diff options
author | tb <> | 2023-04-25 19:53:30 +0000 |
---|---|---|
committer | tb <> | 2023-04-25 19:53:30 +0000 |
commit | 82b040aef9cef17610a89204220ee3cb1012fb20 (patch) | |
tree | e9be44ea96c7294efcc800d9cb419edbab4fe999 /src/lib/libcrypto/ec/ec2_oct.c | |
parent | aa0643f4294a31c69cf4097f866cd5cb11e48c1e (diff) | |
download | openbsd-82b040aef9cef17610a89204220ee3cb1012fb20.tar.gz openbsd-82b040aef9cef17610a89204220ee3cb1012fb20.tar.bz2 openbsd-82b040aef9cef17610a89204220ee3cb1012fb20.zip |
GF2m bites the dust. It won't be missed.
Diffstat (limited to 'src/lib/libcrypto/ec/ec2_oct.c')
-rw-r--r-- | src/lib/libcrypto/ec/ec2_oct.c | 402 |
1 files changed, 0 insertions, 402 deletions
diff --git a/src/lib/libcrypto/ec/ec2_oct.c b/src/lib/libcrypto/ec/ec2_oct.c deleted file mode 100644 index 6cb7259824..0000000000 --- a/src/lib/libcrypto/ec/ec2_oct.c +++ /dev/null | |||
@@ -1,402 +0,0 @@ | |||
1 | /* $OpenBSD: ec2_oct.c,v 1.20 2023/04/11 18:58:20 jsing Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * The software is originally written by Sheueling Chang Shantz and | ||
13 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
14 | * | ||
15 | */ | ||
16 | /* ==================================================================== | ||
17 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
18 | * | ||
19 | * Redistribution and use in source and binary forms, with or without | ||
20 | * modification, are permitted provided that the following conditions | ||
21 | * are met: | ||
22 | * | ||
23 | * 1. Redistributions of source code must retain the above copyright | ||
24 | * notice, this list of conditions and the following disclaimer. | ||
25 | * | ||
26 | * 2. Redistributions in binary form must reproduce the above copyright | ||
27 | * notice, this list of conditions and the following disclaimer in | ||
28 | * the documentation and/or other materials provided with the | ||
29 | * distribution. | ||
30 | * | ||
31 | * 3. All advertising materials mentioning features or use of this | ||
32 | * software must display the following acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
35 | * | ||
36 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
37 | * endorse or promote products derived from this software without | ||
38 | * prior written permission. For written permission, please contact | ||
39 | * openssl-core@openssl.org. | ||
40 | * | ||
41 | * 5. Products derived from this software may not be called "OpenSSL" | ||
42 | * nor may "OpenSSL" appear in their names without prior written | ||
43 | * permission of the OpenSSL Project. | ||
44 | * | ||
45 | * 6. Redistributions of any form whatsoever must retain the following | ||
46 | * acknowledgment: | ||
47 | * "This product includes software developed by the OpenSSL Project | ||
48 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
51 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
52 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
53 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
54 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
56 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
57 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
58 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
59 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
60 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
61 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
62 | * ==================================================================== | ||
63 | * | ||
64 | * This product includes cryptographic software written by Eric Young | ||
65 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
66 | * Hudson (tjh@cryptsoft.com). | ||
67 | * | ||
68 | */ | ||
69 | |||
70 | #include <openssl/opensslconf.h> | ||
71 | |||
72 | #include <openssl/err.h> | ||
73 | |||
74 | #include "ec_local.h" | ||
75 | |||
76 | #ifndef OPENSSL_NO_EC2M | ||
77 | |||
78 | /* Calculates and sets the affine coordinates of an EC_POINT from the given | ||
79 | * compressed coordinates. Uses algorithm 2.3.4 of SEC 1. | ||
80 | * Note that the simple implementation only uses affine coordinates. | ||
81 | * | ||
82 | * The method is from the following publication: | ||
83 | * | ||
84 | * Harper, Menezes, Vanstone: | ||
85 | * "Public-Key Cryptosystems with Very Small Key Lengths", | ||
86 | * EUROCRYPT '92, Springer-Verlag LNCS 658, | ||
87 | * published February 1993 | ||
88 | * | ||
89 | * US Patents 6,141,420 and 6,618,483 (Vanstone, Mullin, Agnew) describe | ||
90 | * the same method, but claim no priority date earlier than July 29, 1994 | ||
91 | * (and additionally fail to cite the EUROCRYPT '92 publication as prior art). | ||
92 | */ | ||
93 | int | ||
94 | ec_GF2m_simple_set_compressed_coordinates(const EC_GROUP *group, EC_POINT *point, | ||
95 | const BIGNUM *x_, int y_bit, BN_CTX *ctx) | ||
96 | { | ||
97 | BIGNUM *tmp, *x, *y, *z; | ||
98 | int z0; | ||
99 | int ret = 0; | ||
100 | |||
101 | /* clear error queue */ | ||
102 | ERR_clear_error(); | ||
103 | |||
104 | y_bit = (y_bit != 0) ? 1 : 0; | ||
105 | |||
106 | BN_CTX_start(ctx); | ||
107 | |||
108 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
109 | goto err; | ||
110 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
111 | goto err; | ||
112 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
113 | goto err; | ||
114 | if ((z = BN_CTX_get(ctx)) == NULL) | ||
115 | goto err; | ||
116 | |||
117 | if (!BN_GF2m_mod_arr(x, x_, group->poly)) | ||
118 | goto err; | ||
119 | if (BN_is_zero(x)) { | ||
120 | if (y_bit != 0) { | ||
121 | ECerror(EC_R_INVALID_COMPRESSED_POINT); | ||
122 | goto err; | ||
123 | } | ||
124 | if (!BN_GF2m_mod_sqrt_arr(y, &group->b, group->poly, ctx)) | ||
125 | goto err; | ||
126 | } else { | ||
127 | if (!group->meth->field_sqr(group, tmp, x, ctx)) | ||
128 | goto err; | ||
129 | if (!group->meth->field_div(group, tmp, &group->b, tmp, ctx)) | ||
130 | goto err; | ||
131 | if (!BN_GF2m_add(tmp, &group->a, tmp)) | ||
132 | goto err; | ||
133 | if (!BN_GF2m_add(tmp, x, tmp)) | ||
134 | goto err; | ||
135 | if (!BN_GF2m_mod_solve_quad_arr(z, tmp, group->poly, ctx)) { | ||
136 | unsigned long err = ERR_peek_last_error(); | ||
137 | |||
138 | if (ERR_GET_LIB(err) == ERR_LIB_BN && | ||
139 | ERR_GET_REASON(err) == BN_R_NO_SOLUTION) { | ||
140 | ERR_clear_error(); | ||
141 | ECerror(EC_R_INVALID_COMPRESSED_POINT); | ||
142 | } else | ||
143 | ECerror(ERR_R_BN_LIB); | ||
144 | goto err; | ||
145 | } | ||
146 | z0 = (BN_is_odd(z)) ? 1 : 0; | ||
147 | if (!group->meth->field_mul(group, y, x, z, ctx)) | ||
148 | goto err; | ||
149 | if (z0 != y_bit) { | ||
150 | if (!BN_GF2m_add(y, y, x)) | ||
151 | goto err; | ||
152 | } | ||
153 | } | ||
154 | |||
155 | if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) | ||
156 | goto err; | ||
157 | |||
158 | ret = 1; | ||
159 | |||
160 | err: | ||
161 | BN_CTX_end(ctx); | ||
162 | |||
163 | return ret; | ||
164 | } | ||
165 | |||
166 | |||
167 | /* Converts an EC_POINT to an octet string. | ||
168 | * If buf is NULL, the encoded length will be returned. | ||
169 | * If the length len of buf is smaller than required an error will be returned. | ||
170 | */ | ||
171 | size_t | ||
172 | ec_GF2m_simple_point2oct(const EC_GROUP *group, const EC_POINT *point, | ||
173 | point_conversion_form_t form, | ||
174 | unsigned char *buf, size_t len, BN_CTX *ctx) | ||
175 | { | ||
176 | BIGNUM *x, *y, *yxi; | ||
177 | size_t field_len, i, skip; | ||
178 | size_t ret; | ||
179 | |||
180 | if (form != POINT_CONVERSION_COMPRESSED && | ||
181 | form != POINT_CONVERSION_UNCOMPRESSED && | ||
182 | form != POINT_CONVERSION_HYBRID) { | ||
183 | ECerror(EC_R_INVALID_FORM); | ||
184 | return 0; | ||
185 | } | ||
186 | |||
187 | if (EC_POINT_is_at_infinity(group, point) > 0) { | ||
188 | /* encodes to a single 0 octet */ | ||
189 | if (buf != NULL) { | ||
190 | if (len < 1) { | ||
191 | ECerror(EC_R_BUFFER_TOO_SMALL); | ||
192 | return 0; | ||
193 | } | ||
194 | buf[0] = 0; | ||
195 | } | ||
196 | return 1; | ||
197 | } | ||
198 | |||
199 | BN_CTX_start(ctx); | ||
200 | |||
201 | /* ret := required output buffer length */ | ||
202 | field_len = (EC_GROUP_get_degree(group) + 7) / 8; | ||
203 | ret = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : | ||
204 | 1 + 2 * field_len; | ||
205 | |||
206 | /* if 'buf' is NULL, just return required length */ | ||
207 | if (buf != NULL) { | ||
208 | if (len < ret) { | ||
209 | ECerror(EC_R_BUFFER_TOO_SMALL); | ||
210 | goto err; | ||
211 | } | ||
212 | |||
213 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
214 | goto err; | ||
215 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
216 | goto err; | ||
217 | if ((yxi = BN_CTX_get(ctx)) == NULL) | ||
218 | goto err; | ||
219 | |||
220 | if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) | ||
221 | goto err; | ||
222 | |||
223 | buf[0] = form; | ||
224 | if ((form != POINT_CONVERSION_UNCOMPRESSED) && !BN_is_zero(x)) { | ||
225 | if (!group->meth->field_div(group, yxi, y, x, ctx)) | ||
226 | goto err; | ||
227 | if (BN_is_odd(yxi)) | ||
228 | buf[0]++; | ||
229 | } | ||
230 | i = 1; | ||
231 | |||
232 | skip = field_len - BN_num_bytes(x); | ||
233 | if (skip > field_len) { | ||
234 | ECerror(ERR_R_INTERNAL_ERROR); | ||
235 | goto err; | ||
236 | } | ||
237 | while (skip > 0) { | ||
238 | buf[i++] = 0; | ||
239 | skip--; | ||
240 | } | ||
241 | skip = BN_bn2bin(x, buf + i); | ||
242 | i += skip; | ||
243 | if (i != 1 + field_len) { | ||
244 | ECerror(ERR_R_INTERNAL_ERROR); | ||
245 | goto err; | ||
246 | } | ||
247 | if (form == POINT_CONVERSION_UNCOMPRESSED || | ||
248 | form == POINT_CONVERSION_HYBRID) { | ||
249 | skip = field_len - BN_num_bytes(y); | ||
250 | if (skip > field_len) { | ||
251 | ECerror(ERR_R_INTERNAL_ERROR); | ||
252 | goto err; | ||
253 | } | ||
254 | while (skip > 0) { | ||
255 | buf[i++] = 0; | ||
256 | skip--; | ||
257 | } | ||
258 | skip = BN_bn2bin(y, buf + i); | ||
259 | i += skip; | ||
260 | } | ||
261 | if (i != ret) { | ||
262 | ECerror(ERR_R_INTERNAL_ERROR); | ||
263 | goto err; | ||
264 | } | ||
265 | } | ||
266 | |||
267 | err: | ||
268 | BN_CTX_end(ctx); | ||
269 | |||
270 | return ret; | ||
271 | } | ||
272 | |||
273 | /* | ||
274 | * Converts an octet string representation to an EC_POINT. | ||
275 | * Note that the simple implementation only uses affine coordinates. | ||
276 | */ | ||
277 | int | ||
278 | ec_GF2m_simple_oct2point(const EC_GROUP *group, EC_POINT *point, | ||
279 | const unsigned char *buf, size_t len, BN_CTX *ctx) | ||
280 | { | ||
281 | point_conversion_form_t form; | ||
282 | int y_bit; | ||
283 | BIGNUM *x, *y, *yxi; | ||
284 | size_t field_len, enc_len; | ||
285 | int ret = 0; | ||
286 | |||
287 | if (len == 0) { | ||
288 | ECerror(EC_R_BUFFER_TOO_SMALL); | ||
289 | return 0; | ||
290 | } | ||
291 | |||
292 | /* | ||
293 | * The first octet is the point conversion octet PC, see X9.62, page 4 | ||
294 | * and section 4.4.2. It must be: | ||
295 | * 0x00 for the point at infinity | ||
296 | * 0x02 or 0x03 for compressed form | ||
297 | * 0x04 for uncompressed form | ||
298 | * 0x06 or 0x07 for hybrid form. | ||
299 | * For compressed or hybrid forms, we store the last bit of buf[0] as | ||
300 | * y_bit and clear it from buf[0] so as to obtain a POINT_CONVERSION_*. | ||
301 | * We error if buf[0] contains any but the above values. | ||
302 | */ | ||
303 | y_bit = buf[0] & 1; | ||
304 | form = buf[0] & ~1U; | ||
305 | |||
306 | if (form != 0 && form != POINT_CONVERSION_COMPRESSED && | ||
307 | form != POINT_CONVERSION_UNCOMPRESSED && | ||
308 | form != POINT_CONVERSION_HYBRID) { | ||
309 | ECerror(EC_R_INVALID_ENCODING); | ||
310 | return 0; | ||
311 | } | ||
312 | if (form == 0 || form == POINT_CONVERSION_UNCOMPRESSED) { | ||
313 | if (y_bit != 0) { | ||
314 | ECerror(EC_R_INVALID_ENCODING); | ||
315 | return 0; | ||
316 | } | ||
317 | } | ||
318 | |||
319 | /* The point at infinity is represented by a single zero octet. */ | ||
320 | if (form == 0) { | ||
321 | if (len != 1) { | ||
322 | ECerror(EC_R_INVALID_ENCODING); | ||
323 | return 0; | ||
324 | } | ||
325 | return EC_POINT_set_to_infinity(group, point); | ||
326 | } | ||
327 | |||
328 | field_len = (EC_GROUP_get_degree(group) + 7) / 8; | ||
329 | enc_len = (form == POINT_CONVERSION_COMPRESSED) ? 1 + field_len : | ||
330 | 1 + 2 * field_len; | ||
331 | |||
332 | if (len != enc_len) { | ||
333 | ECerror(EC_R_INVALID_ENCODING); | ||
334 | return 0; | ||
335 | } | ||
336 | |||
337 | BN_CTX_start(ctx); | ||
338 | |||
339 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
340 | goto err; | ||
341 | if ((y = BN_CTX_get(ctx)) == NULL) | ||
342 | goto err; | ||
343 | if ((yxi = BN_CTX_get(ctx)) == NULL) | ||
344 | goto err; | ||
345 | |||
346 | if (!BN_bin2bn(buf + 1, field_len, x)) | ||
347 | goto err; | ||
348 | if (BN_ucmp(x, &group->field) >= 0) { | ||
349 | ECerror(EC_R_INVALID_ENCODING); | ||
350 | goto err; | ||
351 | } | ||
352 | if (form == POINT_CONVERSION_COMPRESSED) { | ||
353 | /* | ||
354 | * EC_POINT_set_compressed_coordinates checks that the | ||
355 | * point is on the curve as required by X9.62. | ||
356 | */ | ||
357 | if (!EC_POINT_set_compressed_coordinates(group, point, x, y_bit, ctx)) | ||
358 | goto err; | ||
359 | } else { | ||
360 | if (!BN_bin2bn(buf + 1 + field_len, field_len, y)) | ||
361 | goto err; | ||
362 | if (BN_ucmp(y, &group->field) >= 0) { | ||
363 | ECerror(EC_R_INVALID_ENCODING); | ||
364 | goto err; | ||
365 | } | ||
366 | if (form == POINT_CONVERSION_HYBRID) { | ||
367 | /* | ||
368 | * Check that the form in the encoding was set | ||
369 | * correctly according to X9.62 4.4.2.a, 4(c), | ||
370 | * see also first paragraph of X9.62 4.4.1.b. | ||
371 | */ | ||
372 | if (BN_is_zero(x)) { | ||
373 | if (y_bit != 0) { | ||
374 | ECerror(EC_R_INVALID_ENCODING); | ||
375 | goto err; | ||
376 | } | ||
377 | } else { | ||
378 | if (!group->meth->field_div(group, yxi, y, x, | ||
379 | ctx)) | ||
380 | goto err; | ||
381 | if (y_bit != BN_is_odd(yxi)) { | ||
382 | ECerror(EC_R_INVALID_ENCODING); | ||
383 | goto err; | ||
384 | } | ||
385 | } | ||
386 | } | ||
387 | /* | ||
388 | * EC_POINT_set_affine_coordinates checks that the | ||
389 | * point is on the curve as required by X9.62. | ||
390 | */ | ||
391 | if (!EC_POINT_set_affine_coordinates(group, point, x, y, ctx)) | ||
392 | goto err; | ||
393 | } | ||
394 | |||
395 | ret = 1; | ||
396 | |||
397 | err: | ||
398 | BN_CTX_end(ctx); | ||
399 | |||
400 | return ret; | ||
401 | } | ||
402 | #endif | ||