diff options
author | tb <> | 2023-04-25 19:53:30 +0000 |
---|---|---|
committer | tb <> | 2023-04-25 19:53:30 +0000 |
commit | 82b040aef9cef17610a89204220ee3cb1012fb20 (patch) | |
tree | e9be44ea96c7294efcc800d9cb419edbab4fe999 /src/lib/libcrypto/ec/ec2_mult.c | |
parent | aa0643f4294a31c69cf4097f866cd5cb11e48c1e (diff) | |
download | openbsd-82b040aef9cef17610a89204220ee3cb1012fb20.tar.gz openbsd-82b040aef9cef17610a89204220ee3cb1012fb20.tar.bz2 openbsd-82b040aef9cef17610a89204220ee3cb1012fb20.zip |
GF2m bites the dust. It won't be missed.
Diffstat (limited to 'src/lib/libcrypto/ec/ec2_mult.c')
-rw-r--r-- | src/lib/libcrypto/ec/ec2_mult.c | 449 |
1 files changed, 0 insertions, 449 deletions
diff --git a/src/lib/libcrypto/ec/ec2_mult.c b/src/lib/libcrypto/ec/ec2_mult.c deleted file mode 100644 index d7cbd933f2..0000000000 --- a/src/lib/libcrypto/ec/ec2_mult.c +++ /dev/null | |||
@@ -1,449 +0,0 @@ | |||
1 | /* $OpenBSD: ec2_mult.c,v 1.17 2023/04/11 18:58:20 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * The software is originally written by Sheueling Chang Shantz and | ||
13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
14 | * | ||
15 | */ | ||
16 | /* ==================================================================== | ||
17 | * Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved. | ||
18 | * | ||
19 | * Redistribution and use in source and binary forms, with or without | ||
20 | * modification, are permitted provided that the following conditions | ||
21 | * are met: | ||
22 | * | ||
23 | * 1. Redistributions of source code must retain the above copyright | ||
24 | * notice, this list of conditions and the following disclaimer. | ||
25 | * | ||
26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
27 | * notice, this list of conditions and the following disclaimer in | ||
28 | * the documentation and/or other materials provided with the | ||
29 | * distribution. | ||
30 | * | ||
31 | * 3. All advertising materials mentioning features or use of this | ||
32 | * software must display the following acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
35 | * | ||
36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
37 | * endorse or promote products derived from this software without | ||
38 | * prior written permission. For written permission, please contact | ||
39 | * openssl-core@openssl.org. | ||
40 | * | ||
41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
42 | * nor may "OpenSSL" appear in their names without prior written | ||
43 | * permission of the OpenSSL Project. | ||
44 | * | ||
45 | * 6. Redistributions of any form whatsoever must retain the following | ||
46 | * acknowledgment: | ||
47 | * "This product includes software developed by the OpenSSL Project | ||
48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
62 | * ==================================================================== | ||
63 | * | ||
64 | * This product includes cryptographic software written by Eric Young | ||
65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
66 | * Hudson (tjh@cryptsoft.com). | ||
67 | * | ||
68 | */ | ||
69 | |||
70 | #include <openssl/opensslconf.h> | ||
71 | |||
72 | #include <openssl/err.h> | ||
73 | |||
74 | #include "bn_local.h" | ||
75 | #include "ec_local.h" | ||
76 | |||
77 | #ifndef OPENSSL_NO_EC2M | ||
78 | |||
79 | |||
80 | /* Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective | ||
81 | * coordinates. | ||
82 | * Uses algorithm Mdouble in appendix of | ||
83 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
84 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
85 | * modified to not require precomputation of c=b^{2^{m-1}}. | ||
86 | */ | ||
87 | static int | ||
88 | gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z, BN_CTX *ctx) | ||
89 | { | ||
90 | BIGNUM *t1; | ||
91 | int ret = 0; | ||
92 | |||
93 | /* Since Mdouble is static we can guarantee that ctx != NULL. */ | ||
94 | BN_CTX_start(ctx); | ||
95 | if ((t1 = BN_CTX_get(ctx)) == NULL) | ||
96 | goto err; | ||
97 | |||
98 | if (!group->meth->field_sqr(group, x, x, ctx)) | ||
99 | goto err; | ||
100 | if (!group->meth->field_sqr(group, t1, z, ctx)) | ||
101 | goto err; | ||
102 | if (!group->meth->field_mul(group, z, x, t1, ctx)) | ||
103 | goto err; | ||
104 | if (!group->meth->field_sqr(group, x, x, ctx)) | ||
105 | goto err; | ||
106 | if (!group->meth->field_sqr(group, t1, t1, ctx)) | ||
107 | goto err; | ||
108 | if (!group->meth->field_mul(group, t1, &group->b, t1, ctx)) | ||
109 | goto err; | ||
110 | if (!BN_GF2m_add(x, x, t1)) | ||
111 | goto err; | ||
112 | |||
113 | ret = 1; | ||
114 | |||
115 | err: | ||
116 | BN_CTX_end(ctx); | ||
117 | return ret; | ||
118 | } | ||
119 | |||
120 | /* Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery | ||
121 | * projective coordinates. | ||
122 | * Uses algorithm Madd in appendix of | ||
123 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
124 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
125 | */ | ||
126 | static int | ||
127 | gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1, BIGNUM *z1, | ||
128 | const BIGNUM *x2, const BIGNUM *z2, BN_CTX *ctx) | ||
129 | { | ||
130 | BIGNUM *t1, *t2; | ||
131 | int ret = 0; | ||
132 | |||
133 | /* Since Madd is static we can guarantee that ctx != NULL. */ | ||
134 | BN_CTX_start(ctx); | ||
135 | if ((t1 = BN_CTX_get(ctx)) == NULL) | ||
136 | goto err; | ||
137 | if ((t2 = BN_CTX_get(ctx)) == NULL) | ||
138 | goto err; | ||
139 | |||
140 | if (!bn_copy(t1, x)) | ||
141 | goto err; | ||
142 | if (!group->meth->field_mul(group, x1, x1, z2, ctx)) | ||
143 | goto err; | ||
144 | if (!group->meth->field_mul(group, z1, z1, x2, ctx)) | ||
145 | goto err; | ||
146 | if (!group->meth->field_mul(group, t2, x1, z1, ctx)) | ||
147 | goto err; | ||
148 | if (!BN_GF2m_add(z1, z1, x1)) | ||
149 | goto err; | ||
150 | if (!group->meth->field_sqr(group, z1, z1, ctx)) | ||
151 | goto err; | ||
152 | if (!group->meth->field_mul(group, x1, z1, t1, ctx)) | ||
153 | goto err; | ||
154 | if (!BN_GF2m_add(x1, x1, t2)) | ||
155 | goto err; | ||
156 | |||
157 | ret = 1; | ||
158 | |||
159 | err: | ||
160 | BN_CTX_end(ctx); | ||
161 | return ret; | ||
162 | } | ||
163 | |||
164 | /* Compute the x, y affine coordinates from the point (x1, z1) (x2, z2) | ||
165 | * using Montgomery point multiplication algorithm Mxy() in appendix of | ||
166 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
167 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
168 | * Returns: | ||
169 | * 0 on error | ||
170 | * 1 if return value should be the point at infinity | ||
171 | * 2 otherwise | ||
172 | */ | ||
173 | static int | ||
174 | gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y, BIGNUM *x1, | ||
175 | BIGNUM *z1, BIGNUM *x2, BIGNUM *z2, BN_CTX *ctx) | ||
176 | { | ||
177 | BIGNUM *t3, *t4, *t5; | ||
178 | int ret = 0; | ||
179 | |||
180 | if (BN_is_zero(z1)) { | ||
181 | BN_zero(x2); | ||
182 | BN_zero(z2); | ||
183 | return 1; | ||
184 | } | ||
185 | if (BN_is_zero(z2)) { | ||
186 | if (!bn_copy(x2, x)) | ||
187 | return 0; | ||
188 | if (!BN_GF2m_add(z2, x, y)) | ||
189 | return 0; | ||
190 | return 2; | ||
191 | } | ||
192 | /* Since Mxy is static we can guarantee that ctx != NULL. */ | ||
193 | BN_CTX_start(ctx); | ||
194 | if ((t3 = BN_CTX_get(ctx)) == NULL) | ||
195 | goto err; | ||
196 | if ((t4 = BN_CTX_get(ctx)) == NULL) | ||
197 | goto err; | ||
198 | if ((t5 = BN_CTX_get(ctx)) == NULL) | ||
199 | goto err; | ||
200 | |||
201 | if (!BN_one(t5)) | ||
202 | goto err; | ||
203 | |||
204 | if (!group->meth->field_mul(group, t3, z1, z2, ctx)) | ||
205 | goto err; | ||
206 | |||
207 | if (!group->meth->field_mul(group, z1, z1, x, ctx)) | ||
208 | goto err; | ||
209 | if (!BN_GF2m_add(z1, z1, x1)) | ||
210 | goto err; | ||
211 | if (!group->meth->field_mul(group, z2, z2, x, ctx)) | ||
212 | goto err; | ||
213 | if (!group->meth->field_mul(group, x1, z2, x1, ctx)) | ||
214 | goto err; | ||
215 | if (!BN_GF2m_add(z2, z2, x2)) | ||
216 | goto err; | ||
217 | |||
218 | if (!group->meth->field_mul(group, z2, z2, z1, ctx)) | ||
219 | goto err; | ||
220 | if (!group->meth->field_sqr(group, t4, x, ctx)) | ||
221 | goto err; | ||
222 | if (!BN_GF2m_add(t4, t4, y)) | ||
223 | goto err; | ||
224 | if (!group->meth->field_mul(group, t4, t4, t3, ctx)) | ||
225 | goto err; | ||
226 | if (!BN_GF2m_add(t4, t4, z2)) | ||
227 | goto err; | ||
228 | |||
229 | if (!group->meth->field_mul(group, t3, t3, x, ctx)) | ||
230 | goto err; | ||
231 | if (!group->meth->field_div(group, t3, t5, t3, ctx)) | ||
232 | goto err; | ||
233 | if (!group->meth->field_mul(group, t4, t3, t4, ctx)) | ||
234 | goto err; | ||
235 | if (!group->meth->field_mul(group, x2, x1, t3, ctx)) | ||
236 | goto err; | ||
237 | if (!BN_GF2m_add(z2, x2, x)) | ||
238 | goto err; | ||
239 | |||
240 | if (!group->meth->field_mul(group, z2, z2, t4, ctx)) | ||
241 | goto err; | ||
242 | if (!BN_GF2m_add(z2, z2, y)) | ||
243 | goto err; | ||
244 | |||
245 | ret = 2; | ||
246 | |||
247 | err: | ||
248 | BN_CTX_end(ctx); | ||
249 | return ret; | ||
250 | } | ||
251 | |||
252 | |||
253 | /* Computes scalar*point and stores the result in r. | ||
254 | * point can not equal r. | ||
255 | * Uses a modified algorithm 2P of | ||
256 | * Lopez, J. and Dahab, R. "Fast multiplication on elliptic curves over | ||
257 | * GF(2^m) without precomputation" (CHES '99, LNCS 1717). | ||
258 | * | ||
259 | * To protect against side-channel attack the function uses constant time swap, | ||
260 | * avoiding conditional branches. | ||
261 | */ | ||
262 | static int | ||
263 | ec_GF2m_montgomery_point_multiply(const EC_GROUP *group, EC_POINT *r, | ||
264 | const BIGNUM *scalar, const EC_POINT *point, BN_CTX *ctx) | ||
265 | { | ||
266 | BIGNUM *x1, *x2, *z1, *z2; | ||
267 | int ret = 0, i; | ||
268 | BN_ULONG mask, word; | ||
269 | |||
270 | if (r == point) { | ||
271 | ECerror(EC_R_INVALID_ARGUMENT); | ||
272 | return 0; | ||
273 | } | ||
274 | /* if result should be point at infinity */ | ||
275 | if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) || | ||
276 | EC_POINT_is_at_infinity(group, point) > 0) { | ||
277 | return EC_POINT_set_to_infinity(group, r); | ||
278 | } | ||
279 | /* only support affine coordinates */ | ||
280 | if (!point->Z_is_one) | ||
281 | return 0; | ||
282 | |||
283 | /* Since point_multiply is static we can guarantee that ctx != NULL. */ | ||
284 | BN_CTX_start(ctx); | ||
285 | if ((x1 = BN_CTX_get(ctx)) == NULL) | ||
286 | goto err; | ||
287 | if ((z1 = BN_CTX_get(ctx)) == NULL) | ||
288 | goto err; | ||
289 | |||
290 | x2 = &r->X; | ||
291 | z2 = &r->Y; | ||
292 | |||
293 | if (!bn_wexpand(x1, group->field.top)) | ||
294 | goto err; | ||
295 | if (!bn_wexpand(z1, group->field.top)) | ||
296 | goto err; | ||
297 | if (!bn_wexpand(x2, group->field.top)) | ||
298 | goto err; | ||
299 | if (!bn_wexpand(z2, group->field.top)) | ||
300 | goto err; | ||
301 | |||
302 | if (!BN_GF2m_mod_arr(x1, &point->X, group->poly)) | ||
303 | goto err; /* x1 = x */ | ||
304 | if (!BN_one(z1)) | ||
305 | goto err; /* z1 = 1 */ | ||
306 | if (!group->meth->field_sqr(group, z2, x1, ctx)) | ||
307 | goto err; /* z2 = x1^2 = x^2 */ | ||
308 | if (!group->meth->field_sqr(group, x2, z2, ctx)) | ||
309 | goto err; | ||
310 | if (!BN_GF2m_add(x2, x2, &group->b)) | ||
311 | goto err; /* x2 = x^4 + b */ | ||
312 | |||
313 | /* find top most bit and go one past it */ | ||
314 | i = scalar->top - 1; | ||
315 | mask = BN_TBIT; | ||
316 | word = scalar->d[i]; | ||
317 | while (!(word & mask)) | ||
318 | mask >>= 1; | ||
319 | mask >>= 1; | ||
320 | /* if top most bit was at word break, go to next word */ | ||
321 | if (!mask) { | ||
322 | i--; | ||
323 | mask = BN_TBIT; | ||
324 | } | ||
325 | for (; i >= 0; i--) { | ||
326 | word = scalar->d[i]; | ||
327 | while (mask) { | ||
328 | if (!BN_swap_ct(word & mask, x1, x2, group->field.top)) | ||
329 | goto err; | ||
330 | if (!BN_swap_ct(word & mask, z1, z2, group->field.top)) | ||
331 | goto err; | ||
332 | if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx)) | ||
333 | goto err; | ||
334 | if (!gf2m_Mdouble(group, x1, z1, ctx)) | ||
335 | goto err; | ||
336 | if (!BN_swap_ct(word & mask, x1, x2, group->field.top)) | ||
337 | goto err; | ||
338 | if (!BN_swap_ct(word & mask, z1, z2, group->field.top)) | ||
339 | goto err; | ||
340 | mask >>= 1; | ||
341 | } | ||
342 | mask = BN_TBIT; | ||
343 | } | ||
344 | |||
345 | /* convert out of "projective" coordinates */ | ||
346 | i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx); | ||
347 | if (i == 0) | ||
348 | goto err; | ||
349 | else if (i == 1) { | ||
350 | if (!EC_POINT_set_to_infinity(group, r)) | ||
351 | goto err; | ||
352 | } else { | ||
353 | if (!BN_one(&r->Z)) | ||
354 | goto err; | ||
355 | r->Z_is_one = 1; | ||
356 | } | ||
357 | |||
358 | /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ | ||
359 | BN_set_negative(&r->X, 0); | ||
360 | BN_set_negative(&r->Y, 0); | ||
361 | |||
362 | ret = 1; | ||
363 | |||
364 | err: | ||
365 | BN_CTX_end(ctx); | ||
366 | return ret; | ||
367 | } | ||
368 | |||
369 | |||
370 | /* Computes the sum | ||
371 | * scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1] | ||
372 | * gracefully ignoring NULL scalar values. | ||
373 | */ | ||
374 | int | ||
375 | ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
376 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], BN_CTX *ctx) | ||
377 | { | ||
378 | EC_POINT *p = NULL; | ||
379 | EC_POINT *acc = NULL; | ||
380 | size_t i; | ||
381 | int ret = 0; | ||
382 | |||
383 | /* | ||
384 | * This implementation is more efficient than the wNAF implementation | ||
385 | * for 2 or fewer points. Use the ec_wNAF_mul implementation for 3 | ||
386 | * or more points, or if we can perform a fast multiplication based | ||
387 | * on precomputation. | ||
388 | */ | ||
389 | if ((scalar && (num > 1)) || (num > 2) || | ||
390 | (num == 0 && EC_GROUP_have_precompute_mult(group))) { | ||
391 | ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); | ||
392 | goto err; | ||
393 | } | ||
394 | if ((p = EC_POINT_new(group)) == NULL) | ||
395 | goto err; | ||
396 | if ((acc = EC_POINT_new(group)) == NULL) | ||
397 | goto err; | ||
398 | |||
399 | if (!EC_POINT_set_to_infinity(group, acc)) | ||
400 | goto err; | ||
401 | |||
402 | if (scalar) { | ||
403 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalar, group->generator, ctx)) | ||
404 | goto err; | ||
405 | if (BN_is_negative(scalar)) | ||
406 | if (!group->meth->invert(group, p, ctx)) | ||
407 | goto err; | ||
408 | if (!group->meth->add(group, acc, acc, p, ctx)) | ||
409 | goto err; | ||
410 | } | ||
411 | for (i = 0; i < num; i++) { | ||
412 | if (!ec_GF2m_montgomery_point_multiply(group, p, scalars[i], points[i], ctx)) | ||
413 | goto err; | ||
414 | if (BN_is_negative(scalars[i])) | ||
415 | if (!group->meth->invert(group, p, ctx)) | ||
416 | goto err; | ||
417 | if (!group->meth->add(group, acc, acc, p, ctx)) | ||
418 | goto err; | ||
419 | } | ||
420 | |||
421 | if (!EC_POINT_copy(r, acc)) | ||
422 | goto err; | ||
423 | |||
424 | ret = 1; | ||
425 | |||
426 | err: | ||
427 | EC_POINT_free(p); | ||
428 | EC_POINT_free(acc); | ||
429 | |||
430 | return ret; | ||
431 | } | ||
432 | |||
433 | |||
434 | /* Precomputation for point multiplication: fall back to wNAF methods | ||
435 | * because ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate */ | ||
436 | |||
437 | int | ||
438 | ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx) | ||
439 | { | ||
440 | return ec_wNAF_precompute_mult(group, ctx); | ||
441 | } | ||
442 | |||
443 | int | ||
444 | ec_GF2m_have_precompute_mult(const EC_GROUP *group) | ||
445 | { | ||
446 | return ec_wNAF_have_precompute_mult(group); | ||
447 | } | ||
448 | |||
449 | #endif | ||