diff options
author | jsing <> | 2014-04-21 13:04:02 +0000 |
---|---|---|
committer | jsing <> | 2014-04-21 13:04:02 +0000 |
commit | 3a880eb2ba098077540eaaad8bae436dc2f546bb (patch) | |
tree | 07783cfbbde55bf969ec5774593a54462ebe763a /src/lib/libcrypto/x509v3/v3_addr.c | |
parent | a13698710d1bf0bac4832733da5c86886601b5d4 (diff) | |
download | openbsd-3a880eb2ba098077540eaaad8bae436dc2f546bb.tar.gz openbsd-3a880eb2ba098077540eaaad8bae436dc2f546bb.tar.bz2 openbsd-3a880eb2ba098077540eaaad8bae436dc2f546bb.zip |
KNF.
Diffstat (limited to 'src/lib/libcrypto/x509v3/v3_addr.c')
-rw-r--r-- | src/lib/libcrypto/x509v3/v3_addr.c | 2068 |
1 files changed, 1068 insertions, 1000 deletions
diff --git a/src/lib/libcrypto/x509v3/v3_addr.c b/src/lib/libcrypto/x509v3/v3_addr.c index 179f08d222..084209f5a1 100644 --- a/src/lib/libcrypto/x509v3/v3_addr.c +++ b/src/lib/libcrypto/x509v3/v3_addr.c | |||
@@ -10,7 +10,7 @@ | |||
10 | * are met: | 10 | * are met: |
11 | * | 11 | * |
12 | * 1. Redistributions of source code must retain the above copyright | 12 | * 1. Redistributions of source code must retain the above copyright |
13 | * notice, this list of conditions and the following disclaimer. | 13 | * notice, this list of conditions and the following disclaimer. |
14 | * | 14 | * |
15 | * 2. Redistributions in binary form must reproduce the above copyright | 15 | * 2. Redistributions in binary form must reproduce the above copyright |
16 | * notice, this list of conditions and the following disclaimer in | 16 | * notice, this list of conditions and the following disclaimer in |
@@ -76,28 +76,28 @@ | |||
76 | */ | 76 | */ |
77 | 77 | ||
78 | ASN1_SEQUENCE(IPAddressRange) = { | 78 | ASN1_SEQUENCE(IPAddressRange) = { |
79 | ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING), | 79 | ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING), |
80 | ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING) | 80 | ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING) |
81 | } ASN1_SEQUENCE_END(IPAddressRange) | 81 | } ASN1_SEQUENCE_END(IPAddressRange) |
82 | 82 | ||
83 | ASN1_CHOICE(IPAddressOrRange) = { | 83 | ASN1_CHOICE(IPAddressOrRange) = { |
84 | ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING), | 84 | ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING), |
85 | ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange) | 85 | ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange) |
86 | } ASN1_CHOICE_END(IPAddressOrRange) | 86 | } ASN1_CHOICE_END(IPAddressOrRange) |
87 | 87 | ||
88 | ASN1_CHOICE(IPAddressChoice) = { | 88 | ASN1_CHOICE(IPAddressChoice) = { |
89 | ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL), | 89 | ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL), |
90 | ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange) | 90 | ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange) |
91 | } ASN1_CHOICE_END(IPAddressChoice) | 91 | } ASN1_CHOICE_END(IPAddressChoice) |
92 | 92 | ||
93 | ASN1_SEQUENCE(IPAddressFamily) = { | 93 | ASN1_SEQUENCE(IPAddressFamily) = { |
94 | ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING), | 94 | ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING), |
95 | ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice) | 95 | ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice) |
96 | } ASN1_SEQUENCE_END(IPAddressFamily) | 96 | } ASN1_SEQUENCE_END(IPAddressFamily) |
97 | 97 | ||
98 | ASN1_ITEM_TEMPLATE(IPAddrBlocks) = | 98 | ASN1_ITEM_TEMPLATE(IPAddrBlocks) = |
99 | ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, | 99 | ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, |
100 | IPAddrBlocks, IPAddressFamily) | 100 | IPAddrBlocks, IPAddressFamily) |
101 | ASN1_ITEM_TEMPLATE_END(IPAddrBlocks) | 101 | ASN1_ITEM_TEMPLATE_END(IPAddrBlocks) |
102 | 102 | ||
103 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange) | 103 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange) |
@@ -113,54 +113,53 @@ IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily) | |||
113 | /* | 113 | /* |
114 | * What's the address length associated with this AFI? | 114 | * What's the address length associated with this AFI? |
115 | */ | 115 | */ |
116 | static int length_from_afi(const unsigned afi) | 116 | static int |
117 | length_from_afi(const unsigned afi) | ||
117 | { | 118 | { |
118 | switch (afi) { | 119 | switch (afi) { |
119 | case IANA_AFI_IPV4: | 120 | case IANA_AFI_IPV4: |
120 | return 4; | 121 | return 4; |
121 | case IANA_AFI_IPV6: | 122 | case IANA_AFI_IPV6: |
122 | return 16; | 123 | return 16; |
123 | default: | 124 | default: |
124 | return 0; | 125 | return 0; |
125 | } | 126 | } |
126 | } | 127 | } |
127 | 128 | ||
128 | /* | 129 | /* |
129 | * Extract the AFI from an IPAddressFamily. | 130 | * Extract the AFI from an IPAddressFamily. |
130 | */ | 131 | */ |
131 | unsigned int v3_addr_get_afi(const IPAddressFamily *f) | 132 | unsigned int |
133 | v3_addr_get_afi(const IPAddressFamily *f) | ||
132 | { | 134 | { |
133 | return ((f != NULL && | 135 | return ((f != NULL && f->addressFamily != NULL && |
134 | f->addressFamily != NULL && | 136 | f->addressFamily->data != NULL) ? |
135 | f->addressFamily->data != NULL) | 137 | ((f->addressFamily->data[0] << 8) | (f->addressFamily->data[1])) : |
136 | ? ((f->addressFamily->data[0] << 8) | | 138 | 0); |
137 | (f->addressFamily->data[1])) | ||
138 | : 0); | ||
139 | } | 139 | } |
140 | 140 | ||
141 | /* | 141 | /* |
142 | * Expand the bitstring form of an address into a raw byte array. | 142 | * Expand the bitstring form of an address into a raw byte array. |
143 | * At the moment this is coded for simplicity, not speed. | 143 | * At the moment this is coded for simplicity, not speed. |
144 | */ | 144 | */ |
145 | static int addr_expand(unsigned char *addr, | 145 | static int |
146 | const ASN1_BIT_STRING *bs, | 146 | addr_expand(unsigned char *addr, const ASN1_BIT_STRING *bs, const int length, |
147 | const int length, | 147 | const unsigned char fill) |
148 | const unsigned char fill) | ||
149 | { | 148 | { |
150 | if (bs->length < 0 || bs->length > length) | 149 | if (bs->length < 0 || bs->length > length) |
151 | return 0; | 150 | return 0; |
152 | if (bs->length > 0) { | 151 | if (bs->length > 0) { |
153 | memcpy(addr, bs->data, bs->length); | 152 | memcpy(addr, bs->data, bs->length); |
154 | if ((bs->flags & 7) != 0) { | 153 | if ((bs->flags & 7) != 0) { |
155 | unsigned char mask = 0xFF >> (8 - (bs->flags & 7)); | 154 | unsigned char mask = 0xFF >> (8 - (bs->flags & 7)); |
156 | if (fill == 0) | 155 | if (fill == 0) |
157 | addr[bs->length - 1] &= ~mask; | 156 | addr[bs->length - 1] &= ~mask; |
158 | else | 157 | else |
159 | addr[bs->length - 1] |= mask; | 158 | addr[bs->length - 1] |= mask; |
160 | } | 159 | } |
161 | } | 160 | } |
162 | memset(addr + bs->length, fill, length - bs->length); | 161 | memset(addr + bs->length, fill, length - bs->length); |
163 | return 1; | 162 | return 1; |
164 | } | 163 | } |
165 | 164 | ||
166 | /* | 165 | /* |
@@ -171,145 +170,150 @@ static int addr_expand(unsigned char *addr, | |||
171 | /* | 170 | /* |
172 | * i2r handler for one address bitstring. | 171 | * i2r handler for one address bitstring. |
173 | */ | 172 | */ |
174 | static int i2r_address(BIO *out, | 173 | static int |
175 | const unsigned afi, | 174 | i2r_address(BIO *out, const unsigned afi, const unsigned char fill, |
176 | const unsigned char fill, | 175 | const ASN1_BIT_STRING *bs) |
177 | const ASN1_BIT_STRING *bs) | ||
178 | { | 176 | { |
179 | unsigned char addr[ADDR_RAW_BUF_LEN]; | 177 | unsigned char addr[ADDR_RAW_BUF_LEN]; |
180 | int i, n; | 178 | int i, n; |
181 | 179 | ||
182 | if (bs->length < 0) | 180 | if (bs->length < 0) |
183 | return 0; | 181 | return 0; |
184 | switch (afi) { | 182 | switch (afi) { |
185 | case IANA_AFI_IPV4: | 183 | case IANA_AFI_IPV4: |
186 | if (!addr_expand(addr, bs, 4, fill)) | 184 | if (!addr_expand(addr, bs, 4, fill)) |
187 | return 0; | 185 | return 0; |
188 | BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]); | 186 | BIO_printf(out, "%d.%d.%d.%d", |
189 | break; | 187 | addr[0], addr[1], addr[2], addr[3]); |
190 | case IANA_AFI_IPV6: | 188 | break; |
191 | if (!addr_expand(addr, bs, 16, fill)) | 189 | case IANA_AFI_IPV6: |
192 | return 0; | 190 | if (!addr_expand(addr, bs, 16, fill)) |
193 | for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2) | 191 | return 0; |
194 | ; | 192 | for (n = 16; |
195 | for (i = 0; i < n; i += 2) | 193 | n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00; n -= 2) |
196 | BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : "")); | 194 | ; |
197 | if (i < 16) | 195 | for (i = 0; i < n; i += 2) |
198 | BIO_puts(out, ":"); | 196 | BIO_printf(out, "%x%s", |
199 | if (i == 0) | 197 | (addr[i] << 8) | addr[i + 1], (i < 14 ? ":" : "")); |
200 | BIO_puts(out, ":"); | 198 | if (i < 16) |
201 | break; | 199 | BIO_puts(out, ":"); |
202 | default: | 200 | if (i == 0) |
203 | for (i = 0; i < bs->length; i++) | 201 | BIO_puts(out, ":"); |
204 | BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]); | 202 | break; |
205 | BIO_printf(out, "[%d]", (int) (bs->flags & 7)); | 203 | default: |
206 | break; | 204 | for (i = 0; i < bs->length; i++) |
207 | } | 205 | BIO_printf(out, "%s%02x", |
208 | return 1; | 206 | (i > 0 ? ":" : ""), bs->data[i]); |
207 | BIO_printf(out, "[%d]", (int)(bs->flags & 7)); | ||
208 | break; | ||
209 | } | ||
210 | return 1; | ||
209 | } | 211 | } |
210 | 212 | ||
211 | /* | 213 | /* |
212 | * i2r handler for a sequence of addresses and ranges. | 214 | * i2r handler for a sequence of addresses and ranges. |
213 | */ | 215 | */ |
214 | static int i2r_IPAddressOrRanges(BIO *out, | 216 | static int |
215 | const int indent, | 217 | i2r_IPAddressOrRanges(BIO *out, const int indent, const IPAddressOrRanges *aors, |
216 | const IPAddressOrRanges *aors, | 218 | const unsigned afi) |
217 | const unsigned afi) | ||
218 | { | 219 | { |
219 | int i; | 220 | int i; |
220 | for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { | 221 | |
221 | const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i); | 222 | for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { |
222 | BIO_printf(out, "%*s", indent, ""); | 223 | const IPAddressOrRange *aor = |
223 | switch (aor->type) { | 224 | sk_IPAddressOrRange_value(aors, i); |
224 | case IPAddressOrRange_addressPrefix: | 225 | BIO_printf(out, "%*s", indent, ""); |
225 | if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix)) | 226 | switch (aor->type) { |
226 | return 0; | 227 | case IPAddressOrRange_addressPrefix: |
227 | BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix)); | 228 | if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix)) |
228 | continue; | 229 | return 0; |
229 | case IPAddressOrRange_addressRange: | 230 | BIO_printf(out, "/%d\n", |
230 | if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min)) | 231 | addr_prefixlen(aor->u.addressPrefix)); |
231 | return 0; | 232 | continue; |
232 | BIO_puts(out, "-"); | 233 | case IPAddressOrRange_addressRange: |
233 | if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max)) | 234 | if (!i2r_address(out, afi, 0x00, |
234 | return 0; | 235 | aor->u.addressRange->min)) |
235 | BIO_puts(out, "\n"); | 236 | return 0; |
236 | continue; | 237 | BIO_puts(out, "-"); |
237 | } | 238 | if (!i2r_address(out, afi, 0xFF, |
238 | } | 239 | aor->u.addressRange->max)) |
239 | return 1; | 240 | return 0; |
241 | BIO_puts(out, "\n"); | ||
242 | continue; | ||
243 | } | ||
244 | } | ||
245 | return 1; | ||
240 | } | 246 | } |
241 | 247 | ||
242 | /* | 248 | /* |
243 | * i2r handler for an IPAddrBlocks extension. | 249 | * i2r handler for an IPAddrBlocks extension. |
244 | */ | 250 | */ |
245 | static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, | 251 | static int |
246 | void *ext, | 252 | i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, void *ext, BIO *out, |
247 | BIO *out, | 253 | int indent) |
248 | int indent) | ||
249 | { | 254 | { |
250 | const IPAddrBlocks *addr = ext; | 255 | const IPAddrBlocks *addr = ext; |
251 | int i; | 256 | int i; |
252 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 257 | |
253 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | 258 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
254 | const unsigned int afi = v3_addr_get_afi(f); | 259 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); |
255 | switch (afi) { | 260 | const unsigned int afi = v3_addr_get_afi(f); |
256 | case IANA_AFI_IPV4: | 261 | switch (afi) { |
257 | BIO_printf(out, "%*sIPv4", indent, ""); | 262 | case IANA_AFI_IPV4: |
258 | break; | 263 | BIO_printf(out, "%*sIPv4", indent, ""); |
259 | case IANA_AFI_IPV6: | 264 | break; |
260 | BIO_printf(out, "%*sIPv6", indent, ""); | 265 | case IANA_AFI_IPV6: |
261 | break; | 266 | BIO_printf(out, "%*sIPv6", indent, ""); |
262 | default: | 267 | break; |
263 | BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); | 268 | default: |
264 | break; | 269 | BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); |
265 | } | 270 | break; |
266 | if (f->addressFamily->length > 2) { | 271 | } |
267 | switch (f->addressFamily->data[2]) { | 272 | if (f->addressFamily->length > 2) { |
268 | case 1: | 273 | switch (f->addressFamily->data[2]) { |
269 | BIO_puts(out, " (Unicast)"); | 274 | case 1: |
270 | break; | 275 | BIO_puts(out, " (Unicast)"); |
271 | case 2: | 276 | break; |
272 | BIO_puts(out, " (Multicast)"); | 277 | case 2: |
273 | break; | 278 | BIO_puts(out, " (Multicast)"); |
274 | case 3: | 279 | break; |
275 | BIO_puts(out, " (Unicast/Multicast)"); | 280 | case 3: |
276 | break; | 281 | BIO_puts(out, " (Unicast/Multicast)"); |
277 | case 4: | 282 | break; |
278 | BIO_puts(out, " (MPLS)"); | 283 | case 4: |
279 | break; | 284 | BIO_puts(out, " (MPLS)"); |
280 | case 64: | 285 | break; |
281 | BIO_puts(out, " (Tunnel)"); | 286 | case 64: |
282 | break; | 287 | BIO_puts(out, " (Tunnel)"); |
283 | case 65: | 288 | break; |
284 | BIO_puts(out, " (VPLS)"); | 289 | case 65: |
285 | break; | 290 | BIO_puts(out, " (VPLS)"); |
286 | case 66: | 291 | break; |
287 | BIO_puts(out, " (BGP MDT)"); | 292 | case 66: |
288 | break; | 293 | BIO_puts(out, " (BGP MDT)"); |
289 | case 128: | 294 | break; |
290 | BIO_puts(out, " (MPLS-labeled VPN)"); | 295 | case 128: |
291 | break; | 296 | BIO_puts(out, " (MPLS-labeled VPN)"); |
292 | default: | 297 | break; |
293 | BIO_printf(out, " (Unknown SAFI %u)", | 298 | default: |
294 | (unsigned) f->addressFamily->data[2]); | 299 | BIO_printf(out, " (Unknown SAFI %u)", |
295 | break; | 300 | (unsigned)f->addressFamily->data[2]); |
296 | } | 301 | break; |
297 | } | 302 | } |
298 | switch (f->ipAddressChoice->type) { | 303 | } |
299 | case IPAddressChoice_inherit: | 304 | switch (f->ipAddressChoice->type) { |
300 | BIO_puts(out, ": inherit\n"); | 305 | case IPAddressChoice_inherit: |
301 | break; | 306 | BIO_puts(out, ": inherit\n"); |
302 | case IPAddressChoice_addressesOrRanges: | 307 | break; |
303 | BIO_puts(out, ":\n"); | 308 | case IPAddressChoice_addressesOrRanges: |
304 | if (!i2r_IPAddressOrRanges(out, | 309 | BIO_puts(out, ":\n"); |
305 | indent + 2, | 310 | if (!i2r_IPAddressOrRanges(out, indent + 2, |
306 | f->ipAddressChoice->u.addressesOrRanges, | 311 | f->ipAddressChoice->u.addressesOrRanges, afi)) |
307 | afi)) | 312 | return 0; |
308 | return 0; | 313 | break; |
309 | break; | 314 | } |
310 | } | 315 | } |
311 | } | 316 | return 1; |
312 | return 1; | ||
313 | } | 317 | } |
314 | 318 | ||
315 | /* | 319 | /* |
@@ -322,134 +326,151 @@ static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, | |||
322 | * function returns -1. If this messes up your preferred sort order | 326 | * function returns -1. If this messes up your preferred sort order |
323 | * for garbage input, tough noogies. | 327 | * for garbage input, tough noogies. |
324 | */ | 328 | */ |
325 | static int IPAddressOrRange_cmp(const IPAddressOrRange *a, | 329 | static int |
326 | const IPAddressOrRange *b, | 330 | IPAddressOrRange_cmp(const IPAddressOrRange *a, const IPAddressOrRange *b, |
327 | const int length) | 331 | const int length) |
328 | { | 332 | { |
329 | unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; | 333 | unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; |
330 | int prefixlen_a = 0, prefixlen_b = 0; | 334 | int prefixlen_a = 0, prefixlen_b = 0; |
331 | int r; | 335 | int r; |
332 | 336 | ||
333 | switch (a->type) { | 337 | switch (a->type) { |
334 | case IPAddressOrRange_addressPrefix: | 338 | case IPAddressOrRange_addressPrefix: |
335 | if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00)) | 339 | if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00)) |
336 | return -1; | 340 | return -1; |
337 | prefixlen_a = addr_prefixlen(a->u.addressPrefix); | 341 | prefixlen_a = addr_prefixlen(a->u.addressPrefix); |
338 | break; | 342 | break; |
339 | case IPAddressOrRange_addressRange: | 343 | case IPAddressOrRange_addressRange: |
340 | if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00)) | 344 | if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00)) |
341 | return -1; | 345 | return -1; |
342 | prefixlen_a = length * 8; | 346 | prefixlen_a = length * 8; |
343 | break; | 347 | break; |
344 | } | 348 | } |
345 | 349 | ||
346 | switch (b->type) { | 350 | switch (b->type) { |
347 | case IPAddressOrRange_addressPrefix: | 351 | case IPAddressOrRange_addressPrefix: |
348 | if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00)) | 352 | if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00)) |
349 | return -1; | 353 | return -1; |
350 | prefixlen_b = addr_prefixlen(b->u.addressPrefix); | 354 | prefixlen_b = addr_prefixlen(b->u.addressPrefix); |
351 | break; | 355 | break; |
352 | case IPAddressOrRange_addressRange: | 356 | case IPAddressOrRange_addressRange: |
353 | if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00)) | 357 | if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00)) |
354 | return -1; | 358 | return -1; |
355 | prefixlen_b = length * 8; | 359 | prefixlen_b = length * 8; |
356 | break; | 360 | break; |
357 | } | 361 | } |
358 | 362 | ||
359 | if ((r = memcmp(addr_a, addr_b, length)) != 0) | 363 | if ((r = memcmp(addr_a, addr_b, length)) != 0) |
360 | return r; | 364 | return r; |
361 | else | 365 | else |
362 | return prefixlen_a - prefixlen_b; | 366 | return prefixlen_a - prefixlen_b; |
363 | } | 367 | } |
364 | 368 | ||
365 | /* | 369 | /* |
366 | * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() | 370 | * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() |
367 | * comparision routines are only allowed two arguments. | 371 | * comparision routines are only allowed two arguments. |
368 | */ | 372 | */ |
369 | static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a, | 373 | static int |
370 | const IPAddressOrRange * const *b) | 374 | v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a, |
375 | const IPAddressOrRange * const *b) | ||
371 | { | 376 | { |
372 | return IPAddressOrRange_cmp(*a, *b, 4); | 377 | return IPAddressOrRange_cmp(*a, *b, 4); |
373 | } | 378 | } |
374 | 379 | ||
375 | /* | 380 | /* |
376 | * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() | 381 | * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() |
377 | * comparision routines are only allowed two arguments. | 382 | * comparision routines are only allowed two arguments. |
378 | */ | 383 | */ |
379 | static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a, | 384 | static int |
380 | const IPAddressOrRange * const *b) | 385 | v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a, |
386 | const IPAddressOrRange * const *b) | ||
381 | { | 387 | { |
382 | return IPAddressOrRange_cmp(*a, *b, 16); | 388 | return IPAddressOrRange_cmp(*a, *b, 16); |
383 | } | 389 | } |
384 | 390 | ||
385 | /* | 391 | /* |
386 | * Calculate whether a range collapses to a prefix. | 392 | * Calculate whether a range collapses to a prefix. |
387 | * See last paragraph of RFC 3779 2.2.3.7. | 393 | * See last paragraph of RFC 3779 2.2.3.7. |
388 | */ | 394 | */ |
389 | static int range_should_be_prefix(const unsigned char *min, | 395 | static int |
390 | const unsigned char *max, | 396 | range_should_be_prefix(const unsigned char *min, const unsigned char *max, |
391 | const int length) | 397 | const int length) |
392 | { | 398 | { |
393 | unsigned char mask; | 399 | unsigned char mask; |
394 | int i, j; | 400 | int i, j; |
395 | 401 | ||
396 | OPENSSL_assert(memcmp(min, max, length) <= 0); | 402 | OPENSSL_assert(memcmp(min, max, length) <= 0); |
397 | for (i = 0; i < length && min[i] == max[i]; i++) | 403 | for (i = 0; i < length && min[i] == max[i]; i++) |
398 | ; | 404 | ; |
399 | for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) | 405 | for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) |
400 | ; | 406 | ; |
401 | if (i < j) | 407 | if (i < j) |
402 | return -1; | 408 | return -1; |
403 | if (i > j) | 409 | if (i > j) |
404 | return i * 8; | 410 | return i * 8; |
405 | mask = min[i] ^ max[i]; | 411 | mask = min[i] ^ max[i]; |
406 | switch (mask) { | 412 | switch (mask) { |
407 | case 0x01: j = 7; break; | 413 | case 0x01: |
408 | case 0x03: j = 6; break; | 414 | j = 7; |
409 | case 0x07: j = 5; break; | 415 | break; |
410 | case 0x0F: j = 4; break; | 416 | case 0x03: |
411 | case 0x1F: j = 3; break; | 417 | j = 6; |
412 | case 0x3F: j = 2; break; | 418 | break; |
413 | case 0x7F: j = 1; break; | 419 | case 0x07: |
414 | default: return -1; | 420 | j = 5; |
415 | } | 421 | break; |
416 | if ((min[i] & mask) != 0 || (max[i] & mask) != mask) | 422 | case 0x0F: |
417 | return -1; | 423 | j = 4; |
418 | else | 424 | break; |
419 | return i * 8 + j; | 425 | case 0x1F: |
426 | j = 3; | ||
427 | break; | ||
428 | case 0x3F: | ||
429 | j = 2; | ||
430 | break; | ||
431 | case 0x7F: | ||
432 | j = 1; | ||
433 | break; | ||
434 | default: | ||
435 | return -1; | ||
436 | } | ||
437 | if ((min[i] & mask) != 0 || (max[i] & mask) != mask) | ||
438 | return -1; | ||
439 | else | ||
440 | return i * 8 + j; | ||
420 | } | 441 | } |
421 | 442 | ||
422 | /* | 443 | /* |
423 | * Construct a prefix. | 444 | * Construct a prefix. |
424 | */ | 445 | */ |
425 | static int make_addressPrefix(IPAddressOrRange **result, | 446 | static int |
426 | unsigned char *addr, | 447 | make_addressPrefix(IPAddressOrRange **result, unsigned char *addr, |
427 | const int prefixlen) | 448 | const int prefixlen) |
428 | { | 449 | { |
429 | int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8; | 450 | int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8; |
430 | IPAddressOrRange *aor = IPAddressOrRange_new(); | 451 | IPAddressOrRange *aor = IPAddressOrRange_new(); |
431 | 452 | ||
432 | if (aor == NULL) | 453 | if (aor == NULL) |
433 | return 0; | 454 | return 0; |
434 | aor->type = IPAddressOrRange_addressPrefix; | 455 | aor->type = IPAddressOrRange_addressPrefix; |
435 | if (aor->u.addressPrefix == NULL && | 456 | if (aor->u.addressPrefix == NULL && |
436 | (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) | 457 | (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) |
437 | goto err; | 458 | goto err; |
438 | if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen)) | 459 | if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen)) |
439 | goto err; | 460 | goto err; |
440 | aor->u.addressPrefix->flags &= ~7; | 461 | aor->u.addressPrefix->flags &= ~7; |
441 | aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT; | 462 | aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT; |
442 | if (bitlen > 0) { | 463 | if (bitlen > 0) { |
443 | aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen); | 464 | aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen); |
444 | aor->u.addressPrefix->flags |= 8 - bitlen; | 465 | aor->u.addressPrefix->flags |= 8 - bitlen; |
445 | } | 466 | } |
446 | 467 | ||
447 | *result = aor; | 468 | *result = aor; |
448 | return 1; | 469 | return 1; |
449 | 470 | ||
450 | err: | 471 | err: |
451 | IPAddressOrRange_free(aor); | 472 | IPAddressOrRange_free(aor); |
452 | return 0; | 473 | return 0; |
453 | } | 474 | } |
454 | 475 | ||
455 | /* | 476 | /* |
@@ -457,252 +478,251 @@ static int make_addressPrefix(IPAddressOrRange **result, | |||
457 | * return a prefix instead. Doing this here simplifies | 478 | * return a prefix instead. Doing this here simplifies |
458 | * the rest of the code considerably. | 479 | * the rest of the code considerably. |
459 | */ | 480 | */ |
460 | static int make_addressRange(IPAddressOrRange **result, | 481 | static int |
461 | unsigned char *min, | 482 | make_addressRange(IPAddressOrRange **result, unsigned char *min, |
462 | unsigned char *max, | 483 | unsigned char *max, const int length) |
463 | const int length) | ||
464 | { | 484 | { |
465 | IPAddressOrRange *aor; | 485 | IPAddressOrRange *aor; |
466 | int i, prefixlen; | 486 | int i, prefixlen; |
467 | 487 | ||
468 | if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0) | 488 | if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0) |
469 | return make_addressPrefix(result, min, prefixlen); | 489 | return make_addressPrefix(result, min, prefixlen); |
470 | 490 | ||
471 | if ((aor = IPAddressOrRange_new()) == NULL) | 491 | if ((aor = IPAddressOrRange_new()) == NULL) |
472 | return 0; | 492 | return 0; |
473 | aor->type = IPAddressOrRange_addressRange; | 493 | aor->type = IPAddressOrRange_addressRange; |
474 | OPENSSL_assert(aor->u.addressRange == NULL); | 494 | OPENSSL_assert(aor->u.addressRange == NULL); |
475 | if ((aor->u.addressRange = IPAddressRange_new()) == NULL) | 495 | if ((aor->u.addressRange = IPAddressRange_new()) == NULL) |
476 | goto err; | 496 | goto err; |
477 | if (aor->u.addressRange->min == NULL && | 497 | if (aor->u.addressRange->min == NULL && |
478 | (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL) | 498 | (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL) |
479 | goto err; | 499 | goto err; |
480 | if (aor->u.addressRange->max == NULL && | 500 | if (aor->u.addressRange->max == NULL && |
481 | (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL) | 501 | (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL) |
482 | goto err; | 502 | goto err; |
483 | 503 | ||
484 | for (i = length; i > 0 && min[i - 1] == 0x00; --i) | 504 | for (i = length; i > 0 && min[i - 1] == 0x00; --i) |
485 | ; | 505 | ; |
486 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) | 506 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) |
487 | goto err; | 507 | goto err; |
488 | aor->u.addressRange->min->flags &= ~7; | 508 | aor->u.addressRange->min->flags &= ~7; |
489 | aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT; | 509 | aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT; |
490 | if (i > 0) { | 510 | if (i > 0) { |
491 | unsigned char b = min[i - 1]; | 511 | unsigned char b = min[i - 1]; |
492 | int j = 1; | 512 | int j = 1; |
493 | while ((b & (0xFFU >> j)) != 0) | 513 | while ((b & (0xFFU >> j)) != 0) |
494 | ++j; | 514 | ++j; |
495 | aor->u.addressRange->min->flags |= 8 - j; | 515 | aor->u.addressRange->min->flags |= 8 - j; |
496 | } | 516 | } |
497 | 517 | ||
498 | for (i = length; i > 0 && max[i - 1] == 0xFF; --i) | 518 | for (i = length; i > 0 && max[i - 1] == 0xFF; --i) |
499 | ; | 519 | ; |
500 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) | 520 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) |
501 | goto err; | 521 | goto err; |
502 | aor->u.addressRange->max->flags &= ~7; | 522 | aor->u.addressRange->max->flags &= ~7; |
503 | aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT; | 523 | aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT; |
504 | if (i > 0) { | 524 | if (i > 0) { |
505 | unsigned char b = max[i - 1]; | 525 | unsigned char b = max[i - 1]; |
506 | int j = 1; | 526 | int j = 1; |
507 | while ((b & (0xFFU >> j)) != (0xFFU >> j)) | 527 | while ((b & (0xFFU >> j)) != (0xFFU >> j)) |
508 | ++j; | 528 | ++j; |
509 | aor->u.addressRange->max->flags |= 8 - j; | 529 | aor->u.addressRange->max->flags |= 8 - j; |
510 | } | 530 | } |
511 | 531 | ||
512 | *result = aor; | 532 | *result = aor; |
513 | return 1; | 533 | return 1; |
514 | 534 | ||
515 | err: | 535 | err: |
516 | IPAddressOrRange_free(aor); | 536 | IPAddressOrRange_free(aor); |
517 | return 0; | 537 | return 0; |
518 | } | 538 | } |
519 | 539 | ||
520 | /* | 540 | /* |
521 | * Construct a new address family or find an existing one. | 541 | * Construct a new address family or find an existing one. |
522 | */ | 542 | */ |
523 | static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr, | 543 | static IPAddressFamily * |
524 | const unsigned afi, | 544 | make_IPAddressFamily(IPAddrBlocks *addr, const unsigned afi, |
525 | const unsigned *safi) | 545 | const unsigned *safi) |
526 | { | 546 | { |
527 | IPAddressFamily *f; | 547 | IPAddressFamily *f; |
528 | unsigned char key[3]; | 548 | unsigned char key[3]; |
529 | unsigned keylen; | 549 | unsigned keylen; |
530 | int i; | 550 | int i; |
531 | 551 | ||
532 | key[0] = (afi >> 8) & 0xFF; | 552 | key[0] = (afi >> 8) & 0xFF; |
533 | key[1] = afi & 0xFF; | 553 | key[1] = afi & 0xFF; |
534 | if (safi != NULL) { | 554 | if (safi != NULL) { |
535 | key[2] = *safi & 0xFF; | 555 | key[2] = *safi & 0xFF; |
536 | keylen = 3; | 556 | keylen = 3; |
537 | } else { | 557 | } else { |
538 | keylen = 2; | 558 | keylen = 2; |
539 | } | 559 | } |
540 | 560 | ||
541 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 561 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
542 | f = sk_IPAddressFamily_value(addr, i); | 562 | f = sk_IPAddressFamily_value(addr, i); |
543 | OPENSSL_assert(f->addressFamily->data != NULL); | 563 | OPENSSL_assert(f->addressFamily->data != NULL); |
544 | if (f->addressFamily->length == keylen && | 564 | if (f->addressFamily->length == keylen && |
545 | !memcmp(f->addressFamily->data, key, keylen)) | 565 | !memcmp(f->addressFamily->data, key, keylen)) |
546 | return f; | 566 | return f; |
547 | } | 567 | } |
548 | 568 | ||
549 | if ((f = IPAddressFamily_new()) == NULL) | 569 | if ((f = IPAddressFamily_new()) == NULL) |
550 | goto err; | 570 | goto err; |
551 | if (f->ipAddressChoice == NULL && | 571 | if (f->ipAddressChoice == NULL && |
552 | (f->ipAddressChoice = IPAddressChoice_new()) == NULL) | 572 | (f->ipAddressChoice = IPAddressChoice_new()) == NULL) |
553 | goto err; | 573 | goto err; |
554 | if (f->addressFamily == NULL && | 574 | if (f->addressFamily == NULL && |
555 | (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL) | 575 | (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL) |
556 | goto err; | 576 | goto err; |
557 | if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen)) | 577 | if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen)) |
558 | goto err; | 578 | goto err; |
559 | if (!sk_IPAddressFamily_push(addr, f)) | 579 | if (!sk_IPAddressFamily_push(addr, f)) |
560 | goto err; | 580 | goto err; |
561 | 581 | ||
562 | return f; | 582 | return f; |
563 | 583 | ||
564 | err: | 584 | err: |
565 | IPAddressFamily_free(f); | 585 | IPAddressFamily_free(f); |
566 | return NULL; | 586 | return NULL; |
567 | } | 587 | } |
568 | 588 | ||
569 | /* | 589 | /* |
570 | * Add an inheritance element. | 590 | * Add an inheritance element. |
571 | */ | 591 | */ |
572 | int v3_addr_add_inherit(IPAddrBlocks *addr, | 592 | int |
573 | const unsigned afi, | 593 | v3_addr_add_inherit(IPAddrBlocks *addr, const unsigned afi, |
574 | const unsigned *safi) | 594 | const unsigned *safi) |
575 | { | 595 | { |
576 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); | 596 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); |
577 | if (f == NULL || | 597 | |
578 | f->ipAddressChoice == NULL || | 598 | if (f == NULL || |
579 | (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && | 599 | f->ipAddressChoice == NULL || |
580 | f->ipAddressChoice->u.addressesOrRanges != NULL)) | 600 | (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && |
581 | return 0; | 601 | f->ipAddressChoice->u.addressesOrRanges != NULL)) |
582 | if (f->ipAddressChoice->type == IPAddressChoice_inherit && | 602 | return 0; |
583 | f->ipAddressChoice->u.inherit != NULL) | 603 | if (f->ipAddressChoice->type == IPAddressChoice_inherit && |
584 | return 1; | 604 | f->ipAddressChoice->u.inherit != NULL) |
585 | if (f->ipAddressChoice->u.inherit == NULL && | 605 | return 1; |
586 | (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) | 606 | if (f->ipAddressChoice->u.inherit == NULL && |
587 | return 0; | 607 | (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) |
588 | f->ipAddressChoice->type = IPAddressChoice_inherit; | 608 | return 0; |
589 | return 1; | 609 | f->ipAddressChoice->type = IPAddressChoice_inherit; |
610 | return 1; | ||
590 | } | 611 | } |
591 | 612 | ||
592 | /* | 613 | /* |
593 | * Construct an IPAddressOrRange sequence, or return an existing one. | 614 | * Construct an IPAddressOrRange sequence, or return an existing one. |
594 | */ | 615 | */ |
595 | static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr, | 616 | static IPAddressOrRanges * |
596 | const unsigned afi, | 617 | make_prefix_or_range(IPAddrBlocks *addr, const unsigned afi, |
597 | const unsigned *safi) | 618 | const unsigned *safi) |
598 | { | 619 | { |
599 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); | 620 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); |
600 | IPAddressOrRanges *aors = NULL; | 621 | IPAddressOrRanges *aors = NULL; |
601 | 622 | ||
602 | if (f == NULL || | 623 | if (f == NULL || |
603 | f->ipAddressChoice == NULL || | 624 | f->ipAddressChoice == NULL || |
604 | (f->ipAddressChoice->type == IPAddressChoice_inherit && | 625 | (f->ipAddressChoice->type == IPAddressChoice_inherit && |
605 | f->ipAddressChoice->u.inherit != NULL)) | 626 | f->ipAddressChoice->u.inherit != NULL)) |
606 | return NULL; | 627 | return NULL; |
607 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) | 628 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) |
608 | aors = f->ipAddressChoice->u.addressesOrRanges; | 629 | aors = f->ipAddressChoice->u.addressesOrRanges; |
609 | if (aors != NULL) | 630 | if (aors != NULL) |
610 | return aors; | 631 | return aors; |
611 | if ((aors = sk_IPAddressOrRange_new_null()) == NULL) | 632 | if ((aors = sk_IPAddressOrRange_new_null()) == NULL) |
612 | return NULL; | 633 | return NULL; |
613 | switch (afi) { | 634 | switch (afi) { |
614 | case IANA_AFI_IPV4: | 635 | case IANA_AFI_IPV4: |
615 | (void) sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp); | 636 | (void) sk_IPAddressOrRange_set_cmp_func(aors, |
616 | break; | 637 | v4IPAddressOrRange_cmp); |
617 | case IANA_AFI_IPV6: | 638 | break; |
618 | (void) sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp); | 639 | case IANA_AFI_IPV6: |
619 | break; | 640 | (void) sk_IPAddressOrRange_set_cmp_func(aors, |
620 | } | 641 | v6IPAddressOrRange_cmp); |
621 | f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; | 642 | break; |
622 | f->ipAddressChoice->u.addressesOrRanges = aors; | 643 | } |
623 | return aors; | 644 | f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; |
645 | f->ipAddressChoice->u.addressesOrRanges = aors; | ||
646 | return aors; | ||
624 | } | 647 | } |
625 | 648 | ||
626 | /* | 649 | /* |
627 | * Add a prefix. | 650 | * Add a prefix. |
628 | */ | 651 | */ |
629 | int v3_addr_add_prefix(IPAddrBlocks *addr, | 652 | int |
630 | const unsigned afi, | 653 | v3_addr_add_prefix(IPAddrBlocks *addr, const unsigned afi, |
631 | const unsigned *safi, | 654 | const unsigned *safi, unsigned char *a, const int prefixlen) |
632 | unsigned char *a, | ||
633 | const int prefixlen) | ||
634 | { | 655 | { |
635 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); | 656 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); |
636 | IPAddressOrRange *aor; | 657 | IPAddressOrRange *aor; |
637 | if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen)) | 658 | |
638 | return 0; | 659 | if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen)) |
639 | if (sk_IPAddressOrRange_push(aors, aor)) | 660 | return 0; |
640 | return 1; | 661 | if (sk_IPAddressOrRange_push(aors, aor)) |
641 | IPAddressOrRange_free(aor); | 662 | return 1; |
642 | return 0; | 663 | IPAddressOrRange_free(aor); |
664 | return 0; | ||
643 | } | 665 | } |
644 | 666 | ||
645 | /* | 667 | /* |
646 | * Add a range. | 668 | * Add a range. |
647 | */ | 669 | */ |
648 | int v3_addr_add_range(IPAddrBlocks *addr, | 670 | int |
649 | const unsigned afi, | 671 | v3_addr_add_range(IPAddrBlocks *addr, const unsigned afi, const unsigned *safi, |
650 | const unsigned *safi, | 672 | unsigned char *min, unsigned char *max) |
651 | unsigned char *min, | ||
652 | unsigned char *max) | ||
653 | { | 673 | { |
654 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); | 674 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); |
655 | IPAddressOrRange *aor; | 675 | IPAddressOrRange *aor; |
656 | int length = length_from_afi(afi); | 676 | int length = length_from_afi(afi); |
657 | if (aors == NULL) | 677 | |
658 | return 0; | 678 | if (aors == NULL) |
659 | if (!make_addressRange(&aor, min, max, length)) | 679 | return 0; |
660 | return 0; | 680 | if (!make_addressRange(&aor, min, max, length)) |
661 | if (sk_IPAddressOrRange_push(aors, aor)) | 681 | return 0; |
662 | return 1; | 682 | if (sk_IPAddressOrRange_push(aors, aor)) |
663 | IPAddressOrRange_free(aor); | 683 | return 1; |
664 | return 0; | 684 | IPAddressOrRange_free(aor); |
685 | return 0; | ||
665 | } | 686 | } |
666 | 687 | ||
667 | /* | 688 | /* |
668 | * Extract min and max values from an IPAddressOrRange. | 689 | * Extract min and max values from an IPAddressOrRange. |
669 | */ | 690 | */ |
670 | static int extract_min_max(IPAddressOrRange *aor, | 691 | static int |
671 | unsigned char *min, | 692 | extract_min_max(IPAddressOrRange *aor, unsigned char *min, unsigned char *max, |
672 | unsigned char *max, | 693 | int length) |
673 | int length) | ||
674 | { | 694 | { |
675 | if (aor == NULL || min == NULL || max == NULL) | 695 | if (aor == NULL || min == NULL || max == NULL) |
676 | return 0; | 696 | return 0; |
677 | switch (aor->type) { | 697 | switch (aor->type) { |
678 | case IPAddressOrRange_addressPrefix: | 698 | case IPAddressOrRange_addressPrefix: |
679 | return (addr_expand(min, aor->u.addressPrefix, length, 0x00) && | 699 | return (addr_expand(min, aor->u.addressPrefix, length, 0x00) && |
680 | addr_expand(max, aor->u.addressPrefix, length, 0xFF)); | 700 | addr_expand(max, aor->u.addressPrefix, length, 0xFF)); |
681 | case IPAddressOrRange_addressRange: | 701 | case IPAddressOrRange_addressRange: |
682 | return (addr_expand(min, aor->u.addressRange->min, length, 0x00) && | 702 | return ( |
683 | addr_expand(max, aor->u.addressRange->max, length, 0xFF)); | 703 | addr_expand(min, aor->u.addressRange->min, length, 0x00) && |
684 | } | 704 | addr_expand(max, aor->u.addressRange->max, length, 0xFF)); |
685 | return 0; | 705 | } |
706 | return 0; | ||
686 | } | 707 | } |
687 | 708 | ||
688 | /* | 709 | /* |
689 | * Public wrapper for extract_min_max(). | 710 | * Public wrapper for extract_min_max(). |
690 | */ | 711 | */ |
691 | int v3_addr_get_range(IPAddressOrRange *aor, | 712 | int |
692 | const unsigned afi, | 713 | v3_addr_get_range(IPAddressOrRange *aor, const unsigned afi, |
693 | unsigned char *min, | 714 | unsigned char *min, unsigned char *max, const int length) |
694 | unsigned char *max, | ||
695 | const int length) | ||
696 | { | 715 | { |
697 | int afi_length = length_from_afi(afi); | 716 | int afi_length = length_from_afi(afi); |
698 | if (aor == NULL || min == NULL || max == NULL || | 717 | |
699 | afi_length == 0 || length < afi_length || | 718 | if (aor == NULL || min == NULL || max == NULL || |
700 | (aor->type != IPAddressOrRange_addressPrefix && | 719 | afi_length == 0 || length < afi_length || |
701 | aor->type != IPAddressOrRange_addressRange) || | 720 | (aor->type != IPAddressOrRange_addressPrefix && |
702 | !extract_min_max(aor, min, max, afi_length)) | 721 | aor->type != IPAddressOrRange_addressRange) || |
703 | return 0; | 722 | !extract_min_max(aor, min, max, afi_length)) |
704 | 723 | return 0; | |
705 | return afi_length; | 724 | |
725 | return afi_length; | ||
706 | } | 726 | } |
707 | 727 | ||
708 | /* | 728 | /* |
@@ -715,480 +735,513 @@ int v3_addr_get_range(IPAddressOrRange *aor, | |||
715 | * null-SAFI rule to apply only within a single AFI, which is what I | 735 | * null-SAFI rule to apply only within a single AFI, which is what I |
716 | * would have expected and is what the following code implements. | 736 | * would have expected and is what the following code implements. |
717 | */ | 737 | */ |
718 | static int IPAddressFamily_cmp(const IPAddressFamily * const *a_, | 738 | static int |
719 | const IPAddressFamily * const *b_) | 739 | IPAddressFamily_cmp(const IPAddressFamily * const *a_, |
740 | const IPAddressFamily * const *b_) | ||
720 | { | 741 | { |
721 | const ASN1_OCTET_STRING *a = (*a_)->addressFamily; | 742 | const ASN1_OCTET_STRING *a = (*a_)->addressFamily; |
722 | const ASN1_OCTET_STRING *b = (*b_)->addressFamily; | 743 | const ASN1_OCTET_STRING *b = (*b_)->addressFamily; |
723 | int len = ((a->length <= b->length) ? a->length : b->length); | 744 | int len = ((a->length <= b->length) ? a->length : b->length); |
724 | int cmp = memcmp(a->data, b->data, len); | 745 | int cmp = memcmp(a->data, b->data, len); |
725 | return cmp ? cmp : a->length - b->length; | 746 | |
747 | return cmp ? cmp : a->length - b->length; | ||
726 | } | 748 | } |
727 | 749 | ||
728 | /* | 750 | /* |
729 | * Check whether an IPAddrBLocks is in canonical form. | 751 | * Check whether an IPAddrBLocks is in canonical form. |
730 | */ | 752 | */ |
731 | int v3_addr_is_canonical(IPAddrBlocks *addr) | 753 | int |
754 | v3_addr_is_canonical(IPAddrBlocks *addr) | ||
732 | { | 755 | { |
733 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | 756 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; |
734 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; | 757 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; |
735 | IPAddressOrRanges *aors; | 758 | IPAddressOrRanges *aors; |
736 | int i, j, k; | 759 | int i, j, k; |
737 | 760 | ||
738 | /* | 761 | /* |
739 | * Empty extension is cannonical. | 762 | * Empty extension is cannonical. |
740 | */ | 763 | */ |
741 | if (addr == NULL) | 764 | if (addr == NULL) |
742 | return 1; | 765 | return 1; |
743 | 766 | ||
744 | /* | 767 | /* |
745 | * Check whether the top-level list is in order. | 768 | * Check whether the top-level list is in order. |
746 | */ | 769 | */ |
747 | for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { | 770 | for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { |
748 | const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i); | 771 | const IPAddressFamily *a = |
749 | const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1); | 772 | sk_IPAddressFamily_value(addr, i); |
750 | if (IPAddressFamily_cmp(&a, &b) >= 0) | 773 | const IPAddressFamily *b = |
751 | return 0; | 774 | sk_IPAddressFamily_value(addr, i + 1); |
752 | } | 775 | if (IPAddressFamily_cmp(&a, &b) >= 0) |
753 | 776 | return 0; | |
754 | /* | 777 | } |
755 | * Top level's ok, now check each address family. | ||
756 | */ | ||
757 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
758 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
759 | int length = length_from_afi(v3_addr_get_afi(f)); | ||
760 | |||
761 | /* | ||
762 | * Inheritance is canonical. Anything other than inheritance or | ||
763 | * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something. | ||
764 | */ | ||
765 | if (f == NULL || f->ipAddressChoice == NULL) | ||
766 | return 0; | ||
767 | switch (f->ipAddressChoice->type) { | ||
768 | case IPAddressChoice_inherit: | ||
769 | continue; | ||
770 | case IPAddressChoice_addressesOrRanges: | ||
771 | break; | ||
772 | default: | ||
773 | return 0; | ||
774 | } | ||
775 | |||
776 | /* | ||
777 | * It's an IPAddressOrRanges sequence, check it. | ||
778 | */ | ||
779 | aors = f->ipAddressChoice->u.addressesOrRanges; | ||
780 | if (sk_IPAddressOrRange_num(aors) == 0) | ||
781 | return 0; | ||
782 | for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { | ||
783 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | ||
784 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1); | ||
785 | |||
786 | if (!extract_min_max(a, a_min, a_max, length) || | ||
787 | !extract_min_max(b, b_min, b_max, length)) | ||
788 | return 0; | ||
789 | |||
790 | /* | ||
791 | * Punt misordered list, overlapping start, or inverted range. | ||
792 | */ | ||
793 | if (memcmp(a_min, b_min, length) >= 0 || | ||
794 | memcmp(a_min, a_max, length) > 0 || | ||
795 | memcmp(b_min, b_max, length) > 0) | ||
796 | return 0; | ||
797 | 778 | ||
798 | /* | 779 | /* |
799 | * Punt if adjacent or overlapping. Check for adjacency by | 780 | * Top level's ok, now check each address family. |
800 | * subtracting one from b_min first. | 781 | */ |
801 | */ | 782 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
802 | for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) | 783 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); |
803 | ; | 784 | int length = length_from_afi(v3_addr_get_afi(f)); |
804 | if (memcmp(a_max, b_min, length) >= 0) | 785 | |
805 | return 0; | 786 | /* |
787 | * Inheritance is canonical. Anything other than inheritance or | ||
788 | * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something. | ||
789 | */ | ||
790 | if (f == NULL || f->ipAddressChoice == NULL) | ||
791 | return 0; | ||
792 | switch (f->ipAddressChoice->type) { | ||
793 | case IPAddressChoice_inherit: | ||
794 | continue; | ||
795 | case IPAddressChoice_addressesOrRanges: | ||
796 | break; | ||
797 | default: | ||
798 | return 0; | ||
799 | } | ||
800 | |||
801 | /* | ||
802 | * It's an IPAddressOrRanges sequence, check it. | ||
803 | */ | ||
804 | aors = f->ipAddressChoice->u.addressesOrRanges; | ||
805 | if (sk_IPAddressOrRange_num(aors) == 0) | ||
806 | return 0; | ||
807 | for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { | ||
808 | IPAddressOrRange *a = | ||
809 | sk_IPAddressOrRange_value(aors, j); | ||
810 | IPAddressOrRange *b = | ||
811 | sk_IPAddressOrRange_value(aors, j + 1); | ||
812 | |||
813 | if (!extract_min_max(a, a_min, a_max, length) || | ||
814 | !extract_min_max(b, b_min, b_max, length)) | ||
815 | return 0; | ||
816 | |||
817 | /* | ||
818 | * Punt misordered list, overlapping start, or inverted range. | ||
819 | */ | ||
820 | if (memcmp(a_min, b_min, length) >= 0 || | ||
821 | memcmp(a_min, a_max, length) > 0 || | ||
822 | memcmp(b_min, b_max, length) > 0) | ||
823 | return 0; | ||
824 | |||
825 | /* | ||
826 | * Punt if adjacent or overlapping. Check for adjacency by | ||
827 | * subtracting one from b_min first. | ||
828 | */ | ||
829 | for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) | ||
830 | ; | ||
831 | if (memcmp(a_max, b_min, length) >= 0) | ||
832 | return 0; | ||
833 | |||
834 | /* | ||
835 | * Check for range that should be expressed as a prefix. | ||
836 | */ | ||
837 | if (a->type == IPAddressOrRange_addressRange && | ||
838 | range_should_be_prefix(a_min, a_max, length) >= 0) | ||
839 | return 0; | ||
840 | } | ||
841 | |||
842 | /* | ||
843 | * Check range to see if it's inverted or should be a | ||
844 | * prefix. | ||
845 | */ | ||
846 | j = sk_IPAddressOrRange_num(aors) - 1; | ||
847 | { | ||
848 | IPAddressOrRange *a = | ||
849 | sk_IPAddressOrRange_value(aors, j); | ||
850 | if (a != NULL && | ||
851 | a->type == IPAddressOrRange_addressRange) { | ||
852 | if (!extract_min_max(a, a_min, a_max, length)) | ||
853 | return 0; | ||
854 | if (memcmp(a_min, a_max, length) > 0 || | ||
855 | range_should_be_prefix(a_min, a_max, | ||
856 | length) >= 0) | ||
857 | return 0; | ||
858 | } | ||
859 | } | ||
860 | } | ||
806 | 861 | ||
807 | /* | 862 | /* |
808 | * Check for range that should be expressed as a prefix. | 863 | * If we made it through all that, we're happy. |
809 | */ | 864 | */ |
810 | if (a->type == IPAddressOrRange_addressRange && | 865 | return 1; |
811 | range_should_be_prefix(a_min, a_max, length) >= 0) | ||
812 | return 0; | ||
813 | } | ||
814 | |||
815 | /* | ||
816 | * Check range to see if it's inverted or should be a | ||
817 | * prefix. | ||
818 | */ | ||
819 | j = sk_IPAddressOrRange_num(aors) - 1; | ||
820 | { | ||
821 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | ||
822 | if (a != NULL && a->type == IPAddressOrRange_addressRange) { | ||
823 | if (!extract_min_max(a, a_min, a_max, length)) | ||
824 | return 0; | ||
825 | if (memcmp(a_min, a_max, length) > 0 || | ||
826 | range_should_be_prefix(a_min, a_max, length) >= 0) | ||
827 | return 0; | ||
828 | } | ||
829 | } | ||
830 | } | ||
831 | |||
832 | /* | ||
833 | * If we made it through all that, we're happy. | ||
834 | */ | ||
835 | return 1; | ||
836 | } | 866 | } |
837 | 867 | ||
838 | /* | 868 | /* |
839 | * Whack an IPAddressOrRanges into canonical form. | 869 | * Whack an IPAddressOrRanges into canonical form. |
840 | */ | 870 | */ |
841 | static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors, | 871 | static int |
842 | const unsigned afi) | 872 | IPAddressOrRanges_canonize(IPAddressOrRanges *aors, const unsigned afi) |
843 | { | 873 | { |
844 | int i, j, length = length_from_afi(afi); | 874 | int i, j, length = length_from_afi(afi); |
845 | 875 | ||
846 | /* | 876 | /* |
847 | * Sort the IPAddressOrRanges sequence. | 877 | * Sort the IPAddressOrRanges sequence. |
848 | */ | 878 | */ |
849 | sk_IPAddressOrRange_sort(aors); | 879 | sk_IPAddressOrRange_sort(aors); |
850 | 880 | ||
851 | /* | 881 | /* |
852 | * Clean up representation issues, punt on duplicates or overlaps. | 882 | * Clean up representation issues, punt on duplicates or overlaps. |
853 | */ | 883 | */ |
854 | for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { | 884 | for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { |
855 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i); | 885 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i); |
856 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1); | 886 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1); |
857 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | 887 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; |
858 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; | 888 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; |
859 | 889 | ||
860 | if (!extract_min_max(a, a_min, a_max, length) || | 890 | if (!extract_min_max(a, a_min, a_max, length) || |
861 | !extract_min_max(b, b_min, b_max, length)) | 891 | !extract_min_max(b, b_min, b_max, length)) |
862 | return 0; | 892 | return 0; |
863 | 893 | ||
864 | /* | 894 | /* |
865 | * Punt inverted ranges. | 895 | * Punt inverted ranges. |
866 | */ | 896 | */ |
867 | if (memcmp(a_min, a_max, length) > 0 || | 897 | if (memcmp(a_min, a_max, length) > 0 || |
868 | memcmp(b_min, b_max, length) > 0) | 898 | memcmp(b_min, b_max, length) > 0) |
869 | return 0; | 899 | return 0; |
870 | 900 | ||
871 | /* | 901 | /* |
872 | * Punt overlaps. | 902 | * Punt overlaps. |
873 | */ | 903 | */ |
874 | if (memcmp(a_max, b_min, length) >= 0) | 904 | if (memcmp(a_max, b_min, length) >= 0) |
875 | return 0; | 905 | return 0; |
876 | 906 | ||
877 | /* | 907 | /* |
878 | * Merge if a and b are adjacent. We check for | 908 | * Merge if a and b are adjacent. We check for |
879 | * adjacency by subtracting one from b_min first. | 909 | * adjacency by subtracting one from b_min first. |
880 | */ | 910 | */ |
881 | for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) | 911 | for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) |
882 | ; | 912 | ; |
883 | if (memcmp(a_max, b_min, length) == 0) { | 913 | if (memcmp(a_max, b_min, length) == 0) { |
884 | IPAddressOrRange *merged; | 914 | IPAddressOrRange *merged; |
885 | if (!make_addressRange(&merged, a_min, b_max, length)) | 915 | if (!make_addressRange(&merged, a_min, b_max, length)) |
886 | return 0; | 916 | return 0; |
887 | (void) sk_IPAddressOrRange_set(aors, i, merged); | 917 | (void) sk_IPAddressOrRange_set(aors, i, merged); |
888 | (void) sk_IPAddressOrRange_delete(aors, i + 1); | 918 | (void) sk_IPAddressOrRange_delete(aors, i + 1); |
889 | IPAddressOrRange_free(a); | 919 | IPAddressOrRange_free(a); |
890 | IPAddressOrRange_free(b); | 920 | IPAddressOrRange_free(b); |
891 | --i; | 921 | --i; |
892 | continue; | 922 | continue; |
893 | } | 923 | } |
894 | } | 924 | } |
895 | 925 | ||
896 | /* | 926 | /* |
897 | * Check for inverted final range. | 927 | * Check for inverted final range. |
898 | */ | 928 | */ |
899 | j = sk_IPAddressOrRange_num(aors) - 1; | 929 | j = sk_IPAddressOrRange_num(aors) - 1; |
900 | { | 930 | { |
901 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | 931 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); |
902 | if (a != NULL && a->type == IPAddressOrRange_addressRange) { | 932 | if (a != NULL && a->type == IPAddressOrRange_addressRange) { |
903 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | 933 | unsigned char a_min[ADDR_RAW_BUF_LEN], |
904 | extract_min_max(a, a_min, a_max, length); | 934 | a_max[ADDR_RAW_BUF_LEN]; |
905 | if (memcmp(a_min, a_max, length) > 0) | 935 | extract_min_max(a, a_min, a_max, length); |
906 | return 0; | 936 | if (memcmp(a_min, a_max, length) > 0) |
907 | } | 937 | return 0; |
908 | } | 938 | } |
939 | } | ||
909 | 940 | ||
910 | return 1; | 941 | return 1; |
911 | } | 942 | } |
912 | 943 | ||
913 | /* | 944 | /* |
914 | * Whack an IPAddrBlocks extension into canonical form. | 945 | * Whack an IPAddrBlocks extension into canonical form. |
915 | */ | 946 | */ |
916 | int v3_addr_canonize(IPAddrBlocks *addr) | 947 | int |
948 | v3_addr_canonize(IPAddrBlocks *addr) | ||
917 | { | 949 | { |
918 | int i; | 950 | int i; |
919 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 951 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
920 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | 952 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); |
921 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && | 953 | if (f->ipAddressChoice->type == |
922 | !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges, | 954 | IPAddressChoice_addressesOrRanges && |
923 | v3_addr_get_afi(f))) | 955 | !IPAddressOrRanges_canonize( |
924 | return 0; | 956 | f->ipAddressChoice->u.addressesOrRanges, |
925 | } | 957 | v3_addr_get_afi(f))) |
926 | (void) sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp); | 958 | return 0; |
927 | sk_IPAddressFamily_sort(addr); | 959 | } |
928 | OPENSSL_assert(v3_addr_is_canonical(addr)); | 960 | (void) sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp); |
929 | return 1; | 961 | sk_IPAddressFamily_sort(addr); |
962 | OPENSSL_assert(v3_addr_is_canonical(addr)); | ||
963 | return 1; | ||
930 | } | 964 | } |
931 | 965 | ||
932 | /* | 966 | /* |
933 | * v2i handler for the IPAddrBlocks extension. | 967 | * v2i handler for the IPAddrBlocks extension. |
934 | */ | 968 | */ |
935 | static void *v2i_IPAddrBlocks(const struct v3_ext_method *method, | 969 | static void * |
936 | struct v3_ext_ctx *ctx, | 970 | v2i_IPAddrBlocks(const struct v3_ext_method *method, struct v3_ext_ctx *ctx, |
937 | STACK_OF(CONF_VALUE) *values) | 971 | STACK_OF(CONF_VALUE) *values) |
938 | { | 972 | { |
939 | static const char v4addr_chars[] = "0123456789."; | 973 | static const char v4addr_chars[] = "0123456789."; |
940 | static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; | 974 | static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; |
941 | IPAddrBlocks *addr = NULL; | 975 | IPAddrBlocks *addr = NULL; |
942 | char *s = NULL, *t; | 976 | char *s = NULL, *t; |
943 | int i; | 977 | int i; |
944 | 978 | ||
945 | if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { | 979 | if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { |
946 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | 980 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); |
947 | return NULL; | 981 | return NULL; |
948 | } | 982 | } |
949 | 983 | ||
950 | for (i = 0; i < sk_CONF_VALUE_num(values); i++) { | 984 | for (i = 0; i < sk_CONF_VALUE_num(values); i++) { |
951 | CONF_VALUE *val = sk_CONF_VALUE_value(values, i); | 985 | CONF_VALUE *val = sk_CONF_VALUE_value(values, i); |
952 | unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; | 986 | unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; |
953 | unsigned afi, *safi = NULL, safi_; | 987 | unsigned afi, *safi = NULL, safi_; |
954 | const char *addr_chars; | 988 | const char *addr_chars; |
955 | int prefixlen, i1, i2, delim, length; | 989 | int prefixlen, i1, i2, delim, length; |
956 | 990 | ||
957 | if ( !name_cmp(val->name, "IPv4")) { | 991 | if (!name_cmp(val->name, "IPv4")) { |
958 | afi = IANA_AFI_IPV4; | 992 | afi = IANA_AFI_IPV4; |
959 | } else if (!name_cmp(val->name, "IPv6")) { | 993 | } else if (!name_cmp(val->name, "IPv6")) { |
960 | afi = IANA_AFI_IPV6; | 994 | afi = IANA_AFI_IPV6; |
961 | } else if (!name_cmp(val->name, "IPv4-SAFI")) { | 995 | } else if (!name_cmp(val->name, "IPv4-SAFI")) { |
962 | afi = IANA_AFI_IPV4; | 996 | afi = IANA_AFI_IPV4; |
963 | safi = &safi_; | 997 | safi = &safi_; |
964 | } else if (!name_cmp(val->name, "IPv6-SAFI")) { | 998 | } else if (!name_cmp(val->name, "IPv6-SAFI")) { |
965 | afi = IANA_AFI_IPV6; | 999 | afi = IANA_AFI_IPV6; |
966 | safi = &safi_; | 1000 | safi = &safi_; |
967 | } else { | 1001 | } else { |
968 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR); | 1002 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
969 | X509V3_conf_err(val); | 1003 | X509V3_R_EXTENSION_NAME_ERROR); |
970 | goto err; | 1004 | X509V3_conf_err(val); |
971 | } | 1005 | goto err; |
972 | 1006 | } | |
973 | switch (afi) { | 1007 | |
974 | case IANA_AFI_IPV4: | 1008 | switch (afi) { |
975 | addr_chars = v4addr_chars; | 1009 | case IANA_AFI_IPV4: |
976 | break; | 1010 | addr_chars = v4addr_chars; |
977 | case IANA_AFI_IPV6: | 1011 | break; |
978 | addr_chars = v6addr_chars; | 1012 | case IANA_AFI_IPV6: |
979 | break; | 1013 | addr_chars = v6addr_chars; |
980 | } | 1014 | break; |
981 | 1015 | } | |
982 | length = length_from_afi(afi); | 1016 | |
983 | 1017 | length = length_from_afi(afi); | |
984 | /* | 1018 | |
985 | * Handle SAFI, if any, and BUF_strdup() so we can null-terminate | 1019 | /* |
986 | * the other input values. | 1020 | * Handle SAFI, if any, and BUF_strdup() so we can null-terminate |
987 | */ | 1021 | * the other input values. |
988 | if (safi != NULL) { | 1022 | */ |
989 | *safi = strtoul(val->value, &t, 0); | 1023 | if (safi != NULL) { |
990 | t += strspn(t, " \t"); | 1024 | *safi = strtoul(val->value, &t, 0); |
991 | if (*safi > 0xFF || *t++ != ':') { | 1025 | t += strspn(t, " \t"); |
992 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI); | 1026 | if (*safi > 0xFF || *t++ != ':') { |
993 | X509V3_conf_err(val); | 1027 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
994 | goto err; | 1028 | X509V3_R_INVALID_SAFI); |
995 | } | 1029 | X509V3_conf_err(val); |
996 | t += strspn(t, " \t"); | 1030 | goto err; |
997 | s = BUF_strdup(t); | 1031 | } |
998 | } else { | 1032 | t += strspn(t, " \t"); |
999 | s = BUF_strdup(val->value); | 1033 | s = BUF_strdup(t); |
1000 | } | 1034 | } else { |
1001 | if (s == NULL) { | 1035 | s = BUF_strdup(val->value); |
1002 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | 1036 | } |
1003 | goto err; | 1037 | if (s == NULL) { |
1004 | } | 1038 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
1005 | 1039 | ERR_R_MALLOC_FAILURE); | |
1006 | /* | 1040 | goto err; |
1007 | * Check for inheritance. Not worth additional complexity to | 1041 | } |
1008 | * optimize this (seldom-used) case. | 1042 | |
1009 | */ | 1043 | /* |
1010 | if (!strcmp(s, "inherit")) { | 1044 | * Check for inheritance. Not worth additional complexity to |
1011 | if (!v3_addr_add_inherit(addr, afi, safi)) { | 1045 | * optimize this (seldom-used) case. |
1012 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE); | 1046 | */ |
1013 | X509V3_conf_err(val); | 1047 | if (!strcmp(s, "inherit")) { |
1014 | goto err; | 1048 | if (!v3_addr_add_inherit(addr, afi, safi)) { |
1015 | } | 1049 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
1016 | free(s); | 1050 | X509V3_R_INVALID_INHERITANCE); |
1017 | s = NULL; | 1051 | X509V3_conf_err(val); |
1018 | continue; | 1052 | goto err; |
1019 | } | 1053 | } |
1020 | 1054 | free(s); | |
1021 | i1 = strspn(s, addr_chars); | 1055 | s = NULL; |
1022 | i2 = i1 + strspn(s + i1, " \t"); | 1056 | continue; |
1023 | delim = s[i2++]; | 1057 | } |
1024 | s[i1] = '\0'; | 1058 | |
1025 | 1059 | i1 = strspn(s, addr_chars); | |
1026 | if (a2i_ipadd(min, s) != length) { | 1060 | i2 = i1 + strspn(s + i1, " \t"); |
1027 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); | 1061 | delim = s[i2++]; |
1028 | X509V3_conf_err(val); | 1062 | s[i1] = '\0'; |
1029 | goto err; | 1063 | |
1030 | } | 1064 | if (a2i_ipadd(min, s) != length) { |
1031 | 1065 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, | |
1032 | switch (delim) { | 1066 | X509V3_R_INVALID_IPADDRESS); |
1033 | case '/': | 1067 | X509V3_conf_err(val); |
1034 | prefixlen = (int) strtoul(s + i2, &t, 10); | 1068 | goto err; |
1035 | if (t == s + i2 || *t != '\0') { | 1069 | } |
1036 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | 1070 | |
1037 | X509V3_conf_err(val); | 1071 | switch (delim) { |
1038 | goto err; | 1072 | case '/': |
1039 | } | 1073 | prefixlen = (int) strtoul(s + i2, &t, 10); |
1040 | if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) { | 1074 | if (t == s + i2 || *t != '\0') { |
1041 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | 1075 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
1042 | goto err; | 1076 | X509V3_R_EXTENSION_VALUE_ERROR); |
1043 | } | 1077 | X509V3_conf_err(val); |
1044 | break; | 1078 | goto err; |
1045 | case '-': | 1079 | } |
1046 | i1 = i2 + strspn(s + i2, " \t"); | 1080 | if (!v3_addr_add_prefix(addr, afi, safi, min, |
1047 | i2 = i1 + strspn(s + i1, addr_chars); | 1081 | prefixlen)) { |
1048 | if (i1 == i2 || s[i2] != '\0') { | 1082 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
1049 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | 1083 | ERR_R_MALLOC_FAILURE); |
1050 | X509V3_conf_err(val); | 1084 | goto err; |
1051 | goto err; | 1085 | } |
1052 | } | 1086 | break; |
1053 | if (a2i_ipadd(max, s + i1) != length) { | 1087 | case '-': |
1054 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); | 1088 | i1 = i2 + strspn(s + i2, " \t"); |
1055 | X509V3_conf_err(val); | 1089 | i2 = i1 + strspn(s + i1, addr_chars); |
1056 | goto err; | 1090 | if (i1 == i2 || s[i2] != '\0') { |
1057 | } | 1091 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
1058 | if (memcmp(min, max, length_from_afi(afi)) > 0) { | 1092 | X509V3_R_EXTENSION_VALUE_ERROR); |
1059 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | 1093 | X509V3_conf_err(val); |
1060 | X509V3_conf_err(val); | 1094 | goto err; |
1061 | goto err; | 1095 | } |
1062 | } | 1096 | if (a2i_ipadd(max, s + i1) != length) { |
1063 | if (!v3_addr_add_range(addr, afi, safi, min, max)) { | 1097 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
1064 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | 1098 | X509V3_R_INVALID_IPADDRESS); |
1065 | goto err; | 1099 | X509V3_conf_err(val); |
1066 | } | 1100 | goto err; |
1067 | break; | 1101 | } |
1068 | case '\0': | 1102 | if (memcmp(min, max, length_from_afi(afi)) > 0) { |
1069 | if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) { | 1103 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
1070 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | 1104 | X509V3_R_EXTENSION_VALUE_ERROR); |
1071 | goto err; | 1105 | X509V3_conf_err(val); |
1072 | } | 1106 | goto err; |
1073 | break; | 1107 | } |
1074 | default: | 1108 | if (!v3_addr_add_range(addr, afi, safi, min, max)) { |
1075 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | 1109 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
1076 | X509V3_conf_err(val); | 1110 | ERR_R_MALLOC_FAILURE); |
1077 | goto err; | 1111 | goto err; |
1078 | } | 1112 | } |
1079 | 1113 | break; | |
1080 | free(s); | 1114 | case '\0': |
1081 | s = NULL; | 1115 | if (!v3_addr_add_prefix(addr, afi, safi, min, |
1082 | } | 1116 | length * 8)) { |
1083 | 1117 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, | |
1084 | /* | 1118 | ERR_R_MALLOC_FAILURE); |
1085 | * Canonize the result, then we're done. | 1119 | goto err; |
1086 | */ | 1120 | } |
1087 | if (!v3_addr_canonize(addr)) | 1121 | break; |
1088 | goto err; | 1122 | default: |
1089 | return addr; | 1123 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
1090 | 1124 | X509V3_R_EXTENSION_VALUE_ERROR); | |
1091 | err: | 1125 | X509V3_conf_err(val); |
1092 | free(s); | 1126 | goto err; |
1093 | sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); | 1127 | } |
1094 | return NULL; | 1128 | |
1129 | free(s); | ||
1130 | s = NULL; | ||
1131 | } | ||
1132 | |||
1133 | /* | ||
1134 | * Canonize the result, then we're done. | ||
1135 | */ | ||
1136 | if (!v3_addr_canonize(addr)) | ||
1137 | goto err; | ||
1138 | return addr; | ||
1139 | |||
1140 | err: | ||
1141 | free(s); | ||
1142 | sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); | ||
1143 | return NULL; | ||
1095 | } | 1144 | } |
1096 | 1145 | ||
1097 | /* | 1146 | /* |
1098 | * OpenSSL dispatch | 1147 | * OpenSSL dispatch |
1099 | */ | 1148 | */ |
1100 | const X509V3_EXT_METHOD v3_addr = { | 1149 | const X509V3_EXT_METHOD v3_addr = { |
1101 | NID_sbgp_ipAddrBlock, /* nid */ | 1150 | NID_sbgp_ipAddrBlock, /* nid */ |
1102 | 0, /* flags */ | 1151 | 0, /* flags */ |
1103 | ASN1_ITEM_ref(IPAddrBlocks), /* template */ | 1152 | ASN1_ITEM_ref(IPAddrBlocks), /* template */ |
1104 | 0, 0, 0, 0, /* old functions, ignored */ | 1153 | 0, 0, 0, 0, /* old functions, ignored */ |
1105 | 0, /* i2s */ | 1154 | 0, /* i2s */ |
1106 | 0, /* s2i */ | 1155 | 0, /* s2i */ |
1107 | 0, /* i2v */ | 1156 | 0, /* i2v */ |
1108 | v2i_IPAddrBlocks, /* v2i */ | 1157 | v2i_IPAddrBlocks, /* v2i */ |
1109 | i2r_IPAddrBlocks, /* i2r */ | 1158 | i2r_IPAddrBlocks, /* i2r */ |
1110 | 0, /* r2i */ | 1159 | 0, /* r2i */ |
1111 | NULL /* extension-specific data */ | 1160 | NULL /* extension-specific data */ |
1112 | }; | 1161 | }; |
1113 | 1162 | ||
1114 | /* | 1163 | /* |
1115 | * Figure out whether extension sues inheritance. | 1164 | * Figure out whether extension sues inheritance. |
1116 | */ | 1165 | */ |
1117 | int v3_addr_inherits(IPAddrBlocks *addr) | 1166 | int |
1167 | v3_addr_inherits(IPAddrBlocks *addr) | ||
1118 | { | 1168 | { |
1119 | int i; | 1169 | int i; |
1120 | if (addr == NULL) | 1170 | |
1121 | return 0; | 1171 | if (addr == NULL) |
1122 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | 1172 | return 0; |
1123 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | 1173 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
1124 | if (f->ipAddressChoice->type == IPAddressChoice_inherit) | 1174 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); |
1125 | return 1; | 1175 | if (f->ipAddressChoice->type == IPAddressChoice_inherit) |
1126 | } | 1176 | return 1; |
1127 | return 0; | 1177 | } |
1178 | return 0; | ||
1128 | } | 1179 | } |
1129 | 1180 | ||
1130 | /* | 1181 | /* |
1131 | * Figure out whether parent contains child. | 1182 | * Figure out whether parent contains child. |
1132 | */ | 1183 | */ |
1133 | static int addr_contains(IPAddressOrRanges *parent, | 1184 | static int |
1134 | IPAddressOrRanges *child, | 1185 | addr_contains(IPAddressOrRanges *parent, IPAddressOrRanges *child, int length) |
1135 | int length) | ||
1136 | { | 1186 | { |
1137 | unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN]; | 1187 | unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN]; |
1138 | unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN]; | 1188 | unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN]; |
1139 | int p, c; | 1189 | int p, c; |
1140 | 1190 | ||
1141 | if (child == NULL || parent == child) | 1191 | if (child == NULL || parent == child) |
1142 | return 1; | 1192 | return 1; |
1143 | if (parent == NULL) | 1193 | if (parent == NULL) |
1144 | return 0; | 1194 | return 0; |
1145 | 1195 | ||
1146 | p = 0; | 1196 | p = 0; |
1147 | for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { | 1197 | for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { |
1148 | if (!extract_min_max(sk_IPAddressOrRange_value(child, c), | 1198 | if (!extract_min_max(sk_IPAddressOrRange_value(child, c), |
1149 | c_min, c_max, length)) | 1199 | c_min, c_max, length)) |
1150 | return -1; | 1200 | return -1; |
1151 | for (;; p++) { | 1201 | for (; ; p++) { |
1152 | if (p >= sk_IPAddressOrRange_num(parent)) | 1202 | if (p >= sk_IPAddressOrRange_num(parent)) |
1153 | return 0; | 1203 | return 0; |
1154 | if (!extract_min_max(sk_IPAddressOrRange_value(parent, p), | 1204 | if (!extract_min_max( |
1155 | p_min, p_max, length)) | 1205 | sk_IPAddressOrRange_value(parent, p), |
1156 | return 0; | 1206 | p_min, p_max, length)) |
1157 | if (memcmp(p_max, c_max, length) < 0) | 1207 | return 0; |
1158 | continue; | 1208 | if (memcmp(p_max, c_max, length) < 0) |
1159 | if (memcmp(p_min, c_min, length) > 0) | 1209 | continue; |
1160 | return 0; | 1210 | if (memcmp(p_min, c_min, length) > 0) |
1161 | break; | 1211 | return 0; |
1162 | } | 1212 | break; |
1163 | } | 1213 | } |
1214 | } | ||
1164 | 1215 | ||
1165 | return 1; | 1216 | return 1; |
1166 | } | 1217 | } |
1167 | 1218 | ||
1168 | /* | 1219 | /* |
1169 | * Test whether a is a subset of b. | 1220 | * Test whether a is a subset of b. |
1170 | */ | 1221 | */ |
1171 | int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) | 1222 | int |
1223 | v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) | ||
1172 | { | 1224 | { |
1173 | int i; | 1225 | int i; |
1174 | if (a == NULL || a == b) | 1226 | |
1175 | return 1; | 1227 | if (a == NULL || a == b) |
1176 | if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b)) | 1228 | return 1; |
1177 | return 0; | 1229 | if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b)) |
1178 | (void) sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp); | 1230 | return 0; |
1179 | for (i = 0; i < sk_IPAddressFamily_num(a); i++) { | 1231 | (void) sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp); |
1180 | IPAddressFamily *fa = sk_IPAddressFamily_value(a, i); | 1232 | for (i = 0; i < sk_IPAddressFamily_num(a); i++) { |
1181 | int j = sk_IPAddressFamily_find(b, fa); | 1233 | IPAddressFamily *fa = sk_IPAddressFamily_value(a, i); |
1182 | IPAddressFamily *fb; | 1234 | int j = sk_IPAddressFamily_find(b, fa); |
1183 | fb = sk_IPAddressFamily_value(b, j); | 1235 | IPAddressFamily *fb; |
1184 | if (fb == NULL) | 1236 | fb = sk_IPAddressFamily_value(b, j); |
1185 | return 0; | 1237 | if (fb == NULL) |
1186 | if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, | 1238 | return 0; |
1187 | fa->ipAddressChoice->u.addressesOrRanges, | 1239 | if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, |
1188 | length_from_afi(v3_addr_get_afi(fb)))) | 1240 | fa->ipAddressChoice->u.addressesOrRanges, |
1189 | return 0; | 1241 | length_from_afi(v3_addr_get_afi(fb)))) |
1190 | } | 1242 | return 0; |
1191 | return 1; | 1243 | } |
1244 | return 1; | ||
1192 | } | 1245 | } |
1193 | 1246 | ||
1194 | /* | 1247 | /* |
@@ -1211,101 +1264,115 @@ int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) | |||
1211 | /* | 1264 | /* |
1212 | * Core code for RFC 3779 2.3 path validation. | 1265 | * Core code for RFC 3779 2.3 path validation. |
1213 | */ | 1266 | */ |
1214 | static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx, | 1267 | static int |
1215 | STACK_OF(X509) *chain, | 1268 | v3_addr_validate_path_internal(X509_STORE_CTX *ctx, STACK_OF(X509) *chain, |
1216 | IPAddrBlocks *ext) | 1269 | IPAddrBlocks *ext) |
1217 | { | 1270 | { |
1218 | IPAddrBlocks *child = NULL; | 1271 | IPAddrBlocks *child = NULL; |
1219 | int i, j, ret = 1; | 1272 | int i, j, ret = 1; |
1220 | X509 *x; | 1273 | X509 *x; |
1221 | 1274 | ||
1222 | OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0); | 1275 | OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0); |
1223 | OPENSSL_assert(ctx != NULL || ext != NULL); | 1276 | OPENSSL_assert(ctx != NULL || ext != NULL); |
1224 | OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL); | 1277 | OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL); |
1225 | 1278 | ||
1226 | /* | 1279 | /* |
1227 | * Figure out where to start. If we don't have an extension to | 1280 | * Figure out where to start. If we don't have an extension to |
1228 | * check, we're done. Otherwise, check canonical form and | 1281 | * check, we're done. Otherwise, check canonical form and |
1229 | * set up for walking up the chain. | 1282 | * set up for walking up the chain. |
1230 | */ | 1283 | */ |
1231 | if (ext != NULL) { | 1284 | if (ext != NULL) { |
1232 | i = -1; | 1285 | i = -1; |
1233 | x = NULL; | 1286 | x = NULL; |
1234 | } else { | 1287 | } else { |
1235 | i = 0; | 1288 | i = 0; |
1236 | x = sk_X509_value(chain, i); | 1289 | x = sk_X509_value(chain, i); |
1237 | OPENSSL_assert(x != NULL); | 1290 | OPENSSL_assert(x != NULL); |
1238 | if ((ext = x->rfc3779_addr) == NULL) | 1291 | if ((ext = x->rfc3779_addr) == NULL) |
1239 | goto done; | 1292 | goto done; |
1240 | } | ||
1241 | if (!v3_addr_is_canonical(ext)) | ||
1242 | validation_err(X509_V_ERR_INVALID_EXTENSION); | ||
1243 | (void) sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); | ||
1244 | if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { | ||
1245 | X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE); | ||
1246 | ret = 0; | ||
1247 | goto done; | ||
1248 | } | ||
1249 | |||
1250 | /* | ||
1251 | * Now walk up the chain. No cert may list resources that its | ||
1252 | * parent doesn't list. | ||
1253 | */ | ||
1254 | for (i++; i < sk_X509_num(chain); i++) { | ||
1255 | x = sk_X509_value(chain, i); | ||
1256 | OPENSSL_assert(x != NULL); | ||
1257 | if (!v3_addr_is_canonical(x->rfc3779_addr)) | ||
1258 | validation_err(X509_V_ERR_INVALID_EXTENSION); | ||
1259 | if (x->rfc3779_addr == NULL) { | ||
1260 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | ||
1261 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); | ||
1262 | if (fc->ipAddressChoice->type != IPAddressChoice_inherit) { | ||
1263 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
1264 | break; | ||
1265 | } | 1293 | } |
1266 | } | 1294 | if (!v3_addr_is_canonical(ext)) |
1267 | continue; | 1295 | validation_err(X509_V_ERR_INVALID_EXTENSION); |
1268 | } | 1296 | (void) sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); |
1269 | (void) sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp); | 1297 | if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { |
1270 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | 1298 | X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, |
1271 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); | 1299 | ERR_R_MALLOC_FAILURE); |
1272 | int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc); | 1300 | ret = 0; |
1273 | IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k); | 1301 | goto done; |
1274 | if (fp == NULL) { | ||
1275 | if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { | ||
1276 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
1277 | break; | ||
1278 | } | 1302 | } |
1279 | continue; | 1303 | |
1280 | } | 1304 | /* |
1281 | if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { | 1305 | * Now walk up the chain. No cert may list resources that its |
1282 | if (fc->ipAddressChoice->type == IPAddressChoice_inherit || | 1306 | * parent doesn't list. |
1283 | addr_contains(fp->ipAddressChoice->u.addressesOrRanges, | 1307 | */ |
1284 | fc->ipAddressChoice->u.addressesOrRanges, | 1308 | for (i++; i < sk_X509_num(chain); i++) { |
1285 | length_from_afi(v3_addr_get_afi(fc)))) | 1309 | x = sk_X509_value(chain, i); |
1286 | sk_IPAddressFamily_set(child, j, fp); | 1310 | OPENSSL_assert(x != NULL); |
1287 | else | 1311 | if (!v3_addr_is_canonical(x->rfc3779_addr)) |
1288 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | 1312 | validation_err(X509_V_ERR_INVALID_EXTENSION); |
1289 | } | 1313 | if (x->rfc3779_addr == NULL) { |
1290 | } | 1314 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { |
1291 | } | 1315 | IPAddressFamily *fc = |
1292 | 1316 | sk_IPAddressFamily_value(child, j); | |
1293 | /* | 1317 | if (fc->ipAddressChoice->type != |
1294 | * Trust anchor can't inherit. | 1318 | IPAddressChoice_inherit) { |
1295 | */ | 1319 | validation_err( |
1296 | OPENSSL_assert(x != NULL); | 1320 | X509_V_ERR_UNNESTED_RESOURCE); |
1297 | if (x->rfc3779_addr != NULL) { | 1321 | break; |
1298 | for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { | 1322 | } |
1299 | IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j); | 1323 | } |
1300 | if (fp->ipAddressChoice->type == IPAddressChoice_inherit && | 1324 | continue; |
1301 | sk_IPAddressFamily_find(child, fp) >= 0) | 1325 | } |
1302 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | 1326 | (void) sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, |
1303 | } | 1327 | IPAddressFamily_cmp); |
1304 | } | 1328 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { |
1305 | 1329 | IPAddressFamily *fc = | |
1306 | done: | 1330 | sk_IPAddressFamily_value(child, j); |
1307 | sk_IPAddressFamily_free(child); | 1331 | int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc); |
1308 | return ret; | 1332 | IPAddressFamily *fp = |
1333 | sk_IPAddressFamily_value(x->rfc3779_addr, k); | ||
1334 | if (fp == NULL) { | ||
1335 | if (fc->ipAddressChoice->type == | ||
1336 | IPAddressChoice_addressesOrRanges) { | ||
1337 | validation_err( | ||
1338 | X509_V_ERR_UNNESTED_RESOURCE); | ||
1339 | break; | ||
1340 | } | ||
1341 | continue; | ||
1342 | } | ||
1343 | if (fp->ipAddressChoice->type == | ||
1344 | IPAddressChoice_addressesOrRanges) { | ||
1345 | if (fc->ipAddressChoice->type == | ||
1346 | IPAddressChoice_inherit || addr_contains( | ||
1347 | fp->ipAddressChoice->u.addressesOrRanges, | ||
1348 | fc->ipAddressChoice->u.addressesOrRanges, | ||
1349 | length_from_afi(v3_addr_get_afi(fc)))) | ||
1350 | sk_IPAddressFamily_set(child, j, fp); | ||
1351 | else | ||
1352 | validation_err( | ||
1353 | X509_V_ERR_UNNESTED_RESOURCE); | ||
1354 | } | ||
1355 | } | ||
1356 | } | ||
1357 | |||
1358 | /* | ||
1359 | * Trust anchor can't inherit. | ||
1360 | */ | ||
1361 | OPENSSL_assert(x != NULL); | ||
1362 | if (x->rfc3779_addr != NULL) { | ||
1363 | for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { | ||
1364 | IPAddressFamily *fp = | ||
1365 | sk_IPAddressFamily_value(x->rfc3779_addr, j); | ||
1366 | if (fp->ipAddressChoice->type == | ||
1367 | IPAddressChoice_inherit && | ||
1368 | sk_IPAddressFamily_find(child, fp) >= 0) | ||
1369 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
1370 | } | ||
1371 | } | ||
1372 | |||
1373 | done: | ||
1374 | sk_IPAddressFamily_free(child); | ||
1375 | return ret; | ||
1309 | } | 1376 | } |
1310 | 1377 | ||
1311 | #undef validation_err | 1378 | #undef validation_err |
@@ -1313,26 +1380,27 @@ static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx, | |||
1313 | /* | 1380 | /* |
1314 | * RFC 3779 2.3 path validation -- called from X509_verify_cert(). | 1381 | * RFC 3779 2.3 path validation -- called from X509_verify_cert(). |
1315 | */ | 1382 | */ |
1316 | int v3_addr_validate_path(X509_STORE_CTX *ctx) | 1383 | int |
1384 | v3_addr_validate_path(X509_STORE_CTX *ctx) | ||
1317 | { | 1385 | { |
1318 | return v3_addr_validate_path_internal(ctx, ctx->chain, NULL); | 1386 | return v3_addr_validate_path_internal(ctx, ctx->chain, NULL); |
1319 | } | 1387 | } |
1320 | 1388 | ||
1321 | /* | 1389 | /* |
1322 | * RFC 3779 2.3 path validation of an extension. | 1390 | * RFC 3779 2.3 path validation of an extension. |
1323 | * Test whether chain covers extension. | 1391 | * Test whether chain covers extension. |
1324 | */ | 1392 | */ |
1325 | int v3_addr_validate_resource_set(STACK_OF(X509) *chain, | 1393 | int |
1326 | IPAddrBlocks *ext, | 1394 | v3_addr_validate_resource_set(STACK_OF(X509) *chain, IPAddrBlocks *ext, |
1327 | int allow_inheritance) | 1395 | int allow_inheritance) |
1328 | { | 1396 | { |
1329 | if (ext == NULL) | 1397 | if (ext == NULL) |
1330 | return 1; | 1398 | return 1; |
1331 | if (chain == NULL || sk_X509_num(chain) == 0) | 1399 | if (chain == NULL || sk_X509_num(chain) == 0) |
1332 | return 0; | 1400 | return 0; |
1333 | if (!allow_inheritance && v3_addr_inherits(ext)) | 1401 | if (!allow_inheritance && v3_addr_inherits(ext)) |
1334 | return 0; | 1402 | return 0; |
1335 | return v3_addr_validate_path_internal(NULL, chain, ext); | 1403 | return v3_addr_validate_path_internal(NULL, chain, ext); |
1336 | } | 1404 | } |
1337 | 1405 | ||
1338 | #endif /* OPENSSL_NO_RFC3779 */ | 1406 | #endif /* OPENSSL_NO_RFC3779 */ |