diff options
author | tb <> | 2023-07-20 16:36:06 +0000 |
---|---|---|
committer | tb <> | 2023-07-20 16:36:06 +0000 |
commit | ffc366ad631823ca313e68ca9a54544739bce0c8 (patch) | |
tree | dc0fc379632be1703e99e20edee64079a8279ae5 /src/lib | |
parent | 7b660744be840ee9a7e28176e6a379962d6e2332 (diff) | |
download | openbsd-ffc366ad631823ca313e68ca9a54544739bce0c8.tar.gz openbsd-ffc366ad631823ca313e68ca9a54544739bce0c8.tar.bz2 openbsd-ffc366ad631823ca313e68ca9a54544739bce0c8.zip |
Remove some ancient cruft that hasn't been used in ages
discussed with jsing
Diffstat (limited to 'src/lib')
-rw-r--r-- | src/lib/libcrypto/Makefile | 4 | ||||
-rw-r--r-- | src/lib/libcrypto/engine/eng_aesni.c | 563 | ||||
-rw-r--r-- | src/lib/libcrypto/engine/eng_padlock.c | 1128 | ||||
-rw-r--r-- | src/lib/libcrypto/engine/eng_padlock.ec | 1 |
4 files changed, 1 insertions, 1695 deletions
diff --git a/src/lib/libcrypto/Makefile b/src/lib/libcrypto/Makefile index 44e5900863..8ec9b1b3d8 100644 --- a/src/lib/libcrypto/Makefile +++ b/src/lib/libcrypto/Makefile | |||
@@ -1,4 +1,4 @@ | |||
1 | # $OpenBSD: Makefile,v 1.137 2023/07/07 06:10:14 jsing Exp $ | 1 | # $OpenBSD: Makefile,v 1.138 2023/07/20 16:36:06 tb Exp $ |
2 | 2 | ||
3 | LIB= crypto | 3 | LIB= crypto |
4 | LIBREBUILD=y | 4 | LIBREBUILD=y |
@@ -386,8 +386,6 @@ SRCS+= tb_pkmeth.c | |||
386 | SRCS+= tb_rand.c | 386 | SRCS+= tb_rand.c |
387 | SRCS+= tb_rsa.c | 387 | SRCS+= tb_rsa.c |
388 | SRCS+= tb_store.c | 388 | SRCS+= tb_store.c |
389 | # XXX unnecessary? handled in EVP now... | ||
390 | # SRCS+= eng_aesni.c # local addition | ||
391 | 389 | ||
392 | # err/ | 390 | # err/ |
393 | SRCS+= err.c | 391 | SRCS+= err.c |
diff --git a/src/lib/libcrypto/engine/eng_aesni.c b/src/lib/libcrypto/engine/eng_aesni.c deleted file mode 100644 index e08edcf346..0000000000 --- a/src/lib/libcrypto/engine/eng_aesni.c +++ /dev/null | |||
@@ -1,563 +0,0 @@ | |||
1 | /* $OpenBSD: eng_aesni.c,v 1.14 2023/07/20 15:08:12 tb Exp $ */ | ||
2 | /* | ||
3 | * Support for Intel AES-NI instruction set | ||
4 | * Author: Huang Ying <ying.huang@intel.com> | ||
5 | * | ||
6 | * Intel AES-NI is a new set of Single Instruction Multiple Data | ||
7 | * (SIMD) instructions that are going to be introduced in the next | ||
8 | * generation of Intel processor, as of 2009. These instructions | ||
9 | * enable fast and secure data encryption and decryption, using the | ||
10 | * Advanced Encryption Standard (AES), defined by FIPS Publication | ||
11 | * number 197. The architecture introduces six instructions that | ||
12 | * offer full hardware support for AES. Four of them support high | ||
13 | * performance data encryption and decryption, and the other two | ||
14 | * instructions support the AES key expansion procedure. | ||
15 | * | ||
16 | * The white paper can be downloaded from: | ||
17 | * http://softwarecommunity.intel.com/isn/downloads/intelavx/AES-Instructions-Set_WP.pdf | ||
18 | * | ||
19 | * This file is based on engines/e_padlock.c | ||
20 | */ | ||
21 | |||
22 | /* ==================================================================== | ||
23 | * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved. | ||
24 | * | ||
25 | * Redistribution and use in source and binary forms, with or without | ||
26 | * modification, are permitted provided that the following conditions | ||
27 | * are met: | ||
28 | * | ||
29 | * 1. Redistributions of source code must retain the above copyright | ||
30 | * notice, this list of conditions and the following disclaimer. | ||
31 | * | ||
32 | * 2. Redistributions in binary form must reproduce the above copyright | ||
33 | * notice, this list of conditions and the following disclaimer in | ||
34 | * the documentation and/or other materials provided with the | ||
35 | * distribution. | ||
36 | * | ||
37 | * 3. All advertising materials mentioning features or use of this | ||
38 | * software must display the following acknowledgment: | ||
39 | * "This product includes software developed by the OpenSSL Project | ||
40 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
41 | * | ||
42 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
43 | * endorse or promote products derived from this software without | ||
44 | * prior written permission. For written permission, please contact | ||
45 | * licensing@OpenSSL.org. | ||
46 | * | ||
47 | * 5. Products derived from this software may not be called "OpenSSL" | ||
48 | * nor may "OpenSSL" appear in their names without prior written | ||
49 | * permission of the OpenSSL Project. | ||
50 | * | ||
51 | * 6. Redistributions of any form whatsoever must retain the following | ||
52 | * acknowledgment: | ||
53 | * "This product includes software developed by the OpenSSL Project | ||
54 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
55 | * | ||
56 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
57 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
58 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
59 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
60 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
61 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
62 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
63 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
64 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
65 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
66 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
67 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
68 | * ==================================================================== | ||
69 | * | ||
70 | * This product includes cryptographic software written by Eric Young | ||
71 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
72 | * Hudson (tjh@cryptsoft.com). | ||
73 | * | ||
74 | */ | ||
75 | |||
76 | #include <stdio.h> | ||
77 | |||
78 | #include <openssl/opensslconf.h> | ||
79 | |||
80 | #if !defined(OPENSSL_NO_HW) && !defined(OPENSSL_NO_HW_AES_NI) && !defined(OPENSSL_NO_AES) | ||
81 | |||
82 | #include <openssl/aes.h> | ||
83 | #include <openssl/engine.h> | ||
84 | #include <openssl/err.h> | ||
85 | #include <openssl/evp.h> | ||
86 | |||
87 | #include "evp_local.h" | ||
88 | |||
89 | /* AES-NI is available *ONLY* on some x86 CPUs. Not only that it | ||
90 | doesn't exist elsewhere, but it even can't be compiled on other | ||
91 | platforms! */ | ||
92 | #undef COMPILE_HW_AESNI | ||
93 | #if (defined(__x86_64) || defined(__x86_64__) || \ | ||
94 | defined(_M_AMD64) || defined(_M_X64) || \ | ||
95 | defined(OPENSSL_IA32_SSE2)) && !defined(OPENSSL_NO_ASM) && !defined(__i386__) | ||
96 | #define COMPILE_HW_AESNI | ||
97 | #include "x86_arch.h" | ||
98 | #endif | ||
99 | static ENGINE *ENGINE_aesni(void); | ||
100 | |||
101 | void ENGINE_load_aesni(void) | ||
102 | { | ||
103 | /* On non-x86 CPUs it just returns. */ | ||
104 | #ifdef COMPILE_HW_AESNI | ||
105 | ENGINE *toadd = ENGINE_aesni(); | ||
106 | if (toadd == NULL) | ||
107 | return; | ||
108 | ENGINE_add(toadd); | ||
109 | ENGINE_register_complete(toadd); | ||
110 | ENGINE_free(toadd); | ||
111 | ERR_clear_error(); | ||
112 | #endif | ||
113 | } | ||
114 | |||
115 | #ifdef COMPILE_HW_AESNI | ||
116 | int aesni_set_encrypt_key(const unsigned char *userKey, int bits, | ||
117 | AES_KEY *key); | ||
118 | int aesni_set_decrypt_key(const unsigned char *userKey, int bits, | ||
119 | AES_KEY *key); | ||
120 | |||
121 | void aesni_encrypt(const unsigned char *in, unsigned char *out, | ||
122 | const AES_KEY *key); | ||
123 | void aesni_decrypt(const unsigned char *in, unsigned char *out, | ||
124 | const AES_KEY *key); | ||
125 | |||
126 | void aesni_ecb_encrypt(const unsigned char *in, unsigned char *out, | ||
127 | size_t length, const AES_KEY *key, int enc); | ||
128 | void aesni_cbc_encrypt(const unsigned char *in, unsigned char *out, | ||
129 | size_t length, const AES_KEY *key, unsigned char *ivec, int enc); | ||
130 | |||
131 | /* Function for ENGINE detection and control */ | ||
132 | static int aesni_init(ENGINE *e); | ||
133 | |||
134 | /* Cipher Stuff */ | ||
135 | static int aesni_ciphers(ENGINE *e, const EVP_CIPHER **cipher, | ||
136 | const int **nids, int nid); | ||
137 | |||
138 | #define AESNI_MIN_ALIGN 16 | ||
139 | #define AESNI_ALIGN(x) \ | ||
140 | ((void *)(((unsigned long)(x)+AESNI_MIN_ALIGN-1)&~(AESNI_MIN_ALIGN-1))) | ||
141 | |||
142 | /* Engine names */ | ||
143 | static const char aesni_id[] = "aesni", | ||
144 | aesni_name[] = "Intel AES-NI engine", | ||
145 | no_aesni_name[] = "Intel AES-NI engine (no-aesni)"; | ||
146 | |||
147 | |||
148 | /* The input and output encrypted as though 128bit cfb mode is being | ||
149 | * used. The extra state information to record how much of the | ||
150 | * 128bit block we have used is contained in *num; | ||
151 | */ | ||
152 | static void | ||
153 | aesni_cfb128_encrypt(const unsigned char *in, unsigned char *out, | ||
154 | unsigned int len, const void *key, unsigned char ivec[16], int *num, | ||
155 | int enc) | ||
156 | { | ||
157 | unsigned int n; | ||
158 | size_t l = 0; | ||
159 | |||
160 | n = *num; | ||
161 | |||
162 | if (enc) { | ||
163 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | ||
164 | if (16%sizeof(size_t) == 0) do { /* always true actually */ | ||
165 | while (n && len) { | ||
166 | *(out++) = ivec[n] ^= *(in++); | ||
167 | --len; | ||
168 | n = (n + 1) % 16; | ||
169 | } | ||
170 | while (len >= 16) { | ||
171 | aesni_encrypt(ivec, ivec, key); | ||
172 | for (n = 0; n < 16; n += sizeof(size_t)) { | ||
173 | *(size_t*)(out + n) = | ||
174 | *(size_t*)(ivec + n) ^= *(size_t*)(in + n); | ||
175 | } | ||
176 | len -= 16; | ||
177 | out += 16; | ||
178 | in += 16; | ||
179 | } | ||
180 | n = 0; | ||
181 | if (len) { | ||
182 | aesni_encrypt(ivec, ivec, key); | ||
183 | while (len--) { | ||
184 | out[n] = ivec[n] ^= in[n]; | ||
185 | ++n; | ||
186 | } | ||
187 | } | ||
188 | *num = n; | ||
189 | return; | ||
190 | } while (0); | ||
191 | /* the rest would be commonly eliminated by x86* compiler */ | ||
192 | #endif | ||
193 | while (l < len) { | ||
194 | if (n == 0) { | ||
195 | aesni_encrypt(ivec, ivec, key); | ||
196 | } | ||
197 | out[l] = ivec[n] ^= in[l]; | ||
198 | ++l; | ||
199 | n = (n + 1) % 16; | ||
200 | } | ||
201 | *num = n; | ||
202 | } else { | ||
203 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | ||
204 | if (16%sizeof(size_t) == 0) do { /* always true actually */ | ||
205 | while (n && len) { | ||
206 | unsigned char c; | ||
207 | *(out++) = ivec[n] ^ (c = *(in++)); | ||
208 | ivec[n] = c; | ||
209 | --len; | ||
210 | n = (n + 1) % 16; | ||
211 | } | ||
212 | while (len >= 16) { | ||
213 | aesni_encrypt(ivec, ivec, key); | ||
214 | for (n = 0; n < 16; n += sizeof(size_t)) { | ||
215 | size_t t = *(size_t*)(in + n); | ||
216 | *(size_t*)(out + n) = *(size_t*)(ivec + n) ^ t; | ||
217 | *(size_t*)(ivec + n) = t; | ||
218 | } | ||
219 | len -= 16; | ||
220 | out += 16; | ||
221 | in += 16; | ||
222 | } | ||
223 | n = 0; | ||
224 | if (len) { | ||
225 | aesni_encrypt(ivec, ivec, key); | ||
226 | while (len--) { | ||
227 | unsigned char c; | ||
228 | out[n] = ivec[n] ^ (c = in[n]); | ||
229 | ivec[n] = c; | ||
230 | ++n; | ||
231 | } | ||
232 | } | ||
233 | *num = n; | ||
234 | return; | ||
235 | } while (0); | ||
236 | /* the rest would be commonly eliminated by x86* compiler */ | ||
237 | #endif | ||
238 | while (l < len) { | ||
239 | unsigned char c; | ||
240 | if (n == 0) { | ||
241 | aesni_encrypt(ivec, ivec, key); | ||
242 | } | ||
243 | out[l] = ivec[n] ^ (c = in[l]); | ||
244 | ivec[n] = c; | ||
245 | ++l; | ||
246 | n = (n + 1) % 16; | ||
247 | } | ||
248 | *num = n; | ||
249 | } | ||
250 | } | ||
251 | |||
252 | /* The input and output encrypted as though 128bit ofb mode is being | ||
253 | * used. The extra state information to record how much of the | ||
254 | * 128bit block we have used is contained in *num; | ||
255 | */ | ||
256 | static void | ||
257 | aesni_ofb128_encrypt(const unsigned char *in, unsigned char *out, | ||
258 | unsigned int len, const void *key, unsigned char ivec[16], int *num) | ||
259 | { | ||
260 | unsigned int n; | ||
261 | size_t l = 0; | ||
262 | |||
263 | n = *num; | ||
264 | |||
265 | #if !defined(OPENSSL_SMALL_FOOTPRINT) | ||
266 | if (16%sizeof(size_t) == 0) do { /* always true actually */ | ||
267 | while (n && len) { | ||
268 | *(out++) = *(in++) ^ ivec[n]; | ||
269 | --len; | ||
270 | n = (n + 1) % 16; | ||
271 | } | ||
272 | while (len >= 16) { | ||
273 | aesni_encrypt(ivec, ivec, key); | ||
274 | for (n = 0; n < 16; n += sizeof(size_t)) | ||
275 | *(size_t*)(out + n) = | ||
276 | *(size_t*)(in + n) ^ *(size_t*)(ivec + n); | ||
277 | len -= 16; | ||
278 | out += 16; | ||
279 | in += 16; | ||
280 | } | ||
281 | n = 0; | ||
282 | if (len) { | ||
283 | aesni_encrypt(ivec, ivec, key); | ||
284 | while (len--) { | ||
285 | out[n] = in[n] ^ ivec[n]; | ||
286 | ++n; | ||
287 | } | ||
288 | } | ||
289 | *num = n; | ||
290 | return; | ||
291 | } while (0); | ||
292 | /* the rest would be commonly eliminated by x86* compiler */ | ||
293 | #endif | ||
294 | while (l < len) { | ||
295 | if (n == 0) { | ||
296 | aesni_encrypt(ivec, ivec, key); | ||
297 | } | ||
298 | out[l] = in[l] ^ ivec[n]; | ||
299 | ++l; | ||
300 | n = (n + 1) % 16; | ||
301 | } | ||
302 | |||
303 | *num = n; | ||
304 | } | ||
305 | /* ===== Engine "management" functions ===== */ | ||
306 | |||
307 | /* Prepare the ENGINE structure for registration */ | ||
308 | static int | ||
309 | aesni_bind_helper(ENGINE *e) | ||
310 | { | ||
311 | int engage; | ||
312 | |||
313 | engage = (OPENSSL_cpu_caps() & CPUCAP_MASK_AESNI) != 0; | ||
314 | |||
315 | /* Register everything or return with an error */ | ||
316 | if (!ENGINE_set_id(e, aesni_id) || | ||
317 | !ENGINE_set_name(e, engage ? aesni_name : no_aesni_name) || | ||
318 | !ENGINE_set_init_function(e, aesni_init) || | ||
319 | (engage && !ENGINE_set_ciphers (e, aesni_ciphers))) | ||
320 | return 0; | ||
321 | |||
322 | /* Everything looks good */ | ||
323 | return 1; | ||
324 | } | ||
325 | |||
326 | /* Constructor */ | ||
327 | static ENGINE * | ||
328 | ENGINE_aesni(void) | ||
329 | { | ||
330 | ENGINE *eng = ENGINE_new(); | ||
331 | |||
332 | if (!eng) { | ||
333 | return NULL; | ||
334 | } | ||
335 | |||
336 | if (!aesni_bind_helper(eng)) { | ||
337 | ENGINE_free(eng); | ||
338 | return NULL; | ||
339 | } | ||
340 | |||
341 | return eng; | ||
342 | } | ||
343 | |||
344 | /* Check availability of the engine */ | ||
345 | static int | ||
346 | aesni_init(ENGINE *e) | ||
347 | { | ||
348 | return 1; | ||
349 | } | ||
350 | |||
351 | #if defined(NID_aes_128_cfb128) && ! defined (NID_aes_128_cfb) | ||
352 | #define NID_aes_128_cfb NID_aes_128_cfb128 | ||
353 | #endif | ||
354 | |||
355 | #if defined(NID_aes_128_ofb128) && ! defined (NID_aes_128_ofb) | ||
356 | #define NID_aes_128_ofb NID_aes_128_ofb128 | ||
357 | #endif | ||
358 | |||
359 | #if defined(NID_aes_192_cfb128) && ! defined (NID_aes_192_cfb) | ||
360 | #define NID_aes_192_cfb NID_aes_192_cfb128 | ||
361 | #endif | ||
362 | |||
363 | #if defined(NID_aes_192_ofb128) && ! defined (NID_aes_192_ofb) | ||
364 | #define NID_aes_192_ofb NID_aes_192_ofb128 | ||
365 | #endif | ||
366 | |||
367 | #if defined(NID_aes_256_cfb128) && ! defined (NID_aes_256_cfb) | ||
368 | #define NID_aes_256_cfb NID_aes_256_cfb128 | ||
369 | #endif | ||
370 | |||
371 | #if defined(NID_aes_256_ofb128) && ! defined (NID_aes_256_ofb) | ||
372 | #define NID_aes_256_ofb NID_aes_256_ofb128 | ||
373 | #endif | ||
374 | |||
375 | /* List of supported ciphers. */ | ||
376 | static int aesni_cipher_nids[] = { | ||
377 | NID_aes_128_ecb, | ||
378 | NID_aes_128_cbc, | ||
379 | NID_aes_128_cfb, | ||
380 | NID_aes_128_ofb, | ||
381 | |||
382 | NID_aes_192_ecb, | ||
383 | NID_aes_192_cbc, | ||
384 | NID_aes_192_cfb, | ||
385 | NID_aes_192_ofb, | ||
386 | |||
387 | NID_aes_256_ecb, | ||
388 | NID_aes_256_cbc, | ||
389 | NID_aes_256_cfb, | ||
390 | NID_aes_256_ofb, | ||
391 | }; | ||
392 | static int aesni_cipher_nids_num = | ||
393 | (sizeof(aesni_cipher_nids) / sizeof(aesni_cipher_nids[0])); | ||
394 | |||
395 | typedef struct { | ||
396 | AES_KEY ks; | ||
397 | unsigned int _pad1[3]; | ||
398 | } AESNI_KEY; | ||
399 | |||
400 | static int | ||
401 | aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *user_key, | ||
402 | const unsigned char *iv, int enc) | ||
403 | { | ||
404 | int ret; | ||
405 | AES_KEY *key = AESNI_ALIGN(ctx->cipher_data); | ||
406 | |||
407 | if ((ctx->cipher->flags & EVP_CIPH_MODE) == EVP_CIPH_CFB_MODE || | ||
408 | (ctx->cipher->flags & EVP_CIPH_MODE) == EVP_CIPH_OFB_MODE || | ||
409 | enc) | ||
410 | ret = aesni_set_encrypt_key(user_key, ctx->key_len * 8, key); | ||
411 | else | ||
412 | ret = aesni_set_decrypt_key(user_key, ctx->key_len * 8, key); | ||
413 | |||
414 | if (ret < 0) { | ||
415 | EVPerror(EVP_R_AES_KEY_SETUP_FAILED); | ||
416 | return 0; | ||
417 | } | ||
418 | |||
419 | return 1; | ||
420 | } | ||
421 | |||
422 | static int | ||
423 | aesni_cipher_ecb(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
424 | const unsigned char *in, size_t inl) | ||
425 | { | ||
426 | AES_KEY *key = AESNI_ALIGN(ctx->cipher_data); | ||
427 | |||
428 | aesni_ecb_encrypt(in, out, inl, key, ctx->encrypt); | ||
429 | return 1; | ||
430 | } | ||
431 | |||
432 | static int | ||
433 | aesni_cipher_cbc(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
434 | const unsigned char *in, size_t inl) | ||
435 | { | ||
436 | AES_KEY *key = AESNI_ALIGN(ctx->cipher_data); | ||
437 | |||
438 | aesni_cbc_encrypt(in, out, inl, key, ctx->iv, ctx->encrypt); | ||
439 | return 1; | ||
440 | } | ||
441 | |||
442 | static int | ||
443 | aesni_cipher_cfb(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
444 | const unsigned char *in, size_t inl) | ||
445 | { | ||
446 | AES_KEY *key = AESNI_ALIGN(ctx->cipher_data); | ||
447 | |||
448 | aesni_cfb128_encrypt(in, out, inl, key, ctx->iv, &ctx->num, | ||
449 | ctx->encrypt); | ||
450 | return 1; | ||
451 | } | ||
452 | |||
453 | static int | ||
454 | aesni_cipher_ofb(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
455 | const unsigned char *in, size_t inl) | ||
456 | { | ||
457 | AES_KEY *key = AESNI_ALIGN(ctx->cipher_data); | ||
458 | |||
459 | aesni_ofb128_encrypt(in, out, inl, key, ctx->iv, &ctx->num); | ||
460 | return 1; | ||
461 | } | ||
462 | |||
463 | #define AES_BLOCK_SIZE 16 | ||
464 | |||
465 | #define EVP_CIPHER_block_size_ECB AES_BLOCK_SIZE | ||
466 | #define EVP_CIPHER_block_size_CBC AES_BLOCK_SIZE | ||
467 | #define EVP_CIPHER_block_size_OFB 1 | ||
468 | #define EVP_CIPHER_block_size_CFB 1 | ||
469 | |||
470 | /* Declaring so many ciphers by hand would be a pain. | ||
471 | Instead introduce a bit of preprocessor magic :-) */ | ||
472 | #define DECLARE_AES_EVP(ksize,lmode,umode) \ | ||
473 | static const EVP_CIPHER aesni_##ksize##_##lmode = { \ | ||
474 | NID_aes_##ksize##_##lmode, \ | ||
475 | EVP_CIPHER_block_size_##umode, \ | ||
476 | ksize / 8, \ | ||
477 | AES_BLOCK_SIZE, \ | ||
478 | 0 | EVP_CIPH_##umode##_MODE, \ | ||
479 | aesni_init_key, \ | ||
480 | aesni_cipher_##lmode, \ | ||
481 | NULL, \ | ||
482 | sizeof(AESNI_KEY), \ | ||
483 | EVP_CIPHER_set_asn1_iv, \ | ||
484 | EVP_CIPHER_get_asn1_iv, \ | ||
485 | NULL, \ | ||
486 | NULL \ | ||
487 | } | ||
488 | |||
489 | DECLARE_AES_EVP(128, ecb, ECB); | ||
490 | DECLARE_AES_EVP(128, cbc, CBC); | ||
491 | DECLARE_AES_EVP(128, cfb, CFB); | ||
492 | DECLARE_AES_EVP(128, ofb, OFB); | ||
493 | |||
494 | DECLARE_AES_EVP(192, ecb, ECB); | ||
495 | DECLARE_AES_EVP(192, cbc, CBC); | ||
496 | DECLARE_AES_EVP(192, cfb, CFB); | ||
497 | DECLARE_AES_EVP(192, ofb, OFB); | ||
498 | |||
499 | DECLARE_AES_EVP(256, ecb, ECB); | ||
500 | DECLARE_AES_EVP(256, cbc, CBC); | ||
501 | DECLARE_AES_EVP(256, cfb, CFB); | ||
502 | DECLARE_AES_EVP(256, ofb, OFB); | ||
503 | |||
504 | static int | ||
505 | aesni_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid) | ||
506 | { | ||
507 | /* No specific cipher => return a list of supported nids ... */ | ||
508 | if (!cipher) { | ||
509 | *nids = aesni_cipher_nids; | ||
510 | return aesni_cipher_nids_num; | ||
511 | } | ||
512 | |||
513 | /* ... or the requested "cipher" otherwise */ | ||
514 | switch (nid) { | ||
515 | case NID_aes_128_ecb: | ||
516 | *cipher = &aesni_128_ecb; | ||
517 | break; | ||
518 | case NID_aes_128_cbc: | ||
519 | *cipher = &aesni_128_cbc; | ||
520 | break; | ||
521 | case NID_aes_128_cfb: | ||
522 | *cipher = &aesni_128_cfb; | ||
523 | break; | ||
524 | case NID_aes_128_ofb: | ||
525 | *cipher = &aesni_128_ofb; | ||
526 | break; | ||
527 | |||
528 | case NID_aes_192_ecb: | ||
529 | *cipher = &aesni_192_ecb; | ||
530 | break; | ||
531 | case NID_aes_192_cbc: | ||
532 | *cipher = &aesni_192_cbc; | ||
533 | break; | ||
534 | case NID_aes_192_cfb: | ||
535 | *cipher = &aesni_192_cfb; | ||
536 | break; | ||
537 | case NID_aes_192_ofb: | ||
538 | *cipher = &aesni_192_ofb; | ||
539 | break; | ||
540 | |||
541 | case NID_aes_256_ecb: | ||
542 | *cipher = &aesni_256_ecb; | ||
543 | break; | ||
544 | case NID_aes_256_cbc: | ||
545 | *cipher = &aesni_256_cbc; | ||
546 | break; | ||
547 | case NID_aes_256_cfb: | ||
548 | *cipher = &aesni_256_cfb; | ||
549 | break; | ||
550 | case NID_aes_256_ofb: | ||
551 | *cipher = &aesni_256_ofb; | ||
552 | break; | ||
553 | |||
554 | default: | ||
555 | /* Sorry, we don't support this NID */ | ||
556 | *cipher = NULL; | ||
557 | return 0; | ||
558 | } | ||
559 | return 1; | ||
560 | } | ||
561 | |||
562 | #endif /* COMPILE_HW_AESNI */ | ||
563 | #endif /* !defined(OPENSSL_NO_HW) && !defined(OPENSSL_NO_HW_AESNI) && !defined(OPENSSL_NO_AES) */ | ||
diff --git a/src/lib/libcrypto/engine/eng_padlock.c b/src/lib/libcrypto/engine/eng_padlock.c deleted file mode 100644 index 3ff6df24e2..0000000000 --- a/src/lib/libcrypto/engine/eng_padlock.c +++ /dev/null | |||
@@ -1,1128 +0,0 @@ | |||
1 | /* $OpenBSD: eng_padlock.c,v 1.18 2023/07/20 15:08:12 tb Exp $ */ | ||
2 | /* | ||
3 | * Support for VIA PadLock Advanced Cryptography Engine (ACE) | ||
4 | * Written by Michal Ludvig <michal@logix.cz> | ||
5 | * http://www.logix.cz/michal | ||
6 | * | ||
7 | * Big thanks to Andy Polyakov for a help with optimization, | ||
8 | * assembler fixes, port to MS Windows and a lot of other | ||
9 | * valuable work on this engine! | ||
10 | */ | ||
11 | |||
12 | /* ==================================================================== | ||
13 | * Copyright (c) 1999-2001 The OpenSSL Project. All rights reserved. | ||
14 | * | ||
15 | * Redistribution and use in source and binary forms, with or without | ||
16 | * modification, are permitted provided that the following conditions | ||
17 | * are met: | ||
18 | * | ||
19 | * 1. Redistributions of source code must retain the above copyright | ||
20 | * notice, this list of conditions and the following disclaimer. | ||
21 | * | ||
22 | * 2. Redistributions in binary form must reproduce the above copyright | ||
23 | * notice, this list of conditions and the following disclaimer in | ||
24 | * the documentation and/or other materials provided with the | ||
25 | * distribution. | ||
26 | * | ||
27 | * 3. All advertising materials mentioning features or use of this | ||
28 | * software must display the following acknowledgment: | ||
29 | * "This product includes software developed by the OpenSSL Project | ||
30 | * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" | ||
31 | * | ||
32 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
33 | * endorse or promote products derived from this software without | ||
34 | * prior written permission. For written permission, please contact | ||
35 | * licensing@OpenSSL.org. | ||
36 | * | ||
37 | * 5. Products derived from this software may not be called "OpenSSL" | ||
38 | * nor may "OpenSSL" appear in their names without prior written | ||
39 | * permission of the OpenSSL Project. | ||
40 | * | ||
41 | * 6. Redistributions of any form whatsoever must retain the following | ||
42 | * acknowledgment: | ||
43 | * "This product includes software developed by the OpenSSL Project | ||
44 | * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" | ||
45 | * | ||
46 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
47 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
48 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
49 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
50 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
51 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
52 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
53 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
54 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
55 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
56 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
57 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
58 | * ==================================================================== | ||
59 | * | ||
60 | * This product includes cryptographic software written by Eric Young | ||
61 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
62 | * Hudson (tjh@cryptsoft.com). | ||
63 | * | ||
64 | */ | ||
65 | |||
66 | #include <stdio.h> | ||
67 | #include <string.h> | ||
68 | |||
69 | #include <openssl/opensslconf.h> | ||
70 | |||
71 | #include <openssl/crypto.h> | ||
72 | #include <openssl/engine.h> | ||
73 | #include <openssl/evp.h> | ||
74 | #ifndef OPENSSL_NO_AES | ||
75 | #include <openssl/aes.h> | ||
76 | #endif | ||
77 | #include <openssl/err.h> | ||
78 | |||
79 | #ifndef OPENSSL_NO_HW | ||
80 | #ifndef OPENSSL_NO_HW_PADLOCK | ||
81 | |||
82 | /* Attempt to have a single source for both 0.9.7 and 0.9.8 :-) */ | ||
83 | #if (OPENSSL_VERSION_NUMBER >= 0x00908000L) | ||
84 | # ifndef OPENSSL_NO_DYNAMIC_ENGINE | ||
85 | # define DYNAMIC_ENGINE | ||
86 | # endif | ||
87 | #elif (OPENSSL_VERSION_NUMBER >= 0x00907000L) | ||
88 | # ifdef ENGINE_DYNAMIC_SUPPORT | ||
89 | # define DYNAMIC_ENGINE | ||
90 | # endif | ||
91 | #else | ||
92 | # error "Only OpenSSL >= 0.9.7 is supported" | ||
93 | #endif | ||
94 | |||
95 | /* VIA PadLock AES is available *ONLY* on some x86 CPUs. | ||
96 | Not only that it doesn't exist elsewhere, but it | ||
97 | even can't be compiled on other platforms! | ||
98 | |||
99 | In addition, because of the heavy use of inline assembler, | ||
100 | compiler choice is limited to GCC and Microsoft C. */ | ||
101 | #undef COMPILE_HW_PADLOCK | ||
102 | #if !defined(OPENSSL_NO_INLINE_ASM) | ||
103 | # if (defined(__GNUC__) && (defined(__i386__) || defined(__i386))) | ||
104 | # define COMPILE_HW_PADLOCK | ||
105 | # endif | ||
106 | #endif | ||
107 | |||
108 | #ifdef OPENSSL_NO_DYNAMIC_ENGINE | ||
109 | #ifdef COMPILE_HW_PADLOCK | ||
110 | static ENGINE *ENGINE_padlock(void); | ||
111 | #endif | ||
112 | |||
113 | void | ||
114 | ENGINE_load_padlock(void) | ||
115 | { | ||
116 | /* On non-x86 CPUs it just returns. */ | ||
117 | #ifdef COMPILE_HW_PADLOCK | ||
118 | ENGINE *toadd = ENGINE_padlock(); | ||
119 | |||
120 | if (toadd == NULL) | ||
121 | return; | ||
122 | ENGINE_add(toadd); | ||
123 | ENGINE_free(toadd); | ||
124 | ERR_clear_error(); | ||
125 | #endif | ||
126 | } | ||
127 | |||
128 | #endif | ||
129 | |||
130 | #ifdef COMPILE_HW_PADLOCK | ||
131 | /* We do these includes here to avoid header problems on platforms that | ||
132 | do not have the VIA padlock anyway... */ | ||
133 | #include <stdlib.h> | ||
134 | #if defined(__GNUC__) | ||
135 | # ifndef alloca | ||
136 | # define alloca(s) __builtin_alloca(s) | ||
137 | # endif | ||
138 | #endif | ||
139 | |||
140 | /* Function for ENGINE detection and control */ | ||
141 | static int padlock_available(void); | ||
142 | static int padlock_init(ENGINE *e); | ||
143 | |||
144 | /* RNG Stuff */ | ||
145 | static RAND_METHOD padlock_rand; | ||
146 | |||
147 | /* Cipher Stuff */ | ||
148 | #ifndef OPENSSL_NO_AES | ||
149 | static int padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid); | ||
150 | #endif | ||
151 | |||
152 | /* Engine names */ | ||
153 | static const char *padlock_id = "padlock"; | ||
154 | static char padlock_name[100]; | ||
155 | |||
156 | /* Available features */ | ||
157 | static int padlock_use_ace = 0; /* Advanced Cryptography Engine */ | ||
158 | static int padlock_use_rng = 0; /* Random Number Generator */ | ||
159 | #ifndef OPENSSL_NO_AES | ||
160 | static int padlock_aes_align_required = 1; | ||
161 | #endif | ||
162 | |||
163 | /* ===== Engine "management" functions ===== */ | ||
164 | |||
165 | /* Prepare the ENGINE structure for registration */ | ||
166 | static int | ||
167 | padlock_bind_helper(ENGINE *e) | ||
168 | { | ||
169 | /* Check available features */ | ||
170 | padlock_available(); | ||
171 | |||
172 | /* | ||
173 | * RNG is currently disabled for reasons discussed in commentary just | ||
174 | * before padlock_rand_bytes function. | ||
175 | */ | ||
176 | padlock_use_rng = 0; | ||
177 | |||
178 | /* Generate a nice engine name with available features */ | ||
179 | (void) snprintf(padlock_name, sizeof(padlock_name), | ||
180 | "VIA PadLock (%s, %s)", | ||
181 | padlock_use_rng ? "RNG" : "no-RNG", | ||
182 | padlock_use_ace ? "ACE" : "no-ACE"); | ||
183 | |||
184 | /* Register everything or return with an error */ | ||
185 | if (!ENGINE_set_id(e, padlock_id) || | ||
186 | !ENGINE_set_name(e, padlock_name) || | ||
187 | !ENGINE_set_init_function(e, padlock_init) || | ||
188 | #ifndef OPENSSL_NO_AES | ||
189 | (padlock_use_ace && !ENGINE_set_ciphers (e, padlock_ciphers)) || | ||
190 | #endif | ||
191 | (padlock_use_rng && !ENGINE_set_RAND (e, &padlock_rand))) { | ||
192 | return 0; | ||
193 | } | ||
194 | |||
195 | /* Everything looks good */ | ||
196 | return 1; | ||
197 | } | ||
198 | |||
199 | #ifdef OPENSSL_NO_DYNAMIC_ENGINE | ||
200 | |||
201 | /* Constructor */ | ||
202 | static ENGINE * | ||
203 | ENGINE_padlock(void) | ||
204 | { | ||
205 | ENGINE *eng = ENGINE_new(); | ||
206 | |||
207 | if (eng == NULL) | ||
208 | return NULL; | ||
209 | |||
210 | if (!padlock_bind_helper(eng)) { | ||
211 | ENGINE_free(eng); | ||
212 | return NULL; | ||
213 | } | ||
214 | |||
215 | return eng; | ||
216 | } | ||
217 | |||
218 | #endif | ||
219 | |||
220 | /* Check availability of the engine */ | ||
221 | static int | ||
222 | padlock_init(ENGINE *e) | ||
223 | { | ||
224 | return (padlock_use_rng || padlock_use_ace); | ||
225 | } | ||
226 | |||
227 | /* This stuff is needed if this ENGINE is being compiled into a self-contained | ||
228 | * shared-library. | ||
229 | */ | ||
230 | #ifdef DYNAMIC_ENGINE | ||
231 | static int | ||
232 | padlock_bind_fn(ENGINE *e, const char *id) | ||
233 | { | ||
234 | if (id && (strcmp(id, padlock_id) != 0)) { | ||
235 | return 0; | ||
236 | } | ||
237 | |||
238 | if (!padlock_bind_helper(e)) { | ||
239 | return 0; | ||
240 | } | ||
241 | |||
242 | return 1; | ||
243 | } | ||
244 | |||
245 | IMPLEMENT_DYNAMIC_CHECK_FN() | ||
246 | IMPLEMENT_DYNAMIC_BIND_FN (padlock_bind_fn) | ||
247 | #endif /* DYNAMIC_ENGINE */ | ||
248 | |||
249 | /* ===== Here comes the "real" engine ===== */ | ||
250 | |||
251 | #ifndef OPENSSL_NO_AES | ||
252 | /* Some AES-related constants */ | ||
253 | #define AES_BLOCK_SIZE 16 | ||
254 | #define AES_KEY_SIZE_128 16 | ||
255 | #define AES_KEY_SIZE_192 24 | ||
256 | #define AES_KEY_SIZE_256 32 | ||
257 | |||
258 | /* Here we store the status information relevant to the | ||
259 | current context. */ | ||
260 | /* BIG FAT WARNING: | ||
261 | * Inline assembler in PADLOCK_XCRYPT_ASM() | ||
262 | * depends on the order of items in this structure. | ||
263 | * Don't blindly modify, reorder, etc! | ||
264 | */ | ||
265 | struct padlock_cipher_data { | ||
266 | unsigned char iv[AES_BLOCK_SIZE]; /* Initialization vector */ | ||
267 | union { | ||
268 | unsigned int pad[4]; | ||
269 | struct { | ||
270 | int rounds : 4; | ||
271 | int dgst : 1; /* n/a in C3 */ | ||
272 | int align : 1; /* n/a in C3 */ | ||
273 | int ciphr : 1; /* n/a in C3 */ | ||
274 | unsigned int keygen : 1; | ||
275 | int interm : 1; | ||
276 | unsigned int encdec : 1; | ||
277 | int ksize : 2; | ||
278 | } b; | ||
279 | } cword; /* Control word */ | ||
280 | AES_KEY ks; /* Encryption key */ | ||
281 | }; | ||
282 | |||
283 | /* | ||
284 | * Essentially this variable belongs in thread local storage. | ||
285 | * Having this variable global on the other hand can only cause | ||
286 | * few bogus key reloads [if any at all on single-CPU system], | ||
287 | * so we accept the penalty... | ||
288 | */ | ||
289 | static volatile struct padlock_cipher_data *padlock_saved_context; | ||
290 | #endif | ||
291 | |||
292 | /* | ||
293 | * ======================================================= | ||
294 | * Inline assembler section(s). | ||
295 | * ======================================================= | ||
296 | * Order of arguments is chosen to facilitate Windows port | ||
297 | * using __fastcall calling convention. If you wish to add | ||
298 | * more routines, keep in mind that first __fastcall | ||
299 | * argument is passed in %ecx and second - in %edx. | ||
300 | * ======================================================= | ||
301 | */ | ||
302 | #if defined(__GNUC__) && __GNUC__>=2 | ||
303 | /* | ||
304 | * As for excessive "push %ebx"/"pop %ebx" found all over. | ||
305 | * When generating position-independent code GCC won't let | ||
306 | * us use "b" in assembler templates nor even respect "ebx" | ||
307 | * in "clobber description." Therefore the trouble... | ||
308 | */ | ||
309 | |||
310 | /* Helper function - check if a CPUID instruction | ||
311 | is available on this CPU */ | ||
312 | static int | ||
313 | padlock_insn_cpuid_available(void) | ||
314 | { | ||
315 | int result = -1; | ||
316 | |||
317 | /* We're checking if the bit #21 of EFLAGS | ||
318 | can be toggled. If yes = CPUID is available. */ | ||
319 | asm volatile ( | ||
320 | "pushf\n" | ||
321 | "popl %%eax\n" | ||
322 | "xorl $0x200000, %%eax\n" | ||
323 | "movl %%eax, %%ecx\n" | ||
324 | "andl $0x200000, %%ecx\n" | ||
325 | "pushl %%eax\n" | ||
326 | "popf\n" | ||
327 | "pushf\n" | ||
328 | "popl %%eax\n" | ||
329 | "andl $0x200000, %%eax\n" | ||
330 | "xorl %%eax, %%ecx\n" | ||
331 | "movl %%ecx, %0\n" | ||
332 | : "=r" (result) : : "eax", "ecx"); | ||
333 | |||
334 | return (result == 0); | ||
335 | } | ||
336 | |||
337 | /* Load supported features of the CPU to see if | ||
338 | the PadLock is available. */ | ||
339 | static int | ||
340 | padlock_available(void) | ||
341 | { | ||
342 | char vendor_string[16]; | ||
343 | unsigned int eax, edx; | ||
344 | |||
345 | /* First check if the CPUID instruction is available at all... */ | ||
346 | if (! padlock_insn_cpuid_available()) | ||
347 | return 0; | ||
348 | |||
349 | /* Are we running on the Centaur (VIA) CPU? */ | ||
350 | eax = 0x00000000; | ||
351 | vendor_string[12] = 0; | ||
352 | asm volatile ( | ||
353 | "pushl %%ebx\n" | ||
354 | "cpuid\n" | ||
355 | "movl %%ebx,(%%edi)\n" | ||
356 | "movl %%edx,4(%%edi)\n" | ||
357 | "movl %%ecx,8(%%edi)\n" | ||
358 | "popl %%ebx" | ||
359 | : "+a"(eax) : "D"(vendor_string) : "ecx", "edx"); | ||
360 | if (strcmp(vendor_string, "CentaurHauls") != 0) | ||
361 | return 0; | ||
362 | |||
363 | /* Check for Centaur Extended Feature Flags presence */ | ||
364 | eax = 0xC0000000; | ||
365 | asm volatile ("pushl %%ebx; cpuid; popl %%ebx" | ||
366 | : "+a"(eax) : : "ecx", "edx"); | ||
367 | if (eax < 0xC0000001) | ||
368 | return 0; | ||
369 | |||
370 | /* Read the Centaur Extended Feature Flags */ | ||
371 | eax = 0xC0000001; | ||
372 | asm volatile ("pushl %%ebx; cpuid; popl %%ebx" | ||
373 | : "+a"(eax), "=d"(edx) : : "ecx"); | ||
374 | |||
375 | /* Fill up some flags */ | ||
376 | padlock_use_ace = ((edx & (0x3 << 6)) == (0x3 << 6)); | ||
377 | padlock_use_rng = ((edx & (0x3 << 2)) == (0x3 << 2)); | ||
378 | |||
379 | return padlock_use_ace + padlock_use_rng; | ||
380 | } | ||
381 | |||
382 | #ifndef OPENSSL_NO_AES | ||
383 | /* Our own htonl()/ntohl() */ | ||
384 | static inline void | ||
385 | padlock_bswapl(AES_KEY *ks) | ||
386 | { | ||
387 | size_t i = sizeof(ks->rd_key)/sizeof(ks->rd_key[0]); | ||
388 | unsigned int *key = ks->rd_key; | ||
389 | |||
390 | while (i--) { | ||
391 | asm volatile ("bswapl %0" : "+r"(*key)); | ||
392 | key++; | ||
393 | } | ||
394 | } | ||
395 | #endif | ||
396 | |||
397 | /* Force key reload from memory to the CPU microcode. | ||
398 | Loading EFLAGS from the stack clears EFLAGS[30] | ||
399 | which does the trick. */ | ||
400 | static inline void | ||
401 | padlock_reload_key(void) | ||
402 | { | ||
403 | asm volatile ("pushfl; popfl"); | ||
404 | } | ||
405 | |||
406 | #ifndef OPENSSL_NO_AES | ||
407 | /* | ||
408 | * This is heuristic key context tracing. At first one | ||
409 | * believes that one should use atomic swap instructions, | ||
410 | * but it's not actually necessary. Point is that if | ||
411 | * padlock_saved_context was changed by another thread | ||
412 | * after we've read it and before we compare it with cdata, | ||
413 | * our key *shall* be reloaded upon thread context switch | ||
414 | * and we are therefore set in either case... | ||
415 | */ | ||
416 | static inline void | ||
417 | padlock_verify_context(struct padlock_cipher_data *cdata) | ||
418 | { | ||
419 | asm volatile ( | ||
420 | "pushfl\n" | ||
421 | " btl $30,(%%esp)\n" | ||
422 | " jnc 1f\n" | ||
423 | " cmpl %2,%1\n" | ||
424 | " je 1f\n" | ||
425 | " popfl\n" | ||
426 | " subl $4,%%esp\n" | ||
427 | "1: addl $4,%%esp\n" | ||
428 | " movl %2,%0" | ||
429 | :"+m"(padlock_saved_context) | ||
430 | : "r"(padlock_saved_context), "r"(cdata) : "cc"); | ||
431 | } | ||
432 | |||
433 | /* Template for padlock_xcrypt_* modes */ | ||
434 | /* BIG FAT WARNING: | ||
435 | * The offsets used with 'leal' instructions | ||
436 | * describe items of the 'padlock_cipher_data' | ||
437 | * structure. | ||
438 | */ | ||
439 | #define PADLOCK_XCRYPT_ASM(name,rep_xcrypt) \ | ||
440 | static inline void *name(size_t cnt, \ | ||
441 | struct padlock_cipher_data *cdata, \ | ||
442 | void *out, const void *inp) \ | ||
443 | { void *iv; \ | ||
444 | asm volatile ( "pushl %%ebx\n" \ | ||
445 | " leal 16(%0),%%edx\n" \ | ||
446 | " leal 32(%0),%%ebx\n" \ | ||
447 | rep_xcrypt "\n" \ | ||
448 | " popl %%ebx" \ | ||
449 | : "=a"(iv), "=c"(cnt), "=D"(out), "=S"(inp) \ | ||
450 | : "0"(cdata), "1"(cnt), "2"(out), "3"(inp) \ | ||
451 | : "edx", "cc", "memory"); \ | ||
452 | return iv; \ | ||
453 | } | ||
454 | |||
455 | /* Generate all functions with appropriate opcodes */ | ||
456 | PADLOCK_XCRYPT_ASM(padlock_xcrypt_ecb, ".byte 0xf3,0x0f,0xa7,0xc8") /* rep xcryptecb */ | ||
457 | PADLOCK_XCRYPT_ASM(padlock_xcrypt_cbc, ".byte 0xf3,0x0f,0xa7,0xd0") /* rep xcryptcbc */ | ||
458 | PADLOCK_XCRYPT_ASM(padlock_xcrypt_cfb, ".byte 0xf3,0x0f,0xa7,0xe0") /* rep xcryptcfb */ | ||
459 | PADLOCK_XCRYPT_ASM(padlock_xcrypt_ofb, ".byte 0xf3,0x0f,0xa7,0xe8") /* rep xcryptofb */ | ||
460 | #endif | ||
461 | |||
462 | /* The RNG call itself */ | ||
463 | static inline unsigned int | ||
464 | padlock_xstore(void *addr, unsigned int edx_in) | ||
465 | { | ||
466 | unsigned int eax_out; | ||
467 | |||
468 | asm volatile (".byte 0x0f,0xa7,0xc0" /* xstore */ | ||
469 | : "=a"(eax_out),"=m"(*(unsigned *)addr) | ||
470 | : "D"(addr), "d" (edx_in) | ||
471 | ); | ||
472 | |||
473 | return eax_out; | ||
474 | } | ||
475 | |||
476 | /* Why not inline 'rep movsd'? I failed to find information on what | ||
477 | * value in Direction Flag one can expect and consequently have to | ||
478 | * apply "better-safe-than-sorry" approach and assume "undefined." | ||
479 | * I could explicitly clear it and restore the original value upon | ||
480 | * return from padlock_aes_cipher, but it's presumably too much | ||
481 | * trouble for too little gain... | ||
482 | * | ||
483 | * In case you wonder 'rep xcrypt*' instructions above are *not* | ||
484 | * affected by the Direction Flag and pointers advance toward | ||
485 | * larger addresses unconditionally. | ||
486 | */ | ||
487 | static inline unsigned char * | ||
488 | padlock_memcpy(void *dst, const void *src, size_t n) | ||
489 | { | ||
490 | long *d = dst; | ||
491 | const long *s = src; | ||
492 | |||
493 | n /= sizeof(*d); | ||
494 | do { *d++ = *s++; | ||
495 | } while (--n); | ||
496 | |||
497 | return dst; | ||
498 | } | ||
499 | #endif | ||
500 | |||
501 | /* ===== AES encryption/decryption ===== */ | ||
502 | #ifndef OPENSSL_NO_AES | ||
503 | |||
504 | #if defined(NID_aes_128_cfb128) && ! defined (NID_aes_128_cfb) | ||
505 | #define NID_aes_128_cfb NID_aes_128_cfb128 | ||
506 | #endif | ||
507 | |||
508 | #if defined(NID_aes_128_ofb128) && ! defined (NID_aes_128_ofb) | ||
509 | #define NID_aes_128_ofb NID_aes_128_ofb128 | ||
510 | #endif | ||
511 | |||
512 | #if defined(NID_aes_192_cfb128) && ! defined (NID_aes_192_cfb) | ||
513 | #define NID_aes_192_cfb NID_aes_192_cfb128 | ||
514 | #endif | ||
515 | |||
516 | #if defined(NID_aes_192_ofb128) && ! defined (NID_aes_192_ofb) | ||
517 | #define NID_aes_192_ofb NID_aes_192_ofb128 | ||
518 | #endif | ||
519 | |||
520 | #if defined(NID_aes_256_cfb128) && ! defined (NID_aes_256_cfb) | ||
521 | #define NID_aes_256_cfb NID_aes_256_cfb128 | ||
522 | #endif | ||
523 | |||
524 | #if defined(NID_aes_256_ofb128) && ! defined (NID_aes_256_ofb) | ||
525 | #define NID_aes_256_ofb NID_aes_256_ofb128 | ||
526 | #endif | ||
527 | |||
528 | /* List of supported ciphers. */ | ||
529 | static int padlock_cipher_nids[] = { | ||
530 | NID_aes_128_ecb, | ||
531 | NID_aes_128_cbc, | ||
532 | NID_aes_128_cfb, | ||
533 | NID_aes_128_ofb, | ||
534 | |||
535 | NID_aes_192_ecb, | ||
536 | NID_aes_192_cbc, | ||
537 | NID_aes_192_cfb, | ||
538 | NID_aes_192_ofb, | ||
539 | |||
540 | NID_aes_256_ecb, | ||
541 | NID_aes_256_cbc, | ||
542 | NID_aes_256_cfb, | ||
543 | NID_aes_256_ofb, | ||
544 | }; | ||
545 | static int padlock_cipher_nids_num = (sizeof(padlock_cipher_nids)/ | ||
546 | sizeof(padlock_cipher_nids[0])); | ||
547 | |||
548 | /* Function prototypes ... */ | ||
549 | static int padlock_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, | ||
550 | const unsigned char *iv, int enc); | ||
551 | static int padlock_aes_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, | ||
552 | const unsigned char *in, size_t nbytes); | ||
553 | |||
554 | #define NEAREST_ALIGNED(ptr) ( (unsigned char *)(ptr) + \ | ||
555 | ( (0x10 - ((size_t)(ptr) & 0x0F)) & 0x0F ) ) | ||
556 | #define ALIGNED_CIPHER_DATA(ctx) ((struct padlock_cipher_data *)\ | ||
557 | NEAREST_ALIGNED(ctx->cipher_data)) | ||
558 | |||
559 | #define EVP_CIPHER_block_size_ECB AES_BLOCK_SIZE | ||
560 | #define EVP_CIPHER_block_size_CBC AES_BLOCK_SIZE | ||
561 | #define EVP_CIPHER_block_size_OFB 1 | ||
562 | #define EVP_CIPHER_block_size_CFB 1 | ||
563 | |||
564 | /* Declaring so many ciphers by hand would be a pain. | ||
565 | Instead introduce a bit of preprocessor magic :-) */ | ||
566 | #define DECLARE_AES_EVP(ksize,lmode,umode) \ | ||
567 | static const EVP_CIPHER padlock_aes_##ksize##_##lmode = { \ | ||
568 | NID_aes_##ksize##_##lmode, \ | ||
569 | EVP_CIPHER_block_size_##umode, \ | ||
570 | AES_KEY_SIZE_##ksize, \ | ||
571 | AES_BLOCK_SIZE, \ | ||
572 | 0 | EVP_CIPH_##umode##_MODE, \ | ||
573 | padlock_aes_init_key, \ | ||
574 | padlock_aes_cipher, \ | ||
575 | NULL, \ | ||
576 | sizeof(struct padlock_cipher_data) + 16, \ | ||
577 | EVP_CIPHER_set_asn1_iv, \ | ||
578 | EVP_CIPHER_get_asn1_iv, \ | ||
579 | NULL, \ | ||
580 | NULL \ | ||
581 | } | ||
582 | |||
583 | DECLARE_AES_EVP(128, ecb, ECB); | ||
584 | DECLARE_AES_EVP(128, cbc, CBC); | ||
585 | DECLARE_AES_EVP(128, cfb, CFB); | ||
586 | DECLARE_AES_EVP(128, ofb, OFB); | ||
587 | |||
588 | DECLARE_AES_EVP(192, ecb, ECB); | ||
589 | DECLARE_AES_EVP(192, cbc, CBC); | ||
590 | DECLARE_AES_EVP(192, cfb, CFB); | ||
591 | DECLARE_AES_EVP(192, ofb, OFB); | ||
592 | |||
593 | DECLARE_AES_EVP(256, ecb, ECB); | ||
594 | DECLARE_AES_EVP(256, cbc, CBC); | ||
595 | DECLARE_AES_EVP(256, cfb, CFB); | ||
596 | DECLARE_AES_EVP(256, ofb, OFB); | ||
597 | |||
598 | static int | ||
599 | padlock_ciphers(ENGINE *e, const EVP_CIPHER **cipher, const int **nids, int nid) | ||
600 | { | ||
601 | /* No specific cipher => return a list of supported nids ... */ | ||
602 | if (!cipher) { | ||
603 | *nids = padlock_cipher_nids; | ||
604 | return padlock_cipher_nids_num; | ||
605 | } | ||
606 | |||
607 | /* ... or the requested "cipher" otherwise */ | ||
608 | switch (nid) { | ||
609 | case NID_aes_128_ecb: | ||
610 | *cipher = &padlock_aes_128_ecb; | ||
611 | break; | ||
612 | case NID_aes_128_cbc: | ||
613 | *cipher = &padlock_aes_128_cbc; | ||
614 | break; | ||
615 | case NID_aes_128_cfb: | ||
616 | *cipher = &padlock_aes_128_cfb; | ||
617 | break; | ||
618 | case NID_aes_128_ofb: | ||
619 | *cipher = &padlock_aes_128_ofb; | ||
620 | break; | ||
621 | case NID_aes_192_ecb: | ||
622 | *cipher = &padlock_aes_192_ecb; | ||
623 | break; | ||
624 | case NID_aes_192_cbc: | ||
625 | *cipher = &padlock_aes_192_cbc; | ||
626 | break; | ||
627 | case NID_aes_192_cfb: | ||
628 | *cipher = &padlock_aes_192_cfb; | ||
629 | break; | ||
630 | case NID_aes_192_ofb: | ||
631 | *cipher = &padlock_aes_192_ofb; | ||
632 | break; | ||
633 | case NID_aes_256_ecb: | ||
634 | *cipher = &padlock_aes_256_ecb; | ||
635 | break; | ||
636 | case NID_aes_256_cbc: | ||
637 | *cipher = &padlock_aes_256_cbc; | ||
638 | break; | ||
639 | case NID_aes_256_cfb: | ||
640 | *cipher = &padlock_aes_256_cfb; | ||
641 | break; | ||
642 | case NID_aes_256_ofb: | ||
643 | *cipher = &padlock_aes_256_ofb; | ||
644 | break; | ||
645 | default: | ||
646 | /* Sorry, we don't support this NID */ | ||
647 | *cipher = NULL; | ||
648 | return 0; | ||
649 | } | ||
650 | |||
651 | return 1; | ||
652 | } | ||
653 | |||
654 | /* Prepare the encryption key for PadLock usage */ | ||
655 | static int | ||
656 | padlock_aes_init_key (EVP_CIPHER_CTX *ctx, const unsigned char *key, | ||
657 | const unsigned char *iv, int enc) | ||
658 | { | ||
659 | struct padlock_cipher_data *cdata; | ||
660 | int key_len = EVP_CIPHER_CTX_key_length(ctx) * 8; | ||
661 | |||
662 | if (key == NULL) | ||
663 | return 0; /* ERROR */ | ||
664 | |||
665 | cdata = ALIGNED_CIPHER_DATA(ctx); | ||
666 | memset(cdata, 0, sizeof(struct padlock_cipher_data)); | ||
667 | |||
668 | /* Prepare Control word. */ | ||
669 | if (EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_OFB_MODE) | ||
670 | cdata->cword.b.encdec = 0; | ||
671 | else | ||
672 | cdata->cword.b.encdec = (ctx->encrypt == 0); | ||
673 | cdata->cword.b.rounds = 10 + (key_len - 128) / 32; | ||
674 | cdata->cword.b.ksize = (key_len - 128) / 64; | ||
675 | |||
676 | switch (key_len) { | ||
677 | case 128: | ||
678 | /* PadLock can generate an extended key for | ||
679 | AES128 in hardware */ | ||
680 | memcpy(cdata->ks.rd_key, key, AES_KEY_SIZE_128); | ||
681 | cdata->cword.b.keygen = 0; | ||
682 | break; | ||
683 | |||
684 | case 192: | ||
685 | case 256: | ||
686 | /* Generate an extended AES key in software. | ||
687 | Needed for AES192/AES256 */ | ||
688 | /* Well, the above applies to Stepping 8 CPUs | ||
689 | and is listed as hardware errata. They most | ||
690 | likely will fix it at some point and then | ||
691 | a check for stepping would be due here. */ | ||
692 | if (EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_CFB_MODE || | ||
693 | EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_OFB_MODE || | ||
694 | enc) | ||
695 | AES_set_encrypt_key(key, key_len, &cdata->ks); | ||
696 | else | ||
697 | AES_set_decrypt_key(key, key_len, &cdata->ks); | ||
698 | #ifndef AES_ASM | ||
699 | /* OpenSSL C functions use byte-swapped extended key. */ | ||
700 | padlock_bswapl(&cdata->ks); | ||
701 | #endif | ||
702 | cdata->cword.b.keygen = 1; | ||
703 | break; | ||
704 | |||
705 | default: | ||
706 | /* ERROR */ | ||
707 | return 0; | ||
708 | } | ||
709 | |||
710 | /* | ||
711 | * This is done to cover for cases when user reuses the | ||
712 | * context for new key. The catch is that if we don't do | ||
713 | * this, padlock_eas_cipher might proceed with old key... | ||
714 | */ | ||
715 | padlock_reload_key (); | ||
716 | |||
717 | return 1; | ||
718 | } | ||
719 | |||
720 | /* | ||
721 | * Simplified version of padlock_aes_cipher() used when | ||
722 | * 1) both input and output buffers are at aligned addresses. | ||
723 | * or when | ||
724 | * 2) running on a newer CPU that doesn't require aligned buffers. | ||
725 | */ | ||
726 | static int | ||
727 | padlock_aes_cipher_omnivorous(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, | ||
728 | const unsigned char *in_arg, size_t nbytes) | ||
729 | { | ||
730 | struct padlock_cipher_data *cdata; | ||
731 | void *iv; | ||
732 | |||
733 | cdata = ALIGNED_CIPHER_DATA(ctx); | ||
734 | padlock_verify_context(cdata); | ||
735 | |||
736 | switch (EVP_CIPHER_CTX_mode(ctx)) { | ||
737 | case EVP_CIPH_ECB_MODE: | ||
738 | padlock_xcrypt_ecb(nbytes / AES_BLOCK_SIZE, cdata, | ||
739 | out_arg, in_arg); | ||
740 | break; | ||
741 | |||
742 | case EVP_CIPH_CBC_MODE: | ||
743 | memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); | ||
744 | iv = padlock_xcrypt_cbc(nbytes / AES_BLOCK_SIZE, cdata, | ||
745 | out_arg, in_arg); | ||
746 | memcpy(ctx->iv, iv, AES_BLOCK_SIZE); | ||
747 | break; | ||
748 | |||
749 | case EVP_CIPH_CFB_MODE: | ||
750 | memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); | ||
751 | iv = padlock_xcrypt_cfb(nbytes / AES_BLOCK_SIZE, cdata, | ||
752 | out_arg, in_arg); | ||
753 | memcpy(ctx->iv, iv, AES_BLOCK_SIZE); | ||
754 | break; | ||
755 | |||
756 | case EVP_CIPH_OFB_MODE: | ||
757 | memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); | ||
758 | padlock_xcrypt_ofb(nbytes / AES_BLOCK_SIZE, cdata, | ||
759 | out_arg, in_arg); | ||
760 | memcpy(ctx->iv, cdata->iv, AES_BLOCK_SIZE); | ||
761 | break; | ||
762 | |||
763 | default: | ||
764 | return 0; | ||
765 | } | ||
766 | |||
767 | memset(cdata->iv, 0, AES_BLOCK_SIZE); | ||
768 | |||
769 | return 1; | ||
770 | } | ||
771 | |||
772 | #ifndef PADLOCK_CHUNK | ||
773 | # define PADLOCK_CHUNK 512 /* Must be a power of 2 larger than 16 */ | ||
774 | #endif | ||
775 | #if PADLOCK_CHUNK<16 || PADLOCK_CHUNK&(PADLOCK_CHUNK-1) | ||
776 | # error "insane PADLOCK_CHUNK..." | ||
777 | #endif | ||
778 | |||
779 | /* Re-align the arguments to 16-Bytes boundaries and run the | ||
780 | encryption function itself. This function is not AES-specific. */ | ||
781 | static int | ||
782 | padlock_aes_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out_arg, | ||
783 | const unsigned char *in_arg, size_t nbytes) | ||
784 | { | ||
785 | struct padlock_cipher_data *cdata; | ||
786 | const void *inp; | ||
787 | unsigned char *out; | ||
788 | void *iv; | ||
789 | int inp_misaligned, out_misaligned, realign_in_loop; | ||
790 | size_t chunk, allocated = 0; | ||
791 | |||
792 | /* ctx->num is maintained in byte-oriented modes, | ||
793 | such as CFB and OFB... */ | ||
794 | if ((chunk = ctx->num)) { | ||
795 | /* borrow chunk variable */ | ||
796 | unsigned char *ivp = ctx->iv; | ||
797 | |||
798 | switch (EVP_CIPHER_CTX_mode(ctx)) { | ||
799 | case EVP_CIPH_CFB_MODE: | ||
800 | if (chunk >= AES_BLOCK_SIZE) | ||
801 | return 0; /* bogus value */ | ||
802 | |||
803 | if (ctx->encrypt) | ||
804 | while (chunk < AES_BLOCK_SIZE && nbytes != 0) { | ||
805 | ivp[chunk] = *(out_arg++) = *(in_arg++) ^ ivp[chunk]; | ||
806 | chunk++, nbytes--; | ||
807 | } | ||
808 | else | ||
809 | while (chunk < AES_BLOCK_SIZE && nbytes != 0) { | ||
810 | unsigned char c = *(in_arg++); | ||
811 | *(out_arg++) = c ^ ivp[chunk]; | ||
812 | ivp[chunk++] = c, nbytes--; | ||
813 | } | ||
814 | |||
815 | ctx->num = chunk % AES_BLOCK_SIZE; | ||
816 | break; | ||
817 | case EVP_CIPH_OFB_MODE: | ||
818 | if (chunk >= AES_BLOCK_SIZE) | ||
819 | return 0; /* bogus value */ | ||
820 | |||
821 | while (chunk < AES_BLOCK_SIZE && nbytes != 0) { | ||
822 | *(out_arg++) = *(in_arg++) ^ ivp[chunk]; | ||
823 | chunk++, nbytes--; | ||
824 | } | ||
825 | |||
826 | ctx->num = chunk % AES_BLOCK_SIZE; | ||
827 | break; | ||
828 | } | ||
829 | } | ||
830 | |||
831 | if (nbytes == 0) | ||
832 | return 1; | ||
833 | #if 0 | ||
834 | if (nbytes % AES_BLOCK_SIZE) | ||
835 | return 0; /* are we expected to do tail processing? */ | ||
836 | #else | ||
837 | /* nbytes is always multiple of AES_BLOCK_SIZE in ECB and CBC | ||
838 | modes and arbitrary value in byte-oriented modes, such as | ||
839 | CFB and OFB... */ | ||
840 | #endif | ||
841 | |||
842 | /* VIA promises CPUs that won't require alignment in the future. | ||
843 | For now padlock_aes_align_required is initialized to 1 and | ||
844 | the condition is never met... */ | ||
845 | /* C7 core is capable to manage unaligned input in non-ECB[!] | ||
846 | mode, but performance penalties appear to be approximately | ||
847 | same as for software alignment below or ~3x. They promise to | ||
848 | improve it in the future, but for now we can just as well | ||
849 | pretend that it can only handle aligned input... */ | ||
850 | if (!padlock_aes_align_required && (nbytes % AES_BLOCK_SIZE) == 0) | ||
851 | return padlock_aes_cipher_omnivorous(ctx, out_arg, in_arg, | ||
852 | nbytes); | ||
853 | |||
854 | inp_misaligned = (((size_t)in_arg) & 0x0F); | ||
855 | out_misaligned = (((size_t)out_arg) & 0x0F); | ||
856 | |||
857 | /* Note that even if output is aligned and input not, | ||
858 | * I still prefer to loop instead of copy the whole | ||
859 | * input and then encrypt in one stroke. This is done | ||
860 | * in order to improve L1 cache utilization... */ | ||
861 | realign_in_loop = out_misaligned|inp_misaligned; | ||
862 | |||
863 | if (!realign_in_loop && (nbytes % AES_BLOCK_SIZE) == 0) | ||
864 | return padlock_aes_cipher_omnivorous(ctx, out_arg, in_arg, | ||
865 | nbytes); | ||
866 | |||
867 | /* this takes one "if" out of the loops */ | ||
868 | chunk = nbytes; | ||
869 | chunk %= PADLOCK_CHUNK; | ||
870 | if (chunk == 0) | ||
871 | chunk = PADLOCK_CHUNK; | ||
872 | |||
873 | if (out_misaligned) { | ||
874 | /* optimize for small input */ | ||
875 | allocated = (chunk < nbytes ? PADLOCK_CHUNK : nbytes); | ||
876 | out = alloca(0x10 + allocated); | ||
877 | out = NEAREST_ALIGNED(out); | ||
878 | } else | ||
879 | out = out_arg; | ||
880 | |||
881 | cdata = ALIGNED_CIPHER_DATA(ctx); | ||
882 | padlock_verify_context(cdata); | ||
883 | |||
884 | switch (EVP_CIPHER_CTX_mode(ctx)) { | ||
885 | case EVP_CIPH_ECB_MODE: | ||
886 | do { | ||
887 | if (inp_misaligned) | ||
888 | inp = padlock_memcpy(out, in_arg, chunk); | ||
889 | else | ||
890 | inp = in_arg; | ||
891 | in_arg += chunk; | ||
892 | |||
893 | padlock_xcrypt_ecb(chunk / AES_BLOCK_SIZE, cdata, | ||
894 | out, inp); | ||
895 | |||
896 | if (out_misaligned) | ||
897 | out_arg = padlock_memcpy(out_arg, out, chunk) + | ||
898 | chunk; | ||
899 | else | ||
900 | out = out_arg += chunk; | ||
901 | |||
902 | nbytes -= chunk; | ||
903 | chunk = PADLOCK_CHUNK; | ||
904 | } while (nbytes); | ||
905 | break; | ||
906 | |||
907 | case EVP_CIPH_CBC_MODE: | ||
908 | memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); | ||
909 | goto cbc_shortcut; | ||
910 | do { | ||
911 | if (iv != cdata->iv) | ||
912 | memcpy(cdata->iv, iv, AES_BLOCK_SIZE); | ||
913 | chunk = PADLOCK_CHUNK; | ||
914 | cbc_shortcut: /* optimize for small input */ | ||
915 | if (inp_misaligned) | ||
916 | inp = padlock_memcpy(out, in_arg, chunk); | ||
917 | else | ||
918 | inp = in_arg; | ||
919 | in_arg += chunk; | ||
920 | |||
921 | iv = padlock_xcrypt_cbc(chunk / AES_BLOCK_SIZE, cdata, | ||
922 | out, inp); | ||
923 | |||
924 | if (out_misaligned) | ||
925 | out_arg = padlock_memcpy(out_arg, out, chunk) + | ||
926 | chunk; | ||
927 | else | ||
928 | out = out_arg += chunk; | ||
929 | } while (nbytes -= chunk); | ||
930 | memcpy(ctx->iv, iv, AES_BLOCK_SIZE); | ||
931 | break; | ||
932 | |||
933 | case EVP_CIPH_CFB_MODE: | ||
934 | memcpy (iv = cdata->iv, ctx->iv, AES_BLOCK_SIZE); | ||
935 | chunk &= ~(AES_BLOCK_SIZE - 1); | ||
936 | if (chunk) | ||
937 | goto cfb_shortcut; | ||
938 | else | ||
939 | goto cfb_skiploop; | ||
940 | do { | ||
941 | if (iv != cdata->iv) | ||
942 | memcpy(cdata->iv, iv, AES_BLOCK_SIZE); | ||
943 | chunk = PADLOCK_CHUNK; | ||
944 | cfb_shortcut: /* optimize for small input */ | ||
945 | if (inp_misaligned) | ||
946 | inp = padlock_memcpy(out, in_arg, chunk); | ||
947 | else | ||
948 | inp = in_arg; | ||
949 | in_arg += chunk; | ||
950 | |||
951 | iv = padlock_xcrypt_cfb(chunk / AES_BLOCK_SIZE, cdata, | ||
952 | out, inp); | ||
953 | |||
954 | if (out_misaligned) | ||
955 | out_arg = padlock_memcpy(out_arg, out, chunk) + | ||
956 | chunk; | ||
957 | else | ||
958 | out = out_arg += chunk; | ||
959 | |||
960 | nbytes -= chunk; | ||
961 | } while (nbytes >= AES_BLOCK_SIZE); | ||
962 | |||
963 | cfb_skiploop: | ||
964 | if (nbytes) { | ||
965 | unsigned char *ivp = cdata->iv; | ||
966 | |||
967 | if (iv != ivp) { | ||
968 | memcpy(ivp, iv, AES_BLOCK_SIZE); | ||
969 | iv = ivp; | ||
970 | } | ||
971 | ctx->num = nbytes; | ||
972 | if (cdata->cword.b.encdec) { | ||
973 | cdata->cword.b.encdec = 0; | ||
974 | padlock_reload_key(); | ||
975 | padlock_xcrypt_ecb(1, cdata, ivp, ivp); | ||
976 | cdata->cword.b.encdec = 1; | ||
977 | padlock_reload_key(); | ||
978 | while (nbytes) { | ||
979 | unsigned char c = *(in_arg++); | ||
980 | *(out_arg++) = c ^ *ivp; | ||
981 | *(ivp++) = c, nbytes--; | ||
982 | } | ||
983 | } else { | ||
984 | padlock_reload_key(); | ||
985 | padlock_xcrypt_ecb(1, cdata, ivp, ivp); | ||
986 | padlock_reload_key(); | ||
987 | while (nbytes) { | ||
988 | *ivp = *(out_arg++) = *(in_arg++) ^ *ivp; | ||
989 | ivp++, nbytes--; | ||
990 | } | ||
991 | } | ||
992 | } | ||
993 | |||
994 | memcpy(ctx->iv, iv, AES_BLOCK_SIZE); | ||
995 | break; | ||
996 | |||
997 | case EVP_CIPH_OFB_MODE: | ||
998 | memcpy(cdata->iv, ctx->iv, AES_BLOCK_SIZE); | ||
999 | chunk &= ~(AES_BLOCK_SIZE - 1); | ||
1000 | if (chunk) do { | ||
1001 | if (inp_misaligned) | ||
1002 | inp = padlock_memcpy(out, in_arg, chunk); | ||
1003 | else | ||
1004 | inp = in_arg; | ||
1005 | in_arg += chunk; | ||
1006 | |||
1007 | padlock_xcrypt_ofb(chunk / AES_BLOCK_SIZE, cdata, | ||
1008 | out, inp); | ||
1009 | |||
1010 | if (out_misaligned) | ||
1011 | out_arg = padlock_memcpy(out_arg, out, chunk) + | ||
1012 | chunk; | ||
1013 | else | ||
1014 | out = out_arg += chunk; | ||
1015 | |||
1016 | nbytes -= chunk; | ||
1017 | chunk = PADLOCK_CHUNK; | ||
1018 | } while (nbytes >= AES_BLOCK_SIZE); | ||
1019 | |||
1020 | if (nbytes) { | ||
1021 | unsigned char *ivp = cdata->iv; | ||
1022 | |||
1023 | ctx->num = nbytes; | ||
1024 | padlock_reload_key(); /* empirically found */ | ||
1025 | padlock_xcrypt_ecb(1, cdata, ivp, ivp); | ||
1026 | padlock_reload_key(); /* empirically found */ | ||
1027 | while (nbytes) { | ||
1028 | *(out_arg++) = *(in_arg++) ^ *ivp; | ||
1029 | ivp++, nbytes--; | ||
1030 | } | ||
1031 | } | ||
1032 | |||
1033 | memcpy(ctx->iv, cdata->iv, AES_BLOCK_SIZE); | ||
1034 | break; | ||
1035 | |||
1036 | default: | ||
1037 | return 0; | ||
1038 | } | ||
1039 | |||
1040 | /* Clean the realign buffer if it was used */ | ||
1041 | if (out_misaligned) { | ||
1042 | volatile unsigned long *p = (void *)out; | ||
1043 | size_t n = allocated/sizeof(*p); | ||
1044 | while (n--) | ||
1045 | *p++ = 0; | ||
1046 | } | ||
1047 | |||
1048 | memset(cdata->iv, 0, AES_BLOCK_SIZE); | ||
1049 | |||
1050 | return 1; | ||
1051 | } | ||
1052 | |||
1053 | #endif /* OPENSSL_NO_AES */ | ||
1054 | |||
1055 | /* ===== Random Number Generator ===== */ | ||
1056 | /* | ||
1057 | * This code is not engaged. The reason is that it does not comply | ||
1058 | * with recommendations for VIA RNG usage for secure applications | ||
1059 | * (posted at http://www.via.com.tw/en/viac3/c3.jsp) nor does it | ||
1060 | * provide meaningful error control... | ||
1061 | */ | ||
1062 | /* Wrapper that provides an interface between the API and | ||
1063 | the raw PadLock RNG */ | ||
1064 | static int | ||
1065 | padlock_rand_bytes(unsigned char *output, int count) | ||
1066 | { | ||
1067 | unsigned int eax, buf; | ||
1068 | |||
1069 | while (count >= 8) { | ||
1070 | eax = padlock_xstore(output, 0); | ||
1071 | if (!(eax & (1 << 6))) | ||
1072 | return 0; /* RNG disabled */ | ||
1073 | /* this ---vv--- covers DC bias, Raw Bits and String Filter */ | ||
1074 | if (eax & (0x1F << 10)) | ||
1075 | return 0; | ||
1076 | if ((eax & 0x1F) == 0) | ||
1077 | continue; /* no data, retry... */ | ||
1078 | if ((eax & 0x1F) != 8) | ||
1079 | return 0; /* fatal failure... */ | ||
1080 | output += 8; | ||
1081 | count -= 8; | ||
1082 | } | ||
1083 | while (count > 0) { | ||
1084 | eax = padlock_xstore(&buf, 3); | ||
1085 | if (!(eax & (1 << 6))) | ||
1086 | return 0; /* RNG disabled */ | ||
1087 | /* this ---vv--- covers DC bias, Raw Bits and String Filter */ | ||
1088 | if (eax & (0x1F << 10)) | ||
1089 | return 0; | ||
1090 | if ((eax & 0x1F) == 0) | ||
1091 | continue; /* no data, retry... */ | ||
1092 | if ((eax & 0x1F) != 1) | ||
1093 | return 0; /* fatal failure... */ | ||
1094 | *output++ = (unsigned char)buf; | ||
1095 | count--; | ||
1096 | } | ||
1097 | *(volatile unsigned int *)&buf = 0; | ||
1098 | |||
1099 | return 1; | ||
1100 | } | ||
1101 | |||
1102 | /* Dummy but necessary function */ | ||
1103 | static int | ||
1104 | padlock_rand_status(void) | ||
1105 | { | ||
1106 | return 1; | ||
1107 | } | ||
1108 | |||
1109 | /* Prepare structure for registration */ | ||
1110 | static RAND_METHOD padlock_rand = { | ||
1111 | .bytes = padlock_rand_bytes, | ||
1112 | .pseudorand = padlock_rand_bytes, | ||
1113 | .status = padlock_rand_status | ||
1114 | }; | ||
1115 | |||
1116 | #else /* !COMPILE_HW_PADLOCK */ | ||
1117 | #ifndef OPENSSL_NO_DYNAMIC_ENGINE | ||
1118 | extern int bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns); | ||
1119 | extern int | ||
1120 | bind_engine(ENGINE *e, const char *id, const dynamic_fns *fns) { | ||
1121 | return 0; | ||
1122 | } | ||
1123 | IMPLEMENT_DYNAMIC_CHECK_FN() | ||
1124 | #endif | ||
1125 | #endif /* COMPILE_HW_PADLOCK */ | ||
1126 | |||
1127 | #endif /* !OPENSSL_NO_HW_PADLOCK */ | ||
1128 | #endif /* !OPENSSL_NO_HW */ | ||
diff --git a/src/lib/libcrypto/engine/eng_padlock.ec b/src/lib/libcrypto/engine/eng_padlock.ec deleted file mode 100644 index a0e7cbd60d..0000000000 --- a/src/lib/libcrypto/engine/eng_padlock.ec +++ /dev/null | |||
@@ -1 +0,0 @@ | |||
1 | L PADLOCK eng_padlock_err.h eng_padlock_err.c | ||