summaryrefslogtreecommitdiff
path: root/src/lib/libcrypto/x509v3
diff options
context:
space:
mode:
authordjm <>2008-09-06 12:15:53 +0000
committerdjm <>2008-09-06 12:15:53 +0000
commit89b182c5db7ea802edfc3ee734b4899b43e13e09 (patch)
tree88747ac13b4a3c36ffc2fe9901e1e90efc583ced /src/lib/libcrypto/x509v3
parent2264137440a13fb11f05127cb03f7239f024ab28 (diff)
parentf69b11f62c3e6c9d4db22529933cf93b6301f7b1 (diff)
downloadopenbsd-89b182c5db7ea802edfc3ee734b4899b43e13e09.tar.gz
openbsd-89b182c5db7ea802edfc3ee734b4899b43e13e09.tar.bz2
openbsd-89b182c5db7ea802edfc3ee734b4899b43e13e09.zip
This commit was generated by cvs2git to track changes on a CVS vendor
branch.
Diffstat (limited to 'src/lib/libcrypto/x509v3')
-rw-r--r--src/lib/libcrypto/x509v3/v3_addr.c1280
-rw-r--r--src/lib/libcrypto/x509v3/v3_asid.c842
2 files changed, 2122 insertions, 0 deletions
diff --git a/src/lib/libcrypto/x509v3/v3_addr.c b/src/lib/libcrypto/x509v3/v3_addr.c
new file mode 100644
index 0000000000..ed9847b307
--- /dev/null
+++ b/src/lib/libcrypto/x509v3/v3_addr.c
@@ -0,0 +1,1280 @@
1/*
2 * Contributed to the OpenSSL Project by the American Registry for
3 * Internet Numbers ("ARIN").
4 */
5/* ====================================================================
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 */
57
58/*
59 * Implementation of RFC 3779 section 2.2.
60 */
61
62#include <stdio.h>
63#include <stdlib.h>
64#include <assert.h>
65#include "cryptlib.h"
66#include <openssl/conf.h>
67#include <openssl/asn1.h>
68#include <openssl/asn1t.h>
69#include <openssl/buffer.h>
70#include <openssl/x509v3.h>
71
72#ifndef OPENSSL_NO_RFC3779
73
74/*
75 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
76 */
77
78ASN1_SEQUENCE(IPAddressRange) = {
79 ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
80 ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
81} ASN1_SEQUENCE_END(IPAddressRange)
82
83ASN1_CHOICE(IPAddressOrRange) = {
84 ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
85 ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
86} ASN1_CHOICE_END(IPAddressOrRange)
87
88ASN1_CHOICE(IPAddressChoice) = {
89 ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
90 ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
91} ASN1_CHOICE_END(IPAddressChoice)
92
93ASN1_SEQUENCE(IPAddressFamily) = {
94 ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
95 ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
96} ASN1_SEQUENCE_END(IPAddressFamily)
97
98ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
99 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
100 IPAddrBlocks, IPAddressFamily)
101ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
102
103IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
104IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
105IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
106IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
107
108/*
109 * How much buffer space do we need for a raw address?
110 */
111#define ADDR_RAW_BUF_LEN 16
112
113/*
114 * What's the address length associated with this AFI?
115 */
116static int length_from_afi(const unsigned afi)
117{
118 switch (afi) {
119 case IANA_AFI_IPV4:
120 return 4;
121 case IANA_AFI_IPV6:
122 return 16;
123 default:
124 return 0;
125 }
126}
127
128/*
129 * Extract the AFI from an IPAddressFamily.
130 */
131unsigned v3_addr_get_afi(const IPAddressFamily *f)
132{
133 return ((f != NULL &&
134 f->addressFamily != NULL &&
135 f->addressFamily->data != NULL)
136 ? ((f->addressFamily->data[0] << 8) |
137 (f->addressFamily->data[1]))
138 : 0);
139}
140
141/*
142 * Expand the bitstring form of an address into a raw byte array.
143 * At the moment this is coded for simplicity, not speed.
144 */
145static void addr_expand(unsigned char *addr,
146 const ASN1_BIT_STRING *bs,
147 const int length,
148 const unsigned char fill)
149{
150 assert(bs->length >= 0 && bs->length <= length);
151 if (bs->length > 0) {
152 memcpy(addr, bs->data, bs->length);
153 if ((bs->flags & 7) != 0) {
154 unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
155 if (fill == 0)
156 addr[bs->length - 1] &= ~mask;
157 else
158 addr[bs->length - 1] |= mask;
159 }
160 }
161 memset(addr + bs->length, fill, length - bs->length);
162}
163
164/*
165 * Extract the prefix length from a bitstring.
166 */
167#define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
168
169/*
170 * i2r handler for one address bitstring.
171 */
172static int i2r_address(BIO *out,
173 const unsigned afi,
174 const unsigned char fill,
175 const ASN1_BIT_STRING *bs)
176{
177 unsigned char addr[ADDR_RAW_BUF_LEN];
178 int i, n;
179
180 switch (afi) {
181 case IANA_AFI_IPV4:
182 addr_expand(addr, bs, 4, fill);
183 BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
184 break;
185 case IANA_AFI_IPV6:
186 addr_expand(addr, bs, 16, fill);
187 for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2)
188 ;
189 for (i = 0; i < n; i += 2)
190 BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : ""));
191 if (i < 16)
192 BIO_puts(out, ":");
193 break;
194 default:
195 for (i = 0; i < bs->length; i++)
196 BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
197 BIO_printf(out, "[%d]", (int) (bs->flags & 7));
198 break;
199 }
200 return 1;
201}
202
203/*
204 * i2r handler for a sequence of addresses and ranges.
205 */
206static int i2r_IPAddressOrRanges(BIO *out,
207 const int indent,
208 const IPAddressOrRanges *aors,
209 const unsigned afi)
210{
211 int i;
212 for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
213 const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
214 BIO_printf(out, "%*s", indent, "");
215 switch (aor->type) {
216 case IPAddressOrRange_addressPrefix:
217 if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
218 return 0;
219 BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
220 continue;
221 case IPAddressOrRange_addressRange:
222 if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
223 return 0;
224 BIO_puts(out, "-");
225 if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
226 return 0;
227 BIO_puts(out, "\n");
228 continue;
229 }
230 }
231 return 1;
232}
233
234/*
235 * i2r handler for an IPAddrBlocks extension.
236 */
237static int i2r_IPAddrBlocks(X509V3_EXT_METHOD *method,
238 void *ext,
239 BIO *out,
240 int indent)
241{
242 const IPAddrBlocks *addr = ext;
243 int i;
244 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
245 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
246 const unsigned afi = v3_addr_get_afi(f);
247 switch (afi) {
248 case IANA_AFI_IPV4:
249 BIO_printf(out, "%*sIPv4", indent, "");
250 break;
251 case IANA_AFI_IPV6:
252 BIO_printf(out, "%*sIPv6", indent, "");
253 break;
254 default:
255 BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
256 break;
257 }
258 if (f->addressFamily->length > 2) {
259 switch (f->addressFamily->data[2]) {
260 case 1:
261 BIO_puts(out, " (Unicast)");
262 break;
263 case 2:
264 BIO_puts(out, " (Multicast)");
265 break;
266 case 3:
267 BIO_puts(out, " (Unicast/Multicast)");
268 break;
269 case 4:
270 BIO_puts(out, " (MPLS)");
271 break;
272 case 64:
273 BIO_puts(out, " (Tunnel)");
274 break;
275 case 65:
276 BIO_puts(out, " (VPLS)");
277 break;
278 case 66:
279 BIO_puts(out, " (BGP MDT)");
280 break;
281 case 128:
282 BIO_puts(out, " (MPLS-labeled VPN)");
283 break;
284 default:
285 BIO_printf(out, " (Unknown SAFI %u)",
286 (unsigned) f->addressFamily->data[2]);
287 break;
288 }
289 }
290 switch (f->ipAddressChoice->type) {
291 case IPAddressChoice_inherit:
292 BIO_puts(out, ": inherit\n");
293 break;
294 case IPAddressChoice_addressesOrRanges:
295 BIO_puts(out, ":\n");
296 if (!i2r_IPAddressOrRanges(out,
297 indent + 2,
298 f->ipAddressChoice->u.addressesOrRanges,
299 afi))
300 return 0;
301 break;
302 }
303 }
304 return 1;
305}
306
307/*
308 * Sort comparison function for a sequence of IPAddressOrRange
309 * elements.
310 */
311static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
312 const IPAddressOrRange *b,
313 const int length)
314{
315 unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
316 int prefixlen_a = 0;
317 int prefixlen_b = 0;
318 int r;
319
320 switch (a->type) {
321 case IPAddressOrRange_addressPrefix:
322 addr_expand(addr_a, a->u.addressPrefix, length, 0x00);
323 prefixlen_a = addr_prefixlen(a->u.addressPrefix);
324 break;
325 case IPAddressOrRange_addressRange:
326 addr_expand(addr_a, a->u.addressRange->min, length, 0x00);
327 prefixlen_a = length * 8;
328 break;
329 }
330
331 switch (b->type) {
332 case IPAddressOrRange_addressPrefix:
333 addr_expand(addr_b, b->u.addressPrefix, length, 0x00);
334 prefixlen_b = addr_prefixlen(b->u.addressPrefix);
335 break;
336 case IPAddressOrRange_addressRange:
337 addr_expand(addr_b, b->u.addressRange->min, length, 0x00);
338 prefixlen_b = length * 8;
339 break;
340 }
341
342 if ((r = memcmp(addr_a, addr_b, length)) != 0)
343 return r;
344 else
345 return prefixlen_a - prefixlen_b;
346}
347
348/*
349 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
350 * comparision routines are only allowed two arguments.
351 */
352static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
353 const IPAddressOrRange * const *b)
354{
355 return IPAddressOrRange_cmp(*a, *b, 4);
356}
357
358/*
359 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
360 * comparision routines are only allowed two arguments.
361 */
362static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a,
363 const IPAddressOrRange * const *b)
364{
365 return IPAddressOrRange_cmp(*a, *b, 16);
366}
367
368/*
369 * Calculate whether a range collapses to a prefix.
370 * See last paragraph of RFC 3779 2.2.3.7.
371 */
372static int range_should_be_prefix(const unsigned char *min,
373 const unsigned char *max,
374 const int length)
375{
376 unsigned char mask;
377 int i, j;
378
379 for (i = 0; i < length && min[i] == max[i]; i++)
380 ;
381 for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--)
382 ;
383 if (i < j)
384 return -1;
385 if (i > j)
386 return i * 8;
387 mask = min[i] ^ max[i];
388 switch (mask) {
389 case 0x01: j = 7; break;
390 case 0x03: j = 6; break;
391 case 0x07: j = 5; break;
392 case 0x0F: j = 4; break;
393 case 0x1F: j = 3; break;
394 case 0x3F: j = 2; break;
395 case 0x7F: j = 1; break;
396 default: return -1;
397 }
398 if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
399 return -1;
400 else
401 return i * 8 + j;
402}
403
404/*
405 * Construct a prefix.
406 */
407static int make_addressPrefix(IPAddressOrRange **result,
408 unsigned char *addr,
409 const int prefixlen)
410{
411 int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
412 IPAddressOrRange *aor = IPAddressOrRange_new();
413
414 if (aor == NULL)
415 return 0;
416 aor->type = IPAddressOrRange_addressPrefix;
417 if (aor->u.addressPrefix == NULL &&
418 (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
419 goto err;
420 if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
421 goto err;
422 aor->u.addressPrefix->flags &= ~7;
423 aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
424 if (bitlen > 0) {
425 aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
426 aor->u.addressPrefix->flags |= 8 - bitlen;
427 }
428
429 *result = aor;
430 return 1;
431
432 err:
433 IPAddressOrRange_free(aor);
434 return 0;
435}
436
437/*
438 * Construct a range. If it can be expressed as a prefix,
439 * return a prefix instead. Doing this here simplifies
440 * the rest of the code considerably.
441 */
442static int make_addressRange(IPAddressOrRange **result,
443 unsigned char *min,
444 unsigned char *max,
445 const int length)
446{
447 IPAddressOrRange *aor;
448 int i, prefixlen;
449
450 if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
451 return make_addressPrefix(result, min, prefixlen);
452
453 if ((aor = IPAddressOrRange_new()) == NULL)
454 return 0;
455 aor->type = IPAddressOrRange_addressRange;
456 assert(aor->u.addressRange == NULL);
457 if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
458 goto err;
459 if (aor->u.addressRange->min == NULL &&
460 (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
461 goto err;
462 if (aor->u.addressRange->max == NULL &&
463 (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
464 goto err;
465
466 for (i = length; i > 0 && min[i - 1] == 0x00; --i)
467 ;
468 if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
469 goto err;
470 aor->u.addressRange->min->flags &= ~7;
471 aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
472 if (i > 0) {
473 unsigned char b = min[i - 1];
474 int j = 1;
475 while ((b & (0xFFU >> j)) != 0)
476 ++j;
477 aor->u.addressRange->min->flags |= 8 - j;
478 }
479
480 for (i = length; i > 0 && max[i - 1] == 0xFF; --i)
481 ;
482 if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
483 goto err;
484 aor->u.addressRange->max->flags &= ~7;
485 aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
486 if (i > 0) {
487 unsigned char b = max[i - 1];
488 int j = 1;
489 while ((b & (0xFFU >> j)) != (0xFFU >> j))
490 ++j;
491 aor->u.addressRange->max->flags |= 8 - j;
492 }
493
494 *result = aor;
495 return 1;
496
497 err:
498 IPAddressOrRange_free(aor);
499 return 0;
500}
501
502/*
503 * Construct a new address family or find an existing one.
504 */
505static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
506 const unsigned afi,
507 const unsigned *safi)
508{
509 IPAddressFamily *f;
510 unsigned char key[3];
511 unsigned keylen;
512 int i;
513
514 key[0] = (afi >> 8) & 0xFF;
515 key[1] = afi & 0xFF;
516 if (safi != NULL) {
517 key[2] = *safi & 0xFF;
518 keylen = 3;
519 } else {
520 keylen = 2;
521 }
522
523 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
524 f = sk_IPAddressFamily_value(addr, i);
525 assert(f->addressFamily->data != NULL);
526 if (f->addressFamily->length == keylen &&
527 !memcmp(f->addressFamily->data, key, keylen))
528 return f;
529 }
530
531 if ((f = IPAddressFamily_new()) == NULL)
532 goto err;
533 if (f->ipAddressChoice == NULL &&
534 (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
535 goto err;
536 if (f->addressFamily == NULL &&
537 (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
538 goto err;
539 if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
540 goto err;
541 if (!sk_IPAddressFamily_push(addr, f))
542 goto err;
543
544 return f;
545
546 err:
547 IPAddressFamily_free(f);
548 return NULL;
549}
550
551/*
552 * Add an inheritance element.
553 */
554int v3_addr_add_inherit(IPAddrBlocks *addr,
555 const unsigned afi,
556 const unsigned *safi)
557{
558 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
559 if (f == NULL ||
560 f->ipAddressChoice == NULL ||
561 (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
562 f->ipAddressChoice->u.addressesOrRanges != NULL))
563 return 0;
564 if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
565 f->ipAddressChoice->u.inherit != NULL)
566 return 1;
567 if (f->ipAddressChoice->u.inherit == NULL &&
568 (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
569 return 0;
570 f->ipAddressChoice->type = IPAddressChoice_inherit;
571 return 1;
572}
573
574/*
575 * Construct an IPAddressOrRange sequence, or return an existing one.
576 */
577static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
578 const unsigned afi,
579 const unsigned *safi)
580{
581 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
582 IPAddressOrRanges *aors = NULL;
583
584 if (f == NULL ||
585 f->ipAddressChoice == NULL ||
586 (f->ipAddressChoice->type == IPAddressChoice_inherit &&
587 f->ipAddressChoice->u.inherit != NULL))
588 return NULL;
589 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
590 aors = f->ipAddressChoice->u.addressesOrRanges;
591 if (aors != NULL)
592 return aors;
593 if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
594 return NULL;
595 switch (afi) {
596 case IANA_AFI_IPV4:
597 sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
598 break;
599 case IANA_AFI_IPV6:
600 sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
601 break;
602 }
603 f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
604 f->ipAddressChoice->u.addressesOrRanges = aors;
605 return aors;
606}
607
608/*
609 * Add a prefix.
610 */
611int v3_addr_add_prefix(IPAddrBlocks *addr,
612 const unsigned afi,
613 const unsigned *safi,
614 unsigned char *a,
615 const int prefixlen)
616{
617 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
618 IPAddressOrRange *aor;
619 if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen))
620 return 0;
621 if (sk_IPAddressOrRange_push(aors, aor))
622 return 1;
623 IPAddressOrRange_free(aor);
624 return 0;
625}
626
627/*
628 * Add a range.
629 */
630int v3_addr_add_range(IPAddrBlocks *addr,
631 const unsigned afi,
632 const unsigned *safi,
633 unsigned char *min,
634 unsigned char *max)
635{
636 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
637 IPAddressOrRange *aor;
638 int length = length_from_afi(afi);
639 if (aors == NULL)
640 return 0;
641 if (!make_addressRange(&aor, min, max, length))
642 return 0;
643 if (sk_IPAddressOrRange_push(aors, aor))
644 return 1;
645 IPAddressOrRange_free(aor);
646 return 0;
647}
648
649/*
650 * Extract min and max values from an IPAddressOrRange.
651 */
652static void extract_min_max(IPAddressOrRange *aor,
653 unsigned char *min,
654 unsigned char *max,
655 int length)
656{
657 assert(aor != NULL && min != NULL && max != NULL);
658 switch (aor->type) {
659 case IPAddressOrRange_addressPrefix:
660 addr_expand(min, aor->u.addressPrefix, length, 0x00);
661 addr_expand(max, aor->u.addressPrefix, length, 0xFF);
662 return;
663 case IPAddressOrRange_addressRange:
664 addr_expand(min, aor->u.addressRange->min, length, 0x00);
665 addr_expand(max, aor->u.addressRange->max, length, 0xFF);
666 return;
667 }
668}
669
670/*
671 * Public wrapper for extract_min_max().
672 */
673int v3_addr_get_range(IPAddressOrRange *aor,
674 const unsigned afi,
675 unsigned char *min,
676 unsigned char *max,
677 const int length)
678{
679 int afi_length = length_from_afi(afi);
680 if (aor == NULL || min == NULL || max == NULL ||
681 afi_length == 0 || length < afi_length ||
682 (aor->type != IPAddressOrRange_addressPrefix &&
683 aor->type != IPAddressOrRange_addressRange))
684 return 0;
685 extract_min_max(aor, min, max, afi_length);
686 return afi_length;
687}
688
689/*
690 * Sort comparision function for a sequence of IPAddressFamily.
691 *
692 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
693 * the ordering: I can read it as meaning that IPv6 without a SAFI
694 * comes before IPv4 with a SAFI, which seems pretty weird. The
695 * examples in appendix B suggest that the author intended the
696 * null-SAFI rule to apply only within a single AFI, which is what I
697 * would have expected and is what the following code implements.
698 */
699static int IPAddressFamily_cmp(const IPAddressFamily * const *a_,
700 const IPAddressFamily * const *b_)
701{
702 const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
703 const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
704 int len = ((a->length <= b->length) ? a->length : b->length);
705 int cmp = memcmp(a->data, b->data, len);
706 return cmp ? cmp : a->length - b->length;
707}
708
709/*
710 * Check whether an IPAddrBLocks is in canonical form.
711 */
712int v3_addr_is_canonical(IPAddrBlocks *addr)
713{
714 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
715 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
716 IPAddressOrRanges *aors;
717 int i, j, k;
718
719 /*
720 * Empty extension is cannonical.
721 */
722 if (addr == NULL)
723 return 1;
724
725 /*
726 * Check whether the top-level list is in order.
727 */
728 for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
729 const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
730 const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
731 if (IPAddressFamily_cmp(&a, &b) >= 0)
732 return 0;
733 }
734
735 /*
736 * Top level's ok, now check each address family.
737 */
738 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
739 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
740 int length = length_from_afi(v3_addr_get_afi(f));
741
742 /*
743 * Inheritance is canonical. Anything other than inheritance or
744 * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
745 */
746 if (f == NULL || f->ipAddressChoice == NULL)
747 return 0;
748 switch (f->ipAddressChoice->type) {
749 case IPAddressChoice_inherit:
750 continue;
751 case IPAddressChoice_addressesOrRanges:
752 break;
753 default:
754 return 0;
755 }
756
757 /*
758 * It's an IPAddressOrRanges sequence, check it.
759 */
760 aors = f->ipAddressChoice->u.addressesOrRanges;
761 if (sk_IPAddressOrRange_num(aors) == 0)
762 return 0;
763 for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
764 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
765 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
766
767 extract_min_max(a, a_min, a_max, length);
768 extract_min_max(b, b_min, b_max, length);
769
770 /*
771 * Punt misordered list, overlapping start, or inverted range.
772 */
773 if (memcmp(a_min, b_min, length) >= 0 ||
774 memcmp(a_min, a_max, length) > 0 ||
775 memcmp(b_min, b_max, length) > 0)
776 return 0;
777
778 /*
779 * Punt if adjacent or overlapping. Check for adjacency by
780 * subtracting one from b_min first.
781 */
782 for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--)
783 ;
784 if (memcmp(a_max, b_min, length) >= 0)
785 return 0;
786
787 /*
788 * Check for range that should be expressed as a prefix.
789 */
790 if (a->type == IPAddressOrRange_addressRange &&
791 range_should_be_prefix(a_min, a_max, length) >= 0)
792 return 0;
793 }
794
795 /*
796 * Check final range to see if it should be a prefix.
797 */
798 j = sk_IPAddressOrRange_num(aors) - 1;
799 {
800 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
801 if (a->type == IPAddressOrRange_addressRange) {
802 extract_min_max(a, a_min, a_max, length);
803 if (range_should_be_prefix(a_min, a_max, length) >= 0)
804 return 0;
805 }
806 }
807 }
808
809 /*
810 * If we made it through all that, we're happy.
811 */
812 return 1;
813}
814
815/*
816 * Whack an IPAddressOrRanges into canonical form.
817 */
818static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
819 const unsigned afi)
820{
821 int i, j, length = length_from_afi(afi);
822
823 /*
824 * Sort the IPAddressOrRanges sequence.
825 */
826 sk_IPAddressOrRange_sort(aors);
827
828 /*
829 * Clean up representation issues, punt on duplicates or overlaps.
830 */
831 for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
832 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
833 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
834 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
835 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
836
837 extract_min_max(a, a_min, a_max, length);
838 extract_min_max(b, b_min, b_max, length);
839
840 /*
841 * Punt overlaps.
842 */
843 if (memcmp(a_max, b_min, length) >= 0)
844 return 0;
845
846 /*
847 * Merge if a and b are adjacent. We check for
848 * adjacency by subtracting one from b_min first.
849 */
850 for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--)
851 ;
852 if (memcmp(a_max, b_min, length) == 0) {
853 IPAddressOrRange *merged;
854 if (!make_addressRange(&merged, a_min, b_max, length))
855 return 0;
856 sk_IPAddressOrRange_set(aors, i, merged);
857 sk_IPAddressOrRange_delete(aors, i + 1);
858 IPAddressOrRange_free(a);
859 IPAddressOrRange_free(b);
860 --i;
861 continue;
862 }
863 }
864
865 return 1;
866}
867
868/*
869 * Whack an IPAddrBlocks extension into canonical form.
870 */
871int v3_addr_canonize(IPAddrBlocks *addr)
872{
873 int i;
874 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
875 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
876 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
877 !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges,
878 v3_addr_get_afi(f)))
879 return 0;
880 }
881 sk_IPAddressFamily_sort(addr);
882 assert(v3_addr_is_canonical(addr));
883 return 1;
884}
885
886/*
887 * v2i handler for the IPAddrBlocks extension.
888 */
889static void *v2i_IPAddrBlocks(struct v3_ext_method *method,
890 struct v3_ext_ctx *ctx,
891 STACK_OF(CONF_VALUE) *values)
892{
893 static const char v4addr_chars[] = "0123456789.";
894 static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
895 IPAddrBlocks *addr = NULL;
896 char *s = NULL, *t;
897 int i;
898
899 if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
900 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
901 return NULL;
902 }
903
904 for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
905 CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
906 unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
907 unsigned afi, *safi = NULL, safi_;
908 const char *addr_chars;
909 int prefixlen, i1, i2, delim, length;
910
911 if ( !name_cmp(val->name, "IPv4")) {
912 afi = IANA_AFI_IPV4;
913 } else if (!name_cmp(val->name, "IPv6")) {
914 afi = IANA_AFI_IPV6;
915 } else if (!name_cmp(val->name, "IPv4-SAFI")) {
916 afi = IANA_AFI_IPV4;
917 safi = &safi_;
918 } else if (!name_cmp(val->name, "IPv6-SAFI")) {
919 afi = IANA_AFI_IPV6;
920 safi = &safi_;
921 } else {
922 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR);
923 X509V3_conf_err(val);
924 goto err;
925 }
926
927 switch (afi) {
928 case IANA_AFI_IPV4:
929 addr_chars = v4addr_chars;
930 break;
931 case IANA_AFI_IPV6:
932 addr_chars = v6addr_chars;
933 break;
934 }
935
936 length = length_from_afi(afi);
937
938 /*
939 * Handle SAFI, if any, and BUF_strdup() so we can null-terminate
940 * the other input values.
941 */
942 if (safi != NULL) {
943 *safi = strtoul(val->value, &t, 0);
944 t += strspn(t, " \t");
945 if (*safi > 0xFF || *t++ != ':') {
946 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI);
947 X509V3_conf_err(val);
948 goto err;
949 }
950 t += strspn(t, " \t");
951 s = BUF_strdup(t);
952 } else {
953 s = BUF_strdup(val->value);
954 }
955 if (s == NULL) {
956 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
957 goto err;
958 }
959
960 /*
961 * Check for inheritance. Not worth additional complexity to
962 * optimize this (seldom-used) case.
963 */
964 if (!strcmp(s, "inherit")) {
965 if (!v3_addr_add_inherit(addr, afi, safi)) {
966 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE);
967 X509V3_conf_err(val);
968 goto err;
969 }
970 OPENSSL_free(s);
971 s = NULL;
972 continue;
973 }
974
975 i1 = strspn(s, addr_chars);
976 i2 = i1 + strspn(s + i1, " \t");
977 delim = s[i2++];
978 s[i1] = '\0';
979
980 if (a2i_ipadd(min, s) != length) {
981 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
982 X509V3_conf_err(val);
983 goto err;
984 }
985
986 switch (delim) {
987 case '/':
988 prefixlen = (int) strtoul(s + i2, &t, 10);
989 if (t == s + i2 || *t != '\0') {
990 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
991 X509V3_conf_err(val);
992 goto err;
993 }
994 if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
995 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
996 goto err;
997 }
998 break;
999 case '-':
1000 i1 = i2 + strspn(s + i2, " \t");
1001 i2 = i1 + strspn(s + i1, addr_chars);
1002 if (i1 == i2 || s[i2] != '\0') {
1003 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1004 X509V3_conf_err(val);
1005 goto err;
1006 }
1007 if (a2i_ipadd(max, s + i1) != length) {
1008 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS);
1009 X509V3_conf_err(val);
1010 goto err;
1011 }
1012 if (!v3_addr_add_range(addr, afi, safi, min, max)) {
1013 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1014 goto err;
1015 }
1016 break;
1017 case '\0':
1018 if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1019 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE);
1020 goto err;
1021 }
1022 break;
1023 default:
1024 X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR);
1025 X509V3_conf_err(val);
1026 goto err;
1027 }
1028
1029 OPENSSL_free(s);
1030 s = NULL;
1031 }
1032
1033 /*
1034 * Canonize the result, then we're done.
1035 */
1036 if (!v3_addr_canonize(addr))
1037 goto err;
1038 return addr;
1039
1040 err:
1041 OPENSSL_free(s);
1042 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1043 return NULL;
1044}
1045
1046/*
1047 * OpenSSL dispatch
1048 */
1049const X509V3_EXT_METHOD v3_addr = {
1050 NID_sbgp_ipAddrBlock, /* nid */
1051 0, /* flags */
1052 ASN1_ITEM_ref(IPAddrBlocks), /* template */
1053 0, 0, 0, 0, /* old functions, ignored */
1054 0, /* i2s */
1055 0, /* s2i */
1056 0, /* i2v */
1057 v2i_IPAddrBlocks, /* v2i */
1058 i2r_IPAddrBlocks, /* i2r */
1059 0, /* r2i */
1060 NULL /* extension-specific data */
1061};
1062
1063/*
1064 * Figure out whether extension sues inheritance.
1065 */
1066int v3_addr_inherits(IPAddrBlocks *addr)
1067{
1068 int i;
1069 if (addr == NULL)
1070 return 0;
1071 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1072 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1073 if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1074 return 1;
1075 }
1076 return 0;
1077}
1078
1079/*
1080 * Figure out whether parent contains child.
1081 */
1082static int addr_contains(IPAddressOrRanges *parent,
1083 IPAddressOrRanges *child,
1084 int length)
1085{
1086 unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1087 unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1088 int p, c;
1089
1090 if (child == NULL || parent == child)
1091 return 1;
1092 if (parent == NULL)
1093 return 0;
1094
1095 p = 0;
1096 for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1097 extract_min_max(sk_IPAddressOrRange_value(child, c),
1098 c_min, c_max, length);
1099 for (;; p++) {
1100 if (p >= sk_IPAddressOrRange_num(parent))
1101 return 0;
1102 extract_min_max(sk_IPAddressOrRange_value(parent, p),
1103 p_min, p_max, length);
1104 if (memcmp(p_max, c_max, length) < 0)
1105 continue;
1106 if (memcmp(p_min, c_min, length) > 0)
1107 return 0;
1108 break;
1109 }
1110 }
1111
1112 return 1;
1113}
1114
1115/*
1116 * Test whether a is a subset of b.
1117 */
1118int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1119{
1120 int i;
1121 if (a == NULL || a == b)
1122 return 1;
1123 if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b))
1124 return 0;
1125 sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1126 for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1127 IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1128 int j = sk_IPAddressFamily_find(b, fa);
1129 IPAddressFamily *fb = sk_IPAddressFamily_value(b, j);
1130 if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1131 fa->ipAddressChoice->u.addressesOrRanges,
1132 length_from_afi(v3_addr_get_afi(fb))))
1133 return 0;
1134 }
1135 return 1;
1136}
1137
1138/*
1139 * Validation error handling via callback.
1140 */
1141#define validation_err(_err_) \
1142 do { \
1143 if (ctx != NULL) { \
1144 ctx->error = _err_; \
1145 ctx->error_depth = i; \
1146 ctx->current_cert = x; \
1147 ret = ctx->verify_cb(0, ctx); \
1148 } else { \
1149 ret = 0; \
1150 } \
1151 if (!ret) \
1152 goto done; \
1153 } while (0)
1154
1155/*
1156 * Core code for RFC 3779 2.3 path validation.
1157 */
1158static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx,
1159 STACK_OF(X509) *chain,
1160 IPAddrBlocks *ext)
1161{
1162 IPAddrBlocks *child = NULL;
1163 int i, j, ret = 1;
1164 X509 *x = NULL;
1165
1166 assert(chain != NULL && sk_X509_num(chain) > 0);
1167 assert(ctx != NULL || ext != NULL);
1168 assert(ctx == NULL || ctx->verify_cb != NULL);
1169
1170 /*
1171 * Figure out where to start. If we don't have an extension to
1172 * check, we're done. Otherwise, check canonical form and
1173 * set up for walking up the chain.
1174 */
1175 if (ext != NULL) {
1176 i = -1;
1177 } else {
1178 i = 0;
1179 x = sk_X509_value(chain, i);
1180 assert(x != NULL);
1181 if ((ext = x->rfc3779_addr) == NULL)
1182 goto done;
1183 }
1184 if (!v3_addr_is_canonical(ext))
1185 validation_err(X509_V_ERR_INVALID_EXTENSION);
1186 sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1187 if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1188 X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE);
1189 ret = 0;
1190 goto done;
1191 }
1192
1193 /*
1194 * Now walk up the chain. No cert may list resources that its
1195 * parent doesn't list.
1196 */
1197 for (i++; i < sk_X509_num(chain); i++) {
1198 x = sk_X509_value(chain, i);
1199 assert(x != NULL);
1200 if (!v3_addr_is_canonical(x->rfc3779_addr))
1201 validation_err(X509_V_ERR_INVALID_EXTENSION);
1202 if (x->rfc3779_addr == NULL) {
1203 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1204 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1205 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1206 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1207 break;
1208 }
1209 }
1210 continue;
1211 }
1212 sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp);
1213 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1214 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1215 int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1216 IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k);
1217 if (fp == NULL) {
1218 if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1219 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1220 break;
1221 }
1222 continue;
1223 }
1224 if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) {
1225 if (fc->ipAddressChoice->type == IPAddressChoice_inherit ||
1226 addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1227 fc->ipAddressChoice->u.addressesOrRanges,
1228 length_from_afi(v3_addr_get_afi(fc))))
1229 sk_IPAddressFamily_set(child, j, fp);
1230 else
1231 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1232 }
1233 }
1234 }
1235
1236 /*
1237 * Trust anchor can't inherit.
1238 */
1239 if (x->rfc3779_addr != NULL) {
1240 for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1241 IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1242 if (fp->ipAddressChoice->type == IPAddressChoice_inherit &&
1243 sk_IPAddressFamily_find(child, fp) >= 0)
1244 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1245 }
1246 }
1247
1248 done:
1249 sk_IPAddressFamily_free(child);
1250 return ret;
1251}
1252
1253#undef validation_err
1254
1255/*
1256 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1257 */
1258int v3_addr_validate_path(X509_STORE_CTX *ctx)
1259{
1260 return v3_addr_validate_path_internal(ctx, ctx->chain, NULL);
1261}
1262
1263/*
1264 * RFC 3779 2.3 path validation of an extension.
1265 * Test whether chain covers extension.
1266 */
1267int v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1268 IPAddrBlocks *ext,
1269 int allow_inheritance)
1270{
1271 if (ext == NULL)
1272 return 1;
1273 if (chain == NULL || sk_X509_num(chain) == 0)
1274 return 0;
1275 if (!allow_inheritance && v3_addr_inherits(ext))
1276 return 0;
1277 return v3_addr_validate_path_internal(NULL, chain, ext);
1278}
1279
1280#endif /* OPENSSL_NO_RFC3779 */
diff --git a/src/lib/libcrypto/x509v3/v3_asid.c b/src/lib/libcrypto/x509v3/v3_asid.c
new file mode 100644
index 0000000000..271930f967
--- /dev/null
+++ b/src/lib/libcrypto/x509v3/v3_asid.c
@@ -0,0 +1,842 @@
1/*
2 * Contributed to the OpenSSL Project by the American Registry for
3 * Internet Numbers ("ARIN").
4 */
5/* ====================================================================
6 * Copyright (c) 2006 The OpenSSL Project. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 *
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
18 * distribution.
19 *
20 * 3. All advertising materials mentioning features or use of this
21 * software must display the following acknowledgment:
22 * "This product includes software developed by the OpenSSL Project
23 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
24 *
25 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
26 * endorse or promote products derived from this software without
27 * prior written permission. For written permission, please contact
28 * licensing@OpenSSL.org.
29 *
30 * 5. Products derived from this software may not be called "OpenSSL"
31 * nor may "OpenSSL" appear in their names without prior written
32 * permission of the OpenSSL Project.
33 *
34 * 6. Redistributions of any form whatsoever must retain the following
35 * acknowledgment:
36 * "This product includes software developed by the OpenSSL Project
37 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
38 *
39 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
40 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
42 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
43 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
45 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
46 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
48 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
49 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
50 * OF THE POSSIBILITY OF SUCH DAMAGE.
51 * ====================================================================
52 *
53 * This product includes cryptographic software written by Eric Young
54 * (eay@cryptsoft.com). This product includes software written by Tim
55 * Hudson (tjh@cryptsoft.com).
56 */
57
58/*
59 * Implementation of RFC 3779 section 3.2.
60 */
61
62#include <stdio.h>
63#include <string.h>
64#include <assert.h>
65#include "cryptlib.h"
66#include <openssl/conf.h>
67#include <openssl/asn1.h>
68#include <openssl/asn1t.h>
69#include <openssl/x509v3.h>
70#include <openssl/x509.h>
71#include <openssl/bn.h>
72
73#ifndef OPENSSL_NO_RFC3779
74
75/*
76 * OpenSSL ASN.1 template translation of RFC 3779 3.2.3.
77 */
78
79ASN1_SEQUENCE(ASRange) = {
80 ASN1_SIMPLE(ASRange, min, ASN1_INTEGER),
81 ASN1_SIMPLE(ASRange, max, ASN1_INTEGER)
82} ASN1_SEQUENCE_END(ASRange)
83
84ASN1_CHOICE(ASIdOrRange) = {
85 ASN1_SIMPLE(ASIdOrRange, u.id, ASN1_INTEGER),
86 ASN1_SIMPLE(ASIdOrRange, u.range, ASRange)
87} ASN1_CHOICE_END(ASIdOrRange)
88
89ASN1_CHOICE(ASIdentifierChoice) = {
90 ASN1_SIMPLE(ASIdentifierChoice, u.inherit, ASN1_NULL),
91 ASN1_SEQUENCE_OF(ASIdentifierChoice, u.asIdsOrRanges, ASIdOrRange)
92} ASN1_CHOICE_END(ASIdentifierChoice)
93
94ASN1_SEQUENCE(ASIdentifiers) = {
95 ASN1_EXP_OPT(ASIdentifiers, asnum, ASIdentifierChoice, 0),
96 ASN1_EXP_OPT(ASIdentifiers, rdi, ASIdentifierChoice, 1)
97} ASN1_SEQUENCE_END(ASIdentifiers)
98
99IMPLEMENT_ASN1_FUNCTIONS(ASRange)
100IMPLEMENT_ASN1_FUNCTIONS(ASIdOrRange)
101IMPLEMENT_ASN1_FUNCTIONS(ASIdentifierChoice)
102IMPLEMENT_ASN1_FUNCTIONS(ASIdentifiers)
103
104/*
105 * i2r method for an ASIdentifierChoice.
106 */
107static int i2r_ASIdentifierChoice(BIO *out,
108 ASIdentifierChoice *choice,
109 int indent,
110 const char *msg)
111{
112 int i;
113 char *s;
114 if (choice == NULL)
115 return 1;
116 BIO_printf(out, "%*s%s:\n", indent, "", msg);
117 switch (choice->type) {
118 case ASIdentifierChoice_inherit:
119 BIO_printf(out, "%*sinherit\n", indent + 2, "");
120 break;
121 case ASIdentifierChoice_asIdsOrRanges:
122 for (i = 0; i < sk_ASIdOrRange_num(choice->u.asIdsOrRanges); i++) {
123 ASIdOrRange *aor = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i);
124 switch (aor->type) {
125 case ASIdOrRange_id:
126 if ((s = i2s_ASN1_INTEGER(NULL, aor->u.id)) == NULL)
127 return 0;
128 BIO_printf(out, "%*s%s\n", indent + 2, "", s);
129 OPENSSL_free(s);
130 break;
131 case ASIdOrRange_range:
132 if ((s = i2s_ASN1_INTEGER(NULL, aor->u.range->min)) == NULL)
133 return 0;
134 BIO_printf(out, "%*s%s-", indent + 2, "", s);
135 OPENSSL_free(s);
136 if ((s = i2s_ASN1_INTEGER(NULL, aor->u.range->max)) == NULL)
137 return 0;
138 BIO_printf(out, "%s\n", s);
139 OPENSSL_free(s);
140 break;
141 default:
142 return 0;
143 }
144 }
145 break;
146 default:
147 return 0;
148 }
149 return 1;
150}
151
152/*
153 * i2r method for an ASIdentifier extension.
154 */
155static int i2r_ASIdentifiers(X509V3_EXT_METHOD *method,
156 void *ext,
157 BIO *out,
158 int indent)
159{
160 ASIdentifiers *asid = ext;
161 return (i2r_ASIdentifierChoice(out, asid->asnum, indent,
162 "Autonomous System Numbers") &&
163 i2r_ASIdentifierChoice(out, asid->rdi, indent,
164 "Routing Domain Identifiers"));
165}
166
167/*
168 * Sort comparision function for a sequence of ASIdOrRange elements.
169 */
170static int ASIdOrRange_cmp(const ASIdOrRange * const *a_,
171 const ASIdOrRange * const *b_)
172{
173 const ASIdOrRange *a = *a_, *b = *b_;
174
175 assert((a->type == ASIdOrRange_id && a->u.id != NULL) ||
176 (a->type == ASIdOrRange_range && a->u.range != NULL &&
177 a->u.range->min != NULL && a->u.range->max != NULL));
178
179 assert((b->type == ASIdOrRange_id && b->u.id != NULL) ||
180 (b->type == ASIdOrRange_range && b->u.range != NULL &&
181 b->u.range->min != NULL && b->u.range->max != NULL));
182
183 if (a->type == ASIdOrRange_id && b->type == ASIdOrRange_id)
184 return ASN1_INTEGER_cmp(a->u.id, b->u.id);
185
186 if (a->type == ASIdOrRange_range && b->type == ASIdOrRange_range) {
187 int r = ASN1_INTEGER_cmp(a->u.range->min, b->u.range->min);
188 return r != 0 ? r : ASN1_INTEGER_cmp(a->u.range->max, b->u.range->max);
189 }
190
191 if (a->type == ASIdOrRange_id)
192 return ASN1_INTEGER_cmp(a->u.id, b->u.range->min);
193 else
194 return ASN1_INTEGER_cmp(a->u.range->min, b->u.id);
195}
196
197/*
198 * Add an inherit element.
199 */
200int v3_asid_add_inherit(ASIdentifiers *asid, int which)
201{
202 ASIdentifierChoice **choice;
203 if (asid == NULL)
204 return 0;
205 switch (which) {
206 case V3_ASID_ASNUM:
207 choice = &asid->asnum;
208 break;
209 case V3_ASID_RDI:
210 choice = &asid->rdi;
211 break;
212 default:
213 return 0;
214 }
215 if (*choice == NULL) {
216 if ((*choice = ASIdentifierChoice_new()) == NULL)
217 return 0;
218 assert((*choice)->u.inherit == NULL);
219 if (((*choice)->u.inherit = ASN1_NULL_new()) == NULL)
220 return 0;
221 (*choice)->type = ASIdentifierChoice_inherit;
222 }
223 return (*choice)->type == ASIdentifierChoice_inherit;
224}
225
226/*
227 * Add an ID or range to an ASIdentifierChoice.
228 */
229int v3_asid_add_id_or_range(ASIdentifiers *asid,
230 int which,
231 ASN1_INTEGER *min,
232 ASN1_INTEGER *max)
233{
234 ASIdentifierChoice **choice;
235 ASIdOrRange *aor;
236 if (asid == NULL)
237 return 0;
238 switch (which) {
239 case V3_ASID_ASNUM:
240 choice = &asid->asnum;
241 break;
242 case V3_ASID_RDI:
243 choice = &asid->rdi;
244 break;
245 default:
246 return 0;
247 }
248 if (*choice != NULL && (*choice)->type == ASIdentifierChoice_inherit)
249 return 0;
250 if (*choice == NULL) {
251 if ((*choice = ASIdentifierChoice_new()) == NULL)
252 return 0;
253 assert((*choice)->u.asIdsOrRanges == NULL);
254 (*choice)->u.asIdsOrRanges = sk_ASIdOrRange_new(ASIdOrRange_cmp);
255 if ((*choice)->u.asIdsOrRanges == NULL)
256 return 0;
257 (*choice)->type = ASIdentifierChoice_asIdsOrRanges;
258 }
259 if ((aor = ASIdOrRange_new()) == NULL)
260 return 0;
261 if (max == NULL) {
262 aor->type = ASIdOrRange_id;
263 aor->u.id = min;
264 } else {
265 aor->type = ASIdOrRange_range;
266 if ((aor->u.range = ASRange_new()) == NULL)
267 goto err;
268 ASN1_INTEGER_free(aor->u.range->min);
269 aor->u.range->min = min;
270 ASN1_INTEGER_free(aor->u.range->max);
271 aor->u.range->max = max;
272 }
273 if (!(sk_ASIdOrRange_push((*choice)->u.asIdsOrRanges, aor)))
274 goto err;
275 return 1;
276
277 err:
278 ASIdOrRange_free(aor);
279 return 0;
280}
281
282/*
283 * Extract min and max values from an ASIdOrRange.
284 */
285static void extract_min_max(ASIdOrRange *aor,
286 ASN1_INTEGER **min,
287 ASN1_INTEGER **max)
288{
289 assert(aor != NULL && min != NULL && max != NULL);
290 switch (aor->type) {
291 case ASIdOrRange_id:
292 *min = aor->u.id;
293 *max = aor->u.id;
294 return;
295 case ASIdOrRange_range:
296 *min = aor->u.range->min;
297 *max = aor->u.range->max;
298 return;
299 }
300}
301
302/*
303 * Check whether an ASIdentifierChoice is in canonical form.
304 */
305static int ASIdentifierChoice_is_canonical(ASIdentifierChoice *choice)
306{
307 ASN1_INTEGER *a_max_plus_one = NULL;
308 BIGNUM *bn = NULL;
309 int i, ret = 0;
310
311 /*
312 * Empty element or inheritance is canonical.
313 */
314 if (choice == NULL || choice->type == ASIdentifierChoice_inherit)
315 return 1;
316
317 /*
318 * If not a list, or if empty list, it's broken.
319 */
320 if (choice->type != ASIdentifierChoice_asIdsOrRanges ||
321 sk_ASIdOrRange_num(choice->u.asIdsOrRanges) == 0)
322 return 0;
323
324 /*
325 * It's a list, check it.
326 */
327 for (i = 0; i < sk_ASIdOrRange_num(choice->u.asIdsOrRanges) - 1; i++) {
328 ASIdOrRange *a = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i);
329 ASIdOrRange *b = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i + 1);
330 ASN1_INTEGER *a_min, *a_max, *b_min, *b_max;
331
332 extract_min_max(a, &a_min, &a_max);
333 extract_min_max(b, &b_min, &b_max);
334
335 /*
336 * Punt misordered list, overlapping start, or inverted range.
337 */
338 if (ASN1_INTEGER_cmp(a_min, b_min) >= 0 ||
339 ASN1_INTEGER_cmp(a_min, a_max) > 0 ||
340 ASN1_INTEGER_cmp(b_min, b_max) > 0)
341 goto done;
342
343 /*
344 * Calculate a_max + 1 to check for adjacency.
345 */
346 if ((bn == NULL && (bn = BN_new()) == NULL) ||
347 ASN1_INTEGER_to_BN(a_max, bn) == NULL ||
348 !BN_add_word(bn, 1) ||
349 (a_max_plus_one = BN_to_ASN1_INTEGER(bn, a_max_plus_one)) == NULL) {
350 X509V3err(X509V3_F_ASIDENTIFIERCHOICE_IS_CANONICAL,
351 ERR_R_MALLOC_FAILURE);
352 goto done;
353 }
354
355 /*
356 * Punt if adjacent or overlapping.
357 */
358 if (ASN1_INTEGER_cmp(a_max_plus_one, b_min) >= 0)
359 goto done;
360 }
361
362 ret = 1;
363
364 done:
365 ASN1_INTEGER_free(a_max_plus_one);
366 BN_free(bn);
367 return ret;
368}
369
370/*
371 * Check whether an ASIdentifier extension is in canonical form.
372 */
373int v3_asid_is_canonical(ASIdentifiers *asid)
374{
375 return (asid == NULL ||
376 (ASIdentifierChoice_is_canonical(asid->asnum) ||
377 ASIdentifierChoice_is_canonical(asid->rdi)));
378}
379
380/*
381 * Whack an ASIdentifierChoice into canonical form.
382 */
383static int ASIdentifierChoice_canonize(ASIdentifierChoice *choice)
384{
385 ASN1_INTEGER *a_max_plus_one = NULL;
386 BIGNUM *bn = NULL;
387 int i, ret = 0;
388
389 /*
390 * Nothing to do for empty element or inheritance.
391 */
392 if (choice == NULL || choice->type == ASIdentifierChoice_inherit)
393 return 1;
394
395 /*
396 * We have a list. Sort it.
397 */
398 assert(choice->type == ASIdentifierChoice_asIdsOrRanges);
399 sk_ASIdOrRange_sort(choice->u.asIdsOrRanges);
400
401 /*
402 * Now check for errors and suboptimal encoding, rejecting the
403 * former and fixing the latter.
404 */
405 for (i = 0; i < sk_ASIdOrRange_num(choice->u.asIdsOrRanges) - 1; i++) {
406 ASIdOrRange *a = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i);
407 ASIdOrRange *b = sk_ASIdOrRange_value(choice->u.asIdsOrRanges, i + 1);
408 ASN1_INTEGER *a_min, *a_max, *b_min, *b_max;
409
410 extract_min_max(a, &a_min, &a_max);
411 extract_min_max(b, &b_min, &b_max);
412
413 /*
414 * Make sure we're properly sorted (paranoia).
415 */
416 assert(ASN1_INTEGER_cmp(a_min, b_min) <= 0);
417
418 /*
419 * Check for overlaps.
420 */
421 if (ASN1_INTEGER_cmp(a_max, b_min) >= 0) {
422 X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE,
423 X509V3_R_EXTENSION_VALUE_ERROR);
424 goto done;
425 }
426
427 /*
428 * Calculate a_max + 1 to check for adjacency.
429 */
430 if ((bn == NULL && (bn = BN_new()) == NULL) ||
431 ASN1_INTEGER_to_BN(a_max, bn) == NULL ||
432 !BN_add_word(bn, 1) ||
433 (a_max_plus_one = BN_to_ASN1_INTEGER(bn, a_max_plus_one)) == NULL) {
434 X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE, ERR_R_MALLOC_FAILURE);
435 goto done;
436 }
437
438 /*
439 * If a and b are adjacent, merge them.
440 */
441 if (ASN1_INTEGER_cmp(a_max_plus_one, b_min) == 0) {
442 ASRange *r;
443 switch (a->type) {
444 case ASIdOrRange_id:
445 if ((r = OPENSSL_malloc(sizeof(ASRange))) == NULL) {
446 X509V3err(X509V3_F_ASIDENTIFIERCHOICE_CANONIZE,
447 ERR_R_MALLOC_FAILURE);
448 goto done;
449 }
450 r->min = a_min;
451 r->max = b_max;
452 a->type = ASIdOrRange_range;
453 a->u.range = r;
454 break;
455 case ASIdOrRange_range:
456 ASN1_INTEGER_free(a->u.range->max);
457 a->u.range->max = b_max;
458 break;
459 }
460 switch (b->type) {
461 case ASIdOrRange_id:
462 b->u.id = NULL;
463 break;
464 case ASIdOrRange_range:
465 b->u.range->max = NULL;
466 break;
467 }
468 ASIdOrRange_free(b);
469 sk_ASIdOrRange_delete(choice->u.asIdsOrRanges, i + 1);
470 i--;
471 continue;
472 }
473 }
474
475 assert(ASIdentifierChoice_is_canonical(choice)); /* Paranoia */
476
477 ret = 1;
478
479 done:
480 ASN1_INTEGER_free(a_max_plus_one);
481 BN_free(bn);
482 return ret;
483}
484
485/*
486 * Whack an ASIdentifier extension into canonical form.
487 */
488int v3_asid_canonize(ASIdentifiers *asid)
489{
490 return (asid == NULL ||
491 (ASIdentifierChoice_canonize(asid->asnum) &&
492 ASIdentifierChoice_canonize(asid->rdi)));
493}
494
495/*
496 * v2i method for an ASIdentifier extension.
497 */
498static void *v2i_ASIdentifiers(struct v3_ext_method *method,
499 struct v3_ext_ctx *ctx,
500 STACK_OF(CONF_VALUE) *values)
501{
502 ASIdentifiers *asid = NULL;
503 int i;
504
505 if ((asid = ASIdentifiers_new()) == NULL) {
506 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE);
507 return NULL;
508 }
509
510 for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
511 CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
512 ASN1_INTEGER *min = NULL, *max = NULL;
513 int i1, i2, i3, is_range, which;
514
515 /*
516 * Figure out whether this is an AS or an RDI.
517 */
518 if ( !name_cmp(val->name, "AS")) {
519 which = V3_ASID_ASNUM;
520 } else if (!name_cmp(val->name, "RDI")) {
521 which = V3_ASID_RDI;
522 } else {
523 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_EXTENSION_NAME_ERROR);
524 X509V3_conf_err(val);
525 goto err;
526 }
527
528 /*
529 * Handle inheritance.
530 */
531 if (!strcmp(val->value, "inherit")) {
532 if (v3_asid_add_inherit(asid, which))
533 continue;
534 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_INVALID_INHERITANCE);
535 X509V3_conf_err(val);
536 goto err;
537 }
538
539 /*
540 * Number, range, or mistake, pick it apart and figure out which.
541 */
542 i1 = strspn(val->value, "0123456789");
543 if (val->value[i1] == '\0') {
544 is_range = 0;
545 } else {
546 is_range = 1;
547 i2 = i1 + strspn(val->value + i1, " \t");
548 if (val->value[i2] != '-') {
549 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_INVALID_ASNUMBER);
550 X509V3_conf_err(val);
551 goto err;
552 }
553 i2++;
554 i2 = i2 + strspn(val->value + i2, " \t");
555 i3 = i2 + strspn(val->value + i2, "0123456789");
556 if (val->value[i3] != '\0') {
557 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, X509V3_R_INVALID_ASRANGE);
558 X509V3_conf_err(val);
559 goto err;
560 }
561 }
562
563 /*
564 * Syntax is ok, read and add it.
565 */
566 if (!is_range) {
567 if (!X509V3_get_value_int(val, &min)) {
568 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE);
569 goto err;
570 }
571 } else {
572 char *s = BUF_strdup(val->value);
573 if (s == NULL) {
574 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE);
575 goto err;
576 }
577 s[i1] = '\0';
578 min = s2i_ASN1_INTEGER(NULL, s);
579 max = s2i_ASN1_INTEGER(NULL, s + i2);
580 OPENSSL_free(s);
581 if (min == NULL || max == NULL) {
582 ASN1_INTEGER_free(min);
583 ASN1_INTEGER_free(max);
584 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE);
585 goto err;
586 }
587 }
588 if (!v3_asid_add_id_or_range(asid, which, min, max)) {
589 ASN1_INTEGER_free(min);
590 ASN1_INTEGER_free(max);
591 X509V3err(X509V3_F_V2I_ASIDENTIFIERS, ERR_R_MALLOC_FAILURE);
592 goto err;
593 }
594 }
595
596 /*
597 * Canonize the result, then we're done.
598 */
599 if (!v3_asid_canonize(asid))
600 goto err;
601 return asid;
602
603 err:
604 ASIdentifiers_free(asid);
605 return NULL;
606}
607
608/*
609 * OpenSSL dispatch.
610 */
611const X509V3_EXT_METHOD v3_asid = {
612 NID_sbgp_autonomousSysNum, /* nid */
613 0, /* flags */
614 ASN1_ITEM_ref(ASIdentifiers), /* template */
615 0, 0, 0, 0, /* old functions, ignored */
616 0, /* i2s */
617 0, /* s2i */
618 0, /* i2v */
619 v2i_ASIdentifiers, /* v2i */
620 i2r_ASIdentifiers, /* i2r */
621 0, /* r2i */
622 NULL /* extension-specific data */
623};
624
625/*
626 * Figure out whether extension uses inheritance.
627 */
628int v3_asid_inherits(ASIdentifiers *asid)
629{
630 return (asid != NULL &&
631 ((asid->asnum != NULL &&
632 asid->asnum->type == ASIdentifierChoice_inherit) ||
633 (asid->rdi != NULL &&
634 asid->rdi->type == ASIdentifierChoice_inherit)));
635}
636
637/*
638 * Figure out whether parent contains child.
639 */
640static int asid_contains(ASIdOrRanges *parent, ASIdOrRanges *child)
641{
642 ASN1_INTEGER *p_min, *p_max, *c_min, *c_max;
643 int p, c;
644
645 if (child == NULL || parent == child)
646 return 1;
647 if (parent == NULL)
648 return 0;
649
650 p = 0;
651 for (c = 0; c < sk_ASIdOrRange_num(child); c++) {
652 extract_min_max(sk_ASIdOrRange_value(child, c), &c_min, &c_max);
653 for (;; p++) {
654 if (p >= sk_ASIdOrRange_num(parent))
655 return 0;
656 extract_min_max(sk_ASIdOrRange_value(parent, p), &p_min, &p_max);
657 if (ASN1_INTEGER_cmp(p_max, c_max) < 0)
658 continue;
659 if (ASN1_INTEGER_cmp(p_min, c_min) > 0)
660 return 0;
661 break;
662 }
663 }
664
665 return 1;
666}
667
668/*
669 * Test whether a is a subet of b.
670 */
671int v3_asid_subset(ASIdentifiers *a, ASIdentifiers *b)
672{
673 return (a == NULL ||
674 a == b ||
675 (b != NULL &&
676 !v3_asid_inherits(a) &&
677 !v3_asid_inherits(b) &&
678 asid_contains(b->asnum->u.asIdsOrRanges,
679 a->asnum->u.asIdsOrRanges) &&
680 asid_contains(b->rdi->u.asIdsOrRanges,
681 a->rdi->u.asIdsOrRanges)));
682}
683
684/*
685 * Validation error handling via callback.
686 */
687#define validation_err(_err_) \
688 do { \
689 if (ctx != NULL) { \
690 ctx->error = _err_; \
691 ctx->error_depth = i; \
692 ctx->current_cert = x; \
693 ret = ctx->verify_cb(0, ctx); \
694 } else { \
695 ret = 0; \
696 } \
697 if (!ret) \
698 goto done; \
699 } while (0)
700
701/*
702 * Core code for RFC 3779 3.3 path validation.
703 */
704static int v3_asid_validate_path_internal(X509_STORE_CTX *ctx,
705 STACK_OF(X509) *chain,
706 ASIdentifiers *ext)
707{
708 ASIdOrRanges *child_as = NULL, *child_rdi = NULL;
709 int i, ret = 1, inherit_as = 0, inherit_rdi = 0;
710 X509 *x = NULL;
711
712 assert(chain != NULL && sk_X509_num(chain) > 0);
713 assert(ctx != NULL || ext != NULL);
714 assert(ctx == NULL || ctx->verify_cb != NULL);
715
716 /*
717 * Figure out where to start. If we don't have an extension to
718 * check, we're done. Otherwise, check canonical form and
719 * set up for walking up the chain.
720 */
721 if (ext != NULL) {
722 i = -1;
723 } else {
724 i = 0;
725 x = sk_X509_value(chain, i);
726 assert(x != NULL);
727 if ((ext = x->rfc3779_asid) == NULL)
728 goto done;
729 }
730 if (!v3_asid_is_canonical(ext))
731 validation_err(X509_V_ERR_INVALID_EXTENSION);
732 if (ext->asnum != NULL) {
733 switch (ext->asnum->type) {
734 case ASIdentifierChoice_inherit:
735 inherit_as = 1;
736 break;
737 case ASIdentifierChoice_asIdsOrRanges:
738 child_as = ext->asnum->u.asIdsOrRanges;
739 break;
740 }
741 }
742 if (ext->rdi != NULL) {
743 switch (ext->rdi->type) {
744 case ASIdentifierChoice_inherit:
745 inherit_rdi = 1;
746 break;
747 case ASIdentifierChoice_asIdsOrRanges:
748 child_rdi = ext->rdi->u.asIdsOrRanges;
749 break;
750 }
751 }
752
753 /*
754 * Now walk up the chain. Extensions must be in canonical form, no
755 * cert may list resources that its parent doesn't list.
756 */
757 for (i++; i < sk_X509_num(chain); i++) {
758 x = sk_X509_value(chain, i);
759 assert(x != NULL);
760 if (x->rfc3779_asid == NULL) {
761 if (child_as != NULL || child_rdi != NULL)
762 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
763 continue;
764 }
765 if (!v3_asid_is_canonical(x->rfc3779_asid))
766 validation_err(X509_V_ERR_INVALID_EXTENSION);
767 if (x->rfc3779_asid->asnum == NULL && child_as != NULL) {
768 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
769 child_as = NULL;
770 inherit_as = 0;
771 }
772 if (x->rfc3779_asid->asnum != NULL &&
773 x->rfc3779_asid->asnum->type == ASIdentifierChoice_asIdsOrRanges) {
774 if (inherit_as ||
775 asid_contains(x->rfc3779_asid->asnum->u.asIdsOrRanges, child_as)) {
776 child_as = x->rfc3779_asid->asnum->u.asIdsOrRanges;
777 inherit_as = 0;
778 } else {
779 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
780 }
781 }
782 if (x->rfc3779_asid->rdi == NULL && child_rdi != NULL) {
783 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
784 child_rdi = NULL;
785 inherit_rdi = 0;
786 }
787 if (x->rfc3779_asid->rdi != NULL &&
788 x->rfc3779_asid->rdi->type == ASIdentifierChoice_asIdsOrRanges) {
789 if (inherit_rdi ||
790 asid_contains(x->rfc3779_asid->rdi->u.asIdsOrRanges, child_rdi)) {
791 child_rdi = x->rfc3779_asid->rdi->u.asIdsOrRanges;
792 inherit_rdi = 0;
793 } else {
794 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
795 }
796 }
797 }
798
799 /*
800 * Trust anchor can't inherit.
801 */
802 if (x->rfc3779_asid != NULL) {
803 if (x->rfc3779_asid->asnum != NULL &&
804 x->rfc3779_asid->asnum->type == ASIdentifierChoice_inherit)
805 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
806 if (x->rfc3779_asid->rdi != NULL &&
807 x->rfc3779_asid->rdi->type == ASIdentifierChoice_inherit)
808 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
809 }
810
811 done:
812 return ret;
813}
814
815#undef validation_err
816
817/*
818 * RFC 3779 3.3 path validation -- called from X509_verify_cert().
819 */
820int v3_asid_validate_path(X509_STORE_CTX *ctx)
821{
822 return v3_asid_validate_path_internal(ctx, ctx->chain, NULL);
823}
824
825/*
826 * RFC 3779 3.3 path validation of an extension.
827 * Test whether chain covers extension.
828 */
829int v3_asid_validate_resource_set(STACK_OF(X509) *chain,
830 ASIdentifiers *ext,
831 int allow_inheritance)
832{
833 if (ext == NULL)
834 return 1;
835 if (chain == NULL || sk_X509_num(chain) == 0)
836 return 0;
837 if (!allow_inheritance && v3_asid_inherits(ext))
838 return 0;
839 return v3_asid_validate_path_internal(NULL, chain, ext);
840}
841
842#endif /* OPENSSL_NO_RFC3779 */