summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/sha/asm/sha1-586.pl
diff options
context:
space:
mode:
authorcvs2svn <admin@example.com>2025-04-14 17:32:06 +0000
committercvs2svn <admin@example.com>2025-04-14 17:32:06 +0000
commitb1ddde874c215cc8891531ed92876f091b7eb83e (patch)
treeedb6da6af7e865d488dc1a29309f1e1ec226e603 /src/lib/libcrypto/sha/asm/sha1-586.pl
parentf0a36529837a161734c802ae4c42e84e42347be2 (diff)
downloadopenbsd-tb_20250414.tar.gz
openbsd-tb_20250414.tar.bz2
openbsd-tb_20250414.zip
This commit was manufactured by cvs2git to create tag 'tb_20250414'.tb_20250414
Diffstat (limited to 'src/lib/libcrypto/sha/asm/sha1-586.pl')
-rw-r--r--src/lib/libcrypto/sha/asm/sha1-586.pl1223
1 files changed, 0 insertions, 1223 deletions
diff --git a/src/lib/libcrypto/sha/asm/sha1-586.pl b/src/lib/libcrypto/sha/asm/sha1-586.pl
deleted file mode 100644
index 5928e083c1..0000000000
--- a/src/lib/libcrypto/sha/asm/sha1-586.pl
+++ /dev/null
@@ -1,1223 +0,0 @@
1#!/usr/bin/env perl
2
3# ====================================================================
4# [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
5# project. The module is, however, dual licensed under OpenSSL and
6# CRYPTOGAMS licenses depending on where you obtain it. For further
7# details see http://www.openssl.org/~appro/cryptogams/.
8# ====================================================================
9
10# "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
11# functions were re-implemented to address P4 performance issue [see
12# commentary below], and in 2006 the rest was rewritten in order to
13# gain freedom to liberate licensing terms.
14
15# January, September 2004.
16#
17# It was noted that Intel IA-32 C compiler generates code which
18# performs ~30% *faster* on P4 CPU than original *hand-coded*
19# SHA1 assembler implementation. To address this problem (and
20# prove that humans are still better than machines:-), the
21# original code was overhauled, which resulted in following
22# performance changes:
23#
24# compared with original compared with Intel cc
25# assembler impl. generated code
26# Pentium -16% +48%
27# PIII/AMD +8% +16%
28# P4 +85%(!) +45%
29#
30# As you can see Pentium came out as looser:-( Yet I reckoned that
31# improvement on P4 outweighs the loss and incorporate this
32# re-tuned code to 0.9.7 and later.
33# ----------------------------------------------------------------
34# <appro@fy.chalmers.se>
35
36# August 2009.
37#
38# George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
39# '(c&d) + (b&(c^d))', which allows to accumulate partial results
40# and lighten "pressure" on scratch registers. This resulted in
41# >12% performance improvement on contemporary AMD cores (with no
42# degradation on other CPUs:-). Also, the code was revised to maximize
43# "distance" between instructions producing input to 'lea' instruction
44# and the 'lea' instruction itself, which is essential for Intel Atom
45# core and resulted in ~15% improvement.
46
47# October 2010.
48#
49# Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
50# is to offload message schedule denoted by Wt in NIST specification,
51# or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
52# and in SSE2 context was first explored by Dean Gaudet in 2004, see
53# http://arctic.org/~dean/crypto/sha1.html. Since then several things
54# have changed that made it interesting again:
55#
56# a) XMM units became faster and wider;
57# b) instruction set became more versatile;
58# c) an important observation was made by Max Locktykhin, which made
59# it possible to reduce amount of instructions required to perform
60# the operation in question, for further details see
61# http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
62
63# April 2011.
64#
65# Add AVX code path, probably most controversial... The thing is that
66# switch to AVX alone improves performance by as little as 4% in
67# comparison to SSSE3 code path. But below result doesn't look like
68# 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
69# pair of µ-ops, and it's the additional µ-ops, two per round, that
70# make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
71# as single µ-op by Sandy Bridge and it's replacing 'ro[rl]' with
72# equivalent 'sh[rl]d' that is responsible for the impressive 5.1
73# cycles per processed byte. But 'sh[rl]d' is not something that used
74# to be fast, nor does it appear to be fast in upcoming Bulldozer
75# [according to its optimization manual]. Which is why AVX code path
76# is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
77# One can argue that it's unfair to AMD, but without 'sh[rl]d' it
78# makes no sense to keep the AVX code path. If somebody feels that
79# strongly, it's probably more appropriate to discuss possibility of
80# using vector rotate XOP on AMD...
81
82######################################################################
83# Current performance is summarized in following table. Numbers are
84# CPU clock cycles spent to process single byte (less is better).
85#
86# x86 SSSE3 AVX
87# Pentium 15.7 -
88# PIII 11.5 -
89# P4 10.6 -
90# AMD K8 7.1 -
91# Core2 7.3 6.1/+20% -
92# Atom 12.5 9.5(*)/+32% -
93# Westmere 7.3 5.6/+30% -
94# Sandy Bridge 8.8 6.2/+40% 5.1(**)/+70%
95#
96# (*) Loop is 1056 instructions long and expected result is ~8.25.
97# It remains mystery [to me] why ILP is limited to 1.7.
98#
99# (**) As per above comment, the result is for AVX *plus* sh[rl]d.
100
101$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
102push(@INC,"${dir}","${dir}../../perlasm");
103require "x86asm.pl";
104
105&asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
106
107$xmm=$ymm=0;
108for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
109
110$ymm=1 if ($xmm &&
111 `$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
112 =~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
113 $1>=2.19); # first version supporting AVX
114
115&external_label("OPENSSL_ia32cap_P") if ($xmm);
116
117
118$A="eax";
119$B="ebx";
120$C="ecx";
121$D="edx";
122$E="edi";
123$T="esi";
124$tmp1="ebp";
125
126@V=($A,$B,$C,$D,$E,$T);
127
128$alt=0; # 1 denotes alternative IALU implementation, which performs
129 # 8% *worse* on P4, same on Westmere and Atom, 2% better on
130 # Sandy Bridge...
131
132sub BODY_00_15
133 {
134 local($n,$a,$b,$c,$d,$e,$f)=@_;
135
136 &comment("00_15 $n");
137
138 &mov($f,$c); # f to hold F_00_19(b,c,d)
139 if ($n==0) { &mov($tmp1,$a); }
140 else { &mov($a,$tmp1); }
141 &rotl($tmp1,5); # tmp1=ROTATE(a,5)
142 &xor($f,$d);
143 &add($tmp1,$e); # tmp1+=e;
144 &mov($e,&swtmp($n%16)); # e becomes volatile and is loaded
145 # with xi, also note that e becomes
146 # f in next round...
147 &and($f,$b);
148 &rotr($b,2); # b=ROTATE(b,30)
149 &xor($f,$d); # f holds F_00_19(b,c,d)
150 &lea($tmp1,&DWP(0x5a827999,$tmp1,$e)); # tmp1+=K_00_19+xi
151
152 if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
153 &add($f,$tmp1); } # f+=tmp1
154 else { &add($tmp1,$f); } # f becomes a in next round
155 &mov($tmp1,$a) if ($alt && $n==15);
156 }
157
158sub BODY_16_19
159 {
160 local($n,$a,$b,$c,$d,$e,$f)=@_;
161
162 &comment("16_19 $n");
163
164if ($alt) {
165 &xor($c,$d);
166 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
167 &and($tmp1,$c); # tmp1 to hold F_00_19(b,c,d), b&=c^d
168 &xor($f,&swtmp(($n+8)%16));
169 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
170 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
171 &rotl($f,1); # f=ROTATE(f,1)
172 &add($e,$tmp1); # e+=F_00_19(b,c,d)
173 &xor($c,$d); # restore $c
174 &mov($tmp1,$a); # b in next round
175 &rotr($b,$n==16?2:7); # b=ROTATE(b,30)
176 &mov(&swtmp($n%16),$f); # xi=f
177 &rotl($a,5); # ROTATE(a,5)
178 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
179 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
180 &add($f,$a); # f+=ROTATE(a,5)
181} else {
182 &mov($tmp1,$c); # tmp1 to hold F_00_19(b,c,d)
183 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
184 &xor($tmp1,$d);
185 &xor($f,&swtmp(($n+8)%16));
186 &and($tmp1,$b);
187 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
188 &rotl($f,1); # f=ROTATE(f,1)
189 &xor($tmp1,$d); # tmp1=F_00_19(b,c,d)
190 &add($e,$tmp1); # e+=F_00_19(b,c,d)
191 &mov($tmp1,$a);
192 &rotr($b,2); # b=ROTATE(b,30)
193 &mov(&swtmp($n%16),$f); # xi=f
194 &rotl($tmp1,5); # ROTATE(a,5)
195 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
196 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
197 &add($f,$tmp1); # f+=ROTATE(a,5)
198}
199 }
200
201sub BODY_20_39
202 {
203 local($n,$a,$b,$c,$d,$e,$f)=@_;
204 local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
205
206 &comment("20_39 $n");
207
208if ($alt) {
209 &xor($tmp1,$c); # tmp1 to hold F_20_39(b,c,d), b^=c
210 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
211 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
212 &xor($f,&swtmp(($n+8)%16));
213 &add($e,$tmp1); # e+=F_20_39(b,c,d)
214 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
215 &rotl($f,1); # f=ROTATE(f,1)
216 &mov($tmp1,$a); # b in next round
217 &rotr($b,7); # b=ROTATE(b,30)
218 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
219 &rotl($a,5); # ROTATE(a,5)
220 &xor($b,$c) if($n==39);# warm up for BODY_40_59
221 &and($tmp1,$b) if($n==39);
222 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
223 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
224 &add($f,$a); # f+=ROTATE(a,5)
225 &rotr($a,5) if ($n==79);
226} else {
227 &mov($tmp1,$b); # tmp1 to hold F_20_39(b,c,d)
228 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
229 &xor($tmp1,$c);
230 &xor($f,&swtmp(($n+8)%16));
231 &xor($tmp1,$d); # tmp1 holds F_20_39(b,c,d)
232 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
233 &rotl($f,1); # f=ROTATE(f,1)
234 &add($e,$tmp1); # e+=F_20_39(b,c,d)
235 &rotr($b,2); # b=ROTATE(b,30)
236 &mov($tmp1,$a);
237 &rotl($tmp1,5); # ROTATE(a,5)
238 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
239 &lea($f,&DWP($K,$f,$e)); # f+=e+K_XX_YY
240 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
241 &add($f,$tmp1); # f+=ROTATE(a,5)
242}
243 }
244
245sub BODY_40_59
246 {
247 local($n,$a,$b,$c,$d,$e,$f)=@_;
248
249 &comment("40_59 $n");
250
251if ($alt) {
252 &add($e,$tmp1); # e+=b&(c^d)
253 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
254 &mov($tmp1,$d);
255 &xor($f,&swtmp(($n+8)%16));
256 &xor($c,$d); # restore $c
257 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
258 &rotl($f,1); # f=ROTATE(f,1)
259 &and($tmp1,$c);
260 &rotr($b,7); # b=ROTATE(b,30)
261 &add($e,$tmp1); # e+=c&d
262 &mov($tmp1,$a); # b in next round
263 &mov(&swtmp($n%16),$f); # xi=f
264 &rotl($a,5); # ROTATE(a,5)
265 &xor($b,$c) if ($n<59);
266 &and($tmp1,$b) if ($n<59);# tmp1 to hold F_40_59(b,c,d)
267 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
268 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
269 &add($f,$a); # f+=ROTATE(a,5)
270} else {
271 &mov($tmp1,$c); # tmp1 to hold F_40_59(b,c,d)
272 &xor($f,&swtmp(($n+2)%16)); # f to hold Xupdate(xi,xa,xb,xc,xd)
273 &xor($tmp1,$d);
274 &xor($f,&swtmp(($n+8)%16));
275 &and($tmp1,$b);
276 &xor($f,&swtmp(($n+13)%16)); # f holds xa^xb^xc^xd
277 &rotl($f,1); # f=ROTATE(f,1)
278 &add($tmp1,$e); # b&(c^d)+=e
279 &rotr($b,2); # b=ROTATE(b,30)
280 &mov($e,$a); # e becomes volatile
281 &rotl($e,5); # ROTATE(a,5)
282 &mov(&swtmp($n%16),$f); # xi=f
283 &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
284 &mov($tmp1,$c);
285 &add($f,$e); # f+=ROTATE(a,5)
286 &and($tmp1,$d);
287 &mov($e,&swtmp(($n+1)%16)); # pre-fetch f for next round
288 &add($f,$tmp1); # f+=c&d
289}
290 }
291
292&function_begin("sha1_block_data_order");
293if ($xmm) {
294 &static_label("ssse3_shortcut");
295 &static_label("avx_shortcut") if ($ymm);
296 &static_label("K_XX_XX");
297
298 &picsetup($tmp1);
299 &picsymbol($T, "OPENSSL_ia32cap_P", $tmp1);
300 &picsymbol($tmp1, &label("K_XX_XX"), $tmp1);
301
302 &mov ($A,&DWP(0,$T));
303 &mov ($D,&DWP(4,$T));
304 &test ($D,"\$IA32CAP_MASK1_SSSE3"); # check SSSE3 bit
305 &jz (&label("x86"));
306 &test ($A,"\$IA32CAP_MASK0_FXSR"); # check FXSR bit
307 &jz (&label("x86"));
308 if ($ymm) {
309 &and ($D,"\$IA32CAP_MASK1_AVX"); # mask AVX bit
310 &and ($A,"\$IA32CAP_MASK0_INTEL"); # mask "Intel CPU" bit
311 &or ($A,$D);
312 &cmp ($A,"\$(IA32CAP_MASK1_AVX | IA32CAP_MASK0_INTEL)");
313 &je (&label("avx_shortcut"));
314 }
315 &jmp (&label("ssse3_shortcut"));
316 &set_label("x86",16);
317}
318 &mov($tmp1,&wparam(0)); # SHA_CTX *c
319 &mov($T,&wparam(1)); # const void *input
320 &mov($A,&wparam(2)); # size_t num
321 &stack_push(16+3); # allocate X[16]
322 &shl($A,6);
323 &add($A,$T);
324 &mov(&wparam(2),$A); # pointer beyond the end of input
325 &mov($E,&DWP(16,$tmp1));# pre-load E
326 &jmp(&label("loop"));
327
328&set_label("loop",16);
329
330 # copy input chunk to X, but reversing byte order!
331 for ($i=0; $i<16; $i+=4)
332 {
333 &mov($A,&DWP(4*($i+0),$T));
334 &mov($B,&DWP(4*($i+1),$T));
335 &mov($C,&DWP(4*($i+2),$T));
336 &mov($D,&DWP(4*($i+3),$T));
337 &bswap($A);
338 &bswap($B);
339 &bswap($C);
340 &bswap($D);
341 &mov(&swtmp($i+0),$A);
342 &mov(&swtmp($i+1),$B);
343 &mov(&swtmp($i+2),$C);
344 &mov(&swtmp($i+3),$D);
345 }
346 &mov(&wparam(1),$T); # redundant in 1st spin
347
348 &mov($A,&DWP(0,$tmp1)); # load SHA_CTX
349 &mov($B,&DWP(4,$tmp1));
350 &mov($C,&DWP(8,$tmp1));
351 &mov($D,&DWP(12,$tmp1));
352 # E is pre-loaded
353
354 for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
355 for(;$i<20;$i++) { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
356 for(;$i<40;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
357 for(;$i<60;$i++) { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
358 for(;$i<80;$i++) { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
359
360 (($V[5] eq $D) and ($V[0] eq $E)) or die; # double-check
361
362 &mov($tmp1,&wparam(0)); # re-load SHA_CTX*
363 &mov($D,&wparam(1)); # D is last "T" and is discarded
364
365 &add($E,&DWP(0,$tmp1)); # E is last "A"...
366 &add($T,&DWP(4,$tmp1));
367 &add($A,&DWP(8,$tmp1));
368 &add($B,&DWP(12,$tmp1));
369 &add($C,&DWP(16,$tmp1));
370
371 &mov(&DWP(0,$tmp1),$E); # update SHA_CTX
372 &add($D,64); # advance input pointer
373 &mov(&DWP(4,$tmp1),$T);
374 &cmp($D,&wparam(2)); # have we reached the end yet?
375 &mov(&DWP(8,$tmp1),$A);
376 &mov($E,$C); # C is last "E" which needs to be "pre-loaded"
377 &mov(&DWP(12,$tmp1),$B);
378 &mov($T,$D); # input pointer
379 &mov(&DWP(16,$tmp1),$C);
380 &jb(&label("loop"));
381
382 &stack_pop(16+3);
383&function_end("sha1_block_data_order");
384
385if ($xmm) {
386######################################################################
387# The SSSE3 implementation.
388#
389# %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
390# 32 elements of the message schedule or Xupdate outputs. First 4
391# quadruples are simply byte-swapped input, next 4 are calculated
392# according to method originally suggested by Dean Gaudet (modulo
393# being implemented in SSSE3). Once 8 quadruples or 32 elements are
394# collected, it switches to routine proposed by Max Locktyukhin.
395#
396# Calculations inevitably require temporary reqisters, and there are
397# no %xmm registers left to spare. For this reason part of the ring
398# buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
399# buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
400# X[-5], and X[4] - X[-4]...
401#
402# Another notable optimization is aggressive stack frame compression
403# aiming to minimize amount of 9-byte instructions...
404#
405# Yet another notable optimization is "jumping" $B variable. It means
406# that there is no register permanently allocated for $B value. This
407# allowed to eliminate one instruction from body_20_39...
408#
409my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
410my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
411my @V=($A,$B,$C,$D,$E);
412my $j=0; # hash round
413my @T=($T,$tmp1);
414my $inp;
415
416my $_rol=sub { &rol(@_) };
417my $_ror=sub { &ror(@_) };
418
419&function_begin("_sha1_block_data_order_ssse3");
420 &picsetup($tmp1);
421 &picsymbol($tmp1, &label("K_XX_XX"), $tmp1);
422
423&set_label("ssse3_shortcut");
424
425 &movdqa (@X[3],&QWP(0,$tmp1)); # K_00_19
426 &movdqa (@X[4],&QWP(16,$tmp1)); # K_20_39
427 &movdqa (@X[5],&QWP(32,$tmp1)); # K_40_59
428 &movdqa (@X[6],&QWP(48,$tmp1)); # K_60_79
429 &movdqa (@X[2],&QWP(64,$tmp1)); # pbswap mask
430
431 &mov ($E,&wparam(0)); # load argument block
432 &mov ($inp=@T[1],&wparam(1));
433 &mov ($D,&wparam(2));
434 &mov (@T[0],"esp");
435
436 # stack frame layout
437 #
438 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
439 # X[4]+K X[5]+K X[6]+K X[7]+K
440 # X[8]+K X[9]+K X[10]+K X[11]+K
441 # X[12]+K X[13]+K X[14]+K X[15]+K
442 #
443 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
444 # X[4] X[5] X[6] X[7]
445 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
446 #
447 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
448 # K_40_59 K_40_59 K_40_59 K_40_59
449 # K_60_79 K_60_79 K_60_79 K_60_79
450 # K_00_19 K_00_19 K_00_19 K_00_19
451 # pbswap mask
452 #
453 # +192 ctx # argument block
454 # +196 inp
455 # +200 end
456 # +204 esp
457 &sub ("esp",208);
458 &and ("esp",-64);
459
460 &movdqa (&QWP(112+0,"esp"),@X[4]); # copy constants
461 &movdqa (&QWP(112+16,"esp"),@X[5]);
462 &movdqa (&QWP(112+32,"esp"),@X[6]);
463 &shl ($D,6); # len*64
464 &movdqa (&QWP(112+48,"esp"),@X[3]);
465 &add ($D,$inp); # end of input
466 &movdqa (&QWP(112+64,"esp"),@X[2]);
467 &add ($inp,64);
468 &mov (&DWP(192+0,"esp"),$E); # save argument block
469 &mov (&DWP(192+4,"esp"),$inp);
470 &mov (&DWP(192+8,"esp"),$D);
471 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
472
473 &mov ($A,&DWP(0,$E)); # load context
474 &mov ($B,&DWP(4,$E));
475 &mov ($C,&DWP(8,$E));
476 &mov ($D,&DWP(12,$E));
477 &mov ($E,&DWP(16,$E));
478 &mov (@T[0],$B); # magic seed
479
480 &movdqu (@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
481 &movdqu (@X[-3&7],&QWP(-48,$inp));
482 &movdqu (@X[-2&7],&QWP(-32,$inp));
483 &movdqu (@X[-1&7],&QWP(-16,$inp));
484 &pshufb (@X[-4&7],@X[2]); # byte swap
485 &pshufb (@X[-3&7],@X[2]);
486 &pshufb (@X[-2&7],@X[2]);
487 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
488 &pshufb (@X[-1&7],@X[2]);
489 &paddd (@X[-4&7],@X[3]); # add K_00_19
490 &paddd (@X[-3&7],@X[3]);
491 &paddd (@X[-2&7],@X[3]);
492 &movdqa (&QWP(0,"esp"),@X[-4&7]); # X[]+K xfer to IALU
493 &psubd (@X[-4&7],@X[3]); # restore X[]
494 &movdqa (&QWP(0+16,"esp"),@X[-3&7]);
495 &psubd (@X[-3&7],@X[3]);
496 &movdqa (&QWP(0+32,"esp"),@X[-2&7]);
497 &psubd (@X[-2&7],@X[3]);
498 &movdqa (@X[0],@X[-3&7]);
499 &jmp (&label("loop"));
500
501######################################################################
502# SSE instruction sequence is first broken to groups of independent
503# instructions, independent in respect to their inputs and shifter
504# (not all architectures have more than one). Then IALU instructions
505# are "knitted in" between the SSE groups. Distance is maintained for
506# SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
507# [which allegedly also implements SSSE3]...
508#
509# Temporary registers usage. X[2] is volatile at the entry and at the
510# end is restored from backtrace ring buffer. X[3] is expected to
511# contain current K_XX_XX constant and is used to calculate X[-1]+K
512# from previous round, it becomes volatile the moment the value is
513# saved to stack for transfer to IALU. X[4] becomes volatile whenever
514# X[-4] is accumulated and offloaded to backtrace ring buffer, at the
515# end it is loaded with next K_XX_XX [which becomes X[3] in next
516# round]...
517#
518sub Xupdate_ssse3_16_31() # recall that $Xi starts with 4
519{ use integer;
520 my $body = shift;
521 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
522 my ($a,$b,$c,$d,$e);
523
524 eval(shift(@insns));
525 eval(shift(@insns));
526 &palignr(@X[0],@X[-4&7],8); # compose "X[-14]" in "X[0]"
527 &movdqa (@X[2],@X[-1&7]);
528 eval(shift(@insns));
529 eval(shift(@insns));
530
531 &paddd (@X[3],@X[-1&7]);
532 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
533 eval(shift(@insns));
534 eval(shift(@insns));
535 &psrldq (@X[2],4); # "X[-3]", 3 dwords
536 eval(shift(@insns));
537 eval(shift(@insns));
538 &pxor (@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
539 eval(shift(@insns));
540 eval(shift(@insns));
541
542 &pxor (@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
543 eval(shift(@insns));
544 eval(shift(@insns));
545 eval(shift(@insns));
546 eval(shift(@insns));
547
548 &pxor (@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
549 eval(shift(@insns));
550 eval(shift(@insns));
551 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
552 eval(shift(@insns));
553 eval(shift(@insns));
554
555 &movdqa (@X[4],@X[0]);
556 &movdqa (@X[2],@X[0]);
557 eval(shift(@insns));
558 eval(shift(@insns));
559 eval(shift(@insns));
560 eval(shift(@insns));
561
562 &pslldq (@X[4],12); # "X[0]"<<96, extract one dword
563 &paddd (@X[0],@X[0]);
564 eval(shift(@insns));
565 eval(shift(@insns));
566 eval(shift(@insns));
567 eval(shift(@insns));
568
569 &psrld (@X[2],31);
570 eval(shift(@insns));
571 eval(shift(@insns));
572 &movdqa (@X[3],@X[4]);
573 eval(shift(@insns));
574 eval(shift(@insns));
575
576 &psrld (@X[4],30);
577 &por (@X[0],@X[2]); # "X[0]"<<<=1
578 eval(shift(@insns));
579 eval(shift(@insns));
580 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
581 eval(shift(@insns));
582 eval(shift(@insns));
583
584 &pslld (@X[3],2);
585 &pxor (@X[0],@X[4]);
586 eval(shift(@insns));
587 eval(shift(@insns));
588 &movdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
589 eval(shift(@insns));
590 eval(shift(@insns));
591
592 &pxor (@X[0],@X[3]); # "X[0]"^=("X[0]"<<96)<<<2
593 &movdqa (@X[1],@X[-2&7]) if ($Xi<7);
594 eval(shift(@insns));
595 eval(shift(@insns));
596
597 foreach (@insns) { eval; } # remaining instructions [if any]
598
599 $Xi++; push(@X,shift(@X)); # "rotate" X[]
600}
601
602sub Xupdate_ssse3_32_79()
603{ use integer;
604 my $body = shift;
605 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
606 my ($a,$b,$c,$d,$e);
607
608 &movdqa (@X[2],@X[-1&7]) if ($Xi==8);
609 eval(shift(@insns)); # body_20_39
610 &pxor (@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
611 &palignr(@X[2],@X[-2&7],8); # compose "X[-6]"
612 eval(shift(@insns));
613 eval(shift(@insns));
614 eval(shift(@insns)); # rol
615
616 &pxor (@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
617 &movdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
618 eval(shift(@insns));
619 eval(shift(@insns));
620 if ($Xi%5) {
621 &movdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
622 } else { # ... or load next one
623 &movdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
624 }
625 &paddd (@X[3],@X[-1&7]);
626 eval(shift(@insns)); # ror
627 eval(shift(@insns));
628
629 &pxor (@X[0],@X[2]); # "X[0]"^="X[-6]"
630 eval(shift(@insns)); # body_20_39
631 eval(shift(@insns));
632 eval(shift(@insns));
633 eval(shift(@insns)); # rol
634
635 &movdqa (@X[2],@X[0]);
636 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
637 eval(shift(@insns));
638 eval(shift(@insns));
639 eval(shift(@insns)); # ror
640 eval(shift(@insns));
641
642 &pslld (@X[0],2);
643 eval(shift(@insns)); # body_20_39
644 eval(shift(@insns));
645 &psrld (@X[2],30);
646 eval(shift(@insns));
647 eval(shift(@insns)); # rol
648 eval(shift(@insns));
649 eval(shift(@insns));
650 eval(shift(@insns)); # ror
651 eval(shift(@insns));
652
653 &por (@X[0],@X[2]); # "X[0]"<<<=2
654 eval(shift(@insns)); # body_20_39
655 eval(shift(@insns));
656 &movdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
657 eval(shift(@insns));
658 eval(shift(@insns)); # rol
659 eval(shift(@insns));
660 eval(shift(@insns));
661 eval(shift(@insns)); # ror
662 &movdqa (@X[3],@X[0]) if ($Xi<19);
663 eval(shift(@insns));
664
665 foreach (@insns) { eval; } # remaining instructions
666
667 $Xi++; push(@X,shift(@X)); # "rotate" X[]
668}
669
670sub Xuplast_ssse3_80()
671{ use integer;
672 my $body = shift;
673 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
674 my ($a,$b,$c,$d,$e);
675
676 eval(shift(@insns));
677 &paddd (@X[3],@X[-1&7]);
678 eval(shift(@insns));
679 eval(shift(@insns));
680 eval(shift(@insns));
681 eval(shift(@insns));
682
683 &movdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
684
685 foreach (@insns) { eval; } # remaining instructions
686
687 &mov ($inp=@T[1],&DWP(192+4,"esp"));
688 &cmp ($inp,&DWP(192+8,"esp"));
689 &je (&label("done"));
690
691 &movdqa (@X[3],&QWP(112+48,"esp")); # K_00_19
692 &movdqa (@X[2],&QWP(112+64,"esp")); # pbswap mask
693 &movdqu (@X[-4&7],&QWP(0,$inp)); # load input
694 &movdqu (@X[-3&7],&QWP(16,$inp));
695 &movdqu (@X[-2&7],&QWP(32,$inp));
696 &movdqu (@X[-1&7],&QWP(48,$inp));
697 &add ($inp,64);
698 &pshufb (@X[-4&7],@X[2]); # byte swap
699 &mov (&DWP(192+4,"esp"),$inp);
700 &movdqa (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
701
702 $Xi=0;
703}
704
705sub Xloop_ssse3()
706{ use integer;
707 my $body = shift;
708 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
709 my ($a,$b,$c,$d,$e);
710
711 eval(shift(@insns));
712 eval(shift(@insns));
713 &pshufb (@X[($Xi-3)&7],@X[2]);
714 eval(shift(@insns));
715 eval(shift(@insns));
716 &paddd (@X[($Xi-4)&7],@X[3]);
717 eval(shift(@insns));
718 eval(shift(@insns));
719 eval(shift(@insns));
720 eval(shift(@insns));
721 &movdqa (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]); # X[]+K xfer to IALU
722 eval(shift(@insns));
723 eval(shift(@insns));
724 &psubd (@X[($Xi-4)&7],@X[3]);
725
726 foreach (@insns) { eval; }
727 $Xi++;
728}
729
730sub Xtail_ssse3()
731{ use integer;
732 my $body = shift;
733 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
734 my ($a,$b,$c,$d,$e);
735
736 foreach (@insns) { eval; }
737}
738
739sub body_00_19 () {
740 (
741 '($a,$b,$c,$d,$e)=@V;'.
742 '&add ($e,&DWP(4*($j&15),"esp"));', # X[]+K xfer
743 '&xor ($c,$d);',
744 '&mov (@T[1],$a);', # $b in next round
745 '&$_rol ($a,5);',
746 '&and (@T[0],$c);', # ($b&($c^$d))
747 '&xor ($c,$d);', # restore $c
748 '&xor (@T[0],$d);',
749 '&add ($e,$a);',
750 '&$_ror ($b,$j?7:2);', # $b>>>2
751 '&add ($e,@T[0]);' .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
752 );
753}
754
755sub body_20_39 () {
756 (
757 '($a,$b,$c,$d,$e)=@V;'.
758 '&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer
759 '&xor (@T[0],$d);', # ($b^$d)
760 '&mov (@T[1],$a);', # $b in next round
761 '&$_rol ($a,5);',
762 '&xor (@T[0],$c);', # ($b^$d^$c)
763 '&add ($e,$a);',
764 '&$_ror ($b,7);', # $b>>>2
765 '&add ($e,@T[0]);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
766 );
767}
768
769sub body_40_59 () {
770 (
771 '($a,$b,$c,$d,$e)=@V;'.
772 '&mov (@T[1],$c);',
773 '&xor ($c,$d);',
774 '&add ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer
775 '&and (@T[1],$d);',
776 '&and (@T[0],$c);', # ($b&($c^$d))
777 '&$_ror ($b,7);', # $b>>>2
778 '&add ($e,@T[1]);',
779 '&mov (@T[1],$a);', # $b in next round
780 '&$_rol ($a,5);',
781 '&add ($e,@T[0]);',
782 '&xor ($c,$d);', # restore $c
783 '&add ($e,$a);' .'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
784 );
785}
786
787&set_label("loop",16);
788 &Xupdate_ssse3_16_31(\&body_00_19);
789 &Xupdate_ssse3_16_31(\&body_00_19);
790 &Xupdate_ssse3_16_31(\&body_00_19);
791 &Xupdate_ssse3_16_31(\&body_00_19);
792 &Xupdate_ssse3_32_79(\&body_00_19);
793 &Xupdate_ssse3_32_79(\&body_20_39);
794 &Xupdate_ssse3_32_79(\&body_20_39);
795 &Xupdate_ssse3_32_79(\&body_20_39);
796 &Xupdate_ssse3_32_79(\&body_20_39);
797 &Xupdate_ssse3_32_79(\&body_20_39);
798 &Xupdate_ssse3_32_79(\&body_40_59);
799 &Xupdate_ssse3_32_79(\&body_40_59);
800 &Xupdate_ssse3_32_79(\&body_40_59);
801 &Xupdate_ssse3_32_79(\&body_40_59);
802 &Xupdate_ssse3_32_79(\&body_40_59);
803 &Xupdate_ssse3_32_79(\&body_20_39);
804 &Xuplast_ssse3_80(\&body_20_39); # can jump to "done"
805
806 $saved_j=$j; @saved_V=@V;
807
808 &Xloop_ssse3(\&body_20_39);
809 &Xloop_ssse3(\&body_20_39);
810 &Xloop_ssse3(\&body_20_39);
811
812 &mov (@T[1],&DWP(192,"esp")); # update context
813 &add ($A,&DWP(0,@T[1]));
814 &add (@T[0],&DWP(4,@T[1])); # $b
815 &add ($C,&DWP(8,@T[1]));
816 &mov (&DWP(0,@T[1]),$A);
817 &add ($D,&DWP(12,@T[1]));
818 &mov (&DWP(4,@T[1]),@T[0]);
819 &add ($E,&DWP(16,@T[1]));
820 &mov (&DWP(8,@T[1]),$C);
821 &mov ($B,@T[0]);
822 &mov (&DWP(12,@T[1]),$D);
823 &mov (&DWP(16,@T[1]),$E);
824 &movdqa (@X[0],@X[-3&7]);
825
826 &jmp (&label("loop"));
827
828&set_label("done",16); $j=$saved_j; @V=@saved_V;
829
830 &Xtail_ssse3(\&body_20_39);
831 &Xtail_ssse3(\&body_20_39);
832 &Xtail_ssse3(\&body_20_39);
833
834 &mov (@T[1],&DWP(192,"esp")); # update context
835 &add ($A,&DWP(0,@T[1]));
836 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
837 &add (@T[0],&DWP(4,@T[1])); # $b
838 &add ($C,&DWP(8,@T[1]));
839 &mov (&DWP(0,@T[1]),$A);
840 &add ($D,&DWP(12,@T[1]));
841 &mov (&DWP(4,@T[1]),@T[0]);
842 &add ($E,&DWP(16,@T[1]));
843 &mov (&DWP(8,@T[1]),$C);
844 &mov (&DWP(12,@T[1]),$D);
845 &mov (&DWP(16,@T[1]),$E);
846
847&function_end("_sha1_block_data_order_ssse3");
848
849if ($ymm) {
850my $Xi=4; # 4xSIMD Xupdate round, start pre-seeded
851my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
852my @V=($A,$B,$C,$D,$E);
853my $j=0; # hash round
854my @T=($T,$tmp1);
855my $inp;
856
857my $_rol=sub { &shld(@_[0],@_) };
858my $_ror=sub { &shrd(@_[0],@_) };
859
860&function_begin("_sha1_block_data_order_avx");
861 &picsetup($tmp1);
862 &picsymbol($tmp1, &label("K_XX_XX"), $tmp1);
863
864&set_label("avx_shortcut");
865 &vzeroall();
866
867 &vmovdqa(@X[3],&QWP(0,$tmp1)); # K_00_19
868 &vmovdqa(@X[4],&QWP(16,$tmp1)); # K_20_39
869 &vmovdqa(@X[5],&QWP(32,$tmp1)); # K_40_59
870 &vmovdqa(@X[6],&QWP(48,$tmp1)); # K_60_79
871 &vmovdqa(@X[2],&QWP(64,$tmp1)); # pbswap mask
872
873 &mov ($E,&wparam(0)); # load argument block
874 &mov ($inp=@T[1],&wparam(1));
875 &mov ($D,&wparam(2));
876 &mov (@T[0],"esp");
877
878 # stack frame layout
879 #
880 # +0 X[0]+K X[1]+K X[2]+K X[3]+K # XMM->IALU xfer area
881 # X[4]+K X[5]+K X[6]+K X[7]+K
882 # X[8]+K X[9]+K X[10]+K X[11]+K
883 # X[12]+K X[13]+K X[14]+K X[15]+K
884 #
885 # +64 X[0] X[1] X[2] X[3] # XMM->XMM backtrace area
886 # X[4] X[5] X[6] X[7]
887 # X[8] X[9] X[10] X[11] # even borrowed for K_00_19
888 #
889 # +112 K_20_39 K_20_39 K_20_39 K_20_39 # constants
890 # K_40_59 K_40_59 K_40_59 K_40_59
891 # K_60_79 K_60_79 K_60_79 K_60_79
892 # K_00_19 K_00_19 K_00_19 K_00_19
893 # pbswap mask
894 #
895 # +192 ctx # argument block
896 # +196 inp
897 # +200 end
898 # +204 esp
899 &sub ("esp",208);
900 &and ("esp",-64);
901
902 &vmovdqa(&QWP(112+0,"esp"),@X[4]); # copy constants
903 &vmovdqa(&QWP(112+16,"esp"),@X[5]);
904 &vmovdqa(&QWP(112+32,"esp"),@X[6]);
905 &shl ($D,6); # len*64
906 &vmovdqa(&QWP(112+48,"esp"),@X[3]);
907 &add ($D,$inp); # end of input
908 &vmovdqa(&QWP(112+64,"esp"),@X[2]);
909 &add ($inp,64);
910 &mov (&DWP(192+0,"esp"),$E); # save argument block
911 &mov (&DWP(192+4,"esp"),$inp);
912 &mov (&DWP(192+8,"esp"),$D);
913 &mov (&DWP(192+12,"esp"),@T[0]); # save original %esp
914
915 &mov ($A,&DWP(0,$E)); # load context
916 &mov ($B,&DWP(4,$E));
917 &mov ($C,&DWP(8,$E));
918 &mov ($D,&DWP(12,$E));
919 &mov ($E,&DWP(16,$E));
920 &mov (@T[0],$B); # magic seed
921
922 &vmovdqu(@X[-4&7],&QWP(-64,$inp)); # load input to %xmm[0-3]
923 &vmovdqu(@X[-3&7],&QWP(-48,$inp));
924 &vmovdqu(@X[-2&7],&QWP(-32,$inp));
925 &vmovdqu(@X[-1&7],&QWP(-16,$inp));
926 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
927 &vpshufb(@X[-3&7],@X[-3&7],@X[2]);
928 &vpshufb(@X[-2&7],@X[-2&7],@X[2]);
929 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
930 &vpshufb(@X[-1&7],@X[-1&7],@X[2]);
931 &vpaddd (@X[0],@X[-4&7],@X[3]); # add K_00_19
932 &vpaddd (@X[1],@X[-3&7],@X[3]);
933 &vpaddd (@X[2],@X[-2&7],@X[3]);
934 &vmovdqa(&QWP(0,"esp"),@X[0]); # X[]+K xfer to IALU
935 &vmovdqa(&QWP(0+16,"esp"),@X[1]);
936 &vmovdqa(&QWP(0+32,"esp"),@X[2]);
937 &jmp (&label("loop"));
938
939sub Xupdate_avx_16_31() # recall that $Xi starts with 4
940{ use integer;
941 my $body = shift;
942 my @insns = (&$body,&$body,&$body,&$body); # 40 instructions
943 my ($a,$b,$c,$d,$e);
944
945 eval(shift(@insns));
946 eval(shift(@insns));
947 &vpalignr(@X[0],@X[-3&7],@X[-4&7],8); # compose "X[-14]" in "X[0]"
948 eval(shift(@insns));
949 eval(shift(@insns));
950
951 &vpaddd (@X[3],@X[3],@X[-1&7]);
952 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
953 eval(shift(@insns));
954 eval(shift(@insns));
955 &vpsrldq(@X[2],@X[-1&7],4); # "X[-3]", 3 dwords
956 eval(shift(@insns));
957 eval(shift(@insns));
958 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]"
959 eval(shift(@insns));
960 eval(shift(@insns));
961
962 &vpxor (@X[2],@X[2],@X[-2&7]); # "X[-3]"^"X[-8]"
963 eval(shift(@insns));
964 eval(shift(@insns));
965 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
966 eval(shift(@insns));
967 eval(shift(@insns));
968
969 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-3]"^"X[-8]"
970 eval(shift(@insns));
971 eval(shift(@insns));
972 eval(shift(@insns));
973 eval(shift(@insns));
974
975 &vpsrld (@X[2],@X[0],31);
976 eval(shift(@insns));
977 eval(shift(@insns));
978 eval(shift(@insns));
979 eval(shift(@insns));
980
981 &vpslldq(@X[4],@X[0],12); # "X[0]"<<96, extract one dword
982 &vpaddd (@X[0],@X[0],@X[0]);
983 eval(shift(@insns));
984 eval(shift(@insns));
985 eval(shift(@insns));
986 eval(shift(@insns));
987
988 &vpsrld (@X[3],@X[4],30);
989 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=1
990 eval(shift(@insns));
991 eval(shift(@insns));
992 eval(shift(@insns));
993 eval(shift(@insns));
994
995 &vpslld (@X[4],@X[4],2);
996 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5); # restore X[] from backtrace buffer
997 eval(shift(@insns));
998 eval(shift(@insns));
999 &vpxor (@X[0],@X[0],@X[3]);
1000 eval(shift(@insns));
1001 eval(shift(@insns));
1002 eval(shift(@insns));
1003 eval(shift(@insns));
1004
1005 &vpxor (@X[0],@X[0],@X[4]); # "X[0]"^=("X[0]"<<96)<<<2
1006 eval(shift(@insns));
1007 eval(shift(@insns));
1008 &vmovdqa (@X[4],&QWP(112-16+16*(($Xi)/5),"esp")); # K_XX_XX
1009 eval(shift(@insns));
1010 eval(shift(@insns));
1011
1012 foreach (@insns) { eval; } # remaining instructions [if any]
1013
1014 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1015}
1016
1017sub Xupdate_avx_32_79()
1018{ use integer;
1019 my $body = shift;
1020 my @insns = (&$body,&$body,&$body,&$body); # 32 to 48 instructions
1021 my ($a,$b,$c,$d,$e);
1022
1023 &vpalignr(@X[2],@X[-1&7],@X[-2&7],8); # compose "X[-6]"
1024 &vpxor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]"
1025 eval(shift(@insns)); # body_20_39
1026 eval(shift(@insns));
1027 eval(shift(@insns));
1028 eval(shift(@insns)); # rol
1029
1030 &vpxor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]"
1031 &vmovdqa (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]); # save X[] to backtrace buffer
1032 eval(shift(@insns));
1033 eval(shift(@insns));
1034 if ($Xi%5) {
1035 &vmovdqa (@X[4],@X[3]); # "perpetuate" K_XX_XX...
1036 } else { # ... or load next one
1037 &vmovdqa (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1038 }
1039 &vpaddd (@X[3],@X[3],@X[-1&7]);
1040 eval(shift(@insns)); # ror
1041 eval(shift(@insns));
1042
1043 &vpxor (@X[0],@X[0],@X[2]); # "X[0]"^="X[-6]"
1044 eval(shift(@insns)); # body_20_39
1045 eval(shift(@insns));
1046 eval(shift(@insns));
1047 eval(shift(@insns)); # rol
1048
1049 &vpsrld (@X[2],@X[0],30);
1050 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer to IALU
1051 eval(shift(@insns));
1052 eval(shift(@insns));
1053 eval(shift(@insns)); # ror
1054 eval(shift(@insns));
1055
1056 &vpslld (@X[0],@X[0],2);
1057 eval(shift(@insns)); # body_20_39
1058 eval(shift(@insns));
1059 eval(shift(@insns));
1060 eval(shift(@insns)); # rol
1061 eval(shift(@insns));
1062 eval(shift(@insns));
1063 eval(shift(@insns)); # ror
1064 eval(shift(@insns));
1065
1066 &vpor (@X[0],@X[0],@X[2]); # "X[0]"<<<=2
1067 eval(shift(@insns)); # body_20_39
1068 eval(shift(@insns));
1069 &vmovdqa (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19); # restore X[] from backtrace buffer
1070 eval(shift(@insns));
1071 eval(shift(@insns)); # rol
1072 eval(shift(@insns));
1073 eval(shift(@insns));
1074 eval(shift(@insns)); # ror
1075 eval(shift(@insns));
1076
1077 foreach (@insns) { eval; } # remaining instructions
1078
1079 $Xi++; push(@X,shift(@X)); # "rotate" X[]
1080}
1081
1082sub Xuplast_avx_80()
1083{ use integer;
1084 my $body = shift;
1085 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1086 my ($a,$b,$c,$d,$e);
1087
1088 eval(shift(@insns));
1089 &vpaddd (@X[3],@X[3],@X[-1&7]);
1090 eval(shift(@insns));
1091 eval(shift(@insns));
1092 eval(shift(@insns));
1093 eval(shift(@insns));
1094
1095 &vmovdqa (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]); # X[]+K xfer IALU
1096
1097 foreach (@insns) { eval; } # remaining instructions
1098
1099 &mov ($inp=@T[1],&DWP(192+4,"esp"));
1100 &cmp ($inp,&DWP(192+8,"esp"));
1101 &je (&label("done"));
1102
1103 &vmovdqa(@X[3],&QWP(112+48,"esp")); # K_00_19
1104 &vmovdqa(@X[2],&QWP(112+64,"esp")); # pbswap mask
1105 &vmovdqu(@X[-4&7],&QWP(0,$inp)); # load input
1106 &vmovdqu(@X[-3&7],&QWP(16,$inp));
1107 &vmovdqu(@X[-2&7],&QWP(32,$inp));
1108 &vmovdqu(@X[-1&7],&QWP(48,$inp));
1109 &add ($inp,64);
1110 &vpshufb(@X[-4&7],@X[-4&7],@X[2]); # byte swap
1111 &mov (&DWP(192+4,"esp"),$inp);
1112 &vmovdqa(&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
1113
1114 $Xi=0;
1115}
1116
1117sub Xloop_avx()
1118{ use integer;
1119 my $body = shift;
1120 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1121 my ($a,$b,$c,$d,$e);
1122
1123 eval(shift(@insns));
1124 eval(shift(@insns));
1125 &vpshufb (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1126 eval(shift(@insns));
1127 eval(shift(@insns));
1128 &vpaddd (@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1129 eval(shift(@insns));
1130 eval(shift(@insns));
1131 eval(shift(@insns));
1132 eval(shift(@insns));
1133 &vmovdqa (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]); # X[]+K xfer to IALU
1134 eval(shift(@insns));
1135 eval(shift(@insns));
1136
1137 foreach (@insns) { eval; }
1138 $Xi++;
1139}
1140
1141sub Xtail_avx()
1142{ use integer;
1143 my $body = shift;
1144 my @insns = (&$body,&$body,&$body,&$body); # 32 instructions
1145 my ($a,$b,$c,$d,$e);
1146
1147 foreach (@insns) { eval; }
1148}
1149
1150&set_label("loop",16);
1151 &Xupdate_avx_16_31(\&body_00_19);
1152 &Xupdate_avx_16_31(\&body_00_19);
1153 &Xupdate_avx_16_31(\&body_00_19);
1154 &Xupdate_avx_16_31(\&body_00_19);
1155 &Xupdate_avx_32_79(\&body_00_19);
1156 &Xupdate_avx_32_79(\&body_20_39);
1157 &Xupdate_avx_32_79(\&body_20_39);
1158 &Xupdate_avx_32_79(\&body_20_39);
1159 &Xupdate_avx_32_79(\&body_20_39);
1160 &Xupdate_avx_32_79(\&body_20_39);
1161 &Xupdate_avx_32_79(\&body_40_59);
1162 &Xupdate_avx_32_79(\&body_40_59);
1163 &Xupdate_avx_32_79(\&body_40_59);
1164 &Xupdate_avx_32_79(\&body_40_59);
1165 &Xupdate_avx_32_79(\&body_40_59);
1166 &Xupdate_avx_32_79(\&body_20_39);
1167 &Xuplast_avx_80(\&body_20_39); # can jump to "done"
1168
1169 $saved_j=$j; @saved_V=@V;
1170
1171 &Xloop_avx(\&body_20_39);
1172 &Xloop_avx(\&body_20_39);
1173 &Xloop_avx(\&body_20_39);
1174
1175 &mov (@T[1],&DWP(192,"esp")); # update context
1176 &add ($A,&DWP(0,@T[1]));
1177 &add (@T[0],&DWP(4,@T[1])); # $b
1178 &add ($C,&DWP(8,@T[1]));
1179 &mov (&DWP(0,@T[1]),$A);
1180 &add ($D,&DWP(12,@T[1]));
1181 &mov (&DWP(4,@T[1]),@T[0]);
1182 &add ($E,&DWP(16,@T[1]));
1183 &mov (&DWP(8,@T[1]),$C);
1184 &mov ($B,@T[0]);
1185 &mov (&DWP(12,@T[1]),$D);
1186 &mov (&DWP(16,@T[1]),$E);
1187
1188 &jmp (&label("loop"));
1189
1190&set_label("done",16); $j=$saved_j; @V=@saved_V;
1191
1192 &Xtail_avx(\&body_20_39);
1193 &Xtail_avx(\&body_20_39);
1194 &Xtail_avx(\&body_20_39);
1195
1196 &vzeroall();
1197
1198 &mov (@T[1],&DWP(192,"esp")); # update context
1199 &add ($A,&DWP(0,@T[1]));
1200 &mov ("esp",&DWP(192+12,"esp")); # restore %esp
1201 &add (@T[0],&DWP(4,@T[1])); # $b
1202 &add ($C,&DWP(8,@T[1]));
1203 &mov (&DWP(0,@T[1]),$A);
1204 &add ($D,&DWP(12,@T[1]));
1205 &mov (&DWP(4,@T[1]),@T[0]);
1206 &add ($E,&DWP(16,@T[1]));
1207 &mov (&DWP(8,@T[1]),$C);
1208 &mov (&DWP(12,@T[1]),$D);
1209 &mov (&DWP(16,@T[1]),$E);
1210&function_end("_sha1_block_data_order_avx");
1211}
1212
1213 &rodataseg();
1214&set_label("K_XX_XX",64);
1215&data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999); # K_00_19
1216&data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1); # K_20_39
1217&data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc); # K_40_59
1218&data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6); # K_60_79
1219&data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f); # pbswap mask
1220 &previous();
1221}
1222
1223&asm_finish();