diff options
author | markus <> | 2002-09-05 12:51:52 +0000 |
---|---|---|
committer | markus <> | 2002-09-05 12:51:52 +0000 |
commit | 5514995a9d5ed91db089875adb509c7781357c0e (patch) | |
tree | 2484410a46ba6c05ef94c253da36fbceef990b64 /src/lib/libcrypto/rand/md_rand.c | |
parent | fd9566423b542798f5c8b06e68101a9ea5bb9885 (diff) | |
download | openbsd-5514995a9d5ed91db089875adb509c7781357c0e.tar.gz openbsd-5514995a9d5ed91db089875adb509c7781357c0e.tar.bz2 openbsd-5514995a9d5ed91db089875adb509c7781357c0e.zip |
import openssl-0.9.7-beta1
Diffstat (limited to 'src/lib/libcrypto/rand/md_rand.c')
-rw-r--r-- | src/lib/libcrypto/rand/md_rand.c | 639 |
1 files changed, 403 insertions, 236 deletions
diff --git a/src/lib/libcrypto/rand/md_rand.c b/src/lib/libcrypto/rand/md_rand.c index f44b36a8b9..a00ed70718 100644 --- a/src/lib/libcrypto/rand/md_rand.c +++ b/src/lib/libcrypto/rand/md_rand.c | |||
@@ -55,100 +55,185 @@ | |||
55 | * copied and put under another distribution licence | 55 | * copied and put under another distribution licence |
56 | * [including the GNU Public Licence.] | 56 | * [including the GNU Public Licence.] |
57 | */ | 57 | */ |
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
58 | 111 | ||
59 | #include <stdio.h> | 112 | #ifdef MD_RAND_DEBUG |
60 | #include "cryptlib.h" | 113 | # ifndef NDEBUG |
61 | #include <sys/types.h> | 114 | # define NDEBUG |
62 | #include <time.h> | 115 | # endif |
63 | |||
64 | #if !defined(USE_MD5_RAND) && !defined(USE_SHA1_RAND) && !defined(USE_MDC2_RAND) && !defined(USE_MD2_RAND) | ||
65 | #ifndef NO_MD5 | ||
66 | #define USE_MD5_RAND | ||
67 | #elif !defined(NO_SHA1) | ||
68 | #define USE_SHA1_RAND | ||
69 | #elif !defined(NO_MDC2) | ||
70 | #define USE_MDC2_RAND | ||
71 | #elif !defined(NO_MD2) | ||
72 | #define USE_MD2_RAND | ||
73 | #else | ||
74 | We need a message digest of some type | ||
75 | #endif | ||
76 | #endif | 116 | #endif |
77 | 117 | ||
78 | /* Changed how the state buffer used. I now attempt to 'wrap' such | 118 | #include <assert.h> |
79 | * that I don't run over the same locations the next time go through | 119 | #include <stdio.h> |
80 | * the 1023 bytes - many thanks to | 120 | #include <string.h> |
81 | * Robert J. LeBlanc <rjl@renaissoft.com> for his comments | ||
82 | */ | ||
83 | 121 | ||
84 | #if defined(USE_MD5_RAND) | 122 | #include "e_os.h" |
85 | #include "md5.h" | ||
86 | #define MD_DIGEST_LENGTH MD5_DIGEST_LENGTH | ||
87 | #define MD_CTX MD5_CTX | ||
88 | #define MD_Init(a) MD5_Init(a) | ||
89 | #define MD_Update(a,b,c) MD5_Update(a,b,c) | ||
90 | #define MD_Final(a,b) MD5_Final(a,b) | ||
91 | #elif defined(USE_SHA1_RAND) | ||
92 | #include "sha.h" | ||
93 | #define MD_DIGEST_LENGTH SHA_DIGEST_LENGTH | ||
94 | #define MD_CTX SHA_CTX | ||
95 | #define MD_Init(a) SHA1_Init(a) | ||
96 | #define MD_Update(a,b,c) SHA1_Update(a,b,c) | ||
97 | #define MD_Final(a,b) SHA1_Final(a,b) | ||
98 | #elif defined(USE_MDC2_RAND) | ||
99 | #include "mdc2.h" | ||
100 | #define MD_DIGEST_LENGTH MDC2_DIGEST_LENGTH | ||
101 | #define MD_CTX MDC2_CTX | ||
102 | #define MD_Init(a) MDC2_Init(a) | ||
103 | #define MD_Update(a,b,c) MDC2_Update(a,b,c) | ||
104 | #define MD_Final(a,b) MDC2_Final(a,b) | ||
105 | #elif defined(USE_MD2_RAND) | ||
106 | #include "md2.h" | ||
107 | #define MD_DIGEST_LENGTH MD2_DIGEST_LENGTH | ||
108 | #define MD_CTX MD2_CTX | ||
109 | #define MD_Init(a) MD2_Init(a) | ||
110 | #define MD_Update(a,b,c) MD2_Update(a,b,c) | ||
111 | #define MD_Final(a,b) MD2_Final(a,b) | ||
112 | #endif | ||
113 | 123 | ||
114 | #include "rand.h" | 124 | #include <openssl/rand.h> |
125 | #include "rand_lcl.h" | ||
115 | 126 | ||
116 | /*#define NORAND 1 */ | 127 | #include <openssl/crypto.h> |
117 | /*#define PREDICT 1 */ | 128 | #include <openssl/err.h> |
129 | |||
130 | #ifdef BN_DEBUG | ||
131 | # define PREDICT | ||
132 | #endif | ||
133 | |||
134 | /* #define PREDICT 1 */ | ||
118 | 135 | ||
119 | #define STATE_SIZE 1023 | 136 | #define STATE_SIZE 1023 |
120 | static int state_num=0,state_index=0; | 137 | static int state_num=0,state_index=0; |
121 | static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH]; | 138 | static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH]; |
122 | static unsigned char md[MD_DIGEST_LENGTH]; | 139 | static unsigned char md[MD_DIGEST_LENGTH]; |
123 | static int md_count=0; | 140 | static long md_count[2]={0,0}; |
141 | static double entropy=0; | ||
142 | static int initialized=0; | ||
124 | 143 | ||
125 | char *RAND_version="RAND part of SSLeay 0.9.0b 29-Jun-1998"; | 144 | static unsigned int crypto_lock_rand = 0; /* may be set only when a thread |
145 | * holds CRYPTO_LOCK_RAND | ||
146 | * (to prevent double locking) */ | ||
147 | /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */ | ||
148 | static unsigned long locking_thread = 0; /* valid iff crypto_lock_rand is set */ | ||
126 | 149 | ||
127 | void RAND_cleanup() | 150 | |
151 | #ifdef PREDICT | ||
152 | int rand_predictable=0; | ||
153 | #endif | ||
154 | |||
155 | const char *RAND_version="RAND" OPENSSL_VERSION_PTEXT; | ||
156 | |||
157 | static void ssleay_rand_cleanup(void); | ||
158 | static void ssleay_rand_seed(const void *buf, int num); | ||
159 | static void ssleay_rand_add(const void *buf, int num, double add_entropy); | ||
160 | static int ssleay_rand_bytes(unsigned char *buf, int num); | ||
161 | static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num); | ||
162 | static int ssleay_rand_status(void); | ||
163 | |||
164 | RAND_METHOD rand_ssleay_meth={ | ||
165 | ssleay_rand_seed, | ||
166 | ssleay_rand_bytes, | ||
167 | ssleay_rand_cleanup, | ||
168 | ssleay_rand_add, | ||
169 | ssleay_rand_pseudo_bytes, | ||
170 | ssleay_rand_status | ||
171 | }; | ||
172 | |||
173 | RAND_METHOD *RAND_SSLeay(void) | ||
174 | { | ||
175 | return(&rand_ssleay_meth); | ||
176 | } | ||
177 | |||
178 | static void ssleay_rand_cleanup(void) | ||
128 | { | 179 | { |
129 | memset(state,0,sizeof(state)); | 180 | memset(state,0,sizeof(state)); |
130 | state_num=0; | 181 | state_num=0; |
131 | state_index=0; | 182 | state_index=0; |
132 | memset(md,0,MD_DIGEST_LENGTH); | 183 | memset(md,0,MD_DIGEST_LENGTH); |
133 | md_count=0; | 184 | md_count[0]=0; |
185 | md_count[1]=0; | ||
186 | entropy=0; | ||
187 | initialized=0; | ||
134 | } | 188 | } |
135 | 189 | ||
136 | void RAND_seed(buf,num) | 190 | static void ssleay_rand_add(const void *buf, int num, double add) |
137 | unsigned char *buf; | ||
138 | int num; | ||
139 | { | 191 | { |
140 | int i,j,k,st_idx,st_num; | 192 | int i,j,k,st_idx; |
141 | MD_CTX m; | 193 | long md_c[2]; |
142 | 194 | unsigned char local_md[MD_DIGEST_LENGTH]; | |
143 | #ifdef NORAND | 195 | EVP_MD_CTX m; |
144 | return; | 196 | int do_not_lock; |
145 | #endif | 197 | |
198 | /* | ||
199 | * (Based on the rand(3) manpage) | ||
200 | * | ||
201 | * The input is chopped up into units of 20 bytes (or less for | ||
202 | * the last block). Each of these blocks is run through the hash | ||
203 | * function as follows: The data passed to the hash function | ||
204 | * is the current 'md', the same number of bytes from the 'state' | ||
205 | * (the location determined by in incremented looping index) as | ||
206 | * the current 'block', the new key data 'block', and 'count' | ||
207 | * (which is incremented after each use). | ||
208 | * The result of this is kept in 'md' and also xored into the | ||
209 | * 'state' at the same locations that were used as input into the | ||
210 | * hash function. | ||
211 | */ | ||
212 | |||
213 | /* check if we already have the lock */ | ||
214 | if (crypto_lock_rand) | ||
215 | { | ||
216 | CRYPTO_r_lock(CRYPTO_LOCK_RAND2); | ||
217 | do_not_lock = (locking_thread == CRYPTO_thread_id()); | ||
218 | CRYPTO_r_unlock(CRYPTO_LOCK_RAND2); | ||
219 | } | ||
220 | else | ||
221 | do_not_lock = 0; | ||
146 | 222 | ||
147 | CRYPTO_w_lock(CRYPTO_LOCK_RAND); | 223 | if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND); |
148 | st_idx=state_index; | 224 | st_idx=state_index; |
149 | st_num=state_num; | ||
150 | 225 | ||
151 | state_index=(state_index+num); | 226 | /* use our own copies of the counters so that even |
227 | * if a concurrent thread seeds with exactly the | ||
228 | * same data and uses the same subarray there's _some_ | ||
229 | * difference */ | ||
230 | md_c[0] = md_count[0]; | ||
231 | md_c[1] = md_count[1]; | ||
232 | |||
233 | memcpy(local_md, md, sizeof md); | ||
234 | |||
235 | /* state_index <= state_num <= STATE_SIZE */ | ||
236 | state_index += num; | ||
152 | if (state_index >= STATE_SIZE) | 237 | if (state_index >= STATE_SIZE) |
153 | { | 238 | { |
154 | state_index%=STATE_SIZE; | 239 | state_index%=STATE_SIZE; |
@@ -159,15 +244,24 @@ int num; | |||
159 | if (state_index > state_num) | 244 | if (state_index > state_num) |
160 | state_num=state_index; | 245 | state_num=state_index; |
161 | } | 246 | } |
162 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | 247 | /* state_index <= state_num <= STATE_SIZE */ |
163 | 248 | ||
249 | /* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE] | ||
250 | * are what we will use now, but other threads may use them | ||
251 | * as well */ | ||
252 | |||
253 | md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0); | ||
254 | |||
255 | if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | ||
256 | |||
257 | EVP_MD_CTX_init(&m); | ||
164 | for (i=0; i<num; i+=MD_DIGEST_LENGTH) | 258 | for (i=0; i<num; i+=MD_DIGEST_LENGTH) |
165 | { | 259 | { |
166 | j=(num-i); | 260 | j=(num-i); |
167 | j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j; | 261 | j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j; |
168 | 262 | ||
169 | MD_Init(&m); | 263 | MD_Init(&m); |
170 | MD_Update(&m,md,MD_DIGEST_LENGTH); | 264 | MD_Update(&m,local_md,MD_DIGEST_LENGTH); |
171 | k=(st_idx+j)-STATE_SIZE; | 265 | k=(st_idx+j)-STATE_SIZE; |
172 | if (k > 0) | 266 | if (k > 0) |
173 | { | 267 | { |
@@ -178,228 +272,301 @@ int num; | |||
178 | MD_Update(&m,&(state[st_idx]),j); | 272 | MD_Update(&m,&(state[st_idx]),j); |
179 | 273 | ||
180 | MD_Update(&m,buf,j); | 274 | MD_Update(&m,buf,j); |
181 | MD_Final(md,&m); | 275 | MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)); |
276 | MD_Final(&m,local_md); | ||
277 | md_c[1]++; | ||
182 | 278 | ||
183 | buf+=j; | 279 | buf=(const char *)buf + j; |
184 | 280 | ||
185 | for (k=0; k<j; k++) | 281 | for (k=0; k<j; k++) |
186 | { | 282 | { |
187 | state[st_idx++]^=md[k]; | 283 | /* Parallel threads may interfere with this, |
284 | * but always each byte of the new state is | ||
285 | * the XOR of some previous value of its | ||
286 | * and local_md (itermediate values may be lost). | ||
287 | * Alway using locking could hurt performance more | ||
288 | * than necessary given that conflicts occur only | ||
289 | * when the total seeding is longer than the random | ||
290 | * state. */ | ||
291 | state[st_idx++]^=local_md[k]; | ||
188 | if (st_idx >= STATE_SIZE) | 292 | if (st_idx >= STATE_SIZE) |
189 | { | ||
190 | st_idx=0; | 293 | st_idx=0; |
191 | st_num=STATE_SIZE; | ||
192 | } | ||
193 | } | 294 | } |
194 | } | 295 | } |
195 | memset((char *)&m,0,sizeof(m)); | 296 | EVP_MD_CTX_cleanup(&m); |
297 | |||
298 | if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND); | ||
299 | /* Don't just copy back local_md into md -- this could mean that | ||
300 | * other thread's seeding remains without effect (except for | ||
301 | * the incremented counter). By XORing it we keep at least as | ||
302 | * much entropy as fits into md. */ | ||
303 | for (k = 0; k < sizeof md; k++) | ||
304 | { | ||
305 | md[k] ^= local_md[k]; | ||
306 | } | ||
307 | if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */ | ||
308 | entropy += add; | ||
309 | if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | ||
310 | |||
311 | #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32) | ||
312 | assert(md_c[1] == md_count[1]); | ||
313 | #endif | ||
196 | } | 314 | } |
197 | 315 | ||
198 | void RAND_bytes(buf,num) | 316 | static void ssleay_rand_seed(const void *buf, int num) |
199 | unsigned char *buf; | ||
200 | int num; | ||
201 | { | 317 | { |
318 | ssleay_rand_add(buf, num, num); | ||
319 | } | ||
320 | |||
321 | static int ssleay_rand_bytes(unsigned char *buf, int num) | ||
322 | { | ||
323 | static volatile int stirred_pool = 0; | ||
202 | int i,j,k,st_num,st_idx; | 324 | int i,j,k,st_num,st_idx; |
203 | MD_CTX m; | 325 | int num_ceil; |
204 | static int init=1; | 326 | int ok; |
205 | unsigned long l; | 327 | long md_c[2]; |
206 | #ifdef DEVRANDOM | 328 | unsigned char local_md[MD_DIGEST_LENGTH]; |
207 | FILE *fh; | 329 | EVP_MD_CTX m; |
330 | #ifndef GETPID_IS_MEANINGLESS | ||
331 | pid_t curr_pid = getpid(); | ||
208 | #endif | 332 | #endif |
333 | int do_stir_pool = 0; | ||
209 | 334 | ||
210 | #ifdef PREDICT | 335 | #ifdef PREDICT |
211 | { | 336 | if (rand_predictable) |
212 | static unsigned char val=0; | 337 | { |
338 | static unsigned char val=0; | ||
213 | 339 | ||
214 | for (i=0; i<num; i++) | 340 | for (i=0; i<num; i++) |
215 | buf[i]=val++; | 341 | buf[i]=val++; |
216 | return; | 342 | return(1); |
217 | } | 343 | } |
218 | #endif | 344 | #endif |
219 | 345 | ||
346 | if (num <= 0) | ||
347 | return 1; | ||
348 | |||
349 | EVP_MD_CTX_init(&m); | ||
350 | /* round upwards to multiple of MD_DIGEST_LENGTH/2 */ | ||
351 | num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2); | ||
352 | |||
353 | /* | ||
354 | * (Based on the rand(3) manpage:) | ||
355 | * | ||
356 | * For each group of 10 bytes (or less), we do the following: | ||
357 | * | ||
358 | * Input into the hash function the local 'md' (which is initialized from | ||
359 | * the global 'md' before any bytes are generated), the bytes that are to | ||
360 | * be overwritten by the random bytes, and bytes from the 'state' | ||
361 | * (incrementing looping index). From this digest output (which is kept | ||
362 | * in 'md'), the top (up to) 10 bytes are returned to the caller and the | ||
363 | * bottom 10 bytes are xored into the 'state'. | ||
364 | * | ||
365 | * Finally, after we have finished 'num' random bytes for the | ||
366 | * caller, 'count' (which is incremented) and the local and global 'md' | ||
367 | * are fed into the hash function and the results are kept in the | ||
368 | * global 'md'. | ||
369 | */ | ||
370 | |||
220 | CRYPTO_w_lock(CRYPTO_LOCK_RAND); | 371 | CRYPTO_w_lock(CRYPTO_LOCK_RAND); |
221 | 372 | ||
222 | if (init) | 373 | /* prevent ssleay_rand_bytes() from trying to obtain the lock again */ |
374 | CRYPTO_w_lock(CRYPTO_LOCK_RAND2); | ||
375 | locking_thread = CRYPTO_thread_id(); | ||
376 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND2); | ||
377 | crypto_lock_rand = 1; | ||
378 | |||
379 | if (!initialized) | ||
223 | { | 380 | { |
224 | init=0; | 381 | RAND_poll(); |
225 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | 382 | initialized = 1; |
226 | /* put in some default random data, we need more than | 383 | } |
227 | * just this */ | 384 | |
228 | RAND_seed((unsigned char *)&m,sizeof(m)); | 385 | if (!stirred_pool) |
229 | #ifndef MSDOS | 386 | do_stir_pool = 1; |
230 | l=getpid(); | 387 | |
231 | RAND_seed((unsigned char *)&l,sizeof(l)); | 388 | ok = (entropy >= ENTROPY_NEEDED); |
232 | l=getuid(); | 389 | if (!ok) |
233 | RAND_seed((unsigned char *)&l,sizeof(l)); | 390 | { |
234 | #endif | 391 | /* If the PRNG state is not yet unpredictable, then seeing |
235 | l=time(NULL); | 392 | * the PRNG output may help attackers to determine the new |
236 | RAND_seed((unsigned char *)&l,sizeof(l)); | 393 | * state; thus we have to decrease the entropy estimate. |
237 | 394 | * Once we've had enough initial seeding we don't bother to | |
238 | /* #ifdef DEVRANDOM */ | 395 | * adjust the entropy count, though, because we're not ambitious |
239 | /* | 396 | * to provide *information-theoretic* randomness. |
240 | * Use a random entropy pool device. | 397 | * |
241 | * Linux 1.3.x and FreeBSD-Current has | 398 | * NOTE: This approach fails if the program forks before |
242 | * this. Use /dev/urandom if you can | 399 | * we have enough entropy. Entropy should be collected |
243 | * as /dev/random will block if it runs out | 400 | * in a separate input pool and be transferred to the |
244 | * of random entries. | 401 | * output pool only when the entropy limit has been reached. |
245 | */ | 402 | */ |
246 | if ((fh = fopen(DEVRANDOM, "r")) != NULL) | 403 | entropy -= num; |
404 | if (entropy < 0) | ||
405 | entropy = 0; | ||
406 | } | ||
407 | |||
408 | if (do_stir_pool) | ||
409 | { | ||
410 | /* In the output function only half of 'md' remains secret, | ||
411 | * so we better make sure that the required entropy gets | ||
412 | * 'evenly distributed' through 'state', our randomness pool. | ||
413 | * The input function (ssleay_rand_add) chains all of 'md', | ||
414 | * which makes it more suitable for this purpose. | ||
415 | */ | ||
416 | |||
417 | int n = STATE_SIZE; /* so that the complete pool gets accessed */ | ||
418 | while (n > 0) | ||
247 | { | 419 | { |
248 | unsigned char tmpbuf[32]; | 420 | #if MD_DIGEST_LENGTH > 20 |
249 | 421 | # error "Please adjust DUMMY_SEED." | |
250 | fread((unsigned char *)tmpbuf,1,32,fh); | ||
251 | /* we don't care how many bytes we read, | ||
252 | * we will just copy the 'stack' if there is | ||
253 | * nothing else :-) */ | ||
254 | fclose(fh); | ||
255 | RAND_seed(tmpbuf,32); | ||
256 | memset(tmpbuf,0,32); | ||
257 | } | ||
258 | /* #endif */ | ||
259 | #ifdef PURIFY | ||
260 | memset(state,0,STATE_SIZE); | ||
261 | memset(md,0,MD_DIGEST_LENGTH); | ||
262 | #endif | 422 | #endif |
263 | CRYPTO_w_lock(CRYPTO_LOCK_RAND); | 423 | #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */ |
424 | /* Note that the seed does not matter, it's just that | ||
425 | * ssleay_rand_add expects to have something to hash. */ | ||
426 | ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0); | ||
427 | n -= MD_DIGEST_LENGTH; | ||
428 | } | ||
429 | if (ok) | ||
430 | stirred_pool = 1; | ||
264 | } | 431 | } |
265 | 432 | ||
266 | st_idx=state_index; | 433 | st_idx=state_index; |
267 | st_num=state_num; | 434 | st_num=state_num; |
268 | state_index+=num; | 435 | md_c[0] = md_count[0]; |
436 | md_c[1] = md_count[1]; | ||
437 | memcpy(local_md, md, sizeof md); | ||
438 | |||
439 | state_index+=num_ceil; | ||
269 | if (state_index > state_num) | 440 | if (state_index > state_num) |
270 | state_index=(state_index%state_num); | 441 | state_index %= state_num; |
271 | 442 | ||
443 | /* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num] | ||
444 | * are now ours (but other threads may use them too) */ | ||
445 | |||
446 | md_count[0] += 1; | ||
447 | |||
448 | /* before unlocking, we must clear 'crypto_lock_rand' */ | ||
449 | crypto_lock_rand = 0; | ||
272 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | 450 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); |
273 | 451 | ||
274 | while (num > 0) | 452 | while (num > 0) |
275 | { | 453 | { |
454 | /* num_ceil -= MD_DIGEST_LENGTH/2 */ | ||
276 | j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num; | 455 | j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num; |
277 | num-=j; | 456 | num-=j; |
278 | MD_Init(&m); | 457 | MD_Init(&m); |
279 | MD_Update(&m,&(md[MD_DIGEST_LENGTH/2]),MD_DIGEST_LENGTH/2); | 458 | #ifndef GETPID_IS_MEANINGLESS |
459 | if (curr_pid) /* just in the first iteration to save time */ | ||
460 | { | ||
461 | MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid); | ||
462 | curr_pid = 0; | ||
463 | } | ||
464 | #endif | ||
465 | MD_Update(&m,local_md,MD_DIGEST_LENGTH); | ||
466 | MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)); | ||
280 | #ifndef PURIFY | 467 | #ifndef PURIFY |
281 | MD_Update(&m,buf,j); /* purify complains */ | 468 | MD_Update(&m,buf,j); /* purify complains */ |
282 | #endif | 469 | #endif |
283 | k=(st_idx+j)-st_num; | 470 | k=(st_idx+MD_DIGEST_LENGTH/2)-st_num; |
284 | if (k > 0) | 471 | if (k > 0) |
285 | { | 472 | { |
286 | MD_Update(&m,&(state[st_idx]),j-k); | 473 | MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k); |
287 | MD_Update(&m,&(state[0]),k); | 474 | MD_Update(&m,&(state[0]),k); |
288 | } | 475 | } |
289 | else | 476 | else |
290 | MD_Update(&m,&(state[st_idx]),j); | 477 | MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2); |
291 | MD_Final(md,&m); | 478 | MD_Final(&m,local_md); |
292 | 479 | ||
293 | for (i=0; i<j; i++) | 480 | for (i=0; i<MD_DIGEST_LENGTH/2; i++) |
294 | { | 481 | { |
482 | state[st_idx++]^=local_md[i]; /* may compete with other threads */ | ||
295 | if (st_idx >= st_num) | 483 | if (st_idx >= st_num) |
296 | st_idx=0; | 484 | st_idx=0; |
297 | state[st_idx++]^=md[i]; | 485 | if (i < j) |
298 | *(buf++)=md[i+MD_DIGEST_LENGTH/2]; | 486 | *(buf++)=local_md[i+MD_DIGEST_LENGTH/2]; |
299 | } | 487 | } |
300 | } | 488 | } |
301 | 489 | ||
302 | MD_Init(&m); | 490 | MD_Init(&m); |
303 | MD_Update(&m,(unsigned char *)&md_count,sizeof(md_count)); md_count++; | 491 | MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c)); |
492 | MD_Update(&m,local_md,MD_DIGEST_LENGTH); | ||
493 | CRYPTO_w_lock(CRYPTO_LOCK_RAND); | ||
304 | MD_Update(&m,md,MD_DIGEST_LENGTH); | 494 | MD_Update(&m,md,MD_DIGEST_LENGTH); |
305 | MD_Final(md,&m); | 495 | MD_Final(&m,md); |
306 | memset(&m,0,sizeof(m)); | 496 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); |
497 | |||
498 | EVP_MD_CTX_cleanup(&m); | ||
499 | if (ok) | ||
500 | return(1); | ||
501 | else | ||
502 | { | ||
503 | RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED); | ||
504 | ERR_add_error_data(1, "You need to read the OpenSSL FAQ, " | ||
505 | "http://www.openssl.org/support/faq.html"); | ||
506 | return(0); | ||
507 | } | ||
307 | } | 508 | } |
308 | 509 | ||
309 | #ifdef WINDOWS | 510 | /* pseudo-random bytes that are guaranteed to be unique but not |
310 | #include <windows.h> | 511 | unpredictable */ |
311 | #include <rand.h> | 512 | static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num) |
513 | { | ||
514 | int ret; | ||
515 | unsigned long err; | ||
312 | 516 | ||
313 | /***************************************************************************** | 517 | ret = RAND_bytes(buf, num); |
314 | * Initialisation function for the SSL random generator. Takes the contents | 518 | if (ret == 0) |
315 | * of the screen as random seed. | 519 | { |
316 | * | 520 | err = ERR_peek_error(); |
317 | * Created 960901 by Gertjan van Oosten, gertjan@West.NL, West Consulting B.V. | 521 | if (ERR_GET_LIB(err) == ERR_LIB_RAND && |
318 | * | 522 | ERR_GET_REASON(err) == RAND_R_PRNG_NOT_SEEDED) |
319 | * Code adapted from | 523 | (void)ERR_get_error(); |
320 | * <URL:http://www.microsoft.com/kb/developr/win_dk/q97193.htm>; | 524 | } |
321 | * the original copyright message is: | 525 | return (ret); |
322 | * | ||
323 | // (C) Copyright Microsoft Corp. 1993. All rights reserved. | ||
324 | // | ||
325 | // You have a royalty-free right to use, modify, reproduce and | ||
326 | // distribute the Sample Files (and/or any modified version) in | ||
327 | // any way you find useful, provided that you agree that | ||
328 | // Microsoft has no warranty obligations or liability for any | ||
329 | // Sample Application Files which are modified. | ||
330 | */ | ||
331 | /* | ||
332 | * I have modified the loading of bytes via RAND_seed() mechanism since | ||
333 | * the origional would have been very very CPU intensive since RAND_seed() | ||
334 | * does an MD5 per 16 bytes of input. The cost to digest 16 bytes is the same | ||
335 | * as that to digest 56 bytes. So under the old system, a screen of | ||
336 | * 1024*768*256 would have been CPU cost of approximatly 49,000 56 byte MD5 | ||
337 | * digests or digesting 2.7 mbytes. What I have put in place would | ||
338 | * be 48 16k MD5 digests, or efectivly 48*16+48 MD5 bytes or 816 kbytes | ||
339 | * or about 3.5 times as much. | ||
340 | * - eric | ||
341 | */ | ||
342 | void RAND_screen(void) | ||
343 | { | ||
344 | HDC hScrDC; /* screen DC */ | ||
345 | HDC hMemDC; /* memory DC */ | ||
346 | HBITMAP hBitmap; /* handle for our bitmap */ | ||
347 | HBITMAP hOldBitmap; /* handle for previous bitmap */ | ||
348 | BITMAP bm; /* bitmap properties */ | ||
349 | unsigned int size; /* size of bitmap */ | ||
350 | char *bmbits; /* contents of bitmap */ | ||
351 | int w; /* screen width */ | ||
352 | int h; /* screen height */ | ||
353 | int y; /* y-coordinate of screen lines to grab */ | ||
354 | int n = 16; /* number of screen lines to grab at a time */ | ||
355 | |||
356 | /* Create a screen DC and a memory DC compatible to screen DC */ | ||
357 | hScrDC = CreateDC("DISPLAY", NULL, NULL, NULL); | ||
358 | hMemDC = CreateCompatibleDC(hScrDC); | ||
359 | |||
360 | /* Get screen resolution */ | ||
361 | w = GetDeviceCaps(hScrDC, HORZRES); | ||
362 | h = GetDeviceCaps(hScrDC, VERTRES); | ||
363 | |||
364 | /* Create a bitmap compatible with the screen DC */ | ||
365 | hBitmap = CreateCompatibleBitmap(hScrDC, w, n); | ||
366 | |||
367 | /* Select new bitmap into memory DC */ | ||
368 | hOldBitmap = SelectObject(hMemDC, hBitmap); | ||
369 | |||
370 | /* Get bitmap properties */ | ||
371 | GetObject(hBitmap, sizeof(BITMAP), (LPSTR)&bm); | ||
372 | size = (unsigned int)bm.bmWidthBytes * bm.bmHeight * bm.bmPlanes; | ||
373 | |||
374 | bmbits = Malloc(size); | ||
375 | if (bmbits) { | ||
376 | /* Now go through the whole screen, repeatedly grabbing n lines */ | ||
377 | for (y = 0; y < h-n; y += n) | ||
378 | { | ||
379 | unsigned char md[MD_DIGEST_LENGTH]; | ||
380 | |||
381 | /* Bitblt screen DC to memory DC */ | ||
382 | BitBlt(hMemDC, 0, 0, w, n, hScrDC, 0, y, SRCCOPY); | ||
383 | |||
384 | /* Copy bitmap bits from memory DC to bmbits */ | ||
385 | GetBitmapBits(hBitmap, size, bmbits); | ||
386 | |||
387 | /* Get the MD5 of the bitmap */ | ||
388 | MD5(bmbits,size,md); | ||
389 | |||
390 | /* Seed the random generator with the MD5 digest */ | ||
391 | RAND_seed(md, MD_DIGEST_LENGTH); | ||
392 | } | 526 | } |
393 | 527 | ||
394 | Free(bmbits); | 528 | static int ssleay_rand_status(void) |
395 | } | 529 | { |
530 | int ret; | ||
531 | int do_not_lock; | ||
396 | 532 | ||
397 | /* Select old bitmap back into memory DC */ | 533 | /* check if we already have the lock |
398 | hBitmap = SelectObject(hMemDC, hOldBitmap); | 534 | * (could happen if a RAND_poll() implementation calls RAND_status()) */ |
535 | if (crypto_lock_rand) | ||
536 | { | ||
537 | CRYPTO_r_lock(CRYPTO_LOCK_RAND2); | ||
538 | do_not_lock = (locking_thread == CRYPTO_thread_id()); | ||
539 | CRYPTO_r_unlock(CRYPTO_LOCK_RAND2); | ||
540 | } | ||
541 | else | ||
542 | do_not_lock = 0; | ||
543 | |||
544 | if (!do_not_lock) | ||
545 | { | ||
546 | CRYPTO_w_lock(CRYPTO_LOCK_RAND); | ||
547 | |||
548 | /* prevent ssleay_rand_bytes() from trying to obtain the lock again */ | ||
549 | CRYPTO_w_lock(CRYPTO_LOCK_RAND2); | ||
550 | locking_thread = CRYPTO_thread_id(); | ||
551 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND2); | ||
552 | crypto_lock_rand = 1; | ||
553 | } | ||
554 | |||
555 | if (!initialized) | ||
556 | { | ||
557 | RAND_poll(); | ||
558 | initialized = 1; | ||
559 | } | ||
399 | 560 | ||
400 | /* Clean up */ | 561 | ret = entropy >= ENTROPY_NEEDED; |
401 | DeleteObject(hBitmap); | 562 | |
402 | DeleteDC(hMemDC); | 563 | if (!do_not_lock) |
403 | DeleteDC(hScrDC); | 564 | { |
404 | } | 565 | /* before unlocking, we must clear 'crypto_lock_rand' */ |
405 | #endif | 566 | crypto_lock_rand = 0; |
567 | |||
568 | CRYPTO_w_unlock(CRYPTO_LOCK_RAND); | ||
569 | } | ||
570 | |||
571 | return ret; | ||
572 | } | ||