diff options
author | djm <> | 2008-09-06 12:15:53 +0000 |
---|---|---|
committer | djm <> | 2008-09-06 12:15:53 +0000 |
commit | f69b11f62c3e6c9d4db22529933cf93b6301f7b1 (patch) | |
tree | ec748bb51a7a2ac81befdc69d06cd4d45a476bd4 /src/lib/libcrypto/x509v3/v3_addr.c | |
parent | d5e315499a1ca7bacd7fc271e246a659969370e5 (diff) | |
download | openbsd-f69b11f62c3e6c9d4db22529933cf93b6301f7b1.tar.gz openbsd-f69b11f62c3e6c9d4db22529933cf93b6301f7b1.tar.bz2 openbsd-f69b11f62c3e6c9d4db22529933cf93b6301f7b1.zip |
import of OpenSSL 0.9.8h
Diffstat (limited to 'src/lib/libcrypto/x509v3/v3_addr.c')
-rw-r--r-- | src/lib/libcrypto/x509v3/v3_addr.c | 1280 |
1 files changed, 1280 insertions, 0 deletions
diff --git a/src/lib/libcrypto/x509v3/v3_addr.c b/src/lib/libcrypto/x509v3/v3_addr.c new file mode 100644 index 0000000000..ed9847b307 --- /dev/null +++ b/src/lib/libcrypto/x509v3/v3_addr.c | |||
@@ -0,0 +1,1280 @@ | |||
1 | /* | ||
2 | * Contributed to the OpenSSL Project by the American Registry for | ||
3 | * Internet Numbers ("ARIN"). | ||
4 | */ | ||
5 | /* ==================================================================== | ||
6 | * Copyright (c) 2006 The OpenSSL Project. All rights reserved. | ||
7 | * | ||
8 | * Redistribution and use in source and binary forms, with or without | ||
9 | * modification, are permitted provided that the following conditions | ||
10 | * are met: | ||
11 | * | ||
12 | * 1. Redistributions of source code must retain the above copyright | ||
13 | * notice, this list of conditions and the following disclaimer. | ||
14 | * | ||
15 | * 2. Redistributions in binary form must reproduce the above copyright | ||
16 | * notice, this list of conditions and the following disclaimer in | ||
17 | * the documentation and/or other materials provided with the | ||
18 | * distribution. | ||
19 | * | ||
20 | * 3. All advertising materials mentioning features or use of this | ||
21 | * software must display the following acknowledgment: | ||
22 | * "This product includes software developed by the OpenSSL Project | ||
23 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
24 | * | ||
25 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
26 | * endorse or promote products derived from this software without | ||
27 | * prior written permission. For written permission, please contact | ||
28 | * licensing@OpenSSL.org. | ||
29 | * | ||
30 | * 5. Products derived from this software may not be called "OpenSSL" | ||
31 | * nor may "OpenSSL" appear in their names without prior written | ||
32 | * permission of the OpenSSL Project. | ||
33 | * | ||
34 | * 6. Redistributions of any form whatsoever must retain the following | ||
35 | * acknowledgment: | ||
36 | * "This product includes software developed by the OpenSSL Project | ||
37 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
38 | * | ||
39 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
40 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
41 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
42 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
43 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
44 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
45 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
46 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
48 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
49 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
50 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
51 | * ==================================================================== | ||
52 | * | ||
53 | * This product includes cryptographic software written by Eric Young | ||
54 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
55 | * Hudson (tjh@cryptsoft.com). | ||
56 | */ | ||
57 | |||
58 | /* | ||
59 | * Implementation of RFC 3779 section 2.2. | ||
60 | */ | ||
61 | |||
62 | #include <stdio.h> | ||
63 | #include <stdlib.h> | ||
64 | #include <assert.h> | ||
65 | #include "cryptlib.h" | ||
66 | #include <openssl/conf.h> | ||
67 | #include <openssl/asn1.h> | ||
68 | #include <openssl/asn1t.h> | ||
69 | #include <openssl/buffer.h> | ||
70 | #include <openssl/x509v3.h> | ||
71 | |||
72 | #ifndef OPENSSL_NO_RFC3779 | ||
73 | |||
74 | /* | ||
75 | * OpenSSL ASN.1 template translation of RFC 3779 2.2.3. | ||
76 | */ | ||
77 | |||
78 | ASN1_SEQUENCE(IPAddressRange) = { | ||
79 | ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING), | ||
80 | ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING) | ||
81 | } ASN1_SEQUENCE_END(IPAddressRange) | ||
82 | |||
83 | ASN1_CHOICE(IPAddressOrRange) = { | ||
84 | ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING), | ||
85 | ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange) | ||
86 | } ASN1_CHOICE_END(IPAddressOrRange) | ||
87 | |||
88 | ASN1_CHOICE(IPAddressChoice) = { | ||
89 | ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL), | ||
90 | ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange) | ||
91 | } ASN1_CHOICE_END(IPAddressChoice) | ||
92 | |||
93 | ASN1_SEQUENCE(IPAddressFamily) = { | ||
94 | ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING), | ||
95 | ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice) | ||
96 | } ASN1_SEQUENCE_END(IPAddressFamily) | ||
97 | |||
98 | ASN1_ITEM_TEMPLATE(IPAddrBlocks) = | ||
99 | ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, | ||
100 | IPAddrBlocks, IPAddressFamily) | ||
101 | ASN1_ITEM_TEMPLATE_END(IPAddrBlocks) | ||
102 | |||
103 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange) | ||
104 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange) | ||
105 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice) | ||
106 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily) | ||
107 | |||
108 | /* | ||
109 | * How much buffer space do we need for a raw address? | ||
110 | */ | ||
111 | #define ADDR_RAW_BUF_LEN 16 | ||
112 | |||
113 | /* | ||
114 | * What's the address length associated with this AFI? | ||
115 | */ | ||
116 | static int length_from_afi(const unsigned afi) | ||
117 | { | ||
118 | switch (afi) { | ||
119 | case IANA_AFI_IPV4: | ||
120 | return 4; | ||
121 | case IANA_AFI_IPV6: | ||
122 | return 16; | ||
123 | default: | ||
124 | return 0; | ||
125 | } | ||
126 | } | ||
127 | |||
128 | /* | ||
129 | * Extract the AFI from an IPAddressFamily. | ||
130 | */ | ||
131 | unsigned v3_addr_get_afi(const IPAddressFamily *f) | ||
132 | { | ||
133 | return ((f != NULL && | ||
134 | f->addressFamily != NULL && | ||
135 | f->addressFamily->data != NULL) | ||
136 | ? ((f->addressFamily->data[0] << 8) | | ||
137 | (f->addressFamily->data[1])) | ||
138 | : 0); | ||
139 | } | ||
140 | |||
141 | /* | ||
142 | * Expand the bitstring form of an address into a raw byte array. | ||
143 | * At the moment this is coded for simplicity, not speed. | ||
144 | */ | ||
145 | static void addr_expand(unsigned char *addr, | ||
146 | const ASN1_BIT_STRING *bs, | ||
147 | const int length, | ||
148 | const unsigned char fill) | ||
149 | { | ||
150 | assert(bs->length >= 0 && bs->length <= length); | ||
151 | if (bs->length > 0) { | ||
152 | memcpy(addr, bs->data, bs->length); | ||
153 | if ((bs->flags & 7) != 0) { | ||
154 | unsigned char mask = 0xFF >> (8 - (bs->flags & 7)); | ||
155 | if (fill == 0) | ||
156 | addr[bs->length - 1] &= ~mask; | ||
157 | else | ||
158 | addr[bs->length - 1] |= mask; | ||
159 | } | ||
160 | } | ||
161 | memset(addr + bs->length, fill, length - bs->length); | ||
162 | } | ||
163 | |||
164 | /* | ||
165 | * Extract the prefix length from a bitstring. | ||
166 | */ | ||
167 | #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7))) | ||
168 | |||
169 | /* | ||
170 | * i2r handler for one address bitstring. | ||
171 | */ | ||
172 | static int i2r_address(BIO *out, | ||
173 | const unsigned afi, | ||
174 | const unsigned char fill, | ||
175 | const ASN1_BIT_STRING *bs) | ||
176 | { | ||
177 | unsigned char addr[ADDR_RAW_BUF_LEN]; | ||
178 | int i, n; | ||
179 | |||
180 | switch (afi) { | ||
181 | case IANA_AFI_IPV4: | ||
182 | addr_expand(addr, bs, 4, fill); | ||
183 | BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]); | ||
184 | break; | ||
185 | case IANA_AFI_IPV6: | ||
186 | addr_expand(addr, bs, 16, fill); | ||
187 | for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2) | ||
188 | ; | ||
189 | for (i = 0; i < n; i += 2) | ||
190 | BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : "")); | ||
191 | if (i < 16) | ||
192 | BIO_puts(out, ":"); | ||
193 | break; | ||
194 | default: | ||
195 | for (i = 0; i < bs->length; i++) | ||
196 | BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]); | ||
197 | BIO_printf(out, "[%d]", (int) (bs->flags & 7)); | ||
198 | break; | ||
199 | } | ||
200 | return 1; | ||
201 | } | ||
202 | |||
203 | /* | ||
204 | * i2r handler for a sequence of addresses and ranges. | ||
205 | */ | ||
206 | static int i2r_IPAddressOrRanges(BIO *out, | ||
207 | const int indent, | ||
208 | const IPAddressOrRanges *aors, | ||
209 | const unsigned afi) | ||
210 | { | ||
211 | int i; | ||
212 | for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { | ||
213 | const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i); | ||
214 | BIO_printf(out, "%*s", indent, ""); | ||
215 | switch (aor->type) { | ||
216 | case IPAddressOrRange_addressPrefix: | ||
217 | if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix)) | ||
218 | return 0; | ||
219 | BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix)); | ||
220 | continue; | ||
221 | case IPAddressOrRange_addressRange: | ||
222 | if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min)) | ||
223 | return 0; | ||
224 | BIO_puts(out, "-"); | ||
225 | if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max)) | ||
226 | return 0; | ||
227 | BIO_puts(out, "\n"); | ||
228 | continue; | ||
229 | } | ||
230 | } | ||
231 | return 1; | ||
232 | } | ||
233 | |||
234 | /* | ||
235 | * i2r handler for an IPAddrBlocks extension. | ||
236 | */ | ||
237 | static int i2r_IPAddrBlocks(X509V3_EXT_METHOD *method, | ||
238 | void *ext, | ||
239 | BIO *out, | ||
240 | int indent) | ||
241 | { | ||
242 | const IPAddrBlocks *addr = ext; | ||
243 | int i; | ||
244 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
245 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
246 | const unsigned afi = v3_addr_get_afi(f); | ||
247 | switch (afi) { | ||
248 | case IANA_AFI_IPV4: | ||
249 | BIO_printf(out, "%*sIPv4", indent, ""); | ||
250 | break; | ||
251 | case IANA_AFI_IPV6: | ||
252 | BIO_printf(out, "%*sIPv6", indent, ""); | ||
253 | break; | ||
254 | default: | ||
255 | BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); | ||
256 | break; | ||
257 | } | ||
258 | if (f->addressFamily->length > 2) { | ||
259 | switch (f->addressFamily->data[2]) { | ||
260 | case 1: | ||
261 | BIO_puts(out, " (Unicast)"); | ||
262 | break; | ||
263 | case 2: | ||
264 | BIO_puts(out, " (Multicast)"); | ||
265 | break; | ||
266 | case 3: | ||
267 | BIO_puts(out, " (Unicast/Multicast)"); | ||
268 | break; | ||
269 | case 4: | ||
270 | BIO_puts(out, " (MPLS)"); | ||
271 | break; | ||
272 | case 64: | ||
273 | BIO_puts(out, " (Tunnel)"); | ||
274 | break; | ||
275 | case 65: | ||
276 | BIO_puts(out, " (VPLS)"); | ||
277 | break; | ||
278 | case 66: | ||
279 | BIO_puts(out, " (BGP MDT)"); | ||
280 | break; | ||
281 | case 128: | ||
282 | BIO_puts(out, " (MPLS-labeled VPN)"); | ||
283 | break; | ||
284 | default: | ||
285 | BIO_printf(out, " (Unknown SAFI %u)", | ||
286 | (unsigned) f->addressFamily->data[2]); | ||
287 | break; | ||
288 | } | ||
289 | } | ||
290 | switch (f->ipAddressChoice->type) { | ||
291 | case IPAddressChoice_inherit: | ||
292 | BIO_puts(out, ": inherit\n"); | ||
293 | break; | ||
294 | case IPAddressChoice_addressesOrRanges: | ||
295 | BIO_puts(out, ":\n"); | ||
296 | if (!i2r_IPAddressOrRanges(out, | ||
297 | indent + 2, | ||
298 | f->ipAddressChoice->u.addressesOrRanges, | ||
299 | afi)) | ||
300 | return 0; | ||
301 | break; | ||
302 | } | ||
303 | } | ||
304 | return 1; | ||
305 | } | ||
306 | |||
307 | /* | ||
308 | * Sort comparison function for a sequence of IPAddressOrRange | ||
309 | * elements. | ||
310 | */ | ||
311 | static int IPAddressOrRange_cmp(const IPAddressOrRange *a, | ||
312 | const IPAddressOrRange *b, | ||
313 | const int length) | ||
314 | { | ||
315 | unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; | ||
316 | int prefixlen_a = 0; | ||
317 | int prefixlen_b = 0; | ||
318 | int r; | ||
319 | |||
320 | switch (a->type) { | ||
321 | case IPAddressOrRange_addressPrefix: | ||
322 | addr_expand(addr_a, a->u.addressPrefix, length, 0x00); | ||
323 | prefixlen_a = addr_prefixlen(a->u.addressPrefix); | ||
324 | break; | ||
325 | case IPAddressOrRange_addressRange: | ||
326 | addr_expand(addr_a, a->u.addressRange->min, length, 0x00); | ||
327 | prefixlen_a = length * 8; | ||
328 | break; | ||
329 | } | ||
330 | |||
331 | switch (b->type) { | ||
332 | case IPAddressOrRange_addressPrefix: | ||
333 | addr_expand(addr_b, b->u.addressPrefix, length, 0x00); | ||
334 | prefixlen_b = addr_prefixlen(b->u.addressPrefix); | ||
335 | break; | ||
336 | case IPAddressOrRange_addressRange: | ||
337 | addr_expand(addr_b, b->u.addressRange->min, length, 0x00); | ||
338 | prefixlen_b = length * 8; | ||
339 | break; | ||
340 | } | ||
341 | |||
342 | if ((r = memcmp(addr_a, addr_b, length)) != 0) | ||
343 | return r; | ||
344 | else | ||
345 | return prefixlen_a - prefixlen_b; | ||
346 | } | ||
347 | |||
348 | /* | ||
349 | * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() | ||
350 | * comparision routines are only allowed two arguments. | ||
351 | */ | ||
352 | static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a, | ||
353 | const IPAddressOrRange * const *b) | ||
354 | { | ||
355 | return IPAddressOrRange_cmp(*a, *b, 4); | ||
356 | } | ||
357 | |||
358 | /* | ||
359 | * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() | ||
360 | * comparision routines are only allowed two arguments. | ||
361 | */ | ||
362 | static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a, | ||
363 | const IPAddressOrRange * const *b) | ||
364 | { | ||
365 | return IPAddressOrRange_cmp(*a, *b, 16); | ||
366 | } | ||
367 | |||
368 | /* | ||
369 | * Calculate whether a range collapses to a prefix. | ||
370 | * See last paragraph of RFC 3779 2.2.3.7. | ||
371 | */ | ||
372 | static int range_should_be_prefix(const unsigned char *min, | ||
373 | const unsigned char *max, | ||
374 | const int length) | ||
375 | { | ||
376 | unsigned char mask; | ||
377 | int i, j; | ||
378 | |||
379 | for (i = 0; i < length && min[i] == max[i]; i++) | ||
380 | ; | ||
381 | for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) | ||
382 | ; | ||
383 | if (i < j) | ||
384 | return -1; | ||
385 | if (i > j) | ||
386 | return i * 8; | ||
387 | mask = min[i] ^ max[i]; | ||
388 | switch (mask) { | ||
389 | case 0x01: j = 7; break; | ||
390 | case 0x03: j = 6; break; | ||
391 | case 0x07: j = 5; break; | ||
392 | case 0x0F: j = 4; break; | ||
393 | case 0x1F: j = 3; break; | ||
394 | case 0x3F: j = 2; break; | ||
395 | case 0x7F: j = 1; break; | ||
396 | default: return -1; | ||
397 | } | ||
398 | if ((min[i] & mask) != 0 || (max[i] & mask) != mask) | ||
399 | return -1; | ||
400 | else | ||
401 | return i * 8 + j; | ||
402 | } | ||
403 | |||
404 | /* | ||
405 | * Construct a prefix. | ||
406 | */ | ||
407 | static int make_addressPrefix(IPAddressOrRange **result, | ||
408 | unsigned char *addr, | ||
409 | const int prefixlen) | ||
410 | { | ||
411 | int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8; | ||
412 | IPAddressOrRange *aor = IPAddressOrRange_new(); | ||
413 | |||
414 | if (aor == NULL) | ||
415 | return 0; | ||
416 | aor->type = IPAddressOrRange_addressPrefix; | ||
417 | if (aor->u.addressPrefix == NULL && | ||
418 | (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) | ||
419 | goto err; | ||
420 | if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen)) | ||
421 | goto err; | ||
422 | aor->u.addressPrefix->flags &= ~7; | ||
423 | aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT; | ||
424 | if (bitlen > 0) { | ||
425 | aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen); | ||
426 | aor->u.addressPrefix->flags |= 8 - bitlen; | ||
427 | } | ||
428 | |||
429 | *result = aor; | ||
430 | return 1; | ||
431 | |||
432 | err: | ||
433 | IPAddressOrRange_free(aor); | ||
434 | return 0; | ||
435 | } | ||
436 | |||
437 | /* | ||
438 | * Construct a range. If it can be expressed as a prefix, | ||
439 | * return a prefix instead. Doing this here simplifies | ||
440 | * the rest of the code considerably. | ||
441 | */ | ||
442 | static int make_addressRange(IPAddressOrRange **result, | ||
443 | unsigned char *min, | ||
444 | unsigned char *max, | ||
445 | const int length) | ||
446 | { | ||
447 | IPAddressOrRange *aor; | ||
448 | int i, prefixlen; | ||
449 | |||
450 | if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0) | ||
451 | return make_addressPrefix(result, min, prefixlen); | ||
452 | |||
453 | if ((aor = IPAddressOrRange_new()) == NULL) | ||
454 | return 0; | ||
455 | aor->type = IPAddressOrRange_addressRange; | ||
456 | assert(aor->u.addressRange == NULL); | ||
457 | if ((aor->u.addressRange = IPAddressRange_new()) == NULL) | ||
458 | goto err; | ||
459 | if (aor->u.addressRange->min == NULL && | ||
460 | (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL) | ||
461 | goto err; | ||
462 | if (aor->u.addressRange->max == NULL && | ||
463 | (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL) | ||
464 | goto err; | ||
465 | |||
466 | for (i = length; i > 0 && min[i - 1] == 0x00; --i) | ||
467 | ; | ||
468 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) | ||
469 | goto err; | ||
470 | aor->u.addressRange->min->flags &= ~7; | ||
471 | aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT; | ||
472 | if (i > 0) { | ||
473 | unsigned char b = min[i - 1]; | ||
474 | int j = 1; | ||
475 | while ((b & (0xFFU >> j)) != 0) | ||
476 | ++j; | ||
477 | aor->u.addressRange->min->flags |= 8 - j; | ||
478 | } | ||
479 | |||
480 | for (i = length; i > 0 && max[i - 1] == 0xFF; --i) | ||
481 | ; | ||
482 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) | ||
483 | goto err; | ||
484 | aor->u.addressRange->max->flags &= ~7; | ||
485 | aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT; | ||
486 | if (i > 0) { | ||
487 | unsigned char b = max[i - 1]; | ||
488 | int j = 1; | ||
489 | while ((b & (0xFFU >> j)) != (0xFFU >> j)) | ||
490 | ++j; | ||
491 | aor->u.addressRange->max->flags |= 8 - j; | ||
492 | } | ||
493 | |||
494 | *result = aor; | ||
495 | return 1; | ||
496 | |||
497 | err: | ||
498 | IPAddressOrRange_free(aor); | ||
499 | return 0; | ||
500 | } | ||
501 | |||
502 | /* | ||
503 | * Construct a new address family or find an existing one. | ||
504 | */ | ||
505 | static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr, | ||
506 | const unsigned afi, | ||
507 | const unsigned *safi) | ||
508 | { | ||
509 | IPAddressFamily *f; | ||
510 | unsigned char key[3]; | ||
511 | unsigned keylen; | ||
512 | int i; | ||
513 | |||
514 | key[0] = (afi >> 8) & 0xFF; | ||
515 | key[1] = afi & 0xFF; | ||
516 | if (safi != NULL) { | ||
517 | key[2] = *safi & 0xFF; | ||
518 | keylen = 3; | ||
519 | } else { | ||
520 | keylen = 2; | ||
521 | } | ||
522 | |||
523 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
524 | f = sk_IPAddressFamily_value(addr, i); | ||
525 | assert(f->addressFamily->data != NULL); | ||
526 | if (f->addressFamily->length == keylen && | ||
527 | !memcmp(f->addressFamily->data, key, keylen)) | ||
528 | return f; | ||
529 | } | ||
530 | |||
531 | if ((f = IPAddressFamily_new()) == NULL) | ||
532 | goto err; | ||
533 | if (f->ipAddressChoice == NULL && | ||
534 | (f->ipAddressChoice = IPAddressChoice_new()) == NULL) | ||
535 | goto err; | ||
536 | if (f->addressFamily == NULL && | ||
537 | (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL) | ||
538 | goto err; | ||
539 | if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen)) | ||
540 | goto err; | ||
541 | if (!sk_IPAddressFamily_push(addr, f)) | ||
542 | goto err; | ||
543 | |||
544 | return f; | ||
545 | |||
546 | err: | ||
547 | IPAddressFamily_free(f); | ||
548 | return NULL; | ||
549 | } | ||
550 | |||
551 | /* | ||
552 | * Add an inheritance element. | ||
553 | */ | ||
554 | int v3_addr_add_inherit(IPAddrBlocks *addr, | ||
555 | const unsigned afi, | ||
556 | const unsigned *safi) | ||
557 | { | ||
558 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); | ||
559 | if (f == NULL || | ||
560 | f->ipAddressChoice == NULL || | ||
561 | (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && | ||
562 | f->ipAddressChoice->u.addressesOrRanges != NULL)) | ||
563 | return 0; | ||
564 | if (f->ipAddressChoice->type == IPAddressChoice_inherit && | ||
565 | f->ipAddressChoice->u.inherit != NULL) | ||
566 | return 1; | ||
567 | if (f->ipAddressChoice->u.inherit == NULL && | ||
568 | (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) | ||
569 | return 0; | ||
570 | f->ipAddressChoice->type = IPAddressChoice_inherit; | ||
571 | return 1; | ||
572 | } | ||
573 | |||
574 | /* | ||
575 | * Construct an IPAddressOrRange sequence, or return an existing one. | ||
576 | */ | ||
577 | static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr, | ||
578 | const unsigned afi, | ||
579 | const unsigned *safi) | ||
580 | { | ||
581 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); | ||
582 | IPAddressOrRanges *aors = NULL; | ||
583 | |||
584 | if (f == NULL || | ||
585 | f->ipAddressChoice == NULL || | ||
586 | (f->ipAddressChoice->type == IPAddressChoice_inherit && | ||
587 | f->ipAddressChoice->u.inherit != NULL)) | ||
588 | return NULL; | ||
589 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) | ||
590 | aors = f->ipAddressChoice->u.addressesOrRanges; | ||
591 | if (aors != NULL) | ||
592 | return aors; | ||
593 | if ((aors = sk_IPAddressOrRange_new_null()) == NULL) | ||
594 | return NULL; | ||
595 | switch (afi) { | ||
596 | case IANA_AFI_IPV4: | ||
597 | sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp); | ||
598 | break; | ||
599 | case IANA_AFI_IPV6: | ||
600 | sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp); | ||
601 | break; | ||
602 | } | ||
603 | f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; | ||
604 | f->ipAddressChoice->u.addressesOrRanges = aors; | ||
605 | return aors; | ||
606 | } | ||
607 | |||
608 | /* | ||
609 | * Add a prefix. | ||
610 | */ | ||
611 | int v3_addr_add_prefix(IPAddrBlocks *addr, | ||
612 | const unsigned afi, | ||
613 | const unsigned *safi, | ||
614 | unsigned char *a, | ||
615 | const int prefixlen) | ||
616 | { | ||
617 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); | ||
618 | IPAddressOrRange *aor; | ||
619 | if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen)) | ||
620 | return 0; | ||
621 | if (sk_IPAddressOrRange_push(aors, aor)) | ||
622 | return 1; | ||
623 | IPAddressOrRange_free(aor); | ||
624 | return 0; | ||
625 | } | ||
626 | |||
627 | /* | ||
628 | * Add a range. | ||
629 | */ | ||
630 | int v3_addr_add_range(IPAddrBlocks *addr, | ||
631 | const unsigned afi, | ||
632 | const unsigned *safi, | ||
633 | unsigned char *min, | ||
634 | unsigned char *max) | ||
635 | { | ||
636 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); | ||
637 | IPAddressOrRange *aor; | ||
638 | int length = length_from_afi(afi); | ||
639 | if (aors == NULL) | ||
640 | return 0; | ||
641 | if (!make_addressRange(&aor, min, max, length)) | ||
642 | return 0; | ||
643 | if (sk_IPAddressOrRange_push(aors, aor)) | ||
644 | return 1; | ||
645 | IPAddressOrRange_free(aor); | ||
646 | return 0; | ||
647 | } | ||
648 | |||
649 | /* | ||
650 | * Extract min and max values from an IPAddressOrRange. | ||
651 | */ | ||
652 | static void extract_min_max(IPAddressOrRange *aor, | ||
653 | unsigned char *min, | ||
654 | unsigned char *max, | ||
655 | int length) | ||
656 | { | ||
657 | assert(aor != NULL && min != NULL && max != NULL); | ||
658 | switch (aor->type) { | ||
659 | case IPAddressOrRange_addressPrefix: | ||
660 | addr_expand(min, aor->u.addressPrefix, length, 0x00); | ||
661 | addr_expand(max, aor->u.addressPrefix, length, 0xFF); | ||
662 | return; | ||
663 | case IPAddressOrRange_addressRange: | ||
664 | addr_expand(min, aor->u.addressRange->min, length, 0x00); | ||
665 | addr_expand(max, aor->u.addressRange->max, length, 0xFF); | ||
666 | return; | ||
667 | } | ||
668 | } | ||
669 | |||
670 | /* | ||
671 | * Public wrapper for extract_min_max(). | ||
672 | */ | ||
673 | int v3_addr_get_range(IPAddressOrRange *aor, | ||
674 | const unsigned afi, | ||
675 | unsigned char *min, | ||
676 | unsigned char *max, | ||
677 | const int length) | ||
678 | { | ||
679 | int afi_length = length_from_afi(afi); | ||
680 | if (aor == NULL || min == NULL || max == NULL || | ||
681 | afi_length == 0 || length < afi_length || | ||
682 | (aor->type != IPAddressOrRange_addressPrefix && | ||
683 | aor->type != IPAddressOrRange_addressRange)) | ||
684 | return 0; | ||
685 | extract_min_max(aor, min, max, afi_length); | ||
686 | return afi_length; | ||
687 | } | ||
688 | |||
689 | /* | ||
690 | * Sort comparision function for a sequence of IPAddressFamily. | ||
691 | * | ||
692 | * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about | ||
693 | * the ordering: I can read it as meaning that IPv6 without a SAFI | ||
694 | * comes before IPv4 with a SAFI, which seems pretty weird. The | ||
695 | * examples in appendix B suggest that the author intended the | ||
696 | * null-SAFI rule to apply only within a single AFI, which is what I | ||
697 | * would have expected and is what the following code implements. | ||
698 | */ | ||
699 | static int IPAddressFamily_cmp(const IPAddressFamily * const *a_, | ||
700 | const IPAddressFamily * const *b_) | ||
701 | { | ||
702 | const ASN1_OCTET_STRING *a = (*a_)->addressFamily; | ||
703 | const ASN1_OCTET_STRING *b = (*b_)->addressFamily; | ||
704 | int len = ((a->length <= b->length) ? a->length : b->length); | ||
705 | int cmp = memcmp(a->data, b->data, len); | ||
706 | return cmp ? cmp : a->length - b->length; | ||
707 | } | ||
708 | |||
709 | /* | ||
710 | * Check whether an IPAddrBLocks is in canonical form. | ||
711 | */ | ||
712 | int v3_addr_is_canonical(IPAddrBlocks *addr) | ||
713 | { | ||
714 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | ||
715 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; | ||
716 | IPAddressOrRanges *aors; | ||
717 | int i, j, k; | ||
718 | |||
719 | /* | ||
720 | * Empty extension is cannonical. | ||
721 | */ | ||
722 | if (addr == NULL) | ||
723 | return 1; | ||
724 | |||
725 | /* | ||
726 | * Check whether the top-level list is in order. | ||
727 | */ | ||
728 | for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { | ||
729 | const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i); | ||
730 | const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1); | ||
731 | if (IPAddressFamily_cmp(&a, &b) >= 0) | ||
732 | return 0; | ||
733 | } | ||
734 | |||
735 | /* | ||
736 | * Top level's ok, now check each address family. | ||
737 | */ | ||
738 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
739 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
740 | int length = length_from_afi(v3_addr_get_afi(f)); | ||
741 | |||
742 | /* | ||
743 | * Inheritance is canonical. Anything other than inheritance or | ||
744 | * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something. | ||
745 | */ | ||
746 | if (f == NULL || f->ipAddressChoice == NULL) | ||
747 | return 0; | ||
748 | switch (f->ipAddressChoice->type) { | ||
749 | case IPAddressChoice_inherit: | ||
750 | continue; | ||
751 | case IPAddressChoice_addressesOrRanges: | ||
752 | break; | ||
753 | default: | ||
754 | return 0; | ||
755 | } | ||
756 | |||
757 | /* | ||
758 | * It's an IPAddressOrRanges sequence, check it. | ||
759 | */ | ||
760 | aors = f->ipAddressChoice->u.addressesOrRanges; | ||
761 | if (sk_IPAddressOrRange_num(aors) == 0) | ||
762 | return 0; | ||
763 | for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { | ||
764 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | ||
765 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1); | ||
766 | |||
767 | extract_min_max(a, a_min, a_max, length); | ||
768 | extract_min_max(b, b_min, b_max, length); | ||
769 | |||
770 | /* | ||
771 | * Punt misordered list, overlapping start, or inverted range. | ||
772 | */ | ||
773 | if (memcmp(a_min, b_min, length) >= 0 || | ||
774 | memcmp(a_min, a_max, length) > 0 || | ||
775 | memcmp(b_min, b_max, length) > 0) | ||
776 | return 0; | ||
777 | |||
778 | /* | ||
779 | * Punt if adjacent or overlapping. Check for adjacency by | ||
780 | * subtracting one from b_min first. | ||
781 | */ | ||
782 | for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) | ||
783 | ; | ||
784 | if (memcmp(a_max, b_min, length) >= 0) | ||
785 | return 0; | ||
786 | |||
787 | /* | ||
788 | * Check for range that should be expressed as a prefix. | ||
789 | */ | ||
790 | if (a->type == IPAddressOrRange_addressRange && | ||
791 | range_should_be_prefix(a_min, a_max, length) >= 0) | ||
792 | return 0; | ||
793 | } | ||
794 | |||
795 | /* | ||
796 | * Check final range to see if it should be a prefix. | ||
797 | */ | ||
798 | j = sk_IPAddressOrRange_num(aors) - 1; | ||
799 | { | ||
800 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); | ||
801 | if (a->type == IPAddressOrRange_addressRange) { | ||
802 | extract_min_max(a, a_min, a_max, length); | ||
803 | if (range_should_be_prefix(a_min, a_max, length) >= 0) | ||
804 | return 0; | ||
805 | } | ||
806 | } | ||
807 | } | ||
808 | |||
809 | /* | ||
810 | * If we made it through all that, we're happy. | ||
811 | */ | ||
812 | return 1; | ||
813 | } | ||
814 | |||
815 | /* | ||
816 | * Whack an IPAddressOrRanges into canonical form. | ||
817 | */ | ||
818 | static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors, | ||
819 | const unsigned afi) | ||
820 | { | ||
821 | int i, j, length = length_from_afi(afi); | ||
822 | |||
823 | /* | ||
824 | * Sort the IPAddressOrRanges sequence. | ||
825 | */ | ||
826 | sk_IPAddressOrRange_sort(aors); | ||
827 | |||
828 | /* | ||
829 | * Clean up representation issues, punt on duplicates or overlaps. | ||
830 | */ | ||
831 | for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { | ||
832 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i); | ||
833 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1); | ||
834 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; | ||
835 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; | ||
836 | |||
837 | extract_min_max(a, a_min, a_max, length); | ||
838 | extract_min_max(b, b_min, b_max, length); | ||
839 | |||
840 | /* | ||
841 | * Punt overlaps. | ||
842 | */ | ||
843 | if (memcmp(a_max, b_min, length) >= 0) | ||
844 | return 0; | ||
845 | |||
846 | /* | ||
847 | * Merge if a and b are adjacent. We check for | ||
848 | * adjacency by subtracting one from b_min first. | ||
849 | */ | ||
850 | for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) | ||
851 | ; | ||
852 | if (memcmp(a_max, b_min, length) == 0) { | ||
853 | IPAddressOrRange *merged; | ||
854 | if (!make_addressRange(&merged, a_min, b_max, length)) | ||
855 | return 0; | ||
856 | sk_IPAddressOrRange_set(aors, i, merged); | ||
857 | sk_IPAddressOrRange_delete(aors, i + 1); | ||
858 | IPAddressOrRange_free(a); | ||
859 | IPAddressOrRange_free(b); | ||
860 | --i; | ||
861 | continue; | ||
862 | } | ||
863 | } | ||
864 | |||
865 | return 1; | ||
866 | } | ||
867 | |||
868 | /* | ||
869 | * Whack an IPAddrBlocks extension into canonical form. | ||
870 | */ | ||
871 | int v3_addr_canonize(IPAddrBlocks *addr) | ||
872 | { | ||
873 | int i; | ||
874 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
875 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
876 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && | ||
877 | !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges, | ||
878 | v3_addr_get_afi(f))) | ||
879 | return 0; | ||
880 | } | ||
881 | sk_IPAddressFamily_sort(addr); | ||
882 | assert(v3_addr_is_canonical(addr)); | ||
883 | return 1; | ||
884 | } | ||
885 | |||
886 | /* | ||
887 | * v2i handler for the IPAddrBlocks extension. | ||
888 | */ | ||
889 | static void *v2i_IPAddrBlocks(struct v3_ext_method *method, | ||
890 | struct v3_ext_ctx *ctx, | ||
891 | STACK_OF(CONF_VALUE) *values) | ||
892 | { | ||
893 | static const char v4addr_chars[] = "0123456789."; | ||
894 | static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; | ||
895 | IPAddrBlocks *addr = NULL; | ||
896 | char *s = NULL, *t; | ||
897 | int i; | ||
898 | |||
899 | if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { | ||
900 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
901 | return NULL; | ||
902 | } | ||
903 | |||
904 | for (i = 0; i < sk_CONF_VALUE_num(values); i++) { | ||
905 | CONF_VALUE *val = sk_CONF_VALUE_value(values, i); | ||
906 | unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; | ||
907 | unsigned afi, *safi = NULL, safi_; | ||
908 | const char *addr_chars; | ||
909 | int prefixlen, i1, i2, delim, length; | ||
910 | |||
911 | if ( !name_cmp(val->name, "IPv4")) { | ||
912 | afi = IANA_AFI_IPV4; | ||
913 | } else if (!name_cmp(val->name, "IPv6")) { | ||
914 | afi = IANA_AFI_IPV6; | ||
915 | } else if (!name_cmp(val->name, "IPv4-SAFI")) { | ||
916 | afi = IANA_AFI_IPV4; | ||
917 | safi = &safi_; | ||
918 | } else if (!name_cmp(val->name, "IPv6-SAFI")) { | ||
919 | afi = IANA_AFI_IPV6; | ||
920 | safi = &safi_; | ||
921 | } else { | ||
922 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR); | ||
923 | X509V3_conf_err(val); | ||
924 | goto err; | ||
925 | } | ||
926 | |||
927 | switch (afi) { | ||
928 | case IANA_AFI_IPV4: | ||
929 | addr_chars = v4addr_chars; | ||
930 | break; | ||
931 | case IANA_AFI_IPV6: | ||
932 | addr_chars = v6addr_chars; | ||
933 | break; | ||
934 | } | ||
935 | |||
936 | length = length_from_afi(afi); | ||
937 | |||
938 | /* | ||
939 | * Handle SAFI, if any, and BUF_strdup() so we can null-terminate | ||
940 | * the other input values. | ||
941 | */ | ||
942 | if (safi != NULL) { | ||
943 | *safi = strtoul(val->value, &t, 0); | ||
944 | t += strspn(t, " \t"); | ||
945 | if (*safi > 0xFF || *t++ != ':') { | ||
946 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI); | ||
947 | X509V3_conf_err(val); | ||
948 | goto err; | ||
949 | } | ||
950 | t += strspn(t, " \t"); | ||
951 | s = BUF_strdup(t); | ||
952 | } else { | ||
953 | s = BUF_strdup(val->value); | ||
954 | } | ||
955 | if (s == NULL) { | ||
956 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
957 | goto err; | ||
958 | } | ||
959 | |||
960 | /* | ||
961 | * Check for inheritance. Not worth additional complexity to | ||
962 | * optimize this (seldom-used) case. | ||
963 | */ | ||
964 | if (!strcmp(s, "inherit")) { | ||
965 | if (!v3_addr_add_inherit(addr, afi, safi)) { | ||
966 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE); | ||
967 | X509V3_conf_err(val); | ||
968 | goto err; | ||
969 | } | ||
970 | OPENSSL_free(s); | ||
971 | s = NULL; | ||
972 | continue; | ||
973 | } | ||
974 | |||
975 | i1 = strspn(s, addr_chars); | ||
976 | i2 = i1 + strspn(s + i1, " \t"); | ||
977 | delim = s[i2++]; | ||
978 | s[i1] = '\0'; | ||
979 | |||
980 | if (a2i_ipadd(min, s) != length) { | ||
981 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); | ||
982 | X509V3_conf_err(val); | ||
983 | goto err; | ||
984 | } | ||
985 | |||
986 | switch (delim) { | ||
987 | case '/': | ||
988 | prefixlen = (int) strtoul(s + i2, &t, 10); | ||
989 | if (t == s + i2 || *t != '\0') { | ||
990 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | ||
991 | X509V3_conf_err(val); | ||
992 | goto err; | ||
993 | } | ||
994 | if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) { | ||
995 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
996 | goto err; | ||
997 | } | ||
998 | break; | ||
999 | case '-': | ||
1000 | i1 = i2 + strspn(s + i2, " \t"); | ||
1001 | i2 = i1 + strspn(s + i1, addr_chars); | ||
1002 | if (i1 == i2 || s[i2] != '\0') { | ||
1003 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | ||
1004 | X509V3_conf_err(val); | ||
1005 | goto err; | ||
1006 | } | ||
1007 | if (a2i_ipadd(max, s + i1) != length) { | ||
1008 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); | ||
1009 | X509V3_conf_err(val); | ||
1010 | goto err; | ||
1011 | } | ||
1012 | if (!v3_addr_add_range(addr, afi, safi, min, max)) { | ||
1013 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
1014 | goto err; | ||
1015 | } | ||
1016 | break; | ||
1017 | case '\0': | ||
1018 | if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) { | ||
1019 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); | ||
1020 | goto err; | ||
1021 | } | ||
1022 | break; | ||
1023 | default: | ||
1024 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); | ||
1025 | X509V3_conf_err(val); | ||
1026 | goto err; | ||
1027 | } | ||
1028 | |||
1029 | OPENSSL_free(s); | ||
1030 | s = NULL; | ||
1031 | } | ||
1032 | |||
1033 | /* | ||
1034 | * Canonize the result, then we're done. | ||
1035 | */ | ||
1036 | if (!v3_addr_canonize(addr)) | ||
1037 | goto err; | ||
1038 | return addr; | ||
1039 | |||
1040 | err: | ||
1041 | OPENSSL_free(s); | ||
1042 | sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); | ||
1043 | return NULL; | ||
1044 | } | ||
1045 | |||
1046 | /* | ||
1047 | * OpenSSL dispatch | ||
1048 | */ | ||
1049 | const X509V3_EXT_METHOD v3_addr = { | ||
1050 | NID_sbgp_ipAddrBlock, /* nid */ | ||
1051 | 0, /* flags */ | ||
1052 | ASN1_ITEM_ref(IPAddrBlocks), /* template */ | ||
1053 | 0, 0, 0, 0, /* old functions, ignored */ | ||
1054 | 0, /* i2s */ | ||
1055 | 0, /* s2i */ | ||
1056 | 0, /* i2v */ | ||
1057 | v2i_IPAddrBlocks, /* v2i */ | ||
1058 | i2r_IPAddrBlocks, /* i2r */ | ||
1059 | 0, /* r2i */ | ||
1060 | NULL /* extension-specific data */ | ||
1061 | }; | ||
1062 | |||
1063 | /* | ||
1064 | * Figure out whether extension sues inheritance. | ||
1065 | */ | ||
1066 | int v3_addr_inherits(IPAddrBlocks *addr) | ||
1067 | { | ||
1068 | int i; | ||
1069 | if (addr == NULL) | ||
1070 | return 0; | ||
1071 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { | ||
1072 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); | ||
1073 | if (f->ipAddressChoice->type == IPAddressChoice_inherit) | ||
1074 | return 1; | ||
1075 | } | ||
1076 | return 0; | ||
1077 | } | ||
1078 | |||
1079 | /* | ||
1080 | * Figure out whether parent contains child. | ||
1081 | */ | ||
1082 | static int addr_contains(IPAddressOrRanges *parent, | ||
1083 | IPAddressOrRanges *child, | ||
1084 | int length) | ||
1085 | { | ||
1086 | unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN]; | ||
1087 | unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN]; | ||
1088 | int p, c; | ||
1089 | |||
1090 | if (child == NULL || parent == child) | ||
1091 | return 1; | ||
1092 | if (parent == NULL) | ||
1093 | return 0; | ||
1094 | |||
1095 | p = 0; | ||
1096 | for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { | ||
1097 | extract_min_max(sk_IPAddressOrRange_value(child, c), | ||
1098 | c_min, c_max, length); | ||
1099 | for (;; p++) { | ||
1100 | if (p >= sk_IPAddressOrRange_num(parent)) | ||
1101 | return 0; | ||
1102 | extract_min_max(sk_IPAddressOrRange_value(parent, p), | ||
1103 | p_min, p_max, length); | ||
1104 | if (memcmp(p_max, c_max, length) < 0) | ||
1105 | continue; | ||
1106 | if (memcmp(p_min, c_min, length) > 0) | ||
1107 | return 0; | ||
1108 | break; | ||
1109 | } | ||
1110 | } | ||
1111 | |||
1112 | return 1; | ||
1113 | } | ||
1114 | |||
1115 | /* | ||
1116 | * Test whether a is a subset of b. | ||
1117 | */ | ||
1118 | int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) | ||
1119 | { | ||
1120 | int i; | ||
1121 | if (a == NULL || a == b) | ||
1122 | return 1; | ||
1123 | if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b)) | ||
1124 | return 0; | ||
1125 | sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp); | ||
1126 | for (i = 0; i < sk_IPAddressFamily_num(a); i++) { | ||
1127 | IPAddressFamily *fa = sk_IPAddressFamily_value(a, i); | ||
1128 | int j = sk_IPAddressFamily_find(b, fa); | ||
1129 | IPAddressFamily *fb = sk_IPAddressFamily_value(b, j); | ||
1130 | if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, | ||
1131 | fa->ipAddressChoice->u.addressesOrRanges, | ||
1132 | length_from_afi(v3_addr_get_afi(fb)))) | ||
1133 | return 0; | ||
1134 | } | ||
1135 | return 1; | ||
1136 | } | ||
1137 | |||
1138 | /* | ||
1139 | * Validation error handling via callback. | ||
1140 | */ | ||
1141 | #define validation_err(_err_) \ | ||
1142 | do { \ | ||
1143 | if (ctx != NULL) { \ | ||
1144 | ctx->error = _err_; \ | ||
1145 | ctx->error_depth = i; \ | ||
1146 | ctx->current_cert = x; \ | ||
1147 | ret = ctx->verify_cb(0, ctx); \ | ||
1148 | } else { \ | ||
1149 | ret = 0; \ | ||
1150 | } \ | ||
1151 | if (!ret) \ | ||
1152 | goto done; \ | ||
1153 | } while (0) | ||
1154 | |||
1155 | /* | ||
1156 | * Core code for RFC 3779 2.3 path validation. | ||
1157 | */ | ||
1158 | static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx, | ||
1159 | STACK_OF(X509) *chain, | ||
1160 | IPAddrBlocks *ext) | ||
1161 | { | ||
1162 | IPAddrBlocks *child = NULL; | ||
1163 | int i, j, ret = 1; | ||
1164 | X509 *x = NULL; | ||
1165 | |||
1166 | assert(chain != NULL && sk_X509_num(chain) > 0); | ||
1167 | assert(ctx != NULL || ext != NULL); | ||
1168 | assert(ctx == NULL || ctx->verify_cb != NULL); | ||
1169 | |||
1170 | /* | ||
1171 | * Figure out where to start. If we don't have an extension to | ||
1172 | * check, we're done. Otherwise, check canonical form and | ||
1173 | * set up for walking up the chain. | ||
1174 | */ | ||
1175 | if (ext != NULL) { | ||
1176 | i = -1; | ||
1177 | } else { | ||
1178 | i = 0; | ||
1179 | x = sk_X509_value(chain, i); | ||
1180 | assert(x != NULL); | ||
1181 | if ((ext = x->rfc3779_addr) == NULL) | ||
1182 | goto done; | ||
1183 | } | ||
1184 | if (!v3_addr_is_canonical(ext)) | ||
1185 | validation_err(X509_V_ERR_INVALID_EXTENSION); | ||
1186 | sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); | ||
1187 | if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { | ||
1188 | X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE); | ||
1189 | ret = 0; | ||
1190 | goto done; | ||
1191 | } | ||
1192 | |||
1193 | /* | ||
1194 | * Now walk up the chain. No cert may list resources that its | ||
1195 | * parent doesn't list. | ||
1196 | */ | ||
1197 | for (i++; i < sk_X509_num(chain); i++) { | ||
1198 | x = sk_X509_value(chain, i); | ||
1199 | assert(x != NULL); | ||
1200 | if (!v3_addr_is_canonical(x->rfc3779_addr)) | ||
1201 | validation_err(X509_V_ERR_INVALID_EXTENSION); | ||
1202 | if (x->rfc3779_addr == NULL) { | ||
1203 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | ||
1204 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); | ||
1205 | if (fc->ipAddressChoice->type != IPAddressChoice_inherit) { | ||
1206 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
1207 | break; | ||
1208 | } | ||
1209 | } | ||
1210 | continue; | ||
1211 | } | ||
1212 | sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp); | ||
1213 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { | ||
1214 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); | ||
1215 | int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc); | ||
1216 | IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k); | ||
1217 | if (fp == NULL) { | ||
1218 | if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { | ||
1219 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
1220 | break; | ||
1221 | } | ||
1222 | continue; | ||
1223 | } | ||
1224 | if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { | ||
1225 | if (fc->ipAddressChoice->type == IPAddressChoice_inherit || | ||
1226 | addr_contains(fp->ipAddressChoice->u.addressesOrRanges, | ||
1227 | fc->ipAddressChoice->u.addressesOrRanges, | ||
1228 | length_from_afi(v3_addr_get_afi(fc)))) | ||
1229 | sk_IPAddressFamily_set(child, j, fp); | ||
1230 | else | ||
1231 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
1232 | } | ||
1233 | } | ||
1234 | } | ||
1235 | |||
1236 | /* | ||
1237 | * Trust anchor can't inherit. | ||
1238 | */ | ||
1239 | if (x->rfc3779_addr != NULL) { | ||
1240 | for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { | ||
1241 | IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j); | ||
1242 | if (fp->ipAddressChoice->type == IPAddressChoice_inherit && | ||
1243 | sk_IPAddressFamily_find(child, fp) >= 0) | ||
1244 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); | ||
1245 | } | ||
1246 | } | ||
1247 | |||
1248 | done: | ||
1249 | sk_IPAddressFamily_free(child); | ||
1250 | return ret; | ||
1251 | } | ||
1252 | |||
1253 | #undef validation_err | ||
1254 | |||
1255 | /* | ||
1256 | * RFC 3779 2.3 path validation -- called from X509_verify_cert(). | ||
1257 | */ | ||
1258 | int v3_addr_validate_path(X509_STORE_CTX *ctx) | ||
1259 | { | ||
1260 | return v3_addr_validate_path_internal(ctx, ctx->chain, NULL); | ||
1261 | } | ||
1262 | |||
1263 | /* | ||
1264 | * RFC 3779 2.3 path validation of an extension. | ||
1265 | * Test whether chain covers extension. | ||
1266 | */ | ||
1267 | int v3_addr_validate_resource_set(STACK_OF(X509) *chain, | ||
1268 | IPAddrBlocks *ext, | ||
1269 | int allow_inheritance) | ||
1270 | { | ||
1271 | if (ext == NULL) | ||
1272 | return 1; | ||
1273 | if (chain == NULL || sk_X509_num(chain) == 0) | ||
1274 | return 0; | ||
1275 | if (!allow_inheritance && v3_addr_inherits(ext)) | ||
1276 | return 0; | ||
1277 | return v3_addr_validate_path_internal(NULL, chain, ext); | ||
1278 | } | ||
1279 | |||
1280 | #endif /* OPENSSL_NO_RFC3779 */ | ||