summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/rc4
diff options
context:
space:
mode:
authordjm <>2012-10-13 21:23:50 +0000
committerdjm <>2012-10-13 21:23:50 +0000
commit228cae30b117c2493f69ad3c195341cd6ec8d430 (patch)
tree29ff00b10d52c0978077c4fd83c33b065bade73e /src/lib/libcrypto/rc4
parent731838c66b52c0ae5888333005b74115a620aa96 (diff)
downloadopenbsd-228cae30b117c2493f69ad3c195341cd6ec8d430.tar.gz
openbsd-228cae30b117c2493f69ad3c195341cd6ec8d430.tar.bz2
openbsd-228cae30b117c2493f69ad3c195341cd6ec8d430.zip
import OpenSSL-1.0.1c
Diffstat (limited to 'src/lib/libcrypto/rc4')
-rw-r--r--src/lib/libcrypto/rc4/asm/rc4-586.pl162
-rw-r--r--src/lib/libcrypto/rc4/asm/rc4-md5-x86_64.pl631
-rw-r--r--src/lib/libcrypto/rc4/asm/rc4-parisc.pl313
-rw-r--r--src/lib/libcrypto/rc4/asm/rc4-s390x.pl47
-rwxr-xr-xsrc/lib/libcrypto/rc4/asm/rc4-x86_64.pl290
-rw-r--r--src/lib/libcrypto/rc4/rc4.h1
-rw-r--r--src/lib/libcrypto/rc4/rc4_skey.c36
7 files changed, 1366 insertions, 114 deletions
diff --git a/src/lib/libcrypto/rc4/asm/rc4-586.pl b/src/lib/libcrypto/rc4/asm/rc4-586.pl
index 38a44a70ef..5c9ac6ad28 100644
--- a/src/lib/libcrypto/rc4/asm/rc4-586.pl
+++ b/src/lib/libcrypto/rc4/asm/rc4-586.pl
@@ -28,6 +28,34 @@
28# 28#
29# <appro@fy.chalmers.se> 29# <appro@fy.chalmers.se>
30 30
31# May 2011
32#
33# Optimize for Core2 and Westmere [and incidentally Opteron]. Current
34# performance in cycles per processed byte (less is better) and
35# improvement relative to previous version of this module is:
36#
37# Pentium 10.2 # original numbers
38# Pentium III 7.8(*)
39# Intel P4 7.5
40#
41# Opteron 6.1/+20% # new MMX numbers
42# Core2 5.3/+67%(**)
43# Westmere 5.1/+94%(**)
44# Sandy Bridge 5.0/+8%
45# Atom 12.6/+6%
46#
47# (*) PIII can actually deliver 6.6 cycles per byte with MMX code,
48# but this specific code performs poorly on Core2. And vice
49# versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
50# poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
51# [anymore], I chose to discard PIII-specific code path and opt
52# for original IALU-only code, which is why MMX/SSE code path
53# is guarded by SSE2 bit (see below), not MMX/SSE.
54# (**) Performance vs. block size on Core2 and Westmere had a maximum
55# at ... 64 bytes block size. And it was quite a maximum, 40-60%
56# in comparison to largest 8KB block size. Above improvement
57# coefficients are for the largest block size.
58
31$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 59$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
32push(@INC,"${dir}","${dir}../../perlasm"); 60push(@INC,"${dir}","${dir}../../perlasm");
33require "x86asm.pl"; 61require "x86asm.pl";
@@ -62,6 +90,68 @@ sub RC4_loop {
62 &$func ($out,&DWP(0,$dat,$ty,4)); 90 &$func ($out,&DWP(0,$dat,$ty,4));
63} 91}
64 92
93if ($alt=0) {
94 # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
95 # but ~40% slower on Core2 and Westmere... Attempt to add movz
96 # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
97 # on Core2 with movz it's almost 20% slower than below alternative
98 # code... Yes, it's a total mess...
99 my @XX=($xx,$out);
100 $RC4_loop_mmx = sub { # SSE actually...
101 my $i=shift;
102 my $j=$i<=0?0:$i>>1;
103 my $mm=$i<=0?"mm0":"mm".($i&1);
104
105 &add (&LB($yy),&LB($tx));
106 &lea (@XX[1],&DWP(1,@XX[0]));
107 &pxor ("mm2","mm0") if ($i==0);
108 &psllq ("mm1",8) if ($i==0);
109 &and (@XX[1],0xff);
110 &pxor ("mm0","mm0") if ($i<=0);
111 &mov ($ty,&DWP(0,$dat,$yy,4));
112 &mov (&DWP(0,$dat,$yy,4),$tx);
113 &pxor ("mm1","mm2") if ($i==0);
114 &mov (&DWP(0,$dat,$XX[0],4),$ty);
115 &add (&LB($ty),&LB($tx));
116 &movd (@XX[0],"mm7") if ($i==0);
117 &mov ($tx,&DWP(0,$dat,@XX[1],4));
118 &pxor ("mm1","mm1") if ($i==1);
119 &movq ("mm2",&QWP(0,$inp)) if ($i==1);
120 &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0);
121 &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j);
122
123 push (@XX,shift(@XX)) if ($i>=0);
124 }
125} else {
126 # Using pinsrw here improves performane on Intel CPUs by 2-3%, but
127 # brings down AMD by 7%...
128 $RC4_loop_mmx = sub {
129 my $i=shift;
130
131 &add (&LB($yy),&LB($tx));
132 &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1);
133 &mov ($ty,&DWP(0,$dat,$yy,4));
134 &mov (&DWP(0,$dat,$yy,4),$tx);
135 &mov (&DWP(0,$dat,$xx,4),$ty);
136 &inc ($xx);
137 &add ($ty,$tx);
138 &movz ($xx,&LB($xx)); # (*)
139 &movz ($ty,&LB($ty)); # (*)
140 &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0);
141 &movq ("mm0",&QWP(0,$inp)) if ($i<=0);
142 &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0);
143 &mov ($tx,&DWP(0,$dat,$xx,4));
144 &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));
145
146 # (*) This is the key to Core2 and Westmere performance.
147 # Whithout movz out-of-order execution logic confuses
148 # itself and fails to reorder loads and stores. Problem
149 # appears to be fixed in Sandy Bridge...
150 }
151}
152
153&external_label("OPENSSL_ia32cap_P");
154
65# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out); 155# void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
66&function_begin("RC4"); 156&function_begin("RC4");
67 &mov ($dat,&wparam(0)); # load key schedule pointer 157 &mov ($dat,&wparam(0)); # load key schedule pointer
@@ -94,11 +184,56 @@ sub RC4_loop {
94 &and ($ty,-4); # how many 4-byte chunks? 184 &and ($ty,-4); # how many 4-byte chunks?
95 &jz (&label("loop1")); 185 &jz (&label("loop1"));
96 186
187 &test ($ty,-8);
188 &mov (&wparam(3),$out); # $out as accumulator in these loops
189 &jz (&label("go4loop4"));
190
191 &picmeup($out,"OPENSSL_ia32cap_P");
192 &bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX]
193 &jnc (&label("go4loop4"));
194
195 &mov ($out,&wparam(3)) if (!$alt);
196 &movd ("mm7",&wparam(3)) if ($alt);
197 &and ($ty,-8);
198 &lea ($ty,&DWP(-8,$inp,$ty));
199 &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8
200
201 &$RC4_loop_mmx(-1);
202 &jmp(&label("loop_mmx_enter"));
203
204 &set_label("loop_mmx",16);
205 &$RC4_loop_mmx(0);
206 &set_label("loop_mmx_enter");
207 for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
208 &mov ($ty,$yy);
209 &xor ($yy,$yy); # this is second key to Core2
210 &mov (&LB($yy),&LB($ty)); # and Westmere performance...
211 &cmp ($inp,&DWP(-4,$dat));
212 &lea ($inp,&DWP(8,$inp));
213 &jb (&label("loop_mmx"));
214
215 if ($alt) {
216 &movd ($out,"mm7");
217 &pxor ("mm2","mm0");
218 &psllq ("mm1",8);
219 &pxor ("mm1","mm2");
220 &movq (&QWP(-8,$out,$inp),"mm1");
221 } else {
222 &psllq ("mm1",56);
223 &pxor ("mm2","mm1");
224 &movq (&QWP(-8,$out,$inp),"mm2");
225 }
226 &emms ();
227
228 &cmp ($inp,&wparam(1)); # compare to input+len
229 &je (&label("done"));
230 &jmp (&label("loop1"));
231
232&set_label("go4loop4",16);
97 &lea ($ty,&DWP(-4,$inp,$ty)); 233 &lea ($ty,&DWP(-4,$inp,$ty));
98 &mov (&wparam(2),$ty); # save input+(len/4)*4-4 234 &mov (&wparam(2),$ty); # save input+(len/4)*4-4
99 &mov (&wparam(3),$out); # $out as accumulator in this loop
100 235
101 &set_label("loop4",16); 236 &set_label("loop4");
102 for ($i=0;$i<4;$i++) { RC4_loop($i); } 237 for ($i=0;$i<4;$i++) { RC4_loop($i); }
103 &ror ($out,8); 238 &ror ($out,8);
104 &xor ($out,&DWP(0,$inp)); 239 &xor ($out,&DWP(0,$inp));
@@ -151,7 +286,7 @@ sub RC4_loop {
151 286
152&set_label("done"); 287&set_label("done");
153 &dec (&LB($xx)); 288 &dec (&LB($xx));
154 &mov (&BP(-4,$dat),&LB($yy)); # save key->y 289 &mov (&DWP(-4,$dat),$yy); # save key->y
155 &mov (&BP(-8,$dat),&LB($xx)); # save key->x 290 &mov (&BP(-8,$dat),&LB($xx)); # save key->x
156&set_label("abort"); 291&set_label("abort");
157&function_end("RC4"); 292&function_end("RC4");
@@ -164,10 +299,8 @@ $idi="ebp";
164$ido="ecx"; 299$ido="ecx";
165$idx="edx"; 300$idx="edx";
166 301
167&external_label("OPENSSL_ia32cap_P");
168
169# void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data); 302# void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
170&function_begin("RC4_set_key"); 303&function_begin("private_RC4_set_key");
171 &mov ($out,&wparam(0)); # load key 304 &mov ($out,&wparam(0)); # load key
172 &mov ($idi,&wparam(1)); # load len 305 &mov ($idi,&wparam(1)); # load len
173 &mov ($inp,&wparam(2)); # load data 306 &mov ($inp,&wparam(2)); # load data
@@ -245,7 +378,7 @@ $idx="edx";
245 &xor ("eax","eax"); 378 &xor ("eax","eax");
246 &mov (&DWP(-8,$out),"eax"); # key->x=0; 379 &mov (&DWP(-8,$out),"eax"); # key->x=0;
247 &mov (&DWP(-4,$out),"eax"); # key->y=0; 380 &mov (&DWP(-4,$out),"eax"); # key->y=0;
248&function_end("RC4_set_key"); 381&function_end("private_RC4_set_key");
249 382
250# const char *RC4_options(void); 383# const char *RC4_options(void);
251&function_begin_B("RC4_options"); 384&function_begin_B("RC4_options");
@@ -254,14 +387,21 @@ $idx="edx";
254 &blindpop("eax"); 387 &blindpop("eax");
255 &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax")); 388 &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
256 &picmeup("edx","OPENSSL_ia32cap_P"); 389 &picmeup("edx","OPENSSL_ia32cap_P");
257 &bt (&DWP(0,"edx"),20); 390 &mov ("edx",&DWP(0,"edx"));
258 &jnc (&label("skip")); 391 &bt ("edx",20);
259 &add ("eax",12); 392 &jc (&label("1xchar"));
260 &set_label("skip"); 393 &bt ("edx",26);
394 &jnc (&label("ret"));
395 &add ("eax",25);
396 &ret ();
397&set_label("1xchar");
398 &add ("eax",12);
399&set_label("ret");
261 &ret (); 400 &ret ();
262&set_label("opts",64); 401&set_label("opts",64);
263&asciz ("rc4(4x,int)"); 402&asciz ("rc4(4x,int)");
264&asciz ("rc4(1x,char)"); 403&asciz ("rc4(1x,char)");
404&asciz ("rc4(8x,mmx)");
265&asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>"); 405&asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
266&align (64); 406&align (64);
267&function_end_B("RC4_options"); 407&function_end_B("RC4_options");
diff --git a/src/lib/libcrypto/rc4/asm/rc4-md5-x86_64.pl b/src/lib/libcrypto/rc4/asm/rc4-md5-x86_64.pl
new file mode 100644
index 0000000000..7f684092d4
--- /dev/null
+++ b/src/lib/libcrypto/rc4/asm/rc4-md5-x86_64.pl
@@ -0,0 +1,631 @@
1#!/usr/bin/env perl
2#
3# ====================================================================
4# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# June 2011
11#
12# This is RC4+MD5 "stitch" implementation. The idea, as spelled in
13# http://download.intel.com/design/intarch/papers/323686.pdf, is that
14# since both algorithms exhibit instruction-level parallelism, ILP,
15# below theoretical maximum, interleaving them would allow to utilize
16# processor resources better and achieve better performance. RC4
17# instruction sequence is virtually identical to rc4-x86_64.pl, which
18# is heavily based on submission by Maxim Perminov, Maxim Locktyukhin
19# and Jim Guilford of Intel. MD5 is fresh implementation aiming to
20# minimize register usage, which was used as "main thread" with RC4
21# weaved into it, one RC4 round per one MD5 round. In addition to the
22# stiched subroutine the script can generate standalone replacement
23# md5_block_asm_data_order and RC4. Below are performance numbers in
24# cycles per processed byte, less is better, for these the standalone
25# subroutines, sum of them, and stitched one:
26#
27# RC4 MD5 RC4+MD5 stitch gain
28# Opteron 6.5(*) 5.4 11.9 7.0 +70%(*)
29# Core2 6.5 5.8 12.3 7.7 +60%
30# Westmere 4.3 5.2 9.5 7.0 +36%
31# Sandy Bridge 4.2 5.5 9.7 6.8 +43%
32# Atom 9.3 6.5 15.8 11.1 +42%
33#
34# (*) rc4-x86_64.pl delivers 5.3 on Opteron, so real improvement
35# is +53%...
36
37my ($rc4,$md5)=(1,1); # what to generate?
38my $D="#" if (!$md5); # if set to "#", MD5 is stitched into RC4(),
39 # but its result is discarded. Idea here is
40 # to be able to use 'openssl speed rc4' for
41 # benchmarking the stitched subroutine...
42
43my $flavour = shift;
44my $output = shift;
45if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
46
47my $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
48
49$0 =~ m/(.*[\/\\])[^\/\\]+$/; my $dir=$1; my $xlate;
50( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
51( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
52die "can't locate x86_64-xlate.pl";
53
54open STDOUT,"| $^X $xlate $flavour $output";
55
56my ($dat,$in0,$out,$ctx,$inp,$len, $func,$nargs);
57
58if ($rc4 && !$md5) {
59 ($dat,$len,$in0,$out) = ("%rdi","%rsi","%rdx","%rcx");
60 $func="RC4"; $nargs=4;
61} elsif ($md5 && !$rc4) {
62 ($ctx,$inp,$len) = ("%rdi","%rsi","%rdx");
63 $func="md5_block_asm_data_order"; $nargs=3;
64} else {
65 ($dat,$in0,$out,$ctx,$inp,$len) = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9");
66 $func="rc4_md5_enc"; $nargs=6;
67 # void rc4_md5_enc(
68 # RC4_KEY *key, #
69 # const void *in0, # RC4 input
70 # void *out, # RC4 output
71 # MD5_CTX *ctx, #
72 # const void *inp, # MD5 input
73 # size_t len); # number of 64-byte blocks
74}
75
76my @K=( 0xd76aa478,0xe8c7b756,0x242070db,0xc1bdceee,
77 0xf57c0faf,0x4787c62a,0xa8304613,0xfd469501,
78 0x698098d8,0x8b44f7af,0xffff5bb1,0x895cd7be,
79 0x6b901122,0xfd987193,0xa679438e,0x49b40821,
80
81 0xf61e2562,0xc040b340,0x265e5a51,0xe9b6c7aa,
82 0xd62f105d,0x02441453,0xd8a1e681,0xe7d3fbc8,
83 0x21e1cde6,0xc33707d6,0xf4d50d87,0x455a14ed,
84 0xa9e3e905,0xfcefa3f8,0x676f02d9,0x8d2a4c8a,
85
86 0xfffa3942,0x8771f681,0x6d9d6122,0xfde5380c,
87 0xa4beea44,0x4bdecfa9,0xf6bb4b60,0xbebfbc70,
88 0x289b7ec6,0xeaa127fa,0xd4ef3085,0x04881d05,
89 0xd9d4d039,0xe6db99e5,0x1fa27cf8,0xc4ac5665,
90
91 0xf4292244,0x432aff97,0xab9423a7,0xfc93a039,
92 0x655b59c3,0x8f0ccc92,0xffeff47d,0x85845dd1,
93 0x6fa87e4f,0xfe2ce6e0,0xa3014314,0x4e0811a1,
94 0xf7537e82,0xbd3af235,0x2ad7d2bb,0xeb86d391 );
95
96my @V=("%r8d","%r9d","%r10d","%r11d"); # MD5 registers
97my $tmp="%r12d";
98
99my @XX=("%rbp","%rsi"); # RC4 registers
100my @TX=("%rax","%rbx");
101my $YY="%rcx";
102my $TY="%rdx";
103
104my $MOD=32; # 16, 32 or 64
105
106$code.=<<___;
107.text
108.align 16
109
110.globl $func
111.type $func,\@function,$nargs
112$func:
113 cmp \$0,$len
114 je .Labort
115 push %rbx
116 push %rbp
117 push %r12
118 push %r13
119 push %r14
120 push %r15
121 sub \$40,%rsp
122.Lbody:
123___
124if ($rc4) {
125$code.=<<___;
126$D#md5# mov $ctx,%r11 # reassign arguments
127 mov $len,%r12
128 mov $in0,%r13
129 mov $out,%r14
130$D#md5# mov $inp,%r15
131___
132 $ctx="%r11" if ($md5); # reassign arguments
133 $len="%r12";
134 $in0="%r13";
135 $out="%r14";
136 $inp="%r15" if ($md5);
137 $inp=$in0 if (!$md5);
138$code.=<<___;
139 xor $XX[0],$XX[0]
140 xor $YY,$YY
141
142 lea 8($dat),$dat
143 mov -8($dat),$XX[0]#b
144 mov -4($dat),$YY#b
145
146 inc $XX[0]#b
147 sub $in0,$out
148 movl ($dat,$XX[0],4),$TX[0]#d
149___
150$code.=<<___ if (!$md5);
151 xor $TX[1],$TX[1]
152 test \$-128,$len
153 jz .Loop1
154 sub $XX[0],$TX[1]
155 and \$`$MOD-1`,$TX[1]
156 jz .Loop${MOD}_is_hot
157 sub $TX[1],$len
158.Loop${MOD}_warmup:
159 add $TX[0]#b,$YY#b
160 movl ($dat,$YY,4),$TY#d
161 movl $TX[0]#d,($dat,$YY,4)
162 movl $TY#d,($dat,$XX[0],4)
163 add $TY#b,$TX[0]#b
164 inc $XX[0]#b
165 movl ($dat,$TX[0],4),$TY#d
166 movl ($dat,$XX[0],4),$TX[0]#d
167 xorb ($in0),$TY#b
168 movb $TY#b,($out,$in0)
169 lea 1($in0),$in0
170 dec $TX[1]
171 jnz .Loop${MOD}_warmup
172
173 mov $YY,$TX[1]
174 xor $YY,$YY
175 mov $TX[1]#b,$YY#b
176
177.Loop${MOD}_is_hot:
178 mov $len,32(%rsp) # save original $len
179 shr \$6,$len # number of 64-byte blocks
180___
181 if ($D && !$md5) { # stitch in dummy MD5
182 $md5=1;
183 $ctx="%r11";
184 $inp="%r15";
185 $code.=<<___;
186 mov %rsp,$ctx
187 mov $in0,$inp
188___
189 }
190}
191$code.=<<___;
192#rc4# add $TX[0]#b,$YY#b
193#rc4# lea ($dat,$XX[0],4),$XX[1]
194 shl \$6,$len
195 add $inp,$len # pointer to the end of input
196 mov $len,16(%rsp)
197
198#md5# mov $ctx,24(%rsp) # save pointer to MD5_CTX
199#md5# mov 0*4($ctx),$V[0] # load current hash value from MD5_CTX
200#md5# mov 1*4($ctx),$V[1]
201#md5# mov 2*4($ctx),$V[2]
202#md5# mov 3*4($ctx),$V[3]
203 jmp .Loop
204
205.align 16
206.Loop:
207#md5# mov $V[0],0*4(%rsp) # put aside current hash value
208#md5# mov $V[1],1*4(%rsp)
209#md5# mov $V[2],2*4(%rsp)
210#md5# mov $V[3],$tmp # forward reference
211#md5# mov $V[3],3*4(%rsp)
212___
213
214sub R0 {
215 my ($i,$a,$b,$c,$d)=@_;
216 my @rot0=(7,12,17,22);
217 my $j=$i%16;
218 my $k=$i%$MOD;
219 my $xmm="%xmm".($j&1);
220 $code.=" movdqu ($in0),%xmm2\n" if ($rc4 && $j==15);
221 $code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1);
222 $code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1);
223 $code.=<<___;
224#rc4# movl ($dat,$YY,4),$TY#d
225#md5# xor $c,$tmp
226#rc4# movl $TX[0]#d,($dat,$YY,4)
227#md5# and $b,$tmp
228#md5# add 4*`$j`($inp),$a
229#rc4# add $TY#b,$TX[0]#b
230#rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d
231#md5# add \$$K[$i],$a
232#md5# xor $d,$tmp
233#rc4# movz $TX[0]#b,$TX[0]#d
234#rc4# movl $TY#d,4*$k($XX[1])
235#md5# add $tmp,$a
236#rc4# add $TX[1]#b,$YY#b
237#md5# rol \$$rot0[$j%4],$a
238#md5# mov `$j==15?"$b":"$c"`,$tmp # forward reference
239#rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n
240#md5# add $b,$a
241___
242 $code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1);
243 mov $YY,$XX[1]
244 xor $YY,$YY # keyword to partial register
245 mov $XX[1]#b,$YY#b
246 lea ($dat,$XX[0],4),$XX[1]
247___
248 $code.=<<___ if ($rc4 && $j==15);
249 psllq \$8,%xmm1
250 pxor %xmm0,%xmm2
251 pxor %xmm1,%xmm2
252___
253}
254sub R1 {
255 my ($i,$a,$b,$c,$d)=@_;
256 my @rot1=(5,9,14,20);
257 my $j=$i%16;
258 my $k=$i%$MOD;
259 my $xmm="%xmm".($j&1);
260 $code.=" movdqu 16($in0),%xmm3\n" if ($rc4 && $j==15);
261 $code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1);
262 $code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1);
263 $code.=<<___;
264#rc4# movl ($dat,$YY,4),$TY#d
265#md5# xor $b,$tmp
266#rc4# movl $TX[0]#d,($dat,$YY,4)
267#md5# and $d,$tmp
268#md5# add 4*`((1+5*$j)%16)`($inp),$a
269#rc4# add $TY#b,$TX[0]#b
270#rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d
271#md5# add \$$K[$i],$a
272#md5# xor $c,$tmp
273#rc4# movz $TX[0]#b,$TX[0]#d
274#rc4# movl $TY#d,4*$k($XX[1])
275#md5# add $tmp,$a
276#rc4# add $TX[1]#b,$YY#b
277#md5# rol \$$rot1[$j%4],$a
278#md5# mov `$j==15?"$c":"$b"`,$tmp # forward reference
279#rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n
280#md5# add $b,$a
281___
282 $code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1);
283 mov $YY,$XX[1]
284 xor $YY,$YY # keyword to partial register
285 mov $XX[1]#b,$YY#b
286 lea ($dat,$XX[0],4),$XX[1]
287___
288 $code.=<<___ if ($rc4 && $j==15);
289 psllq \$8,%xmm1
290 pxor %xmm0,%xmm3
291 pxor %xmm1,%xmm3
292___
293}
294sub R2 {
295 my ($i,$a,$b,$c,$d)=@_;
296 my @rot2=(4,11,16,23);
297 my $j=$i%16;
298 my $k=$i%$MOD;
299 my $xmm="%xmm".($j&1);
300 $code.=" movdqu 32($in0),%xmm4\n" if ($rc4 && $j==15);
301 $code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1);
302 $code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1);
303 $code.=<<___;
304#rc4# movl ($dat,$YY,4),$TY#d
305#md5# xor $c,$tmp
306#rc4# movl $TX[0]#d,($dat,$YY,4)
307#md5# xor $b,$tmp
308#md5# add 4*`((5+3*$j)%16)`($inp),$a
309#rc4# add $TY#b,$TX[0]#b
310#rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d
311#md5# add \$$K[$i],$a
312#rc4# movz $TX[0]#b,$TX[0]#d
313#md5# add $tmp,$a
314#rc4# movl $TY#d,4*$k($XX[1])
315#rc4# add $TX[1]#b,$YY#b
316#md5# rol \$$rot2[$j%4],$a
317#md5# mov `$j==15?"\\\$-1":"$c"`,$tmp # forward reference
318#rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n
319#md5# add $b,$a
320___
321 $code.=<<___ if ($rc4 && $j==15 && $k==$MOD-1);
322 mov $YY,$XX[1]
323 xor $YY,$YY # keyword to partial register
324 mov $XX[1]#b,$YY#b
325 lea ($dat,$XX[0],4),$XX[1]
326___
327 $code.=<<___ if ($rc4 && $j==15);
328 psllq \$8,%xmm1
329 pxor %xmm0,%xmm4
330 pxor %xmm1,%xmm4
331___
332}
333sub R3 {
334 my ($i,$a,$b,$c,$d)=@_;
335 my @rot3=(6,10,15,21);
336 my $j=$i%16;
337 my $k=$i%$MOD;
338 my $xmm="%xmm".($j&1);
339 $code.=" movdqu 48($in0),%xmm5\n" if ($rc4 && $j==15);
340 $code.=" add \$$MOD,$XX[0]#b\n" if ($rc4 && $j==15 && $k==$MOD-1);
341 $code.=" pxor $xmm,$xmm\n" if ($rc4 && $j<=1);
342 $code.=<<___;
343#rc4# movl ($dat,$YY,4),$TY#d
344#md5# xor $d,$tmp
345#rc4# movl $TX[0]#d,($dat,$YY,4)
346#md5# or $b,$tmp
347#md5# add 4*`((7*$j)%16)`($inp),$a
348#rc4# add $TY#b,$TX[0]#b
349#rc4# movl `4*(($k+1)%$MOD)`(`$k==$MOD-1?"$dat,$XX[0],4":"$XX[1]"`),$TX[1]#d
350#md5# add \$$K[$i],$a
351#rc4# movz $TX[0]#b,$TX[0]#d
352#md5# xor $c,$tmp
353#rc4# movl $TY#d,4*$k($XX[1])
354#md5# add $tmp,$a
355#rc4# add $TX[1]#b,$YY#b
356#md5# rol \$$rot3[$j%4],$a
357#md5# mov \$-1,$tmp # forward reference
358#rc4# pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n
359#md5# add $b,$a
360___
361 $code.=<<___ if ($rc4 && $j==15);
362 mov $XX[0],$XX[1]
363 xor $XX[0],$XX[0] # keyword to partial register
364 mov $XX[1]#b,$XX[0]#b
365 mov $YY,$XX[1]
366 xor $YY,$YY # keyword to partial register
367 mov $XX[1]#b,$YY#b
368 lea ($dat,$XX[0],4),$XX[1]
369 psllq \$8,%xmm1
370 pxor %xmm0,%xmm5
371 pxor %xmm1,%xmm5
372___
373}
374
375my $i=0;
376for(;$i<16;$i++) { R0($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); }
377for(;$i<32;$i++) { R1($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); }
378for(;$i<48;$i++) { R2($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); }
379for(;$i<64;$i++) { R3($i,@V); unshift(@V,pop(@V)); push(@TX,shift(@TX)); }
380
381$code.=<<___;
382#md5# add 0*4(%rsp),$V[0] # accumulate hash value
383#md5# add 1*4(%rsp),$V[1]
384#md5# add 2*4(%rsp),$V[2]
385#md5# add 3*4(%rsp),$V[3]
386
387#rc4# movdqu %xmm2,($out,$in0) # write RC4 output
388#rc4# movdqu %xmm3,16($out,$in0)
389#rc4# movdqu %xmm4,32($out,$in0)
390#rc4# movdqu %xmm5,48($out,$in0)
391#md5# lea 64($inp),$inp
392#rc4# lea 64($in0),$in0
393 cmp 16(%rsp),$inp # are we done?
394 jb .Loop
395
396#md5# mov 24(%rsp),$len # restore pointer to MD5_CTX
397#rc4# sub $TX[0]#b,$YY#b # correct $YY
398#md5# mov $V[0],0*4($len) # write MD5_CTX
399#md5# mov $V[1],1*4($len)
400#md5# mov $V[2],2*4($len)
401#md5# mov $V[3],3*4($len)
402___
403$code.=<<___ if ($rc4 && (!$md5 || $D));
404 mov 32(%rsp),$len # restore original $len
405 and \$63,$len # remaining bytes
406 jnz .Loop1
407 jmp .Ldone
408
409.align 16
410.Loop1:
411 add $TX[0]#b,$YY#b
412 movl ($dat,$YY,4),$TY#d
413 movl $TX[0]#d,($dat,$YY,4)
414 movl $TY#d,($dat,$XX[0],4)
415 add $TY#b,$TX[0]#b
416 inc $XX[0]#b
417 movl ($dat,$TX[0],4),$TY#d
418 movl ($dat,$XX[0],4),$TX[0]#d
419 xorb ($in0),$TY#b
420 movb $TY#b,($out,$in0)
421 lea 1($in0),$in0
422 dec $len
423 jnz .Loop1
424
425.Ldone:
426___
427$code.=<<___;
428#rc4# sub \$1,$XX[0]#b
429#rc4# movl $XX[0]#d,-8($dat)
430#rc4# movl $YY#d,-4($dat)
431
432 mov 40(%rsp),%r15
433 mov 48(%rsp),%r14
434 mov 56(%rsp),%r13
435 mov 64(%rsp),%r12
436 mov 72(%rsp),%rbp
437 mov 80(%rsp),%rbx
438 lea 88(%rsp),%rsp
439.Lepilogue:
440.Labort:
441 ret
442.size $func,.-$func
443___
444
445if ($rc4 && $D) { # sole purpose of this section is to provide
446 # option to use the generated module as drop-in
447 # replacement for rc4-x86_64.pl for debugging
448 # and testing purposes...
449my ($idx,$ido)=("%r8","%r9");
450my ($dat,$len,$inp)=("%rdi","%rsi","%rdx");
451
452$code.=<<___;
453.globl RC4_set_key
454.type RC4_set_key,\@function,3
455.align 16
456RC4_set_key:
457 lea 8($dat),$dat
458 lea ($inp,$len),$inp
459 neg $len
460 mov $len,%rcx
461 xor %eax,%eax
462 xor $ido,$ido
463 xor %r10,%r10
464 xor %r11,%r11
465 jmp .Lw1stloop
466
467.align 16
468.Lw1stloop:
469 mov %eax,($dat,%rax,4)
470 add \$1,%al
471 jnc .Lw1stloop
472
473 xor $ido,$ido
474 xor $idx,$idx
475.align 16
476.Lw2ndloop:
477 mov ($dat,$ido,4),%r10d
478 add ($inp,$len,1),$idx#b
479 add %r10b,$idx#b
480 add \$1,$len
481 mov ($dat,$idx,4),%r11d
482 cmovz %rcx,$len
483 mov %r10d,($dat,$idx,4)
484 mov %r11d,($dat,$ido,4)
485 add \$1,$ido#b
486 jnc .Lw2ndloop
487
488 xor %eax,%eax
489 mov %eax,-8($dat)
490 mov %eax,-4($dat)
491 ret
492.size RC4_set_key,.-RC4_set_key
493
494.globl RC4_options
495.type RC4_options,\@abi-omnipotent
496.align 16
497RC4_options:
498 lea .Lopts(%rip),%rax
499 ret
500.align 64
501.Lopts:
502.asciz "rc4(64x,int)"
503.align 64
504.size RC4_options,.-RC4_options
505___
506}
507# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
508# CONTEXT *context,DISPATCHER_CONTEXT *disp)
509if ($win64) {
510my $rec="%rcx";
511my $frame="%rdx";
512my $context="%r8";
513my $disp="%r9";
514
515$code.=<<___;
516.extern __imp_RtlVirtualUnwind
517.type se_handler,\@abi-omnipotent
518.align 16
519se_handler:
520 push %rsi
521 push %rdi
522 push %rbx
523 push %rbp
524 push %r12
525 push %r13
526 push %r14
527 push %r15
528 pushfq
529 sub \$64,%rsp
530
531 mov 120($context),%rax # pull context->Rax
532 mov 248($context),%rbx # pull context->Rip
533
534 lea .Lbody(%rip),%r10
535 cmp %r10,%rbx # context->Rip<.Lbody
536 jb .Lin_prologue
537
538 mov 152($context),%rax # pull context->Rsp
539
540 lea .Lepilogue(%rip),%r10
541 cmp %r10,%rbx # context->Rip>=.Lepilogue
542 jae .Lin_prologue
543
544 mov 40(%rax),%r15
545 mov 48(%rax),%r14
546 mov 56(%rax),%r13
547 mov 64(%rax),%r12
548 mov 72(%rax),%rbp
549 mov 80(%rax),%rbx
550 lea 88(%rax),%rax
551
552 mov %rbx,144($context) # restore context->Rbx
553 mov %rbp,160($context) # restore context->Rbp
554 mov %r12,216($context) # restore context->R12
555 mov %r13,224($context) # restore context->R12
556 mov %r14,232($context) # restore context->R14
557 mov %r15,240($context) # restore context->R15
558
559.Lin_prologue:
560 mov 8(%rax),%rdi
561 mov 16(%rax),%rsi
562 mov %rax,152($context) # restore context->Rsp
563 mov %rsi,168($context) # restore context->Rsi
564 mov %rdi,176($context) # restore context->Rdi
565
566 mov 40($disp),%rdi # disp->ContextRecord
567 mov $context,%rsi # context
568 mov \$154,%ecx # sizeof(CONTEXT)
569 .long 0xa548f3fc # cld; rep movsq
570
571 mov $disp,%rsi
572 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
573 mov 8(%rsi),%rdx # arg2, disp->ImageBase
574 mov 0(%rsi),%r8 # arg3, disp->ControlPc
575 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
576 mov 40(%rsi),%r10 # disp->ContextRecord
577 lea 56(%rsi),%r11 # &disp->HandlerData
578 lea 24(%rsi),%r12 # &disp->EstablisherFrame
579 mov %r10,32(%rsp) # arg5
580 mov %r11,40(%rsp) # arg6
581 mov %r12,48(%rsp) # arg7
582 mov %rcx,56(%rsp) # arg8, (NULL)
583 call *__imp_RtlVirtualUnwind(%rip)
584
585 mov \$1,%eax # ExceptionContinueSearch
586 add \$64,%rsp
587 popfq
588 pop %r15
589 pop %r14
590 pop %r13
591 pop %r12
592 pop %rbp
593 pop %rbx
594 pop %rdi
595 pop %rsi
596 ret
597.size se_handler,.-se_handler
598
599.section .pdata
600.align 4
601 .rva .LSEH_begin_$func
602 .rva .LSEH_end_$func
603 .rva .LSEH_info_$func
604
605.section .xdata
606.align 8
607.LSEH_info_$func:
608 .byte 9,0,0,0
609 .rva se_handler
610___
611}
612
613sub reg_part {
614my ($reg,$conv)=@_;
615 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
616 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
617 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
618 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
619 return $reg;
620}
621
622$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
623$code =~ s/\`([^\`]*)\`/eval $1/gem;
624$code =~ s/pinsrw\s+\$0,/movd /gm;
625
626$code =~ s/#md5#//gm if ($md5);
627$code =~ s/#rc4#//gm if ($rc4);
628
629print $code;
630
631close STDOUT;
diff --git a/src/lib/libcrypto/rc4/asm/rc4-parisc.pl b/src/lib/libcrypto/rc4/asm/rc4-parisc.pl
new file mode 100644
index 0000000000..9165067080
--- /dev/null
+++ b/src/lib/libcrypto/rc4/asm/rc4-parisc.pl
@@ -0,0 +1,313 @@
1#!/usr/bin/env perl
2
3# ====================================================================
4# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# RC4 for PA-RISC.
11
12# June 2009.
13#
14# Performance is 33% better than gcc 3.2 generated code on PA-7100LC.
15# For reference, [4x] unrolled loop is >40% faster than folded one.
16# It's possible to unroll loop 8 times on PA-RISC 2.0, but improvement
17# is believed to be not sufficient to justify the effort...
18#
19# Special thanks to polarhome.com for providing HP-UX account.
20
21$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
22
23$flavour = shift;
24$output = shift;
25open STDOUT,">$output";
26
27if ($flavour =~ /64/) {
28 $LEVEL ="2.0W";
29 $SIZE_T =8;
30 $FRAME_MARKER =80;
31 $SAVED_RP =16;
32 $PUSH ="std";
33 $PUSHMA ="std,ma";
34 $POP ="ldd";
35 $POPMB ="ldd,mb";
36} else {
37 $LEVEL ="1.0";
38 $SIZE_T =4;
39 $FRAME_MARKER =48;
40 $SAVED_RP =20;
41 $PUSH ="stw";
42 $PUSHMA ="stwm";
43 $POP ="ldw";
44 $POPMB ="ldwm";
45}
46
47$FRAME=4*$SIZE_T+$FRAME_MARKER; # 4 saved regs + frame marker
48 # [+ argument transfer]
49$SZ=1; # defaults to RC4_CHAR
50if (open CONF,"<${dir}../../opensslconf.h") {
51 while(<CONF>) {
52 if (m/#\s*define\s+RC4_INT\s+(.*)/) {
53 $SZ = ($1=~/char$/) ? 1 : 4;
54 last;
55 }
56 }
57 close CONF;
58}
59
60if ($SZ==1) { # RC4_CHAR
61 $LD="ldb";
62 $LDX="ldbx";
63 $MKX="addl";
64 $ST="stb";
65} else { # RC4_INT (~5% faster than RC4_CHAR on PA-7100LC)
66 $LD="ldw";
67 $LDX="ldwx,s";
68 $MKX="sh2addl";
69 $ST="stw";
70}
71
72$key="%r26";
73$len="%r25";
74$inp="%r24";
75$out="%r23";
76
77@XX=("%r19","%r20");
78@TX=("%r21","%r22");
79$YY="%r28";
80$TY="%r29";
81
82$acc="%r1";
83$ix="%r2";
84$iy="%r3";
85$dat0="%r4";
86$dat1="%r5";
87$rem="%r6";
88$mask="%r31";
89
90sub unrolledloopbody {
91for ($i=0;$i<4;$i++) {
92$code.=<<___;
93 ldo 1($XX[0]),$XX[1]
94 `sprintf("$LDX %$TY(%$key),%$dat1") if ($i>0)`
95 and $mask,$XX[1],$XX[1]
96 $LDX $YY($key),$TY
97 $MKX $YY,$key,$ix
98 $LDX $XX[1]($key),$TX[1]
99 $MKX $XX[0],$key,$iy
100 $ST $TX[0],0($ix)
101 comclr,<> $XX[1],$YY,%r0 ; conditional
102 copy $TX[0],$TX[1] ; move
103 `sprintf("%sdep %$dat1,%d,8,%$acc",$i==1?"z":"",8*($i-1)+7) if ($i>0)`
104 $ST $TY,0($iy)
105 addl $TX[0],$TY,$TY
106 addl $TX[1],$YY,$YY
107 and $mask,$TY,$TY
108 and $mask,$YY,$YY
109___
110push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
111} }
112
113sub foldedloop {
114my ($label,$count)=@_;
115$code.=<<___;
116$label
117 $MKX $YY,$key,$iy
118 $LDX $YY($key),$TY
119 $MKX $XX[0],$key,$ix
120 $ST $TX[0],0($iy)
121 ldo 1($XX[0]),$XX[0]
122 $ST $TY,0($ix)
123 addl $TX[0],$TY,$TY
124 ldbx $inp($out),$dat1
125 and $mask,$TY,$TY
126 and $mask,$XX[0],$XX[0]
127 $LDX $TY($key),$acc
128 $LDX $XX[0]($key),$TX[0]
129 ldo 1($out),$out
130 xor $dat1,$acc,$acc
131 addl $TX[0],$YY,$YY
132 stb $acc,-1($out)
133 addib,<> -1,$count,$label ; $count is always small
134 and $mask,$YY,$YY
135___
136}
137
138$code=<<___;
139 .LEVEL $LEVEL
140 .SPACE \$TEXT\$
141 .SUBSPA \$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY
142
143 .EXPORT RC4,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR
144RC4
145 .PROC
146 .CALLINFO FRAME=`$FRAME-4*$SIZE_T`,NO_CALLS,SAVE_RP,ENTRY_GR=6
147 .ENTRY
148 $PUSH %r2,-$SAVED_RP(%sp) ; standard prologue
149 $PUSHMA %r3,$FRAME(%sp)
150 $PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp)
151 $PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp)
152 $PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp)
153
154 cmpib,*= 0,$len,L\$abort
155 sub $inp,$out,$inp ; distance between $inp and $out
156
157 $LD `0*$SZ`($key),$XX[0]
158 $LD `1*$SZ`($key),$YY
159 ldo `2*$SZ`($key),$key
160
161 ldi 0xff,$mask
162 ldi 3,$dat0
163
164 ldo 1($XX[0]),$XX[0] ; warm up loop
165 and $mask,$XX[0],$XX[0]
166 $LDX $XX[0]($key),$TX[0]
167 addl $TX[0],$YY,$YY
168 cmpib,*>>= 6,$len,L\$oop1 ; is $len large enough to bother?
169 and $mask,$YY,$YY
170
171 and,<> $out,$dat0,$rem ; is $out aligned?
172 b L\$alignedout
173 subi 4,$rem,$rem
174 sub $len,$rem,$len
175___
176&foldedloop("L\$alignout",$rem); # process till $out is aligned
177
178$code.=<<___;
179L\$alignedout ; $len is at least 4 here
180 and,<> $inp,$dat0,$acc ; is $inp aligned?
181 b L\$oop4
182 sub $inp,$acc,$rem ; align $inp
183
184 sh3addl $acc,%r0,$acc
185 subi 32,$acc,$acc
186 mtctl $acc,%cr11 ; load %sar with vshd align factor
187 ldwx $rem($out),$dat0
188 ldo 4($rem),$rem
189L\$oop4misalignedinp
190___
191&unrolledloopbody();
192$code.=<<___;
193 $LDX $TY($key),$ix
194 ldwx $rem($out),$dat1
195 ldo -4($len),$len
196 or $ix,$acc,$acc ; last piece, no need to dep
197 vshd $dat0,$dat1,$iy ; align data
198 copy $dat1,$dat0
199 xor $iy,$acc,$acc
200 stw $acc,0($out)
201 cmpib,*<< 3,$len,L\$oop4misalignedinp
202 ldo 4($out),$out
203 cmpib,*= 0,$len,L\$done
204 nop
205 b L\$oop1
206 nop
207
208 .ALIGN 8
209L\$oop4
210___
211&unrolledloopbody();
212$code.=<<___;
213 $LDX $TY($key),$ix
214 ldwx $inp($out),$dat0
215 ldo -4($len),$len
216 or $ix,$acc,$acc ; last piece, no need to dep
217 xor $dat0,$acc,$acc
218 stw $acc,0($out)
219 cmpib,*<< 3,$len,L\$oop4
220 ldo 4($out),$out
221 cmpib,*= 0,$len,L\$done
222 nop
223___
224&foldedloop("L\$oop1",$len);
225$code.=<<___;
226L\$done
227 $POP `-$FRAME-$SAVED_RP`(%sp),%r2
228 ldo -1($XX[0]),$XX[0] ; chill out loop
229 sub $YY,$TX[0],$YY
230 and $mask,$XX[0],$XX[0]
231 and $mask,$YY,$YY
232 $ST $XX[0],`-2*$SZ`($key)
233 $ST $YY,`-1*$SZ`($key)
234 $POP `-$FRAME+1*$SIZE_T`(%sp),%r4
235 $POP `-$FRAME+2*$SIZE_T`(%sp),%r5
236 $POP `-$FRAME+3*$SIZE_T`(%sp),%r6
237L\$abort
238 bv (%r2)
239 .EXIT
240 $POPMB -$FRAME(%sp),%r3
241 .PROCEND
242___
243
244$code.=<<___;
245
246 .EXPORT private_RC4_set_key,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR
247 .ALIGN 8
248private_RC4_set_key
249 .PROC
250 .CALLINFO NO_CALLS
251 .ENTRY
252 $ST %r0,`0*$SZ`($key)
253 $ST %r0,`1*$SZ`($key)
254 ldo `2*$SZ`($key),$key
255 copy %r0,@XX[0]
256L\$1st
257 $ST @XX[0],0($key)
258 ldo 1(@XX[0]),@XX[0]
259 bb,>= @XX[0],`31-8`,L\$1st ; @XX[0]<256
260 ldo $SZ($key),$key
261
262 ldo `-256*$SZ`($key),$key ; rewind $key
263 addl $len,$inp,$inp ; $inp to point at the end
264 sub %r0,$len,%r23 ; inverse index
265 copy %r0,@XX[0]
266 copy %r0,@XX[1]
267 ldi 0xff,$mask
268
269L\$2nd
270 $LDX @XX[0]($key),@TX[0]
271 ldbx %r23($inp),@TX[1]
272 addi,nuv 1,%r23,%r23 ; increment and conditional
273 sub %r0,$len,%r23 ; inverse index
274 addl @TX[0],@XX[1],@XX[1]
275 addl @TX[1],@XX[1],@XX[1]
276 and $mask,@XX[1],@XX[1]
277 $MKX @XX[0],$key,$TY
278 $LDX @XX[1]($key),@TX[1]
279 $MKX @XX[1],$key,$YY
280 ldo 1(@XX[0]),@XX[0]
281 $ST @TX[0],0($YY)
282 bb,>= @XX[0],`31-8`,L\$2nd ; @XX[0]<256
283 $ST @TX[1],0($TY)
284
285 bv,n (%r2)
286 .EXIT
287 nop
288 .PROCEND
289
290 .EXPORT RC4_options,ENTRY
291 .ALIGN 8
292RC4_options
293 .PROC
294 .CALLINFO NO_CALLS
295 .ENTRY
296 blr %r0,%r28
297 ldi 3,%r1
298L\$pic
299 andcm %r28,%r1,%r28
300 bv (%r2)
301 .EXIT
302 ldo L\$opts-L\$pic(%r28),%r28
303 .PROCEND
304 .ALIGN 8
305L\$opts
306 .STRINGZ "rc4(4x,`$SZ==1?"char":"int"`)"
307 .STRINGZ "RC4 for PA-RISC, CRYPTOGAMS by <appro\@openssl.org>"
308___
309$code =~ s/\`([^\`]*)\`/eval $1/gem;
310$code =~ s/cmpib,\*/comib,/gm if ($SIZE_T==4);
311
312print $code;
313close STDOUT;
diff --git a/src/lib/libcrypto/rc4/asm/rc4-s390x.pl b/src/lib/libcrypto/rc4/asm/rc4-s390x.pl
index 96681fa05e..7528ece13c 100644
--- a/src/lib/libcrypto/rc4/asm/rc4-s390x.pl
+++ b/src/lib/libcrypto/rc4/asm/rc4-s390x.pl
@@ -13,6 +13,29 @@
13# "cluster" Address Generation Interlocks, so that one pipeline stall 13# "cluster" Address Generation Interlocks, so that one pipeline stall
14# resolves several dependencies. 14# resolves several dependencies.
15 15
16# November 2010.
17#
18# Adapt for -m31 build. If kernel supports what's called "highgprs"
19# feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
20# instructions and achieve "64-bit" performance even in 31-bit legacy
21# application context. The feature is not specific to any particular
22# processor, as long as it's "z-CPU". Latter implies that the code
23# remains z/Architecture specific. On z990 it was measured to perform
24# 50% better than code generated by gcc 4.3.
25
26$flavour = shift;
27
28if ($flavour =~ /3[12]/) {
29 $SIZE_T=4;
30 $g="";
31} else {
32 $SIZE_T=8;
33 $g="g";
34}
35
36while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
37open STDOUT,">$output";
38
16$rp="%r14"; 39$rp="%r14";
17$sp="%r15"; 40$sp="%r15";
18$code=<<___; 41$code=<<___;
@@ -39,7 +62,12 @@ $code.=<<___;
39.type RC4,\@function 62.type RC4,\@function
40.align 64 63.align 64
41RC4: 64RC4:
42 stmg %r6,%r11,48($sp) 65 stm${g} %r6,%r11,6*$SIZE_T($sp)
66___
67$code.=<<___ if ($flavour =~ /3[12]/);
68 llgfr $len,$len
69___
70$code.=<<___;
43 llgc $XX[0],0($key) 71 llgc $XX[0],0($key)
44 llgc $YY,1($key) 72 llgc $YY,1($key)
45 la $XX[0],1($XX[0]) 73 la $XX[0],1($XX[0])
@@ -90,7 +118,7 @@ $code.=<<___;
90 xgr $acc,$TX[1] 118 xgr $acc,$TX[1]
91 stg $acc,0($out) 119 stg $acc,0($out)
92 la $out,8($out) 120 la $out,8($out)
93 brct $cnt,.Loop8 121 brctg $cnt,.Loop8
94 122
95.Lshort: 123.Lshort:
96 lghi $acc,7 124 lghi $acc,7
@@ -122,7 +150,7 @@ $code.=<<___;
122 ahi $XX[0],-1 150 ahi $XX[0],-1
123 stc $XX[0],0($key) 151 stc $XX[0],0($key)
124 stc $YY,1($key) 152 stc $YY,1($key)
125 lmg %r6,%r11,48($sp) 153 lm${g} %r6,%r11,6*$SIZE_T($sp)
126 br $rp 154 br $rp
127.size RC4,.-RC4 155.size RC4,.-RC4
128.string "RC4 for s390x, CRYPTOGAMS by <appro\@openssl.org>" 156.string "RC4 for s390x, CRYPTOGAMS by <appro\@openssl.org>"
@@ -143,11 +171,11 @@ $ikey="%r7";
143$iinp="%r8"; 171$iinp="%r8";
144 172
145$code.=<<___; 173$code.=<<___;
146.globl RC4_set_key 174.globl private_RC4_set_key
147.type RC4_set_key,\@function 175.type private_RC4_set_key,\@function
148.align 64 176.align 64
149RC4_set_key: 177private_RC4_set_key:
150 stmg %r6,%r8,48($sp) 178 stm${g} %r6,%r8,6*$SIZE_T($sp)
151 lhi $cnt,256 179 lhi $cnt,256
152 la $idx,0(%r0) 180 la $idx,0(%r0)
153 sth $idx,0($key) 181 sth $idx,0($key)
@@ -180,9 +208,9 @@ RC4_set_key:
180 la $iinp,0(%r0) 208 la $iinp,0(%r0)
181 j .L2ndloop 209 j .L2ndloop
182.Ldone: 210.Ldone:
183 lmg %r6,%r8,48($sp) 211 lm${g} %r6,%r8,6*$SIZE_T($sp)
184 br $rp 212 br $rp
185.size RC4_set_key,.-RC4_set_key 213.size private_RC4_set_key,.-private_RC4_set_key
186 214
187___ 215___
188} 216}
@@ -203,3 +231,4 @@ RC4_options:
203___ 231___
204 232
205print $code; 233print $code;
234close STDOUT; # force flush
diff --git a/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl b/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl
index 677be5fe25..d6eac205e9 100755
--- a/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl
+++ b/src/lib/libcrypto/rc4/asm/rc4-x86_64.pl
@@ -7,6 +7,8 @@
7# details see http://www.openssl.org/~appro/cryptogams/. 7# details see http://www.openssl.org/~appro/cryptogams/.
8# ==================================================================== 8# ====================================================================
9# 9#
10# July 2004
11#
10# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in 12# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
11# "hand-coded assembler"] doesn't stand for the whole improvement 13# "hand-coded assembler"] doesn't stand for the whole improvement
12# coefficient. It turned out that eliminating RC4_CHAR from config 14# coefficient. It turned out that eliminating RC4_CHAR from config
@@ -19,6 +21,8 @@
19# to operate on partial registers, it turned out to be the best bet. 21# to operate on partial registers, it turned out to be the best bet.
20# At least for AMD... How IA32E would perform remains to be seen... 22# At least for AMD... How IA32E would perform remains to be seen...
21 23
24# November 2004
25#
22# As was shown by Marc Bevand reordering of couple of load operations 26# As was shown by Marc Bevand reordering of couple of load operations
23# results in even higher performance gain of 3.3x:-) At least on 27# results in even higher performance gain of 3.3x:-) At least on
24# Opteron... For reference, 1x in this case is RC4_CHAR C-code 28# Opteron... For reference, 1x in this case is RC4_CHAR C-code
@@ -26,6 +30,8 @@
26# Latter means that if you want to *estimate* what to expect from 30# Latter means that if you want to *estimate* what to expect from
27# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz. 31# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
28 32
33# November 2004
34#
29# Intel P4 EM64T core was found to run the AMD64 code really slow... 35# Intel P4 EM64T core was found to run the AMD64 code really slow...
30# The only way to achieve comparable performance on P4 was to keep 36# The only way to achieve comparable performance on P4 was to keep
31# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to 37# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
@@ -33,10 +39,14 @@
33# on either AMD and Intel platforms, I implement both cases. See 39# on either AMD and Intel platforms, I implement both cases. See
34# rc4_skey.c for further details... 40# rc4_skey.c for further details...
35 41
42# April 2005
43#
36# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing 44# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
37# those with add/sub results in 50% performance improvement of folded 45# those with add/sub results in 50% performance improvement of folded
38# loop... 46# loop...
39 47
48# May 2005
49#
40# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T 50# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
41# performance by >30% [unlike P4 32-bit case that is]. But this is 51# performance by >30% [unlike P4 32-bit case that is]. But this is
42# provided that loads are reordered even more aggressively! Both code 52# provided that loads are reordered even more aggressively! Both code
@@ -50,6 +60,8 @@
50# is not implemented, then this final RC4_CHAR code-path should be 60# is not implemented, then this final RC4_CHAR code-path should be
51# preferred, as it provides better *all-round* performance]. 61# preferred, as it provides better *all-round* performance].
52 62
63# March 2007
64#
53# Intel Core2 was observed to perform poorly on both code paths:-( It 65# Intel Core2 was observed to perform poorly on both code paths:-( It
54# apparently suffers from some kind of partial register stall, which 66# apparently suffers from some kind of partial register stall, which
55# occurs in 64-bit mode only [as virtually identical 32-bit loop was 67# occurs in 64-bit mode only [as virtually identical 32-bit loop was
@@ -58,6 +70,37 @@
58# fit for Core2 and therefore the code was modified to skip cloop8 on 70# fit for Core2 and therefore the code was modified to skip cloop8 on
59# this CPU. 71# this CPU.
60 72
73# May 2010
74#
75# Intel Westmere was observed to perform suboptimally. Adding yet
76# another movzb to cloop1 improved performance by almost 50%! Core2
77# performance is improved too, but nominally...
78
79# May 2011
80#
81# The only code path that was not modified is P4-specific one. Non-P4
82# Intel code path optimization is heavily based on submission by Maxim
83# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
84# some of the ideas even in attempt to optmize the original RC4_INT
85# code path... Current performance in cycles per processed byte (less
86# is better) and improvement coefficients relative to previous
87# version of this module are:
88#
89# Opteron 5.3/+0%(*)
90# P4 6.5
91# Core2 6.2/+15%(**)
92# Westmere 4.2/+60%
93# Sandy Bridge 4.2/+120%
94# Atom 9.3/+80%
95#
96# (*) But corresponding loop has less instructions, which should have
97# positive effect on upcoming Bulldozer, which has one less ALU.
98# For reference, Intel code runs at 6.8 cpb rate on Opteron.
99# (**) Note that Core2 result is ~15% lower than corresponding result
100# for 32-bit code, meaning that it's possible to improve it,
101# but more than likely at the cost of the others (see rc4-586.pl
102# to get the idea)...
103
61$flavour = shift; 104$flavour = shift;
62$output = shift; 105$output = shift;
63if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } 106if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
@@ -76,13 +119,10 @@ $len="%rsi"; # arg2
76$inp="%rdx"; # arg3 119$inp="%rdx"; # arg3
77$out="%rcx"; # arg4 120$out="%rcx"; # arg4
78 121
79@XX=("%r8","%r10"); 122{
80@TX=("%r9","%r11");
81$YY="%r12";
82$TY="%r13";
83
84$code=<<___; 123$code=<<___;
85.text 124.text
125.extern OPENSSL_ia32cap_P
86 126
87.globl RC4 127.globl RC4
88.type RC4,\@function,4 128.type RC4,\@function,4
@@ -95,48 +135,173 @@ RC4: or $len,$len
95 push %r12 135 push %r12
96 push %r13 136 push %r13
97.Lprologue: 137.Lprologue:
138 mov $len,%r11
139 mov $inp,%r12
140 mov $out,%r13
141___
142my $len="%r11"; # reassign input arguments
143my $inp="%r12";
144my $out="%r13";
98 145
99 add \$8,$dat 146my @XX=("%r10","%rsi");
100 movl -8($dat),$XX[0]#d 147my @TX=("%rax","%rbx");
101 movl -4($dat),$YY#d 148my $YY="%rcx";
149my $TY="%rdx";
150
151$code.=<<___;
152 xor $XX[0],$XX[0]
153 xor $YY,$YY
154
155 lea 8($dat),$dat
156 mov -8($dat),$XX[0]#b
157 mov -4($dat),$YY#b
102 cmpl \$-1,256($dat) 158 cmpl \$-1,256($dat)
103 je .LRC4_CHAR 159 je .LRC4_CHAR
160 mov OPENSSL_ia32cap_P(%rip),%r8d
161 xor $TX[1],$TX[1]
104 inc $XX[0]#b 162 inc $XX[0]#b
163 sub $XX[0],$TX[1]
164 sub $inp,$out
105 movl ($dat,$XX[0],4),$TX[0]#d 165 movl ($dat,$XX[0],4),$TX[0]#d
106 test \$-8,$len 166 test \$-16,$len
107 jz .Lloop1 167 jz .Lloop1
108 jmp .Lloop8 168 bt \$30,%r8d # Intel CPU?
169 jc .Lintel
170 and \$7,$TX[1]
171 lea 1($XX[0]),$XX[1]
172 jz .Loop8
173 sub $TX[1],$len
174.Loop8_warmup:
175 add $TX[0]#b,$YY#b
176 movl ($dat,$YY,4),$TY#d
177 movl $TX[0]#d,($dat,$YY,4)
178 movl $TY#d,($dat,$XX[0],4)
179 add $TY#b,$TX[0]#b
180 inc $XX[0]#b
181 movl ($dat,$TX[0],4),$TY#d
182 movl ($dat,$XX[0],4),$TX[0]#d
183 xorb ($inp),$TY#b
184 movb $TY#b,($out,$inp)
185 lea 1($inp),$inp
186 dec $TX[1]
187 jnz .Loop8_warmup
188
189 lea 1($XX[0]),$XX[1]
190 jmp .Loop8
109.align 16 191.align 16
110.Lloop8: 192.Loop8:
111___ 193___
112for ($i=0;$i<8;$i++) { 194for ($i=0;$i<8;$i++) {
195$code.=<<___ if ($i==7);
196 add \$8,$XX[1]#b
197___
113$code.=<<___; 198$code.=<<___;
114 add $TX[0]#b,$YY#b 199 add $TX[0]#b,$YY#b
115 mov $XX[0],$XX[1]
116 movl ($dat,$YY,4),$TY#d 200 movl ($dat,$YY,4),$TY#d
117 ror \$8,%rax # ror is redundant when $i=0
118 inc $XX[1]#b
119 movl ($dat,$XX[1],4),$TX[1]#d
120 cmp $XX[1],$YY
121 movl $TX[0]#d,($dat,$YY,4) 201 movl $TX[0]#d,($dat,$YY,4)
122 cmove $TX[0],$TX[1] 202 movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
123 movl $TY#d,($dat,$XX[0],4) 203 ror \$8,%r8 # ror is redundant when $i=0
204 movl $TY#d,4*$i($dat,$XX[0],4)
124 add $TX[0]#b,$TY#b 205 add $TX[0]#b,$TY#b
125 movb ($dat,$TY,4),%al 206 movb ($dat,$TY,4),%r8b
126___ 207___
127push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers 208push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
128} 209}
129$code.=<<___; 210$code.=<<___;
130 ror \$8,%rax 211 add \$8,$XX[0]#b
212 ror \$8,%r8
131 sub \$8,$len 213 sub \$8,$len
132 214
133 xor ($inp),%rax 215 xor ($inp),%r8
134 add \$8,$inp 216 mov %r8,($out,$inp)
135 mov %rax,($out) 217 lea 8($inp),$inp
136 add \$8,$out
137 218
138 test \$-8,$len 219 test \$-8,$len
139 jnz .Lloop8 220 jnz .Loop8
221 cmp \$0,$len
222 jne .Lloop1
223 jmp .Lexit
224
225.align 16
226.Lintel:
227 test \$-32,$len
228 jz .Lloop1
229 and \$15,$TX[1]
230 jz .Loop16_is_hot
231 sub $TX[1],$len
232.Loop16_warmup:
233 add $TX[0]#b,$YY#b
234 movl ($dat,$YY,4),$TY#d
235 movl $TX[0]#d,($dat,$YY,4)
236 movl $TY#d,($dat,$XX[0],4)
237 add $TY#b,$TX[0]#b
238 inc $XX[0]#b
239 movl ($dat,$TX[0],4),$TY#d
240 movl ($dat,$XX[0],4),$TX[0]#d
241 xorb ($inp),$TY#b
242 movb $TY#b,($out,$inp)
243 lea 1($inp),$inp
244 dec $TX[1]
245 jnz .Loop16_warmup
246
247 mov $YY,$TX[1]
248 xor $YY,$YY
249 mov $TX[1]#b,$YY#b
250
251.Loop16_is_hot:
252 lea ($dat,$XX[0],4),$XX[1]
253___
254sub RC4_loop {
255 my $i=shift;
256 my $j=$i<0?0:$i;
257 my $xmm="%xmm".($j&1);
258
259 $code.=" add \$16,$XX[0]#b\n" if ($i==15);
260 $code.=" movdqu ($inp),%xmm2\n" if ($i==15);
261 $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
262 $code.=" movl ($dat,$YY,4),$TY#d\n";
263 $code.=" pxor %xmm0,%xmm2\n" if ($i==0);
264 $code.=" psllq \$8,%xmm1\n" if ($i==0);
265 $code.=" pxor $xmm,$xmm\n" if ($i<=1);
266 $code.=" movl $TX[0]#d,($dat,$YY,4)\n";
267 $code.=" add $TY#b,$TX[0]#b\n";
268 $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
269 $code.=" movz $TX[0]#b,$TX[0]#d\n";
270 $code.=" movl $TY#d,4*$j($XX[1])\n";
271 $code.=" pxor %xmm1,%xmm2\n" if ($i==0);
272 $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
273 $code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
274 $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
275 $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
276 $code.=" lea 16($inp),$inp\n" if ($i==0);
277 $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
278}
279 RC4_loop(-1);
280$code.=<<___;
281 jmp .Loop16_enter
282.align 16
283.Loop16:
284___
285
286for ($i=0;$i<16;$i++) {
287 $code.=".Loop16_enter:\n" if ($i==1);
288 RC4_loop($i);
289 push(@TX,shift(@TX)); # "rotate" registers
290}
291$code.=<<___;
292 mov $YY,$TX[1]
293 xor $YY,$YY # keyword to partial register
294 sub \$16,$len
295 mov $TX[1]#b,$YY#b
296 test \$-16,$len
297 jnz .Loop16
298
299 psllq \$8,%xmm1
300 pxor %xmm0,%xmm2
301 pxor %xmm1,%xmm2
302 movdqu %xmm2,($out,$inp)
303 lea 16($inp),$inp
304
140 cmp \$0,$len 305 cmp \$0,$len
141 jne .Lloop1 306 jne .Lloop1
142 jmp .Lexit 307 jmp .Lexit
@@ -152,9 +317,8 @@ $code.=<<___;
152 movl ($dat,$TX[0],4),$TY#d 317 movl ($dat,$TX[0],4),$TY#d
153 movl ($dat,$XX[0],4),$TX[0]#d 318 movl ($dat,$XX[0],4),$TX[0]#d
154 xorb ($inp),$TY#b 319 xorb ($inp),$TY#b
155 inc $inp 320 movb $TY#b,($out,$inp)
156 movb $TY#b,($out) 321 lea 1($inp),$inp
157 inc $out
158 dec $len 322 dec $len
159 jnz .Lloop1 323 jnz .Lloop1
160 jmp .Lexit 324 jmp .Lexit
@@ -165,13 +329,11 @@ $code.=<<___;
165 movzb ($dat,$XX[0]),$TX[0]#d 329 movzb ($dat,$XX[0]),$TX[0]#d
166 test \$-8,$len 330 test \$-8,$len
167 jz .Lcloop1 331 jz .Lcloop1
168 cmpl \$0,260($dat)
169 jnz .Lcloop1
170 jmp .Lcloop8 332 jmp .Lcloop8
171.align 16 333.align 16
172.Lcloop8: 334.Lcloop8:
173 mov ($inp),%eax 335 mov ($inp),%r8d
174 mov 4($inp),%ebx 336 mov 4($inp),%r9d
175___ 337___
176# unroll 2x4-wise, because 64-bit rotates kill Intel P4... 338# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
177for ($i=0;$i<4;$i++) { 339for ($i=0;$i<4;$i++) {
@@ -188,8 +350,8 @@ $code.=<<___;
188 mov $TX[0],$TX[1] 350 mov $TX[0],$TX[1]
189.Lcmov$i: 351.Lcmov$i:
190 add $TX[0]#b,$TY#b 352 add $TX[0]#b,$TY#b
191 xor ($dat,$TY),%al 353 xor ($dat,$TY),%r8b
192 ror \$8,%eax 354 ror \$8,%r8d
193___ 355___
194push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers 356push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
195} 357}
@@ -207,16 +369,16 @@ $code.=<<___;
207 mov $TX[0],$TX[1] 369 mov $TX[0],$TX[1]
208.Lcmov$i: 370.Lcmov$i:
209 add $TX[0]#b,$TY#b 371 add $TX[0]#b,$TY#b
210 xor ($dat,$TY),%bl 372 xor ($dat,$TY),%r9b
211 ror \$8,%ebx 373 ror \$8,%r9d
212___ 374___
213push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers 375push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
214} 376}
215$code.=<<___; 377$code.=<<___;
216 lea -8($len),$len 378 lea -8($len),$len
217 mov %eax,($out) 379 mov %r8d,($out)
218 lea 8($inp),$inp 380 lea 8($inp),$inp
219 mov %ebx,4($out) 381 mov %r9d,4($out)
220 lea 8($out),$out 382 lea 8($out),$out
221 383
222 test \$-8,$len 384 test \$-8,$len
@@ -229,6 +391,7 @@ $code.=<<___;
229.align 16 391.align 16
230.Lcloop1: 392.Lcloop1:
231 add $TX[0]#b,$YY#b 393 add $TX[0]#b,$YY#b
394 movzb $YY#b,$YY#d
232 movzb ($dat,$YY),$TY#d 395 movzb ($dat,$YY),$TY#d
233 movb $TX[0]#b,($dat,$YY) 396 movb $TX[0]#b,($dat,$YY)
234 movb $TY#b,($dat,$XX[0]) 397 movb $TY#b,($dat,$XX[0])
@@ -260,16 +423,16 @@ $code.=<<___;
260 ret 423 ret
261.size RC4,.-RC4 424.size RC4,.-RC4
262___ 425___
426}
263 427
264$idx="%r8"; 428$idx="%r8";
265$ido="%r9"; 429$ido="%r9";
266 430
267$code.=<<___; 431$code.=<<___;
268.extern OPENSSL_ia32cap_P 432.globl private_RC4_set_key
269.globl RC4_set_key 433.type private_RC4_set_key,\@function,3
270.type RC4_set_key,\@function,3
271.align 16 434.align 16
272RC4_set_key: 435private_RC4_set_key:
273 lea 8($dat),$dat 436 lea 8($dat),$dat
274 lea ($inp,$len),$inp 437 lea ($inp,$len),$inp
275 neg $len 438 neg $len
@@ -280,12 +443,9 @@ RC4_set_key:
280 xor %r11,%r11 443 xor %r11,%r11
281 444
282 mov OPENSSL_ia32cap_P(%rip),$idx#d 445 mov OPENSSL_ia32cap_P(%rip),$idx#d
283 bt \$20,$idx#d 446 bt \$20,$idx#d # RC4_CHAR?
284 jnc .Lw1stloop 447 jc .Lc1stloop
285 bt \$30,$idx#d 448 jmp .Lw1stloop
286 setc $ido#b
287 mov $ido#d,260($dat)
288 jmp .Lc1stloop
289 449
290.align 16 450.align 16
291.Lw1stloop: 451.Lw1stloop:
@@ -339,7 +499,7 @@ RC4_set_key:
339 mov %eax,-8($dat) 499 mov %eax,-8($dat)
340 mov %eax,-4($dat) 500 mov %eax,-4($dat)
341 ret 501 ret
342.size RC4_set_key,.-RC4_set_key 502.size private_RC4_set_key,.-private_RC4_set_key
343 503
344.globl RC4_options 504.globl RC4_options
345.type RC4_options,\@abi-omnipotent 505.type RC4_options,\@abi-omnipotent
@@ -348,18 +508,20 @@ RC4_options:
348 lea .Lopts(%rip),%rax 508 lea .Lopts(%rip),%rax
349 mov OPENSSL_ia32cap_P(%rip),%edx 509 mov OPENSSL_ia32cap_P(%rip),%edx
350 bt \$20,%edx 510 bt \$20,%edx
351 jnc .Ldone 511 jc .L8xchar
352 add \$12,%rax
353 bt \$30,%edx 512 bt \$30,%edx
354 jnc .Ldone 513 jnc .Ldone
355 add \$13,%rax 514 add \$25,%rax
515 ret
516.L8xchar:
517 add \$12,%rax
356.Ldone: 518.Ldone:
357 ret 519 ret
358.align 64 520.align 64
359.Lopts: 521.Lopts:
360.asciz "rc4(8x,int)" 522.asciz "rc4(8x,int)"
361.asciz "rc4(8x,char)" 523.asciz "rc4(8x,char)"
362.asciz "rc4(1x,char)" 524.asciz "rc4(16x,int)"
363.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>" 525.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
364.align 64 526.align 64
365.size RC4_options,.-RC4_options 527.size RC4_options,.-RC4_options
@@ -482,22 +644,32 @@ key_se_handler:
482 .rva .LSEH_end_RC4 644 .rva .LSEH_end_RC4
483 .rva .LSEH_info_RC4 645 .rva .LSEH_info_RC4
484 646
485 .rva .LSEH_begin_RC4_set_key 647 .rva .LSEH_begin_private_RC4_set_key
486 .rva .LSEH_end_RC4_set_key 648 .rva .LSEH_end_private_RC4_set_key
487 .rva .LSEH_info_RC4_set_key 649 .rva .LSEH_info_private_RC4_set_key
488 650
489.section .xdata 651.section .xdata
490.align 8 652.align 8
491.LSEH_info_RC4: 653.LSEH_info_RC4:
492 .byte 9,0,0,0 654 .byte 9,0,0,0
493 .rva stream_se_handler 655 .rva stream_se_handler
494.LSEH_info_RC4_set_key: 656.LSEH_info_private_RC4_set_key:
495 .byte 9,0,0,0 657 .byte 9,0,0,0
496 .rva key_se_handler 658 .rva key_se_handler
497___ 659___
498} 660}
499 661
500$code =~ s/#([bwd])/$1/gm; 662sub reg_part {
663my ($reg,$conv)=@_;
664 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
665 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
666 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
667 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
668 return $reg;
669}
670
671$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
672$code =~ s/\`([^\`]*)\`/eval $1/gem;
501 673
502print $code; 674print $code;
503 675
diff --git a/src/lib/libcrypto/rc4/rc4.h b/src/lib/libcrypto/rc4/rc4.h
index 29d1acccf5..88ceb46bc5 100644
--- a/src/lib/libcrypto/rc4/rc4.h
+++ b/src/lib/libcrypto/rc4/rc4.h
@@ -79,6 +79,7 @@ typedef struct rc4_key_st
79 79
80const char *RC4_options(void); 80const char *RC4_options(void);
81void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data); 81void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data);
82void private_RC4_set_key(RC4_KEY *key, int len, const unsigned char *data);
82void RC4(RC4_KEY *key, size_t len, const unsigned char *indata, 83void RC4(RC4_KEY *key, size_t len, const unsigned char *indata,
83 unsigned char *outdata); 84 unsigned char *outdata);
84 85
diff --git a/src/lib/libcrypto/rc4/rc4_skey.c b/src/lib/libcrypto/rc4/rc4_skey.c
index b22c40b0bd..fda27636e7 100644
--- a/src/lib/libcrypto/rc4/rc4_skey.c
+++ b/src/lib/libcrypto/rc4/rc4_skey.c
@@ -85,7 +85,7 @@ const char *RC4_options(void)
85 * Date: Wed, 14 Sep 1994 06:35:31 GMT 85 * Date: Wed, 14 Sep 1994 06:35:31 GMT
86 */ 86 */
87 87
88void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data) 88void private_RC4_set_key(RC4_KEY *key, int len, const unsigned char *data)
89 { 89 {
90 register RC4_INT tmp; 90 register RC4_INT tmp;
91 register int id1,id2; 91 register int id1,id2;
@@ -104,40 +104,6 @@ void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data)
104 d[(n)]=d[id2]; \ 104 d[(n)]=d[id2]; \
105 d[id2]=tmp; } 105 d[id2]=tmp; }
106 106
107#if defined(OPENSSL_CPUID_OBJ) && !defined(OPENSSL_NO_ASM)
108# if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
109 defined(__INTEL__) || \
110 defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64)
111 if (sizeof(RC4_INT) > 1) {
112 /*
113 * Unlike all other x86 [and x86_64] implementations,
114 * Intel P4 core [including EM64T] was found to perform
115 * poorly with wider RC4_INT. Performance improvement
116 * for IA-32 hand-coded assembler turned out to be 2.8x
117 * if re-coded for RC4_CHAR! It's however inappropriate
118 * to just switch to RC4_CHAR for x86[_64], as non-P4
119 * implementations suffer from significant performance
120 * losses then, e.g. PIII exhibits >2x deterioration,
121 * and so does Opteron. In order to assure optimal
122 * all-round performance, let us [try to] detect P4 at
123 * run-time by checking upon HTT bit in CPU capability
124 * vector and set up compressed key schedule, which is
125 * recognized by correspondingly updated assembler
126 * module...
127 * <appro@fy.chalmers.se>
128 */
129 if (OPENSSL_ia32cap_P & (1<<28)) {
130 unsigned char *cp=(unsigned char *)d;
131
132 for (i=0;i<256;i++) cp[i]=i;
133 for (i=0;i<256;i++) SK_LOOP(cp,i);
134 /* mark schedule as compressed! */
135 d[256/sizeof(RC4_INT)]=-1;
136 return;
137 }
138 }
139# endif
140#endif
141 for (i=0; i < 256; i++) d[i]=i; 107 for (i=0; i < 256; i++) d[i]=i;
142 for (i=0; i < 256; i+=4) 108 for (i=0; i < 256; i+=4)
143 { 109 {