diff options
author | jsing <> | 2025-08-12 09:57:39 +0000 |
---|---|---|
committer | jsing <> | 2025-08-12 09:57:39 +0000 |
commit | 6579aa60908701d308df77065093fc34bffc030c (patch) | |
tree | b8c170641e634d7f391dfc7995f5a72ca6b250c1 /src/lib | |
parent | 1536ed77315e752d31d4b4cdd51123458a06d815 (diff) | |
download | openbsd-6579aa60908701d308df77065093fc34bffc030c.tar.gz openbsd-6579aa60908701d308df77065093fc34bffc030c.tar.bz2 openbsd-6579aa60908701d308df77065093fc34bffc030c.zip |
Sync headers from s2n-bignum.
This effectively brings in new function prototypes, a chunk of const
additions and some new defines.
Diffstat (limited to 'src/lib')
-rw-r--r-- | src/lib/libcrypto/bn/s2n_bignum.h | 791 | ||||
-rw-r--r-- | src/lib/libcrypto/bn/s2n_bignum_internal.h | 33 |
2 files changed, 588 insertions, 236 deletions
diff --git a/src/lib/libcrypto/bn/s2n_bignum.h b/src/lib/libcrypto/bn/s2n_bignum.h index ce6e8cdc94..992dcb417f 100644 --- a/src/lib/libcrypto/bn/s2n_bignum.h +++ b/src/lib/libcrypto/bn/s2n_bignum.h | |||
@@ -34,182 +34,240 @@ | |||
34 | // throughput, generally offering higher performance there. | 34 | // throughput, generally offering higher performance there. |
35 | // ---------------------------------------------------------------------------- | 35 | // ---------------------------------------------------------------------------- |
36 | 36 | ||
37 | |||
38 | #if defined(_MSC_VER) || !defined(__STDC_VERSION__) || __STDC_VERSION__ < 199901L || defined(__STDC_NO_VLA__) | ||
39 | #define S2N_BIGNUM_STATIC | ||
40 | #else | ||
41 | #define S2N_BIGNUM_STATIC static | ||
42 | #endif | ||
43 | |||
37 | // Add, z := x + y | 44 | // Add, z := x + y |
38 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[p] | 45 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[p] |
39 | extern uint64_t bignum_add (uint64_t p, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | 46 | extern uint64_t bignum_add (uint64_t p, uint64_t *z, uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); |
40 | 47 | ||
41 | // Add modulo p_25519, z := (x + y) mod p_25519, assuming x and y reduced | 48 | // Add modulo p_25519, z := (x + y) mod p_25519, assuming x and y reduced |
42 | // Inputs x[4], y[4]; output z[4] | 49 | // Inputs x[4], y[4]; output z[4] |
43 | extern void bignum_add_p25519 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | 50 | extern void bignum_add_p25519 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
44 | 51 | ||
45 | // Add modulo p_256, z := (x + y) mod p_256, assuming x and y reduced | 52 | // Add modulo p_256, z := (x + y) mod p_256, assuming x and y reduced |
46 | // Inputs x[4], y[4]; output z[4] | 53 | // Inputs x[4], y[4]; output z[4] |
47 | extern void bignum_add_p256 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | 54 | extern void bignum_add_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
48 | 55 | ||
49 | // Add modulo p_256k1, z := (x + y) mod p_256k1, assuming x and y reduced | 56 | // Add modulo p_256k1, z := (x + y) mod p_256k1, assuming x and y reduced |
50 | // Inputs x[4], y[4]; output z[4] | 57 | // Inputs x[4], y[4]; output z[4] |
51 | extern void bignum_add_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | 58 | extern void bignum_add_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
52 | 59 | ||
53 | // Add modulo p_384, z := (x + y) mod p_384, assuming x and y reduced | 60 | // Add modulo p_384, z := (x + y) mod p_384, assuming x and y reduced |
54 | // Inputs x[6], y[6]; output z[6] | 61 | // Inputs x[6], y[6]; output z[6] |
55 | extern void bignum_add_p384 (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]); | 62 | extern void bignum_add_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6], const uint64_t y[S2N_BIGNUM_STATIC 6]); |
56 | 63 | ||
57 | // Add modulo p_521, z := (x + y) mod p_521, assuming x and y reduced | 64 | // Add modulo p_521, z := (x + y) mod p_521, assuming x and y reduced |
58 | // Inputs x[9], y[9]; output z[9] | 65 | // Inputs x[9], y[9]; output z[9] |
59 | extern void bignum_add_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | 66 | extern void bignum_add_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9], const uint64_t y[S2N_BIGNUM_STATIC 9]); |
67 | |||
68 | // Add modulo p_sm2, z := (x + y) mod p_sm2, assuming x and y reduced | ||
69 | // Inputs x[4], y[4]; output z[4] | ||
70 | extern void bignum_add_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); | ||
60 | 71 | ||
61 | // Compute "amontification" constant z :== 2^{128k} (congruent mod m) | 72 | // Compute "amontification" constant z :== 2^{128k} (congruent mod m) |
62 | // Input m[k]; output z[k]; temporary buffer t[>=k] | 73 | // Input m[k]; output z[k]; temporary buffer t[>=k] |
63 | extern void bignum_amontifier (uint64_t k, uint64_t *z, uint64_t *m, uint64_t *t); | 74 | extern void bignum_amontifier (uint64_t k, uint64_t *z, const uint64_t *m, uint64_t *t); |
64 | 75 | ||
65 | // Almost-Montgomery multiply, z :== (x * y / 2^{64k}) (congruent mod m) | 76 | // Almost-Montgomery multiply, z :== (x * y / 2^{64k}) (congruent mod m) |
66 | // Inputs x[k], y[k], m[k]; output z[k] | 77 | // Inputs x[k], y[k], m[k]; output z[k] |
67 | extern void bignum_amontmul (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m); | 78 | extern void bignum_amontmul (uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *y, const uint64_t *m); |
68 | 79 | ||
69 | // Almost-Montgomery reduce, z :== (x' / 2^{64p}) (congruent mod m) | 80 | // Almost-Montgomery reduce, z :== (x' / 2^{64p}) (congruent mod m) |
70 | // Inputs x[n], m[k], p; output z[k] | 81 | // Inputs x[n], m[k], p; output z[k] |
71 | extern void bignum_amontredc (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t *m, uint64_t p); | 82 | extern void bignum_amontredc (uint64_t k, uint64_t *z, uint64_t n, const uint64_t *x, const uint64_t *m, uint64_t p); |
72 | 83 | ||
73 | // Almost-Montgomery square, z :== (x^2 / 2^{64k}) (congruent mod m) | 84 | // Almost-Montgomery square, z :== (x^2 / 2^{64k}) (congruent mod m) |
74 | // Inputs x[k], m[k]; output z[k] | 85 | // Inputs x[k], m[k]; output z[k] |
75 | extern void bignum_amontsqr (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m); | 86 | extern void bignum_amontsqr (uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *m); |
76 | 87 | ||
77 | // Convert 4-digit (256-bit) bignum to/from big-endian form | 88 | // Convert 4-digit (256-bit) bignum to/from big-endian form |
78 | // Input x[4]; output z[4] | 89 | // Input x[4]; output z[4] |
79 | extern void bignum_bigendian_4 (uint64_t z[static 4], uint64_t x[static 4]); | 90 | extern void bignum_bigendian_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
80 | 91 | ||
81 | // Convert 6-digit (384-bit) bignum to/from big-endian form | 92 | // Convert 6-digit (384-bit) bignum to/from big-endian form |
82 | // Input x[6]; output z[6] | 93 | // Input x[6]; output z[6] |
83 | extern void bignum_bigendian_6 (uint64_t z[static 6], uint64_t x[static 6]); | 94 | extern void bignum_bigendian_6 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
84 | 95 | ||
85 | // Select bitfield starting at bit n with length l <= 64 | 96 | // Select bitfield starting at bit n with length l <= 64 |
86 | // Inputs x[k], n, l; output function return | 97 | // Inputs x[k], n, l; output function return |
87 | extern uint64_t bignum_bitfield (uint64_t k, uint64_t *x, uint64_t n, uint64_t l); | 98 | extern uint64_t bignum_bitfield (uint64_t k, const uint64_t *x, uint64_t n, uint64_t l); |
88 | 99 | ||
89 | // Return size of bignum in bits | 100 | // Return size of bignum in bits |
90 | // Input x[k]; output function return | 101 | // Input x[k]; output function return |
91 | extern uint64_t bignum_bitsize (uint64_t k, uint64_t *x); | 102 | extern uint64_t bignum_bitsize (uint64_t k, const uint64_t *x); |
92 | 103 | ||
93 | // Divide by a single (nonzero) word, z := x / m and return x mod m | 104 | // Divide by a single (nonzero) word, z := x / m and return x mod m |
94 | // Inputs x[n], m; outputs function return (remainder) and z[k] | 105 | // Inputs x[n], m; outputs function return (remainder) and z[k] |
95 | extern uint64_t bignum_cdiv (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t m); | 106 | extern uint64_t bignum_cdiv (uint64_t k, uint64_t *z, uint64_t n, const uint64_t *x, uint64_t m); |
96 | 107 | ||
97 | // Divide by a single word, z := x / m when known to be exact | 108 | // Divide by a single word, z := x / m when known to be exact |
98 | // Inputs x[n], m; output z[k] | 109 | // Inputs x[n], m; output z[k] |
99 | extern void bignum_cdiv_exact (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t m); | 110 | extern void bignum_cdiv_exact (uint64_t k, uint64_t *z, uint64_t n, const uint64_t *x, uint64_t m); |
100 | 111 | ||
101 | // Count leading zero digits (64-bit words) | 112 | // Count leading zero digits (64-bit words) |
102 | // Input x[k]; output function return | 113 | // Input x[k]; output function return |
103 | extern uint64_t bignum_cld (uint64_t k, uint64_t *x); | 114 | extern uint64_t bignum_cld (uint64_t k, const uint64_t *x); |
104 | 115 | ||
105 | // Count leading zero bits | 116 | // Count leading zero bits |
106 | // Input x[k]; output function return | 117 | // Input x[k]; output function return |
107 | extern uint64_t bignum_clz (uint64_t k, uint64_t *x); | 118 | extern uint64_t bignum_clz (uint64_t k, const uint64_t *x); |
108 | 119 | ||
109 | // Multiply-add with single-word multiplier, z := z + c * y | 120 | // Multiply-add with single-word multiplier, z := z + c * y |
110 | // Inputs c, y[n]; outputs function return (carry-out) and z[k] | 121 | // Inputs c, y[n]; outputs function return (carry-out) and z[k] |
111 | extern uint64_t bignum_cmadd (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y); | 122 | extern uint64_t bignum_cmadd (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, const uint64_t *y); |
112 | 123 | ||
113 | // Negated multiply-add with single-word multiplier, z := z - c * y | 124 | // Negated multiply-add with single-word multiplier, z := z - c * y |
114 | // Inputs c, y[n]; outputs function return (negative carry-out) and z[k] | 125 | // Inputs c, y[n]; outputs function return (negative carry-out) and z[k] |
115 | extern uint64_t bignum_cmnegadd (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y); | 126 | extern uint64_t bignum_cmnegadd (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, const uint64_t *y); |
116 | 127 | ||
117 | // Find modulus of bignum w.r.t. single nonzero word m, returning x mod m | 128 | // Find modulus of bignum w.r.t. single nonzero word m, returning x mod m |
118 | // Input x[k], m; output function return | 129 | // Input x[k], m; output function return |
119 | extern uint64_t bignum_cmod (uint64_t k, uint64_t *x, uint64_t m); | 130 | extern uint64_t bignum_cmod (uint64_t k, const uint64_t *x, uint64_t m); |
120 | 131 | ||
121 | // Multiply by a single word, z := c * y | 132 | // Multiply by a single word, z := c * y |
122 | // Inputs c, y[n]; outputs function return (carry-out) and z[k] | 133 | // Inputs c, y[n]; outputs function return (carry-out) and z[k] |
123 | extern uint64_t bignum_cmul (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, uint64_t *y); | 134 | extern uint64_t bignum_cmul (uint64_t k, uint64_t *z, uint64_t c, uint64_t n, const uint64_t *y); |
124 | 135 | ||
125 | // Multiply by a single word modulo p_25519, z := (c * x) mod p_25519, assuming x reduced | 136 | // Multiply by a single word modulo p_25519, z := (c * x) mod p_25519, assuming x reduced |
126 | // Inputs c, x[4]; output z[4] | 137 | // Inputs c, x[4]; output z[4] |
127 | extern void bignum_cmul_p25519 (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | 138 | extern void bignum_cmul_p25519 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 4]); |
128 | extern void bignum_cmul_p25519_alt (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | 139 | extern void bignum_cmul_p25519_alt (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 4]); |
129 | 140 | ||
130 | // Multiply by a single word modulo p_256, z := (c * x) mod p_256, assuming x reduced | 141 | // Multiply by a single word modulo p_256, z := (c * x) mod p_256, assuming x reduced |
131 | // Inputs c, x[4]; output z[4] | 142 | // Inputs c, x[4]; output z[4] |
132 | extern void bignum_cmul_p256 (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | 143 | extern void bignum_cmul_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 4]); |
133 | extern void bignum_cmul_p256_alt (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | 144 | extern void bignum_cmul_p256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 4]); |
134 | 145 | ||
135 | // Multiply by a single word modulo p_256k1, z := (c * x) mod p_256k1, assuming x reduced | 146 | // Multiply by a single word modulo p_256k1, z := (c * x) mod p_256k1, assuming x reduced |
136 | // Inputs c, x[4]; output z[4] | 147 | // Inputs c, x[4]; output z[4] |
137 | extern void bignum_cmul_p256k1 (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | 148 | extern void bignum_cmul_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 4]); |
138 | extern void bignum_cmul_p256k1_alt (uint64_t z[static 4], uint64_t c, uint64_t x[static 4]); | 149 | extern void bignum_cmul_p256k1_alt (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 4]); |
139 | 150 | ||
140 | // Multiply by a single word modulo p_384, z := (c * x) mod p_384, assuming x reduced | 151 | // Multiply by a single word modulo p_384, z := (c * x) mod p_384, assuming x reduced |
141 | // Inputs c, x[6]; output z[6] | 152 | // Inputs c, x[6]; output z[6] |
142 | extern void bignum_cmul_p384 (uint64_t z[static 6], uint64_t c, uint64_t x[static 6]); | 153 | extern void bignum_cmul_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 6]); |
143 | extern void bignum_cmul_p384_alt (uint64_t z[static 6], uint64_t c, uint64_t x[static 6]); | 154 | extern void bignum_cmul_p384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 6]); |
144 | 155 | ||
145 | // Multiply by a single word modulo p_521, z := (c * x) mod p_521, assuming x reduced | 156 | // Multiply by a single word modulo p_521, z := (c * x) mod p_521, assuming x reduced |
146 | // Inputs c, x[9]; output z[9] | 157 | // Inputs c, x[9]; output z[9] |
147 | extern void bignum_cmul_p521 (uint64_t z[static 9], uint64_t c, uint64_t x[static 9]); | 158 | extern void bignum_cmul_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 9]); |
148 | extern void bignum_cmul_p521_alt (uint64_t z[static 9], uint64_t c, uint64_t x[static 9]); | 159 | extern void bignum_cmul_p521_alt (uint64_t z[S2N_BIGNUM_STATIC 9], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 9]); |
160 | |||
161 | // Multiply by a single word modulo p_sm2, z := (c * x) mod p_sm2, assuming x reduced | ||
162 | // Inputs c, x[4]; output z[4] | ||
163 | extern void bignum_cmul_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
164 | extern void bignum_cmul_sm2_alt (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t c, const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
149 | 165 | ||
150 | // Test bignums for coprimality, gcd(x,y) = 1 | 166 | // Test bignums for coprimality, gcd(x,y) = 1 |
151 | // Inputs x[m], y[n]; output function return; temporary buffer t[>=2*max(m,n)] | 167 | // Inputs x[m], y[n]; output function return; temporary buffer t[>=2*max(m,n)] |
152 | extern uint64_t bignum_coprime (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y, uint64_t *t); | 168 | extern uint64_t bignum_coprime (uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y, uint64_t *t); |
153 | 169 | ||
154 | // Copy bignum with zero-extension or truncation, z := x | 170 | // Copy bignum with zero-extension or truncation, z := x |
155 | // Input x[n]; output z[k] | 171 | // Input x[n]; output z[k] |
156 | extern void bignum_copy (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x); | 172 | extern void bignum_copy (uint64_t k, uint64_t *z, uint64_t n, const uint64_t *x); |
173 | |||
174 | // Given table: uint64_t[height*width], copy table[idx*width...(idx+1)*width-1] | ||
175 | // into z[0..width-1]. | ||
176 | // This function is constant-time with respect to the value of `idx`. This is | ||
177 | // achieved by reading the whole table and using the bit-masking to get the | ||
178 | // `idx`-th row. | ||
179 | // Input table[height*width]; output z[width] | ||
180 | extern void bignum_copy_row_from_table (uint64_t *z, const uint64_t *table, uint64_t height, | ||
181 | uint64_t width, uint64_t idx); | ||
182 | |||
183 | // Given table: uint64_t[height*width], copy table[idx*width...(idx+1)*width-1] | ||
184 | // into z[0..width-1]. width must be a multiple of 8. | ||
185 | // This function is constant-time with respect to the value of `idx`. This is | ||
186 | // achieved by reading the whole table and using the bit-masking to get the | ||
187 | // `idx`-th row. | ||
188 | // Input table[height*width]; output z[width] | ||
189 | extern void bignum_copy_row_from_table_8n (uint64_t *z, const uint64_t *table, | ||
190 | uint64_t height, uint64_t width, uint64_t idx); | ||
191 | |||
192 | // Given table: uint64_t[height*16], copy table[idx*16...(idx+1)*16-1] into z[0..row-1]. | ||
193 | // This function is constant-time with respect to the value of `idx`. This is | ||
194 | // achieved by reading the whole table and using the bit-masking to get the | ||
195 | // `idx`-th row. | ||
196 | // Input table[height*16]; output z[16] | ||
197 | extern void bignum_copy_row_from_table_16 (uint64_t *z, const uint64_t *table, | ||
198 | uint64_t height, uint64_t idx); | ||
199 | |||
200 | // Given table: uint64_t[height*32], copy table[idx*32...(idx+1)*32-1] into z[0..row-1]. | ||
201 | // This function is constant-time with respect to the value of `idx`. This is | ||
202 | // achieved by reading the whole table and using the bit-masking to get the | ||
203 | // `idx`-th row. | ||
204 | // Input table[height*32]; output z[32] | ||
205 | extern void bignum_copy_row_from_table_32 (uint64_t *z, const uint64_t *table, | ||
206 | uint64_t height, uint64_t idx); | ||
157 | 207 | ||
158 | // Count trailing zero digits (64-bit words) | 208 | // Count trailing zero digits (64-bit words) |
159 | // Input x[k]; output function return | 209 | // Input x[k]; output function return |
160 | extern uint64_t bignum_ctd (uint64_t k, uint64_t *x); | 210 | extern uint64_t bignum_ctd (uint64_t k, const uint64_t *x); |
161 | 211 | ||
162 | // Count trailing zero bits | 212 | // Count trailing zero bits |
163 | // Input x[k]; output function return | 213 | // Input x[k]; output function return |
164 | extern uint64_t bignum_ctz (uint64_t k, uint64_t *x); | 214 | extern uint64_t bignum_ctz (uint64_t k, const uint64_t *x); |
165 | 215 | ||
166 | // Convert from almost-Montgomery form, z := (x / 2^256) mod p_256 | 216 | // Convert from almost-Montgomery form, z := (x / 2^256) mod p_256 |
167 | // Input x[4]; output z[4] | 217 | // Input x[4]; output z[4] |
168 | extern void bignum_deamont_p256 (uint64_t z[static 4], uint64_t x[static 4]); | 218 | extern void bignum_deamont_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
169 | extern void bignum_deamont_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | 219 | extern void bignum_deamont_p256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
170 | 220 | ||
171 | // Convert from almost-Montgomery form, z := (x / 2^256) mod p_256k1 | 221 | // Convert from almost-Montgomery form, z := (x / 2^256) mod p_256k1 |
172 | // Input x[4]; output z[4] | 222 | // Input x[4]; output z[4] |
173 | extern void bignum_deamont_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | 223 | extern void bignum_deamont_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
174 | 224 | ||
175 | // Convert from almost-Montgomery form, z := (x / 2^384) mod p_384 | 225 | // Convert from almost-Montgomery form, z := (x / 2^384) mod p_384 |
176 | // Input x[6]; output z[6] | 226 | // Input x[6]; output z[6] |
177 | extern void bignum_deamont_p384 (uint64_t z[static 6], uint64_t x[static 6]); | 227 | extern void bignum_deamont_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
178 | extern void bignum_deamont_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | 228 | extern void bignum_deamont_p384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
179 | 229 | ||
180 | // Convert from almost-Montgomery form z := (x / 2^576) mod p_521 | 230 | // Convert from almost-Montgomery form z := (x / 2^576) mod p_521 |
181 | // Input x[9]; output z[9] | 231 | // Input x[9]; output z[9] |
182 | extern void bignum_deamont_p521 (uint64_t z[static 9], uint64_t x[static 9]); | 232 | extern void bignum_deamont_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); |
233 | |||
234 | // Convert from almost-Montgomery form z := (x / 2^256) mod p_sm2 | ||
235 | // Input x[4]; output z[4] | ||
236 | extern void bignum_deamont_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
183 | 237 | ||
184 | // Convert from (almost-)Montgomery form z := (x / 2^{64k}) mod m | 238 | // Convert from (almost-)Montgomery form z := (x / 2^{64k}) mod m |
185 | // Inputs x[k], m[k]; output z[k] | 239 | // Inputs x[k], m[k]; output z[k] |
186 | extern void bignum_demont (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m); | 240 | extern void bignum_demont (uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *m); |
187 | 241 | ||
188 | // Convert from Montgomery form z := (x / 2^256) mod p_256, assuming x reduced | 242 | // Convert from Montgomery form z := (x / 2^256) mod p_256, assuming x reduced |
189 | // Input x[4]; output z[4] | 243 | // Input x[4]; output z[4] |
190 | extern void bignum_demont_p256 (uint64_t z[static 4], uint64_t x[static 4]); | 244 | extern void bignum_demont_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
191 | extern void bignum_demont_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | 245 | extern void bignum_demont_p256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
192 | 246 | ||
193 | // Convert from Montgomery form z := (x / 2^256) mod p_256k1, assuming x reduced | 247 | // Convert from Montgomery form z := (x / 2^256) mod p_256k1, assuming x reduced |
194 | // Input x[4]; output z[4] | 248 | // Input x[4]; output z[4] |
195 | extern void bignum_demont_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | 249 | extern void bignum_demont_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
196 | 250 | ||
197 | // Convert from Montgomery form z := (x / 2^384) mod p_384, assuming x reduced | 251 | // Convert from Montgomery form z := (x / 2^384) mod p_384, assuming x reduced |
198 | // Input x[6]; output z[6] | 252 | // Input x[6]; output z[6] |
199 | extern void bignum_demont_p384 (uint64_t z[static 6], uint64_t x[static 6]); | 253 | extern void bignum_demont_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
200 | extern void bignum_demont_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | 254 | extern void bignum_demont_p384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
201 | 255 | ||
202 | // Convert from Montgomery form z := (x / 2^576) mod p_521, assuming x reduced | 256 | // Convert from Montgomery form z := (x / 2^576) mod p_521, assuming x reduced |
203 | // Input x[9]; output z[9] | 257 | // Input x[9]; output z[9] |
204 | extern void bignum_demont_p521 (uint64_t z[static 9], uint64_t x[static 9]); | 258 | extern void bignum_demont_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); |
259 | |||
260 | // Convert from Montgomery form z := (x / 2^256) mod p_sm2, assuming x reduced | ||
261 | // Input x[4]; output z[4] | ||
262 | extern void bignum_demont_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
205 | 263 | ||
206 | // Select digit x[n] | 264 | // Select digit x[n] |
207 | // Inputs x[k], n; output function return | 265 | // Inputs x[k], n; output function return |
208 | extern uint64_t bignum_digit (uint64_t k, uint64_t *x, uint64_t n); | 266 | extern uint64_t bignum_digit (uint64_t k, const uint64_t *x, uint64_t n); |
209 | 267 | ||
210 | // Return size of bignum in digits (64-bit word) | 268 | // Return size of bignum in digits (64-bit word) |
211 | // Input x[k]; output function return | 269 | // Input x[k]; output function return |
212 | extern uint64_t bignum_digitsize (uint64_t k, uint64_t *x); | 270 | extern uint64_t bignum_digitsize (uint64_t k, const uint64_t *x); |
213 | 271 | ||
214 | // Divide bignum by 10: z' := z div 10, returning remainder z mod 10 | 272 | // Divide bignum by 10: z' := z div 10, returning remainder z mod 10 |
215 | // Inputs z[k]; outputs function return (remainder) and z[k] | 273 | // Inputs z[k]; outputs function return (remainder) and z[k] |
@@ -217,294 +275,391 @@ extern uint64_t bignum_divmod10 (uint64_t k, uint64_t *z); | |||
217 | 275 | ||
218 | // Double modulo p_25519, z := (2 * x) mod p_25519, assuming x reduced | 276 | // Double modulo p_25519, z := (2 * x) mod p_25519, assuming x reduced |
219 | // Input x[4]; output z[4] | 277 | // Input x[4]; output z[4] |
220 | extern void bignum_double_p25519 (uint64_t z[static 4], uint64_t x[static 4]); | 278 | extern void bignum_double_p25519 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
221 | 279 | ||
222 | // Double modulo p_256, z := (2 * x) mod p_256, assuming x reduced | 280 | // Double modulo p_256, z := (2 * x) mod p_256, assuming x reduced |
223 | // Input x[4]; output z[4] | 281 | // Input x[4]; output z[4] |
224 | extern void bignum_double_p256 (uint64_t z[static 4], uint64_t x[static 4]); | 282 | extern void bignum_double_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
225 | 283 | ||
226 | // Double modulo p_256k1, z := (2 * x) mod p_256k1, assuming x reduced | 284 | // Double modulo p_256k1, z := (2 * x) mod p_256k1, assuming x reduced |
227 | // Input x[4]; output z[4] | 285 | // Input x[4]; output z[4] |
228 | extern void bignum_double_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | 286 | extern void bignum_double_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
229 | 287 | ||
230 | // Double modulo p_384, z := (2 * x) mod p_384, assuming x reduced | 288 | // Double modulo p_384, z := (2 * x) mod p_384, assuming x reduced |
231 | // Input x[6]; output z[6] | 289 | // Input x[6]; output z[6] |
232 | extern void bignum_double_p384 (uint64_t z[static 6], uint64_t x[static 6]); | 290 | extern void bignum_double_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
233 | 291 | ||
234 | // Double modulo p_521, z := (2 * x) mod p_521, assuming x reduced | 292 | // Double modulo p_521, z := (2 * x) mod p_521, assuming x reduced |
235 | // Input x[9]; output z[9] | 293 | // Input x[9]; output z[9] |
236 | extern void bignum_double_p521 (uint64_t z[static 9], uint64_t x[static 9]); | 294 | extern void bignum_double_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); |
295 | |||
296 | // Double modulo p_sm2, z := (2 * x) mod p_sm2, assuming x reduced | ||
297 | // Input x[4]; output z[4] | ||
298 | extern void bignum_double_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
237 | 299 | ||
238 | // Extended Montgomery reduce, returning results in input-output buffer | 300 | // Extended Montgomery reduce, returning results in input-output buffer |
239 | // Inputs z[2*k], m[k], w; outputs function return (extra result bit) and z[2*k] | 301 | // Inputs z[2*k], m[k], w; outputs function return (extra result bit) and z[2*k] |
240 | extern uint64_t bignum_emontredc (uint64_t k, uint64_t *z, uint64_t *m, uint64_t w); | 302 | extern uint64_t bignum_emontredc (uint64_t k, uint64_t *z, const uint64_t *m, uint64_t w); |
241 | 303 | ||
242 | // Extended Montgomery reduce in 8-digit blocks, results in input-output buffer | 304 | // Extended Montgomery reduce in 8-digit blocks, results in input-output buffer |
243 | // Inputs z[2*k], m[k], w; outputs function return (extra result bit) and z[2*k] | 305 | // Inputs z[2*k], m[k], w; outputs function return (extra result bit) and z[2*k] |
244 | extern uint64_t bignum_emontredc_8n (uint64_t k, uint64_t *z, uint64_t *m, uint64_t w); | 306 | extern uint64_t bignum_emontredc_8n (uint64_t k, uint64_t *z, const uint64_t *m, uint64_t w); |
307 | // Inputs z[2*k], m[k], w; outputs function return (extra result bit) and z[2*k] | ||
308 | // Temporary buffer m_precalc[12*(k/4-1)] | ||
309 | extern uint64_t bignum_emontredc_8n_cdiff (uint64_t k, uint64_t *z, const uint64_t *m, | ||
310 | uint64_t w, uint64_t *m_precalc); | ||
245 | 311 | ||
246 | // Test bignums for equality, x = y | 312 | // Test bignums for equality, x = y |
247 | // Inputs x[m], y[n]; output function return | 313 | // Inputs x[m], y[n]; output function return |
248 | extern uint64_t bignum_eq (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | 314 | extern uint64_t bignum_eq (uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); |
249 | 315 | ||
250 | // Test bignum for even-ness | 316 | // Test bignum for even-ness |
251 | // Input x[k]; output function return | 317 | // Input x[k]; output function return |
252 | extern uint64_t bignum_even (uint64_t k, uint64_t *x); | 318 | extern uint64_t bignum_even (uint64_t k, const uint64_t *x); |
253 | 319 | ||
254 | // Convert 4-digit (256-bit) bignum from big-endian bytes | 320 | // Convert 4-digit (256-bit) bignum from big-endian bytes |
255 | // Input x[32] (bytes); output z[4] | 321 | // Input x[32] (bytes); output z[4] |
256 | extern void bignum_frombebytes_4 (uint64_t z[static 4], uint8_t x[static 32]); | 322 | extern void bignum_frombebytes_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint8_t x[S2N_BIGNUM_STATIC 32]); |
257 | 323 | ||
258 | // Convert 6-digit (384-bit) bignum from big-endian bytes | 324 | // Convert 6-digit (384-bit) bignum from big-endian bytes |
259 | // Input x[48] (bytes); output z[6] | 325 | // Input x[48] (bytes); output z[6] |
260 | extern void bignum_frombebytes_6 (uint64_t z[static 6], uint8_t x[static 48]); | 326 | extern void bignum_frombebytes_6 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint8_t x[S2N_BIGNUM_STATIC 48]); |
261 | 327 | ||
262 | // Convert 4-digit (256-bit) bignum from little-endian bytes | 328 | // Convert 4-digit (256-bit) bignum from little-endian bytes |
263 | // Input x[32] (bytes); output z[4] | 329 | // Input x[32] (bytes); output z[4] |
264 | extern void bignum_fromlebytes_4 (uint64_t z[static 4], uint8_t x[static 32]); | 330 | extern void bignum_fromlebytes_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint8_t x[S2N_BIGNUM_STATIC 32]); |
265 | 331 | ||
266 | // Convert 6-digit (384-bit) bignum from little-endian bytes | 332 | // Convert 6-digit (384-bit) bignum from little-endian bytes |
267 | // Input x[48] (bytes); output z[6] | 333 | // Input x[48] (bytes); output z[6] |
268 | extern void bignum_fromlebytes_6 (uint64_t z[static 6], uint8_t x[static 48]); | 334 | extern void bignum_fromlebytes_6 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint8_t x[S2N_BIGNUM_STATIC 48]); |
269 | 335 | ||
270 | // Convert little-endian bytes to 9-digit 528-bit bignum | 336 | // Convert little-endian bytes to 9-digit 528-bit bignum |
271 | // Input x[66] (bytes); output z[9] | 337 | // Input x[66] (bytes); output z[9] |
272 | extern void bignum_fromlebytes_p521 (uint64_t z[static 9],uint8_t x[static 66]); | 338 | extern void bignum_fromlebytes_p521 (uint64_t z[S2N_BIGNUM_STATIC 9],const uint8_t x[S2N_BIGNUM_STATIC 66]); |
273 | 339 | ||
274 | // Compare bignums, x >= y | 340 | // Compare bignums, x >= y |
275 | // Inputs x[m], y[n]; output function return | 341 | // Inputs x[m], y[n]; output function return |
276 | extern uint64_t bignum_ge (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | 342 | extern uint64_t bignum_ge (uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); |
277 | 343 | ||
278 | // Compare bignums, x > y | 344 | // Compare bignums, x > y |
279 | // Inputs x[m], y[n]; output function return | 345 | // Inputs x[m], y[n]; output function return |
280 | extern uint64_t bignum_gt (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | 346 | extern uint64_t bignum_gt (uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); |
281 | 347 | ||
282 | // Halve modulo p_256, z := (x / 2) mod p_256, assuming x reduced | 348 | // Halve modulo p_256, z := (x / 2) mod p_256, assuming x reduced |
283 | // Input x[4]; output z[4] | 349 | // Input x[4]; output z[4] |
284 | extern void bignum_half_p256 (uint64_t z[static 4], uint64_t x[static 4]); | 350 | extern void bignum_half_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
285 | 351 | ||
286 | // Halve modulo p_256k1, z := (x / 2) mod p_256k1, assuming x reduced | 352 | // Halve modulo p_256k1, z := (x / 2) mod p_256k1, assuming x reduced |
287 | // Input x[4]; output z[4] | 353 | // Input x[4]; output z[4] |
288 | extern void bignum_half_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | 354 | extern void bignum_half_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
289 | 355 | ||
290 | // Halve modulo p_384, z := (x / 2) mod p_384, assuming x reduced | 356 | // Halve modulo p_384, z := (x / 2) mod p_384, assuming x reduced |
291 | // Input x[6]; output z[6] | 357 | // Input x[6]; output z[6] |
292 | extern void bignum_half_p384 (uint64_t z[static 6], uint64_t x[static 6]); | 358 | extern void bignum_half_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
293 | 359 | ||
294 | // Halve modulo p_521, z := (x / 2) mod p_521, assuming x reduced | 360 | // Halve modulo p_521, z := (x / 2) mod p_521, assuming x reduced |
295 | // Input x[9]; output z[9] | 361 | // Input x[9]; output z[9] |
296 | extern void bignum_half_p521 (uint64_t z[static 9], uint64_t x[static 9]); | 362 | extern void bignum_half_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); |
363 | |||
364 | // Halve modulo p_sm2, z := (x / 2) mod p_sm2, assuming x reduced | ||
365 | // Input x[4]; output z[4] | ||
366 | extern void bignum_half_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
367 | |||
368 | // Modular inverse modulo p_25519 = 2^255 - 19 | ||
369 | // Input x[4]; output z[4] | ||
370 | extern void bignum_inv_p25519(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
371 | |||
372 | // Modular inverse modulo p_256 = 2^256 - 2^224 + 2^192 + 2^96 - 1 | ||
373 | // Input x[4]; output z[4] | ||
374 | extern void bignum_inv_p256(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
375 | |||
376 | // Modular inverse modulo p_384 = 2^384 - 2^128 - 2^96 + 2^32 - 1 | ||
377 | // Input x[6]; output z[6] | ||
378 | extern void bignum_inv_p384(uint64_t z[S2N_BIGNUM_STATIC 6],const uint64_t x[S2N_BIGNUM_STATIC 6]); | ||
379 | |||
380 | // Modular inverse modulo p_521 = 2^521 - 1 | ||
381 | // Input x[9]; output z[9] | ||
382 | extern void bignum_inv_p521(uint64_t z[S2N_BIGNUM_STATIC 9],const uint64_t x[S2N_BIGNUM_STATIC 9]); | ||
383 | |||
384 | // Modular inverse modulo p_sm2 = 2^256 - 2^224 - 2^96 + 2^64 - 1 | ||
385 | // Input x[4]; output z[4] | ||
386 | extern void bignum_inv_sm2(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
387 | |||
388 | // Inverse square root modulo p_25519 | ||
389 | // Input x[4]; output function return (Legendre symbol) and z[4] | ||
390 | extern int64_t bignum_invsqrt_p25519(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
391 | extern int64_t bignum_invsqrt_p25519_alt(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
297 | 392 | ||
298 | // Test bignum for zero-ness, x = 0 | 393 | // Test bignum for zero-ness, x = 0 |
299 | // Input x[k]; output function return | 394 | // Input x[k]; output function return |
300 | extern uint64_t bignum_iszero (uint64_t k, uint64_t *x); | 395 | extern uint64_t bignum_iszero (uint64_t k, const uint64_t *x); |
301 | 396 | ||
302 | // Multiply z := x * y | 397 | // Multiply z := x * y |
303 | // Inputs x[16], y[16]; output z[32]; temporary buffer t[>=32] | 398 | // Inputs x[16], y[16]; output z[32]; temporary buffer t[>=32] |
304 | extern void bignum_kmul_16_32 (uint64_t z[static 32], uint64_t x[static 16], uint64_t y[static 16], uint64_t t[static 32]); | 399 | extern void bignum_kmul_16_32 (uint64_t z[S2N_BIGNUM_STATIC 32], const uint64_t x[S2N_BIGNUM_STATIC 16], const uint64_t y[S2N_BIGNUM_STATIC 16], uint64_t t[S2N_BIGNUM_STATIC 32]); |
305 | 400 | ||
306 | // Multiply z := x * y | 401 | // Multiply z := x * y |
307 | // Inputs x[32], y[32]; output z[64]; temporary buffer t[>=96] | 402 | // Inputs x[32], y[32]; output z[64]; temporary buffer t[>=96] |
308 | extern void bignum_kmul_32_64 (uint64_t z[static 64], uint64_t x[static 32], uint64_t y[static 32], uint64_t t[static 96]); | 403 | extern void bignum_kmul_32_64 (uint64_t z[S2N_BIGNUM_STATIC 64], const uint64_t x[S2N_BIGNUM_STATIC 32], const uint64_t y[S2N_BIGNUM_STATIC 32], uint64_t t[S2N_BIGNUM_STATIC 96]); |
309 | 404 | ||
310 | // Square, z := x^2 | 405 | // Square, z := x^2 |
311 | // Input x[16]; output z[32]; temporary buffer t[>=24] | 406 | // Input x[16]; output z[32]; temporary buffer t[>=24] |
312 | extern void bignum_ksqr_16_32 (uint64_t z[static 32], uint64_t x[static 16], uint64_t t[static 24]); | 407 | extern void bignum_ksqr_16_32 (uint64_t z[S2N_BIGNUM_STATIC 32], const uint64_t x[S2N_BIGNUM_STATIC 16], uint64_t t[S2N_BIGNUM_STATIC 24]); |
313 | 408 | ||
314 | // Square, z := x^2 | 409 | // Square, z := x^2 |
315 | // Input x[32]; output z[64]; temporary buffer t[>=72] | 410 | // Input x[32]; output z[64]; temporary buffer t[>=72] |
316 | extern void bignum_ksqr_32_64 (uint64_t z[static 64], uint64_t x[static 32], uint64_t t[static 72]); | 411 | extern void bignum_ksqr_32_64 (uint64_t z[S2N_BIGNUM_STATIC 64], const uint64_t x[S2N_BIGNUM_STATIC 32], uint64_t t[S2N_BIGNUM_STATIC 72]); |
317 | 412 | ||
318 | // Compare bignums, x <= y | 413 | // Compare bignums, x <= y |
319 | // Inputs x[m], y[n]; output function return | 414 | // Inputs x[m], y[n]; output function return |
320 | extern uint64_t bignum_le (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | 415 | extern uint64_t bignum_le (uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); |
321 | 416 | ||
322 | // Convert 4-digit (256-bit) bignum to/from little-endian form | 417 | // Convert 4-digit (256-bit) bignum to/from little-endian form |
323 | // Input x[4]; output z[4] | 418 | // Input x[4]; output z[4] |
324 | extern void bignum_littleendian_4 (uint64_t z[static 4], uint64_t x[static 4]); | 419 | extern void bignum_littleendian_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
325 | 420 | ||
326 | // Convert 6-digit (384-bit) bignum to/from little-endian form | 421 | // Convert 6-digit (384-bit) bignum to/from little-endian form |
327 | // Input x[6]; output z[6] | 422 | // Input x[6]; output z[6] |
328 | extern void bignum_littleendian_6 (uint64_t z[static 6], uint64_t x[static 6]); | 423 | extern void bignum_littleendian_6 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
329 | 424 | ||
330 | // Compare bignums, x < y | 425 | // Compare bignums, x < y |
331 | // Inputs x[m], y[n]; output function return | 426 | // Inputs x[m], y[n]; output function return |
332 | extern uint64_t bignum_lt (uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | 427 | extern uint64_t bignum_lt (uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); |
333 | 428 | ||
334 | // Multiply-add, z := z + x * y | 429 | // Multiply-add, z := z + x * y |
335 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[k] | 430 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[k] |
336 | extern uint64_t bignum_madd (uint64_t k, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | 431 | extern uint64_t bignum_madd (uint64_t k, uint64_t *z, uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); |
432 | |||
433 | // Multiply-add modulo the order of the curve25519/edwards25519 basepoint | ||
434 | // Inputs x[4], y[4], c[4]; output z[4] | ||
435 | extern void bignum_madd_n25519 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4], const uint64_t c[S2N_BIGNUM_STATIC 4]); | ||
436 | extern void bignum_madd_n25519_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4], const uint64_t c[S2N_BIGNUM_STATIC 4]); | ||
437 | |||
438 | // Reduce modulo group order, z := x mod m_25519 | ||
439 | // Input x[4]; output z[4] | ||
440 | extern void bignum_mod_m25519_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
441 | |||
442 | // Reduce modulo basepoint order, z := x mod n_25519 | ||
443 | // Input x[k]; output z[4] | ||
444 | extern void bignum_mod_n25519 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t k, const uint64_t *x); | ||
445 | |||
446 | // Reduce modulo basepoint order, z := x mod n_25519 | ||
447 | // Input x[4]; output z[4] | ||
448 | extern void bignum_mod_n25519_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
337 | 449 | ||
338 | // Reduce modulo group order, z := x mod n_256 | 450 | // Reduce modulo group order, z := x mod n_256 |
339 | // Input x[k]; output z[4] | 451 | // Input x[k]; output z[4] |
340 | extern void bignum_mod_n256 (uint64_t z[static 4], uint64_t k, uint64_t *x); | 452 | extern void bignum_mod_n256 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t k, const uint64_t *x); |
341 | extern void bignum_mod_n256_alt (uint64_t z[static 4], uint64_t k, uint64_t *x); | 453 | extern void bignum_mod_n256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t k, const uint64_t *x); |
342 | 454 | ||
343 | // Reduce modulo group order, z := x mod n_256 | 455 | // Reduce modulo group order, z := x mod n_256 |
344 | // Input x[4]; output z[4] | 456 | // Input x[4]; output z[4] |
345 | extern void bignum_mod_n256_4 (uint64_t z[static 4], uint64_t x[static 4]); | 457 | extern void bignum_mod_n256_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
346 | 458 | ||
347 | // Reduce modulo group order, z := x mod n_256k1 | 459 | // Reduce modulo group order, z := x mod n_256k1 |
348 | // Input x[4]; output z[4] | 460 | // Input x[4]; output z[4] |
349 | extern void bignum_mod_n256k1_4 (uint64_t z[static 4], uint64_t x[static 4]); | 461 | extern void bignum_mod_n256k1_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
350 | 462 | ||
351 | // Reduce modulo group order, z := x mod n_384 | 463 | // Reduce modulo group order, z := x mod n_384 |
352 | // Input x[k]; output z[6] | 464 | // Input x[k]; output z[6] |
353 | extern void bignum_mod_n384 (uint64_t z[static 6], uint64_t k, uint64_t *x); | 465 | extern void bignum_mod_n384 (uint64_t z[S2N_BIGNUM_STATIC 6], uint64_t k, const uint64_t *x); |
354 | extern void bignum_mod_n384_alt (uint64_t z[static 6], uint64_t k, uint64_t *x); | 466 | extern void bignum_mod_n384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], uint64_t k, const uint64_t *x); |
355 | 467 | ||
356 | // Reduce modulo group order, z := x mod n_384 | 468 | // Reduce modulo group order, z := x mod n_384 |
357 | // Input x[6]; output z[6] | 469 | // Input x[6]; output z[6] |
358 | extern void bignum_mod_n384_6 (uint64_t z[static 6], uint64_t x[static 6]); | 470 | extern void bignum_mod_n384_6 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
359 | 471 | ||
360 | // Reduce modulo group order, z := x mod n_521 | 472 | // Reduce modulo group order, z := x mod n_521 |
361 | // Input x[9]; output z[9] | 473 | // Input x[9]; output z[9] |
362 | extern void bignum_mod_n521_9 (uint64_t z[static 9], uint64_t x[static 9]); | 474 | extern void bignum_mod_n521_9 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); |
363 | extern void bignum_mod_n521_9_alt (uint64_t z[static 9], uint64_t x[static 9]); | 475 | extern void bignum_mod_n521_9_alt (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); |
476 | |||
477 | // Reduce modulo group order, z := x mod n_sm2 | ||
478 | // Input x[k]; output z[4] | ||
479 | extern void bignum_mod_nsm2 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t k, const uint64_t *x); | ||
480 | extern void bignum_mod_nsm2_alt (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t k, const uint64_t *x); | ||
481 | |||
482 | // Reduce modulo group order, z := x mod n_sm2 | ||
483 | // Input x[4]; output z[4] | ||
484 | extern void bignum_mod_nsm2_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
364 | 485 | ||
365 | // Reduce modulo field characteristic, z := x mod p_25519 | 486 | // Reduce modulo field characteristic, z := x mod p_25519 |
366 | // Input x[4]; output z[4] | 487 | // Input x[4]; output z[4] |
367 | extern void bignum_mod_p25519_4 (uint64_t z[static 4], uint64_t x[static 4]); | 488 | extern void bignum_mod_p25519_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
368 | 489 | ||
369 | // Reduce modulo field characteristic, z := x mod p_256 | 490 | // Reduce modulo field characteristic, z := x mod p_256 |
370 | // Input x[k]; output z[4] | 491 | // Input x[k]; output z[4] |
371 | extern void bignum_mod_p256 (uint64_t z[static 4], uint64_t k, uint64_t *x); | 492 | extern void bignum_mod_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t k, const uint64_t *x); |
372 | extern void bignum_mod_p256_alt (uint64_t z[static 4], uint64_t k, uint64_t *x); | 493 | extern void bignum_mod_p256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t k, const uint64_t *x); |
373 | 494 | ||
374 | // Reduce modulo field characteristic, z := x mod p_256 | 495 | // Reduce modulo field characteristic, z := x mod p_256 |
375 | // Input x[4]; output z[4] | 496 | // Input x[4]; output z[4] |
376 | extern void bignum_mod_p256_4 (uint64_t z[static 4], uint64_t x[static 4]); | 497 | extern void bignum_mod_p256_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
377 | 498 | ||
378 | // Reduce modulo field characteristic, z := x mod p_256k1 | 499 | // Reduce modulo field characteristic, z := x mod p_256k1 |
379 | // Input x[4]; output z[4] | 500 | // Input x[4]; output z[4] |
380 | extern void bignum_mod_p256k1_4 (uint64_t z[static 4], uint64_t x[static 4]); | 501 | extern void bignum_mod_p256k1_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
381 | 502 | ||
382 | // Reduce modulo field characteristic, z := x mod p_384 | 503 | // Reduce modulo field characteristic, z := x mod p_384 |
383 | // Input x[k]; output z[6] | 504 | // Input x[k]; output z[6] |
384 | extern void bignum_mod_p384 (uint64_t z[static 6], uint64_t k, uint64_t *x); | 505 | extern void bignum_mod_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], uint64_t k, const uint64_t *x); |
385 | extern void bignum_mod_p384_alt (uint64_t z[static 6], uint64_t k, uint64_t *x); | 506 | extern void bignum_mod_p384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], uint64_t k, const uint64_t *x); |
386 | 507 | ||
387 | // Reduce modulo field characteristic, z := x mod p_384 | 508 | // Reduce modulo field characteristic, z := x mod p_384 |
388 | // Input x[6]; output z[6] | 509 | // Input x[6]; output z[6] |
389 | extern void bignum_mod_p384_6 (uint64_t z[static 6], uint64_t x[static 6]); | 510 | extern void bignum_mod_p384_6 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
390 | 511 | ||
391 | // Reduce modulo field characteristic, z := x mod p_521 | 512 | // Reduce modulo field characteristic, z := x mod p_521 |
392 | // Input x[9]; output z[9] | 513 | // Input x[9]; output z[9] |
393 | extern void bignum_mod_p521_9 (uint64_t z[static 9], uint64_t x[static 9]); | 514 | extern void bignum_mod_p521_9 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); |
515 | |||
516 | // Reduce modulo field characteristic, z := x mod p_sm2 | ||
517 | // Input x[k]; output z[4] | ||
518 | extern void bignum_mod_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t k, const uint64_t *x); | ||
519 | |||
520 | // Reduce modulo field characteristic, z := x mod p_sm2 | ||
521 | // Input x[4]; output z[4] | ||
522 | extern void bignum_mod_sm2_4 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
394 | 523 | ||
395 | // Add modulo m, z := (x + y) mod m, assuming x and y reduced | 524 | // Add modulo m, z := (x + y) mod m, assuming x and y reduced |
396 | // Inputs x[k], y[k], m[k]; output z[k] | 525 | // Inputs x[k], y[k], m[k]; output z[k] |
397 | extern void bignum_modadd (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m); | 526 | extern void bignum_modadd (uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *y, const uint64_t *m); |
398 | 527 | ||
399 | // Double modulo m, z := (2 * x) mod m, assuming x reduced | 528 | // Double modulo m, z := (2 * x) mod m, assuming x reduced |
400 | // Inputs x[k], m[k]; output z[k] | 529 | // Inputs x[k], m[k]; output z[k] |
401 | extern void bignum_moddouble (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m); | 530 | extern void bignum_moddouble (uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *m); |
531 | |||
532 | // Modular exponentiation for arbitrary odd modulus, z := (a^p) mod m | ||
533 | // Inputs a[k], p[k], m[k]; output z[k], temporary buffer t[>=3*k] | ||
534 | extern void bignum_modexp(uint64_t k,uint64_t *z, const uint64_t *a,const uint64_t *p,const uint64_t *m,uint64_t *t); | ||
402 | 535 | ||
403 | // Compute "modification" constant z := 2^{64k} mod m | 536 | // Compute "modification" constant z := 2^{64k} mod m |
404 | // Input m[k]; output z[k]; temporary buffer t[>=k] | 537 | // Input m[k]; output z[k]; temporary buffer t[>=k] |
405 | extern void bignum_modifier (uint64_t k, uint64_t *z, uint64_t *m, uint64_t *t); | 538 | extern void bignum_modifier (uint64_t k, uint64_t *z, const uint64_t *m, uint64_t *t); |
406 | 539 | ||
407 | // Invert modulo m, z = (1/a) mod b, assuming b is an odd number > 1, a coprime to b | 540 | // Invert modulo m, z = (1/a) mod b, assuming b is an odd number > 1, a coprime to b |
408 | // Inputs a[k], b[k]; output z[k]; temporary buffer t[>=3*k] | 541 | // Inputs a[k], b[k]; output z[k]; temporary buffer t[>=3*k] |
409 | extern void bignum_modinv (uint64_t k, uint64_t *z, uint64_t *a, uint64_t *b, uint64_t *t); | 542 | extern void bignum_modinv (uint64_t k, uint64_t *z, const uint64_t *a, const uint64_t *b, uint64_t *t); |
410 | 543 | ||
411 | // Optionally negate modulo m, z := (-x) mod m (if p nonzero) or z := x (if p zero), assuming x reduced | 544 | // Optionally negate modulo m, z := (-x) mod m (if p nonzero) or z := x (if p zero), assuming x reduced |
412 | // Inputs p, x[k], m[k]; output z[k] | 545 | // Inputs p, x[k], m[k]; output z[k] |
413 | extern void bignum_modoptneg (uint64_t k, uint64_t *z, uint64_t p, uint64_t *x, uint64_t *m); | 546 | extern void bignum_modoptneg (uint64_t k, uint64_t *z, uint64_t p, const uint64_t *x, const uint64_t *m); |
414 | 547 | ||
415 | // Subtract modulo m, z := (x - y) mod m, assuming x and y reduced | 548 | // Subtract modulo m, z := (x - y) mod m, assuming x and y reduced |
416 | // Inputs x[k], y[k], m[k]; output z[k] | 549 | // Inputs x[k], y[k], m[k]; output z[k] |
417 | extern void bignum_modsub (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m); | 550 | extern void bignum_modsub (uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *y, const uint64_t *m); |
418 | 551 | ||
419 | // Compute "montification" constant z := 2^{128k} mod m | 552 | // Compute "montification" constant z := 2^{128k} mod m |
420 | // Input m[k]; output z[k]; temporary buffer t[>=k] | 553 | // Input m[k]; output z[k]; temporary buffer t[>=k] |
421 | extern void bignum_montifier (uint64_t k, uint64_t *z, uint64_t *m, uint64_t *t); | 554 | extern void bignum_montifier (uint64_t k, uint64_t *z, const uint64_t *m, uint64_t *t); |
555 | |||
556 | // Montgomery inverse modulo p_256 = 2^256 - 2^224 + 2^192 + 2^96 - 1 | ||
557 | // Input x[4]; output z[4] | ||
558 | extern void bignum_montinv_p256(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
559 | |||
560 | // Montgomery inverse modulo p_384 = 2^384 - 2^128 - 2^96 + 2^32 - 1 | ||
561 | // Input x[6]; output z[6] | ||
562 | extern void bignum_montinv_p384(uint64_t z[S2N_BIGNUM_STATIC 6],const uint64_t x[S2N_BIGNUM_STATIC 6]); | ||
563 | |||
564 | // Montgomery inverse modulo p_sm2 = 2^256 - 2^224 - 2^96 + 2^64 - 1 | ||
565 | // Input x[4]; output z[4] | ||
566 | extern void bignum_montinv_sm2(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
422 | 567 | ||
423 | // Montgomery multiply, z := (x * y / 2^{64k}) mod m | 568 | // Montgomery multiply, z := (x * y / 2^{64k}) mod m |
424 | // Inputs x[k], y[k], m[k]; output z[k] | 569 | // Inputs x[k], y[k], m[k]; output z[k] |
425 | extern void bignum_montmul (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y, uint64_t *m); | 570 | extern void bignum_montmul (uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *y, const uint64_t *m); |
426 | 571 | ||
427 | // Montgomery multiply, z := (x * y / 2^256) mod p_256 | 572 | // Montgomery multiply, z := (x * y / 2^256) mod p_256 |
428 | // Inputs x[4], y[4]; output z[4] | 573 | // Inputs x[4], y[4]; output z[4] |
429 | extern void bignum_montmul_p256 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | 574 | extern void bignum_montmul_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
430 | extern void bignum_montmul_p256_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | 575 | extern void bignum_montmul_p256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
431 | 576 | ||
432 | // Montgomery multiply, z := (x * y / 2^256) mod p_256k1 | 577 | // Montgomery multiply, z := (x * y / 2^256) mod p_256k1 |
433 | // Inputs x[4], y[4]; output z[4] | 578 | // Inputs x[4], y[4]; output z[4] |
434 | extern void bignum_montmul_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | 579 | extern void bignum_montmul_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
435 | extern void bignum_montmul_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | 580 | extern void bignum_montmul_p256k1_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
436 | 581 | ||
437 | // Montgomery multiply, z := (x * y / 2^384) mod p_384 | 582 | // Montgomery multiply, z := (x * y / 2^384) mod p_384 |
438 | // Inputs x[6], y[6]; output z[6] | 583 | // Inputs x[6], y[6]; output z[6] |
439 | extern void bignum_montmul_p384 (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]); | 584 | extern void bignum_montmul_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6], const uint64_t y[S2N_BIGNUM_STATIC 6]); |
440 | extern void bignum_montmul_p384_alt (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]); | 585 | extern void bignum_montmul_p384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6], const uint64_t y[S2N_BIGNUM_STATIC 6]); |
441 | 586 | ||
442 | // Montgomery multiply, z := (x * y / 2^576) mod p_521 | 587 | // Montgomery multiply, z := (x * y / 2^576) mod p_521 |
443 | // Inputs x[9], y[9]; output z[9] | 588 | // Inputs x[9], y[9]; output z[9] |
444 | extern void bignum_montmul_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | 589 | extern void bignum_montmul_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9], const uint64_t y[S2N_BIGNUM_STATIC 9]); |
445 | extern void bignum_montmul_p521_alt (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | 590 | extern void bignum_montmul_p521_alt (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9], const uint64_t y[S2N_BIGNUM_STATIC 9]); |
591 | |||
592 | // Montgomery multiply, z := (x * y / 2^256) mod p_sm2 | ||
593 | // Inputs x[4], y[4]; output z[4] | ||
594 | extern void bignum_montmul_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); | ||
595 | extern void bignum_montmul_sm2_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); | ||
446 | 596 | ||
447 | // Montgomery reduce, z := (x' / 2^{64p}) MOD m | 597 | // Montgomery reduce, z := (x' / 2^{64p}) MOD m |
448 | // Inputs x[n], m[k], p; output z[k] | 598 | // Inputs x[n], m[k], p; output z[k] |
449 | extern void bignum_montredc (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t *m, uint64_t p); | 599 | extern void bignum_montredc (uint64_t k, uint64_t *z, uint64_t n, const uint64_t *x, const uint64_t *m, uint64_t p); |
450 | 600 | ||
451 | // Montgomery square, z := (x^2 / 2^{64k}) mod m | 601 | // Montgomery square, z := (x^2 / 2^{64k}) mod m |
452 | // Inputs x[k], m[k]; output z[k] | 602 | // Inputs x[k], m[k]; output z[k] |
453 | extern void bignum_montsqr (uint64_t k, uint64_t *z, uint64_t *x, uint64_t *m); | 603 | extern void bignum_montsqr (uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *m); |
454 | 604 | ||
455 | // Montgomery square, z := (x^2 / 2^256) mod p_256 | 605 | // Montgomery square, z := (x^2 / 2^256) mod p_256 |
456 | // Input x[4]; output z[4] | 606 | // Input x[4]; output z[4] |
457 | extern void bignum_montsqr_p256 (uint64_t z[static 4], uint64_t x[static 4]); | 607 | extern void bignum_montsqr_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
458 | extern void bignum_montsqr_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | 608 | extern void bignum_montsqr_p256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
459 | 609 | ||
460 | // Montgomery square, z := (x^2 / 2^256) mod p_256k1 | 610 | // Montgomery square, z := (x^2 / 2^256) mod p_256k1 |
461 | // Input x[4]; output z[4] | 611 | // Input x[4]; output z[4] |
462 | extern void bignum_montsqr_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | 612 | extern void bignum_montsqr_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
463 | extern void bignum_montsqr_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]); | 613 | extern void bignum_montsqr_p256k1_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
464 | 614 | ||
465 | // Montgomery square, z := (x^2 / 2^384) mod p_384 | 615 | // Montgomery square, z := (x^2 / 2^384) mod p_384 |
466 | // Input x[6]; output z[6] | 616 | // Input x[6]; output z[6] |
467 | extern void bignum_montsqr_p384 (uint64_t z[static 6], uint64_t x[static 6]); | 617 | extern void bignum_montsqr_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
468 | extern void bignum_montsqr_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | 618 | extern void bignum_montsqr_p384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
469 | 619 | ||
470 | // Montgomery square, z := (x^2 / 2^576) mod p_521 | 620 | // Montgomery square, z := (x^2 / 2^576) mod p_521 |
471 | // Input x[9]; output z[9] | 621 | // Input x[9]; output z[9] |
472 | extern void bignum_montsqr_p521 (uint64_t z[static 9], uint64_t x[static 9]); | 622 | extern void bignum_montsqr_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); |
473 | extern void bignum_montsqr_p521_alt (uint64_t z[static 9], uint64_t x[static 9]); | 623 | extern void bignum_montsqr_p521_alt (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); |
624 | |||
625 | // Montgomery square, z := (x^2 / 2^256) mod p_sm2 | ||
626 | // Input x[4]; output z[4] | ||
627 | extern void bignum_montsqr_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
628 | extern void bignum_montsqr_sm2_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
474 | 629 | ||
475 | // Multiply z := x * y | 630 | // Multiply z := x * y |
476 | // Inputs x[m], y[n]; output z[k] | 631 | // Inputs x[m], y[n]; output z[k] |
477 | extern void bignum_mul (uint64_t k, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | 632 | extern void bignum_mul (uint64_t k, uint64_t *z, uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); |
478 | 633 | ||
479 | // Multiply z := x * y | 634 | // Multiply z := x * y |
480 | // Inputs x[4], y[4]; output z[8] | 635 | // Inputs x[4], y[4]; output z[8] |
481 | extern void bignum_mul_4_8 (uint64_t z[static 8], uint64_t x[static 4], uint64_t y[static 4]); | 636 | extern void bignum_mul_4_8 (uint64_t z[S2N_BIGNUM_STATIC 8], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
482 | extern void bignum_mul_4_8_alt (uint64_t z[static 8], uint64_t x[static 4], uint64_t y[static 4]); | 637 | extern void bignum_mul_4_8_alt (uint64_t z[S2N_BIGNUM_STATIC 8], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
483 | 638 | ||
484 | // Multiply z := x * y | 639 | // Multiply z := x * y |
485 | // Inputs x[6], y[6]; output z[12] | 640 | // Inputs x[6], y[6]; output z[12] |
486 | extern void bignum_mul_6_12 (uint64_t z[static 12], uint64_t x[static 6], uint64_t y[static 6]); | 641 | extern void bignum_mul_6_12 (uint64_t z[S2N_BIGNUM_STATIC 12], const uint64_t x[S2N_BIGNUM_STATIC 6], const uint64_t y[S2N_BIGNUM_STATIC 6]); |
487 | extern void bignum_mul_6_12_alt (uint64_t z[static 12], uint64_t x[static 6], uint64_t y[static 6]); | 642 | extern void bignum_mul_6_12_alt (uint64_t z[S2N_BIGNUM_STATIC 12], const uint64_t x[S2N_BIGNUM_STATIC 6], const uint64_t y[S2N_BIGNUM_STATIC 6]); |
488 | 643 | ||
489 | // Multiply z := x * y | 644 | // Multiply z := x * y |
490 | // Inputs x[8], y[8]; output z[16] | 645 | // Inputs x[8], y[8]; output z[16] |
491 | extern void bignum_mul_8_16 (uint64_t z[static 16], uint64_t x[static 8], uint64_t y[static 8]); | 646 | extern void bignum_mul_8_16 (uint64_t z[S2N_BIGNUM_STATIC 16], const uint64_t x[S2N_BIGNUM_STATIC 8], const uint64_t y[S2N_BIGNUM_STATIC 8]); |
492 | extern void bignum_mul_8_16_alt (uint64_t z[static 16], uint64_t x[static 8], uint64_t y[static 8]); | 647 | extern void bignum_mul_8_16_alt (uint64_t z[S2N_BIGNUM_STATIC 16], const uint64_t x[S2N_BIGNUM_STATIC 8], const uint64_t y[S2N_BIGNUM_STATIC 8]); |
493 | 648 | ||
494 | // Multiply modulo p_25519, z := (x * y) mod p_25519 | 649 | // Multiply modulo p_25519, z := (x * y) mod p_25519 |
495 | // Inputs x[4], y[4]; output z[4] | 650 | // Inputs x[4], y[4]; output z[4] |
496 | extern void bignum_mul_p25519 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | 651 | extern void bignum_mul_p25519 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
497 | extern void bignum_mul_p25519_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | 652 | extern void bignum_mul_p25519_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
498 | 653 | ||
499 | // Multiply modulo p_256k1, z := (x * y) mod p_256k1 | 654 | // Multiply modulo p_256k1, z := (x * y) mod p_256k1 |
500 | // Inputs x[4], y[4]; output z[4] | 655 | // Inputs x[4], y[4]; output z[4] |
501 | extern void bignum_mul_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | 656 | extern void bignum_mul_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
502 | extern void bignum_mul_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | 657 | extern void bignum_mul_p256k1_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
503 | 658 | ||
504 | // Multiply modulo p_521, z := (x * y) mod p_521, assuming x and y reduced | 659 | // Multiply modulo p_521, z := (x * y) mod p_521, assuming x and y reduced |
505 | // Inputs x[9], y[9]; output z[9] | 660 | // Inputs x[9], y[9]; output z[9] |
506 | extern void bignum_mul_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | 661 | extern void bignum_mul_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9], const uint64_t y[S2N_BIGNUM_STATIC 9]); |
507 | extern void bignum_mul_p521_alt (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | 662 | extern void bignum_mul_p521_alt (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9], const uint64_t y[S2N_BIGNUM_STATIC 9]); |
508 | 663 | ||
509 | // Multiply bignum by 10 and add word: z := 10 * z + d | 664 | // Multiply bignum by 10 and add word: z := 10 * z + d |
510 | // Inputs z[k], d; outputs function return (carry) and z[k] | 665 | // Inputs z[k], d; outputs function return (carry) and z[k] |
@@ -512,55 +667,59 @@ extern uint64_t bignum_muladd10 (uint64_t k, uint64_t *z, uint64_t d); | |||
512 | 667 | ||
513 | // Multiplex/select z := x (if p nonzero) or z := y (if p zero) | 668 | // Multiplex/select z := x (if p nonzero) or z := y (if p zero) |
514 | // Inputs p, x[k], y[k]; output z[k] | 669 | // Inputs p, x[k], y[k]; output z[k] |
515 | extern void bignum_mux (uint64_t p, uint64_t k, uint64_t *z, uint64_t *x, uint64_t *y); | 670 | extern void bignum_mux (uint64_t p, uint64_t k, uint64_t *z, const uint64_t *x, const uint64_t *y); |
516 | 671 | ||
517 | // 256-bit multiplex/select z := x (if p nonzero) or z := y (if p zero) | 672 | // 256-bit multiplex/select z := x (if p nonzero) or z := y (if p zero) |
518 | // Inputs p, x[4], y[4]; output z[4] | 673 | // Inputs p, x[4], y[4]; output z[4] |
519 | extern void bignum_mux_4 (uint64_t p, uint64_t z[static 4],uint64_t x[static 4], uint64_t y[static 4]); | 674 | extern void bignum_mux_4 (uint64_t p, uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
520 | 675 | ||
521 | // 384-bit multiplex/select z := x (if p nonzero) or z := y (if p zero) | 676 | // 384-bit multiplex/select z := x (if p nonzero) or z := y (if p zero) |
522 | // Inputs p, x[6], y[6]; output z[6] | 677 | // Inputs p, x[6], y[6]; output z[6] |
523 | extern void bignum_mux_6 (uint64_t p, uint64_t z[static 6],uint64_t x[static 6], uint64_t y[static 6]); | 678 | extern void bignum_mux_6 (uint64_t p, uint64_t z[S2N_BIGNUM_STATIC 6],const uint64_t x[S2N_BIGNUM_STATIC 6], const uint64_t y[S2N_BIGNUM_STATIC 6]); |
524 | 679 | ||
525 | // Select element from 16-element table, z := xs[k*i] | 680 | // Select element from 16-element table, z := xs[k*i] |
526 | // Inputs xs[16*k], i; output z[k] | 681 | // Inputs xs[16*k], i; output z[k] |
527 | extern void bignum_mux16 (uint64_t k, uint64_t *z, uint64_t *xs, uint64_t i); | 682 | extern void bignum_mux16 (uint64_t k, uint64_t *z, const uint64_t *xs, uint64_t i); |
528 | 683 | ||
529 | // Negate modulo p_25519, z := (-x) mod p_25519, assuming x reduced | 684 | // Negate modulo p_25519, z := (-x) mod p_25519, assuming x reduced |
530 | // Input x[4]; output z[4] | 685 | // Input x[4]; output z[4] |
531 | extern void bignum_neg_p25519 (uint64_t z[static 4], uint64_t x[static 4]); | 686 | extern void bignum_neg_p25519 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
532 | 687 | ||
533 | // Negate modulo p_256, z := (-x) mod p_256, assuming x reduced | 688 | // Negate modulo p_256, z := (-x) mod p_256, assuming x reduced |
534 | // Input x[4]; output z[4] | 689 | // Input x[4]; output z[4] |
535 | extern void bignum_neg_p256 (uint64_t z[static 4], uint64_t x[static 4]); | 690 | extern void bignum_neg_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
536 | 691 | ||
537 | // Negate modulo p_256k1, z := (-x) mod p_256k1, assuming x reduced | 692 | // Negate modulo p_256k1, z := (-x) mod p_256k1, assuming x reduced |
538 | // Input x[4]; output z[4] | 693 | // Input x[4]; output z[4] |
539 | extern void bignum_neg_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | 694 | extern void bignum_neg_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
540 | 695 | ||
541 | // Negate modulo p_384, z := (-x) mod p_384, assuming x reduced | 696 | // Negate modulo p_384, z := (-x) mod p_384, assuming x reduced |
542 | // Input x[6]; output z[6] | 697 | // Input x[6]; output z[6] |
543 | extern void bignum_neg_p384 (uint64_t z[static 6], uint64_t x[static 6]); | 698 | extern void bignum_neg_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
544 | 699 | ||
545 | // Negate modulo p_521, z := (-x) mod p_521, assuming x reduced | 700 | // Negate modulo p_521, z := (-x) mod p_521, assuming x reduced |
546 | // Input x[9]; output z[9] | 701 | // Input x[9]; output z[9] |
547 | extern void bignum_neg_p521 (uint64_t z[static 9], uint64_t x[static 9]); | 702 | extern void bignum_neg_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); |
703 | |||
704 | // Negate modulo p_sm2, z := (-x) mod p_sm2, assuming x reduced | ||
705 | // Input x[4]; output z[4] | ||
706 | extern void bignum_neg_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
548 | 707 | ||
549 | // Negated modular inverse, z := (-1/x) mod 2^{64k} | 708 | // Negated modular inverse, z := (-1/x) mod 2^{64k} |
550 | // Input x[k]; output z[k] | 709 | // Input x[k]; output z[k] |
551 | extern void bignum_negmodinv (uint64_t k, uint64_t *z, uint64_t *x); | 710 | extern void bignum_negmodinv (uint64_t k, uint64_t *z, const uint64_t *x); |
552 | 711 | ||
553 | // Test bignum for nonzero-ness x =/= 0 | 712 | // Test bignum for nonzero-ness x =/= 0 |
554 | // Input x[k]; output function return | 713 | // Input x[k]; output function return |
555 | extern uint64_t bignum_nonzero (uint64_t k, uint64_t *x); | 714 | extern uint64_t bignum_nonzero (uint64_t k, const uint64_t *x); |
556 | 715 | ||
557 | // Test 256-bit bignum for nonzero-ness x =/= 0 | 716 | // Test 256-bit bignum for nonzero-ness x =/= 0 |
558 | // Input x[4]; output function return | 717 | // Input x[4]; output function return |
559 | extern uint64_t bignum_nonzero_4(uint64_t x[static 4]); | 718 | extern uint64_t bignum_nonzero_4(const uint64_t x[S2N_BIGNUM_STATIC 4]); |
560 | 719 | ||
561 | // Test 384-bit bignum for nonzero-ness x =/= 0 | 720 | // Test 384-bit bignum for nonzero-ness x =/= 0 |
562 | // Input x[6]; output function return | 721 | // Input x[6]; output function return |
563 | extern uint64_t bignum_nonzero_6(uint64_t x[static 6]); | 722 | extern uint64_t bignum_nonzero_6(const uint64_t x[S2N_BIGNUM_STATIC 6]); |
564 | 723 | ||
565 | // Normalize bignum in-place by shifting left till top bit is 1 | 724 | // Normalize bignum in-place by shifting left till top bit is 1 |
566 | // Input z[k]; outputs function return (bits shifted left) and z[k] | 725 | // Input z[k]; outputs function return (bits shifted left) and z[k] |
@@ -568,7 +727,7 @@ extern uint64_t bignum_normalize (uint64_t k, uint64_t *z); | |||
568 | 727 | ||
569 | // Test bignum for odd-ness | 728 | // Test bignum for odd-ness |
570 | // Input x[k]; output function return | 729 | // Input x[k]; output function return |
571 | extern uint64_t bignum_odd (uint64_t k, uint64_t *x); | 730 | extern uint64_t bignum_odd (uint64_t k, const uint64_t *x); |
572 | 731 | ||
573 | // Convert single digit to bignum, z := n | 732 | // Convert single digit to bignum, z := n |
574 | // Input n; output z[k] | 733 | // Input n; output z[k] |
@@ -576,39 +735,43 @@ extern void bignum_of_word (uint64_t k, uint64_t *z, uint64_t n); | |||
576 | 735 | ||
577 | // Optionally add, z := x + y (if p nonzero) or z := x (if p zero) | 736 | // Optionally add, z := x + y (if p nonzero) or z := x (if p zero) |
578 | // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] | 737 | // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] |
579 | extern uint64_t bignum_optadd (uint64_t k, uint64_t *z, uint64_t *x, uint64_t p, uint64_t *y); | 738 | extern uint64_t bignum_optadd (uint64_t k, uint64_t *z, const uint64_t *x, uint64_t p, const uint64_t *y); |
580 | 739 | ||
581 | // Optionally negate, z := -x (if p nonzero) or z := x (if p zero) | 740 | // Optionally negate, z := -x (if p nonzero) or z := x (if p zero) |
582 | // Inputs p, x[k]; outputs function return (nonzero input) and z[k] | 741 | // Inputs p, x[k]; outputs function return (nonzero input) and z[k] |
583 | extern uint64_t bignum_optneg (uint64_t k, uint64_t *z, uint64_t p, uint64_t *x); | 742 | extern uint64_t bignum_optneg (uint64_t k, uint64_t *z, uint64_t p, const uint64_t *x); |
584 | 743 | ||
585 | // Optionally negate modulo p_25519, z := (-x) mod p_25519 (if p nonzero) or z := x (if p zero), assuming x reduced | 744 | // Optionally negate modulo p_25519, z := (-x) mod p_25519 (if p nonzero) or z := x (if p zero), assuming x reduced |
586 | // Inputs p, x[4]; output z[4] | 745 | // Inputs p, x[4]; output z[4] |
587 | extern void bignum_optneg_p25519 (uint64_t z[static 4], uint64_t p, uint64_t x[static 4]); | 746 | extern void bignum_optneg_p25519 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t p, const uint64_t x[S2N_BIGNUM_STATIC 4]); |
588 | 747 | ||
589 | // Optionally negate modulo p_256, z := (-x) mod p_256 (if p nonzero) or z := x (if p zero), assuming x reduced | 748 | // Optionally negate modulo p_256, z := (-x) mod p_256 (if p nonzero) or z := x (if p zero), assuming x reduced |
590 | // Inputs p, x[4]; output z[4] | 749 | // Inputs p, x[4]; output z[4] |
591 | extern void bignum_optneg_p256 (uint64_t z[static 4], uint64_t p, uint64_t x[static 4]); | 750 | extern void bignum_optneg_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t p, const uint64_t x[S2N_BIGNUM_STATIC 4]); |
592 | 751 | ||
593 | // Optionally negate modulo p_256k1, z := (-x) mod p_256k1 (if p nonzero) or z := x (if p zero), assuming x reduced | 752 | // Optionally negate modulo p_256k1, z := (-x) mod p_256k1 (if p nonzero) or z := x (if p zero), assuming x reduced |
594 | // Inputs p, x[4]; output z[4] | 753 | // Inputs p, x[4]; output z[4] |
595 | extern void bignum_optneg_p256k1 (uint64_t z[static 4], uint64_t p, uint64_t x[static 4]); | 754 | extern void bignum_optneg_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t p, const uint64_t x[S2N_BIGNUM_STATIC 4]); |
596 | 755 | ||
597 | // Optionally negate modulo p_384, z := (-x) mod p_384 (if p nonzero) or z := x (if p zero), assuming x reduced | 756 | // Optionally negate modulo p_384, z := (-x) mod p_384 (if p nonzero) or z := x (if p zero), assuming x reduced |
598 | // Inputs p, x[6]; output z[6] | 757 | // Inputs p, x[6]; output z[6] |
599 | extern void bignum_optneg_p384 (uint64_t z[static 6], uint64_t p, uint64_t x[static 6]); | 758 | extern void bignum_optneg_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], uint64_t p, const uint64_t x[S2N_BIGNUM_STATIC 6]); |
600 | 759 | ||
601 | // Optionally negate modulo p_521, z := (-x) mod p_521 (if p nonzero) or z := x (if p zero), assuming x reduced | 760 | // Optionally negate modulo p_521, z := (-x) mod p_521 (if p nonzero) or z := x (if p zero), assuming x reduced |
602 | // Inputs p, x[9]; output z[9] | 761 | // Inputs p, x[9]; output z[9] |
603 | extern void bignum_optneg_p521 (uint64_t z[static 9], uint64_t p, uint64_t x[static 9]); | 762 | extern void bignum_optneg_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], uint64_t p, const uint64_t x[S2N_BIGNUM_STATIC 9]); |
763 | |||
764 | // Optionally negate modulo p_sm2, z := (-x) mod p_sm2 (if p nonzero) or z := x (if p zero), assuming x reduced | ||
765 | // Inputs p, x[4]; output z[4] | ||
766 | extern void bignum_optneg_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], uint64_t p, const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
604 | 767 | ||
605 | // Optionally subtract, z := x - y (if p nonzero) or z := x (if p zero) | 768 | // Optionally subtract, z := x - y (if p nonzero) or z := x (if p zero) |
606 | // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] | 769 | // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] |
607 | extern uint64_t bignum_optsub (uint64_t k, uint64_t *z, uint64_t *x, uint64_t p, uint64_t *y); | 770 | extern uint64_t bignum_optsub (uint64_t k, uint64_t *z, const uint64_t *x, uint64_t p, const uint64_t *y); |
608 | 771 | ||
609 | // Optionally subtract or add, z := x + sgn(p) * y interpreting p as signed | 772 | // Optionally subtract or add, z := x + sgn(p) * y interpreting p as signed |
610 | // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] | 773 | // Inputs x[k], p, y[k]; outputs function return (carry-out) and z[k] |
611 | extern uint64_t bignum_optsubadd (uint64_t k, uint64_t *z, uint64_t *x, uint64_t p, uint64_t *y); | 774 | extern uint64_t bignum_optsubadd (uint64_t k, uint64_t *z, const uint64_t *x, uint64_t p, const uint64_t *y); |
612 | 775 | ||
613 | // Return bignum of power of 2, z := 2^n | 776 | // Return bignum of power of 2, z := 2^n |
614 | // Input n; output z[k] | 777 | // Input n; output z[k] |
@@ -616,216 +779,376 @@ extern void bignum_pow2 (uint64_t k, uint64_t *z, uint64_t n); | |||
616 | 779 | ||
617 | // Shift bignum left by c < 64 bits z := x * 2^c | 780 | // Shift bignum left by c < 64 bits z := x * 2^c |
618 | // Inputs x[n], c; outputs function return (carry-out) and z[k] | 781 | // Inputs x[n], c; outputs function return (carry-out) and z[k] |
619 | extern uint64_t bignum_shl_small (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t c); | 782 | extern uint64_t bignum_shl_small (uint64_t k, uint64_t *z, uint64_t n, const uint64_t *x, uint64_t c); |
620 | 783 | ||
621 | // Shift bignum right by c < 64 bits z := floor(x / 2^c) | 784 | // Shift bignum right by c < 64 bits z := floor(x / 2^c) |
622 | // Inputs x[n], c; outputs function return (bits shifted out) and z[k] | 785 | // Inputs x[n], c; outputs function return (bits shifted out) and z[k] |
623 | extern uint64_t bignum_shr_small (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x, uint64_t c); | 786 | extern uint64_t bignum_shr_small (uint64_t k, uint64_t *z, uint64_t n, const uint64_t *x, uint64_t c); |
624 | 787 | ||
625 | // Square, z := x^2 | 788 | // Square, z := x^2 |
626 | // Input x[n]; output z[k] | 789 | // Input x[n]; output z[k] |
627 | extern void bignum_sqr (uint64_t k, uint64_t *z, uint64_t n, uint64_t *x); | 790 | extern void bignum_sqr (uint64_t k, uint64_t *z, uint64_t n, const uint64_t *x); |
628 | 791 | ||
629 | // Square, z := x^2 | 792 | // Square, z := x^2 |
630 | // Input x[4]; output z[8] | 793 | // Input x[4]; output z[8] |
631 | extern void bignum_sqr_4_8 (uint64_t z[static 8], uint64_t x[static 4]); | 794 | extern void bignum_sqr_4_8 (uint64_t z[S2N_BIGNUM_STATIC 8], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
632 | extern void bignum_sqr_4_8_alt (uint64_t z[static 8], uint64_t x[static 4]); | 795 | extern void bignum_sqr_4_8_alt (uint64_t z[S2N_BIGNUM_STATIC 8], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
633 | 796 | ||
634 | // Square, z := x^2 | 797 | // Square, z := x^2 |
635 | // Input x[6]; output z[12] | 798 | // Input x[6]; output z[12] |
636 | extern void bignum_sqr_6_12 (uint64_t z[static 12], uint64_t x[static 6]); | 799 | extern void bignum_sqr_6_12 (uint64_t z[S2N_BIGNUM_STATIC 12], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
637 | extern void bignum_sqr_6_12_alt (uint64_t z[static 12], uint64_t x[static 6]); | 800 | extern void bignum_sqr_6_12_alt (uint64_t z[S2N_BIGNUM_STATIC 12], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
638 | 801 | ||
639 | // Square, z := x^2 | 802 | // Square, z := x^2 |
640 | // Input x[8]; output z[16] | 803 | // Input x[8]; output z[16] |
641 | extern void bignum_sqr_8_16 (uint64_t z[static 16], uint64_t x[static 8]); | 804 | extern void bignum_sqr_8_16 (uint64_t z[S2N_BIGNUM_STATIC 16], const uint64_t x[S2N_BIGNUM_STATIC 8]); |
642 | extern void bignum_sqr_8_16_alt (uint64_t z[static 16], uint64_t x[static 8]); | 805 | extern void bignum_sqr_8_16_alt (uint64_t z[S2N_BIGNUM_STATIC 16], const uint64_t x[S2N_BIGNUM_STATIC 8]); |
643 | 806 | ||
644 | // Square modulo p_25519, z := (x^2) mod p_25519 | 807 | // Square modulo p_25519, z := (x^2) mod p_25519 |
645 | // Input x[4]; output z[4] | 808 | // Input x[4]; output z[4] |
646 | extern void bignum_sqr_p25519 (uint64_t z[static 4], uint64_t x[static 4]); | 809 | extern void bignum_sqr_p25519 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
647 | extern void bignum_sqr_p25519_alt (uint64_t z[static 4], uint64_t x[static 4]); | 810 | extern void bignum_sqr_p25519_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
648 | 811 | ||
649 | // Square modulo p_256k1, z := (x^2) mod p_256k1 | 812 | // Square modulo p_256k1, z := (x^2) mod p_256k1 |
650 | // Input x[4]; output z[4] | 813 | // Input x[4]; output z[4] |
651 | extern void bignum_sqr_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | 814 | extern void bignum_sqr_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
652 | extern void bignum_sqr_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]); | 815 | extern void bignum_sqr_p256k1_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
653 | 816 | ||
654 | // Square modulo p_521, z := (x^2) mod p_521, assuming x reduced | 817 | // Square modulo p_521, z := (x^2) mod p_521, assuming x reduced |
655 | // Input x[9]; output z[9] | 818 | // Input x[9]; output z[9] |
656 | extern void bignum_sqr_p521 (uint64_t z[static 9], uint64_t x[static 9]); | 819 | extern void bignum_sqr_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); |
657 | extern void bignum_sqr_p521_alt (uint64_t z[static 9], uint64_t x[static 9]); | 820 | extern void bignum_sqr_p521_alt (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); |
821 | |||
822 | // Square root modulo p_25519 | ||
823 | // Input x[4]; output function return (Legendre symbol) and z[4] | ||
824 | extern int64_t bignum_sqrt_p25519(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
825 | extern int64_t bignum_sqrt_p25519_alt(uint64_t z[S2N_BIGNUM_STATIC 4],const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
658 | 826 | ||
659 | // Subtract, z := x - y | 827 | // Subtract, z := x - y |
660 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[p] | 828 | // Inputs x[m], y[n]; outputs function return (carry-out) and z[p] |
661 | extern uint64_t bignum_sub (uint64_t p, uint64_t *z, uint64_t m, uint64_t *x, uint64_t n, uint64_t *y); | 829 | extern uint64_t bignum_sub (uint64_t p, uint64_t *z, uint64_t m, const uint64_t *x, uint64_t n, const uint64_t *y); |
662 | 830 | ||
663 | // Subtract modulo p_25519, z := (x - y) mod p_25519, assuming x and y reduced | 831 | // Subtract modulo p_25519, z := (x - y) mod p_25519, assuming x and y reduced |
664 | // Inputs x[4], y[4]; output z[4] | 832 | // Inputs x[4], y[4]; output z[4] |
665 | extern void bignum_sub_p25519 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | 833 | extern void bignum_sub_p25519 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
666 | 834 | ||
667 | // Subtract modulo p_256, z := (x - y) mod p_256, assuming x and y reduced | 835 | // Subtract modulo p_256, z := (x - y) mod p_256, assuming x and y reduced |
668 | // Inputs x[4], y[4]; output z[4] | 836 | // Inputs x[4], y[4]; output z[4] |
669 | extern void bignum_sub_p256 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | 837 | extern void bignum_sub_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
670 | 838 | ||
671 | // Subtract modulo p_256k1, z := (x - y) mod p_256k1, assuming x and y reduced | 839 | // Subtract modulo p_256k1, z := (x - y) mod p_256k1, assuming x and y reduced |
672 | // Inputs x[4], y[4]; output z[4] | 840 | // Inputs x[4], y[4]; output z[4] |
673 | extern void bignum_sub_p256k1 (uint64_t z[static 4], uint64_t x[static 4], uint64_t y[static 4]); | 841 | extern void bignum_sub_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); |
674 | 842 | ||
675 | // Subtract modulo p_384, z := (x - y) mod p_384, assuming x and y reduced | 843 | // Subtract modulo p_384, z := (x - y) mod p_384, assuming x and y reduced |
676 | // Inputs x[6], y[6]; output z[6] | 844 | // Inputs x[6], y[6]; output z[6] |
677 | extern void bignum_sub_p384 (uint64_t z[static 6], uint64_t x[static 6], uint64_t y[static 6]); | 845 | extern void bignum_sub_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6], const uint64_t y[S2N_BIGNUM_STATIC 6]); |
678 | 846 | ||
679 | // Subtract modulo p_521, z := (x - y) mod p_521, assuming x and y reduced | 847 | // Subtract modulo p_521, z := (x - y) mod p_521, assuming x and y reduced |
680 | // Inputs x[9], y[9]; output z[9] | 848 | // Inputs x[9], y[9]; output z[9] |
681 | extern void bignum_sub_p521 (uint64_t z[static 9], uint64_t x[static 9], uint64_t y[static 9]); | 849 | extern void bignum_sub_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9], const uint64_t y[S2N_BIGNUM_STATIC 9]); |
850 | |||
851 | // Subtract modulo p_sm2, z := (x - y) mod p_sm2, assuming x and y reduced | ||
852 | // Inputs x[4], y[4]; output z[4] | ||
853 | extern void bignum_sub_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4], const uint64_t y[S2N_BIGNUM_STATIC 4]); | ||
682 | 854 | ||
683 | // Convert 4-digit (256-bit) bignum to big-endian bytes | 855 | // Convert 4-digit (256-bit) bignum to big-endian bytes |
684 | // Input x[4]; output z[32] (bytes) | 856 | // Input x[4]; output z[32] (bytes) |
685 | extern void bignum_tobebytes_4 (uint8_t z[static 32], uint64_t x[static 4]); | 857 | extern void bignum_tobebytes_4 (uint8_t z[S2N_BIGNUM_STATIC 32], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
686 | 858 | ||
687 | // Convert 6-digit (384-bit) bignum to big-endian bytes | 859 | // Convert 6-digit (384-bit) bignum to big-endian bytes |
688 | // Input x[6]; output z[48] (bytes) | 860 | // Input x[6]; output z[48] (bytes) |
689 | extern void bignum_tobebytes_6 (uint8_t z[static 48], uint64_t x[static 6]); | 861 | extern void bignum_tobebytes_6 (uint8_t z[S2N_BIGNUM_STATIC 48], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
690 | 862 | ||
691 | // Convert 4-digit (256-bit) bignum to little-endian bytes | 863 | // Convert 4-digit (256-bit) bignum to little-endian bytes |
692 | // Input x[4]; output z[32] (bytes) | 864 | // Input x[4]; output z[32] (bytes) |
693 | extern void bignum_tolebytes_4 (uint8_t z[static 32], uint64_t x[static 4]); | 865 | extern void bignum_tolebytes_4 (uint8_t z[S2N_BIGNUM_STATIC 32], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
694 | 866 | ||
695 | // Convert 6-digit (384-bit) bignum to little-endian bytes | 867 | // Convert 6-digit (384-bit) bignum to little-endian bytes |
696 | // Input x[6]; output z[48] (bytes) | 868 | // Input x[6]; output z[48] (bytes) |
697 | extern void bignum_tolebytes_6 (uint8_t z[static 48], uint64_t x[static 6]); | 869 | extern void bignum_tolebytes_6 (uint8_t z[S2N_BIGNUM_STATIC 48], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
698 | 870 | ||
699 | // Convert 9-digit 528-bit bignum to little-endian bytes | 871 | // Convert 9-digit 528-bit bignum to little-endian bytes |
700 | // Input x[6]; output z[66] (bytes) | 872 | // Input x[6]; output z[66] (bytes) |
701 | extern void bignum_tolebytes_p521 (uint8_t z[static 66], uint64_t x[static 9]); | 873 | extern void bignum_tolebytes_p521 (uint8_t z[S2N_BIGNUM_STATIC 66], const uint64_t x[S2N_BIGNUM_STATIC 9]); |
702 | 874 | ||
703 | // Convert to Montgomery form z := (2^256 * x) mod p_256 | 875 | // Convert to Montgomery form z := (2^256 * x) mod p_256 |
704 | // Input x[4]; output z[4] | 876 | // Input x[4]; output z[4] |
705 | extern void bignum_tomont_p256 (uint64_t z[static 4], uint64_t x[static 4]); | 877 | extern void bignum_tomont_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
706 | extern void bignum_tomont_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | 878 | extern void bignum_tomont_p256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
707 | 879 | ||
708 | // Convert to Montgomery form z := (2^256 * x) mod p_256k1 | 880 | // Convert to Montgomery form z := (2^256 * x) mod p_256k1 |
709 | // Input x[4]; output z[4] | 881 | // Input x[4]; output z[4] |
710 | extern void bignum_tomont_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | 882 | extern void bignum_tomont_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
711 | extern void bignum_tomont_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]); | 883 | extern void bignum_tomont_p256k1_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
712 | 884 | ||
713 | // Convert to Montgomery form z := (2^384 * x) mod p_384 | 885 | // Convert to Montgomery form z := (2^384 * x) mod p_384 |
714 | // Input x[6]; output z[6] | 886 | // Input x[6]; output z[6] |
715 | extern void bignum_tomont_p384 (uint64_t z[static 6], uint64_t x[static 6]); | 887 | extern void bignum_tomont_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
716 | extern void bignum_tomont_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | 888 | extern void bignum_tomont_p384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
717 | 889 | ||
718 | // Convert to Montgomery form z := (2^576 * x) mod p_521 | 890 | // Convert to Montgomery form z := (2^576 * x) mod p_521 |
719 | // Input x[9]; output z[9] | 891 | // Input x[9]; output z[9] |
720 | extern void bignum_tomont_p521 (uint64_t z[static 9], uint64_t x[static 9]); | 892 | extern void bignum_tomont_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); |
893 | |||
894 | // Convert to Montgomery form z := (2^256 * x) mod p_sm2 | ||
895 | // Input x[4]; output z[4] | ||
896 | extern void bignum_tomont_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
721 | 897 | ||
722 | // Triple modulo p_256, z := (3 * x) mod p_256 | 898 | // Triple modulo p_256, z := (3 * x) mod p_256 |
723 | // Input x[4]; output z[4] | 899 | // Input x[4]; output z[4] |
724 | extern void bignum_triple_p256 (uint64_t z[static 4], uint64_t x[static 4]); | 900 | extern void bignum_triple_p256 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
725 | extern void bignum_triple_p256_alt (uint64_t z[static 4], uint64_t x[static 4]); | 901 | extern void bignum_triple_p256_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
726 | 902 | ||
727 | // Triple modulo p_256k1, z := (3 * x) mod p_256k1 | 903 | // Triple modulo p_256k1, z := (3 * x) mod p_256k1 |
728 | // Input x[4]; output z[4] | 904 | // Input x[4]; output z[4] |
729 | extern void bignum_triple_p256k1 (uint64_t z[static 4], uint64_t x[static 4]); | 905 | extern void bignum_triple_p256k1 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
730 | extern void bignum_triple_p256k1_alt (uint64_t z[static 4], uint64_t x[static 4]); | 906 | extern void bignum_triple_p256k1_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); |
731 | 907 | ||
732 | // Triple modulo p_384, z := (3 * x) mod p_384 | 908 | // Triple modulo p_384, z := (3 * x) mod p_384 |
733 | // Input x[6]; output z[6] | 909 | // Input x[6]; output z[6] |
734 | extern void bignum_triple_p384 (uint64_t z[static 6], uint64_t x[static 6]); | 910 | extern void bignum_triple_p384 (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
735 | extern void bignum_triple_p384_alt (uint64_t z[static 6], uint64_t x[static 6]); | 911 | extern void bignum_triple_p384_alt (uint64_t z[S2N_BIGNUM_STATIC 6], const uint64_t x[S2N_BIGNUM_STATIC 6]); |
736 | 912 | ||
737 | // Triple modulo p_521, z := (3 * x) mod p_521, assuming x reduced | 913 | // Triple modulo p_521, z := (3 * x) mod p_521, assuming x reduced |
738 | // Input x[9]; output z[9] | 914 | // Input x[9]; output z[9] |
739 | extern void bignum_triple_p521 (uint64_t z[static 9], uint64_t x[static 9]); | 915 | extern void bignum_triple_p521 (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); |
740 | extern void bignum_triple_p521_alt (uint64_t z[static 9], uint64_t x[static 9]); | 916 | extern void bignum_triple_p521_alt (uint64_t z[S2N_BIGNUM_STATIC 9], const uint64_t x[S2N_BIGNUM_STATIC 9]); |
917 | |||
918 | // Triple modulo p_sm2, z := (3 * x) mod p_sm2 | ||
919 | // Input x[4]; output z[4] | ||
920 | extern void bignum_triple_sm2 (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
921 | extern void bignum_triple_sm2_alt (uint64_t z[S2N_BIGNUM_STATIC 4], const uint64_t x[S2N_BIGNUM_STATIC 4]); | ||
741 | 922 | ||
742 | // Montgomery ladder step for curve25519 | 923 | // Montgomery ladder step for curve25519 |
743 | // Inputs point[8], pp[16], b; output rr[16] | 924 | // Inputs point[8], pp[16], b; output rr[16] |
744 | extern void curve25519_ladderstep(uint64_t rr[16],uint64_t point[8],uint64_t pp[16],uint64_t b); | 925 | extern void curve25519_ladderstep(uint64_t rr[16],const uint64_t point[8],const uint64_t pp[16],uint64_t b); |
745 | extern void curve25519_ladderstep_alt(uint64_t rr[16],uint64_t point[8],uint64_t pp[16],uint64_t b); | 926 | extern void curve25519_ladderstep_alt(uint64_t rr[16],const uint64_t point[8],const uint64_t pp[16],uint64_t b); |
746 | 927 | ||
747 | // Projective scalar multiplication, x coordinate only, for curve25519 | 928 | // Projective scalar multiplication, x coordinate only, for curve25519 |
748 | // Inputs scalar[4], point[4]; output res[8] | 929 | // Inputs scalar[4], point[4]; output res[8] |
749 | extern void curve25519_pxscalarmul(uint64_t res[static 8],uint64_t scalar[static 4],uint64_t point[static 4]); | 930 | extern void curve25519_pxscalarmul(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 4]); |
750 | extern void curve25519_pxscalarmul_alt(uint64_t res[static 8],uint64_t scalar[static 4],uint64_t point[static 4]); | 931 | extern void curve25519_pxscalarmul_alt(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 4]); |
751 | 932 | ||
752 | // x25519 function for curve25519 | 933 | // x25519 function for curve25519 |
753 | // Inputs scalar[4], point[4]; output res[4] | 934 | // Inputs scalar[4], point[4]; output res[4] |
754 | extern void curve25519_x25519(uint64_t res[static 4],uint64_t scalar[static 4],uint64_t point[static 4]); | 935 | extern void curve25519_x25519(uint64_t res[S2N_BIGNUM_STATIC 4],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 4]); |
755 | extern void curve25519_x25519_alt(uint64_t res[static 4],uint64_t scalar[static 4],uint64_t point[static 4]); | 936 | extern void curve25519_x25519_alt(uint64_t res[S2N_BIGNUM_STATIC 4],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 4]); |
937 | |||
938 | // x25519 function for curve25519 (byte array arguments) | ||
939 | // Inputs scalar[32] (bytes), point[32] (bytes); output res[32] (bytes) | ||
940 | extern void curve25519_x25519_byte(uint8_t res[S2N_BIGNUM_STATIC 32],const uint8_t scalar[S2N_BIGNUM_STATIC 32],const uint8_t point[S2N_BIGNUM_STATIC 32]); | ||
941 | extern void curve25519_x25519_byte_alt(uint8_t res[S2N_BIGNUM_STATIC 32],const uint8_t scalar[S2N_BIGNUM_STATIC 32],const uint8_t point[S2N_BIGNUM_STATIC 32]); | ||
756 | 942 | ||
757 | // x25519 function for curve25519 on base element 9 | 943 | // x25519 function for curve25519 on base element 9 |
758 | // Input scalar[4]; output res[4] | 944 | // Input scalar[4]; output res[4] |
759 | extern void curve25519_x25519base(uint64_t res[static 4],uint64_t scalar[static 4]); | 945 | extern void curve25519_x25519base(uint64_t res[S2N_BIGNUM_STATIC 4],const uint64_t scalar[S2N_BIGNUM_STATIC 4]); |
760 | extern void curve25519_x25519base_alt(uint64_t res[static 4],uint64_t scalar[static 4]); | 946 | extern void curve25519_x25519base_alt(uint64_t res[S2N_BIGNUM_STATIC 4],const uint64_t scalar[S2N_BIGNUM_STATIC 4]); |
947 | |||
948 | // x25519 function for curve25519 on base element 9 (byte array arguments) | ||
949 | // Input scalar[32] (bytes); output res[32] (bytes) | ||
950 | extern void curve25519_x25519base_byte(uint8_t res[S2N_BIGNUM_STATIC 32],const uint8_t scalar[S2N_BIGNUM_STATIC 32]); | ||
951 | extern void curve25519_x25519base_byte_alt(uint8_t res[S2N_BIGNUM_STATIC 32],const uint8_t scalar[S2N_BIGNUM_STATIC 32]); | ||
952 | |||
953 | // Decode compressed 256-bit form of edwards25519 point | ||
954 | // Input c[32] (bytes); output function return and z[8] | ||
955 | extern uint64_t edwards25519_decode(uint64_t z[S2N_BIGNUM_STATIC 8], const uint8_t c[S2N_BIGNUM_STATIC 32]); | ||
956 | extern uint64_t edwards25519_decode_alt(uint64_t z[S2N_BIGNUM_STATIC 8], const uint8_t c[S2N_BIGNUM_STATIC 32]); | ||
957 | |||
958 | // Encode edwards25519 point into compressed form as 256-bit number | ||
959 | // Input p[8]; output z[32] (bytes) | ||
960 | extern void edwards25519_encode(uint8_t z[S2N_BIGNUM_STATIC 32], const uint64_t p[S2N_BIGNUM_STATIC 8]); | ||
761 | 961 | ||
762 | // Extended projective addition for edwards25519 | 962 | // Extended projective addition for edwards25519 |
763 | // Inputs p1[16], p2[16]; output p3[16] | 963 | // Inputs p1[16], p2[16]; output p3[16] |
764 | extern void edwards25519_epadd(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 16]); | 964 | extern void edwards25519_epadd(uint64_t p3[S2N_BIGNUM_STATIC 16],const uint64_t p1[S2N_BIGNUM_STATIC 16],const uint64_t p2[S2N_BIGNUM_STATIC 16]); |
765 | extern void edwards25519_epadd_alt(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 16]); | 965 | extern void edwards25519_epadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 16],const uint64_t p1[S2N_BIGNUM_STATIC 16],const uint64_t p2[S2N_BIGNUM_STATIC 16]); |
766 | 966 | ||
767 | // Extended projective doubling for edwards25519 | 967 | // Extended projective doubling for edwards25519 |
768 | // Inputs p1[12]; output p3[16] | 968 | // Inputs p1[12]; output p3[16] |
769 | extern void edwards25519_epdouble(uint64_t p3[static 16],uint64_t p1[static 12]); | 969 | extern void edwards25519_epdouble(uint64_t p3[S2N_BIGNUM_STATIC 16],const uint64_t p1[S2N_BIGNUM_STATIC 12]); |
770 | extern void edwards25519_epdouble_alt(uint64_t p3[static 16],uint64_t p1[static 12]); | 970 | extern void edwards25519_epdouble_alt(uint64_t p3[S2N_BIGNUM_STATIC 16],const uint64_t p1[S2N_BIGNUM_STATIC 12]); |
771 | 971 | ||
772 | // Projective doubling for edwards25519 | 972 | // Projective doubling for edwards25519 |
773 | // Inputs p1[12]; output p3[12] | 973 | // Inputs p1[12]; output p3[12] |
774 | extern void edwards25519_pdouble(uint64_t p3[static 12],uint64_t p1[static 12]); | 974 | extern void edwards25519_pdouble(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12]); |
775 | extern void edwards25519_pdouble_alt(uint64_t p3[static 12],uint64_t p1[static 12]); | 975 | extern void edwards25519_pdouble_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12]); |
776 | 976 | ||
777 | // Extended projective + precomputed mixed addition for edwards25519 | 977 | // Extended projective + precomputed mixed addition for edwards25519 |
778 | // Inputs p1[16], p2[12]; output p3[16] | 978 | // Inputs p1[16], p2[12]; output p3[16] |
779 | extern void edwards25519_pepadd(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 12]); | 979 | extern void edwards25519_pepadd(uint64_t p3[S2N_BIGNUM_STATIC 16],const uint64_t p1[S2N_BIGNUM_STATIC 16],const uint64_t p2[S2N_BIGNUM_STATIC 12]); |
780 | extern void edwards25519_pepadd_alt(uint64_t p3[static 16],uint64_t p1[static 16],uint64_t p2[static 12]); | 980 | extern void edwards25519_pepadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 16],const uint64_t p1[S2N_BIGNUM_STATIC 16],const uint64_t p2[S2N_BIGNUM_STATIC 12]); |
981 | |||
982 | // Scalar multiplication by standard basepoint for edwards25519 (Ed25519) | ||
983 | // Input scalar[4]; output res[8] | ||
984 | extern void edwards25519_scalarmulbase(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4]); | ||
985 | extern void edwards25519_scalarmulbase_alt(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4]); | ||
986 | |||
987 | // Double scalar multiplication for edwards25519, fresh and base point | ||
988 | // Input scalar[4], point[8], bscalar[4]; output res[8] | ||
989 | extern void edwards25519_scalarmuldouble(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4], const uint64_t point[S2N_BIGNUM_STATIC 8],const uint64_t bscalar[S2N_BIGNUM_STATIC 4]); | ||
990 | extern void edwards25519_scalarmuldouble_alt(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4], const uint64_t point[S2N_BIGNUM_STATIC 8],const uint64_t bscalar[S2N_BIGNUM_STATIC 4]); | ||
991 | |||
992 | // Scalar product of 2-element polynomial vectors in NTT domain, with mulcache | ||
993 | // Inputs a[512], b[512], bt[256] (signed 16-bit words); output r[256] (signed 16-bit words) | ||
994 | extern void mlkem_basemul_k2(int16_t r[S2N_BIGNUM_STATIC 256],const int16_t a[S2N_BIGNUM_STATIC 512],const int16_t b[S2N_BIGNUM_STATIC 512],const int16_t bt[S2N_BIGNUM_STATIC 256]); | ||
995 | |||
996 | // Scalar product of 3-element polynomial vectors in NTT domain, with mulcache | ||
997 | // Inputs a[768], b[768], bt[384] (signed 16-bit words); output r[256] (signed 16-bit words) | ||
998 | extern void mlkem_basemul_k3(int16_t r[S2N_BIGNUM_STATIC 256],const int16_t a[S2N_BIGNUM_STATIC 768],const int16_t b[S2N_BIGNUM_STATIC 768],const int16_t bt[S2N_BIGNUM_STATIC 384]); | ||
999 | |||
1000 | // Scalar product of 4-element polynomial vectors in NTT domain, with mulcache | ||
1001 | // Inputs a[1024], b[1024], bt[512] (signed 16-bit words); output r[256] (signed 16-bit words) | ||
1002 | extern void mlkem_basemul_k4(int16_t r[S2N_BIGNUM_STATIC 256],const int16_t a[S2N_BIGNUM_STATIC 1024],const int16_t b[S2N_BIGNUM_STATIC 1024],const int16_t bt[S2N_BIGNUM_STATIC 512]); | ||
1003 | |||
1004 | // Inverse number-theoretic transform from ML-KEM | ||
1005 | // Input a[256] (signed 16-bit words), z_01234[80] (signed 16-bit words), z_56[384] (signed 16-bit words); output a[256] (signed 16-bit words) | ||
1006 | extern void mlkem_intt(int16_t a[S2N_BIGNUM_STATIC 256],const int16_t z_01234[S2N_BIGNUM_STATIC 80],const int16_t z_56[S2N_BIGNUM_STATIC 384]); | ||
1007 | |||
1008 | // Precompute the mulcache data for a polynomial in the NTT domain | ||
1009 | // Inputs a[256], z[128] and t[128] (signed 16-bit words); output x[128] (signed 16-bit words) | ||
1010 | extern void mlkem_mulcache_compute(int16_t x[S2N_BIGNUM_STATIC 128],const int16_t a[S2N_BIGNUM_STATIC 256],const int16_t z[S2N_BIGNUM_STATIC 128],const int16_t t[S2N_BIGNUM_STATIC 128]); | ||
1011 | |||
1012 | // Forward number-theoretic transform from ML-KEM | ||
1013 | // Input a[256] (signed 16-bit words), z_01234[80] (signed 16-bit words), z_56[384] (signed 16-bit words); output a[256] (signed 16-bit words) | ||
1014 | extern void mlkem_ntt(int16_t a[S2N_BIGNUM_STATIC 256],const int16_t z_01234[S2N_BIGNUM_STATIC 80],const int16_t z_56[S2N_BIGNUM_STATIC 384]); | ||
1015 | |||
1016 | // Canonical modular reduction of polynomial coefficients for ML-KEM | ||
1017 | // Input a[256] (signed 16-bit words); output a[256] (signed 16-bit words) | ||
1018 | extern void mlkem_reduce(int16_t a[S2N_BIGNUM_STATIC 256]); | ||
1019 | |||
1020 | // Pack ML-KEM polynomial coefficients as 12-bit numbers | ||
1021 | // Input a[256] (signed 16-bit words); output r[384] (bytes) | ||
1022 | extern void mlkem_tobytes(uint8_t r[S2N_BIGNUM_STATIC 384],const int16_t a[S2N_BIGNUM_STATIC 256]); | ||
1023 | |||
1024 | // Conversion of ML-KEM polynomial coefficients to Montgomery form | ||
1025 | // Input a[256] (signed 16-bit words); output a[256] (signed 16-bit words) | ||
1026 | extern void mlkem_tomont(int16_t a[S2N_BIGNUM_STATIC 256]); | ||
1027 | |||
1028 | // Uniform rejection sampling for ML-KEM | ||
1029 | // Inputs *buf (unsigned bytes), buflen, table (unsigned bytes); output r[256] (signed 16-bit words), return | ||
1030 | extern uint64_t mlkem_rej_uniform_VARIABLE_TIME(int16_t r[S2N_BIGNUM_STATIC 256],const uint8_t *buf,uint64_t buflen,const uint8_t *table); | ||
781 | 1031 | ||
782 | // Point addition on NIST curve P-256 in Montgomery-Jacobian coordinates | 1032 | // Point addition on NIST curve P-256 in Montgomery-Jacobian coordinates |
783 | // Inputs p1[12], p2[12]; output p3[12] | 1033 | // Inputs p1[12], p2[12]; output p3[12] |
784 | extern void p256_montjadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 12]); | 1034 | extern void p256_montjadd(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 12]); |
1035 | extern void p256_montjadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 12]); | ||
785 | 1036 | ||
786 | // Point doubling on NIST curve P-256 in Montgomery-Jacobian coordinates | 1037 | // Point doubling on NIST curve P-256 in Montgomery-Jacobian coordinates |
787 | // Inputs p1[12]; output p3[12] | 1038 | // Inputs p1[12]; output p3[12] |
788 | extern void p256_montjdouble(uint64_t p3[static 12],uint64_t p1[static 12]); | 1039 | extern void p256_montjdouble(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12]); |
1040 | extern void p256_montjdouble_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12]); | ||
789 | 1041 | ||
790 | // Point mixed addition on NIST curve P-256 in Montgomery-Jacobian coordinates | 1042 | // Point mixed addition on NIST curve P-256 in Montgomery-Jacobian coordinates |
791 | // Inputs p1[12], p2[8]; output p3[12] | 1043 | // Inputs p1[12], p2[8]; output p3[12] |
792 | extern void p256_montjmixadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 8]); | 1044 | extern void p256_montjmixadd(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 8]); |
1045 | extern void p256_montjmixadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 8]); | ||
1046 | |||
1047 | // Montgomery-Jacobian form scalar multiplication for P-256 | ||
1048 | // Input scalar[4], point[12]; output res[12] | ||
1049 | extern void p256_montjscalarmul(uint64_t res[S2N_BIGNUM_STATIC 12],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 12]); | ||
1050 | extern void p256_montjscalarmul_alt(uint64_t res[S2N_BIGNUM_STATIC 12],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 12]); | ||
1051 | |||
1052 | // Scalar multiplication for NIST curve P-256 | ||
1053 | // Input scalar[4], point[8]; output res[8] | ||
1054 | extern void p256_scalarmul(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 8]); | ||
1055 | extern void p256_scalarmul_alt(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 8]); | ||
1056 | |||
1057 | // Scalar multiplication for precomputed point on NIST curve P-256 | ||
1058 | // Input scalar[4], blocksize, table[]; output res[8] | ||
1059 | extern void p256_scalarmulbase(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4],uint64_t blocksize,const uint64_t *table); | ||
1060 | extern void p256_scalarmulbase_alt(uint64_t res[S2N_BIGNUM_STATIC 8],const uint64_t scalar[S2N_BIGNUM_STATIC 4],uint64_t blocksize,const uint64_t *table); | ||
793 | 1061 | ||
794 | // Point addition on NIST curve P-384 in Montgomery-Jacobian coordinates | 1062 | // Point addition on NIST curve P-384 in Montgomery-Jacobian coordinates |
795 | // Inputs p1[18], p2[18]; output p3[18] | 1063 | // Inputs p1[18], p2[18]; output p3[18] |
796 | extern void p384_montjadd(uint64_t p3[static 18],uint64_t p1[static 18],uint64_t p2[static 18]); | 1064 | extern void p384_montjadd(uint64_t p3[S2N_BIGNUM_STATIC 18],const uint64_t p1[S2N_BIGNUM_STATIC 18],const uint64_t p2[S2N_BIGNUM_STATIC 18]); |
1065 | extern void p384_montjadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 18],const uint64_t p1[S2N_BIGNUM_STATIC 18],const uint64_t p2[S2N_BIGNUM_STATIC 18]); | ||
797 | 1066 | ||
798 | // Point doubling on NIST curve P-384 in Montgomery-Jacobian coordinates | 1067 | // Point doubling on NIST curve P-384 in Montgomery-Jacobian coordinates |
799 | // Inputs p1[18]; output p3[18] | 1068 | // Inputs p1[18]; output p3[18] |
800 | extern void p384_montjdouble(uint64_t p3[static 18],uint64_t p1[static 18]); | 1069 | extern void p384_montjdouble(uint64_t p3[S2N_BIGNUM_STATIC 18],const uint64_t p1[S2N_BIGNUM_STATIC 18]); |
1070 | extern void p384_montjdouble_alt(uint64_t p3[S2N_BIGNUM_STATIC 18],const uint64_t p1[S2N_BIGNUM_STATIC 18]); | ||
801 | 1071 | ||
802 | // Point mixed addition on NIST curve P-384 in Montgomery-Jacobian coordinates | 1072 | // Point mixed addition on NIST curve P-384 in Montgomery-Jacobian coordinates |
803 | // Inputs p1[18], p2[12]; output p3[18] | 1073 | // Inputs p1[18], p2[12]; output p3[18] |
804 | extern void p384_montjmixadd(uint64_t p3[static 18],uint64_t p1[static 18],uint64_t p2[static 12]); | 1074 | extern void p384_montjmixadd(uint64_t p3[S2N_BIGNUM_STATIC 18],const uint64_t p1[S2N_BIGNUM_STATIC 18],const uint64_t p2[S2N_BIGNUM_STATIC 12]); |
1075 | extern void p384_montjmixadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 18],const uint64_t p1[S2N_BIGNUM_STATIC 18],const uint64_t p2[S2N_BIGNUM_STATIC 12]); | ||
1076 | |||
1077 | // Montgomery-Jacobian form scalar multiplication for P-384 | ||
1078 | // Input scalar[6], point[18]; output res[18] | ||
1079 | extern void p384_montjscalarmul(uint64_t res[S2N_BIGNUM_STATIC 18],const uint64_t scalar[S2N_BIGNUM_STATIC 6],const uint64_t point[S2N_BIGNUM_STATIC 18]); | ||
1080 | extern void p384_montjscalarmul_alt(uint64_t res[S2N_BIGNUM_STATIC 18],const uint64_t scalar[S2N_BIGNUM_STATIC 6],const uint64_t point[S2N_BIGNUM_STATIC 18]); | ||
805 | 1081 | ||
806 | // Point addition on NIST curve P-521 in Jacobian coordinates | 1082 | // Point addition on NIST curve P-521 in Jacobian coordinates |
807 | // Inputs p1[27], p2[27]; output p3[27] | 1083 | // Inputs p1[27], p2[27]; output p3[27] |
808 | extern void p521_jadd(uint64_t p3[static 27],uint64_t p1[static 27],uint64_t p2[static 27]); | 1084 | extern void p521_jadd(uint64_t p3[S2N_BIGNUM_STATIC 27],const uint64_t p1[S2N_BIGNUM_STATIC 27],const uint64_t p2[S2N_BIGNUM_STATIC 27]); |
1085 | extern void p521_jadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 27],const uint64_t p1[S2N_BIGNUM_STATIC 27],const uint64_t p2[S2N_BIGNUM_STATIC 27]); | ||
809 | 1086 | ||
810 | // Point doubling on NIST curve P-521 in Jacobian coordinates | 1087 | // Point doubling on NIST curve P-521 in Jacobian coordinates |
811 | // Input p1[27]; output p3[27] | 1088 | // Input p1[27]; output p3[27] |
812 | extern void p521_jdouble(uint64_t p3[static 27],uint64_t p1[static 27]); | 1089 | extern void p521_jdouble(uint64_t p3[S2N_BIGNUM_STATIC 27],const uint64_t p1[S2N_BIGNUM_STATIC 27]); |
1090 | extern void p521_jdouble_alt(uint64_t p3[S2N_BIGNUM_STATIC 27],const uint64_t p1[S2N_BIGNUM_STATIC 27]); | ||
813 | 1091 | ||
814 | // Point mixed addition on NIST curve P-521 in Jacobian coordinates | 1092 | // Point mixed addition on NIST curve P-521 in Jacobian coordinates |
815 | // Inputs p1[27], p2[18]; output p3[27] | 1093 | // Inputs p1[27], p2[18]; output p3[27] |
816 | extern void p521_jmixadd(uint64_t p3[static 27],uint64_t p1[static 27],uint64_t p2[static 18]); | 1094 | extern void p521_jmixadd(uint64_t p3[S2N_BIGNUM_STATIC 27],const uint64_t p1[S2N_BIGNUM_STATIC 27],const uint64_t p2[S2N_BIGNUM_STATIC 18]); |
1095 | extern void p521_jmixadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 27],const uint64_t p1[S2N_BIGNUM_STATIC 27],const uint64_t p2[S2N_BIGNUM_STATIC 18]); | ||
1096 | |||
1097 | // Jacobian form scalar multiplication for P-521 | ||
1098 | // Input scalar[9], point[27]; output res[27] | ||
1099 | extern void p521_jscalarmul(uint64_t res[S2N_BIGNUM_STATIC 27],const uint64_t scalar[S2N_BIGNUM_STATIC 9],const uint64_t point[S2N_BIGNUM_STATIC 27]); | ||
1100 | extern void p521_jscalarmul_alt(uint64_t res[S2N_BIGNUM_STATIC 27],const uint64_t scalar[S2N_BIGNUM_STATIC 9],const uint64_t point[S2N_BIGNUM_STATIC 27]); | ||
817 | 1101 | ||
818 | // Point addition on SECG curve secp256k1 in Jacobian coordinates | 1102 | // Point addition on SECG curve secp256k1 in Jacobian coordinates |
819 | // Inputs p1[12], p2[12]; output p3[12] | 1103 | // Inputs p1[12], p2[12]; output p3[12] |
820 | extern void secp256k1_jadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 12]); | 1104 | extern void secp256k1_jadd(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 12]); |
1105 | extern void secp256k1_jadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 12]); | ||
821 | 1106 | ||
822 | // Point doubling on SECG curve secp256k1 in Jacobian coordinates | 1107 | // Point doubling on SECG curve secp256k1 in Jacobian coordinates |
823 | // Input p1[12]; output p3[12] | 1108 | // Input p1[12]; output p3[12] |
824 | extern void secp256k1_jdouble(uint64_t p3[static 12],uint64_t p1[static 12]); | 1109 | extern void secp256k1_jdouble(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12]); |
1110 | extern void secp256k1_jdouble_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12]); | ||
825 | 1111 | ||
826 | // Point mixed addition on SECG curve secp256k1 in Jacobian coordinates | 1112 | // Point mixed addition on SECG curve secp256k1 in Jacobian coordinates |
827 | // Inputs p1[12], p2[8]; output p3[12] | 1113 | // Inputs p1[12], p2[8]; output p3[12] |
828 | extern void secp256k1_jmixadd(uint64_t p3[static 12],uint64_t p1[static 12],uint64_t p2[static 8]); | 1114 | extern void secp256k1_jmixadd(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 8]); |
1115 | extern void secp256k1_jmixadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 8]); | ||
1116 | |||
1117 | // Keccak-f1600 permutation for SHA3 | ||
1118 | // Inputs a[25], rc[24]; output a[25] | ||
1119 | extern void sha3_keccak_f1600(uint64_t a[S2N_BIGNUM_STATIC 25],const uint64_t rc[S2N_BIGNUM_STATIC 24]); | ||
1120 | extern void sha3_keccak_f1600_alt(uint64_t a[S2N_BIGNUM_STATIC 25],const uint64_t rc[S2N_BIGNUM_STATIC 24]); | ||
1121 | |||
1122 | // Batched 2-way Keccak-f1600 permutation for SHA3 | ||
1123 | // Inputs a[50], rc[24]; output a[50] | ||
1124 | extern void sha3_keccak2_f1600(uint64_t a[S2N_BIGNUM_STATIC 50],const uint64_t rc[S2N_BIGNUM_STATIC 24]); | ||
1125 | extern void sha3_keccak2_f1600_alt(uint64_t a[S2N_BIGNUM_STATIC 50],const uint64_t rc[S2N_BIGNUM_STATIC 24]); | ||
1126 | |||
1127 | // Batched 4-way Keccak-f1600 permutation for SHA3 | ||
1128 | // Inputs a[100], rc[24]; output a[100] | ||
1129 | extern void sha3_keccak4_f1600(uint64_t a[S2N_BIGNUM_STATIC 100],const uint64_t rc[S2N_BIGNUM_STATIC 24]); | ||
1130 | extern void sha3_keccak4_f1600_alt(uint64_t a[S2N_BIGNUM_STATIC 100],const uint64_t rc[S2N_BIGNUM_STATIC 24]); | ||
1131 | extern void sha3_keccak4_f1600_alt2(uint64_t a[S2N_BIGNUM_STATIC 100],const uint64_t rc[S2N_BIGNUM_STATIC 24]); | ||
1132 | |||
1133 | // Point addition on CC curve SM2 in Montgomery-Jacobian coordinates | ||
1134 | // Inputs p1[12], p2[12]; output p3[12] | ||
1135 | extern void sm2_montjadd(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 12]); | ||
1136 | extern void sm2_montjadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 12]); | ||
1137 | |||
1138 | // Point doubling on CC curve SM2 in Montgomery-Jacobian coordinates | ||
1139 | // Inputs p1[12]; output p3[12] | ||
1140 | extern void sm2_montjdouble(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12]); | ||
1141 | extern void sm2_montjdouble_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12]); | ||
1142 | |||
1143 | // Point mixed addition on CC curve SM2 in Montgomery-Jacobian coordinates | ||
1144 | // Inputs p1[12], p2[8]; output p3[12] | ||
1145 | extern void sm2_montjmixadd(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 8]); | ||
1146 | extern void sm2_montjmixadd_alt(uint64_t p3[S2N_BIGNUM_STATIC 12],const uint64_t p1[S2N_BIGNUM_STATIC 12],const uint64_t p2[S2N_BIGNUM_STATIC 8]); | ||
1147 | |||
1148 | // Montgomery-Jacobian form scalar multiplication for CC curve SM2 | ||
1149 | // Input scalar[4], point[12]; output res[12] | ||
1150 | extern void sm2_montjscalarmul(uint64_t res[S2N_BIGNUM_STATIC 12],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 12]); | ||
1151 | extern void sm2_montjscalarmul_alt(uint64_t res[S2N_BIGNUM_STATIC 12],const uint64_t scalar[S2N_BIGNUM_STATIC 4],const uint64_t point[S2N_BIGNUM_STATIC 12]); | ||
829 | 1152 | ||
830 | // Reverse the bytes in a single word | 1153 | // Reverse the bytes in a single word |
831 | // Input a; output function return | 1154 | // Input a; output function return |
@@ -839,6 +1162,10 @@ extern uint64_t word_clz (uint64_t a); | |||
839 | // Input a; output function return | 1162 | // Input a; output function return |
840 | extern uint64_t word_ctz (uint64_t a); | 1163 | extern uint64_t word_ctz (uint64_t a); |
841 | 1164 | ||
1165 | // Perform 59 "divstep" iterations and return signed matrix of updates | ||
1166 | // Inputs d, f, g; output m[2][2] and function return | ||
1167 | extern int64_t word_divstep59(int64_t m[2][2],int64_t d,uint64_t f,uint64_t g); | ||
1168 | |||
842 | // Return maximum of two unsigned 64-bit words | 1169 | // Return maximum of two unsigned 64-bit words |
843 | // Inputs a, b; output function return | 1170 | // Inputs a, b; output function return |
844 | extern uint64_t word_max (uint64_t a, uint64_t b); | 1171 | extern uint64_t word_max (uint64_t a, uint64_t b); |
@@ -851,6 +1178,10 @@ extern uint64_t word_min (uint64_t a, uint64_t b); | |||
851 | // Input a; output function return | 1178 | // Input a; output function return |
852 | extern uint64_t word_negmodinv (uint64_t a); | 1179 | extern uint64_t word_negmodinv (uint64_t a); |
853 | 1180 | ||
1181 | // Count number of set bits in a single 64-bit word (population count) | ||
1182 | // Input a; output function return | ||
1183 | extern uint64_t word_popcount (uint64_t a); | ||
1184 | |||
854 | // Single-word reciprocal, 2^64 + ret = ceil(2^128/a) - 1 if MSB of "a" is set | 1185 | // Single-word reciprocal, 2^64 + ret = ceil(2^128/a) - 1 if MSB of "a" is set |
855 | // Input a; output function return | 1186 | // Input a; output function return |
856 | extern uint64_t word_recip (uint64_t a); | 1187 | extern uint64_t word_recip (uint64_t a); |
diff --git a/src/lib/libcrypto/bn/s2n_bignum_internal.h b/src/lib/libcrypto/bn/s2n_bignum_internal.h index b82db7d019..4217ca95af 100644 --- a/src/lib/libcrypto/bn/s2n_bignum_internal.h +++ b/src/lib/libcrypto/bn/s2n_bignum_internal.h | |||
@@ -14,14 +14,14 @@ | |||
14 | 14 | ||
15 | #ifdef __APPLE__ | 15 | #ifdef __APPLE__ |
16 | # define S2N_BN_SYMBOL(NAME) _##NAME | 16 | # define S2N_BN_SYMBOL(NAME) _##NAME |
17 | # if defined(__AARCH64EL__) || defined(__ARMEL__) | ||
18 | # define __LF %% | ||
19 | # else | ||
20 | # define __LF ; | ||
21 | # endif | ||
17 | #else | 22 | #else |
18 | # define S2N_BN_SYMBOL(name) name | 23 | # define S2N_BN_SYMBOL(name) name |
19 | #endif | 24 | # define __LF ; |
20 | |||
21 | #ifdef __CET__ | ||
22 | # include <cet.h> | ||
23 | #else | ||
24 | # define _CET_ENDBR | ||
25 | #endif | 25 | #endif |
26 | 26 | ||
27 | #define S2N_BN_SYM_VISIBILITY_DIRECTIVE(name) .globl S2N_BN_SYMBOL(name) | 27 | #define S2N_BN_SYM_VISIBILITY_DIRECTIVE(name) .globl S2N_BN_SYMBOL(name) |
@@ -34,3 +34,24 @@ | |||
34 | #else | 34 | #else |
35 | # define S2N_BN_SYM_PRIVACY_DIRECTIVE(name) /* NO-OP: S2N_BN_SYM_PRIVACY_DIRECTIVE */ | 35 | # define S2N_BN_SYM_PRIVACY_DIRECTIVE(name) /* NO-OP: S2N_BN_SYM_PRIVACY_DIRECTIVE */ |
36 | #endif | 36 | #endif |
37 | |||
38 | // Enable indirect branch tracking support unless explicitly disabled | ||
39 | // with -DNO_IBT. If the platform supports CET, simply inherit this from | ||
40 | // the usual header. Otherwise manually define _CET_ENDBR, used at each | ||
41 | // x86 entry point, to be the ENDBR64 instruction, with an explicit byte | ||
42 | // sequence for compilers/assemblers that don't know about it. Note that | ||
43 | // it is safe to use ENDBR64 on all platforms, since the encoding is by | ||
44 | // design interpreted as a NOP on all pre-CET x86_64 processors. The only | ||
45 | // downside is a small increase in code size and potentially a modest | ||
46 | // slowdown from executing one more instruction. | ||
47 | |||
48 | #if NO_IBT | ||
49 | # if defined(_CET_ENDBR) | ||
50 | # error "The s2n-bignum build option NO_IBT was configured, but _CET_ENDBR is defined in this compilation unit. That is weird, so failing the build." | ||
51 | # endif | ||
52 | # define _CET_ENDBR | ||
53 | #elif defined(__CET__) | ||
54 | # include <cet.h> | ||
55 | #elif !defined(_CET_ENDBR) | ||
56 | # define _CET_ENDBR .byte 0xf3,0x0f,0x1e,0xfa | ||
57 | #endif | ||