more efficient than the wNAF implementation | ||
382 | * for 2 or fewer points. Use the ec_wNAF_mul implementation for 3 | ||
383 | * or more points, or if we can perform a fast multiplication based | ||
384 | * on precomputation. | ||
385 | */ | ||
386 | if ((scalar && (num > 1)) || (num > 2) || | ||
387 | (num == 0 && EC_GROUP_have_precompute_mult(group))) { | ||
388 | ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); | ||
389 | goto err; | ||
390 | } | ||
391 | if ((p = EC_POINT_new(group)) == NULL) | ||
392 | goto err; | ||
393 | if ((acc = EC_POINT_new(group)) == NULL) | ||
394 | goto err; | ||
395 | |||
396 | if (!EC_POINT_set_to_infinity(group, acc)) | ||
397 | goto err; | ||
398 | |||
399 | if (scalar) { | ||
400 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) | ||
401 | goto err; | ||
402 | if (BN_is_negative(scalar)) | ||
403 | if (!group->meth->invert(group, p, ctx)) | ||
404 | goto err; | ||
405 | if (!group->meth->add(group, acc, acc, p, ctx)) | ||
406 | goto err; | ||
407 | } | ||
408 | for (i = 0; i < num; i++) { | ||
409 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) | ||
410 | goto err; | ||
411 | if (BN_is_negative(scalars[i])) | ||
412 | if (!group->meth->invert(group, p, ctx)) | ||
413 | goto err; | ||
414 | if (!group->meth->add(group, acc, acc, p, ctx)) | ||
415 | goto err; | ||
416 | } | ||
417 | |||
418 | if (!EC_POINT_copy(r, acc)) | ||
419 | goto err; | ||
420 | |||
421 | ret = 1; | ||
422 | |||
423 | err: | ||
424 | EC_POINT_free(p); | ||
425 | EC_POINT_free(acc); | ||
426 | BN_CTX_free(new_ctx); | ||
427 | return ret; | ||
428 | } | ||
429 | |||
430 | |||
431 | /* Precomputation for point multiplication: fall back to wNAF methods | ||
432 | * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */ | ||
433 | |||
434 | int | ||
435 | ec_GF2m_precompute_mult(EC_GROUP * group, BN_CTX * ctx) | ||
436 | { | ||
437 | return ec_wNAF_precompute_mult(group, ctx); | ||
438 | } | ||
439 | |||
440 | int | ||
441 | ec_GF2m_have_precompute_mult(const EC_GROUP * group) | ||
442 | { | ||
443 | return ec_wNAF_have_precompute_mult(group); | ||
444 | } | ||
445 | |||
446 | #endif | ||