diff options
| author | tb <> | 2022-07-13 06:32:15 +0000 |
|---|---|---|
| committer | tb <> | 2022-07-13 06:32:15 +0000 |
| commit | 0f736c435cd308be3d2717055a895e61ca7d3601 (patch) | |
| tree | 5531c91a8ea662fd9d7b17a8acb01ef94358e585 /src | |
| parent | 14c7b5316be32594e8560f4316a56f99d5dfbab7 (diff) | |
| download | openbsd-0f736c435cd308be3d2717055a895e61ca7d3601.tar.gz openbsd-0f736c435cd308be3d2717055a895e61ca7d3601.tar.bz2 openbsd-0f736c435cd308be3d2717055a895e61ca7d3601.zip | |
Implement the Baillie-PSW primality test
It has long been known that pure Miller-Rabin primality tests are
insufficient. "Prime and Prejudice: Primality Testing Under Adversarial
Conditions" https://eprint.iacr.org/2018/749 points out severe flaws
in many widely used libraries. In particular, they exhibited a method to
generate 2048-bit composites that bypass the default OpenSSL (and hence
LibreSSL) primality test with a probability of 1/16 (!).
As a remedy, the authors recommend switching to using BPSW wherever
possible. This possibility has always been there, but someone had to
sit down and actually implement a properly licensed piece of code.
Fortunately, espie suggested to Martin Grenouilloux to do precisely this
after asking us whether we would be interested. Of course we were!
After a good first implementation from Martin and a lot of back and
forth, we came up with the present version.
This implementation is ~50% slower than the current default Miller-Rabin
test, but that is a small price to pay given the improvements.
Thanks to Martin Grenouilloux <martin.grenouilloux () lse ! epita ! fr>
for this awesome work, to espie without whom it wouldn't have happened,
and to djm for pointing us at this problem a long time back.
ok jsing
Diffstat (limited to 'src')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_bpsw.c | 420 | ||||
| -rw-r--r-- | src/lib/libcrypto/bn/bn_lcl.h | 4 |
2 files changed, 423 insertions, 1 deletions
diff --git a/src/lib/libcrypto/bn/bn_bpsw.c b/src/lib/libcrypto/bn/bn_bpsw.c new file mode 100644 index 0000000000..0741c6fffe --- /dev/null +++ b/src/lib/libcrypto/bn/bn_bpsw.c | |||
| @@ -0,0 +1,420 @@ | |||
| 1 | /* $OpenBSD: bn_bpsw.c,v 1.1 2022/07/13 06:32:15 tb Exp $ */ | ||
| 2 | /* | ||
| 3 | * Copyright (c) 2022 Martin Grenouilloux <martin.grenouilloux@lse.epita.fr> | ||
| 4 | * Copyright (c) 2022 Theo Buehler <tb@openbsd.org> | ||
| 5 | * | ||
| 6 | * Permission to use, copy, modify, and distribute this software for any | ||
| 7 | * purpose with or without fee is hereby granted, provided that the above | ||
| 8 | * copyright notice and this permission notice appear in all copies. | ||
| 9 | * | ||
| 10 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
| 11 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
| 12 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
| 13 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
| 14 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
| 15 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
| 16 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
| 17 | */ | ||
| 18 | |||
| 19 | #include <openssl/bn.h> | ||
| 20 | |||
| 21 | #include "bn_lcl.h" | ||
| 22 | #include "bn_prime.h" | ||
| 23 | |||
| 24 | /* | ||
| 25 | * For an odd n compute a / 2 (mod n). If a is even, we can do a plain | ||
| 26 | * division, otherwise calculate (a + n) / 2. Then reduce (mod n). | ||
| 27 | */ | ||
| 28 | static int | ||
| 29 | bn_div_by_two_mod_odd_n(BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
| 30 | { | ||
| 31 | if (!BN_is_odd(n)) | ||
| 32 | return 0; | ||
| 33 | |||
| 34 | if (BN_is_odd(a)) { | ||
| 35 | if (!BN_add(a, a, n)) | ||
| 36 | return 0; | ||
| 37 | } | ||
| 38 | if (!BN_rshift1(a, a)) | ||
| 39 | return 0; | ||
| 40 | if (!BN_mod_ct(a, a, n, ctx)) | ||
| 41 | return 0; | ||
| 42 | |||
| 43 | return 1; | ||
| 44 | } | ||
| 45 | |||
| 46 | /* | ||
| 47 | * Given the next binary digit of k and the current Lucas terms U and V, this | ||
| 48 | * helper computes the next terms in the Lucas sequence defined as follows: | ||
| 49 | * | ||
| 50 | * U' = U * V (mod n) | ||
| 51 | * V' = (V^2 + D * U^2) / 2 (mod n) | ||
| 52 | * | ||
| 53 | * If digit == 0, bn_lucas_step() returns U' and V'. If digit == 1, it returns | ||
| 54 | * | ||
| 55 | * U'' = (U' + V') / 2 (mod n) | ||
| 56 | * V'' = (V' + D * U') / 2 (mod n) | ||
| 57 | * | ||
| 58 | * Compare with FIPS 186-4, Appendix C.3.3, step 6. | ||
| 59 | */ | ||
| 60 | static int | ||
| 61 | bn_lucas_step(BIGNUM *U, BIGNUM *V, int digit, const BIGNUM *D, | ||
| 62 | const BIGNUM *n, BN_CTX *ctx) | ||
| 63 | { | ||
| 64 | BIGNUM *tmp; | ||
| 65 | int ret = 0; | ||
| 66 | |||
| 67 | BN_CTX_start(ctx); | ||
| 68 | |||
| 69 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
| 70 | goto err; | ||
| 71 | |||
| 72 | /* Calculate D * U^2 before computing U'. */ | ||
| 73 | if (!BN_sqr(tmp, U, ctx)) | ||
| 74 | goto err; | ||
| 75 | if (!BN_mul(tmp, D, tmp, ctx)) | ||
| 76 | goto err; | ||
| 77 | |||
| 78 | /* U' = U * V (mod n). */ | ||
| 79 | if (!BN_mod_mul(U, U, V, n, ctx)) | ||
| 80 | goto err; | ||
| 81 | |||
| 82 | /* V' = (V^2 + D * U^2) / 2 (mod n). */ | ||
| 83 | if (!BN_sqr(V, V, ctx)) | ||
| 84 | goto err; | ||
| 85 | if (!BN_add(V, V, tmp)) | ||
| 86 | goto err; | ||
| 87 | if (!bn_div_by_two_mod_odd_n(V, n, ctx)) | ||
| 88 | goto err; | ||
| 89 | |||
| 90 | if (digit == 1) { | ||
| 91 | /* Calculate D * U' before computing U''. */ | ||
| 92 | if (!BN_mul(tmp, D, U, ctx)) | ||
| 93 | goto err; | ||
| 94 | |||
| 95 | /* U'' = (U' + V') / 2 (mod n). */ | ||
| 96 | if (!BN_add(U, U, V)) | ||
| 97 | goto err; | ||
| 98 | if (!bn_div_by_two_mod_odd_n(U, n, ctx)) | ||
| 99 | goto err; | ||
| 100 | |||
| 101 | /* V'' = (V' + D * U') / 2 (mod n). */ | ||
| 102 | if (!BN_add(V, V, tmp)) | ||
| 103 | goto err; | ||
| 104 | if (!bn_div_by_two_mod_odd_n(V, n, ctx)) | ||
| 105 | goto err; | ||
| 106 | } | ||
| 107 | |||
| 108 | ret = 1; | ||
| 109 | |||
| 110 | err: | ||
| 111 | BN_CTX_end(ctx); | ||
| 112 | |||
| 113 | return ret; | ||
| 114 | } | ||
| 115 | |||
| 116 | /* | ||
| 117 | * Compute the Lucas terms U_k, V_k, see FIPS 186-4, Appendix C.3.3, steps 4-6. | ||
| 118 | */ | ||
| 119 | static int | ||
| 120 | bn_lucas(BIGNUM *U, BIGNUM *V, const BIGNUM *k, const BIGNUM *D, | ||
| 121 | const BIGNUM *n, BN_CTX *ctx) | ||
| 122 | { | ||
| 123 | int digit, i; | ||
| 124 | int ret = 0; | ||
| 125 | |||
| 126 | if (!BN_one(U)) | ||
| 127 | goto err; | ||
| 128 | if (!BN_one(V)) | ||
| 129 | goto err; | ||
| 130 | |||
| 131 | /* | ||
| 132 | * Iterate over the digits of k from MSB to LSB. Start at digit 2 | ||
| 133 | * since the first digit is dealt with by setting U = 1 and V = 1. | ||
| 134 | */ | ||
| 135 | for (i = BN_num_bits(k) - 2; i >= 0; i--) { | ||
| 136 | digit = BN_is_bit_set(k, i); | ||
| 137 | |||
| 138 | if (!bn_lucas_step(U, V, digit, D, n, ctx)) | ||
| 139 | goto err; | ||
| 140 | } | ||
| 141 | |||
| 142 | ret = 1; | ||
| 143 | |||
| 144 | err: | ||
| 145 | return ret; | ||
| 146 | } | ||
| 147 | |||
| 148 | /* | ||
| 149 | * This is a stronger variant of the Lucas test in FIPS 186-4, Appendix C.3.3. | ||
| 150 | * Every strong Lucas pseudoprime n is also a Lucas pseudoprime since | ||
| 151 | * U_{n+1} == 0 follows from U_k == 0 or V_{k * 2^r} == 0 for 0 <= r < s. | ||
| 152 | */ | ||
| 153 | static int | ||
| 154 | bn_strong_lucas_test(int *is_prime, const BIGNUM *n, const BIGNUM *D, | ||
| 155 | BN_CTX *ctx) | ||
| 156 | { | ||
| 157 | BIGNUM *k, *U, *V; | ||
| 158 | int r, s; | ||
| 159 | int ret = 0; | ||
| 160 | |||
| 161 | BN_CTX_start(ctx); | ||
| 162 | |||
| 163 | if ((k = BN_CTX_get(ctx)) == NULL) | ||
| 164 | goto err; | ||
| 165 | if ((U = BN_CTX_get(ctx)) == NULL) | ||
| 166 | goto err; | ||
| 167 | if ((V = BN_CTX_get(ctx)) == NULL) | ||
| 168 | goto err; | ||
| 169 | |||
| 170 | /* | ||
| 171 | * Factorize n + 1 = k * 2^s with odd k: shift away the s trailing ones | ||
| 172 | * of n and set the lowest bit of the resulting number k. | ||
| 173 | */ | ||
| 174 | s = 0; | ||
| 175 | while (BN_is_bit_set(n, s)) | ||
| 176 | s++; | ||
| 177 | if (!BN_rshift(k, n, s)) | ||
| 178 | goto err; | ||
| 179 | if (!BN_set_bit(k, 0)) | ||
| 180 | goto err; | ||
| 181 | |||
| 182 | /* | ||
| 183 | * Calculate the Lucas terms U_k and V_k. If either of them is zero, | ||
| 184 | * then n is a strong Lucas pseudoprime. | ||
| 185 | */ | ||
| 186 | if (!bn_lucas(U, V, k, D, n, ctx)) | ||
| 187 | goto err; | ||
| 188 | |||
| 189 | if (BN_is_zero(U) || BN_is_zero(V)) { | ||
| 190 | *is_prime = 1; | ||
| 191 | goto done; | ||
| 192 | } | ||
| 193 | |||
| 194 | /* | ||
| 195 | * If any V_{k * 2^r} is zero for 1 <= r < s then n is a strong Lucas | ||
| 196 | * pseudoprime. | ||
| 197 | */ | ||
| 198 | for (r = 1; r < s; r++) { | ||
| 199 | if (!bn_lucas_step(U, V, 0, D, n, ctx)) | ||
| 200 | goto err; | ||
| 201 | |||
| 202 | if (BN_is_zero(V)) { | ||
| 203 | *is_prime = 1; | ||
| 204 | goto done; | ||
| 205 | } | ||
| 206 | } | ||
| 207 | |||
| 208 | /* If we got here, n is definitely composite. */ | ||
| 209 | *is_prime = 0; | ||
| 210 | |||
| 211 | done: | ||
| 212 | ret = 1; | ||
| 213 | |||
| 214 | err: | ||
| 215 | BN_CTX_end(ctx); | ||
| 216 | |||
| 217 | return ret; | ||
| 218 | } | ||
| 219 | |||
| 220 | /* | ||
| 221 | * Test n for primality using the strong Lucas test with Selfridge's | ||
| 222 | * parameters. Returns 1 if n is prime or a strong Lucas-Selfridge | ||
| 223 | * pseudoprime. Returns 0 if n is definitely composite. | ||
| 224 | */ | ||
| 225 | static int | ||
| 226 | bn_strong_lucas_selfridge(int *is_prime, const BIGNUM *n, BN_CTX *ctx) | ||
| 227 | { | ||
| 228 | BIGNUM *D, *two; | ||
| 229 | int is_perfect_square, jacobi_symbol, sign; | ||
| 230 | int ret = 0; | ||
| 231 | |||
| 232 | BN_CTX_start(ctx); | ||
| 233 | |||
| 234 | /* If n is a perfect square, it is composite. */ | ||
| 235 | if (!bn_is_perfect_square(&is_perfect_square, n, ctx)) | ||
| 236 | goto err; | ||
| 237 | if (is_perfect_square) { | ||
| 238 | *is_prime = 0; | ||
| 239 | goto err; | ||
| 240 | } | ||
| 241 | |||
| 242 | /* | ||
| 243 | * Find the first D in the Selfridge sequence 5, -7, 9, -11, 13, ... | ||
| 244 | * such that the Jacobi symbol (D/n) is -1. | ||
| 245 | */ | ||
| 246 | if ((D = BN_CTX_get(ctx)) == NULL) | ||
| 247 | goto err; | ||
| 248 | if ((two = BN_CTX_get(ctx)) == NULL) | ||
| 249 | goto err; | ||
| 250 | |||
| 251 | sign = 1; | ||
| 252 | if (!BN_set_word(D, 5)) | ||
| 253 | goto err; | ||
| 254 | if (!BN_set_word(two, 2)) | ||
| 255 | goto err; | ||
| 256 | |||
| 257 | while (1) { | ||
| 258 | /* For odd n the Kronecker symbol computes the Jacobi symbol. */ | ||
| 259 | if ((jacobi_symbol = BN_kronecker(D, n, ctx)) == -2) | ||
| 260 | goto err; | ||
| 261 | |||
| 262 | /* We found the value for D. */ | ||
| 263 | if (jacobi_symbol == -1) | ||
| 264 | break; | ||
| 265 | |||
| 266 | /* n and D have prime factors in common. */ | ||
| 267 | if (jacobi_symbol == 0) { | ||
| 268 | *is_prime = 0; | ||
| 269 | goto done; | ||
| 270 | } | ||
| 271 | |||
| 272 | sign = -sign; | ||
| 273 | if (!BN_uadd(D, D, two)) | ||
| 274 | goto err; | ||
| 275 | BN_set_negative(D, sign == -1); | ||
| 276 | } | ||
| 277 | |||
| 278 | if (!bn_strong_lucas_test(is_prime, n, D, ctx)) | ||
| 279 | goto err; | ||
| 280 | |||
| 281 | done: | ||
| 282 | ret = 1; | ||
| 283 | |||
| 284 | err: | ||
| 285 | BN_CTX_end(ctx); | ||
| 286 | |||
| 287 | return ret; | ||
| 288 | } | ||
| 289 | |||
| 290 | /* | ||
| 291 | * Miller-Rabin primality test for base 2. | ||
| 292 | */ | ||
| 293 | static int | ||
| 294 | bn_miller_rabin_base_2(int *is_prime, const BIGNUM *n, BN_CTX *ctx) | ||
| 295 | { | ||
| 296 | BIGNUM *n_minus_one, *k, *x; | ||
| 297 | int i, s; | ||
| 298 | int ret = 0; | ||
| 299 | |||
| 300 | BN_CTX_start(ctx); | ||
| 301 | |||
| 302 | if ((n_minus_one = BN_CTX_get(ctx)) == NULL) | ||
| 303 | goto err; | ||
| 304 | if ((k = BN_CTX_get(ctx)) == NULL) | ||
| 305 | goto err; | ||
| 306 | if ((x = BN_CTX_get(ctx)) == NULL) | ||
| 307 | goto err; | ||
| 308 | |||
| 309 | if (BN_is_word(n, 2) || BN_is_word(n, 3)) { | ||
| 310 | *is_prime = 1; | ||
| 311 | goto done; | ||
| 312 | } | ||
| 313 | |||
| 314 | if (BN_cmp(n, BN_value_one()) <= 0 || !BN_is_odd(n)) { | ||
| 315 | *is_prime = 0; | ||
| 316 | goto done; | ||
| 317 | } | ||
| 318 | |||
| 319 | if (!BN_sub(n_minus_one, n, BN_value_one())) | ||
| 320 | goto err; | ||
| 321 | |||
| 322 | s = 0; | ||
| 323 | while (!BN_is_bit_set(n_minus_one, s)) | ||
| 324 | s++; | ||
| 325 | if (!BN_rshift(k, n_minus_one, s)) | ||
| 326 | goto err; | ||
| 327 | |||
| 328 | /* If 2^k is 1 or -1 (mod n) then n is a 2-pseudoprime. */ | ||
| 329 | if (!BN_set_word(x, 2)) | ||
| 330 | goto err; | ||
| 331 | if (!BN_mod_exp_ct(x, x, k, n, ctx)) | ||
| 332 | goto err; | ||
| 333 | |||
| 334 | if (BN_is_one(x) || BN_cmp(x, n_minus_one) == 0) { | ||
| 335 | *is_prime = 1; | ||
| 336 | goto done; | ||
| 337 | } | ||
| 338 | |||
| 339 | /* | ||
| 340 | * If 2^{2^i k} == -1 (mod n) for some 1 <= i < s, then n is a | ||
| 341 | * 2-pseudoprime | ||
| 342 | */ | ||
| 343 | for (i = 1; i < s; i++) { | ||
| 344 | if (!BN_mod_sqr(x, x, n, ctx)) | ||
| 345 | goto err; | ||
| 346 | if (BN_cmp(x, n_minus_one) == 0) { | ||
| 347 | *is_prime = 1; | ||
| 348 | goto done; | ||
| 349 | } | ||
| 350 | } | ||
| 351 | |||
| 352 | /* If we got here, n is definitely composite. */ | ||
| 353 | *is_prime = 0; | ||
| 354 | |||
| 355 | done: | ||
| 356 | ret = 1; | ||
| 357 | |||
| 358 | err: | ||
| 359 | BN_CTX_end(ctx); | ||
| 360 | |||
| 361 | return ret; | ||
| 362 | } | ||
| 363 | |||
| 364 | /* | ||
| 365 | * The Baillie-Pomerance-Selfridge-Wagstaff algorithm combines a Miller-Rabin | ||
| 366 | * test for base 2 with a Strong Lucas pseudoprime test. | ||
| 367 | */ | ||
| 368 | |||
| 369 | int | ||
| 370 | bn_is_prime_bpsw(int *is_prime, const BIGNUM *n, BN_CTX *in_ctx) | ||
| 371 | { | ||
| 372 | BN_CTX *ctx = NULL; | ||
| 373 | BN_ULONG mod; | ||
| 374 | int i; | ||
| 375 | int ret = 0; | ||
| 376 | |||
| 377 | if (BN_is_word(n, 2)) { | ||
| 378 | *is_prime = 1; | ||
| 379 | goto done; | ||
| 380 | } | ||
| 381 | |||
| 382 | if (BN_cmp(n, BN_value_one()) <= 0 || !BN_is_odd(n)) { | ||
| 383 | *is_prime = 0; | ||
| 384 | goto done; | ||
| 385 | } | ||
| 386 | |||
| 387 | /* Trial divisions with the first 2048 primes. */ | ||
| 388 | for (i = 0; i < NUMPRIMES; i++) { | ||
| 389 | if ((mod = BN_mod_word(n, primes[i])) == (BN_ULONG)-1) | ||
| 390 | goto err; | ||
| 391 | if (mod == 0) { | ||
| 392 | *is_prime = BN_is_word(n, primes[i]); | ||
| 393 | goto done; | ||
| 394 | } | ||
| 395 | } | ||
| 396 | |||
| 397 | if ((ctx = in_ctx) == NULL) | ||
| 398 | ctx = BN_CTX_new(); | ||
| 399 | if (ctx == NULL) | ||
| 400 | goto err; | ||
| 401 | |||
| 402 | if (!bn_miller_rabin_base_2(is_prime, n, ctx)) | ||
| 403 | goto err; | ||
| 404 | if (!*is_prime) | ||
| 405 | goto done; | ||
| 406 | |||
| 407 | /* XXX - Miller-Rabin for random bases? - see FIPS 186-4, Table C.1. */ | ||
| 408 | |||
| 409 | if (!bn_strong_lucas_selfridge(is_prime, n, ctx)) | ||
| 410 | goto err; | ||
| 411 | |||
| 412 | done: | ||
| 413 | ret = 1; | ||
| 414 | |||
| 415 | err: | ||
| 416 | if (ctx != in_ctx) | ||
| 417 | BN_CTX_free(ctx); | ||
| 418 | |||
| 419 | return ret; | ||
| 420 | } | ||
diff --git a/src/lib/libcrypto/bn/bn_lcl.h b/src/lib/libcrypto/bn/bn_lcl.h index 71b35b3f24..e1f80f5c4d 100644 --- a/src/lib/libcrypto/bn/bn_lcl.h +++ b/src/lib/libcrypto/bn/bn_lcl.h | |||
| @@ -1,4 +1,4 @@ | |||
| 1 | /* $OpenBSD: bn_lcl.h,v 1.33 2022/07/13 06:28:22 tb Exp $ */ | 1 | /* $OpenBSD: bn_lcl.h,v 1.34 2022/07/13 06:32:15 tb Exp $ */ |
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 3 | * All rights reserved. | 3 | * All rights reserved. |
| 4 | * | 4 | * |
| @@ -659,5 +659,7 @@ int BN_swap_ct(BN_ULONG swap, BIGNUM *a, BIGNUM *b, size_t nwords); | |||
| 659 | int bn_isqrt(BIGNUM *out_sqrt, int *out_perfect, const BIGNUM *n, BN_CTX *ctx); | 659 | int bn_isqrt(BIGNUM *out_sqrt, int *out_perfect, const BIGNUM *n, BN_CTX *ctx); |
| 660 | int bn_is_perfect_square(int *is_perfect_square, const BIGNUM *n, BN_CTX *ctx); | 660 | int bn_is_perfect_square(int *is_perfect_square, const BIGNUM *n, BN_CTX *ctx); |
| 661 | 661 | ||
| 662 | int bn_is_prime_bpsw(int *is_prime, const BIGNUM *n, BN_CTX *in_ctx); | ||
| 663 | |||
| 662 | __END_HIDDEN_DECLS | 664 | __END_HIDDEN_DECLS |
| 663 | #endif | 665 | #endif |
