diff options
author | cvs2svn <admin@example.com> | 2012-07-13 17:49:55 +0000 |
---|---|---|
committer | cvs2svn <admin@example.com> | 2012-07-13 17:49:55 +0000 |
commit | 6fdb436ab2cd5b35066babb3a03be7ad0daf1ae2 (patch) | |
tree | a760cf389e7ea59961bb306a1f50bf5443205176 /src/lib/libcrypto/rc4 | |
parent | 9204e59073bcf27e1487ec4ac46e981902ddd904 (diff) | |
download | openbsd-OPENBSD_5_2_BASE.tar.gz openbsd-OPENBSD_5_2_BASE.tar.bz2 openbsd-OPENBSD_5_2_BASE.zip |
This commit was manufactured by cvs2git to create tag 'OPENBSD_5_2_BASE'.OPENBSD_5_2_BASE
Diffstat (limited to 'src/lib/libcrypto/rc4')
-rw-r--r-- | src/lib/libcrypto/rc4/asm/rc4-586.pl | 270 | ||||
-rw-r--r-- | src/lib/libcrypto/rc4/asm/rc4-ia64.pl | 755 | ||||
-rw-r--r-- | src/lib/libcrypto/rc4/asm/rc4-s390x.pl | 205 | ||||
-rwxr-xr-x | src/lib/libcrypto/rc4/asm/rc4-x86_64.pl | 504 | ||||
-rw-r--r-- | src/lib/libcrypto/rc4/rc4.h | 89 | ||||
-rw-r--r-- | src/lib/libcrypto/rc4/rc4_enc.c | 315 | ||||
-rw-r--r-- | src/lib/libcrypto/rc4/rc4_locl.h | 5 | ||||
-rw-r--r-- | src/lib/libcrypto/rc4/rc4_skey.c | 150 |
8 files changed, 0 insertions, 2293 deletions
diff --git a/src/lib/libcrypto/rc4/asm/rc4-586.pl b/src/lib/libcrypto/rc4/asm/rc4-586.pl deleted file mode 100644 index 38a44a70ef..0000000000 --- a/src/lib/libcrypto/rc4/asm/rc4-586.pl +++ /dev/null | |||
@@ -1,270 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | |||
3 | # ==================================================================== | ||
4 | # [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | |||
10 | # At some point it became apparent that the original SSLeay RC4 | ||
11 | # assembler implementation performs suboptimally on latest IA-32 | ||
12 | # microarchitectures. After re-tuning performance has changed as | ||
13 | # following: | ||
14 | # | ||
15 | # Pentium -10% | ||
16 | # Pentium III +12% | ||
17 | # AMD +50%(*) | ||
18 | # P4 +250%(**) | ||
19 | # | ||
20 | # (*) This number is actually a trade-off:-) It's possible to | ||
21 | # achieve +72%, but at the cost of -48% off PIII performance. | ||
22 | # In other words code performing further 13% faster on AMD | ||
23 | # would perform almost 2 times slower on Intel PIII... | ||
24 | # For reference! This code delivers ~80% of rc4-amd64.pl | ||
25 | # performance on the same Opteron machine. | ||
26 | # (**) This number requires compressed key schedule set up by | ||
27 | # RC4_set_key [see commentary below for further details]. | ||
28 | # | ||
29 | # <appro@fy.chalmers.se> | ||
30 | |||
31 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
32 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
33 | require "x86asm.pl"; | ||
34 | |||
35 | &asm_init($ARGV[0],"rc4-586.pl"); | ||
36 | |||
37 | $xx="eax"; | ||
38 | $yy="ebx"; | ||
39 | $tx="ecx"; | ||
40 | $ty="edx"; | ||
41 | $inp="esi"; | ||
42 | $out="ebp"; | ||
43 | $dat="edi"; | ||
44 | |||
45 | sub RC4_loop { | ||
46 | my $i=shift; | ||
47 | my $func = ($i==0)?*mov:*or; | ||
48 | |||
49 | &add (&LB($yy),&LB($tx)); | ||
50 | &mov ($ty,&DWP(0,$dat,$yy,4)); | ||
51 | &mov (&DWP(0,$dat,$yy,4),$tx); | ||
52 | &mov (&DWP(0,$dat,$xx,4),$ty); | ||
53 | &add ($ty,$tx); | ||
54 | &inc (&LB($xx)); | ||
55 | &and ($ty,0xff); | ||
56 | &ror ($out,8) if ($i!=0); | ||
57 | if ($i<3) { | ||
58 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
59 | } else { | ||
60 | &mov ($tx,&wparam(3)); # reload [re-biased] out | ||
61 | } | ||
62 | &$func ($out,&DWP(0,$dat,$ty,4)); | ||
63 | } | ||
64 | |||
65 | # void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out); | ||
66 | &function_begin("RC4"); | ||
67 | &mov ($dat,&wparam(0)); # load key schedule pointer | ||
68 | &mov ($ty, &wparam(1)); # load len | ||
69 | &mov ($inp,&wparam(2)); # load inp | ||
70 | &mov ($out,&wparam(3)); # load out | ||
71 | |||
72 | &xor ($xx,$xx); # avoid partial register stalls | ||
73 | &xor ($yy,$yy); | ||
74 | |||
75 | &cmp ($ty,0); # safety net | ||
76 | &je (&label("abort")); | ||
77 | |||
78 | &mov (&LB($xx),&BP(0,$dat)); # load key->x | ||
79 | &mov (&LB($yy),&BP(4,$dat)); # load key->y | ||
80 | &add ($dat,8); | ||
81 | |||
82 | &lea ($tx,&DWP(0,$inp,$ty)); | ||
83 | &sub ($out,$inp); # re-bias out | ||
84 | &mov (&wparam(1),$tx); # save input+len | ||
85 | |||
86 | &inc (&LB($xx)); | ||
87 | |||
88 | # detect compressed key schedule... | ||
89 | &cmp (&DWP(256,$dat),-1); | ||
90 | &je (&label("RC4_CHAR")); | ||
91 | |||
92 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
93 | |||
94 | &and ($ty,-4); # how many 4-byte chunks? | ||
95 | &jz (&label("loop1")); | ||
96 | |||
97 | &lea ($ty,&DWP(-4,$inp,$ty)); | ||
98 | &mov (&wparam(2),$ty); # save input+(len/4)*4-4 | ||
99 | &mov (&wparam(3),$out); # $out as accumulator in this loop | ||
100 | |||
101 | &set_label("loop4",16); | ||
102 | for ($i=0;$i<4;$i++) { RC4_loop($i); } | ||
103 | &ror ($out,8); | ||
104 | &xor ($out,&DWP(0,$inp)); | ||
105 | &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4 | ||
106 | &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here | ||
107 | &lea ($inp,&DWP(4,$inp)); | ||
108 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
109 | &jb (&label("loop4")); | ||
110 | |||
111 | &cmp ($inp,&wparam(1)); # compare to input+len | ||
112 | &je (&label("done")); | ||
113 | &mov ($out,&wparam(3)); # restore $out | ||
114 | |||
115 | &set_label("loop1",16); | ||
116 | &add (&LB($yy),&LB($tx)); | ||
117 | &mov ($ty,&DWP(0,$dat,$yy,4)); | ||
118 | &mov (&DWP(0,$dat,$yy,4),$tx); | ||
119 | &mov (&DWP(0,$dat,$xx,4),$ty); | ||
120 | &add ($ty,$tx); | ||
121 | &inc (&LB($xx)); | ||
122 | &and ($ty,0xff); | ||
123 | &mov ($ty,&DWP(0,$dat,$ty,4)); | ||
124 | &xor (&LB($ty),&BP(0,$inp)); | ||
125 | &lea ($inp,&DWP(1,$inp)); | ||
126 | &mov ($tx,&DWP(0,$dat,$xx,4)); | ||
127 | &cmp ($inp,&wparam(1)); # compare to input+len | ||
128 | &mov (&BP(-1,$out,$inp),&LB($ty)); | ||
129 | &jb (&label("loop1")); | ||
130 | |||
131 | &jmp (&label("done")); | ||
132 | |||
133 | # this is essentially Intel P4 specific codepath... | ||
134 | &set_label("RC4_CHAR",16); | ||
135 | &movz ($tx,&BP(0,$dat,$xx)); | ||
136 | # strangely enough unrolled loop performs over 20% slower... | ||
137 | &set_label("cloop1"); | ||
138 | &add (&LB($yy),&LB($tx)); | ||
139 | &movz ($ty,&BP(0,$dat,$yy)); | ||
140 | &mov (&BP(0,$dat,$yy),&LB($tx)); | ||
141 | &mov (&BP(0,$dat,$xx),&LB($ty)); | ||
142 | &add (&LB($ty),&LB($tx)); | ||
143 | &movz ($ty,&BP(0,$dat,$ty)); | ||
144 | &add (&LB($xx),1); | ||
145 | &xor (&LB($ty),&BP(0,$inp)); | ||
146 | &lea ($inp,&DWP(1,$inp)); | ||
147 | &movz ($tx,&BP(0,$dat,$xx)); | ||
148 | &cmp ($inp,&wparam(1)); | ||
149 | &mov (&BP(-1,$out,$inp),&LB($ty)); | ||
150 | &jb (&label("cloop1")); | ||
151 | |||
152 | &set_label("done"); | ||
153 | &dec (&LB($xx)); | ||
154 | &mov (&BP(-4,$dat),&LB($yy)); # save key->y | ||
155 | &mov (&BP(-8,$dat),&LB($xx)); # save key->x | ||
156 | &set_label("abort"); | ||
157 | &function_end("RC4"); | ||
158 | |||
159 | ######################################################################## | ||
160 | |||
161 | $inp="esi"; | ||
162 | $out="edi"; | ||
163 | $idi="ebp"; | ||
164 | $ido="ecx"; | ||
165 | $idx="edx"; | ||
166 | |||
167 | &external_label("OPENSSL_ia32cap_P"); | ||
168 | |||
169 | # void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data); | ||
170 | &function_begin("RC4_set_key"); | ||
171 | &mov ($out,&wparam(0)); # load key | ||
172 | &mov ($idi,&wparam(1)); # load len | ||
173 | &mov ($inp,&wparam(2)); # load data | ||
174 | &picmeup($idx,"OPENSSL_ia32cap_P"); | ||
175 | |||
176 | &lea ($out,&DWP(2*4,$out)); # &key->data | ||
177 | &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end | ||
178 | &neg ($idi); | ||
179 | &xor ("eax","eax"); | ||
180 | &mov (&DWP(-4,$out),$idi); # borrow key->y | ||
181 | |||
182 | &bt (&DWP(0,$idx),20); # check for bit#20 | ||
183 | &jc (&label("c1stloop")); | ||
184 | |||
185 | &set_label("w1stloop",16); | ||
186 | &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i; | ||
187 | &add (&LB("eax"),1); # i++; | ||
188 | &jnc (&label("w1stloop")); | ||
189 | |||
190 | &xor ($ido,$ido); | ||
191 | &xor ($idx,$idx); | ||
192 | |||
193 | &set_label("w2ndloop",16); | ||
194 | &mov ("eax",&DWP(0,$out,$ido,4)); | ||
195 | &add (&LB($idx),&BP(0,$inp,$idi)); | ||
196 | &add (&LB($idx),&LB("eax")); | ||
197 | &add ($idi,1); | ||
198 | &mov ("ebx",&DWP(0,$out,$idx,4)); | ||
199 | &jnz (&label("wnowrap")); | ||
200 | &mov ($idi,&DWP(-4,$out)); | ||
201 | &set_label("wnowrap"); | ||
202 | &mov (&DWP(0,$out,$idx,4),"eax"); | ||
203 | &mov (&DWP(0,$out,$ido,4),"ebx"); | ||
204 | &add (&LB($ido),1); | ||
205 | &jnc (&label("w2ndloop")); | ||
206 | &jmp (&label("exit")); | ||
207 | |||
208 | # Unlike all other x86 [and x86_64] implementations, Intel P4 core | ||
209 | # [including EM64T] was found to perform poorly with above "32-bit" key | ||
210 | # schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded | ||
211 | # assembler turned out to be 3.5x if re-coded for compressed 8-bit one, | ||
212 | # a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit | ||
213 | # schedule for x86[_64], because non-P4 implementations suffer from | ||
214 | # significant performance losses then, e.g. PIII exhibits >2x | ||
215 | # deterioration, and so does Opteron. In order to assure optimal | ||
216 | # all-round performance, we detect P4 at run-time and set up compressed | ||
217 | # key schedule, which is recognized by RC4 procedure. | ||
218 | |||
219 | &set_label("c1stloop",16); | ||
220 | &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i; | ||
221 | &add (&LB("eax"),1); # i++; | ||
222 | &jnc (&label("c1stloop")); | ||
223 | |||
224 | &xor ($ido,$ido); | ||
225 | &xor ($idx,$idx); | ||
226 | &xor ("ebx","ebx"); | ||
227 | |||
228 | &set_label("c2ndloop",16); | ||
229 | &mov (&LB("eax"),&BP(0,$out,$ido)); | ||
230 | &add (&LB($idx),&BP(0,$inp,$idi)); | ||
231 | &add (&LB($idx),&LB("eax")); | ||
232 | &add ($idi,1); | ||
233 | &mov (&LB("ebx"),&BP(0,$out,$idx)); | ||
234 | &jnz (&label("cnowrap")); | ||
235 | &mov ($idi,&DWP(-4,$out)); | ||
236 | &set_label("cnowrap"); | ||
237 | &mov (&BP(0,$out,$idx),&LB("eax")); | ||
238 | &mov (&BP(0,$out,$ido),&LB("ebx")); | ||
239 | &add (&LB($ido),1); | ||
240 | &jnc (&label("c2ndloop")); | ||
241 | |||
242 | &mov (&DWP(256,$out),-1); # mark schedule as compressed | ||
243 | |||
244 | &set_label("exit"); | ||
245 | &xor ("eax","eax"); | ||
246 | &mov (&DWP(-8,$out),"eax"); # key->x=0; | ||
247 | &mov (&DWP(-4,$out),"eax"); # key->y=0; | ||
248 | &function_end("RC4_set_key"); | ||
249 | |||
250 | # const char *RC4_options(void); | ||
251 | &function_begin_B("RC4_options"); | ||
252 | &call (&label("pic_point")); | ||
253 | &set_label("pic_point"); | ||
254 | &blindpop("eax"); | ||
255 | &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax")); | ||
256 | &picmeup("edx","OPENSSL_ia32cap_P"); | ||
257 | &bt (&DWP(0,"edx"),20); | ||
258 | &jnc (&label("skip")); | ||
259 | &add ("eax",12); | ||
260 | &set_label("skip"); | ||
261 | &ret (); | ||
262 | &set_label("opts",64); | ||
263 | &asciz ("rc4(4x,int)"); | ||
264 | &asciz ("rc4(1x,char)"); | ||
265 | &asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>"); | ||
266 | &align (64); | ||
267 | &function_end_B("RC4_options"); | ||
268 | |||
269 | &asm_finish(); | ||
270 | |||
diff --git a/src/lib/libcrypto/rc4/asm/rc4-ia64.pl b/src/lib/libcrypto/rc4/asm/rc4-ia64.pl deleted file mode 100644 index 49cd5b5e69..0000000000 --- a/src/lib/libcrypto/rc4/asm/rc4-ia64.pl +++ /dev/null | |||
@@ -1,755 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by David Mosberger <David.Mosberger@acm.org> based on the | ||
5 | # Itanium optimized Crypto code which was released by HP Labs at | ||
6 | # http://www.hpl.hp.com/research/linux/crypto/. | ||
7 | # | ||
8 | # Copyright (c) 2005 Hewlett-Packard Development Company, L.P. | ||
9 | # | ||
10 | # Permission is hereby granted, free of charge, to any person obtaining | ||
11 | # a copy of this software and associated documentation files (the | ||
12 | # "Software"), to deal in the Software without restriction, including | ||
13 | # without limitation the rights to use, copy, modify, merge, publish, | ||
14 | # distribute, sublicense, and/or sell copies of the Software, and to | ||
15 | # permit persons to whom the Software is furnished to do so, subject to | ||
16 | # the following conditions: | ||
17 | # | ||
18 | # The above copyright notice and this permission notice shall be | ||
19 | # included in all copies or substantial portions of the Software. | ||
20 | |||
21 | # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
22 | # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
23 | # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
24 | # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | ||
25 | # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | ||
26 | # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | ||
27 | # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ | ||
28 | |||
29 | |||
30 | |||
31 | # This is a little helper program which generates a software-pipelined | ||
32 | # for RC4 encryption. The basic algorithm looks like this: | ||
33 | # | ||
34 | # for (counter = 0; counter < len; ++counter) | ||
35 | # { | ||
36 | # in = inp[counter]; | ||
37 | # SI = S[I]; | ||
38 | # J = (SI + J) & 0xff; | ||
39 | # SJ = S[J]; | ||
40 | # T = (SI + SJ) & 0xff; | ||
41 | # S[I] = SJ, S[J] = SI; | ||
42 | # ST = S[T]; | ||
43 | # outp[counter] = in ^ ST; | ||
44 | # I = (I + 1) & 0xff; | ||
45 | # } | ||
46 | # | ||
47 | # Pipelining this loop isn't easy, because the stores to the S[] array | ||
48 | # need to be observed in the right order. The loop generated by the | ||
49 | # code below has the following pipeline diagram: | ||
50 | # | ||
51 | # cycle | ||
52 | # | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |17 | | ||
53 | # iter | ||
54 | # 1: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx | ||
55 | # 2: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx | ||
56 | # 3: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx | ||
57 | # | ||
58 | # where: | ||
59 | # LDI = load of S[I] | ||
60 | # LDJ = load of S[J] | ||
61 | # SWP = swap of S[I] and S[J] | ||
62 | # LDT = load of S[T] | ||
63 | # | ||
64 | # Note that in the above diagram, the major trouble-spot is that LDI | ||
65 | # of the 2nd iteration is performed BEFORE the SWP of the first | ||
66 | # iteration. Fortunately, this is easy to detect (I of the 1st | ||
67 | # iteration will be equal to J of the 2nd iteration) and when this | ||
68 | # happens, we simply forward the proper value from the 1st iteration | ||
69 | # to the 2nd one. The proper value in this case is simply the value | ||
70 | # of S[I] from the first iteration (thanks to the fact that SWP | ||
71 | # simply swaps the contents of S[I] and S[J]). | ||
72 | # | ||
73 | # Another potential trouble-spot is in cycle 7, where SWP of the 1st | ||
74 | # iteration issues at the same time as the LDI of the 3rd iteration. | ||
75 | # However, thanks to IA-64 execution semantics, this can be taken | ||
76 | # care of simply by placing LDI later in the instruction-group than | ||
77 | # SWP. IA-64 CPUs will automatically forward the value if they | ||
78 | # detect that the SWP and LDI are accessing the same memory-location. | ||
79 | |||
80 | # The core-loop that can be pipelined then looks like this (annotated | ||
81 | # with McKinley/Madison issue port & latency numbers, assuming L1 | ||
82 | # cache hits for the most part): | ||
83 | |||
84 | # operation: instruction: issue-ports: latency | ||
85 | # ------------------ ----------------------------- ------------- ------- | ||
86 | |||
87 | # Data = *inp++ ld1 data = [inp], 1 M0-M1 1 cyc c0 | ||
88 | # shladd Iptr = I, KeyTable, 3 M0-M3, I0, I1 1 cyc | ||
89 | # I = (I + 1) & 0xff padd1 nextI = I, one M0-M3, I0, I1 3 cyc | ||
90 | # ;; | ||
91 | # SI = S[I] ld8 SI = [Iptr] M0-M1 1 cyc c1 * after SWAP! | ||
92 | # ;; | ||
93 | # cmp.eq.unc pBypass = I, J * after J is valid! | ||
94 | # J = SI + J add J = J, SI M0-M3, I0, I1 1 cyc c2 | ||
95 | # (pBypass) br.cond.spnt Bypass | ||
96 | # ;; | ||
97 | # --------------------------------------------------------------------------------------- | ||
98 | # J = J & 0xff zxt1 J = J I0, I1, 1 cyc c3 | ||
99 | # ;; | ||
100 | # shladd Jptr = J, KeyTable, 3 M0-M3, I0, I1 1 cyc c4 | ||
101 | # ;; | ||
102 | # SJ = S[J] ld8 SJ = [Jptr] M0-M1 1 cyc c5 | ||
103 | # ;; | ||
104 | # --------------------------------------------------------------------------------------- | ||
105 | # T = (SI + SJ) add T = SI, SJ M0-M3, I0, I1 1 cyc c6 | ||
106 | # ;; | ||
107 | # T = T & 0xff zxt1 T = T I0, I1 1 cyc | ||
108 | # S[I] = SJ st8 [Iptr] = SJ M2-M3 c7 | ||
109 | # S[J] = SI st8 [Jptr] = SI M2-M3 | ||
110 | # ;; | ||
111 | # shladd Tptr = T, KeyTable, 3 M0-M3, I0, I1 1 cyc c8 | ||
112 | # ;; | ||
113 | # --------------------------------------------------------------------------------------- | ||
114 | # T = S[T] ld8 T = [Tptr] M0-M1 1 cyc c9 | ||
115 | # ;; | ||
116 | # data ^= T xor data = data, T M0-M3, I0, I1 1 cyc c10 | ||
117 | # ;; | ||
118 | # *out++ = Data ^ T dep word = word, data, 8, POS I0, I1 1 cyc c11 | ||
119 | # ;; | ||
120 | # --------------------------------------------------------------------------------------- | ||
121 | |||
122 | # There are several points worth making here: | ||
123 | |||
124 | # - Note that due to the bypass/forwarding-path, the first two | ||
125 | # phases of the loop are strangly mingled together. In | ||
126 | # particular, note that the first stage of the pipeline is | ||
127 | # using the value of "J", as calculated by the second stage. | ||
128 | # - Each bundle-pair will have exactly 6 instructions. | ||
129 | # - Pipelined, the loop can execute in 3 cycles/iteration and | ||
130 | # 4 stages. However, McKinley/Madison can issue "st1" to | ||
131 | # the same bank at a rate of at most one per 4 cycles. Thus, | ||
132 | # instead of storing each byte, we accumulate them in a word | ||
133 | # and then write them back at once with a single "st8" (this | ||
134 | # implies that the setup code needs to ensure that the output | ||
135 | # buffer is properly aligned, if need be, by encoding the | ||
136 | # first few bytes separately). | ||
137 | # - There is no space for a "br.ctop" instruction. For this | ||
138 | # reason we can't use module-loop support in IA-64 and have | ||
139 | # to do a traditional, purely software-pipelined loop. | ||
140 | # - We can't replace any of the remaining "add/zxt1" pairs with | ||
141 | # "padd1" because the latency for that instruction is too high | ||
142 | # and would push the loop to the point where more bypasses | ||
143 | # would be needed, which we don't have space for. | ||
144 | # - The above loop runs at around 3.26 cycles/byte, or roughly | ||
145 | # 440 MByte/sec on a 1.5GHz Madison. This is well below the | ||
146 | # system bus bandwidth and hence with judicious use of | ||
147 | # "lfetch" this loop can run at (almost) peak speed even when | ||
148 | # the input and output data reside in memory. The | ||
149 | # max. latency that can be tolerated is (PREFETCH_DISTANCE * | ||
150 | # L2_LINE_SIZE * 3 cyc), or about 384 cycles assuming (at | ||
151 | # least) 1-ahead prefetching of 128 byte cache-lines. Note | ||
152 | # that we do NOT prefetch into L1, since that would only | ||
153 | # interfere with the S[] table values stored there. This is | ||
154 | # acceptable because there is a 10 cycle latency between | ||
155 | # load and first use of the input data. | ||
156 | # - We use a branch to out-of-line bypass-code of cycle-pressure: | ||
157 | # we calculate the next J, check for the need to activate the | ||
158 | # bypass path, and activate the bypass path ALL IN THE SAME | ||
159 | # CYCLE. If we didn't have these constraints, we could do | ||
160 | # the bypass with a simple conditional move instruction. | ||
161 | # Fortunately, the bypass paths get activated relatively | ||
162 | # infrequently, so the extra branches don't cost all that much | ||
163 | # (about 0.04 cycles/byte, measured on a 16396 byte file with | ||
164 | # random input data). | ||
165 | # | ||
166 | |||
167 | $phases = 4; # number of stages/phases in the pipelined-loop | ||
168 | $unroll_count = 6; # number of times we unrolled it | ||
169 | $pComI = (1 << 0); | ||
170 | $pComJ = (1 << 1); | ||
171 | $pComT = (1 << 2); | ||
172 | $pOut = (1 << 3); | ||
173 | |||
174 | $NData = 4; | ||
175 | $NIP = 3; | ||
176 | $NJP = 2; | ||
177 | $NI = 2; | ||
178 | $NSI = 3; | ||
179 | $NSJ = 2; | ||
180 | $NT = 2; | ||
181 | $NOutWord = 2; | ||
182 | |||
183 | # | ||
184 | # $threshold is the minimum length before we attempt to use the | ||
185 | # big software-pipelined loop. It MUST be greater-or-equal | ||
186 | # to: | ||
187 | # PHASES * (UNROLL_COUNT + 1) + 7 | ||
188 | # | ||
189 | # The "+ 7" comes from the fact we may have to encode up to | ||
190 | # 7 bytes separately before the output pointer is aligned. | ||
191 | # | ||
192 | $threshold = (3 * ($phases * ($unroll_count + 1)) + 7); | ||
193 | |||
194 | sub I { | ||
195 | local *code = shift; | ||
196 | local $format = shift; | ||
197 | $code .= sprintf ("\t\t".$format."\n", @_); | ||
198 | } | ||
199 | |||
200 | sub P { | ||
201 | local *code = shift; | ||
202 | local $format = shift; | ||
203 | $code .= sprintf ($format."\n", @_); | ||
204 | } | ||
205 | |||
206 | sub STOP { | ||
207 | local *code = shift; | ||
208 | $code .=<<___; | ||
209 | ;; | ||
210 | ___ | ||
211 | } | ||
212 | |||
213 | sub emit_body { | ||
214 | local *c = shift; | ||
215 | local *bypass = shift; | ||
216 | local ($iteration, $p) = @_; | ||
217 | |||
218 | local $i0 = $iteration; | ||
219 | local $i1 = $iteration - 1; | ||
220 | local $i2 = $iteration - 2; | ||
221 | local $i3 = $iteration - 3; | ||
222 | local $iw0 = ($iteration - 3) / 8; | ||
223 | local $iw1 = ($iteration > 3) ? ($iteration - 4) / 8 : 1; | ||
224 | local $byte_num = ($iteration - 3) % 8; | ||
225 | local $label = $iteration + 1; | ||
226 | local $pAny = ($p & 0xf) == 0xf; | ||
227 | local $pByp = (($p & $pComI) && ($iteration > 0)); | ||
228 | |||
229 | $c.=<<___; | ||
230 | ////////////////////////////////////////////////// | ||
231 | ___ | ||
232 | |||
233 | if (($p & 0xf) == 0) { | ||
234 | $c.="#ifdef HOST_IS_BIG_ENDIAN\n"; | ||
235 | &I(\$c,"shr.u OutWord[%u] = OutWord[%u], 32;;", | ||
236 | $iw1 % $NOutWord, $iw1 % $NOutWord); | ||
237 | $c.="#endif\n"; | ||
238 | &I(\$c, "st4 [OutPtr] = OutWord[%u], 4", $iw1 % $NOutWord); | ||
239 | return; | ||
240 | } | ||
241 | |||
242 | # Cycle 0 | ||
243 | &I(\$c, "{ .mmi") if ($pAny); | ||
244 | &I(\$c, "ld1 Data[%u] = [InPtr], 1", $i0 % $NData) if ($p & $pComI); | ||
245 | &I(\$c, "padd1 I[%u] = One, I[%u]", $i0 % $NI, $i1 % $NI)if ($p & $pComI); | ||
246 | &I(\$c, "zxt1 J = J") if ($p & $pComJ); | ||
247 | &I(\$c, "}") if ($pAny); | ||
248 | &I(\$c, "{ .mmi") if ($pAny); | ||
249 | &I(\$c, "LKEY T[%u] = [T[%u]]", $i1 % $NT, $i1 % $NT) if ($p & $pOut); | ||
250 | &I(\$c, "add T[%u] = SI[%u], SJ[%u]", | ||
251 | $i0 % $NT, $i2 % $NSI, $i1 % $NSJ) if ($p & $pComT); | ||
252 | &I(\$c, "KEYADDR(IPr[%u], I[%u])", $i0 % $NIP, $i1 % $NI) if ($p & $pComI); | ||
253 | &I(\$c, "}") if ($pAny); | ||
254 | &STOP(\$c); | ||
255 | |||
256 | # Cycle 1 | ||
257 | &I(\$c, "{ .mmi") if ($pAny); | ||
258 | &I(\$c, "SKEY [IPr[%u]] = SJ[%u]", $i2 % $NIP, $i1%$NSJ)if ($p & $pComT); | ||
259 | &I(\$c, "SKEY [JP[%u]] = SI[%u]", $i1 % $NJP, $i2%$NSI) if ($p & $pComT); | ||
260 | &I(\$c, "zxt1 T[%u] = T[%u]", $i0 % $NT, $i0 % $NT) if ($p & $pComT); | ||
261 | &I(\$c, "}") if ($pAny); | ||
262 | &I(\$c, "{ .mmi") if ($pAny); | ||
263 | &I(\$c, "LKEY SI[%u] = [IPr[%u]]", $i0 % $NSI, $i0%$NIP)if ($p & $pComI); | ||
264 | &I(\$c, "KEYADDR(JP[%u], J)", $i0 % $NJP) if ($p & $pComJ); | ||
265 | &I(\$c, "xor Data[%u] = Data[%u], T[%u]", | ||
266 | $i3 % $NData, $i3 % $NData, $i1 % $NT) if ($p & $pOut); | ||
267 | &I(\$c, "}") if ($pAny); | ||
268 | &STOP(\$c); | ||
269 | |||
270 | # Cycle 2 | ||
271 | &I(\$c, "{ .mmi") if ($pAny); | ||
272 | &I(\$c, "LKEY SJ[%u] = [JP[%u]]", $i0 % $NSJ, $i0%$NJP) if ($p & $pComJ); | ||
273 | &I(\$c, "cmp.eq pBypass, p0 = I[%u], J", $i1 % $NI) if ($pByp); | ||
274 | &I(\$c, "dep OutWord[%u] = Data[%u], OutWord[%u], BYTE_POS(%u), 8", | ||
275 | $iw0%$NOutWord, $i3%$NData, $iw1%$NOutWord, $byte_num) if ($p & $pOut); | ||
276 | &I(\$c, "}") if ($pAny); | ||
277 | &I(\$c, "{ .mmb") if ($pAny); | ||
278 | &I(\$c, "add J = J, SI[%u]", $i0 % $NSI) if ($p & $pComI); | ||
279 | &I(\$c, "KEYADDR(T[%u], T[%u])", $i0 % $NT, $i0 % $NT) if ($p & $pComT); | ||
280 | &P(\$c, "(pBypass)\tbr.cond.spnt.many .rc4Bypass%u",$label)if ($pByp); | ||
281 | &I(\$c, "}") if ($pAny); | ||
282 | &STOP(\$c); | ||
283 | |||
284 | &P(\$c, ".rc4Resume%u:", $label) if ($pByp); | ||
285 | if ($byte_num == 0 && $iteration >= $phases) { | ||
286 | &I(\$c, "st8 [OutPtr] = OutWord[%u], 8", | ||
287 | $iw1 % $NOutWord) if ($p & $pOut); | ||
288 | if ($iteration == (1 + $unroll_count) * $phases - 1) { | ||
289 | if ($unroll_count == 6) { | ||
290 | &I(\$c, "mov OutWord[%u] = OutWord[%u]", | ||
291 | $iw1 % $NOutWord, $iw0 % $NOutWord); | ||
292 | } | ||
293 | &I(\$c, "lfetch.nt1 [InPrefetch], %u", | ||
294 | $unroll_count * $phases); | ||
295 | &I(\$c, "lfetch.excl.nt1 [OutPrefetch], %u", | ||
296 | $unroll_count * $phases); | ||
297 | &I(\$c, "br.cloop.sptk.few .rc4Loop"); | ||
298 | } | ||
299 | } | ||
300 | |||
301 | if ($pByp) { | ||
302 | &P(\$bypass, ".rc4Bypass%u:", $label); | ||
303 | &I(\$bypass, "sub J = J, SI[%u]", $i0 % $NSI); | ||
304 | &I(\$bypass, "nop 0"); | ||
305 | &I(\$bypass, "nop 0"); | ||
306 | &I(\$bypass, ";;"); | ||
307 | &I(\$bypass, "add J = J, SI[%u]", $i1 % $NSI); | ||
308 | &I(\$bypass, "mov SI[%u] = SI[%u]", $i0 % $NSI, $i1 % $NSI); | ||
309 | &I(\$bypass, "br.sptk.many .rc4Resume%u\n", $label); | ||
310 | &I(\$bypass, ";;"); | ||
311 | } | ||
312 | } | ||
313 | |||
314 | $code=<<___; | ||
315 | .ident \"rc4-ia64.s, version 3.0\" | ||
316 | .ident \"Copyright (c) 2005 Hewlett-Packard Development Company, L.P.\" | ||
317 | |||
318 | #define LCSave r8 | ||
319 | #define PRSave r9 | ||
320 | |||
321 | /* Inputs become invalid once rotation begins! */ | ||
322 | |||
323 | #define StateTable in0 | ||
324 | #define DataLen in1 | ||
325 | #define InputBuffer in2 | ||
326 | #define OutputBuffer in3 | ||
327 | |||
328 | #define KTable r14 | ||
329 | #define J r15 | ||
330 | #define InPtr r16 | ||
331 | #define OutPtr r17 | ||
332 | #define InPrefetch r18 | ||
333 | #define OutPrefetch r19 | ||
334 | #define One r20 | ||
335 | #define LoopCount r21 | ||
336 | #define Remainder r22 | ||
337 | #define IFinal r23 | ||
338 | #define EndPtr r24 | ||
339 | |||
340 | #define tmp0 r25 | ||
341 | #define tmp1 r26 | ||
342 | |||
343 | #define pBypass p6 | ||
344 | #define pDone p7 | ||
345 | #define pSmall p8 | ||
346 | #define pAligned p9 | ||
347 | #define pUnaligned p10 | ||
348 | |||
349 | #define pComputeI pPhase[0] | ||
350 | #define pComputeJ pPhase[1] | ||
351 | #define pComputeT pPhase[2] | ||
352 | #define pOutput pPhase[3] | ||
353 | |||
354 | #define RetVal r8 | ||
355 | #define L_OK p7 | ||
356 | #define L_NOK p8 | ||
357 | |||
358 | #define _NINPUTS 4 | ||
359 | #define _NOUTPUT 0 | ||
360 | |||
361 | #define _NROTATE 24 | ||
362 | #define _NLOCALS (_NROTATE - _NINPUTS - _NOUTPUT) | ||
363 | |||
364 | #ifndef SZ | ||
365 | # define SZ 4 // this must be set to sizeof(RC4_INT) | ||
366 | #endif | ||
367 | |||
368 | #if SZ == 1 | ||
369 | # define LKEY ld1 | ||
370 | # define SKEY st1 | ||
371 | # define KEYADDR(dst, i) add dst = i, KTable | ||
372 | #elif SZ == 2 | ||
373 | # define LKEY ld2 | ||
374 | # define SKEY st2 | ||
375 | # define KEYADDR(dst, i) shladd dst = i, 1, KTable | ||
376 | #elif SZ == 4 | ||
377 | # define LKEY ld4 | ||
378 | # define SKEY st4 | ||
379 | # define KEYADDR(dst, i) shladd dst = i, 2, KTable | ||
380 | #else | ||
381 | # define LKEY ld8 | ||
382 | # define SKEY st8 | ||
383 | # define KEYADDR(dst, i) shladd dst = i, 3, KTable | ||
384 | #endif | ||
385 | |||
386 | #if defined(_HPUX_SOURCE) && !defined(_LP64) | ||
387 | # define ADDP addp4 | ||
388 | #else | ||
389 | # define ADDP add | ||
390 | #endif | ||
391 | |||
392 | /* Define a macro for the bit number of the n-th byte: */ | ||
393 | |||
394 | #if defined(_HPUX_SOURCE) || defined(B_ENDIAN) | ||
395 | # define HOST_IS_BIG_ENDIAN | ||
396 | # define BYTE_POS(n) (56 - (8 * (n))) | ||
397 | #else | ||
398 | # define BYTE_POS(n) (8 * (n)) | ||
399 | #endif | ||
400 | |||
401 | /* | ||
402 | We must perform the first phase of the pipeline explicitly since | ||
403 | we will always load from the stable the first time. The br.cexit | ||
404 | will never be taken since regardless of the number of bytes because | ||
405 | the epilogue count is 4. | ||
406 | */ | ||
407 | /* MODSCHED_RC4 macro was split to _PROLOGUE and _LOOP, because HP-UX | ||
408 | assembler failed on original macro with syntax error. <appro> */ | ||
409 | #define MODSCHED_RC4_PROLOGUE \\ | ||
410 | { \\ | ||
411 | ld1 Data[0] = [InPtr], 1; \\ | ||
412 | add IFinal = 1, I[1]; \\ | ||
413 | KEYADDR(IPr[0], I[1]); \\ | ||
414 | } ;; \\ | ||
415 | { \\ | ||
416 | LKEY SI[0] = [IPr[0]]; \\ | ||
417 | mov pr.rot = 0x10000; \\ | ||
418 | mov ar.ec = 4; \\ | ||
419 | } ;; \\ | ||
420 | { \\ | ||
421 | add J = J, SI[0]; \\ | ||
422 | zxt1 I[0] = IFinal; \\ | ||
423 | br.cexit.spnt.few .+16; /* never taken */ \\ | ||
424 | } ;; | ||
425 | #define MODSCHED_RC4_LOOP(label) \\ | ||
426 | label: \\ | ||
427 | { .mmi; \\ | ||
428 | (pComputeI) ld1 Data[0] = [InPtr], 1; \\ | ||
429 | (pComputeI) add IFinal = 1, I[1]; \\ | ||
430 | (pComputeJ) zxt1 J = J; \\ | ||
431 | }{ .mmi; \\ | ||
432 | (pOutput) LKEY T[1] = [T[1]]; \\ | ||
433 | (pComputeT) add T[0] = SI[2], SJ[1]; \\ | ||
434 | (pComputeI) KEYADDR(IPr[0], I[1]); \\ | ||
435 | } ;; \\ | ||
436 | { .mmi; \\ | ||
437 | (pComputeT) SKEY [IPr[2]] = SJ[1]; \\ | ||
438 | (pComputeT) SKEY [JP[1]] = SI[2]; \\ | ||
439 | (pComputeT) zxt1 T[0] = T[0]; \\ | ||
440 | }{ .mmi; \\ | ||
441 | (pComputeI) LKEY SI[0] = [IPr[0]]; \\ | ||
442 | (pComputeJ) KEYADDR(JP[0], J); \\ | ||
443 | (pComputeI) cmp.eq.unc pBypass, p0 = I[1], J; \\ | ||
444 | } ;; \\ | ||
445 | { .mmi; \\ | ||
446 | (pComputeJ) LKEY SJ[0] = [JP[0]]; \\ | ||
447 | (pOutput) xor Data[3] = Data[3], T[1]; \\ | ||
448 | nop 0x0; \\ | ||
449 | }{ .mmi; \\ | ||
450 | (pComputeT) KEYADDR(T[0], T[0]); \\ | ||
451 | (pBypass) mov SI[0] = SI[1]; \\ | ||
452 | (pComputeI) zxt1 I[0] = IFinal; \\ | ||
453 | } ;; \\ | ||
454 | { .mmb; \\ | ||
455 | (pOutput) st1 [OutPtr] = Data[3], 1; \\ | ||
456 | (pComputeI) add J = J, SI[0]; \\ | ||
457 | br.ctop.sptk.few label; \\ | ||
458 | } ;; | ||
459 | |||
460 | .text | ||
461 | |||
462 | .align 32 | ||
463 | |||
464 | .type RC4, \@function | ||
465 | .global RC4 | ||
466 | |||
467 | .proc RC4 | ||
468 | .prologue | ||
469 | |||
470 | RC4: | ||
471 | { | ||
472 | .mmi | ||
473 | alloc r2 = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE | ||
474 | |||
475 | .rotr Data[4], I[2], IPr[3], SI[3], JP[2], SJ[2], T[2], \\ | ||
476 | OutWord[2] | ||
477 | .rotp pPhase[4] | ||
478 | |||
479 | ADDP InPrefetch = 0, InputBuffer | ||
480 | ADDP KTable = 0, StateTable | ||
481 | } | ||
482 | { | ||
483 | .mmi | ||
484 | ADDP InPtr = 0, InputBuffer | ||
485 | ADDP OutPtr = 0, OutputBuffer | ||
486 | mov RetVal = r0 | ||
487 | } | ||
488 | ;; | ||
489 | { | ||
490 | .mmi | ||
491 | lfetch.nt1 [InPrefetch], 0x80 | ||
492 | ADDP OutPrefetch = 0, OutputBuffer | ||
493 | } | ||
494 | { // Return 0 if the input length is nonsensical | ||
495 | .mib | ||
496 | ADDP StateTable = 0, StateTable | ||
497 | cmp.ge.unc L_NOK, L_OK = r0, DataLen | ||
498 | (L_NOK) br.ret.sptk.few rp | ||
499 | } | ||
500 | ;; | ||
501 | { | ||
502 | .mib | ||
503 | cmp.eq.or L_NOK, L_OK = r0, InPtr | ||
504 | cmp.eq.or L_NOK, L_OK = r0, OutPtr | ||
505 | nop 0x0 | ||
506 | } | ||
507 | { | ||
508 | .mib | ||
509 | cmp.eq.or L_NOK, L_OK = r0, StateTable | ||
510 | nop 0x0 | ||
511 | (L_NOK) br.ret.sptk.few rp | ||
512 | } | ||
513 | ;; | ||
514 | LKEY I[1] = [KTable], SZ | ||
515 | /* Prefetch the state-table. It contains 256 elements of size SZ */ | ||
516 | |||
517 | #if SZ == 1 | ||
518 | ADDP tmp0 = 1*128, StateTable | ||
519 | #elif SZ == 2 | ||
520 | ADDP tmp0 = 3*128, StateTable | ||
521 | ADDP tmp1 = 2*128, StateTable | ||
522 | #elif SZ == 4 | ||
523 | ADDP tmp0 = 7*128, StateTable | ||
524 | ADDP tmp1 = 6*128, StateTable | ||
525 | #elif SZ == 8 | ||
526 | ADDP tmp0 = 15*128, StateTable | ||
527 | ADDP tmp1 = 14*128, StateTable | ||
528 | #endif | ||
529 | ;; | ||
530 | #if SZ >= 8 | ||
531 | lfetch.fault.nt1 [tmp0], -256 // 15 | ||
532 | lfetch.fault.nt1 [tmp1], -256;; | ||
533 | lfetch.fault.nt1 [tmp0], -256 // 13 | ||
534 | lfetch.fault.nt1 [tmp1], -256;; | ||
535 | lfetch.fault.nt1 [tmp0], -256 // 11 | ||
536 | lfetch.fault.nt1 [tmp1], -256;; | ||
537 | lfetch.fault.nt1 [tmp0], -256 // 9 | ||
538 | lfetch.fault.nt1 [tmp1], -256;; | ||
539 | #endif | ||
540 | #if SZ >= 4 | ||
541 | lfetch.fault.nt1 [tmp0], -256 // 7 | ||
542 | lfetch.fault.nt1 [tmp1], -256;; | ||
543 | lfetch.fault.nt1 [tmp0], -256 // 5 | ||
544 | lfetch.fault.nt1 [tmp1], -256;; | ||
545 | #endif | ||
546 | #if SZ >= 2 | ||
547 | lfetch.fault.nt1 [tmp0], -256 // 3 | ||
548 | lfetch.fault.nt1 [tmp1], -256;; | ||
549 | #endif | ||
550 | { | ||
551 | .mii | ||
552 | lfetch.fault.nt1 [tmp0] // 1 | ||
553 | add I[1]=1,I[1];; | ||
554 | zxt1 I[1]=I[1] | ||
555 | } | ||
556 | { | ||
557 | .mmi | ||
558 | lfetch.nt1 [InPrefetch], 0x80 | ||
559 | lfetch.excl.nt1 [OutPrefetch], 0x80 | ||
560 | .save pr, PRSave | ||
561 | mov PRSave = pr | ||
562 | } ;; | ||
563 | { | ||
564 | .mmi | ||
565 | lfetch.excl.nt1 [OutPrefetch], 0x80 | ||
566 | LKEY J = [KTable], SZ | ||
567 | ADDP EndPtr = DataLen, InPtr | ||
568 | } ;; | ||
569 | { | ||
570 | .mmi | ||
571 | ADDP EndPtr = -1, EndPtr // Make it point to | ||
572 | // last data byte. | ||
573 | mov One = 1 | ||
574 | .save ar.lc, LCSave | ||
575 | mov LCSave = ar.lc | ||
576 | .body | ||
577 | } ;; | ||
578 | { | ||
579 | .mmb | ||
580 | sub Remainder = 0, OutPtr | ||
581 | cmp.gtu pSmall, p0 = $threshold, DataLen | ||
582 | (pSmall) br.cond.dpnt .rc4Remainder // Data too small for | ||
583 | // big loop. | ||
584 | } ;; | ||
585 | { | ||
586 | .mmi | ||
587 | and Remainder = 0x7, Remainder | ||
588 | ;; | ||
589 | cmp.eq pAligned, pUnaligned = Remainder, r0 | ||
590 | nop 0x0 | ||
591 | } ;; | ||
592 | { | ||
593 | .mmb | ||
594 | .pred.rel "mutex",pUnaligned,pAligned | ||
595 | (pUnaligned) add Remainder = -1, Remainder | ||
596 | (pAligned) sub Remainder = EndPtr, InPtr | ||
597 | (pAligned) br.cond.dptk.many .rc4Aligned | ||
598 | } ;; | ||
599 | { | ||
600 | .mmi | ||
601 | nop 0x0 | ||
602 | nop 0x0 | ||
603 | mov.i ar.lc = Remainder | ||
604 | } | ||
605 | |||
606 | /* Do the initial few bytes via the compact, modulo-scheduled loop | ||
607 | until the output pointer is 8-byte-aligned. */ | ||
608 | |||
609 | MODSCHED_RC4_PROLOGUE | ||
610 | MODSCHED_RC4_LOOP(.RC4AlignLoop) | ||
611 | |||
612 | { | ||
613 | .mib | ||
614 | sub Remainder = EndPtr, InPtr | ||
615 | zxt1 IFinal = IFinal | ||
616 | clrrrb // Clear CFM.rrb.pr so | ||
617 | ;; // next "mov pr.rot = N" | ||
618 | // does the right thing. | ||
619 | } | ||
620 | { | ||
621 | .mmi | ||
622 | mov I[1] = IFinal | ||
623 | nop 0x0 | ||
624 | nop 0x0 | ||
625 | } ;; | ||
626 | |||
627 | |||
628 | .rc4Aligned: | ||
629 | |||
630 | /* | ||
631 | Unrolled loop count = (Remainder - ($unroll_count+1)*$phases)/($unroll_count*$phases) | ||
632 | */ | ||
633 | |||
634 | { | ||
635 | .mlx | ||
636 | add LoopCount = 1 - ($unroll_count + 1)*$phases, Remainder | ||
637 | movl Remainder = 0xaaaaaaaaaaaaaaab | ||
638 | } ;; | ||
639 | { | ||
640 | .mmi | ||
641 | setf.sig f6 = LoopCount // M2, M3 6 cyc | ||
642 | setf.sig f7 = Remainder // M2, M3 6 cyc | ||
643 | nop 0x0 | ||
644 | } ;; | ||
645 | { | ||
646 | .mfb | ||
647 | nop 0x0 | ||
648 | xmpy.hu f6 = f6, f7 | ||
649 | nop 0x0 | ||
650 | } ;; | ||
651 | { | ||
652 | .mmi | ||
653 | getf.sig LoopCount = f6;; // M2 5 cyc | ||
654 | nop 0x0 | ||
655 | shr.u LoopCount = LoopCount, 4 | ||
656 | } ;; | ||
657 | { | ||
658 | .mmi | ||
659 | nop 0x0 | ||
660 | nop 0x0 | ||
661 | mov.i ar.lc = LoopCount | ||
662 | } ;; | ||
663 | |||
664 | /* Now comes the unrolled loop: */ | ||
665 | |||
666 | .rc4Prologue: | ||
667 | ___ | ||
668 | |||
669 | $iteration = 0; | ||
670 | |||
671 | # Generate the prologue: | ||
672 | $predicates = 1; | ||
673 | for ($i = 0; $i < $phases; ++$i) { | ||
674 | &emit_body (\$code, \$bypass, $iteration++, $predicates); | ||
675 | $predicates = ($predicates << 1) | 1; | ||
676 | } | ||
677 | |||
678 | $code.=<<___; | ||
679 | .rc4Loop: | ||
680 | ___ | ||
681 | |||
682 | # Generate the body: | ||
683 | for ($i = 0; $i < $unroll_count*$phases; ++$i) { | ||
684 | &emit_body (\$code, \$bypass, $iteration++, $predicates); | ||
685 | } | ||
686 | |||
687 | $code.=<<___; | ||
688 | .rc4Epilogue: | ||
689 | ___ | ||
690 | |||
691 | # Generate the epilogue: | ||
692 | for ($i = 0; $i < $phases; ++$i) { | ||
693 | $predicates <<= 1; | ||
694 | &emit_body (\$code, \$bypass, $iteration++, $predicates); | ||
695 | } | ||
696 | |||
697 | $code.=<<___; | ||
698 | { | ||
699 | .mmi | ||
700 | lfetch.nt1 [EndPtr] // fetch line with last byte | ||
701 | mov IFinal = I[1] | ||
702 | nop 0x0 | ||
703 | } | ||
704 | |||
705 | .rc4Remainder: | ||
706 | { | ||
707 | .mmi | ||
708 | sub Remainder = EndPtr, InPtr // Calculate | ||
709 | // # of bytes | ||
710 | // left - 1 | ||
711 | nop 0x0 | ||
712 | nop 0x0 | ||
713 | } ;; | ||
714 | { | ||
715 | .mib | ||
716 | cmp.eq pDone, p0 = -1, Remainder // done already? | ||
717 | mov.i ar.lc = Remainder | ||
718 | (pDone) br.cond.dptk.few .rc4Complete | ||
719 | } | ||
720 | |||
721 | /* Do the remaining bytes via the compact, modulo-scheduled loop */ | ||
722 | |||
723 | MODSCHED_RC4_PROLOGUE | ||
724 | MODSCHED_RC4_LOOP(.RC4RestLoop) | ||
725 | |||
726 | .rc4Complete: | ||
727 | { | ||
728 | .mmi | ||
729 | add KTable = -SZ, KTable | ||
730 | add IFinal = -1, IFinal | ||
731 | mov ar.lc = LCSave | ||
732 | } ;; | ||
733 | { | ||
734 | .mii | ||
735 | SKEY [KTable] = J,-SZ | ||
736 | zxt1 IFinal = IFinal | ||
737 | mov pr = PRSave, 0x1FFFF | ||
738 | } ;; | ||
739 | { | ||
740 | .mib | ||
741 | SKEY [KTable] = IFinal | ||
742 | add RetVal = 1, r0 | ||
743 | br.ret.sptk.few rp | ||
744 | } ;; | ||
745 | ___ | ||
746 | |||
747 | # Last but not least, emit the code for the bypass-code of the unrolled loop: | ||
748 | |||
749 | $code.=$bypass; | ||
750 | |||
751 | $code.=<<___; | ||
752 | .endp RC4 | ||
753 | ___ | ||
754 | |||
755 | print $code; | ||
diff --git a/src/lib/libcrypto/rc4/asm/rc4-s390x.pl b/src/lib/libcrypto/rc4/asm/rc4-s390x.pl deleted file mode 100644 index 96681fa05e..0000000000 --- a/src/lib/libcrypto/rc4/asm/rc4-s390x.pl +++ /dev/null | |||
@@ -1,205 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # February 2009 | ||
11 | # | ||
12 | # Performance is 2x of gcc 3.4.6 on z10. Coding "secret" is to | ||
13 | # "cluster" Address Generation Interlocks, so that one pipeline stall | ||
14 | # resolves several dependencies. | ||
15 | |||
16 | $rp="%r14"; | ||
17 | $sp="%r15"; | ||
18 | $code=<<___; | ||
19 | .text | ||
20 | |||
21 | ___ | ||
22 | |||
23 | # void RC4(RC4_KEY *key,size_t len,const void *inp,void *out) | ||
24 | { | ||
25 | $acc="%r0"; | ||
26 | $cnt="%r1"; | ||
27 | $key="%r2"; | ||
28 | $len="%r3"; | ||
29 | $inp="%r4"; | ||
30 | $out="%r5"; | ||
31 | |||
32 | @XX=("%r6","%r7"); | ||
33 | @TX=("%r8","%r9"); | ||
34 | $YY="%r10"; | ||
35 | $TY="%r11"; | ||
36 | |||
37 | $code.=<<___; | ||
38 | .globl RC4 | ||
39 | .type RC4,\@function | ||
40 | .align 64 | ||
41 | RC4: | ||
42 | stmg %r6,%r11,48($sp) | ||
43 | llgc $XX[0],0($key) | ||
44 | llgc $YY,1($key) | ||
45 | la $XX[0],1($XX[0]) | ||
46 | nill $XX[0],0xff | ||
47 | srlg $cnt,$len,3 | ||
48 | ltgr $cnt,$cnt | ||
49 | llgc $TX[0],2($XX[0],$key) | ||
50 | jz .Lshort | ||
51 | j .Loop8 | ||
52 | |||
53 | .align 64 | ||
54 | .Loop8: | ||
55 | ___ | ||
56 | for ($i=0;$i<8;$i++) { | ||
57 | $code.=<<___; | ||
58 | la $YY,0($YY,$TX[0]) # $i | ||
59 | nill $YY,255 | ||
60 | la $XX[1],1($XX[0]) | ||
61 | nill $XX[1],255 | ||
62 | ___ | ||
63 | $code.=<<___ if ($i==1); | ||
64 | llgc $acc,2($TY,$key) | ||
65 | ___ | ||
66 | $code.=<<___ if ($i>1); | ||
67 | sllg $acc,$acc,8 | ||
68 | ic $acc,2($TY,$key) | ||
69 | ___ | ||
70 | $code.=<<___; | ||
71 | llgc $TY,2($YY,$key) | ||
72 | stc $TX[0],2($YY,$key) | ||
73 | llgc $TX[1],2($XX[1],$key) | ||
74 | stc $TY,2($XX[0],$key) | ||
75 | cr $XX[1],$YY | ||
76 | jne .Lcmov$i | ||
77 | la $TX[1],0($TX[0]) | ||
78 | .Lcmov$i: | ||
79 | la $TY,0($TY,$TX[0]) | ||
80 | nill $TY,255 | ||
81 | ___ | ||
82 | push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers | ||
83 | } | ||
84 | |||
85 | $code.=<<___; | ||
86 | lg $TX[1],0($inp) | ||
87 | sllg $acc,$acc,8 | ||
88 | la $inp,8($inp) | ||
89 | ic $acc,2($TY,$key) | ||
90 | xgr $acc,$TX[1] | ||
91 | stg $acc,0($out) | ||
92 | la $out,8($out) | ||
93 | brct $cnt,.Loop8 | ||
94 | |||
95 | .Lshort: | ||
96 | lghi $acc,7 | ||
97 | ngr $len,$acc | ||
98 | jz .Lexit | ||
99 | j .Loop1 | ||
100 | |||
101 | .align 16 | ||
102 | .Loop1: | ||
103 | la $YY,0($YY,$TX[0]) | ||
104 | nill $YY,255 | ||
105 | llgc $TY,2($YY,$key) | ||
106 | stc $TX[0],2($YY,$key) | ||
107 | stc $TY,2($XX[0],$key) | ||
108 | ar $TY,$TX[0] | ||
109 | ahi $XX[0],1 | ||
110 | nill $TY,255 | ||
111 | nill $XX[0],255 | ||
112 | llgc $acc,0($inp) | ||
113 | la $inp,1($inp) | ||
114 | llgc $TY,2($TY,$key) | ||
115 | llgc $TX[0],2($XX[0],$key) | ||
116 | xr $acc,$TY | ||
117 | stc $acc,0($out) | ||
118 | la $out,1($out) | ||
119 | brct $len,.Loop1 | ||
120 | |||
121 | .Lexit: | ||
122 | ahi $XX[0],-1 | ||
123 | stc $XX[0],0($key) | ||
124 | stc $YY,1($key) | ||
125 | lmg %r6,%r11,48($sp) | ||
126 | br $rp | ||
127 | .size RC4,.-RC4 | ||
128 | .string "RC4 for s390x, CRYPTOGAMS by <appro\@openssl.org>" | ||
129 | |||
130 | ___ | ||
131 | } | ||
132 | |||
133 | # void RC4_set_key(RC4_KEY *key,unsigned int len,const void *inp) | ||
134 | { | ||
135 | $cnt="%r0"; | ||
136 | $idx="%r1"; | ||
137 | $key="%r2"; | ||
138 | $len="%r3"; | ||
139 | $inp="%r4"; | ||
140 | $acc="%r5"; | ||
141 | $dat="%r6"; | ||
142 | $ikey="%r7"; | ||
143 | $iinp="%r8"; | ||
144 | |||
145 | $code.=<<___; | ||
146 | .globl RC4_set_key | ||
147 | .type RC4_set_key,\@function | ||
148 | .align 64 | ||
149 | RC4_set_key: | ||
150 | stmg %r6,%r8,48($sp) | ||
151 | lhi $cnt,256 | ||
152 | la $idx,0(%r0) | ||
153 | sth $idx,0($key) | ||
154 | .align 4 | ||
155 | .L1stloop: | ||
156 | stc $idx,2($idx,$key) | ||
157 | la $idx,1($idx) | ||
158 | brct $cnt,.L1stloop | ||
159 | |||
160 | lghi $ikey,-256 | ||
161 | lr $cnt,$len | ||
162 | la $iinp,0(%r0) | ||
163 | la $idx,0(%r0) | ||
164 | .align 16 | ||
165 | .L2ndloop: | ||
166 | llgc $acc,2+256($ikey,$key) | ||
167 | llgc $dat,0($iinp,$inp) | ||
168 | la $idx,0($idx,$acc) | ||
169 | la $ikey,1($ikey) | ||
170 | la $idx,0($idx,$dat) | ||
171 | nill $idx,255 | ||
172 | la $iinp,1($iinp) | ||
173 | tml $ikey,255 | ||
174 | llgc $dat,2($idx,$key) | ||
175 | stc $dat,2+256-1($ikey,$key) | ||
176 | stc $acc,2($idx,$key) | ||
177 | jz .Ldone | ||
178 | brct $cnt,.L2ndloop | ||
179 | lr $cnt,$len | ||
180 | la $iinp,0(%r0) | ||
181 | j .L2ndloop | ||
182 | .Ldone: | ||
183 | lmg %r6,%r8,48($sp) | ||
184 | br $rp | ||
185 | .size RC4_set_key,.-RC4_set_key | ||
186 | |||
187 | ___ | ||
188 | } | ||
189 | |||
190 | # const char *RC4_options() | ||
191 | $code.=<<___; | ||
192 | .globl RC4_options | ||
193 | .type RC4_options,\@function | ||
194 | .align 16 | ||
195 | RC4_options: | ||
196 | larl %r2,.Loptions | ||
197 | br %r14 | ||
198 | .size RC4_options,.-RC4_options | ||
199 | .section .rodata | ||
200 | .Loptions: | ||
201 | .align 8 | ||
202 | .string "rc4(8x,char)" | ||
203 | ___ | ||
204 | |||
205 | print $code; | ||
diff --git a/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl b/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl deleted file mode 100755 index 544386bf53..0000000000 --- a/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl +++ /dev/null | |||
@@ -1,504 +0,0 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in | ||
11 | # "hand-coded assembler"] doesn't stand for the whole improvement | ||
12 | # coefficient. It turned out that eliminating RC4_CHAR from config | ||
13 | # line results in ~40% improvement (yes, even for C implementation). | ||
14 | # Presumably it has everything to do with AMD cache architecture and | ||
15 | # RAW or whatever penalties. Once again! The module *requires* config | ||
16 | # line *without* RC4_CHAR! As for coding "secret," I bet on partial | ||
17 | # register arithmetics. For example instead of 'inc %r8; and $255,%r8' | ||
18 | # I simply 'inc %r8b'. Even though optimization manual discourages | ||
19 | # to operate on partial registers, it turned out to be the best bet. | ||
20 | # At least for AMD... How IA32E would perform remains to be seen... | ||
21 | |||
22 | # As was shown by Marc Bevand reordering of couple of load operations | ||
23 | # results in even higher performance gain of 3.3x:-) At least on | ||
24 | # Opteron... For reference, 1x in this case is RC4_CHAR C-code | ||
25 | # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock. | ||
26 | # Latter means that if you want to *estimate* what to expect from | ||
27 | # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz. | ||
28 | |||
29 | # Intel P4 EM64T core was found to run the AMD64 code really slow... | ||
30 | # The only way to achieve comparable performance on P4 was to keep | ||
31 | # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to | ||
32 | # compose blended code, which would perform even within 30% marginal | ||
33 | # on either AMD and Intel platforms, I implement both cases. See | ||
34 | # rc4_skey.c for further details... | ||
35 | |||
36 | # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing | ||
37 | # those with add/sub results in 50% performance improvement of folded | ||
38 | # loop... | ||
39 | |||
40 | # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T | ||
41 | # performance by >30% [unlike P4 32-bit case that is]. But this is | ||
42 | # provided that loads are reordered even more aggressively! Both code | ||
43 | # pathes, AMD64 and EM64T, reorder loads in essentially same manner | ||
44 | # as my IA-64 implementation. On Opteron this resulted in modest 5% | ||
45 | # improvement [I had to test it], while final Intel P4 performance | ||
46 | # achieves respectful 432MBps on 2.8GHz processor now. For reference. | ||
47 | # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than | ||
48 | # RC4_INT code-path. While if executed on Opteron, it's only 25% | ||
49 | # slower than the RC4_INT one [meaning that if CPU µ-arch detection | ||
50 | # is not implemented, then this final RC4_CHAR code-path should be | ||
51 | # preferred, as it provides better *all-round* performance]. | ||
52 | |||
53 | # Intel Core2 was observed to perform poorly on both code paths:-( It | ||
54 | # apparently suffers from some kind of partial register stall, which | ||
55 | # occurs in 64-bit mode only [as virtually identical 32-bit loop was | ||
56 | # observed to outperform 64-bit one by almost 50%]. Adding two movzb to | ||
57 | # cloop1 boosts its performance by 80%! This loop appears to be optimal | ||
58 | # fit for Core2 and therefore the code was modified to skip cloop8 on | ||
59 | # this CPU. | ||
60 | |||
61 | $flavour = shift; | ||
62 | $output = shift; | ||
63 | if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } | ||
64 | |||
65 | $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); | ||
66 | |||
67 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
68 | ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or | ||
69 | ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or | ||
70 | die "can't locate x86_64-xlate.pl"; | ||
71 | |||
72 | open STDOUT,"| $^X $xlate $flavour $output"; | ||
73 | |||
74 | $dat="%rdi"; # arg1 | ||
75 | $len="%rsi"; # arg2 | ||
76 | $inp="%rdx"; # arg3 | ||
77 | $out="%rcx"; # arg4 | ||
78 | |||
79 | @XX=("%r8","%r10"); | ||
80 | @TX=("%r9","%r11"); | ||
81 | $YY="%r12"; | ||
82 | $TY="%r13"; | ||
83 | |||
84 | $code=<<___; | ||
85 | .text | ||
86 | |||
87 | .globl RC4 | ||
88 | .type RC4,\@function,4 | ||
89 | .align 16 | ||
90 | RC4: or $len,$len | ||
91 | jne .Lentry | ||
92 | ret | ||
93 | .Lentry: | ||
94 | push %rbx | ||
95 | push %r12 | ||
96 | push %r13 | ||
97 | .Lprologue: | ||
98 | |||
99 | add \$8,$dat | ||
100 | movl -8($dat),$XX[0]#d | ||
101 | movl -4($dat),$YY#d | ||
102 | cmpl \$-1,256($dat) | ||
103 | je .LRC4_CHAR | ||
104 | inc $XX[0]#b | ||
105 | movl ($dat,$XX[0],4),$TX[0]#d | ||
106 | test \$-8,$len | ||
107 | jz .Lloop1 | ||
108 | jmp .Lloop8 | ||
109 | .align 16 | ||
110 | .Lloop8: | ||
111 | ___ | ||
112 | for ($i=0;$i<8;$i++) { | ||
113 | $code.=<<___; | ||
114 | add $TX[0]#b,$YY#b | ||
115 | mov $XX[0],$XX[1] | ||
116 | movl ($dat,$YY,4),$TY#d | ||
117 | ror \$8,%rax # ror is redundant when $i=0 | ||
118 | inc $XX[1]#b | ||
119 | movl ($dat,$XX[1],4),$TX[1]#d | ||
120 | cmp $XX[1],$YY | ||
121 | movl $TX[0]#d,($dat,$YY,4) | ||
122 | cmove $TX[0],$TX[1] | ||
123 | movl $TY#d,($dat,$XX[0],4) | ||
124 | add $TX[0]#b,$TY#b | ||
125 | movb ($dat,$TY,4),%al | ||
126 | ___ | ||
127 | push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers | ||
128 | } | ||
129 | $code.=<<___; | ||
130 | ror \$8,%rax | ||
131 | sub \$8,$len | ||
132 | |||
133 | xor ($inp),%rax | ||
134 | add \$8,$inp | ||
135 | mov %rax,($out) | ||
136 | add \$8,$out | ||
137 | |||
138 | test \$-8,$len | ||
139 | jnz .Lloop8 | ||
140 | cmp \$0,$len | ||
141 | jne .Lloop1 | ||
142 | jmp .Lexit | ||
143 | |||
144 | .align 16 | ||
145 | .Lloop1: | ||
146 | add $TX[0]#b,$YY#b | ||
147 | movl ($dat,$YY,4),$TY#d | ||
148 | movl $TX[0]#d,($dat,$YY,4) | ||
149 | movl $TY#d,($dat,$XX[0],4) | ||
150 | add $TY#b,$TX[0]#b | ||
151 | inc $XX[0]#b | ||
152 | movl ($dat,$TX[0],4),$TY#d | ||
153 | movl ($dat,$XX[0],4),$TX[0]#d | ||
154 | xorb ($inp),$TY#b | ||
155 | inc $inp | ||
156 | movb $TY#b,($out) | ||
157 | inc $out | ||
158 | dec $len | ||
159 | jnz .Lloop1 | ||
160 | jmp .Lexit | ||
161 | |||
162 | .align 16 | ||
163 | .LRC4_CHAR: | ||
164 | add \$1,$XX[0]#b | ||
165 | movzb ($dat,$XX[0]),$TX[0]#d | ||
166 | test \$-8,$len | ||
167 | jz .Lcloop1 | ||
168 | cmpl \$0,260($dat) | ||
169 | jnz .Lcloop1 | ||
170 | jmp .Lcloop8 | ||
171 | .align 16 | ||
172 | .Lcloop8: | ||
173 | mov ($inp),%eax | ||
174 | mov 4($inp),%ebx | ||
175 | ___ | ||
176 | # unroll 2x4-wise, because 64-bit rotates kill Intel P4... | ||
177 | for ($i=0;$i<4;$i++) { | ||
178 | $code.=<<___; | ||
179 | add $TX[0]#b,$YY#b | ||
180 | lea 1($XX[0]),$XX[1] | ||
181 | movzb ($dat,$YY),$TY#d | ||
182 | movzb $XX[1]#b,$XX[1]#d | ||
183 | movzb ($dat,$XX[1]),$TX[1]#d | ||
184 | movb $TX[0]#b,($dat,$YY) | ||
185 | cmp $XX[1],$YY | ||
186 | movb $TY#b,($dat,$XX[0]) | ||
187 | jne .Lcmov$i # Intel cmov is sloooow... | ||
188 | mov $TX[0],$TX[1] | ||
189 | .Lcmov$i: | ||
190 | add $TX[0]#b,$TY#b | ||
191 | xor ($dat,$TY),%al | ||
192 | ror \$8,%eax | ||
193 | ___ | ||
194 | push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers | ||
195 | } | ||
196 | for ($i=4;$i<8;$i++) { | ||
197 | $code.=<<___; | ||
198 | add $TX[0]#b,$YY#b | ||
199 | lea 1($XX[0]),$XX[1] | ||
200 | movzb ($dat,$YY),$TY#d | ||
201 | movzb $XX[1]#b,$XX[1]#d | ||
202 | movzb ($dat,$XX[1]),$TX[1]#d | ||
203 | movb $TX[0]#b,($dat,$YY) | ||
204 | cmp $XX[1],$YY | ||
205 | movb $TY#b,($dat,$XX[0]) | ||
206 | jne .Lcmov$i # Intel cmov is sloooow... | ||
207 | mov $TX[0],$TX[1] | ||
208 | .Lcmov$i: | ||
209 | add $TX[0]#b,$TY#b | ||
210 | xor ($dat,$TY),%bl | ||
211 | ror \$8,%ebx | ||
212 | ___ | ||
213 | push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers | ||
214 | } | ||
215 | $code.=<<___; | ||
216 | lea -8($len),$len | ||
217 | mov %eax,($out) | ||
218 | lea 8($inp),$inp | ||
219 | mov %ebx,4($out) | ||
220 | lea 8($out),$out | ||
221 | |||
222 | test \$-8,$len | ||
223 | jnz .Lcloop8 | ||
224 | cmp \$0,$len | ||
225 | jne .Lcloop1 | ||
226 | jmp .Lexit | ||
227 | ___ | ||
228 | $code.=<<___; | ||
229 | .align 16 | ||
230 | .Lcloop1: | ||
231 | add $TX[0]#b,$YY#b | ||
232 | movzb ($dat,$YY),$TY#d | ||
233 | movb $TX[0]#b,($dat,$YY) | ||
234 | movb $TY#b,($dat,$XX[0]) | ||
235 | add $TX[0]#b,$TY#b | ||
236 | add \$1,$XX[0]#b | ||
237 | movzb $TY#b,$TY#d | ||
238 | movzb $XX[0]#b,$XX[0]#d | ||
239 | movzb ($dat,$TY),$TY#d | ||
240 | movzb ($dat,$XX[0]),$TX[0]#d | ||
241 | xorb ($inp),$TY#b | ||
242 | lea 1($inp),$inp | ||
243 | movb $TY#b,($out) | ||
244 | lea 1($out),$out | ||
245 | sub \$1,$len | ||
246 | jnz .Lcloop1 | ||
247 | jmp .Lexit | ||
248 | |||
249 | .align 16 | ||
250 | .Lexit: | ||
251 | sub \$1,$XX[0]#b | ||
252 | movl $XX[0]#d,-8($dat) | ||
253 | movl $YY#d,-4($dat) | ||
254 | |||
255 | mov (%rsp),%r13 | ||
256 | mov 8(%rsp),%r12 | ||
257 | mov 16(%rsp),%rbx | ||
258 | add \$24,%rsp | ||
259 | .Lepilogue: | ||
260 | ret | ||
261 | .size RC4,.-RC4 | ||
262 | ___ | ||
263 | |||
264 | $idx="%r8"; | ||
265 | $ido="%r9"; | ||
266 | |||
267 | $code.=<<___; | ||
268 | .extern OPENSSL_ia32cap_P | ||
269 | .globl RC4_set_key | ||
270 | .type RC4_set_key,\@function,3 | ||
271 | .align 16 | ||
272 | RC4_set_key: | ||
273 | lea 8($dat),$dat | ||
274 | lea ($inp,$len),$inp | ||
275 | neg $len | ||
276 | mov $len,%rcx | ||
277 | xor %eax,%eax | ||
278 | xor $ido,$ido | ||
279 | xor %r10,%r10 | ||
280 | xor %r11,%r11 | ||
281 | |||
282 | mov PIC_GOT(OPENSSL_ia32cap_P),$idx#d | ||
283 | bt \$20,$idx#d | ||
284 | jnc .Lw1stloop | ||
285 | bt \$30,$idx#d | ||
286 | setc $ido#b | ||
287 | mov $ido#d,260($dat) | ||
288 | jmp .Lc1stloop | ||
289 | |||
290 | .align 16 | ||
291 | .Lw1stloop: | ||
292 | mov %eax,($dat,%rax,4) | ||
293 | add \$1,%al | ||
294 | jnc .Lw1stloop | ||
295 | |||
296 | xor $ido,$ido | ||
297 | xor $idx,$idx | ||
298 | .align 16 | ||
299 | .Lw2ndloop: | ||
300 | mov ($dat,$ido,4),%r10d | ||
301 | add ($inp,$len,1),$idx#b | ||
302 | add %r10b,$idx#b | ||
303 | add \$1,$len | ||
304 | mov ($dat,$idx,4),%r11d | ||
305 | cmovz %rcx,$len | ||
306 | mov %r10d,($dat,$idx,4) | ||
307 | mov %r11d,($dat,$ido,4) | ||
308 | add \$1,$ido#b | ||
309 | jnc .Lw2ndloop | ||
310 | jmp .Lexit_key | ||
311 | |||
312 | .align 16 | ||
313 | .Lc1stloop: | ||
314 | mov %al,($dat,%rax) | ||
315 | add \$1,%al | ||
316 | jnc .Lc1stloop | ||
317 | |||
318 | xor $ido,$ido | ||
319 | xor $idx,$idx | ||
320 | .align 16 | ||
321 | .Lc2ndloop: | ||
322 | mov ($dat,$ido),%r10b | ||
323 | add ($inp,$len),$idx#b | ||
324 | add %r10b,$idx#b | ||
325 | add \$1,$len | ||
326 | mov ($dat,$idx),%r11b | ||
327 | jnz .Lcnowrap | ||
328 | mov %rcx,$len | ||
329 | .Lcnowrap: | ||
330 | mov %r10b,($dat,$idx) | ||
331 | mov %r11b,($dat,$ido) | ||
332 | add \$1,$ido#b | ||
333 | jnc .Lc2ndloop | ||
334 | movl \$-1,256($dat) | ||
335 | |||
336 | .align 16 | ||
337 | .Lexit_key: | ||
338 | xor %eax,%eax | ||
339 | mov %eax,-8($dat) | ||
340 | mov %eax,-4($dat) | ||
341 | ret | ||
342 | .size RC4_set_key,.-RC4_set_key | ||
343 | |||
344 | .globl RC4_options | ||
345 | .type RC4_options,\@abi-omnipotent | ||
346 | .align 16 | ||
347 | RC4_options: | ||
348 | lea .Lopts(%rip),%rax | ||
349 | mov PIC_GOT(OPENSSL_ia32cap_P),%edx | ||
350 | bt \$20,%edx | ||
351 | jnc .Ldone | ||
352 | add \$12,%rax | ||
353 | bt \$30,%edx | ||
354 | jnc .Ldone | ||
355 | add \$13,%rax | ||
356 | .Ldone: | ||
357 | ret | ||
358 | .align 64 | ||
359 | .Lopts: | ||
360 | .asciz "rc4(8x,int)" | ||
361 | .asciz "rc4(8x,char)" | ||
362 | .asciz "rc4(1x,char)" | ||
363 | .asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>" | ||
364 | .align 64 | ||
365 | .size RC4_options,.-RC4_options | ||
366 | ___ | ||
367 | |||
368 | # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, | ||
369 | # CONTEXT *context,DISPATCHER_CONTEXT *disp) | ||
370 | if ($win64) { | ||
371 | $rec="%rcx"; | ||
372 | $frame="%rdx"; | ||
373 | $context="%r8"; | ||
374 | $disp="%r9"; | ||
375 | |||
376 | $code.=<<___; | ||
377 | .extern __imp_RtlVirtualUnwind | ||
378 | .type stream_se_handler,\@abi-omnipotent | ||
379 | .align 16 | ||
380 | stream_se_handler: | ||
381 | push %rsi | ||
382 | push %rdi | ||
383 | push %rbx | ||
384 | push %rbp | ||
385 | push %r12 | ||
386 | push %r13 | ||
387 | push %r14 | ||
388 | push %r15 | ||
389 | pushfq | ||
390 | sub \$64,%rsp | ||
391 | |||
392 | mov 120($context),%rax # pull context->Rax | ||
393 | mov 248($context),%rbx # pull context->Rip | ||
394 | |||
395 | lea .Lprologue(%rip),%r10 | ||
396 | cmp %r10,%rbx # context->Rip<prologue label | ||
397 | jb .Lin_prologue | ||
398 | |||
399 | mov 152($context),%rax # pull context->Rsp | ||
400 | |||
401 | lea .Lepilogue(%rip),%r10 | ||
402 | cmp %r10,%rbx # context->Rip>=epilogue label | ||
403 | jae .Lin_prologue | ||
404 | |||
405 | lea 24(%rax),%rax | ||
406 | |||
407 | mov -8(%rax),%rbx | ||
408 | mov -16(%rax),%r12 | ||
409 | mov -24(%rax),%r13 | ||
410 | mov %rbx,144($context) # restore context->Rbx | ||
411 | mov %r12,216($context) # restore context->R12 | ||
412 | mov %r13,224($context) # restore context->R13 | ||
413 | |||
414 | .Lin_prologue: | ||
415 | mov 8(%rax),%rdi | ||
416 | mov 16(%rax),%rsi | ||
417 | mov %rax,152($context) # restore context->Rsp | ||
418 | mov %rsi,168($context) # restore context->Rsi | ||
419 | mov %rdi,176($context) # restore context->Rdi | ||
420 | |||
421 | jmp .Lcommon_seh_exit | ||
422 | .size stream_se_handler,.-stream_se_handler | ||
423 | |||
424 | .type key_se_handler,\@abi-omnipotent | ||
425 | .align 16 | ||
426 | key_se_handler: | ||
427 | push %rsi | ||
428 | push %rdi | ||
429 | push %rbx | ||
430 | push %rbp | ||
431 | push %r12 | ||
432 | push %r13 | ||
433 | push %r14 | ||
434 | push %r15 | ||
435 | pushfq | ||
436 | sub \$64,%rsp | ||
437 | |||
438 | mov 152($context),%rax # pull context->Rsp | ||
439 | mov 8(%rax),%rdi | ||
440 | mov 16(%rax),%rsi | ||
441 | mov %rsi,168($context) # restore context->Rsi | ||
442 | mov %rdi,176($context) # restore context->Rdi | ||
443 | |||
444 | .Lcommon_seh_exit: | ||
445 | |||
446 | mov 40($disp),%rdi # disp->ContextRecord | ||
447 | mov $context,%rsi # context | ||
448 | mov \$154,%ecx # sizeof(CONTEXT) | ||
449 | .long 0xa548f3fc # cld; rep movsq | ||
450 | |||
451 | mov $disp,%rsi | ||
452 | xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER | ||
453 | mov 8(%rsi),%rdx # arg2, disp->ImageBase | ||
454 | mov 0(%rsi),%r8 # arg3, disp->ControlPc | ||
455 | mov 16(%rsi),%r9 # arg4, disp->FunctionEntry | ||
456 | mov 40(%rsi),%r10 # disp->ContextRecord | ||
457 | lea 56(%rsi),%r11 # &disp->HandlerData | ||
458 | lea 24(%rsi),%r12 # &disp->EstablisherFrame | ||
459 | mov %r10,32(%rsp) # arg5 | ||
460 | mov %r11,40(%rsp) # arg6 | ||
461 | mov %r12,48(%rsp) # arg7 | ||
462 | mov %rcx,56(%rsp) # arg8, (NULL) | ||
463 | call *__imp_RtlVirtualUnwind(%rip) | ||
464 | |||
465 | mov \$1,%eax # ExceptionContinueSearch | ||
466 | add \$64,%rsp | ||
467 | popfq | ||
468 | pop %r15 | ||
469 | pop %r14 | ||
470 | pop %r13 | ||
471 | pop %r12 | ||
472 | pop %rbp | ||
473 | pop %rbx | ||
474 | pop %rdi | ||
475 | pop %rsi | ||
476 | ret | ||
477 | .size key_se_handler,.-key_se_handler | ||
478 | |||
479 | .section .pdata | ||
480 | .align 4 | ||
481 | .rva .LSEH_begin_RC4 | ||
482 | .rva .LSEH_end_RC4 | ||
483 | .rva .LSEH_info_RC4 | ||
484 | |||
485 | .rva .LSEH_begin_RC4_set_key | ||
486 | .rva .LSEH_end_RC4_set_key | ||
487 | .rva .LSEH_info_RC4_set_key | ||
488 | |||
489 | .section .xdata | ||
490 | .align 8 | ||
491 | .LSEH_info_RC4: | ||
492 | .byte 9,0,0,0 | ||
493 | .rva stream_se_handler | ||
494 | .LSEH_info_RC4_set_key: | ||
495 | .byte 9,0,0,0 | ||
496 | .rva key_se_handler | ||
497 | ___ | ||
498 | } | ||
499 | |||
500 | $code =~ s/#([bwd])/$1/gm; | ||
501 | |||
502 | print $code; | ||
503 | |||
504 | close STDOUT; | ||
diff --git a/src/lib/libcrypto/rc4/rc4.h b/src/lib/libcrypto/rc4/rc4.h deleted file mode 100644 index 29d1acccf5..0000000000 --- a/src/lib/libcrypto/rc4/rc4.h +++ /dev/null | |||
@@ -1,89 +0,0 @@ | |||
1 | /* crypto/rc4/rc4.h */ | ||
2 | /* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #ifndef HEADER_RC4_H | ||
60 | #define HEADER_RC4_H | ||
61 | |||
62 | #include <openssl/opensslconf.h> /* OPENSSL_NO_RC4, RC4_INT */ | ||
63 | #ifdef OPENSSL_NO_RC4 | ||
64 | #error RC4 is disabled. | ||
65 | #endif | ||
66 | |||
67 | #include <stddef.h> | ||
68 | |||
69 | #ifdef __cplusplus | ||
70 | extern "C" { | ||
71 | #endif | ||
72 | |||
73 | typedef struct rc4_key_st | ||
74 | { | ||
75 | RC4_INT x,y; | ||
76 | RC4_INT data[256]; | ||
77 | } RC4_KEY; | ||
78 | |||
79 | |||
80 | const char *RC4_options(void); | ||
81 | void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data); | ||
82 | void RC4(RC4_KEY *key, size_t len, const unsigned char *indata, | ||
83 | unsigned char *outdata); | ||
84 | |||
85 | #ifdef __cplusplus | ||
86 | } | ||
87 | #endif | ||
88 | |||
89 | #endif | ||
diff --git a/src/lib/libcrypto/rc4/rc4_enc.c b/src/lib/libcrypto/rc4/rc4_enc.c deleted file mode 100644 index 8c4fc6c7a3..0000000000 --- a/src/lib/libcrypto/rc4/rc4_enc.c +++ /dev/null | |||
@@ -1,315 +0,0 @@ | |||
1 | /* crypto/rc4/rc4_enc.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <openssl/rc4.h> | ||
60 | #include "rc4_locl.h" | ||
61 | |||
62 | /* RC4 as implemented from a posting from | ||
63 | * Newsgroups: sci.crypt | ||
64 | * From: sterndark@netcom.com (David Sterndark) | ||
65 | * Subject: RC4 Algorithm revealed. | ||
66 | * Message-ID: <sternCvKL4B.Hyy@netcom.com> | ||
67 | * Date: Wed, 14 Sep 1994 06:35:31 GMT | ||
68 | */ | ||
69 | |||
70 | void RC4(RC4_KEY *key, size_t len, const unsigned char *indata, | ||
71 | unsigned char *outdata) | ||
72 | { | ||
73 | register RC4_INT *d; | ||
74 | register RC4_INT x,y,tx,ty; | ||
75 | size_t i; | ||
76 | |||
77 | x=key->x; | ||
78 | y=key->y; | ||
79 | d=key->data; | ||
80 | |||
81 | #if defined(RC4_CHUNK) | ||
82 | /* | ||
83 | * The original reason for implementing this(*) was the fact that | ||
84 | * pre-21164a Alpha CPUs don't have byte load/store instructions | ||
85 | * and e.g. a byte store has to be done with 64-bit load, shift, | ||
86 | * and, or and finally 64-bit store. Peaking data and operating | ||
87 | * at natural word size made it possible to reduce amount of | ||
88 | * instructions as well as to perform early read-ahead without | ||
89 | * suffering from RAW (read-after-write) hazard. This resulted | ||
90 | * in ~40%(**) performance improvement on 21064 box with gcc. | ||
91 | * But it's not only Alpha users who win here:-) Thanks to the | ||
92 | * early-n-wide read-ahead this implementation also exhibits | ||
93 | * >40% speed-up on SPARC and 20-30% on 64-bit MIPS (depending | ||
94 | * on sizeof(RC4_INT)). | ||
95 | * | ||
96 | * (*) "this" means code which recognizes the case when input | ||
97 | * and output pointers appear to be aligned at natural CPU | ||
98 | * word boundary | ||
99 | * (**) i.e. according to 'apps/openssl speed rc4' benchmark, | ||
100 | * crypto/rc4/rc4speed.c exhibits almost 70% speed-up... | ||
101 | * | ||
102 | * Cavets. | ||
103 | * | ||
104 | * - RC4_CHUNK="unsigned long long" should be a #1 choice for | ||
105 | * UltraSPARC. Unfortunately gcc generates very slow code | ||
106 | * (2.5-3 times slower than one generated by Sun's WorkShop | ||
107 | * C) and therefore gcc (at least 2.95 and earlier) should | ||
108 | * always be told that RC4_CHUNK="unsigned long". | ||
109 | * | ||
110 | * <appro@fy.chalmers.se> | ||
111 | */ | ||
112 | |||
113 | # define RC4_STEP ( \ | ||
114 | x=(x+1) &0xff, \ | ||
115 | tx=d[x], \ | ||
116 | y=(tx+y)&0xff, \ | ||
117 | ty=d[y], \ | ||
118 | d[y]=tx, \ | ||
119 | d[x]=ty, \ | ||
120 | (RC4_CHUNK)d[(tx+ty)&0xff]\ | ||
121 | ) | ||
122 | |||
123 | if ( ( ((size_t)indata & (sizeof(RC4_CHUNK)-1)) | | ||
124 | ((size_t)outdata & (sizeof(RC4_CHUNK)-1)) ) == 0 ) | ||
125 | { | ||
126 | RC4_CHUNK ichunk,otp; | ||
127 | const union { long one; char little; } is_endian = {1}; | ||
128 | |||
129 | /* | ||
130 | * I reckon we can afford to implement both endian | ||
131 | * cases and to decide which way to take at run-time | ||
132 | * because the machine code appears to be very compact | ||
133 | * and redundant 1-2KB is perfectly tolerable (i.e. | ||
134 | * in case the compiler fails to eliminate it:-). By | ||
135 | * suggestion from Terrel Larson <terr@terralogic.net> | ||
136 | * who also stands for the is_endian union:-) | ||
137 | * | ||
138 | * Special notes. | ||
139 | * | ||
140 | * - is_endian is declared automatic as doing otherwise | ||
141 | * (declaring static) prevents gcc from eliminating | ||
142 | * the redundant code; | ||
143 | * - compilers (those I've tried) don't seem to have | ||
144 | * problems eliminating either the operators guarded | ||
145 | * by "if (sizeof(RC4_CHUNK)==8)" or the condition | ||
146 | * expressions themselves so I've got 'em to replace | ||
147 | * corresponding #ifdefs from the previous version; | ||
148 | * - I chose to let the redundant switch cases when | ||
149 | * sizeof(RC4_CHUNK)!=8 be (were also #ifdefed | ||
150 | * before); | ||
151 | * - in case you wonder "&(sizeof(RC4_CHUNK)*8-1)" in | ||
152 | * [LB]ESHFT guards against "shift is out of range" | ||
153 | * warnings when sizeof(RC4_CHUNK)!=8 | ||
154 | * | ||
155 | * <appro@fy.chalmers.se> | ||
156 | */ | ||
157 | if (!is_endian.little) | ||
158 | { /* BIG-ENDIAN CASE */ | ||
159 | # define BESHFT(c) (((sizeof(RC4_CHUNK)-(c)-1)*8)&(sizeof(RC4_CHUNK)*8-1)) | ||
160 | for (;len&(0-sizeof(RC4_CHUNK));len-=sizeof(RC4_CHUNK)) | ||
161 | { | ||
162 | ichunk = *(RC4_CHUNK *)indata; | ||
163 | otp = RC4_STEP<<BESHFT(0); | ||
164 | otp |= RC4_STEP<<BESHFT(1); | ||
165 | otp |= RC4_STEP<<BESHFT(2); | ||
166 | otp |= RC4_STEP<<BESHFT(3); | ||
167 | if (sizeof(RC4_CHUNK)==8) | ||
168 | { | ||
169 | otp |= RC4_STEP<<BESHFT(4); | ||
170 | otp |= RC4_STEP<<BESHFT(5); | ||
171 | otp |= RC4_STEP<<BESHFT(6); | ||
172 | otp |= RC4_STEP<<BESHFT(7); | ||
173 | } | ||
174 | *(RC4_CHUNK *)outdata = otp^ichunk; | ||
175 | indata += sizeof(RC4_CHUNK); | ||
176 | outdata += sizeof(RC4_CHUNK); | ||
177 | } | ||
178 | if (len) | ||
179 | { | ||
180 | RC4_CHUNK mask=(RC4_CHUNK)-1, ochunk; | ||
181 | |||
182 | ichunk = *(RC4_CHUNK *)indata; | ||
183 | ochunk = *(RC4_CHUNK *)outdata; | ||
184 | otp = 0; | ||
185 | i = BESHFT(0); | ||
186 | mask <<= (sizeof(RC4_CHUNK)-len)<<3; | ||
187 | switch (len&(sizeof(RC4_CHUNK)-1)) | ||
188 | { | ||
189 | case 7: otp = RC4_STEP<<i, i-=8; | ||
190 | case 6: otp |= RC4_STEP<<i, i-=8; | ||
191 | case 5: otp |= RC4_STEP<<i, i-=8; | ||
192 | case 4: otp |= RC4_STEP<<i, i-=8; | ||
193 | case 3: otp |= RC4_STEP<<i, i-=8; | ||
194 | case 2: otp |= RC4_STEP<<i, i-=8; | ||
195 | case 1: otp |= RC4_STEP<<i, i-=8; | ||
196 | case 0: ; /* | ||
197 | * it's never the case, | ||
198 | * but it has to be here | ||
199 | * for ultrix? | ||
200 | */ | ||
201 | } | ||
202 | ochunk &= ~mask; | ||
203 | ochunk |= (otp^ichunk) & mask; | ||
204 | *(RC4_CHUNK *)outdata = ochunk; | ||
205 | } | ||
206 | key->x=x; | ||
207 | key->y=y; | ||
208 | return; | ||
209 | } | ||
210 | else | ||
211 | { /* LITTLE-ENDIAN CASE */ | ||
212 | # define LESHFT(c) (((c)*8)&(sizeof(RC4_CHUNK)*8-1)) | ||
213 | for (;len&(0-sizeof(RC4_CHUNK));len-=sizeof(RC4_CHUNK)) | ||
214 | { | ||
215 | ichunk = *(RC4_CHUNK *)indata; | ||
216 | otp = RC4_STEP; | ||
217 | otp |= RC4_STEP<<8; | ||
218 | otp |= RC4_STEP<<16; | ||
219 | otp |= RC4_STEP<<24; | ||
220 | if (sizeof(RC4_CHUNK)==8) | ||
221 | { | ||
222 | otp |= RC4_STEP<<LESHFT(4); | ||
223 | otp |= RC4_STEP<<LESHFT(5); | ||
224 | otp |= RC4_STEP<<LESHFT(6); | ||
225 | otp |= RC4_STEP<<LESHFT(7); | ||
226 | } | ||
227 | *(RC4_CHUNK *)outdata = otp^ichunk; | ||
228 | indata += sizeof(RC4_CHUNK); | ||
229 | outdata += sizeof(RC4_CHUNK); | ||
230 | } | ||
231 | if (len) | ||
232 | { | ||
233 | RC4_CHUNK mask=(RC4_CHUNK)-1, ochunk; | ||
234 | |||
235 | ichunk = *(RC4_CHUNK *)indata; | ||
236 | ochunk = *(RC4_CHUNK *)outdata; | ||
237 | otp = 0; | ||
238 | i = 0; | ||
239 | mask >>= (sizeof(RC4_CHUNK)-len)<<3; | ||
240 | switch (len&(sizeof(RC4_CHUNK)-1)) | ||
241 | { | ||
242 | case 7: otp = RC4_STEP, i+=8; | ||
243 | case 6: otp |= RC4_STEP<<i, i+=8; | ||
244 | case 5: otp |= RC4_STEP<<i, i+=8; | ||
245 | case 4: otp |= RC4_STEP<<i, i+=8; | ||
246 | case 3: otp |= RC4_STEP<<i, i+=8; | ||
247 | case 2: otp |= RC4_STEP<<i, i+=8; | ||
248 | case 1: otp |= RC4_STEP<<i, i+=8; | ||
249 | case 0: ; /* | ||
250 | * it's never the case, | ||
251 | * but it has to be here | ||
252 | * for ultrix? | ||
253 | */ | ||
254 | } | ||
255 | ochunk &= ~mask; | ||
256 | ochunk |= (otp^ichunk) & mask; | ||
257 | *(RC4_CHUNK *)outdata = ochunk; | ||
258 | } | ||
259 | key->x=x; | ||
260 | key->y=y; | ||
261 | return; | ||
262 | } | ||
263 | } | ||
264 | #endif | ||
265 | #define LOOP(in,out) \ | ||
266 | x=((x+1)&0xff); \ | ||
267 | tx=d[x]; \ | ||
268 | y=(tx+y)&0xff; \ | ||
269 | d[x]=ty=d[y]; \ | ||
270 | d[y]=tx; \ | ||
271 | (out) = d[(tx+ty)&0xff]^ (in); | ||
272 | |||
273 | #ifndef RC4_INDEX | ||
274 | #define RC4_LOOP(a,b,i) LOOP(*((a)++),*((b)++)) | ||
275 | #else | ||
276 | #define RC4_LOOP(a,b,i) LOOP(a[i],b[i]) | ||
277 | #endif | ||
278 | |||
279 | i=len>>3; | ||
280 | if (i) | ||
281 | { | ||
282 | for (;;) | ||
283 | { | ||
284 | RC4_LOOP(indata,outdata,0); | ||
285 | RC4_LOOP(indata,outdata,1); | ||
286 | RC4_LOOP(indata,outdata,2); | ||
287 | RC4_LOOP(indata,outdata,3); | ||
288 | RC4_LOOP(indata,outdata,4); | ||
289 | RC4_LOOP(indata,outdata,5); | ||
290 | RC4_LOOP(indata,outdata,6); | ||
291 | RC4_LOOP(indata,outdata,7); | ||
292 | #ifdef RC4_INDEX | ||
293 | indata+=8; | ||
294 | outdata+=8; | ||
295 | #endif | ||
296 | if (--i == 0) break; | ||
297 | } | ||
298 | } | ||
299 | i=len&0x07; | ||
300 | if (i) | ||
301 | { | ||
302 | for (;;) | ||
303 | { | ||
304 | RC4_LOOP(indata,outdata,0); if (--i == 0) break; | ||
305 | RC4_LOOP(indata,outdata,1); if (--i == 0) break; | ||
306 | RC4_LOOP(indata,outdata,2); if (--i == 0) break; | ||
307 | RC4_LOOP(indata,outdata,3); if (--i == 0) break; | ||
308 | RC4_LOOP(indata,outdata,4); if (--i == 0) break; | ||
309 | RC4_LOOP(indata,outdata,5); if (--i == 0) break; | ||
310 | RC4_LOOP(indata,outdata,6); if (--i == 0) break; | ||
311 | } | ||
312 | } | ||
313 | key->x=x; | ||
314 | key->y=y; | ||
315 | } | ||
diff --git a/src/lib/libcrypto/rc4/rc4_locl.h b/src/lib/libcrypto/rc4/rc4_locl.h deleted file mode 100644 index c712e1632e..0000000000 --- a/src/lib/libcrypto/rc4/rc4_locl.h +++ /dev/null | |||
@@ -1,5 +0,0 @@ | |||
1 | #ifndef HEADER_RC4_LOCL_H | ||
2 | #define HEADER_RC4_LOCL_H | ||
3 | #include <openssl/opensslconf.h> | ||
4 | #include <cryptlib.h> | ||
5 | #endif | ||
diff --git a/src/lib/libcrypto/rc4/rc4_skey.c b/src/lib/libcrypto/rc4/rc4_skey.c deleted file mode 100644 index b22c40b0bd..0000000000 --- a/src/lib/libcrypto/rc4/rc4_skey.c +++ /dev/null | |||
@@ -1,150 +0,0 @@ | |||
1 | /* crypto/rc4/rc4_skey.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <openssl/rc4.h> | ||
60 | #include "rc4_locl.h" | ||
61 | #include <openssl/opensslv.h> | ||
62 | |||
63 | const char RC4_version[]="RC4" OPENSSL_VERSION_PTEXT; | ||
64 | |||
65 | const char *RC4_options(void) | ||
66 | { | ||
67 | #ifdef RC4_INDEX | ||
68 | if (sizeof(RC4_INT) == 1) | ||
69 | return("rc4(idx,char)"); | ||
70 | else | ||
71 | return("rc4(idx,int)"); | ||
72 | #else | ||
73 | if (sizeof(RC4_INT) == 1) | ||
74 | return("rc4(ptr,char)"); | ||
75 | else | ||
76 | return("rc4(ptr,int)"); | ||
77 | #endif | ||
78 | } | ||
79 | |||
80 | /* RC4 as implemented from a posting from | ||
81 | * Newsgroups: sci.crypt | ||
82 | * From: sterndark@netcom.com (David Sterndark) | ||
83 | * Subject: RC4 Algorithm revealed. | ||
84 | * Message-ID: <sternCvKL4B.Hyy@netcom.com> | ||
85 | * Date: Wed, 14 Sep 1994 06:35:31 GMT | ||
86 | */ | ||
87 | |||
88 | void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data) | ||
89 | { | ||
90 | register RC4_INT tmp; | ||
91 | register int id1,id2; | ||
92 | register RC4_INT *d; | ||
93 | unsigned int i; | ||
94 | |||
95 | d= &(key->data[0]); | ||
96 | key->x = 0; | ||
97 | key->y = 0; | ||
98 | id1=id2=0; | ||
99 | |||
100 | #define SK_LOOP(d,n) { \ | ||
101 | tmp=d[(n)]; \ | ||
102 | id2 = (data[id1] + tmp + id2) & 0xff; \ | ||
103 | if (++id1 == len) id1=0; \ | ||
104 | d[(n)]=d[id2]; \ | ||
105 | d[id2]=tmp; } | ||
106 | |||
107 | #if defined(OPENSSL_CPUID_OBJ) && !defined(OPENSSL_NO_ASM) | ||
108 | # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \ | ||
109 | defined(__INTEL__) || \ | ||
110 | defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) | ||
111 | if (sizeof(RC4_INT) > 1) { | ||
112 | /* | ||
113 | * Unlike all other x86 [and x86_64] implementations, | ||
114 | * Intel P4 core [including EM64T] was found to perform | ||
115 | * poorly with wider RC4_INT. Performance improvement | ||
116 | * for IA-32 hand-coded assembler turned out to be 2.8x | ||
117 | * if re-coded for RC4_CHAR! It's however inappropriate | ||
118 | * to just switch to RC4_CHAR for x86[_64], as non-P4 | ||
119 | * implementations suffer from significant performance | ||
120 | * losses then, e.g. PIII exhibits >2x deterioration, | ||
121 | * and so does Opteron. In order to assure optimal | ||
122 | * all-round performance, let us [try to] detect P4 at | ||
123 | * run-time by checking upon HTT bit in CPU capability | ||
124 | * vector and set up compressed key schedule, which is | ||
125 | * recognized by correspondingly updated assembler | ||
126 | * module... | ||
127 | * <appro@fy.chalmers.se> | ||
128 | */ | ||
129 | if (OPENSSL_ia32cap_P & (1<<28)) { | ||
130 | unsigned char *cp=(unsigned char *)d; | ||
131 | |||
132 | for (i=0;i<256;i++) cp[i]=i; | ||
133 | for (i=0;i<256;i++) SK_LOOP(cp,i); | ||
134 | /* mark schedule as compressed! */ | ||
135 | d[256/sizeof(RC4_INT)]=-1; | ||
136 | return; | ||
137 | } | ||
138 | } | ||
139 | # endif | ||
140 | #endif | ||
141 | for (i=0; i < 256; i++) d[i]=i; | ||
142 | for (i=0; i < 256; i+=4) | ||
143 | { | ||
144 | SK_LOOP(d,i+0); | ||
145 | SK_LOOP(d,i+1); | ||
146 | SK_LOOP(d,i+2); | ||
147 | SK_LOOP(d,i+3); | ||
148 | } | ||
149 | } | ||
150 | |||