diff options
author | djm <> | 2010-10-01 22:54:21 +0000 |
---|---|---|
committer | djm <> | 2010-10-01 22:54:21 +0000 |
commit | 2ea67f4aa254b09ded62e6e14fc893bbe6381579 (patch) | |
tree | bb3923b81f2ce34b1ad62684afdf1a94d904c185 /src/lib/libcrypto/rc4 | |
parent | 6ddfb710ab14b10183ff3a6a32f643554c80065e (diff) | |
parent | 829fd51d4f8dde4a7f3bf54754f3c1d1a502f5e2 (diff) | |
download | openbsd-2ea67f4aa254b09ded62e6e14fc893bbe6381579.tar.gz openbsd-2ea67f4aa254b09ded62e6e14fc893bbe6381579.tar.bz2 openbsd-2ea67f4aa254b09ded62e6e14fc893bbe6381579.zip |
This commit was generated by cvs2git to track changes on a CVS vendor
branch.
Diffstat (limited to 'src/lib/libcrypto/rc4')
-rw-r--r-- | src/lib/libcrypto/rc4/asm/rc4-ia64.pl | 755 | ||||
-rw-r--r-- | src/lib/libcrypto/rc4/asm/rc4-s390x.pl | 205 |
2 files changed, 960 insertions, 0 deletions
diff --git a/src/lib/libcrypto/rc4/asm/rc4-ia64.pl b/src/lib/libcrypto/rc4/asm/rc4-ia64.pl new file mode 100644 index 0000000000..49cd5b5e69 --- /dev/null +++ b/src/lib/libcrypto/rc4/asm/rc4-ia64.pl | |||
@@ -0,0 +1,755 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by David Mosberger <David.Mosberger@acm.org> based on the | ||
5 | # Itanium optimized Crypto code which was released by HP Labs at | ||
6 | # http://www.hpl.hp.com/research/linux/crypto/. | ||
7 | # | ||
8 | # Copyright (c) 2005 Hewlett-Packard Development Company, L.P. | ||
9 | # | ||
10 | # Permission is hereby granted, free of charge, to any person obtaining | ||
11 | # a copy of this software and associated documentation files (the | ||
12 | # "Software"), to deal in the Software without restriction, including | ||
13 | # without limitation the rights to use, copy, modify, merge, publish, | ||
14 | # distribute, sublicense, and/or sell copies of the Software, and to | ||
15 | # permit persons to whom the Software is furnished to do so, subject to | ||
16 | # the following conditions: | ||
17 | # | ||
18 | # The above copyright notice and this permission notice shall be | ||
19 | # included in all copies or substantial portions of the Software. | ||
20 | |||
21 | # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||
22 | # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||
23 | # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||
24 | # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | ||
25 | # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | ||
26 | # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | ||
27 | # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ | ||
28 | |||
29 | |||
30 | |||
31 | # This is a little helper program which generates a software-pipelined | ||
32 | # for RC4 encryption. The basic algorithm looks like this: | ||
33 | # | ||
34 | # for (counter = 0; counter < len; ++counter) | ||
35 | # { | ||
36 | # in = inp[counter]; | ||
37 | # SI = S[I]; | ||
38 | # J = (SI + J) & 0xff; | ||
39 | # SJ = S[J]; | ||
40 | # T = (SI + SJ) & 0xff; | ||
41 | # S[I] = SJ, S[J] = SI; | ||
42 | # ST = S[T]; | ||
43 | # outp[counter] = in ^ ST; | ||
44 | # I = (I + 1) & 0xff; | ||
45 | # } | ||
46 | # | ||
47 | # Pipelining this loop isn't easy, because the stores to the S[] array | ||
48 | # need to be observed in the right order. The loop generated by the | ||
49 | # code below has the following pipeline diagram: | ||
50 | # | ||
51 | # cycle | ||
52 | # | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10 |11 |12 |13 |14 |15 |16 |17 | | ||
53 | # iter | ||
54 | # 1: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx | ||
55 | # 2: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx | ||
56 | # 3: xxx LDI xxx xxx xxx LDJ xxx SWP xxx LDT xxx xxx | ||
57 | # | ||
58 | # where: | ||
59 | # LDI = load of S[I] | ||
60 | # LDJ = load of S[J] | ||
61 | # SWP = swap of S[I] and S[J] | ||
62 | # LDT = load of S[T] | ||
63 | # | ||
64 | # Note that in the above diagram, the major trouble-spot is that LDI | ||
65 | # of the 2nd iteration is performed BEFORE the SWP of the first | ||
66 | # iteration. Fortunately, this is easy to detect (I of the 1st | ||
67 | # iteration will be equal to J of the 2nd iteration) and when this | ||
68 | # happens, we simply forward the proper value from the 1st iteration | ||
69 | # to the 2nd one. The proper value in this case is simply the value | ||
70 | # of S[I] from the first iteration (thanks to the fact that SWP | ||
71 | # simply swaps the contents of S[I] and S[J]). | ||
72 | # | ||
73 | # Another potential trouble-spot is in cycle 7, where SWP of the 1st | ||
74 | # iteration issues at the same time as the LDI of the 3rd iteration. | ||
75 | # However, thanks to IA-64 execution semantics, this can be taken | ||
76 | # care of simply by placing LDI later in the instruction-group than | ||
77 | # SWP. IA-64 CPUs will automatically forward the value if they | ||
78 | # detect that the SWP and LDI are accessing the same memory-location. | ||
79 | |||
80 | # The core-loop that can be pipelined then looks like this (annotated | ||
81 | # with McKinley/Madison issue port & latency numbers, assuming L1 | ||
82 | # cache hits for the most part): | ||
83 | |||
84 | # operation: instruction: issue-ports: latency | ||
85 | # ------------------ ----------------------------- ------------- ------- | ||
86 | |||
87 | # Data = *inp++ ld1 data = [inp], 1 M0-M1 1 cyc c0 | ||
88 | # shladd Iptr = I, KeyTable, 3 M0-M3, I0, I1 1 cyc | ||
89 | # I = (I + 1) & 0xff padd1 nextI = I, one M0-M3, I0, I1 3 cyc | ||
90 | # ;; | ||
91 | # SI = S[I] ld8 SI = [Iptr] M0-M1 1 cyc c1 * after SWAP! | ||
92 | # ;; | ||
93 | # cmp.eq.unc pBypass = I, J * after J is valid! | ||
94 | # J = SI + J add J = J, SI M0-M3, I0, I1 1 cyc c2 | ||
95 | # (pBypass) br.cond.spnt Bypass | ||
96 | # ;; | ||
97 | # --------------------------------------------------------------------------------------- | ||
98 | # J = J & 0xff zxt1 J = J I0, I1, 1 cyc c3 | ||
99 | # ;; | ||
100 | # shladd Jptr = J, KeyTable, 3 M0-M3, I0, I1 1 cyc c4 | ||
101 | # ;; | ||
102 | # SJ = S[J] ld8 SJ = [Jptr] M0-M1 1 cyc c5 | ||
103 | # ;; | ||
104 | # --------------------------------------------------------------------------------------- | ||
105 | # T = (SI + SJ) add T = SI, SJ M0-M3, I0, I1 1 cyc c6 | ||
106 | # ;; | ||
107 | # T = T & 0xff zxt1 T = T I0, I1 1 cyc | ||
108 | # S[I] = SJ st8 [Iptr] = SJ M2-M3 c7 | ||
109 | # S[J] = SI st8 [Jptr] = SI M2-M3 | ||
110 | # ;; | ||
111 | # shladd Tptr = T, KeyTable, 3 M0-M3, I0, I1 1 cyc c8 | ||
112 | # ;; | ||
113 | # --------------------------------------------------------------------------------------- | ||
114 | # T = S[T] ld8 T = [Tptr] M0-M1 1 cyc c9 | ||
115 | # ;; | ||
116 | # data ^= T xor data = data, T M0-M3, I0, I1 1 cyc c10 | ||
117 | # ;; | ||
118 | # *out++ = Data ^ T dep word = word, data, 8, POS I0, I1 1 cyc c11 | ||
119 | # ;; | ||
120 | # --------------------------------------------------------------------------------------- | ||
121 | |||
122 | # There are several points worth making here: | ||
123 | |||
124 | # - Note that due to the bypass/forwarding-path, the first two | ||
125 | # phases of the loop are strangly mingled together. In | ||
126 | # particular, note that the first stage of the pipeline is | ||
127 | # using the value of "J", as calculated by the second stage. | ||
128 | # - Each bundle-pair will have exactly 6 instructions. | ||
129 | # - Pipelined, the loop can execute in 3 cycles/iteration and | ||
130 | # 4 stages. However, McKinley/Madison can issue "st1" to | ||
131 | # the same bank at a rate of at most one per 4 cycles. Thus, | ||
132 | # instead of storing each byte, we accumulate them in a word | ||
133 | # and then write them back at once with a single "st8" (this | ||
134 | # implies that the setup code needs to ensure that the output | ||
135 | # buffer is properly aligned, if need be, by encoding the | ||
136 | # first few bytes separately). | ||
137 | # - There is no space for a "br.ctop" instruction. For this | ||
138 | # reason we can't use module-loop support in IA-64 and have | ||
139 | # to do a traditional, purely software-pipelined loop. | ||
140 | # - We can't replace any of the remaining "add/zxt1" pairs with | ||
141 | # "padd1" because the latency for that instruction is too high | ||
142 | # and would push the loop to the point where more bypasses | ||
143 | # would be needed, which we don't have space for. | ||
144 | # - The above loop runs at around 3.26 cycles/byte, or roughly | ||
145 | # 440 MByte/sec on a 1.5GHz Madison. This is well below the | ||
146 | # system bus bandwidth and hence with judicious use of | ||
147 | # "lfetch" this loop can run at (almost) peak speed even when | ||
148 | # the input and output data reside in memory. The | ||
149 | # max. latency that can be tolerated is (PREFETCH_DISTANCE * | ||
150 | # L2_LINE_SIZE * 3 cyc), or about 384 cycles assuming (at | ||
151 | # least) 1-ahead prefetching of 128 byte cache-lines. Note | ||
152 | # that we do NOT prefetch into L1, since that would only | ||
153 | # interfere with the S[] table values stored there. This is | ||
154 | # acceptable because there is a 10 cycle latency between | ||
155 | # load and first use of the input data. | ||
156 | # - We use a branch to out-of-line bypass-code of cycle-pressure: | ||
157 | # we calculate the next J, check for the need to activate the | ||
158 | # bypass path, and activate the bypass path ALL IN THE SAME | ||
159 | # CYCLE. If we didn't have these constraints, we could do | ||
160 | # the bypass with a simple conditional move instruction. | ||
161 | # Fortunately, the bypass paths get activated relatively | ||
162 | # infrequently, so the extra branches don't cost all that much | ||
163 | # (about 0.04 cycles/byte, measured on a 16396 byte file with | ||
164 | # random input data). | ||
165 | # | ||
166 | |||
167 | $phases = 4; # number of stages/phases in the pipelined-loop | ||
168 | $unroll_count = 6; # number of times we unrolled it | ||
169 | $pComI = (1 << 0); | ||
170 | $pComJ = (1 << 1); | ||
171 | $pComT = (1 << 2); | ||
172 | $pOut = (1 << 3); | ||
173 | |||
174 | $NData = 4; | ||
175 | $NIP = 3; | ||
176 | $NJP = 2; | ||
177 | $NI = 2; | ||
178 | $NSI = 3; | ||
179 | $NSJ = 2; | ||
180 | $NT = 2; | ||
181 | $NOutWord = 2; | ||
182 | |||
183 | # | ||
184 | # $threshold is the minimum length before we attempt to use the | ||
185 | # big software-pipelined loop. It MUST be greater-or-equal | ||
186 | # to: | ||
187 | # PHASES * (UNROLL_COUNT + 1) + 7 | ||
188 | # | ||
189 | # The "+ 7" comes from the fact we may have to encode up to | ||
190 | # 7 bytes separately before the output pointer is aligned. | ||
191 | # | ||
192 | $threshold = (3 * ($phases * ($unroll_count + 1)) + 7); | ||
193 | |||
194 | sub I { | ||
195 | local *code = shift; | ||
196 | local $format = shift; | ||
197 | $code .= sprintf ("\t\t".$format."\n", @_); | ||
198 | } | ||
199 | |||
200 | sub P { | ||
201 | local *code = shift; | ||
202 | local $format = shift; | ||
203 | $code .= sprintf ($format."\n", @_); | ||
204 | } | ||
205 | |||
206 | sub STOP { | ||
207 | local *code = shift; | ||
208 | $code .=<<___; | ||
209 | ;; | ||
210 | ___ | ||
211 | } | ||
212 | |||
213 | sub emit_body { | ||
214 | local *c = shift; | ||
215 | local *bypass = shift; | ||
216 | local ($iteration, $p) = @_; | ||
217 | |||
218 | local $i0 = $iteration; | ||
219 | local $i1 = $iteration - 1; | ||
220 | local $i2 = $iteration - 2; | ||
221 | local $i3 = $iteration - 3; | ||
222 | local $iw0 = ($iteration - 3) / 8; | ||
223 | local $iw1 = ($iteration > 3) ? ($iteration - 4) / 8 : 1; | ||
224 | local $byte_num = ($iteration - 3) % 8; | ||
225 | local $label = $iteration + 1; | ||
226 | local $pAny = ($p & 0xf) == 0xf; | ||
227 | local $pByp = (($p & $pComI) && ($iteration > 0)); | ||
228 | |||
229 | $c.=<<___; | ||
230 | ////////////////////////////////////////////////// | ||
231 | ___ | ||
232 | |||
233 | if (($p & 0xf) == 0) { | ||
234 | $c.="#ifdef HOST_IS_BIG_ENDIAN\n"; | ||
235 | &I(\$c,"shr.u OutWord[%u] = OutWord[%u], 32;;", | ||
236 | $iw1 % $NOutWord, $iw1 % $NOutWord); | ||
237 | $c.="#endif\n"; | ||
238 | &I(\$c, "st4 [OutPtr] = OutWord[%u], 4", $iw1 % $NOutWord); | ||
239 | return; | ||
240 | } | ||
241 | |||
242 | # Cycle 0 | ||
243 | &I(\$c, "{ .mmi") if ($pAny); | ||
244 | &I(\$c, "ld1 Data[%u] = [InPtr], 1", $i0 % $NData) if ($p & $pComI); | ||
245 | &I(\$c, "padd1 I[%u] = One, I[%u]", $i0 % $NI, $i1 % $NI)if ($p & $pComI); | ||
246 | &I(\$c, "zxt1 J = J") if ($p & $pComJ); | ||
247 | &I(\$c, "}") if ($pAny); | ||
248 | &I(\$c, "{ .mmi") if ($pAny); | ||
249 | &I(\$c, "LKEY T[%u] = [T[%u]]", $i1 % $NT, $i1 % $NT) if ($p & $pOut); | ||
250 | &I(\$c, "add T[%u] = SI[%u], SJ[%u]", | ||
251 | $i0 % $NT, $i2 % $NSI, $i1 % $NSJ) if ($p & $pComT); | ||
252 | &I(\$c, "KEYADDR(IPr[%u], I[%u])", $i0 % $NIP, $i1 % $NI) if ($p & $pComI); | ||
253 | &I(\$c, "}") if ($pAny); | ||
254 | &STOP(\$c); | ||
255 | |||
256 | # Cycle 1 | ||
257 | &I(\$c, "{ .mmi") if ($pAny); | ||
258 | &I(\$c, "SKEY [IPr[%u]] = SJ[%u]", $i2 % $NIP, $i1%$NSJ)if ($p & $pComT); | ||
259 | &I(\$c, "SKEY [JP[%u]] = SI[%u]", $i1 % $NJP, $i2%$NSI) if ($p & $pComT); | ||
260 | &I(\$c, "zxt1 T[%u] = T[%u]", $i0 % $NT, $i0 % $NT) if ($p & $pComT); | ||
261 | &I(\$c, "}") if ($pAny); | ||
262 | &I(\$c, "{ .mmi") if ($pAny); | ||
263 | &I(\$c, "LKEY SI[%u] = [IPr[%u]]", $i0 % $NSI, $i0%$NIP)if ($p & $pComI); | ||
264 | &I(\$c, "KEYADDR(JP[%u], J)", $i0 % $NJP) if ($p & $pComJ); | ||
265 | &I(\$c, "xor Data[%u] = Data[%u], T[%u]", | ||
266 | $i3 % $NData, $i3 % $NData, $i1 % $NT) if ($p & $pOut); | ||
267 | &I(\$c, "}") if ($pAny); | ||
268 | &STOP(\$c); | ||
269 | |||
270 | # Cycle 2 | ||
271 | &I(\$c, "{ .mmi") if ($pAny); | ||
272 | &I(\$c, "LKEY SJ[%u] = [JP[%u]]", $i0 % $NSJ, $i0%$NJP) if ($p & $pComJ); | ||
273 | &I(\$c, "cmp.eq pBypass, p0 = I[%u], J", $i1 % $NI) if ($pByp); | ||
274 | &I(\$c, "dep OutWord[%u] = Data[%u], OutWord[%u], BYTE_POS(%u), 8", | ||
275 | $iw0%$NOutWord, $i3%$NData, $iw1%$NOutWord, $byte_num) if ($p & $pOut); | ||
276 | &I(\$c, "}") if ($pAny); | ||
277 | &I(\$c, "{ .mmb") if ($pAny); | ||
278 | &I(\$c, "add J = J, SI[%u]", $i0 % $NSI) if ($p & $pComI); | ||
279 | &I(\$c, "KEYADDR(T[%u], T[%u])", $i0 % $NT, $i0 % $NT) if ($p & $pComT); | ||
280 | &P(\$c, "(pBypass)\tbr.cond.spnt.many .rc4Bypass%u",$label)if ($pByp); | ||
281 | &I(\$c, "}") if ($pAny); | ||
282 | &STOP(\$c); | ||
283 | |||
284 | &P(\$c, ".rc4Resume%u:", $label) if ($pByp); | ||
285 | if ($byte_num == 0 && $iteration >= $phases) { | ||
286 | &I(\$c, "st8 [OutPtr] = OutWord[%u], 8", | ||
287 | $iw1 % $NOutWord) if ($p & $pOut); | ||
288 | if ($iteration == (1 + $unroll_count) * $phases - 1) { | ||
289 | if ($unroll_count == 6) { | ||
290 | &I(\$c, "mov OutWord[%u] = OutWord[%u]", | ||
291 | $iw1 % $NOutWord, $iw0 % $NOutWord); | ||
292 | } | ||
293 | &I(\$c, "lfetch.nt1 [InPrefetch], %u", | ||
294 | $unroll_count * $phases); | ||
295 | &I(\$c, "lfetch.excl.nt1 [OutPrefetch], %u", | ||
296 | $unroll_count * $phases); | ||
297 | &I(\$c, "br.cloop.sptk.few .rc4Loop"); | ||
298 | } | ||
299 | } | ||
300 | |||
301 | if ($pByp) { | ||
302 | &P(\$bypass, ".rc4Bypass%u:", $label); | ||
303 | &I(\$bypass, "sub J = J, SI[%u]", $i0 % $NSI); | ||
304 | &I(\$bypass, "nop 0"); | ||
305 | &I(\$bypass, "nop 0"); | ||
306 | &I(\$bypass, ";;"); | ||
307 | &I(\$bypass, "add J = J, SI[%u]", $i1 % $NSI); | ||
308 | &I(\$bypass, "mov SI[%u] = SI[%u]", $i0 % $NSI, $i1 % $NSI); | ||
309 | &I(\$bypass, "br.sptk.many .rc4Resume%u\n", $label); | ||
310 | &I(\$bypass, ";;"); | ||
311 | } | ||
312 | } | ||
313 | |||
314 | $code=<<___; | ||
315 | .ident \"rc4-ia64.s, version 3.0\" | ||
316 | .ident \"Copyright (c) 2005 Hewlett-Packard Development Company, L.P.\" | ||
317 | |||
318 | #define LCSave r8 | ||
319 | #define PRSave r9 | ||
320 | |||
321 | /* Inputs become invalid once rotation begins! */ | ||
322 | |||
323 | #define StateTable in0 | ||
324 | #define DataLen in1 | ||
325 | #define InputBuffer in2 | ||
326 | #define OutputBuffer in3 | ||
327 | |||
328 | #define KTable r14 | ||
329 | #define J r15 | ||
330 | #define InPtr r16 | ||
331 | #define OutPtr r17 | ||
332 | #define InPrefetch r18 | ||
333 | #define OutPrefetch r19 | ||
334 | #define One r20 | ||
335 | #define LoopCount r21 | ||
336 | #define Remainder r22 | ||
337 | #define IFinal r23 | ||
338 | #define EndPtr r24 | ||
339 | |||
340 | #define tmp0 r25 | ||
341 | #define tmp1 r26 | ||
342 | |||
343 | #define pBypass p6 | ||
344 | #define pDone p7 | ||
345 | #define pSmall p8 | ||
346 | #define pAligned p9 | ||
347 | #define pUnaligned p10 | ||
348 | |||
349 | #define pComputeI pPhase[0] | ||
350 | #define pComputeJ pPhase[1] | ||
351 | #define pComputeT pPhase[2] | ||
352 | #define pOutput pPhase[3] | ||
353 | |||
354 | #define RetVal r8 | ||
355 | #define L_OK p7 | ||
356 | #define L_NOK p8 | ||
357 | |||
358 | #define _NINPUTS 4 | ||
359 | #define _NOUTPUT 0 | ||
360 | |||
361 | #define _NROTATE 24 | ||
362 | #define _NLOCALS (_NROTATE - _NINPUTS - _NOUTPUT) | ||
363 | |||
364 | #ifndef SZ | ||
365 | # define SZ 4 // this must be set to sizeof(RC4_INT) | ||
366 | #endif | ||
367 | |||
368 | #if SZ == 1 | ||
369 | # define LKEY ld1 | ||
370 | # define SKEY st1 | ||
371 | # define KEYADDR(dst, i) add dst = i, KTable | ||
372 | #elif SZ == 2 | ||
373 | # define LKEY ld2 | ||
374 | # define SKEY st2 | ||
375 | # define KEYADDR(dst, i) shladd dst = i, 1, KTable | ||
376 | #elif SZ == 4 | ||
377 | # define LKEY ld4 | ||
378 | # define SKEY st4 | ||
379 | # define KEYADDR(dst, i) shladd dst = i, 2, KTable | ||
380 | #else | ||
381 | # define LKEY ld8 | ||
382 | # define SKEY st8 | ||
383 | # define KEYADDR(dst, i) shladd dst = i, 3, KTable | ||
384 | #endif | ||
385 | |||
386 | #if defined(_HPUX_SOURCE) && !defined(_LP64) | ||
387 | # define ADDP addp4 | ||
388 | #else | ||
389 | # define ADDP add | ||
390 | #endif | ||
391 | |||
392 | /* Define a macro for the bit number of the n-th byte: */ | ||
393 | |||
394 | #if defined(_HPUX_SOURCE) || defined(B_ENDIAN) | ||
395 | # define HOST_IS_BIG_ENDIAN | ||
396 | # define BYTE_POS(n) (56 - (8 * (n))) | ||
397 | #else | ||
398 | # define BYTE_POS(n) (8 * (n)) | ||
399 | #endif | ||
400 | |||
401 | /* | ||
402 | We must perform the first phase of the pipeline explicitly since | ||
403 | we will always load from the stable the first time. The br.cexit | ||
404 | will never be taken since regardless of the number of bytes because | ||
405 | the epilogue count is 4. | ||
406 | */ | ||
407 | /* MODSCHED_RC4 macro was split to _PROLOGUE and _LOOP, because HP-UX | ||
408 | assembler failed on original macro with syntax error. <appro> */ | ||
409 | #define MODSCHED_RC4_PROLOGUE \\ | ||
410 | { \\ | ||
411 | ld1 Data[0] = [InPtr], 1; \\ | ||
412 | add IFinal = 1, I[1]; \\ | ||
413 | KEYADDR(IPr[0], I[1]); \\ | ||
414 | } ;; \\ | ||
415 | { \\ | ||
416 | LKEY SI[0] = [IPr[0]]; \\ | ||
417 | mov pr.rot = 0x10000; \\ | ||
418 | mov ar.ec = 4; \\ | ||
419 | } ;; \\ | ||
420 | { \\ | ||
421 | add J = J, SI[0]; \\ | ||
422 | zxt1 I[0] = IFinal; \\ | ||
423 | br.cexit.spnt.few .+16; /* never taken */ \\ | ||
424 | } ;; | ||
425 | #define MODSCHED_RC4_LOOP(label) \\ | ||
426 | label: \\ | ||
427 | { .mmi; \\ | ||
428 | (pComputeI) ld1 Data[0] = [InPtr], 1; \\ | ||
429 | (pComputeI) add IFinal = 1, I[1]; \\ | ||
430 | (pComputeJ) zxt1 J = J; \\ | ||
431 | }{ .mmi; \\ | ||
432 | (pOutput) LKEY T[1] = [T[1]]; \\ | ||
433 | (pComputeT) add T[0] = SI[2], SJ[1]; \\ | ||
434 | (pComputeI) KEYADDR(IPr[0], I[1]); \\ | ||
435 | } ;; \\ | ||
436 | { .mmi; \\ | ||
437 | (pComputeT) SKEY [IPr[2]] = SJ[1]; \\ | ||
438 | (pComputeT) SKEY [JP[1]] = SI[2]; \\ | ||
439 | (pComputeT) zxt1 T[0] = T[0]; \\ | ||
440 | }{ .mmi; \\ | ||
441 | (pComputeI) LKEY SI[0] = [IPr[0]]; \\ | ||
442 | (pComputeJ) KEYADDR(JP[0], J); \\ | ||
443 | (pComputeI) cmp.eq.unc pBypass, p0 = I[1], J; \\ | ||
444 | } ;; \\ | ||
445 | { .mmi; \\ | ||
446 | (pComputeJ) LKEY SJ[0] = [JP[0]]; \\ | ||
447 | (pOutput) xor Data[3] = Data[3], T[1]; \\ | ||
448 | nop 0x0; \\ | ||
449 | }{ .mmi; \\ | ||
450 | (pComputeT) KEYADDR(T[0], T[0]); \\ | ||
451 | (pBypass) mov SI[0] = SI[1]; \\ | ||
452 | (pComputeI) zxt1 I[0] = IFinal; \\ | ||
453 | } ;; \\ | ||
454 | { .mmb; \\ | ||
455 | (pOutput) st1 [OutPtr] = Data[3], 1; \\ | ||
456 | (pComputeI) add J = J, SI[0]; \\ | ||
457 | br.ctop.sptk.few label; \\ | ||
458 | } ;; | ||
459 | |||
460 | .text | ||
461 | |||
462 | .align 32 | ||
463 | |||
464 | .type RC4, \@function | ||
465 | .global RC4 | ||
466 | |||
467 | .proc RC4 | ||
468 | .prologue | ||
469 | |||
470 | RC4: | ||
471 | { | ||
472 | .mmi | ||
473 | alloc r2 = ar.pfs, _NINPUTS, _NLOCALS, _NOUTPUT, _NROTATE | ||
474 | |||
475 | .rotr Data[4], I[2], IPr[3], SI[3], JP[2], SJ[2], T[2], \\ | ||
476 | OutWord[2] | ||
477 | .rotp pPhase[4] | ||
478 | |||
479 | ADDP InPrefetch = 0, InputBuffer | ||
480 | ADDP KTable = 0, StateTable | ||
481 | } | ||
482 | { | ||
483 | .mmi | ||
484 | ADDP InPtr = 0, InputBuffer | ||
485 | ADDP OutPtr = 0, OutputBuffer | ||
486 | mov RetVal = r0 | ||
487 | } | ||
488 | ;; | ||
489 | { | ||
490 | .mmi | ||
491 | lfetch.nt1 [InPrefetch], 0x80 | ||
492 | ADDP OutPrefetch = 0, OutputBuffer | ||
493 | } | ||
494 | { // Return 0 if the input length is nonsensical | ||
495 | .mib | ||
496 | ADDP StateTable = 0, StateTable | ||
497 | cmp.ge.unc L_NOK, L_OK = r0, DataLen | ||
498 | (L_NOK) br.ret.sptk.few rp | ||
499 | } | ||
500 | ;; | ||
501 | { | ||
502 | .mib | ||
503 | cmp.eq.or L_NOK, L_OK = r0, InPtr | ||
504 | cmp.eq.or L_NOK, L_OK = r0, OutPtr | ||
505 | nop 0x0 | ||
506 | } | ||
507 | { | ||
508 | .mib | ||
509 | cmp.eq.or L_NOK, L_OK = r0, StateTable | ||
510 | nop 0x0 | ||
511 | (L_NOK) br.ret.sptk.few rp | ||
512 | } | ||
513 | ;; | ||
514 | LKEY I[1] = [KTable], SZ | ||
515 | /* Prefetch the state-table. It contains 256 elements of size SZ */ | ||
516 | |||
517 | #if SZ == 1 | ||
518 | ADDP tmp0 = 1*128, StateTable | ||
519 | #elif SZ == 2 | ||
520 | ADDP tmp0 = 3*128, StateTable | ||
521 | ADDP tmp1 = 2*128, StateTable | ||
522 | #elif SZ == 4 | ||
523 | ADDP tmp0 = 7*128, StateTable | ||
524 | ADDP tmp1 = 6*128, StateTable | ||
525 | #elif SZ == 8 | ||
526 | ADDP tmp0 = 15*128, StateTable | ||
527 | ADDP tmp1 = 14*128, StateTable | ||
528 | #endif | ||
529 | ;; | ||
530 | #if SZ >= 8 | ||
531 | lfetch.fault.nt1 [tmp0], -256 // 15 | ||
532 | lfetch.fault.nt1 [tmp1], -256;; | ||
533 | lfetch.fault.nt1 [tmp0], -256 // 13 | ||
534 | lfetch.fault.nt1 [tmp1], -256;; | ||
535 | lfetch.fault.nt1 [tmp0], -256 // 11 | ||
536 | lfetch.fault.nt1 [tmp1], -256;; | ||
537 | lfetch.fault.nt1 [tmp0], -256 // 9 | ||
538 | lfetch.fault.nt1 [tmp1], -256;; | ||
539 | #endif | ||
540 | #if SZ >= 4 | ||
541 | lfetch.fault.nt1 [tmp0], -256 // 7 | ||
542 | lfetch.fault.nt1 [tmp1], -256;; | ||
543 | lfetch.fault.nt1 [tmp0], -256 // 5 | ||
544 | lfetch.fault.nt1 [tmp1], -256;; | ||
545 | #endif | ||
546 | #if SZ >= 2 | ||
547 | lfetch.fault.nt1 [tmp0], -256 // 3 | ||
548 | lfetch.fault.nt1 [tmp1], -256;; | ||
549 | #endif | ||
550 | { | ||
551 | .mii | ||
552 | lfetch.fault.nt1 [tmp0] // 1 | ||
553 | add I[1]=1,I[1];; | ||
554 | zxt1 I[1]=I[1] | ||
555 | } | ||
556 | { | ||
557 | .mmi | ||
558 | lfetch.nt1 [InPrefetch], 0x80 | ||
559 | lfetch.excl.nt1 [OutPrefetch], 0x80 | ||
560 | .save pr, PRSave | ||
561 | mov PRSave = pr | ||
562 | } ;; | ||
563 | { | ||
564 | .mmi | ||
565 | lfetch.excl.nt1 [OutPrefetch], 0x80 | ||
566 | LKEY J = [KTable], SZ | ||
567 | ADDP EndPtr = DataLen, InPtr | ||
568 | } ;; | ||
569 | { | ||
570 | .mmi | ||
571 | ADDP EndPtr = -1, EndPtr // Make it point to | ||
572 | // last data byte. | ||
573 | mov One = 1 | ||
574 | .save ar.lc, LCSave | ||
575 | mov LCSave = ar.lc | ||
576 | .body | ||
577 | } ;; | ||
578 | { | ||
579 | .mmb | ||
580 | sub Remainder = 0, OutPtr | ||
581 | cmp.gtu pSmall, p0 = $threshold, DataLen | ||
582 | (pSmall) br.cond.dpnt .rc4Remainder // Data too small for | ||
583 | // big loop. | ||
584 | } ;; | ||
585 | { | ||
586 | .mmi | ||
587 | and Remainder = 0x7, Remainder | ||
588 | ;; | ||
589 | cmp.eq pAligned, pUnaligned = Remainder, r0 | ||
590 | nop 0x0 | ||
591 | } ;; | ||
592 | { | ||
593 | .mmb | ||
594 | .pred.rel "mutex",pUnaligned,pAligned | ||
595 | (pUnaligned) add Remainder = -1, Remainder | ||
596 | (pAligned) sub Remainder = EndPtr, InPtr | ||
597 | (pAligned) br.cond.dptk.many .rc4Aligned | ||
598 | } ;; | ||
599 | { | ||
600 | .mmi | ||
601 | nop 0x0 | ||
602 | nop 0x0 | ||
603 | mov.i ar.lc = Remainder | ||
604 | } | ||
605 | |||
606 | /* Do the initial few bytes via the compact, modulo-scheduled loop | ||
607 | until the output pointer is 8-byte-aligned. */ | ||
608 | |||
609 | MODSCHED_RC4_PROLOGUE | ||
610 | MODSCHED_RC4_LOOP(.RC4AlignLoop) | ||
611 | |||
612 | { | ||
613 | .mib | ||
614 | sub Remainder = EndPtr, InPtr | ||
615 | zxt1 IFinal = IFinal | ||
616 | clrrrb // Clear CFM.rrb.pr so | ||
617 | ;; // next "mov pr.rot = N" | ||
618 | // does the right thing. | ||
619 | } | ||
620 | { | ||
621 | .mmi | ||
622 | mov I[1] = IFinal | ||
623 | nop 0x0 | ||
624 | nop 0x0 | ||
625 | } ;; | ||
626 | |||
627 | |||
628 | .rc4Aligned: | ||
629 | |||
630 | /* | ||
631 | Unrolled loop count = (Remainder - ($unroll_count+1)*$phases)/($unroll_count*$phases) | ||
632 | */ | ||
633 | |||
634 | { | ||
635 | .mlx | ||
636 | add LoopCount = 1 - ($unroll_count + 1)*$phases, Remainder | ||
637 | movl Remainder = 0xaaaaaaaaaaaaaaab | ||
638 | } ;; | ||
639 | { | ||
640 | .mmi | ||
641 | setf.sig f6 = LoopCount // M2, M3 6 cyc | ||
642 | setf.sig f7 = Remainder // M2, M3 6 cyc | ||
643 | nop 0x0 | ||
644 | } ;; | ||
645 | { | ||
646 | .mfb | ||
647 | nop 0x0 | ||
648 | xmpy.hu f6 = f6, f7 | ||
649 | nop 0x0 | ||
650 | } ;; | ||
651 | { | ||
652 | .mmi | ||
653 | getf.sig LoopCount = f6;; // M2 5 cyc | ||
654 | nop 0x0 | ||
655 | shr.u LoopCount = LoopCount, 4 | ||
656 | } ;; | ||
657 | { | ||
658 | .mmi | ||
659 | nop 0x0 | ||
660 | nop 0x0 | ||
661 | mov.i ar.lc = LoopCount | ||
662 | } ;; | ||
663 | |||
664 | /* Now comes the unrolled loop: */ | ||
665 | |||
666 | .rc4Prologue: | ||
667 | ___ | ||
668 | |||
669 | $iteration = 0; | ||
670 | |||
671 | # Generate the prologue: | ||
672 | $predicates = 1; | ||
673 | for ($i = 0; $i < $phases; ++$i) { | ||
674 | &emit_body (\$code, \$bypass, $iteration++, $predicates); | ||
675 | $predicates = ($predicates << 1) | 1; | ||
676 | } | ||
677 | |||
678 | $code.=<<___; | ||
679 | .rc4Loop: | ||
680 | ___ | ||
681 | |||
682 | # Generate the body: | ||
683 | for ($i = 0; $i < $unroll_count*$phases; ++$i) { | ||
684 | &emit_body (\$code, \$bypass, $iteration++, $predicates); | ||
685 | } | ||
686 | |||
687 | $code.=<<___; | ||
688 | .rc4Epilogue: | ||
689 | ___ | ||
690 | |||
691 | # Generate the epilogue: | ||
692 | for ($i = 0; $i < $phases; ++$i) { | ||
693 | $predicates <<= 1; | ||
694 | &emit_body (\$code, \$bypass, $iteration++, $predicates); | ||
695 | } | ||
696 | |||
697 | $code.=<<___; | ||
698 | { | ||
699 | .mmi | ||
700 | lfetch.nt1 [EndPtr] // fetch line with last byte | ||
701 | mov IFinal = I[1] | ||
702 | nop 0x0 | ||
703 | } | ||
704 | |||
705 | .rc4Remainder: | ||
706 | { | ||
707 | .mmi | ||
708 | sub Remainder = EndPtr, InPtr // Calculate | ||
709 | // # of bytes | ||
710 | // left - 1 | ||
711 | nop 0x0 | ||
712 | nop 0x0 | ||
713 | } ;; | ||
714 | { | ||
715 | .mib | ||
716 | cmp.eq pDone, p0 = -1, Remainder // done already? | ||
717 | mov.i ar.lc = Remainder | ||
718 | (pDone) br.cond.dptk.few .rc4Complete | ||
719 | } | ||
720 | |||
721 | /* Do the remaining bytes via the compact, modulo-scheduled loop */ | ||
722 | |||
723 | MODSCHED_RC4_PROLOGUE | ||
724 | MODSCHED_RC4_LOOP(.RC4RestLoop) | ||
725 | |||
726 | .rc4Complete: | ||
727 | { | ||
728 | .mmi | ||
729 | add KTable = -SZ, KTable | ||
730 | add IFinal = -1, IFinal | ||
731 | mov ar.lc = LCSave | ||
732 | } ;; | ||
733 | { | ||
734 | .mii | ||
735 | SKEY [KTable] = J,-SZ | ||
736 | zxt1 IFinal = IFinal | ||
737 | mov pr = PRSave, 0x1FFFF | ||
738 | } ;; | ||
739 | { | ||
740 | .mib | ||
741 | SKEY [KTable] = IFinal | ||
742 | add RetVal = 1, r0 | ||
743 | br.ret.sptk.few rp | ||
744 | } ;; | ||
745 | ___ | ||
746 | |||
747 | # Last but not least, emit the code for the bypass-code of the unrolled loop: | ||
748 | |||
749 | $code.=$bypass; | ||
750 | |||
751 | $code.=<<___; | ||
752 | .endp RC4 | ||
753 | ___ | ||
754 | |||
755 | print $code; | ||
diff --git a/src/lib/libcrypto/rc4/asm/rc4-s390x.pl b/src/lib/libcrypto/rc4/asm/rc4-s390x.pl new file mode 100644 index 0000000000..96681fa05e --- /dev/null +++ b/src/lib/libcrypto/rc4/asm/rc4-s390x.pl | |||
@@ -0,0 +1,205 @@ | |||
1 | #!/usr/bin/env perl | ||
2 | # | ||
3 | # ==================================================================== | ||
4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
5 | # project. The module is, however, dual licensed under OpenSSL and | ||
6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
8 | # ==================================================================== | ||
9 | # | ||
10 | # February 2009 | ||
11 | # | ||
12 | # Performance is 2x of gcc 3.4.6 on z10. Coding "secret" is to | ||
13 | # "cluster" Address Generation Interlocks, so that one pipeline stall | ||
14 | # resolves several dependencies. | ||
15 | |||
16 | $rp="%r14"; | ||
17 | $sp="%r15"; | ||
18 | $code=<<___; | ||
19 | .text | ||
20 | |||
21 | ___ | ||
22 | |||
23 | # void RC4(RC4_KEY *key,size_t len,const void *inp,void *out) | ||
24 | { | ||
25 | $acc="%r0"; | ||
26 | $cnt="%r1"; | ||
27 | $key="%r2"; | ||
28 | $len="%r3"; | ||
29 | $inp="%r4"; | ||
30 | $out="%r5"; | ||
31 | |||
32 | @XX=("%r6","%r7"); | ||
33 | @TX=("%r8","%r9"); | ||
34 | $YY="%r10"; | ||
35 | $TY="%r11"; | ||
36 | |||
37 | $code.=<<___; | ||
38 | .globl RC4 | ||
39 | .type RC4,\@function | ||
40 | .align 64 | ||
41 | RC4: | ||
42 | stmg %r6,%r11,48($sp) | ||
43 | llgc $XX[0],0($key) | ||
44 | llgc $YY,1($key) | ||
45 | la $XX[0],1($XX[0]) | ||
46 | nill $XX[0],0xff | ||
47 | srlg $cnt,$len,3 | ||
48 | ltgr $cnt,$cnt | ||
49 | llgc $TX[0],2($XX[0],$key) | ||
50 | jz .Lshort | ||
51 | j .Loop8 | ||
52 | |||
53 | .align 64 | ||
54 | .Loop8: | ||
55 | ___ | ||
56 | for ($i=0;$i<8;$i++) { | ||
57 | $code.=<<___; | ||
58 | la $YY,0($YY,$TX[0]) # $i | ||
59 | nill $YY,255 | ||
60 | la $XX[1],1($XX[0]) | ||
61 | nill $XX[1],255 | ||
62 | ___ | ||
63 | $code.=<<___ if ($i==1); | ||
64 | llgc $acc,2($TY,$key) | ||
65 | ___ | ||
66 | $code.=<<___ if ($i>1); | ||
67 | sllg $acc,$acc,8 | ||
68 | ic $acc,2($TY,$key) | ||
69 | ___ | ||
70 | $code.=<<___; | ||
71 | llgc $TY,2($YY,$key) | ||
72 | stc $TX[0],2($YY,$key) | ||
73 | llgc $TX[1],2($XX[1],$key) | ||
74 | stc $TY,2($XX[0],$key) | ||
75 | cr $XX[1],$YY | ||
76 | jne .Lcmov$i | ||
77 | la $TX[1],0($TX[0]) | ||
78 | .Lcmov$i: | ||
79 | la $TY,0($TY,$TX[0]) | ||
80 | nill $TY,255 | ||
81 | ___ | ||
82 | push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers | ||
83 | } | ||
84 | |||
85 | $code.=<<___; | ||
86 | lg $TX[1],0($inp) | ||
87 | sllg $acc,$acc,8 | ||
88 | la $inp,8($inp) | ||
89 | ic $acc,2($TY,$key) | ||
90 | xgr $acc,$TX[1] | ||
91 | stg $acc,0($out) | ||
92 | la $out,8($out) | ||
93 | brct $cnt,.Loop8 | ||
94 | |||
95 | .Lshort: | ||
96 | lghi $acc,7 | ||
97 | ngr $len,$acc | ||
98 | jz .Lexit | ||
99 | j .Loop1 | ||
100 | |||
101 | .align 16 | ||
102 | .Loop1: | ||
103 | la $YY,0($YY,$TX[0]) | ||
104 | nill $YY,255 | ||
105 | llgc $TY,2($YY,$key) | ||
106 | stc $TX[0],2($YY,$key) | ||
107 | stc $TY,2($XX[0],$key) | ||
108 | ar $TY,$TX[0] | ||
109 | ahi $XX[0],1 | ||
110 | nill $TY,255 | ||
111 | nill $XX[0],255 | ||
112 | llgc $acc,0($inp) | ||
113 | la $inp,1($inp) | ||
114 | llgc $TY,2($TY,$key) | ||
115 | llgc $TX[0],2($XX[0],$key) | ||
116 | xr $acc,$TY | ||
117 | stc $acc,0($out) | ||
118 | la $out,1($out) | ||
119 | brct $len,.Loop1 | ||
120 | |||
121 | .Lexit: | ||
122 | ahi $XX[0],-1 | ||
123 | stc $XX[0],0($key) | ||
124 | stc $YY,1($key) | ||
125 | lmg %r6,%r11,48($sp) | ||
126 | br $rp | ||
127 | .size RC4,.-RC4 | ||
128 | .string "RC4 for s390x, CRYPTOGAMS by <appro\@openssl.org>" | ||
129 | |||
130 | ___ | ||
131 | } | ||
132 | |||
133 | # void RC4_set_key(RC4_KEY *key,unsigned int len,const void *inp) | ||
134 | { | ||
135 | $cnt="%r0"; | ||
136 | $idx="%r1"; | ||
137 | $key="%r2"; | ||
138 | $len="%r3"; | ||
139 | $inp="%r4"; | ||
140 | $acc="%r5"; | ||
141 | $dat="%r6"; | ||
142 | $ikey="%r7"; | ||
143 | $iinp="%r8"; | ||
144 | |||
145 | $code.=<<___; | ||
146 | .globl RC4_set_key | ||
147 | .type RC4_set_key,\@function | ||
148 | .align 64 | ||
149 | RC4_set_key: | ||
150 | stmg %r6,%r8,48($sp) | ||
151 | lhi $cnt,256 | ||
152 | la $idx,0(%r0) | ||
153 | sth $idx,0($key) | ||
154 | .align 4 | ||
155 | .L1stloop: | ||
156 | stc $idx,2($idx,$key) | ||
157 | la $idx,1($idx) | ||
158 | brct $cnt,.L1stloop | ||
159 | |||
160 | lghi $ikey,-256 | ||
161 | lr $cnt,$len | ||
162 | la $iinp,0(%r0) | ||
163 | la $idx,0(%r0) | ||
164 | .align 16 | ||
165 | .L2ndloop: | ||
166 | llgc $acc,2+256($ikey,$key) | ||
167 | llgc $dat,0($iinp,$inp) | ||
168 | la $idx,0($idx,$acc) | ||
169 | la $ikey,1($ikey) | ||
170 | la $idx,0($idx,$dat) | ||
171 | nill $idx,255 | ||
172 | la $iinp,1($iinp) | ||
173 | tml $ikey,255 | ||
174 | llgc $dat,2($idx,$key) | ||
175 | stc $dat,2+256-1($ikey,$key) | ||
176 | stc $acc,2($idx,$key) | ||
177 | jz .Ldone | ||
178 | brct $cnt,.L2ndloop | ||
179 | lr $cnt,$len | ||
180 | la $iinp,0(%r0) | ||
181 | j .L2ndloop | ||
182 | .Ldone: | ||
183 | lmg %r6,%r8,48($sp) | ||
184 | br $rp | ||
185 | .size RC4_set_key,.-RC4_set_key | ||
186 | |||
187 | ___ | ||
188 | } | ||
189 | |||
190 | # const char *RC4_options() | ||
191 | $code.=<<___; | ||
192 | .globl RC4_options | ||
193 | .type RC4_options,\@function | ||
194 | .align 16 | ||
195 | RC4_options: | ||
196 | larl %r2,.Loptions | ||
197 | br %r14 | ||
198 | .size RC4_options,.-RC4_options | ||
199 | .section .rodata | ||
200 | .Loptions: | ||
201 | .align 8 | ||
202 | .string "rc4(8x,char)" | ||
203 | ___ | ||
204 | |||
205 | print $code; | ||