summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/rand/md_rand.c
diff options
context:
space:
mode:
authormarkus <>2002-09-05 12:51:52 +0000
committermarkus <>2002-09-05 12:51:52 +0000
commit5514995a9d5ed91db089875adb509c7781357c0e (patch)
tree2484410a46ba6c05ef94c253da36fbceef990b64 /src/lib/libcrypto/rand/md_rand.c
parentfd9566423b542798f5c8b06e68101a9ea5bb9885 (diff)
downloadopenbsd-5514995a9d5ed91db089875adb509c7781357c0e.tar.gz
openbsd-5514995a9d5ed91db089875adb509c7781357c0e.tar.bz2
openbsd-5514995a9d5ed91db089875adb509c7781357c0e.zip
import openssl-0.9.7-beta1
Diffstat (limited to 'src/lib/libcrypto/rand/md_rand.c')
-rw-r--r--src/lib/libcrypto/rand/md_rand.c639
1 files changed, 403 insertions, 236 deletions
diff --git a/src/lib/libcrypto/rand/md_rand.c b/src/lib/libcrypto/rand/md_rand.c
index f44b36a8b9..a00ed70718 100644
--- a/src/lib/libcrypto/rand/md_rand.c
+++ b/src/lib/libcrypto/rand/md_rand.c
@@ -55,100 +55,185 @@
55 * copied and put under another distribution licence 55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.] 56 * [including the GNU Public Licence.]
57 */ 57 */
58/* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
58 111
59#include <stdio.h> 112#ifdef MD_RAND_DEBUG
60#include "cryptlib.h" 113# ifndef NDEBUG
61#include <sys/types.h> 114# define NDEBUG
62#include <time.h> 115# endif
63
64#if !defined(USE_MD5_RAND) && !defined(USE_SHA1_RAND) && !defined(USE_MDC2_RAND) && !defined(USE_MD2_RAND)
65#ifndef NO_MD5
66#define USE_MD5_RAND
67#elif !defined(NO_SHA1)
68#define USE_SHA1_RAND
69#elif !defined(NO_MDC2)
70#define USE_MDC2_RAND
71#elif !defined(NO_MD2)
72#define USE_MD2_RAND
73#else
74We need a message digest of some type
75#endif
76#endif 116#endif
77 117
78/* Changed how the state buffer used. I now attempt to 'wrap' such 118#include <assert.h>
79 * that I don't run over the same locations the next time go through 119#include <stdio.h>
80 * the 1023 bytes - many thanks to 120#include <string.h>
81 * Robert J. LeBlanc <rjl@renaissoft.com> for his comments
82 */
83 121
84#if defined(USE_MD5_RAND) 122#include "e_os.h"
85#include "md5.h"
86#define MD_DIGEST_LENGTH MD5_DIGEST_LENGTH
87#define MD_CTX MD5_CTX
88#define MD_Init(a) MD5_Init(a)
89#define MD_Update(a,b,c) MD5_Update(a,b,c)
90#define MD_Final(a,b) MD5_Final(a,b)
91#elif defined(USE_SHA1_RAND)
92#include "sha.h"
93#define MD_DIGEST_LENGTH SHA_DIGEST_LENGTH
94#define MD_CTX SHA_CTX
95#define MD_Init(a) SHA1_Init(a)
96#define MD_Update(a,b,c) SHA1_Update(a,b,c)
97#define MD_Final(a,b) SHA1_Final(a,b)
98#elif defined(USE_MDC2_RAND)
99#include "mdc2.h"
100#define MD_DIGEST_LENGTH MDC2_DIGEST_LENGTH
101#define MD_CTX MDC2_CTX
102#define MD_Init(a) MDC2_Init(a)
103#define MD_Update(a,b,c) MDC2_Update(a,b,c)
104#define MD_Final(a,b) MDC2_Final(a,b)
105#elif defined(USE_MD2_RAND)
106#include "md2.h"
107#define MD_DIGEST_LENGTH MD2_DIGEST_LENGTH
108#define MD_CTX MD2_CTX
109#define MD_Init(a) MD2_Init(a)
110#define MD_Update(a,b,c) MD2_Update(a,b,c)
111#define MD_Final(a,b) MD2_Final(a,b)
112#endif
113 123
114#include "rand.h" 124#include <openssl/rand.h>
125#include "rand_lcl.h"
115 126
116/*#define NORAND 1 */ 127#include <openssl/crypto.h>
117/*#define PREDICT 1 */ 128#include <openssl/err.h>
129
130#ifdef BN_DEBUG
131# define PREDICT
132#endif
133
134/* #define PREDICT 1 */
118 135
119#define STATE_SIZE 1023 136#define STATE_SIZE 1023
120static int state_num=0,state_index=0; 137static int state_num=0,state_index=0;
121static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH]; 138static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
122static unsigned char md[MD_DIGEST_LENGTH]; 139static unsigned char md[MD_DIGEST_LENGTH];
123static int md_count=0; 140static long md_count[2]={0,0};
141static double entropy=0;
142static int initialized=0;
124 143
125char *RAND_version="RAND part of SSLeay 0.9.0b 29-Jun-1998"; 144static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
145 * holds CRYPTO_LOCK_RAND
146 * (to prevent double locking) */
147/* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
148static unsigned long locking_thread = 0; /* valid iff crypto_lock_rand is set */
126 149
127void RAND_cleanup() 150
151#ifdef PREDICT
152int rand_predictable=0;
153#endif
154
155const char *RAND_version="RAND" OPENSSL_VERSION_PTEXT;
156
157static void ssleay_rand_cleanup(void);
158static void ssleay_rand_seed(const void *buf, int num);
159static void ssleay_rand_add(const void *buf, int num, double add_entropy);
160static int ssleay_rand_bytes(unsigned char *buf, int num);
161static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
162static int ssleay_rand_status(void);
163
164RAND_METHOD rand_ssleay_meth={
165 ssleay_rand_seed,
166 ssleay_rand_bytes,
167 ssleay_rand_cleanup,
168 ssleay_rand_add,
169 ssleay_rand_pseudo_bytes,
170 ssleay_rand_status
171 };
172
173RAND_METHOD *RAND_SSLeay(void)
174 {
175 return(&rand_ssleay_meth);
176 }
177
178static void ssleay_rand_cleanup(void)
128 { 179 {
129 memset(state,0,sizeof(state)); 180 memset(state,0,sizeof(state));
130 state_num=0; 181 state_num=0;
131 state_index=0; 182 state_index=0;
132 memset(md,0,MD_DIGEST_LENGTH); 183 memset(md,0,MD_DIGEST_LENGTH);
133 md_count=0; 184 md_count[0]=0;
185 md_count[1]=0;
186 entropy=0;
187 initialized=0;
134 } 188 }
135 189
136void RAND_seed(buf,num) 190static void ssleay_rand_add(const void *buf, int num, double add)
137unsigned char *buf;
138int num;
139 { 191 {
140 int i,j,k,st_idx,st_num; 192 int i,j,k,st_idx;
141 MD_CTX m; 193 long md_c[2];
142 194 unsigned char local_md[MD_DIGEST_LENGTH];
143#ifdef NORAND 195 EVP_MD_CTX m;
144 return; 196 int do_not_lock;
145#endif 197
198 /*
199 * (Based on the rand(3) manpage)
200 *
201 * The input is chopped up into units of 20 bytes (or less for
202 * the last block). Each of these blocks is run through the hash
203 * function as follows: The data passed to the hash function
204 * is the current 'md', the same number of bytes from the 'state'
205 * (the location determined by in incremented looping index) as
206 * the current 'block', the new key data 'block', and 'count'
207 * (which is incremented after each use).
208 * The result of this is kept in 'md' and also xored into the
209 * 'state' at the same locations that were used as input into the
210 * hash function.
211 */
212
213 /* check if we already have the lock */
214 if (crypto_lock_rand)
215 {
216 CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
217 do_not_lock = (locking_thread == CRYPTO_thread_id());
218 CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
219 }
220 else
221 do_not_lock = 0;
146 222
147 CRYPTO_w_lock(CRYPTO_LOCK_RAND); 223 if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
148 st_idx=state_index; 224 st_idx=state_index;
149 st_num=state_num;
150 225
151 state_index=(state_index+num); 226 /* use our own copies of the counters so that even
227 * if a concurrent thread seeds with exactly the
228 * same data and uses the same subarray there's _some_
229 * difference */
230 md_c[0] = md_count[0];
231 md_c[1] = md_count[1];
232
233 memcpy(local_md, md, sizeof md);
234
235 /* state_index <= state_num <= STATE_SIZE */
236 state_index += num;
152 if (state_index >= STATE_SIZE) 237 if (state_index >= STATE_SIZE)
153 { 238 {
154 state_index%=STATE_SIZE; 239 state_index%=STATE_SIZE;
@@ -159,15 +244,24 @@ int num;
159 if (state_index > state_num) 244 if (state_index > state_num)
160 state_num=state_index; 245 state_num=state_index;
161 } 246 }
162 CRYPTO_w_unlock(CRYPTO_LOCK_RAND); 247 /* state_index <= state_num <= STATE_SIZE */
163 248
249 /* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
250 * are what we will use now, but other threads may use them
251 * as well */
252
253 md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
254
255 if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
256
257 EVP_MD_CTX_init(&m);
164 for (i=0; i<num; i+=MD_DIGEST_LENGTH) 258 for (i=0; i<num; i+=MD_DIGEST_LENGTH)
165 { 259 {
166 j=(num-i); 260 j=(num-i);
167 j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j; 261 j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
168 262
169 MD_Init(&m); 263 MD_Init(&m);
170 MD_Update(&m,md,MD_DIGEST_LENGTH); 264 MD_Update(&m,local_md,MD_DIGEST_LENGTH);
171 k=(st_idx+j)-STATE_SIZE; 265 k=(st_idx+j)-STATE_SIZE;
172 if (k > 0) 266 if (k > 0)
173 { 267 {
@@ -178,228 +272,301 @@ int num;
178 MD_Update(&m,&(state[st_idx]),j); 272 MD_Update(&m,&(state[st_idx]),j);
179 273
180 MD_Update(&m,buf,j); 274 MD_Update(&m,buf,j);
181 MD_Final(md,&m); 275 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
276 MD_Final(&m,local_md);
277 md_c[1]++;
182 278
183 buf+=j; 279 buf=(const char *)buf + j;
184 280
185 for (k=0; k<j; k++) 281 for (k=0; k<j; k++)
186 { 282 {
187 state[st_idx++]^=md[k]; 283 /* Parallel threads may interfere with this,
284 * but always each byte of the new state is
285 * the XOR of some previous value of its
286 * and local_md (itermediate values may be lost).
287 * Alway using locking could hurt performance more
288 * than necessary given that conflicts occur only
289 * when the total seeding is longer than the random
290 * state. */
291 state[st_idx++]^=local_md[k];
188 if (st_idx >= STATE_SIZE) 292 if (st_idx >= STATE_SIZE)
189 {
190 st_idx=0; 293 st_idx=0;
191 st_num=STATE_SIZE;
192 }
193 } 294 }
194 } 295 }
195 memset((char *)&m,0,sizeof(m)); 296 EVP_MD_CTX_cleanup(&m);
297
298 if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
299 /* Don't just copy back local_md into md -- this could mean that
300 * other thread's seeding remains without effect (except for
301 * the incremented counter). By XORing it we keep at least as
302 * much entropy as fits into md. */
303 for (k = 0; k < sizeof md; k++)
304 {
305 md[k] ^= local_md[k];
306 }
307 if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
308 entropy += add;
309 if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
310
311#if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
312 assert(md_c[1] == md_count[1]);
313#endif
196 } 314 }
197 315
198void RAND_bytes(buf,num) 316static void ssleay_rand_seed(const void *buf, int num)
199unsigned char *buf;
200int num;
201 { 317 {
318 ssleay_rand_add(buf, num, num);
319 }
320
321static int ssleay_rand_bytes(unsigned char *buf, int num)
322 {
323 static volatile int stirred_pool = 0;
202 int i,j,k,st_num,st_idx; 324 int i,j,k,st_num,st_idx;
203 MD_CTX m; 325 int num_ceil;
204 static int init=1; 326 int ok;
205 unsigned long l; 327 long md_c[2];
206#ifdef DEVRANDOM 328 unsigned char local_md[MD_DIGEST_LENGTH];
207 FILE *fh; 329 EVP_MD_CTX m;
330#ifndef GETPID_IS_MEANINGLESS
331 pid_t curr_pid = getpid();
208#endif 332#endif
333 int do_stir_pool = 0;
209 334
210#ifdef PREDICT 335#ifdef PREDICT
211 { 336 if (rand_predictable)
212 static unsigned char val=0; 337 {
338 static unsigned char val=0;
213 339
214 for (i=0; i<num; i++) 340 for (i=0; i<num; i++)
215 buf[i]=val++; 341 buf[i]=val++;
216 return; 342 return(1);
217 } 343 }
218#endif 344#endif
219 345
346 if (num <= 0)
347 return 1;
348
349 EVP_MD_CTX_init(&m);
350 /* round upwards to multiple of MD_DIGEST_LENGTH/2 */
351 num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
352
353 /*
354 * (Based on the rand(3) manpage:)
355 *
356 * For each group of 10 bytes (or less), we do the following:
357 *
358 * Input into the hash function the local 'md' (which is initialized from
359 * the global 'md' before any bytes are generated), the bytes that are to
360 * be overwritten by the random bytes, and bytes from the 'state'
361 * (incrementing looping index). From this digest output (which is kept
362 * in 'md'), the top (up to) 10 bytes are returned to the caller and the
363 * bottom 10 bytes are xored into the 'state'.
364 *
365 * Finally, after we have finished 'num' random bytes for the
366 * caller, 'count' (which is incremented) and the local and global 'md'
367 * are fed into the hash function and the results are kept in the
368 * global 'md'.
369 */
370
220 CRYPTO_w_lock(CRYPTO_LOCK_RAND); 371 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
221 372
222 if (init) 373 /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
374 CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
375 locking_thread = CRYPTO_thread_id();
376 CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
377 crypto_lock_rand = 1;
378
379 if (!initialized)
223 { 380 {
224 init=0; 381 RAND_poll();
225 CRYPTO_w_unlock(CRYPTO_LOCK_RAND); 382 initialized = 1;
226 /* put in some default random data, we need more than 383 }
227 * just this */ 384
228 RAND_seed((unsigned char *)&m,sizeof(m)); 385 if (!stirred_pool)
229#ifndef MSDOS 386 do_stir_pool = 1;
230 l=getpid(); 387
231 RAND_seed((unsigned char *)&l,sizeof(l)); 388 ok = (entropy >= ENTROPY_NEEDED);
232 l=getuid(); 389 if (!ok)
233 RAND_seed((unsigned char *)&l,sizeof(l)); 390 {
234#endif 391 /* If the PRNG state is not yet unpredictable, then seeing
235 l=time(NULL); 392 * the PRNG output may help attackers to determine the new
236 RAND_seed((unsigned char *)&l,sizeof(l)); 393 * state; thus we have to decrease the entropy estimate.
237 394 * Once we've had enough initial seeding we don't bother to
238/* #ifdef DEVRANDOM */ 395 * adjust the entropy count, though, because we're not ambitious
239 /* 396 * to provide *information-theoretic* randomness.
240 * Use a random entropy pool device. 397 *
241 * Linux 1.3.x and FreeBSD-Current has 398 * NOTE: This approach fails if the program forks before
242 * this. Use /dev/urandom if you can 399 * we have enough entropy. Entropy should be collected
243 * as /dev/random will block if it runs out 400 * in a separate input pool and be transferred to the
244 * of random entries. 401 * output pool only when the entropy limit has been reached.
245 */ 402 */
246 if ((fh = fopen(DEVRANDOM, "r")) != NULL) 403 entropy -= num;
404 if (entropy < 0)
405 entropy = 0;
406 }
407
408 if (do_stir_pool)
409 {
410 /* In the output function only half of 'md' remains secret,
411 * so we better make sure that the required entropy gets
412 * 'evenly distributed' through 'state', our randomness pool.
413 * The input function (ssleay_rand_add) chains all of 'md',
414 * which makes it more suitable for this purpose.
415 */
416
417 int n = STATE_SIZE; /* so that the complete pool gets accessed */
418 while (n > 0)
247 { 419 {
248 unsigned char tmpbuf[32]; 420#if MD_DIGEST_LENGTH > 20
249 421# error "Please adjust DUMMY_SEED."
250 fread((unsigned char *)tmpbuf,1,32,fh);
251 /* we don't care how many bytes we read,
252 * we will just copy the 'stack' if there is
253 * nothing else :-) */
254 fclose(fh);
255 RAND_seed(tmpbuf,32);
256 memset(tmpbuf,0,32);
257 }
258/* #endif */
259#ifdef PURIFY
260 memset(state,0,STATE_SIZE);
261 memset(md,0,MD_DIGEST_LENGTH);
262#endif 422#endif
263 CRYPTO_w_lock(CRYPTO_LOCK_RAND); 423#define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
424 /* Note that the seed does not matter, it's just that
425 * ssleay_rand_add expects to have something to hash. */
426 ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
427 n -= MD_DIGEST_LENGTH;
428 }
429 if (ok)
430 stirred_pool = 1;
264 } 431 }
265 432
266 st_idx=state_index; 433 st_idx=state_index;
267 st_num=state_num; 434 st_num=state_num;
268 state_index+=num; 435 md_c[0] = md_count[0];
436 md_c[1] = md_count[1];
437 memcpy(local_md, md, sizeof md);
438
439 state_index+=num_ceil;
269 if (state_index > state_num) 440 if (state_index > state_num)
270 state_index=(state_index%state_num); 441 state_index %= state_num;
271 442
443 /* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
444 * are now ours (but other threads may use them too) */
445
446 md_count[0] += 1;
447
448 /* before unlocking, we must clear 'crypto_lock_rand' */
449 crypto_lock_rand = 0;
272 CRYPTO_w_unlock(CRYPTO_LOCK_RAND); 450 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
273 451
274 while (num > 0) 452 while (num > 0)
275 { 453 {
454 /* num_ceil -= MD_DIGEST_LENGTH/2 */
276 j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num; 455 j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
277 num-=j; 456 num-=j;
278 MD_Init(&m); 457 MD_Init(&m);
279 MD_Update(&m,&(md[MD_DIGEST_LENGTH/2]),MD_DIGEST_LENGTH/2); 458#ifndef GETPID_IS_MEANINGLESS
459 if (curr_pid) /* just in the first iteration to save time */
460 {
461 MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
462 curr_pid = 0;
463 }
464#endif
465 MD_Update(&m,local_md,MD_DIGEST_LENGTH);
466 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
280#ifndef PURIFY 467#ifndef PURIFY
281 MD_Update(&m,buf,j); /* purify complains */ 468 MD_Update(&m,buf,j); /* purify complains */
282#endif 469#endif
283 k=(st_idx+j)-st_num; 470 k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
284 if (k > 0) 471 if (k > 0)
285 { 472 {
286 MD_Update(&m,&(state[st_idx]),j-k); 473 MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
287 MD_Update(&m,&(state[0]),k); 474 MD_Update(&m,&(state[0]),k);
288 } 475 }
289 else 476 else
290 MD_Update(&m,&(state[st_idx]),j); 477 MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
291 MD_Final(md,&m); 478 MD_Final(&m,local_md);
292 479
293 for (i=0; i<j; i++) 480 for (i=0; i<MD_DIGEST_LENGTH/2; i++)
294 { 481 {
482 state[st_idx++]^=local_md[i]; /* may compete with other threads */
295 if (st_idx >= st_num) 483 if (st_idx >= st_num)
296 st_idx=0; 484 st_idx=0;
297 state[st_idx++]^=md[i]; 485 if (i < j)
298 *(buf++)=md[i+MD_DIGEST_LENGTH/2]; 486 *(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
299 } 487 }
300 } 488 }
301 489
302 MD_Init(&m); 490 MD_Init(&m);
303 MD_Update(&m,(unsigned char *)&md_count,sizeof(md_count)); md_count++; 491 MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
492 MD_Update(&m,local_md,MD_DIGEST_LENGTH);
493 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
304 MD_Update(&m,md,MD_DIGEST_LENGTH); 494 MD_Update(&m,md,MD_DIGEST_LENGTH);
305 MD_Final(md,&m); 495 MD_Final(&m,md);
306 memset(&m,0,sizeof(m)); 496 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
497
498 EVP_MD_CTX_cleanup(&m);
499 if (ok)
500 return(1);
501 else
502 {
503 RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
504 ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
505 "http://www.openssl.org/support/faq.html");
506 return(0);
507 }
307 } 508 }
308 509
309#ifdef WINDOWS 510/* pseudo-random bytes that are guaranteed to be unique but not
310#include <windows.h> 511 unpredictable */
311#include <rand.h> 512static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
513 {
514 int ret;
515 unsigned long err;
312 516
313/***************************************************************************** 517 ret = RAND_bytes(buf, num);
314 * Initialisation function for the SSL random generator. Takes the contents 518 if (ret == 0)
315 * of the screen as random seed. 519 {
316 * 520 err = ERR_peek_error();
317 * Created 960901 by Gertjan van Oosten, gertjan@West.NL, West Consulting B.V. 521 if (ERR_GET_LIB(err) == ERR_LIB_RAND &&
318 * 522 ERR_GET_REASON(err) == RAND_R_PRNG_NOT_SEEDED)
319 * Code adapted from 523 (void)ERR_get_error();
320 * <URL:http://www.microsoft.com/kb/developr/win_dk/q97193.htm>; 524 }
321 * the original copyright message is: 525 return (ret);
322 *
323// (C) Copyright Microsoft Corp. 1993. All rights reserved.
324//
325// You have a royalty-free right to use, modify, reproduce and
326// distribute the Sample Files (and/or any modified version) in
327// any way you find useful, provided that you agree that
328// Microsoft has no warranty obligations or liability for any
329// Sample Application Files which are modified.
330 */
331/*
332 * I have modified the loading of bytes via RAND_seed() mechanism since
333 * the origional would have been very very CPU intensive since RAND_seed()
334 * does an MD5 per 16 bytes of input. The cost to digest 16 bytes is the same
335 * as that to digest 56 bytes. So under the old system, a screen of
336 * 1024*768*256 would have been CPU cost of approximatly 49,000 56 byte MD5
337 * digests or digesting 2.7 mbytes. What I have put in place would
338 * be 48 16k MD5 digests, or efectivly 48*16+48 MD5 bytes or 816 kbytes
339 * or about 3.5 times as much.
340 * - eric
341 */
342void RAND_screen(void)
343{
344 HDC hScrDC; /* screen DC */
345 HDC hMemDC; /* memory DC */
346 HBITMAP hBitmap; /* handle for our bitmap */
347 HBITMAP hOldBitmap; /* handle for previous bitmap */
348 BITMAP bm; /* bitmap properties */
349 unsigned int size; /* size of bitmap */
350 char *bmbits; /* contents of bitmap */
351 int w; /* screen width */
352 int h; /* screen height */
353 int y; /* y-coordinate of screen lines to grab */
354 int n = 16; /* number of screen lines to grab at a time */
355
356 /* Create a screen DC and a memory DC compatible to screen DC */
357 hScrDC = CreateDC("DISPLAY", NULL, NULL, NULL);
358 hMemDC = CreateCompatibleDC(hScrDC);
359
360 /* Get screen resolution */
361 w = GetDeviceCaps(hScrDC, HORZRES);
362 h = GetDeviceCaps(hScrDC, VERTRES);
363
364 /* Create a bitmap compatible with the screen DC */
365 hBitmap = CreateCompatibleBitmap(hScrDC, w, n);
366
367 /* Select new bitmap into memory DC */
368 hOldBitmap = SelectObject(hMemDC, hBitmap);
369
370 /* Get bitmap properties */
371 GetObject(hBitmap, sizeof(BITMAP), (LPSTR)&bm);
372 size = (unsigned int)bm.bmWidthBytes * bm.bmHeight * bm.bmPlanes;
373
374 bmbits = Malloc(size);
375 if (bmbits) {
376 /* Now go through the whole screen, repeatedly grabbing n lines */
377 for (y = 0; y < h-n; y += n)
378 {
379 unsigned char md[MD_DIGEST_LENGTH];
380
381 /* Bitblt screen DC to memory DC */
382 BitBlt(hMemDC, 0, 0, w, n, hScrDC, 0, y, SRCCOPY);
383
384 /* Copy bitmap bits from memory DC to bmbits */
385 GetBitmapBits(hBitmap, size, bmbits);
386
387 /* Get the MD5 of the bitmap */
388 MD5(bmbits,size,md);
389
390 /* Seed the random generator with the MD5 digest */
391 RAND_seed(md, MD_DIGEST_LENGTH);
392 } 526 }
393 527
394 Free(bmbits); 528static int ssleay_rand_status(void)
395 } 529 {
530 int ret;
531 int do_not_lock;
396 532
397 /* Select old bitmap back into memory DC */ 533 /* check if we already have the lock
398 hBitmap = SelectObject(hMemDC, hOldBitmap); 534 * (could happen if a RAND_poll() implementation calls RAND_status()) */
535 if (crypto_lock_rand)
536 {
537 CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
538 do_not_lock = (locking_thread == CRYPTO_thread_id());
539 CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
540 }
541 else
542 do_not_lock = 0;
543
544 if (!do_not_lock)
545 {
546 CRYPTO_w_lock(CRYPTO_LOCK_RAND);
547
548 /* prevent ssleay_rand_bytes() from trying to obtain the lock again */
549 CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
550 locking_thread = CRYPTO_thread_id();
551 CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
552 crypto_lock_rand = 1;
553 }
554
555 if (!initialized)
556 {
557 RAND_poll();
558 initialized = 1;
559 }
399 560
400 /* Clean up */ 561 ret = entropy >= ENTROPY_NEEDED;
401 DeleteObject(hBitmap); 562
402 DeleteDC(hMemDC); 563 if (!do_not_lock)
403 DeleteDC(hScrDC); 564 {
404} 565 /* before unlocking, we must clear 'crypto_lock_rand' */
405#endif 566 crypto_lock_rand = 0;
567
568 CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
569 }
570
571 return ret;
572 }