diff options
author | tb <> | 2022-07-13 06:32:15 +0000 |
---|---|---|
committer | tb <> | 2022-07-13 06:32:15 +0000 |
commit | 0f736c435cd308be3d2717055a895e61ca7d3601 (patch) | |
tree | 5531c91a8ea662fd9d7b17a8acb01ef94358e585 /src | |
parent | 14c7b5316be32594e8560f4316a56f99d5dfbab7 (diff) | |
download | openbsd-0f736c435cd308be3d2717055a895e61ca7d3601.tar.gz openbsd-0f736c435cd308be3d2717055a895e61ca7d3601.tar.bz2 openbsd-0f736c435cd308be3d2717055a895e61ca7d3601.zip |
Implement the Baillie-PSW primality test
It has long been known that pure Miller-Rabin primality tests are
insufficient. "Prime and Prejudice: Primality Testing Under Adversarial
Conditions" https://eprint.iacr.org/2018/749 points out severe flaws
in many widely used libraries. In particular, they exhibited a method to
generate 2048-bit composites that bypass the default OpenSSL (and hence
LibreSSL) primality test with a probability of 1/16 (!).
As a remedy, the authors recommend switching to using BPSW wherever
possible. This possibility has always been there, but someone had to
sit down and actually implement a properly licensed piece of code.
Fortunately, espie suggested to Martin Grenouilloux to do precisely this
after asking us whether we would be interested. Of course we were!
After a good first implementation from Martin and a lot of back and
forth, we came up with the present version.
This implementation is ~50% slower than the current default Miller-Rabin
test, but that is a small price to pay given the improvements.
Thanks to Martin Grenouilloux <martin.grenouilloux () lse ! epita ! fr>
for this awesome work, to espie without whom it wouldn't have happened,
and to djm for pointing us at this problem a long time back.
ok jsing
Diffstat (limited to 'src')
-rw-r--r-- | src/lib/libcrypto/bn/bn_bpsw.c | 420 | ||||
-rw-r--r-- | src/lib/libcrypto/bn/bn_lcl.h | 4 |
2 files changed, 423 insertions, 1 deletions
diff --git a/src/lib/libcrypto/bn/bn_bpsw.c b/src/lib/libcrypto/bn/bn_bpsw.c new file mode 100644 index 0000000000..0741c6fffe --- /dev/null +++ b/src/lib/libcrypto/bn/bn_bpsw.c | |||
@@ -0,0 +1,420 @@ | |||
1 | /* $OpenBSD: bn_bpsw.c,v 1.1 2022/07/13 06:32:15 tb Exp $ */ | ||
2 | /* | ||
3 | * Copyright (c) 2022 Martin Grenouilloux <martin.grenouilloux@lse.epita.fr> | ||
4 | * Copyright (c) 2022 Theo Buehler <tb@openbsd.org> | ||
5 | * | ||
6 | * Permission to use, copy, modify, and distribute this software for any | ||
7 | * purpose with or without fee is hereby granted, provided that the above | ||
8 | * copyright notice and this permission notice appear in all copies. | ||
9 | * | ||
10 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
11 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
12 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
13 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
14 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
15 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
16 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
17 | */ | ||
18 | |||
19 | #include <openssl/bn.h> | ||
20 | |||
21 | #include "bn_lcl.h" | ||
22 | #include "bn_prime.h" | ||
23 | |||
24 | /* | ||
25 | * For an odd n compute a / 2 (mod n). If a is even, we can do a plain | ||
26 | * division, otherwise calculate (a + n) / 2. Then reduce (mod n). | ||
27 | */ | ||
28 | static int | ||
29 | bn_div_by_two_mod_odd_n(BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
30 | { | ||
31 | if (!BN_is_odd(n)) | ||
32 | return 0; | ||
33 | |||
34 | if (BN_is_odd(a)) { | ||
35 | if (!BN_add(a, a, n)) | ||
36 | return 0; | ||
37 | } | ||
38 | if (!BN_rshift1(a, a)) | ||
39 | return 0; | ||
40 | if (!BN_mod_ct(a, a, n, ctx)) | ||
41 | return 0; | ||
42 | |||
43 | return 1; | ||
44 | } | ||
45 | |||
46 | /* | ||
47 | * Given the next binary digit of k and the current Lucas terms U and V, this | ||
48 | * helper computes the next terms in the Lucas sequence defined as follows: | ||
49 | * | ||
50 | * U' = U * V (mod n) | ||
51 | * V' = (V^2 + D * U^2) / 2 (mod n) | ||
52 | * | ||
53 | * If digit == 0, bn_lucas_step() returns U' and V'. If digit == 1, it returns | ||
54 | * | ||
55 | * U'' = (U' + V') / 2 (mod n) | ||
56 | * V'' = (V' + D * U') / 2 (mod n) | ||
57 | * | ||
58 | * Compare with FIPS 186-4, Appendix C.3.3, step 6. | ||
59 | */ | ||
60 | static int | ||
61 | bn_lucas_step(BIGNUM *U, BIGNUM *V, int digit, const BIGNUM *D, | ||
62 | const BIGNUM *n, BN_CTX *ctx) | ||
63 | { | ||
64 | BIGNUM *tmp; | ||
65 | int ret = 0; | ||
66 | |||
67 | BN_CTX_start(ctx); | ||
68 | |||
69 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
70 | goto err; | ||
71 | |||
72 | /* Calculate D * U^2 before computing U'. */ | ||
73 | if (!BN_sqr(tmp, U, ctx)) | ||
74 | goto err; | ||
75 | if (!BN_mul(tmp, D, tmp, ctx)) | ||
76 | goto err; | ||
77 | |||
78 | /* U' = U * V (mod n). */ | ||
79 | if (!BN_mod_mul(U, U, V, n, ctx)) | ||
80 | goto err; | ||
81 | |||
82 | /* V' = (V^2 + D * U^2) / 2 (mod n). */ | ||
83 | if (!BN_sqr(V, V, ctx)) | ||
84 | goto err; | ||
85 | if (!BN_add(V, V, tmp)) | ||
86 | goto err; | ||
87 | if (!bn_div_by_two_mod_odd_n(V, n, ctx)) | ||
88 | goto err; | ||
89 | |||
90 | if (digit == 1) { | ||
91 | /* Calculate D * U' before computing U''. */ | ||
92 | if (!BN_mul(tmp, D, U, ctx)) | ||
93 | goto err; | ||
94 | |||
95 | /* U'' = (U' + V') / 2 (mod n). */ | ||
96 | if (!BN_add(U, U, V)) | ||
97 | goto err; | ||
98 | if (!bn_div_by_two_mod_odd_n(U, n, ctx)) | ||
99 | goto err; | ||
100 | |||
101 | /* V'' = (V' + D * U') / 2 (mod n). */ | ||
102 | if (!BN_add(V, V, tmp)) | ||
103 | goto err; | ||
104 | if (!bn_div_by_two_mod_odd_n(V, n, ctx)) | ||
105 | goto err; | ||
106 | } | ||
107 | |||
108 | ret = 1; | ||
109 | |||
110 | err: | ||
111 | BN_CTX_end(ctx); | ||
112 | |||
113 | return ret; | ||
114 | } | ||
115 | |||
116 | /* | ||
117 | * Compute the Lucas terms U_k, V_k, see FIPS 186-4, Appendix C.3.3, steps 4-6. | ||
118 | */ | ||
119 | static int | ||
120 | bn_lucas(BIGNUM *U, BIGNUM *V, const BIGNUM *k, const BIGNUM *D, | ||
121 | const BIGNUM *n, BN_CTX *ctx) | ||
122 | { | ||
123 | int digit, i; | ||
124 | int ret = 0; | ||
125 | |||
126 | if (!BN_one(U)) | ||
127 | goto err; | ||
128 | if (!BN_one(V)) | ||
129 | goto err; | ||
130 | |||
131 | /* | ||
132 | * Iterate over the digits of k from MSB to LSB. Start at digit 2 | ||
133 | * since the first digit is dealt with by setting U = 1 and V = 1. | ||
134 | */ | ||
135 | for (i = BN_num_bits(k) - 2; i >= 0; i--) { | ||
136 | digit = BN_is_bit_set(k, i); | ||
137 | |||
138 | if (!bn_lucas_step(U, V, digit, D, n, ctx)) | ||
139 | goto err; | ||
140 | } | ||
141 | |||
142 | ret = 1; | ||
143 | |||
144 | err: | ||
145 | return ret; | ||
146 | } | ||
147 | |||
148 | /* | ||
149 | * This is a stronger variant of the Lucas test in FIPS 186-4, Appendix C.3.3. | ||
150 | * Every strong Lucas pseudoprime n is also a Lucas pseudoprime since | ||
151 | * U_{n+1} == 0 follows from U_k == 0 or V_{k * 2^r} == 0 for 0 <= r < s. | ||
152 | */ | ||
153 | static int | ||
154 | bn_strong_lucas_test(int *is_prime, const BIGNUM *n, const BIGNUM *D, | ||
155 | BN_CTX *ctx) | ||
156 | { | ||
157 | BIGNUM *k, *U, *V; | ||
158 | int r, s; | ||
159 | int ret = 0; | ||
160 | |||
161 | BN_CTX_start(ctx); | ||
162 | |||
163 | if ((k = BN_CTX_get(ctx)) == NULL) | ||
164 | goto err; | ||
165 | if ((U = BN_CTX_get(ctx)) == NULL) | ||
166 | goto err; | ||
167 | if ((V = BN_CTX_get(ctx)) == NULL) | ||
168 | goto err; | ||
169 | |||
170 | /* | ||
171 | * Factorize n + 1 = k * 2^s with odd k: shift away the s trailing ones | ||
172 | * of n and set the lowest bit of the resulting number k. | ||
173 | */ | ||
174 | s = 0; | ||
175 | while (BN_is_bit_set(n, s)) | ||
176 | s++; | ||
177 | if (!BN_rshift(k, n, s)) | ||
178 | goto err; | ||
179 | if (!BN_set_bit(k, 0)) | ||
180 | goto err; | ||
181 | |||
182 | /* | ||
183 | * Calculate the Lucas terms U_k and V_k. If either of them is zero, | ||
184 | * then n is a strong Lucas pseudoprime. | ||
185 | */ | ||
186 | if (!bn_lucas(U, V, k, D, n, ctx)) | ||
187 | goto err; | ||
188 | |||
189 | if (BN_is_zero(U) || BN_is_zero(V)) { | ||
190 | *is_prime = 1; | ||
191 | goto done; | ||
192 | } | ||
193 | |||
194 | /* | ||
195 | * If any V_{k * 2^r} is zero for 1 <= r < s then n is a strong Lucas | ||
196 | * pseudoprime. | ||
197 | */ | ||
198 | for (r = 1; r < s; r++) { | ||
199 | if (!bn_lucas_step(U, V, 0, D, n, ctx)) | ||
200 | goto err; | ||
201 | |||
202 | if (BN_is_zero(V)) { | ||
203 | *is_prime = 1; | ||
204 | goto done; | ||
205 | } | ||
206 | } | ||
207 | |||
208 | /* If we got here, n is definitely composite. */ | ||
209 | *is_prime = 0; | ||
210 | |||
211 | done: | ||
212 | ret = 1; | ||
213 | |||
214 | err: | ||
215 | BN_CTX_end(ctx); | ||
216 | |||
217 | return ret; | ||
218 | } | ||
219 | |||
220 | /* | ||
221 | * Test n for primality using the strong Lucas test with Selfridge's | ||
222 | * parameters. Returns 1 if n is prime or a strong Lucas-Selfridge | ||
223 | * pseudoprime. Returns 0 if n is definitely composite. | ||
224 | */ | ||
225 | static int | ||
226 | bn_strong_lucas_selfridge(int *is_prime, const BIGNUM *n, BN_CTX *ctx) | ||
227 | { | ||
228 | BIGNUM *D, *two; | ||
229 | int is_perfect_square, jacobi_symbol, sign; | ||
230 | int ret = 0; | ||
231 | |||
232 | BN_CTX_start(ctx); | ||
233 | |||
234 | /* If n is a perfect square, it is composite. */ | ||
235 | if (!bn_is_perfect_square(&is_perfect_square, n, ctx)) | ||
236 | goto err; | ||
237 | if (is_perfect_square) { | ||
238 | *is_prime = 0; | ||
239 | goto err; | ||
240 | } | ||
241 | |||
242 | /* | ||
243 | * Find the first D in the Selfridge sequence 5, -7, 9, -11, 13, ... | ||
244 | * such that the Jacobi symbol (D/n) is -1. | ||
245 | */ | ||
246 | if ((D = BN_CTX_get(ctx)) == NULL) | ||
247 | goto err; | ||
248 | if ((two = BN_CTX_get(ctx)) == NULL) | ||
249 | goto err; | ||
250 | |||
251 | sign = 1; | ||
252 | if (!BN_set_word(D, 5)) | ||
253 | goto err; | ||
254 | if (!BN_set_word(two, 2)) | ||
255 | goto err; | ||
256 | |||
257 | while (1) { | ||
258 | /* For odd n the Kronecker symbol computes the Jacobi symbol. */ | ||
259 | if ((jacobi_symbol = BN_kronecker(D, n, ctx)) == -2) | ||
260 | goto err; | ||
261 | |||
262 | /* We found the value for D. */ | ||
263 | if (jacobi_symbol == -1) | ||
264 | break; | ||
265 | |||
266 | /* n and D have prime factors in common. */ | ||
267 | if (jacobi_symbol == 0) { | ||
268 | *is_prime = 0; | ||
269 | goto done; | ||
270 | } | ||
271 | |||
272 | sign = -sign; | ||
273 | if (!BN_uadd(D, D, two)) | ||
274 | goto err; | ||
275 | BN_set_negative(D, sign == -1); | ||
276 | } | ||
277 | |||
278 | if (!bn_strong_lucas_test(is_prime, n, D, ctx)) | ||
279 | goto err; | ||
280 | |||
281 | done: | ||
282 | ret = 1; | ||
283 | |||
284 | err: | ||
285 | BN_CTX_end(ctx); | ||
286 | |||
287 | return ret; | ||
288 | } | ||
289 | |||
290 | /* | ||
291 | * Miller-Rabin primality test for base 2. | ||
292 | */ | ||
293 | static int | ||
294 | bn_miller_rabin_base_2(int *is_prime, const BIGNUM *n, BN_CTX *ctx) | ||
295 | { | ||
296 | BIGNUM *n_minus_one, *k, *x; | ||
297 | int i, s; | ||
298 | int ret = 0; | ||
299 | |||
300 | BN_CTX_start(ctx); | ||
301 | |||
302 | if ((n_minus_one = BN_CTX_get(ctx)) == NULL) | ||
303 | goto err; | ||
304 | if ((k = BN_CTX_get(ctx)) == NULL) | ||
305 | goto err; | ||
306 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
307 | goto err; | ||
308 | |||
309 | if (BN_is_word(n, 2) || BN_is_word(n, 3)) { | ||
310 | *is_prime = 1; | ||
311 | goto done; | ||
312 | } | ||
313 | |||
314 | if (BN_cmp(n, BN_value_one()) <= 0 || !BN_is_odd(n)) { | ||
315 | *is_prime = 0; | ||
316 | goto done; | ||
317 | } | ||
318 | |||
319 | if (!BN_sub(n_minus_one, n, BN_value_one())) | ||
320 | goto err; | ||
321 | |||
322 | s = 0; | ||
323 | while (!BN_is_bit_set(n_minus_one, s)) | ||
324 | s++; | ||
325 | if (!BN_rshift(k, n_minus_one, s)) | ||
326 | goto err; | ||
327 | |||
328 | /* If 2^k is 1 or -1 (mod n) then n is a 2-pseudoprime. */ | ||
329 | if (!BN_set_word(x, 2)) | ||
330 | goto err; | ||
331 | if (!BN_mod_exp_ct(x, x, k, n, ctx)) | ||
332 | goto err; | ||
333 | |||
334 | if (BN_is_one(x) || BN_cmp(x, n_minus_one) == 0) { | ||
335 | *is_prime = 1; | ||
336 | goto done; | ||
337 | } | ||
338 | |||
339 | /* | ||
340 | * If 2^{2^i k} == -1 (mod n) for some 1 <= i < s, then n is a | ||
341 | * 2-pseudoprime | ||
342 | */ | ||
343 | for (i = 1; i < s; i++) { | ||
344 | if (!BN_mod_sqr(x, x, n, ctx)) | ||
345 | goto err; | ||
346 | if (BN_cmp(x, n_minus_one) == 0) { | ||
347 | *is_prime = 1; | ||
348 | goto done; | ||
349 | } | ||
350 | } | ||
351 | |||
352 | /* If we got here, n is definitely composite. */ | ||
353 | *is_prime = 0; | ||
354 | |||
355 | done: | ||
356 | ret = 1; | ||
357 | |||
358 | err: | ||
359 | BN_CTX_end(ctx); | ||
360 | |||
361 | return ret; | ||
362 | } | ||
363 | |||
364 | /* | ||
365 | * The Baillie-Pomerance-Selfridge-Wagstaff algorithm combines a Miller-Rabin | ||
366 | * test for base 2 with a Strong Lucas pseudoprime test. | ||
367 | */ | ||
368 | |||
369 | int | ||
370 | bn_is_prime_bpsw(int *is_prime, const BIGNUM *n, BN_CTX *in_ctx) | ||
371 | { | ||
372 | BN_CTX *ctx = NULL; | ||
373 | BN_ULONG mod; | ||
374 | int i; | ||
375 | int ret = 0; | ||
376 | |||
377 | if (BN_is_word(n, 2)) { | ||
378 | *is_prime = 1; | ||
379 | goto done; | ||
380 | } | ||
381 | |||
382 | if (BN_cmp(n, BN_value_one()) <= 0 || !BN_is_odd(n)) { | ||
383 | *is_prime = 0; | ||
384 | goto done; | ||
385 | } | ||
386 | |||
387 | /* Trial divisions with the first 2048 primes. */ | ||
388 | for (i = 0; i < NUMPRIMES; i++) { | ||
389 | if ((mod = BN_mod_word(n, primes[i])) == (BN_ULONG)-1) | ||
390 | goto err; | ||
391 | if (mod == 0) { | ||
392 | *is_prime = BN_is_word(n, primes[i]); | ||
393 | goto done; | ||
394 | } | ||
395 | } | ||
396 | |||
397 | if ((ctx = in_ctx) == NULL) | ||
398 | ctx = BN_CTX_new(); | ||
399 | if (ctx == NULL) | ||
400 | goto err; | ||
401 | |||
402 | if (!bn_miller_rabin_base_2(is_prime, n, ctx)) | ||
403 | goto err; | ||
404 | if (!*is_prime) | ||
405 | goto done; | ||
406 | |||
407 | /* XXX - Miller-Rabin for random bases? - see FIPS 186-4, Table C.1. */ | ||
408 | |||
409 | if (!bn_strong_lucas_selfridge(is_prime, n, ctx)) | ||
410 | goto err; | ||
411 | |||
412 | done: | ||
413 | ret = 1; | ||
414 | |||
415 | err: | ||
416 | if (ctx != in_ctx) | ||
417 | BN_CTX_free(ctx); | ||
418 | |||
419 | return ret; | ||
420 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_lcl.h b/src/lib/libcrypto/bn/bn_lcl.h index 71b35b3f24..e1f80f5c4d 100644 --- a/src/lib/libcrypto/bn/bn_lcl.h +++ b/src/lib/libcrypto/bn/bn_lcl.h | |||
@@ -1,4 +1,4 @@ | |||
1 | /* $OpenBSD: bn_lcl.h,v 1.33 2022/07/13 06:28:22 tb Exp $ */ | 1 | /* $OpenBSD: bn_lcl.h,v 1.34 2022/07/13 06:32:15 tb Exp $ */ |
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
3 | * All rights reserved. | 3 | * All rights reserved. |
4 | * | 4 | * |
@@ -659,5 +659,7 @@ int BN_swap_ct(BN_ULONG swap, BIGNUM *a, BIGNUM *b, size_t nwords); | |||
659 | int bn_isqrt(BIGNUM *out_sqrt, int *out_perfect, const BIGNUM *n, BN_CTX *ctx); | 659 | int bn_isqrt(BIGNUM *out_sqrt, int *out_perfect, const BIGNUM *n, BN_CTX *ctx); |
660 | int bn_is_perfect_square(int *is_perfect_square, const BIGNUM *n, BN_CTX *ctx); | 660 | int bn_is_perfect_square(int *is_perfect_square, const BIGNUM *n, BN_CTX *ctx); |
661 | 661 | ||
662 | int bn_is_prime_bpsw(int *is_prime, const BIGNUM *n, BN_CTX *in_ctx); | ||
663 | |||
662 | __END_HIDDEN_DECLS | 664 | __END_HIDDEN_DECLS |
663 | #endif | 665 | #endif |