diff options
author | cvs2svn <admin@example.com> | 2025-04-14 17:32:06 +0000 |
---|---|---|
committer | cvs2svn <admin@example.com> | 2025-04-14 17:32:06 +0000 |
commit | eb8dd9dca1228af0cd132f515509051ecfabf6f6 (patch) | |
tree | edb6da6af7e865d488dc1a29309f1e1ec226e603 /src/lib/libcrypto/ecdsa/ecdsa.c | |
parent | 247f0352e0ed72a4f476db9dc91f4d982bc83eb2 (diff) | |
download | openbsd-tb_20250414.tar.gz openbsd-tb_20250414.tar.bz2 openbsd-tb_20250414.zip |
This commit was manufactured by cvs2git to create tag 'tb_20250414'.tb_20250414
Diffstat (limited to 'src/lib/libcrypto/ecdsa/ecdsa.c')
-rw-r--r-- | src/lib/libcrypto/ecdsa/ecdsa.c | 774 |
1 files changed, 0 insertions, 774 deletions
diff --git a/src/lib/libcrypto/ecdsa/ecdsa.c b/src/lib/libcrypto/ecdsa/ecdsa.c deleted file mode 100644 index 5abc3586e3..0000000000 --- a/src/lib/libcrypto/ecdsa/ecdsa.c +++ /dev/null | |||
@@ -1,774 +0,0 @@ | |||
1 | /* $OpenBSD: ecdsa.c,v 1.19 2024/04/15 15:49:37 tb Exp $ */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright (c) 2000-2002 The OpenSSL Project. All rights reserved. | ||
4 | * | ||
5 | * Redistribution and use in source and binary forms, with or without | ||
6 | * modification, are permitted provided that the following conditions | ||
7 | * are met: | ||
8 | * | ||
9 | * 1. Redistributions of source code must retain the above copyright | ||
10 | * notice, this list of conditions and the following disclaimer. | ||
11 | * | ||
12 | * 2. Redistributions in binary form must reproduce the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer in | ||
14 | * the documentation and/or other materials provided with the | ||
15 | * distribution. | ||
16 | * | ||
17 | * 3. All advertising materials mentioning features or use of this | ||
18 | * software must display the following acknowledgment: | ||
19 | * "This product includes software developed by the OpenSSL Project | ||
20 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
21 | * | ||
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
23 | * endorse or promote products derived from this software without | ||
24 | * prior written permission. For written permission, please contact | ||
25 | * licensing@OpenSSL.org. | ||
26 | * | ||
27 | * 5. Products derived from this software may not be called "OpenSSL" | ||
28 | * nor may "OpenSSL" appear in their names without prior written | ||
29 | * permission of the OpenSSL Project. | ||
30 | * | ||
31 | * 6. Redistributions of any form whatsoever must retain the following | ||
32 | * acknowledgment: | ||
33 | * "This product includes software developed by the OpenSSL Project | ||
34 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
35 | * | ||
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
48 | * ==================================================================== | ||
49 | * | ||
50 | * This product includes cryptographic software written by Eric Young | ||
51 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
52 | * Hudson (tjh@cryptsoft.com). | ||
53 | * | ||
54 | */ | ||
55 | |||
56 | #include <stddef.h> | ||
57 | #include <stdlib.h> | ||
58 | #include <string.h> | ||
59 | |||
60 | #include <openssl/asn1.h> | ||
61 | #include <openssl/asn1t.h> | ||
62 | #include <openssl/bn.h> | ||
63 | #include <openssl/ec.h> | ||
64 | #include <openssl/err.h> | ||
65 | |||
66 | #include "bn_local.h" | ||
67 | #include "ec_local.h" | ||
68 | #include "ecdsa_local.h" | ||
69 | |||
70 | static const ASN1_TEMPLATE ECDSA_SIG_seq_tt[] = { | ||
71 | { | ||
72 | .flags = 0, | ||
73 | .tag = 0, | ||
74 | .offset = offsetof(ECDSA_SIG, r), | ||
75 | .field_name = "r", | ||
76 | .item = &BIGNUM_it, | ||
77 | }, | ||
78 | { | ||
79 | .flags = 0, | ||
80 | .tag = 0, | ||
81 | .offset = offsetof(ECDSA_SIG, s), | ||
82 | .field_name = "s", | ||
83 | .item = &BIGNUM_it, | ||
84 | }, | ||
85 | }; | ||
86 | |||
87 | static const ASN1_ITEM ECDSA_SIG_it = { | ||
88 | .itype = ASN1_ITYPE_SEQUENCE, | ||
89 | .utype = V_ASN1_SEQUENCE, | ||
90 | .templates = ECDSA_SIG_seq_tt, | ||
91 | .tcount = sizeof(ECDSA_SIG_seq_tt) / sizeof(ASN1_TEMPLATE), | ||
92 | .funcs = NULL, | ||
93 | .size = sizeof(ECDSA_SIG), | ||
94 | .sname = "ECDSA_SIG", | ||
95 | }; | ||
96 | |||
97 | ECDSA_SIG * | ||
98 | d2i_ECDSA_SIG(ECDSA_SIG **a, const unsigned char **in, long len) | ||
99 | { | ||
100 | return (ECDSA_SIG *)ASN1_item_d2i((ASN1_VALUE **)a, in, len, | ||
101 | &ECDSA_SIG_it); | ||
102 | } | ||
103 | LCRYPTO_ALIAS(d2i_ECDSA_SIG); | ||
104 | |||
105 | int | ||
106 | i2d_ECDSA_SIG(const ECDSA_SIG *a, unsigned char **out) | ||
107 | { | ||
108 | return ASN1_item_i2d((ASN1_VALUE *)a, out, &ECDSA_SIG_it); | ||
109 | } | ||
110 | LCRYPTO_ALIAS(i2d_ECDSA_SIG); | ||
111 | |||
112 | ECDSA_SIG * | ||
113 | ECDSA_SIG_new(void) | ||
114 | { | ||
115 | return (ECDSA_SIG *)ASN1_item_new(&ECDSA_SIG_it); | ||
116 | } | ||
117 | LCRYPTO_ALIAS(ECDSA_SIG_new); | ||
118 | |||
119 | void | ||
120 | ECDSA_SIG_free(ECDSA_SIG *a) | ||
121 | { | ||
122 | ASN1_item_free((ASN1_VALUE *)a, &ECDSA_SIG_it); | ||
123 | } | ||
124 | LCRYPTO_ALIAS(ECDSA_SIG_free); | ||
125 | |||
126 | void | ||
127 | ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **pr, const BIGNUM **ps) | ||
128 | { | ||
129 | if (pr != NULL) | ||
130 | *pr = sig->r; | ||
131 | if (ps != NULL) | ||
132 | *ps = sig->s; | ||
133 | } | ||
134 | LCRYPTO_ALIAS(ECDSA_SIG_get0); | ||
135 | |||
136 | const BIGNUM * | ||
137 | ECDSA_SIG_get0_r(const ECDSA_SIG *sig) | ||
138 | { | ||
139 | return sig->r; | ||
140 | } | ||
141 | LCRYPTO_ALIAS(ECDSA_SIG_get0_r); | ||
142 | |||
143 | const BIGNUM * | ||
144 | ECDSA_SIG_get0_s(const ECDSA_SIG *sig) | ||
145 | { | ||
146 | return sig->s; | ||
147 | } | ||
148 | LCRYPTO_ALIAS(ECDSA_SIG_get0_s); | ||
149 | |||
150 | int | ||
151 | ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) | ||
152 | { | ||
153 | if (r == NULL || s == NULL) | ||
154 | return 0; | ||
155 | |||
156 | BN_free(sig->r); | ||
157 | BN_free(sig->s); | ||
158 | sig->r = r; | ||
159 | sig->s = s; | ||
160 | return 1; | ||
161 | } | ||
162 | LCRYPTO_ALIAS(ECDSA_SIG_set0); | ||
163 | |||
164 | int | ||
165 | ECDSA_size(const EC_KEY *key) | ||
166 | { | ||
167 | const EC_GROUP *group; | ||
168 | const BIGNUM *order = NULL; | ||
169 | ECDSA_SIG sig; | ||
170 | int ret = 0; | ||
171 | |||
172 | if (key == NULL) | ||
173 | goto err; | ||
174 | |||
175 | if ((group = EC_KEY_get0_group(key)) == NULL) | ||
176 | goto err; | ||
177 | |||
178 | if ((order = EC_GROUP_get0_order(group)) == NULL) | ||
179 | goto err; | ||
180 | |||
181 | sig.r = (BIGNUM *)order; | ||
182 | sig.s = (BIGNUM *)order; | ||
183 | |||
184 | if ((ret = i2d_ECDSA_SIG(&sig, NULL)) < 0) | ||
185 | ret = 0; | ||
186 | |||
187 | err: | ||
188 | return ret; | ||
189 | } | ||
190 | LCRYPTO_ALIAS(ECDSA_size); | ||
191 | |||
192 | /* | ||
193 | * FIPS 186-5, section 6.4.1, step 2: convert hashed message into an integer. | ||
194 | * Use the order_bits leftmost bits if it exceeds the group order. | ||
195 | */ | ||
196 | static int | ||
197 | ecdsa_prepare_digest(const unsigned char *digest, int digest_len, | ||
198 | const EC_KEY *key, BIGNUM *e) | ||
199 | { | ||
200 | const EC_GROUP *group; | ||
201 | int digest_bits, order_bits; | ||
202 | |||
203 | if (BN_bin2bn(digest, digest_len, e) == NULL) { | ||
204 | ECerror(ERR_R_BN_LIB); | ||
205 | return 0; | ||
206 | } | ||
207 | |||
208 | if ((group = EC_KEY_get0_group(key)) == NULL) | ||
209 | return 0; | ||
210 | order_bits = EC_GROUP_order_bits(group); | ||
211 | |||
212 | digest_bits = 8 * digest_len; | ||
213 | if (digest_bits <= order_bits) | ||
214 | return 1; | ||
215 | |||
216 | return BN_rshift(e, e, digest_bits - order_bits); | ||
217 | } | ||
218 | |||
219 | int | ||
220 | ecdsa_sign(int type, const unsigned char *digest, int digest_len, | ||
221 | unsigned char *signature, unsigned int *signature_len, const BIGNUM *kinv, | ||
222 | const BIGNUM *r, EC_KEY *key) | ||
223 | { | ||
224 | ECDSA_SIG *sig = NULL; | ||
225 | int out_len = 0; | ||
226 | int ret = 0; | ||
227 | |||
228 | if (kinv != NULL || r != NULL) { | ||
229 | ECerror(EC_R_NOT_IMPLEMENTED); | ||
230 | goto err; | ||
231 | } | ||
232 | |||
233 | if ((sig = ECDSA_do_sign(digest, digest_len, key)) == NULL) | ||
234 | goto err; | ||
235 | |||
236 | if ((out_len = i2d_ECDSA_SIG(sig, &signature)) < 0) { | ||
237 | out_len = 0; | ||
238 | goto err; | ||
239 | } | ||
240 | |||
241 | ret = 1; | ||
242 | |||
243 | err: | ||
244 | *signature_len = out_len; | ||
245 | ECDSA_SIG_free(sig); | ||
246 | |||
247 | return ret; | ||
248 | } | ||
249 | |||
250 | int | ||
251 | ECDSA_sign(int type, const unsigned char *digest, int digest_len, | ||
252 | unsigned char *signature, unsigned int *signature_len, EC_KEY *key) | ||
253 | { | ||
254 | if (key->meth->sign == NULL) { | ||
255 | ECerror(EC_R_NOT_IMPLEMENTED); | ||
256 | return 0; | ||
257 | } | ||
258 | return key->meth->sign(type, digest, digest_len, signature, | ||
259 | signature_len, NULL, NULL, key); | ||
260 | } | ||
261 | LCRYPTO_ALIAS(ECDSA_sign); | ||
262 | |||
263 | /* | ||
264 | * FIPS 186-5, section 6.4.1, steps 3-8 and 11: Generate k, calculate r and | ||
265 | * kinv. If r == 0, try again with a new random k. | ||
266 | */ | ||
267 | |||
268 | int | ||
269 | ecdsa_sign_setup(EC_KEY *key, BN_CTX *in_ctx, BIGNUM **out_kinv, BIGNUM **out_r) | ||
270 | { | ||
271 | const EC_GROUP *group; | ||
272 | EC_POINT *point = NULL; | ||
273 | BN_CTX *ctx = NULL; | ||
274 | BIGNUM *k = NULL, *r = NULL; | ||
275 | const BIGNUM *order; | ||
276 | BIGNUM *x; | ||
277 | int order_bits; | ||
278 | int ret = 0; | ||
279 | |||
280 | BN_free(*out_kinv); | ||
281 | *out_kinv = NULL; | ||
282 | |||
283 | BN_free(*out_r); | ||
284 | *out_r = NULL; | ||
285 | |||
286 | if (key == NULL) { | ||
287 | ECerror(ERR_R_PASSED_NULL_PARAMETER); | ||
288 | goto err; | ||
289 | } | ||
290 | if ((group = EC_KEY_get0_group(key)) == NULL) { | ||
291 | ECerror(ERR_R_PASSED_NULL_PARAMETER); | ||
292 | goto err; | ||
293 | } | ||
294 | |||
295 | if ((k = BN_new()) == NULL) | ||
296 | goto err; | ||
297 | if ((r = BN_new()) == NULL) | ||
298 | goto err; | ||
299 | |||
300 | if ((ctx = in_ctx) == NULL) | ||
301 | ctx = BN_CTX_new(); | ||
302 | if (ctx == NULL) { | ||
303 | ECerror(ERR_R_MALLOC_FAILURE); | ||
304 | goto err; | ||
305 | } | ||
306 | |||
307 | BN_CTX_start(ctx); | ||
308 | |||
309 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
310 | goto err; | ||
311 | |||
312 | if ((point = EC_POINT_new(group)) == NULL) { | ||
313 | ECerror(ERR_R_EC_LIB); | ||
314 | goto err; | ||
315 | } | ||
316 | if ((order = EC_GROUP_get0_order(group)) == NULL) { | ||
317 | ECerror(ERR_R_EC_LIB); | ||
318 | goto err; | ||
319 | } | ||
320 | |||
321 | if (BN_cmp(order, BN_value_one()) <= 0) { | ||
322 | ECerror(EC_R_INVALID_GROUP_ORDER); | ||
323 | goto err; | ||
324 | } | ||
325 | |||
326 | /* Reject curves with an order that is smaller than 80 bits. */ | ||
327 | if ((order_bits = BN_num_bits(order)) < 80) { | ||
328 | ECerror(EC_R_INVALID_GROUP_ORDER); | ||
329 | goto err; | ||
330 | } | ||
331 | |||
332 | /* Preallocate space. */ | ||
333 | if (!BN_set_bit(k, order_bits) || | ||
334 | !BN_set_bit(r, order_bits) || | ||
335 | !BN_set_bit(x, order_bits)) | ||
336 | goto err; | ||
337 | |||
338 | /* Step 11: repeat until r != 0. */ | ||
339 | do { | ||
340 | /* Step 3: generate random k. */ | ||
341 | if (!bn_rand_interval(k, 1, order)) | ||
342 | goto err; | ||
343 | |||
344 | /* Step 5: P = k * G. */ | ||
345 | if (!EC_POINT_mul(group, point, k, NULL, NULL, ctx)) { | ||
346 | ECerror(ERR_R_EC_LIB); | ||
347 | goto err; | ||
348 | } | ||
349 | /* Steps 6 (and 7): from P = (x, y) retain the x-coordinate. */ | ||
350 | if (!EC_POINT_get_affine_coordinates(group, point, x, NULL, | ||
351 | ctx)) { | ||
352 | ECerror(ERR_R_EC_LIB); | ||
353 | goto err; | ||
354 | } | ||
355 | /* Step 8: r = x (mod order). */ | ||
356 | if (!BN_nnmod(r, x, order, ctx)) { | ||
357 | ECerror(ERR_R_BN_LIB); | ||
358 | goto err; | ||
359 | } | ||
360 | } while (BN_is_zero(r)); | ||
361 | |||
362 | /* Step 4: calculate kinv. */ | ||
363 | if (BN_mod_inverse_ct(k, k, order, ctx) == NULL) { | ||
364 | ECerror(ERR_R_BN_LIB); | ||
365 | goto err; | ||
366 | } | ||
367 | |||
368 | *out_kinv = k; | ||
369 | k = NULL; | ||
370 | |||
371 | *out_r = r; | ||
372 | r = NULL; | ||
373 | |||
374 | ret = 1; | ||
375 | |||
376 | err: | ||
377 | BN_CTX_end(ctx); | ||
378 | if (ctx != in_ctx) | ||
379 | BN_CTX_free(ctx); | ||
380 | BN_free(k); | ||
381 | BN_free(r); | ||
382 | EC_POINT_free(point); | ||
383 | |||
384 | return ret; | ||
385 | } | ||
386 | |||
387 | static int | ||
388 | ECDSA_sign_setup(EC_KEY *key, BN_CTX *in_ctx, BIGNUM **out_kinv, | ||
389 | BIGNUM **out_r) | ||
390 | { | ||
391 | if (key->meth->sign_setup == NULL) { | ||
392 | ECerror(EC_R_NOT_IMPLEMENTED); | ||
393 | return 0; | ||
394 | } | ||
395 | return key->meth->sign_setup(key, in_ctx, out_kinv, out_r); | ||
396 | } | ||
397 | |||
398 | /* | ||
399 | * FIPS 186-5, section 6.4.1, step 9: compute s = inv(k)(e + xr) mod order. | ||
400 | * In order to reduce the possibility of a side-channel attack, the following | ||
401 | * is calculated using a random blinding value b in [1, order): | ||
402 | * s = inv(b)(be + bxr)inv(k) mod order. | ||
403 | */ | ||
404 | |||
405 | static int | ||
406 | ecdsa_compute_s(BIGNUM **out_s, const BIGNUM *e, const BIGNUM *kinv, | ||
407 | const BIGNUM *r, const EC_KEY *key, BN_CTX *ctx) | ||
408 | { | ||
409 | const EC_GROUP *group; | ||
410 | const BIGNUM *order, *priv_key; | ||
411 | BIGNUM *b, *binv, *be, *bxr; | ||
412 | BIGNUM *s = NULL; | ||
413 | int ret = 0; | ||
414 | |||
415 | *out_s = NULL; | ||
416 | |||
417 | BN_CTX_start(ctx); | ||
418 | |||
419 | if ((group = EC_KEY_get0_group(key)) == NULL) { | ||
420 | ECerror(ERR_R_PASSED_NULL_PARAMETER); | ||
421 | goto err; | ||
422 | } | ||
423 | if ((order = EC_GROUP_get0_order(group)) == NULL) { | ||
424 | ECerror(ERR_R_EC_LIB); | ||
425 | goto err; | ||
426 | } | ||
427 | if ((priv_key = EC_KEY_get0_private_key(key)) == NULL) { | ||
428 | ECerror(ERR_R_PASSED_NULL_PARAMETER); | ||
429 | goto err; | ||
430 | } | ||
431 | |||
432 | if ((b = BN_CTX_get(ctx)) == NULL) | ||
433 | goto err; | ||
434 | if ((binv = BN_CTX_get(ctx)) == NULL) | ||
435 | goto err; | ||
436 | if ((be = BN_CTX_get(ctx)) == NULL) | ||
437 | goto err; | ||
438 | if ((bxr = BN_CTX_get(ctx)) == NULL) | ||
439 | goto err; | ||
440 | |||
441 | if ((s = BN_new()) == NULL) | ||
442 | goto err; | ||
443 | |||
444 | /* | ||
445 | * In a valid ECDSA signature, r must be in [1, order). Since r can be | ||
446 | * caller provided - either directly or by replacing sign_setup() - we | ||
447 | * can't rely on this being the case. | ||
448 | */ | ||
449 | if (BN_cmp(r, BN_value_one()) < 0 || BN_cmp(r, order) >= 0) { | ||
450 | ECerror(EC_R_BAD_SIGNATURE); | ||
451 | goto err; | ||
452 | } | ||
453 | |||
454 | if (!bn_rand_interval(b, 1, order)) { | ||
455 | ECerror(ERR_R_BN_LIB); | ||
456 | goto err; | ||
457 | } | ||
458 | |||
459 | if (BN_mod_inverse_ct(binv, b, order, ctx) == NULL) { | ||
460 | ECerror(ERR_R_BN_LIB); | ||
461 | goto err; | ||
462 | } | ||
463 | |||
464 | if (!BN_mod_mul(bxr, b, priv_key, order, ctx)) { | ||
465 | ECerror(ERR_R_BN_LIB); | ||
466 | goto err; | ||
467 | } | ||
468 | if (!BN_mod_mul(bxr, bxr, r, order, ctx)) { | ||
469 | ECerror(ERR_R_BN_LIB); | ||
470 | goto err; | ||
471 | } | ||
472 | if (!BN_mod_mul(be, b, e, order, ctx)) { | ||
473 | ECerror(ERR_R_BN_LIB); | ||
474 | goto err; | ||
475 | } | ||
476 | if (!BN_mod_add(s, be, bxr, order, ctx)) { | ||
477 | ECerror(ERR_R_BN_LIB); | ||
478 | goto err; | ||
479 | } | ||
480 | /* s = b(e + xr)k^-1 */ | ||
481 | if (!BN_mod_mul(s, s, kinv, order, ctx)) { | ||
482 | ECerror(ERR_R_BN_LIB); | ||
483 | goto err; | ||
484 | } | ||
485 | /* s = (e + xr)k^-1 */ | ||
486 | if (!BN_mod_mul(s, s, binv, order, ctx)) { | ||
487 | ECerror(ERR_R_BN_LIB); | ||
488 | goto err; | ||
489 | } | ||
490 | |||
491 | /* Step 11: if s == 0 start over. */ | ||
492 | if (!BN_is_zero(s)) { | ||
493 | *out_s = s; | ||
494 | s = NULL; | ||
495 | } | ||
496 | |||
497 | ret = 1; | ||
498 | |||
499 | err: | ||
500 | BN_CTX_end(ctx); | ||
501 | BN_free(s); | ||
502 | |||
503 | return ret; | ||
504 | } | ||
505 | |||
506 | /* | ||
507 | * It is too expensive to check curve parameters on every sign operation. | ||
508 | * Instead, cap the number of retries. A single retry is very unlikely, so | ||
509 | * allowing 32 retries is amply enough. | ||
510 | */ | ||
511 | #define ECDSA_MAX_SIGN_ITERATIONS 32 | ||
512 | |||
513 | /* | ||
514 | * FIPS 186-5: Section 6.4.1: ECDSA signature generation, steps 2-12. | ||
515 | * The caller provides the hash of the message, thus performs step 1. | ||
516 | * Step 10, zeroing k and kinv, is done by BN_free(). | ||
517 | */ | ||
518 | |||
519 | ECDSA_SIG * | ||
520 | ecdsa_sign_sig(const unsigned char *digest, int digest_len, | ||
521 | const BIGNUM *in_kinv, const BIGNUM *in_r, EC_KEY *key) | ||
522 | { | ||
523 | BN_CTX *ctx = NULL; | ||
524 | BIGNUM *kinv = NULL, *r = NULL, *s = NULL; | ||
525 | BIGNUM *e; | ||
526 | int attempts = 0; | ||
527 | ECDSA_SIG *sig = NULL; | ||
528 | |||
529 | if (in_kinv != NULL || in_r != NULL) { | ||
530 | ECerror(EC_R_NOT_IMPLEMENTED); | ||
531 | goto err; | ||
532 | } | ||
533 | |||
534 | if ((ctx = BN_CTX_new()) == NULL) { | ||
535 | ECerror(ERR_R_MALLOC_FAILURE); | ||
536 | goto err; | ||
537 | } | ||
538 | |||
539 | BN_CTX_start(ctx); | ||
540 | |||
541 | if ((e = BN_CTX_get(ctx)) == NULL) | ||
542 | goto err; | ||
543 | |||
544 | /* Step 2: convert hash into an integer. */ | ||
545 | if (!ecdsa_prepare_digest(digest, digest_len, key, e)) | ||
546 | goto err; | ||
547 | |||
548 | do { | ||
549 | /* Steps 3-8: calculate kinv and r. */ | ||
550 | if (!ECDSA_sign_setup(key, ctx, &kinv, &r)) { | ||
551 | ECerror(ERR_R_EC_LIB); | ||
552 | goto err; | ||
553 | } | ||
554 | |||
555 | /* | ||
556 | * Steps 9 and 11: if s is non-NULL, we have a valid signature. | ||
557 | */ | ||
558 | if (!ecdsa_compute_s(&s, e, kinv, r, key, ctx)) | ||
559 | goto err; | ||
560 | if (s != NULL) | ||
561 | break; | ||
562 | |||
563 | if (++attempts > ECDSA_MAX_SIGN_ITERATIONS) { | ||
564 | ECerror(EC_R_WRONG_CURVE_PARAMETERS); | ||
565 | goto err; | ||
566 | } | ||
567 | } while (1); | ||
568 | |||
569 | /* Step 12: output (r, s). */ | ||
570 | if ((sig = ECDSA_SIG_new()) == NULL) { | ||
571 | ECerror(ERR_R_MALLOC_FAILURE); | ||
572 | goto err; | ||
573 | } | ||
574 | if (!ECDSA_SIG_set0(sig, r, s)) { | ||
575 | ECDSA_SIG_free(sig); | ||
576 | goto err; | ||
577 | } | ||
578 | r = NULL; | ||
579 | s = NULL; | ||
580 | |||
581 | err: | ||
582 | BN_CTX_end(ctx); | ||
583 | BN_CTX_free(ctx); | ||
584 | BN_free(kinv); | ||
585 | BN_free(r); | ||
586 | BN_free(s); | ||
587 | |||
588 | return sig; | ||
589 | } | ||
590 | |||
591 | ECDSA_SIG * | ||
592 | ECDSA_do_sign(const unsigned char *digest, int digest_len, EC_KEY *key) | ||
593 | { | ||
594 | if (key->meth->sign_sig == NULL) { | ||
595 | ECerror(EC_R_NOT_IMPLEMENTED); | ||
596 | return 0; | ||
597 | } | ||
598 | return key->meth->sign_sig(digest, digest_len, NULL, NULL, key); | ||
599 | } | ||
600 | LCRYPTO_ALIAS(ECDSA_do_sign); | ||
601 | |||
602 | int | ||
603 | ecdsa_verify(int type, const unsigned char *digest, int digest_len, | ||
604 | const unsigned char *sigbuf, int sig_len, EC_KEY *key) | ||
605 | { | ||
606 | ECDSA_SIG *s; | ||
607 | unsigned char *der = NULL; | ||
608 | const unsigned char *p; | ||
609 | int der_len = 0; | ||
610 | int ret = -1; | ||
611 | |||
612 | if ((s = ECDSA_SIG_new()) == NULL) | ||
613 | goto err; | ||
614 | |||
615 | p = sigbuf; | ||
616 | if (d2i_ECDSA_SIG(&s, &p, sig_len) == NULL) | ||
617 | goto err; | ||
618 | |||
619 | /* Ensure signature uses DER and doesn't have trailing garbage. */ | ||
620 | if ((der_len = i2d_ECDSA_SIG(s, &der)) != sig_len) | ||
621 | goto err; | ||
622 | if (timingsafe_memcmp(sigbuf, der, der_len)) | ||
623 | goto err; | ||
624 | |||
625 | ret = ECDSA_do_verify(digest, digest_len, s, key); | ||
626 | |||
627 | err: | ||
628 | freezero(der, der_len); | ||
629 | ECDSA_SIG_free(s); | ||
630 | |||
631 | return ret; | ||
632 | } | ||
633 | |||
634 | int | ||
635 | ECDSA_verify(int type, const unsigned char *digest, int digest_len, | ||
636 | const unsigned char *sigbuf, int sig_len, EC_KEY *key) | ||
637 | { | ||
638 | if (key->meth->verify == NULL) { | ||
639 | ECerror(EC_R_NOT_IMPLEMENTED); | ||
640 | return 0; | ||
641 | } | ||
642 | return key->meth->verify(type, digest, digest_len, sigbuf, sig_len, key); | ||
643 | } | ||
644 | LCRYPTO_ALIAS(ECDSA_verify); | ||
645 | |||
646 | /* | ||
647 | * FIPS 186-5, section 6.4.2: ECDSA signature verification. | ||
648 | * The caller provides us with the hash of the message, so has performed step 2. | ||
649 | */ | ||
650 | |||
651 | int | ||
652 | ecdsa_verify_sig(const unsigned char *digest, int digest_len, | ||
653 | const ECDSA_SIG *sig, EC_KEY *key) | ||
654 | { | ||
655 | const EC_GROUP *group; | ||
656 | const EC_POINT *pub_key; | ||
657 | EC_POINT *point = NULL; | ||
658 | const BIGNUM *order; | ||
659 | BN_CTX *ctx = NULL; | ||
660 | BIGNUM *e, *sinv, *u, *v, *x; | ||
661 | int ret = -1; | ||
662 | |||
663 | if (key == NULL || sig == NULL) { | ||
664 | ECerror(EC_R_MISSING_PARAMETERS); | ||
665 | goto err; | ||
666 | } | ||
667 | if ((group = EC_KEY_get0_group(key)) == NULL) { | ||
668 | ECerror(EC_R_MISSING_PARAMETERS); | ||
669 | goto err; | ||
670 | } | ||
671 | if ((pub_key = EC_KEY_get0_public_key(key)) == NULL) { | ||
672 | ECerror(EC_R_MISSING_PARAMETERS); | ||
673 | goto err; | ||
674 | } | ||
675 | |||
676 | if ((ctx = BN_CTX_new()) == NULL) { | ||
677 | ECerror(ERR_R_MALLOC_FAILURE); | ||
678 | goto err; | ||
679 | } | ||
680 | |||
681 | BN_CTX_start(ctx); | ||
682 | |||
683 | if ((e = BN_CTX_get(ctx)) == NULL) | ||
684 | goto err; | ||
685 | if ((sinv = BN_CTX_get(ctx)) == NULL) | ||
686 | goto err; | ||
687 | if ((u = BN_CTX_get(ctx)) == NULL) | ||
688 | goto err; | ||
689 | if ((v = BN_CTX_get(ctx)) == NULL) | ||
690 | goto err; | ||
691 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
692 | goto err; | ||
693 | |||
694 | if ((order = EC_GROUP_get0_order(group)) == NULL) { | ||
695 | ECerror(ERR_R_EC_LIB); | ||
696 | goto err; | ||
697 | } | ||
698 | |||
699 | /* Step 1: verify that r and s are in the range [1, order). */ | ||
700 | if (BN_cmp(sig->r, BN_value_one()) < 0 || BN_cmp(sig->r, order) >= 0) { | ||
701 | ECerror(EC_R_BAD_SIGNATURE); | ||
702 | ret = 0; | ||
703 | goto err; | ||
704 | } | ||
705 | if (BN_cmp(sig->s, BN_value_one()) < 0 || BN_cmp(sig->s, order) >= 0) { | ||
706 | ECerror(EC_R_BAD_SIGNATURE); | ||
707 | ret = 0; | ||
708 | goto err; | ||
709 | } | ||
710 | |||
711 | /* Step 3: convert the hash into an integer. */ | ||
712 | if (!ecdsa_prepare_digest(digest, digest_len, key, e)) | ||
713 | goto err; | ||
714 | |||
715 | /* Step 4: compute the inverse of s modulo order. */ | ||
716 | if (BN_mod_inverse_ct(sinv, sig->s, order, ctx) == NULL) { | ||
717 | ECerror(ERR_R_BN_LIB); | ||
718 | goto err; | ||
719 | } | ||
720 | /* Step 5: compute u = s^-1 * e and v = s^-1 * r (modulo order). */ | ||
721 | if (!BN_mod_mul(u, e, sinv, order, ctx)) { | ||
722 | ECerror(ERR_R_BN_LIB); | ||
723 | goto err; | ||
724 | } | ||
725 | if (!BN_mod_mul(v, sig->r, sinv, order, ctx)) { | ||
726 | ECerror(ERR_R_BN_LIB); | ||
727 | goto err; | ||
728 | } | ||
729 | |||
730 | /* | ||
731 | * Steps 6 and 7: compute R = G * u + pub_key * v = (x, y). Reject if | ||
732 | * it's the point at infinity - getting affine coordinates fails. Keep | ||
733 | * the x coordinate. | ||
734 | */ | ||
735 | if ((point = EC_POINT_new(group)) == NULL) { | ||
736 | ECerror(ERR_R_MALLOC_FAILURE); | ||
737 | goto err; | ||
738 | } | ||
739 | if (!EC_POINT_mul(group, point, u, pub_key, v, ctx)) { | ||
740 | ECerror(ERR_R_EC_LIB); | ||
741 | goto err; | ||
742 | } | ||
743 | if (!EC_POINT_get_affine_coordinates(group, point, x, NULL, ctx)) { | ||
744 | ECerror(ERR_R_EC_LIB); | ||
745 | goto err; | ||
746 | } | ||
747 | /* Step 8: convert x to a number in [0, order). */ | ||
748 | if (!BN_nnmod(x, x, order, ctx)) { | ||
749 | ECerror(ERR_R_BN_LIB); | ||
750 | goto err; | ||
751 | } | ||
752 | |||
753 | /* Step 9: the signature is valid iff the x-coordinate is equal to r. */ | ||
754 | ret = (BN_cmp(x, sig->r) == 0); | ||
755 | |||
756 | err: | ||
757 | BN_CTX_end(ctx); | ||
758 | BN_CTX_free(ctx); | ||
759 | EC_POINT_free(point); | ||
760 | |||
761 | return ret; | ||
762 | } | ||
763 | |||
764 | int | ||
765 | ECDSA_do_verify(const unsigned char *digest, int digest_len, | ||
766 | const ECDSA_SIG *sig, EC_KEY *key) | ||
767 | { | ||
768 | if (key->meth->verify_sig == NULL) { | ||
769 | ECerror(EC_R_NOT_IMPLEMENTED); | ||
770 | return 0; | ||
771 | } | ||
772 | return key->meth->verify_sig(digest, digest_len, sig, key); | ||
773 | } | ||
774 | LCRYPTO_ALIAS(ECDSA_do_verify); | ||