diff options
| author | jsing <> | 2025-05-25 05:19:26 +0000 |
|---|---|---|
| committer | jsing <> | 2025-05-25 05:19:26 +0000 |
| commit | 26512301343d2b40a68a67d4f4175ddec368d2fe (patch) | |
| tree | 158af8a3059a17256965840a4bec7c251f8c6151 /src | |
| parent | 2f7bf75477a5741ad76c3c793c7ed887b41fcceb (diff) | |
| download | openbsd-26512301343d2b40a68a67d4f4175ddec368d2fe.tar.gz openbsd-26512301343d2b40a68a67d4f4175ddec368d2fe.tar.bz2 openbsd-26512301343d2b40a68a67d4f4175ddec368d2fe.zip | |
Provide an EC method that uses homogeneous projective coordinates.
This makes use of EC_FIELD_ELEMENT to perform fixed width constant
time operations.
Addition and doubling of points makes use of the formulas from
"Complete addition formulas for prime order elliptic curves"
(https://eprint.iacr.org/2015/1060). These are complete and
operate in constant time.
Further work will continue in tree.
ok tb@
Diffstat (limited to 'src')
| -rw-r--r-- | src/lib/libcrypto/Makefile | 3 | ||||
| -rw-r--r-- | src/lib/libcrypto/ec/ec_local.h | 11 | ||||
| -rw-r--r-- | src/lib/libcrypto/ec/ecp_hp_methods.c | 858 |
3 files changed, 870 insertions, 2 deletions
diff --git a/src/lib/libcrypto/Makefile b/src/lib/libcrypto/Makefile index 7564001961..6adfe45e6f 100644 --- a/src/lib/libcrypto/Makefile +++ b/src/lib/libcrypto/Makefile | |||
| @@ -1,4 +1,4 @@ | |||
| 1 | # $OpenBSD: Makefile,v 1.234 2025/05/25 05:12:05 jsing Exp $ | 1 | # $OpenBSD: Makefile,v 1.235 2025/05/25 05:19:26 jsing Exp $ |
| 2 | 2 | ||
| 3 | LIB= crypto | 3 | LIB= crypto |
| 4 | LIBREBUILD=y | 4 | LIBREBUILD=y |
| @@ -289,6 +289,7 @@ SRCS+= ec_lib.c | |||
| 289 | SRCS+= ec_mult.c | 289 | SRCS+= ec_mult.c |
| 290 | SRCS+= ec_pmeth.c | 290 | SRCS+= ec_pmeth.c |
| 291 | SRCS+= eck_prn.c | 291 | SRCS+= eck_prn.c |
| 292 | SRCS+= ecp_hp_methods.c | ||
| 292 | SRCS+= ecp_methods.c | 293 | SRCS+= ecp_methods.c |
| 293 | SRCS+= ecx_methods.c | 294 | SRCS+= ecx_methods.c |
| 294 | 295 | ||
diff --git a/src/lib/libcrypto/ec/ec_local.h b/src/lib/libcrypto/ec/ec_local.h index c0ff026fb2..75a3e25247 100644 --- a/src/lib/libcrypto/ec/ec_local.h +++ b/src/lib/libcrypto/ec/ec_local.h | |||
| @@ -1,4 +1,4 @@ | |||
| 1 | /* $OpenBSD: ec_local.h,v 1.68 2025/05/24 08:25:58 jsing Exp $ */ | 1 | /* $OpenBSD: ec_local.h,v 1.69 2025/05/25 05:19:26 jsing Exp $ */ |
| 2 | /* | 2 | /* |
| 3 | * Originally written by Bodo Moeller for the OpenSSL project. | 3 | * Originally written by Bodo Moeller for the OpenSSL project. |
| 4 | */ | 4 | */ |
| @@ -76,6 +76,7 @@ | |||
| 76 | #include <openssl/objects.h> | 76 | #include <openssl/objects.h> |
| 77 | 77 | ||
| 78 | #include "bn_local.h" | 78 | #include "bn_local.h" |
| 79 | #include "ec_internal.h" | ||
| 79 | 80 | ||
| 80 | __BEGIN_HIDDEN_DECLS | 81 | __BEGIN_HIDDEN_DECLS |
| 81 | 82 | ||
| @@ -158,6 +159,10 @@ struct ec_group_st { | |||
| 158 | 159 | ||
| 159 | /* Montgomery context used by EC_GFp_mont_method. */ | 160 | /* Montgomery context used by EC_GFp_mont_method. */ |
| 160 | BN_MONT_CTX *mont_ctx; | 161 | BN_MONT_CTX *mont_ctx; |
| 162 | |||
| 163 | EC_FIELD_MODULUS fm; | ||
| 164 | EC_FIELD_ELEMENT fe_a; | ||
| 165 | EC_FIELD_ELEMENT fe_b; | ||
| 161 | } /* EC_GROUP */; | 166 | } /* EC_GROUP */; |
| 162 | 167 | ||
| 163 | struct ec_point_st { | 168 | struct ec_point_st { |
| @@ -171,6 +176,10 @@ struct ec_point_st { | |||
| 171 | BIGNUM *Y; | 176 | BIGNUM *Y; |
| 172 | BIGNUM *Z; | 177 | BIGNUM *Z; |
| 173 | int Z_is_one; /* enable optimized point arithmetics for special case */ | 178 | int Z_is_one; /* enable optimized point arithmetics for special case */ |
| 179 | |||
| 180 | EC_FIELD_ELEMENT fe_x; | ||
| 181 | EC_FIELD_ELEMENT fe_y; | ||
| 182 | EC_FIELD_ELEMENT fe_z; | ||
| 174 | } /* EC_POINT */; | 183 | } /* EC_POINT */; |
| 175 | 184 | ||
| 176 | const EC_METHOD *EC_GFp_simple_method(void); | 185 | const EC_METHOD *EC_GFp_simple_method(void); |
diff --git a/src/lib/libcrypto/ec/ecp_hp_methods.c b/src/lib/libcrypto/ec/ecp_hp_methods.c new file mode 100644 index 0000000000..0c6b095765 --- /dev/null +++ b/src/lib/libcrypto/ec/ecp_hp_methods.c | |||
| @@ -0,0 +1,858 @@ | |||
| 1 | /* $OpenBSD: ecp_hp_methods.c,v 1.1 2025/05/25 05:19:26 jsing Exp $ */ | ||
| 2 | /* | ||
| 3 | * Copyright (c) 2024-2025 Joel Sing <jsing@openbsd.org> | ||
| 4 | * | ||
| 5 | * Permission to use, copy, modify, and distribute this software for any | ||
| 6 | * purpose with or without fee is hereby granted, provided that the above | ||
| 7 | * copyright notice and this permission notice appear in all copies. | ||
| 8 | * | ||
| 9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | ||
| 10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | ||
| 11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | ||
| 12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | ||
| 13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | ||
| 14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | ||
| 15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | ||
| 16 | */ | ||
| 17 | |||
| 18 | #include <string.h> | ||
| 19 | |||
| 20 | #include <openssl/bn.h> | ||
| 21 | #include <openssl/ec.h> | ||
| 22 | #include <openssl/err.h> | ||
| 23 | |||
| 24 | #include "bn_internal.h" | ||
| 25 | #include "ec_local.h" | ||
| 26 | #include "ec_internal.h" | ||
| 27 | #include "err_local.h" | ||
| 28 | |||
| 29 | /* | ||
| 30 | * TODO: | ||
| 31 | * - Constant time and blinding for scalar multiplication | ||
| 32 | */ | ||
| 33 | |||
| 34 | static int | ||
| 35 | ec_group_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, | ||
| 36 | const BIGNUM *b, BN_CTX *ctx) | ||
| 37 | { | ||
| 38 | BIGNUM *t; | ||
| 39 | int ret = 0; | ||
| 40 | |||
| 41 | BN_CTX_start(ctx); | ||
| 42 | |||
| 43 | /* XXX - p must be a prime > 3. */ | ||
| 44 | |||
| 45 | if (!bn_copy(group->p, p)) | ||
| 46 | goto err; | ||
| 47 | if (!bn_copy(group->a, a)) | ||
| 48 | goto err; | ||
| 49 | if (!bn_copy(group->b, b)) | ||
| 50 | goto err; | ||
| 51 | |||
| 52 | /* XXX */ | ||
| 53 | BN_set_negative(group->p, 0); | ||
| 54 | |||
| 55 | /* XXX */ | ||
| 56 | if (!BN_nnmod(group->a, group->a, group->p, ctx)) | ||
| 57 | goto err; | ||
| 58 | if (!BN_nnmod(group->b, group->b, group->p, ctx)) | ||
| 59 | goto err; | ||
| 60 | |||
| 61 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
| 62 | goto err; | ||
| 63 | if (!BN_set_word(t, 3)) | ||
| 64 | goto err; | ||
| 65 | if (!BN_mod_add(t, t, a, group->p, ctx)) | ||
| 66 | goto err; | ||
| 67 | |||
| 68 | group->a_is_minus3 = BN_is_zero(t); | ||
| 69 | |||
| 70 | if (!ec_field_modulus_from_bn(&group->fm, group->p, ctx)) | ||
| 71 | goto err; | ||
| 72 | if (!ec_field_element_from_bn(&group->fm, group, &group->fe_a, group->a, ctx)) | ||
| 73 | goto err; | ||
| 74 | if (!ec_field_element_from_bn(&group->fm, group, &group->fe_b, group->b, ctx)) | ||
| 75 | goto err; | ||
| 76 | |||
| 77 | ret = 1; | ||
| 78 | |||
| 79 | err: | ||
| 80 | BN_CTX_end(ctx); | ||
| 81 | |||
| 82 | return ret; | ||
| 83 | } | ||
| 84 | |||
| 85 | static int | ||
| 86 | ec_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, | ||
| 87 | BIGNUM *b, BN_CTX *ctx) | ||
| 88 | { | ||
| 89 | if (p != NULL) { | ||
| 90 | if (!bn_copy(p, group->p)) | ||
| 91 | return 0; | ||
| 92 | } | ||
| 93 | if (a != NULL) { | ||
| 94 | if (!bn_copy(a, group->a)) | ||
| 95 | return 0; | ||
| 96 | } | ||
| 97 | if (b != NULL) { | ||
| 98 | if (!bn_copy(b, group->b)) | ||
| 99 | return 0; | ||
| 100 | } | ||
| 101 | return 1; | ||
| 102 | } | ||
| 103 | |||
| 104 | static int | ||
| 105 | ec_point_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) | ||
| 106 | { | ||
| 107 | /* Check if Z is equal to zero. */ | ||
| 108 | return ec_field_element_is_zero(&group->fm, &point->fe_z); | ||
| 109 | } | ||
| 110 | |||
| 111 | static int | ||
| 112 | ec_point_set_to_infinity(const EC_GROUP *group, EC_POINT *point) | ||
| 113 | { | ||
| 114 | /* Infinity is (x = 0, y = 1, z = 0). */ | ||
| 115 | |||
| 116 | memset(&point->fe_x, 0, sizeof(point->fe_x)); | ||
| 117 | memset(&point->fe_y, 0, sizeof(point->fe_y)); | ||
| 118 | memset(&point->fe_z, 0, sizeof(point->fe_z)); | ||
| 119 | |||
| 120 | point->fe_y.w[0] = 1; | ||
| 121 | |||
| 122 | return 1; | ||
| 123 | } | ||
| 124 | |||
| 125 | static int | ||
| 126 | ec_point_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, | ||
| 127 | const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) | ||
| 128 | { | ||
| 129 | if (x == NULL || y == NULL) { | ||
| 130 | ECerror(ERR_R_PASSED_NULL_PARAMETER); | ||
| 131 | return 0; | ||
| 132 | } | ||
| 133 | |||
| 134 | if (!bn_copy(point->X, x)) | ||
| 135 | return 0; | ||
| 136 | if (!bn_copy(point->Y, y)) | ||
| 137 | return 0; | ||
| 138 | if (!BN_one(point->Z)) | ||
| 139 | return 0; | ||
| 140 | |||
| 141 | /* XXX */ | ||
| 142 | if (!BN_nnmod(point->X, point->X, group->p, ctx)) | ||
| 143 | return 0; | ||
| 144 | if (!BN_nnmod(point->Y, point->Y, group->p, ctx)) | ||
| 145 | return 0; | ||
| 146 | |||
| 147 | if (!ec_field_element_from_bn(&group->fm, group, &point->fe_x, point->X, ctx)) | ||
| 148 | return 0; | ||
| 149 | if (!ec_field_element_from_bn(&group->fm, group, &point->fe_y, point->Y, ctx)) | ||
| 150 | return 0; | ||
| 151 | if (!ec_field_element_from_bn(&group->fm, group, &point->fe_z, point->Z, ctx)) | ||
| 152 | return 0; | ||
| 153 | |||
| 154 | return 1; | ||
| 155 | } | ||
| 156 | |||
| 157 | static int | ||
| 158 | ec_point_get_affine_coordinates(const EC_GROUP *group, const EC_POINT *point, | ||
| 159 | BIGNUM *x, BIGNUM *y, BN_CTX *ctx) | ||
| 160 | { | ||
| 161 | BIGNUM *zinv; | ||
| 162 | int ret = 0; | ||
| 163 | |||
| 164 | /* | ||
| 165 | * Convert homogeneous projective coordinates (XZ, YZ, Z) to affine | ||
| 166 | * coordinates (x = X/Z, y = Y/Z). | ||
| 167 | */ | ||
| 168 | if (!ec_field_element_to_bn(&group->fm, &point->fe_x, point->X, ctx)) | ||
| 169 | return 0; | ||
| 170 | if (!ec_field_element_to_bn(&group->fm, &point->fe_y, point->Y, ctx)) | ||
| 171 | return 0; | ||
| 172 | if (!ec_field_element_to_bn(&group->fm, &point->fe_z, point->Z, ctx)) | ||
| 173 | return 0; | ||
| 174 | |||
| 175 | BN_CTX_start(ctx); | ||
| 176 | |||
| 177 | if ((zinv = BN_CTX_get(ctx)) == NULL) | ||
| 178 | goto err; | ||
| 179 | |||
| 180 | if (BN_mod_inverse_ct(zinv, point->Z, group->p, ctx) == NULL) | ||
| 181 | goto err; | ||
| 182 | |||
| 183 | if (x != NULL) { | ||
| 184 | if (!BN_mod_mul(x, point->X, zinv, group->p, ctx)) | ||
| 185 | goto err; | ||
| 186 | } | ||
| 187 | if (y != NULL) { | ||
| 188 | if (!BN_mod_mul(y, point->Y, zinv, group->p, ctx)) | ||
| 189 | goto err; | ||
| 190 | } | ||
| 191 | |||
| 192 | ret = 1; | ||
| 193 | |||
| 194 | err: | ||
| 195 | BN_CTX_end(ctx); | ||
| 196 | |||
| 197 | return ret; | ||
| 198 | } | ||
| 199 | |||
| 200 | static int | ||
| 201 | ec_point_add_a1(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | ||
| 202 | const EC_POINT *b, BN_CTX *ctx) | ||
| 203 | { | ||
| 204 | EC_FIELD_ELEMENT X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3; | ||
| 205 | EC_FIELD_ELEMENT b3, t0, t1, t2, t3, t4, t5; | ||
| 206 | EC_FIELD_ELEMENT ga, gb; | ||
| 207 | |||
| 208 | /* | ||
| 209 | * Complete, projective point addition for arbitrary prime order short | ||
| 210 | * Weierstrass curves with arbitrary a - see | ||
| 211 | * https://eprint.iacr.org/2015/1060, algorithm 1 and appendix A.1. | ||
| 212 | */ | ||
| 213 | |||
| 214 | ec_field_element_copy(&ga, &group->fe_a); | ||
| 215 | ec_field_element_copy(&gb, &group->fe_b); | ||
| 216 | |||
| 217 | ec_field_element_copy(&X1, &a->fe_x); | ||
| 218 | ec_field_element_copy(&Y1, &a->fe_y); | ||
| 219 | ec_field_element_copy(&Z1, &a->fe_z); | ||
| 220 | |||
| 221 | ec_field_element_copy(&X2, &b->fe_x); | ||
| 222 | ec_field_element_copy(&Y2, &b->fe_y); | ||
| 223 | ec_field_element_copy(&Z2, &b->fe_z); | ||
| 224 | |||
| 225 | /* b3 := 3 * b ; */ | ||
| 226 | ec_field_element_add(&group->fm, &b3, &gb, &gb); | ||
| 227 | ec_field_element_add(&group->fm, &b3, &b3, &gb); | ||
| 228 | |||
| 229 | /* t0 := X1 * X2 ; t1 := Y1 * Y2 ; t2 := Z1 * Z2 ; */ | ||
| 230 | ec_field_element_mul(&group->fm, &t0, &X1, &X2); | ||
| 231 | ec_field_element_mul(&group->fm, &t1, &Y1, &Y2); | ||
| 232 | ec_field_element_mul(&group->fm, &t2, &Z1, &Z2); | ||
| 233 | |||
| 234 | /* t3 := X1 + Y1 ; t4 := X2 + Y2 ; t3 := t3 * t4 ; */ | ||
| 235 | ec_field_element_add(&group->fm, &t3, &X1, &Y1); | ||
| 236 | ec_field_element_add(&group->fm, &t4, &X2, &Y2); | ||
| 237 | ec_field_element_mul(&group->fm, &t3, &t3, &t4); | ||
| 238 | |||
| 239 | /* t4 := t0 + t1 ; t3 := t3 - t4 ; t4 := X1 + Z1 ; */ | ||
| 240 | ec_field_element_add(&group->fm, &t4, &t0, &t1); | ||
| 241 | ec_field_element_sub(&group->fm, &t3, &t3, &t4); | ||
| 242 | ec_field_element_add(&group->fm, &t4, &X1, &Z1); | ||
| 243 | |||
| 244 | /* t5 := X2 + Z2 ; t4 := t4 * t5 ; t5 := t0 + t2 ; */ | ||
| 245 | ec_field_element_add(&group->fm, &t5, &X2, &Z2); | ||
| 246 | ec_field_element_mul(&group->fm, &t4, &t4, &t5); | ||
| 247 | ec_field_element_add(&group->fm, &t5, &t0, &t2); | ||
| 248 | |||
| 249 | /* t4 := t4 - t5 ; t5 := Y1 + Z1 ; X3 := Y2 + Z2 ; */ | ||
| 250 | ec_field_element_sub(&group->fm, &t4, &t4, &t5); | ||
| 251 | ec_field_element_add(&group->fm, &t5, &Y1, &Z1); | ||
| 252 | ec_field_element_add(&group->fm, &X3, &Y2, &Z2); | ||
| 253 | |||
| 254 | /* t5 := t5 * X3 ; X3 := t1 + t2 ; t5 := t5 - X3 ; */ | ||
| 255 | ec_field_element_mul(&group->fm, &t5, &t5, &X3); | ||
| 256 | ec_field_element_add(&group->fm, &X3, &t1, &t2); | ||
| 257 | ec_field_element_sub(&group->fm, &t5, &t5, &X3); | ||
| 258 | |||
| 259 | /* Z3 := a * t4 ; X3 := b3 * t2 ; Z3 := X3 + Z3 ; */ | ||
| 260 | ec_field_element_mul(&group->fm, &Z3, &ga, &t4); | ||
| 261 | ec_field_element_mul(&group->fm, &X3, &b3, &t2); | ||
| 262 | ec_field_element_add(&group->fm, &Z3, &X3, &Z3); | ||
| 263 | |||
| 264 | /* X3 := t1 - Z3 ; Z3 := t1 + Z3 ; Y3 := X3 * Z3 ; */ | ||
| 265 | ec_field_element_sub(&group->fm, &X3, &t1, &Z3); | ||
| 266 | ec_field_element_add(&group->fm, &Z3, &t1, &Z3); | ||
| 267 | ec_field_element_mul(&group->fm, &Y3, &X3, &Z3); | ||
| 268 | |||
| 269 | /* t1 := t0 + t0 ; t1 := t1 + t0 ; t2 := a * t2 ; */ | ||
| 270 | ec_field_element_add(&group->fm, &t1, &t0, &t0); | ||
| 271 | ec_field_element_add(&group->fm, &t1, &t1, &t0); | ||
| 272 | ec_field_element_mul(&group->fm, &t2, &ga, &t2); | ||
| 273 | |||
| 274 | /* t4 := b3 * t4 ; t1 := t1 + t2 ; t2 := t0 - t2 ; */ | ||
| 275 | ec_field_element_mul(&group->fm, &t4, &b3, &t4); | ||
| 276 | ec_field_element_add(&group->fm, &t1, &t1, &t2); | ||
| 277 | ec_field_element_sub(&group->fm, &t2, &t0, &t2); | ||
| 278 | |||
| 279 | /* t2 := a * t2 ; t4 := t4 + t2 ; t0 := t1 * t4 ; */ | ||
| 280 | ec_field_element_mul(&group->fm, &t2, &ga, &t2); | ||
| 281 | ec_field_element_add(&group->fm, &t4, &t4, &t2); | ||
| 282 | ec_field_element_mul(&group->fm, &t0, &t1, &t4); | ||
| 283 | |||
| 284 | /* Y3 := Y3 + t0 ; t0 := t5 * t4 ; X3 := t3 * X3 ; */ | ||
| 285 | ec_field_element_add(&group->fm, &Y3, &Y3, &t0); | ||
| 286 | ec_field_element_mul(&group->fm, &t0, &t5, &t4); | ||
| 287 | ec_field_element_mul(&group->fm, &X3, &t3, &X3); | ||
| 288 | |||
| 289 | /* X3 := X3 - t0 ; t0 := t3 * t1 ; Z3 := t5 * Z3 ; */ | ||
| 290 | ec_field_element_sub(&group->fm, &X3, &X3, &t0); | ||
| 291 | ec_field_element_mul(&group->fm, &t0, &t3, &t1); | ||
| 292 | ec_field_element_mul(&group->fm, &Z3, &t5, &Z3); | ||
| 293 | |||
| 294 | /* Z3 := Z3 + t0 ; */ | ||
| 295 | ec_field_element_add(&group->fm, &Z3, &Z3, &t0); | ||
| 296 | |||
| 297 | ec_field_element_copy(&r->fe_x, &X3); | ||
| 298 | ec_field_element_copy(&r->fe_y, &Y3); | ||
| 299 | ec_field_element_copy(&r->fe_z, &Z3); | ||
| 300 | |||
| 301 | return 1; | ||
| 302 | } | ||
| 303 | |||
| 304 | static int | ||
| 305 | ec_point_add_a2(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | ||
| 306 | const EC_POINT *b, BN_CTX *ctx) | ||
| 307 | { | ||
| 308 | EC_FIELD_ELEMENT X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3; | ||
| 309 | EC_FIELD_ELEMENT t0, t1, t2, t3, t4; | ||
| 310 | EC_FIELD_ELEMENT gb; | ||
| 311 | |||
| 312 | /* | ||
| 313 | * Complete, projective point addition for arbitrary prime order short | ||
| 314 | * Weierstrass curves with a = -3 - see https://eprint.iacr.org/2015/1060, | ||
| 315 | * algorithm 4 and appendix A.2. | ||
| 316 | */ | ||
| 317 | |||
| 318 | ec_field_element_copy(&gb, &group->fe_b); | ||
| 319 | |||
| 320 | ec_field_element_copy(&X1, &a->fe_x); | ||
| 321 | ec_field_element_copy(&Y1, &a->fe_y); | ||
| 322 | ec_field_element_copy(&Z1, &a->fe_z); | ||
| 323 | |||
| 324 | ec_field_element_copy(&X2, &b->fe_x); | ||
| 325 | ec_field_element_copy(&Y2, &b->fe_y); | ||
| 326 | ec_field_element_copy(&Z2, &b->fe_z); | ||
| 327 | |||
| 328 | /* t0 := X1 * X2 ; t1 := Y1 * Y2 ; t2 := Z1 * Z2 ; */ | ||
| 329 | ec_field_element_mul(&group->fm, &t0, &X1, &X2); | ||
| 330 | ec_field_element_mul(&group->fm, &t1, &Y1, &Y2); | ||
| 331 | ec_field_element_mul(&group->fm, &t2, &Z1, &Z2); | ||
| 332 | |||
| 333 | /* t3 := X1 + Y1 ; t4 := X2 + Y2 ; t3 := t3 * t4 ; */ | ||
| 334 | ec_field_element_add(&group->fm, &t3, &X1, &Y1); | ||
| 335 | ec_field_element_add(&group->fm, &t4, &X2, &Y2); | ||
| 336 | ec_field_element_mul(&group->fm, &t3, &t3, &t4); | ||
| 337 | |||
| 338 | /* t4 := t0 + t1 ; t3 := t3 - t4 ; t4 := Y1 + Z1 ; */ | ||
| 339 | ec_field_element_add(&group->fm, &t4, &t0, &t1); | ||
| 340 | ec_field_element_sub(&group->fm, &t3, &t3, &t4); | ||
| 341 | ec_field_element_add(&group->fm, &t4, &Y1, &Z1); | ||
| 342 | |||
| 343 | /* X3 := Y2 + Z2 ; t4 := t4 * X3 ; X3 := t1 + t2 ; */ | ||
| 344 | ec_field_element_add(&group->fm, &X3, &Y2, &Z2); | ||
| 345 | ec_field_element_mul(&group->fm, &t4, &t4, &X3); | ||
| 346 | ec_field_element_add(&group->fm, &X3, &t1, &t2); | ||
| 347 | |||
| 348 | /* t4 := t4 - X3 ; X3 := X1 + Z1 ; Y3 := X2 + Z2 ; */ | ||
| 349 | ec_field_element_sub(&group->fm, &t4, &t4, &X3); | ||
| 350 | ec_field_element_add(&group->fm, &X3, &X1, &Z1); | ||
| 351 | ec_field_element_add(&group->fm, &Y3, &X2, &Z2); | ||
| 352 | |||
| 353 | /* X3 := X3 * Y3 ; Y3 := t0 + t2 ; Y3 := X3 - Y3 ; */ | ||
| 354 | ec_field_element_mul(&group->fm, &X3, &X3, &Y3); | ||
| 355 | ec_field_element_add(&group->fm, &Y3, &t0, &t2); | ||
| 356 | ec_field_element_sub(&group->fm, &Y3, &X3, &Y3); | ||
| 357 | |||
| 358 | /* Z3 := b * t2 ; X3 := Y3 - Z3 ; Z3 := X3 + X3 ; */ | ||
| 359 | ec_field_element_mul(&group->fm, &Z3, &gb, &t2); | ||
| 360 | ec_field_element_sub(&group->fm, &X3, &Y3, &Z3); | ||
| 361 | ec_field_element_add(&group->fm, &Z3, &X3, &X3); | ||
| 362 | |||
| 363 | /* X3 := X3 + Z3 ; Z3 := t1 - X3 ; X3 := t1 + X3 ; */ | ||
| 364 | ec_field_element_add(&group->fm, &X3, &X3, &Z3); | ||
| 365 | ec_field_element_sub(&group->fm, &Z3, &t1, &X3); | ||
| 366 | ec_field_element_add(&group->fm, &X3, &t1, &X3); | ||
| 367 | |||
| 368 | /* Y3 := b * Y3 ; t1 := t2 + t2 ; t2 := t1 + t2 ; */ | ||
| 369 | ec_field_element_mul(&group->fm, &Y3, &gb, &Y3); | ||
| 370 | ec_field_element_add(&group->fm, &t1, &t2, &t2); | ||
| 371 | ec_field_element_add(&group->fm, &t2, &t1, &t2); | ||
| 372 | |||
| 373 | /* Y3 := Y3 - t2 ; Y3 := Y3 - t0 ; t1 := Y3 + Y3 ; */ | ||
| 374 | ec_field_element_sub(&group->fm, &Y3, &Y3, &t2); | ||
| 375 | ec_field_element_sub(&group->fm, &Y3, &Y3, &t0); | ||
| 376 | ec_field_element_add(&group->fm, &t1, &Y3, &Y3); | ||
| 377 | |||
| 378 | /* Y3 := t1 + Y3 ; t1 := t0 + t0 ; t0 := t1 + t0 ; */ | ||
| 379 | ec_field_element_add(&group->fm, &Y3, &t1, &Y3); | ||
| 380 | ec_field_element_add(&group->fm, &t1, &t0, &t0); | ||
| 381 | ec_field_element_add(&group->fm, &t0, &t1, &t0); | ||
| 382 | |||
| 383 | /* t0 := t0 - t2 ; t1 := t4 * Y3 ; t2 := t0 * Y3 ; */ | ||
| 384 | ec_field_element_sub(&group->fm, &t0, &t0, &t2); | ||
| 385 | ec_field_element_mul(&group->fm, &t1, &t4, &Y3); | ||
| 386 | ec_field_element_mul(&group->fm, &t2, &t0, &Y3); | ||
| 387 | |||
| 388 | /* Y3 := X3 * Z3 ; Y3 := Y3 + t2 ; X3 := t3 * X3 ; */ | ||
| 389 | ec_field_element_mul(&group->fm, &Y3, &X3, &Z3); | ||
| 390 | ec_field_element_add(&group->fm, &Y3, &Y3, &t2); | ||
| 391 | ec_field_element_mul(&group->fm, &X3, &t3, &X3); | ||
| 392 | |||
| 393 | /* X3 := X3 - t1 ; Z3 := t4 * Z3 ; t1 := t3 * t0 ; */ | ||
| 394 | ec_field_element_sub(&group->fm, &X3, &X3, &t1); | ||
| 395 | ec_field_element_mul(&group->fm, &Z3, &t4, &Z3); | ||
| 396 | ec_field_element_mul(&group->fm, &t1, &t3, &t0); | ||
| 397 | |||
| 398 | /* Z3 := Z3 + t1 ; */ | ||
| 399 | ec_field_element_add(&group->fm, &Z3, &Z3, &t1); | ||
| 400 | |||
| 401 | ec_field_element_copy(&r->fe_x, &X3); | ||
| 402 | ec_field_element_copy(&r->fe_y, &Y3); | ||
| 403 | ec_field_element_copy(&r->fe_z, &Z3); | ||
| 404 | |||
| 405 | return 1; | ||
| 406 | } | ||
| 407 | |||
| 408 | static int | ||
| 409 | ec_point_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, | ||
| 410 | const EC_POINT *b, BN_CTX *ctx) | ||
| 411 | { | ||
| 412 | if (group->a_is_minus3) | ||
| 413 | return ec_point_add_a2(group, r, a, b, ctx); | ||
| 414 | |||
| 415 | return ec_point_add_a1(group, r, a, b, ctx); | ||
| 416 | } | ||
| 417 | |||
| 418 | static int | ||
| 419 | ec_point_dbl_a1(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) | ||
| 420 | { | ||
| 421 | EC_FIELD_ELEMENT X1, Y1, Z1, X3, Y3, Z3; | ||
| 422 | EC_FIELD_ELEMENT b3, t0, t1, t2, t3; | ||
| 423 | EC_FIELD_ELEMENT ga, gb; | ||
| 424 | |||
| 425 | /* | ||
| 426 | * Exception-free point doubling for arbitrary prime order short | ||
| 427 | * Weierstrass curves with arbitrary a - see | ||
| 428 | * https://eprint.iacr.org/2015/1060, algorithm 3 and appendix A.1. | ||
| 429 | */ | ||
| 430 | |||
| 431 | ec_field_element_copy(&ga, &group->fe_a); | ||
| 432 | ec_field_element_copy(&gb, &group->fe_b); | ||
| 433 | |||
| 434 | ec_field_element_copy(&X1, &a->fe_x); | ||
| 435 | ec_field_element_copy(&Y1, &a->fe_y); | ||
| 436 | ec_field_element_copy(&Z1, &a->fe_z); | ||
| 437 | |||
| 438 | /* b3 := 3 * b ; */ | ||
| 439 | ec_field_element_add(&group->fm, &b3, &gb, &gb); | ||
| 440 | ec_field_element_add(&group->fm, &b3, &b3, &gb); | ||
| 441 | |||
| 442 | /* b3 := 3 * b ; */ | ||
| 443 | ec_field_element_add(&group->fm, &b3, &gb, &gb); | ||
| 444 | ec_field_element_add(&group->fm, &b3, &b3, &gb); | ||
| 445 | |||
| 446 | /* t0 := X^2; t1 := Y^2; t2 := Z^2 ; */ | ||
| 447 | ec_field_element_sqr(&group->fm, &t0, &X1); | ||
| 448 | ec_field_element_sqr(&group->fm, &t1, &Y1); | ||
| 449 | ec_field_element_sqr(&group->fm, &t2, &Z1); | ||
| 450 | |||
| 451 | /* t3 := X * Y ; t3 := t3 + t3 ; Z3 := X * Z ; */ | ||
| 452 | ec_field_element_mul(&group->fm, &t3, &X1, &Y1); | ||
| 453 | ec_field_element_add(&group->fm, &t3, &t3, &t3); | ||
| 454 | ec_field_element_mul(&group->fm, &Z3, &X1, &Z1); | ||
| 455 | |||
| 456 | /* Z3 := Z3 + Z3 ; X3 := a * Z3 ; Y3 := b3 * t2 ; */ | ||
| 457 | ec_field_element_add(&group->fm, &Z3, &Z3, &Z3); | ||
| 458 | ec_field_element_mul(&group->fm, &X3, &ga, &Z3); | ||
| 459 | ec_field_element_mul(&group->fm, &Y3, &b3, &t2); | ||
| 460 | |||
| 461 | /* Y3 := X3 + Y3 ; X3 := t1 - Y3 ; Y3 := t1 + Y3 ; */ | ||
| 462 | ec_field_element_add(&group->fm, &Y3, &X3, &Y3); | ||
| 463 | ec_field_element_sub(&group->fm, &X3, &t1, &Y3); | ||
| 464 | ec_field_element_add(&group->fm, &Y3, &t1, &Y3); | ||
| 465 | |||
| 466 | /* Y3 := X3 * Y3 ; X3 := t3 * X3 ; Z3 := b3 * Z3 ; */ | ||
| 467 | ec_field_element_mul(&group->fm, &Y3, &X3, &Y3); | ||
| 468 | ec_field_element_mul(&group->fm, &X3, &t3, &X3); | ||
| 469 | ec_field_element_mul(&group->fm, &Z3, &b3, &Z3); | ||
| 470 | |||
| 471 | /* t2 := a * t2 ; t3 := t0 - t2 ; t3 := a * t3 ; */ | ||
| 472 | ec_field_element_mul(&group->fm, &t2, &ga, &t2); | ||
| 473 | ec_field_element_sub(&group->fm, &t3, &t0, &t2); | ||
| 474 | ec_field_element_mul(&group->fm, &t3, &ga, &t3); | ||
| 475 | |||
| 476 | /* t3 := t3 + Z3 ; Z3 := t0 + t0 ; t0 := Z3 + t0 ; */ | ||
| 477 | ec_field_element_add(&group->fm, &t3, &t3, &Z3); | ||
| 478 | ec_field_element_add(&group->fm, &Z3, &t0, &t0); | ||
| 479 | ec_field_element_add(&group->fm, &t0, &Z3, &t0); | ||
| 480 | |||
| 481 | /* t0 := t0 + t2 ; t0 := t0 * t3 ; Y3 := Y3 + t0 ; */ | ||
| 482 | ec_field_element_add(&group->fm, &t0, &t0, &t2); | ||
| 483 | ec_field_element_mul(&group->fm, &t0, &t0, &t3); | ||
| 484 | ec_field_element_add(&group->fm, &Y3, &Y3, &t0); | ||
| 485 | |||
| 486 | /* t2 := Y * Z ; t2 := t2 + t2 ; t0 := t2 * t3 ; */ | ||
| 487 | ec_field_element_mul(&group->fm, &t2, &Y1, &Z1); | ||
| 488 | ec_field_element_add(&group->fm, &t2, &t2, &t2); | ||
| 489 | ec_field_element_mul(&group->fm, &t0, &t2, &t3); | ||
| 490 | |||
| 491 | /* X3 := X3 - t0 ; Z3 := t2 * t1 ; Z3 := Z3 + Z3 ; */ | ||
| 492 | ec_field_element_sub(&group->fm, &X3, &X3, &t0); | ||
| 493 | ec_field_element_mul(&group->fm, &Z3, &t2, &t1); | ||
| 494 | ec_field_element_add(&group->fm, &Z3, &Z3, &Z3); | ||
| 495 | |||
| 496 | /* Z3 := Z3 + Z3 ; */ | ||
| 497 | ec_field_element_add(&group->fm, &Z3, &Z3, &Z3); | ||
| 498 | |||
| 499 | ec_field_element_copy(&r->fe_x, &X3); | ||
| 500 | ec_field_element_copy(&r->fe_y, &Y3); | ||
| 501 | ec_field_element_copy(&r->fe_z, &Z3); | ||
| 502 | |||
| 503 | return 1; | ||
| 504 | } | ||
| 505 | |||
| 506 | static int | ||
| 507 | ec_point_dbl_a2(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) | ||
| 508 | { | ||
| 509 | EC_FIELD_ELEMENT X1, Y1, Z1, X3, Y3, Z3; | ||
| 510 | EC_FIELD_ELEMENT t0, t1, t2, t3; | ||
| 511 | EC_FIELD_ELEMENT ga, gb; | ||
| 512 | |||
| 513 | /* | ||
| 514 | * Exception-free point doubling for arbitrary prime order short | ||
| 515 | * Weierstrass curves with a = -3 - see https://eprint.iacr.org/2015/1060, | ||
| 516 | * algorithm 6 and appendix A.2. | ||
| 517 | */ | ||
| 518 | |||
| 519 | ec_field_element_copy(&ga, &group->fe_a); | ||
| 520 | ec_field_element_copy(&gb, &group->fe_b); | ||
| 521 | |||
| 522 | ec_field_element_copy(&X1, &a->fe_x); | ||
| 523 | ec_field_element_copy(&Y1, &a->fe_y); | ||
| 524 | ec_field_element_copy(&Z1, &a->fe_z); | ||
| 525 | |||
| 526 | /* t0 := X^2; t1 := Y^2; t2 := Z^2 ; */ | ||
| 527 | ec_field_element_sqr(&group->fm, &t0, &X1); | ||
| 528 | ec_field_element_sqr(&group->fm, &t1, &Y1); | ||
| 529 | ec_field_element_sqr(&group->fm, &t2, &Z1); | ||
| 530 | |||
| 531 | /* t3 := X * Y ; t3 := t3 + t3 ; Z3 := X * Z ; */ | ||
| 532 | ec_field_element_mul(&group->fm, &t3, &X1, &Y1); | ||
| 533 | ec_field_element_add(&group->fm, &t3, &t3, &t3); | ||
| 534 | ec_field_element_mul(&group->fm, &Z3, &X1, &Z1); | ||
| 535 | |||
| 536 | /* Z3 := Z3 + Z3 ; Y3 := b * t2 ; Y3 := Y3 - Z3 ; */ | ||
| 537 | ec_field_element_add(&group->fm, &Z3, &Z3, &Z3); | ||
| 538 | ec_field_element_mul(&group->fm, &Y3, &gb, &t2); | ||
| 539 | ec_field_element_sub(&group->fm, &Y3, &Y3, &Z3); | ||
| 540 | |||
| 541 | /* X3 := Y3 + Y3 ; Y3 := X3 + Y3 ; X3 := t1 - Y3 ; */ | ||
| 542 | ec_field_element_add(&group->fm, &X3, &Y3, &Y3); | ||
| 543 | ec_field_element_add(&group->fm, &Y3, &X3, &Y3); | ||
| 544 | ec_field_element_sub(&group->fm, &X3, &t1, &Y3); | ||
| 545 | |||
| 546 | /* Y3 := t1 + Y3 ; Y3 := X3 * Y3 ; X3 := X3 * t3 ; */ | ||
| 547 | ec_field_element_add(&group->fm, &Y3, &t1, &Y3); | ||
| 548 | ec_field_element_mul(&group->fm, &Y3, &X3, &Y3); | ||
| 549 | ec_field_element_mul(&group->fm, &X3, &X3, &t3); | ||
| 550 | |||
| 551 | /* t3 := t2 + t2 ; t2 := t2 + t3 ; Z3 := b * Z3 ; */ | ||
| 552 | ec_field_element_add(&group->fm, &t3, &t2, &t2); | ||
| 553 | ec_field_element_add(&group->fm, &t2, &t2, &t3); | ||
| 554 | ec_field_element_mul(&group->fm, &Z3, &gb, &Z3); | ||
| 555 | |||
| 556 | /* Z3 := Z3 - t2 ; Z3 := Z3 - t0 ; t3 := Z3 + Z3 ; */ | ||
| 557 | ec_field_element_sub(&group->fm, &Z3, &Z3, &t2); | ||
| 558 | ec_field_element_sub(&group->fm, &Z3, &Z3, &t0); | ||
| 559 | ec_field_element_add(&group->fm, &t3, &Z3, &Z3); | ||
| 560 | |||
| 561 | /* Z3 := Z3 + t3 ; t3 := t0 + t0 ; t0 := t3 + t0 ; */ | ||
| 562 | ec_field_element_add(&group->fm, &Z3, &Z3, &t3); | ||
| 563 | ec_field_element_add(&group->fm, &t3, &t0, &t0); | ||
| 564 | ec_field_element_add(&group->fm, &t0, &t3, &t0); | ||
| 565 | |||
| 566 | /* t0 := t0 - t2 ; t0 := t0 * Z3 ; Y3 := Y3 + t0 ; */ | ||
| 567 | ec_field_element_sub(&group->fm, &t0, &t0, &t2); | ||
| 568 | ec_field_element_mul(&group->fm, &t0, &t0, &Z3); | ||
| 569 | ec_field_element_add(&group->fm, &Y3, &Y3, &t0); | ||
| 570 | |||
| 571 | /* t0 := Y * Z ; t0 := t0 + t0 ; Z3 := t0 * Z3 ; */ | ||
| 572 | ec_field_element_mul(&group->fm, &t0, &Y1, &Z1); | ||
| 573 | ec_field_element_add(&group->fm, &t0, &t0, &t0); | ||
| 574 | ec_field_element_mul(&group->fm, &Z3, &t0, &Z3); | ||
| 575 | |||
| 576 | /* X3 := X3 - Z3 ; Z3 := t0 * t1 ; Z3 := Z3 + Z3 ; */ | ||
| 577 | ec_field_element_sub(&group->fm, &X3, &X3, &Z3); | ||
| 578 | ec_field_element_mul(&group->fm, &Z3, &t0, &t1); | ||
| 579 | ec_field_element_add(&group->fm, &Z3, &Z3, &Z3); | ||
| 580 | |||
| 581 | /* Z3 := Z3 + Z3 ; */ | ||
| 582 | ec_field_element_add(&group->fm, &Z3, &Z3, &Z3); | ||
| 583 | |||
| 584 | ec_field_element_copy(&r->fe_x, &X3); | ||
| 585 | ec_field_element_copy(&r->fe_y, &Y3); | ||
| 586 | ec_field_element_copy(&r->fe_z, &Z3); | ||
| 587 | |||
| 588 | return 1; | ||
| 589 | } | ||
| 590 | |||
| 591 | static int | ||
| 592 | ec_point_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, BN_CTX *ctx) | ||
| 593 | { | ||
| 594 | if (group->a_is_minus3) | ||
| 595 | return ec_point_dbl_a2(group, r, a, ctx); | ||
| 596 | |||
| 597 | return ec_point_dbl_a1(group, r, a, ctx); | ||
| 598 | } | ||
| 599 | |||
| 600 | static int | ||
| 601 | ec_point_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) | ||
| 602 | { | ||
| 603 | EC_FIELD_ELEMENT y; | ||
| 604 | BN_ULONG mask; | ||
| 605 | int i; | ||
| 606 | |||
| 607 | /* | ||
| 608 | * Invert the point by setting Y = p - Y, if Y is non-zero and the point | ||
| 609 | * is not at infinity. | ||
| 610 | */ | ||
| 611 | |||
| 612 | mask = ~(0 - (ec_point_is_at_infinity(group, point) | | ||
| 613 | ec_field_element_is_zero(&group->fm, &point->fe_y))); | ||
| 614 | |||
| 615 | /* XXX - masked/conditional subtraction? */ | ||
| 616 | ec_field_element_sub(&group->fm, &y, &group->fm.m, &point->fe_y); | ||
| 617 | |||
| 618 | for (i = 0; i < group->fm.n; i++) | ||
| 619 | point->fe_y.w[i] = (point->fe_y.w[i] & ~mask) | (y.w[i] & mask); | ||
| 620 | |||
| 621 | return 1; | ||
| 622 | } | ||
| 623 | |||
| 624 | static int | ||
| 625 | ec_point_is_on_curve(const EC_GROUP *group, const EC_POINT *point, BN_CTX *ctx) | ||
| 626 | { | ||
| 627 | EC_FIELD_ELEMENT sum, axz2, bz3, x3, y2z, z2; | ||
| 628 | |||
| 629 | /* | ||
| 630 | * Curve is defined by a Weierstrass equation y^2 = x^3 + a*x + b. | ||
| 631 | * The given point is in homogeneous projective coordinates | ||
| 632 | * (x = X/Z, y = Y/Z). Substitute and multiply by Z^3 in order to | ||
| 633 | * evaluate as zy^2 = x^3 + axz^2 + bz^3. | ||
| 634 | */ | ||
| 635 | |||
| 636 | ec_field_element_sqr(&group->fm, &z2, &point->fe_z); | ||
| 637 | |||
| 638 | ec_field_element_sqr(&group->fm, &y2z, &point->fe_y); | ||
| 639 | ec_field_element_mul(&group->fm, &y2z, &y2z, &point->fe_z); | ||
| 640 | |||
| 641 | ec_field_element_sqr(&group->fm, &x3, &point->fe_x); | ||
| 642 | ec_field_element_mul(&group->fm, &x3, &x3, &point->fe_x); | ||
| 643 | |||
| 644 | ec_field_element_mul(&group->fm, &axz2, &group->fe_a, &point->fe_x); | ||
| 645 | ec_field_element_mul(&group->fm, &axz2, &axz2, &z2); | ||
| 646 | |||
| 647 | ec_field_element_mul(&group->fm, &bz3, &group->fe_b, &point->fe_z); | ||
| 648 | ec_field_element_mul(&group->fm, &bz3, &bz3, &z2); | ||
| 649 | |||
| 650 | ec_field_element_add(&group->fm, &sum, &x3, &axz2); | ||
| 651 | ec_field_element_add(&group->fm, &sum, &sum, &bz3); | ||
| 652 | |||
| 653 | return ec_field_element_equal(&group->fm, &y2z, &sum) | | ||
| 654 | ec_point_is_at_infinity(group, point); | ||
| 655 | } | ||
| 656 | |||
| 657 | static int | ||
| 658 | ec_point_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, BN_CTX *ctx) | ||
| 659 | { | ||
| 660 | EC_FIELD_ELEMENT ax, ay, bx, by; | ||
| 661 | |||
| 662 | /* | ||
| 663 | * Compare two points that have homogeneous projection coordinates, that | ||
| 664 | * is (X_a/Z_a, Y_a/Z_a) == (X_b/Z_b, Y_b/Z_b). Return -1 on error, 0 on | ||
| 665 | * equality and 1 on inequality. | ||
| 666 | * | ||
| 667 | * If a and b are both at infinity, Z_a and Z_b will both be zero, | ||
| 668 | * resulting in all values becoming zero, resulting in equality. If a is | ||
| 669 | * at infinity and b is not, then Y_a will be one and Z_b will be | ||
| 670 | * non-zero, hence Y_a * Z_b will be non-zero. Z_a will be zero, hence | ||
| 671 | * Y_b * Z_a will be zero, resulting in inequality. The same applies if | ||
| 672 | * b is at infinity and a is not. | ||
| 673 | */ | ||
| 674 | |||
| 675 | ec_field_element_mul(&group->fm, &ax, &a->fe_x, &b->fe_z); | ||
| 676 | ec_field_element_mul(&group->fm, &ay, &a->fe_y, &b->fe_z); | ||
| 677 | ec_field_element_mul(&group->fm, &bx, &b->fe_x, &a->fe_z); | ||
| 678 | ec_field_element_mul(&group->fm, &by, &b->fe_y, &a->fe_z); | ||
| 679 | |||
| 680 | return 1 - (ec_field_element_equal(&group->fm, &ax, &bx) & | ||
| 681 | ec_field_element_equal(&group->fm, &ay, &by)); | ||
| 682 | } | ||
| 683 | |||
| 684 | #if 0 | ||
| 685 | static int | ||
| 686 | ec_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], | ||
| 687 | BN_CTX *ctx) | ||
| 688 | { | ||
| 689 | size_t i; | ||
| 690 | |||
| 691 | /* XXX */ | ||
| 692 | for (i = 0; i < num; i++) { | ||
| 693 | if (!EC_POINT_make_affine(group, points[0], ctx)) | ||
| 694 | return 0; | ||
| 695 | } | ||
| 696 | |||
| 697 | return 1; | ||
| 698 | } | ||
| 699 | #else | ||
| 700 | |||
| 701 | static int | ||
| 702 | ec_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], | ||
| 703 | BN_CTX *ctx) | ||
| 704 | { | ||
| 705 | BIGNUM **prod_Z = NULL; | ||
| 706 | BIGNUM *tmp, *tmp_Z; | ||
| 707 | size_t i; | ||
| 708 | int ret = 0; | ||
| 709 | |||
| 710 | if (num == 0) | ||
| 711 | return 1; | ||
| 712 | |||
| 713 | BN_CTX_start(ctx); | ||
| 714 | |||
| 715 | if ((tmp = BN_CTX_get(ctx)) == NULL) | ||
| 716 | goto err; | ||
| 717 | if ((tmp_Z = BN_CTX_get(ctx)) == NULL) | ||
| 718 | goto err; | ||
| 719 | |||
| 720 | if ((prod_Z = calloc(num, sizeof *prod_Z)) == NULL) | ||
| 721 | goto err; | ||
| 722 | for (i = 0; i < num; i++) { | ||
| 723 | if ((prod_Z[i] = BN_CTX_get(ctx)) == NULL) | ||
| 724 | goto err; | ||
| 725 | } | ||
| 726 | |||
| 727 | if (!BN_is_zero(points[0]->Z)) { | ||
| 728 | if (!bn_copy(prod_Z[0], points[0]->Z)) | ||
| 729 | goto err; | ||
| 730 | } else { | ||
| 731 | if (!BN_one(prod_Z[0])) | ||
| 732 | goto err; | ||
| 733 | } | ||
| 734 | |||
| 735 | for (i = 1; i < num; i++) { | ||
| 736 | if (!BN_is_zero(points[i]->Z)) { | ||
| 737 | if (!BN_mod_mul(prod_Z[i], prod_Z[i - 1], points[i]->Z, | ||
| 738 | group->p, ctx)) | ||
| 739 | goto err; | ||
| 740 | } else { | ||
| 741 | if (!bn_copy(prod_Z[i], prod_Z[i - 1])) | ||
| 742 | goto err; | ||
| 743 | } | ||
| 744 | } | ||
| 745 | |||
| 746 | if (!BN_mod_inverse_nonct(tmp, prod_Z[num - 1], group->p, ctx)) { | ||
| 747 | ECerror(ERR_R_BN_LIB); | ||
| 748 | goto err; | ||
| 749 | } | ||
| 750 | |||
| 751 | for (i = num - 1; i > 0; i--) { | ||
| 752 | if (BN_is_zero(points[i]->Z)) | ||
| 753 | continue; | ||
| 754 | |||
| 755 | if (!BN_mod_mul(tmp_Z, prod_Z[i - 1], tmp, group->p, ctx)) | ||
| 756 | goto err; | ||
| 757 | if (!BN_mod_mul(tmp, tmp, points[i]->Z, group->p, ctx)) | ||
| 758 | goto err; | ||
| 759 | if (!bn_copy(points[i]->Z, tmp_Z)) | ||
| 760 | goto err; | ||
| 761 | } | ||
| 762 | |||
| 763 | for (i = 0; i < num; i++) { | ||
| 764 | EC_POINT *p = points[i]; | ||
| 765 | |||
| 766 | if (BN_is_zero(p->Z)) | ||
| 767 | continue; | ||
| 768 | |||
| 769 | if (!BN_mod_mul(p->X, p->X, p->Z, group->p, ctx)) | ||
| 770 | goto err; | ||
| 771 | if (!BN_mod_mul(p->Y, p->Y, p->Z, group->p, ctx)) | ||
| 772 | goto err; | ||
| 773 | |||
| 774 | if (!BN_one(p->Z)) | ||
| 775 | goto err; | ||
| 776 | } | ||
| 777 | |||
| 778 | ret = 1; | ||
| 779 | |||
| 780 | err: | ||
| 781 | return ret; | ||
| 782 | } | ||
| 783 | #endif | ||
| 784 | |||
| 785 | static int | ||
| 786 | ec_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, const EC_POINT *point, | ||
| 787 | BN_CTX *ctx) | ||
| 788 | { | ||
| 789 | EC_POINT *rr; | ||
| 790 | int bits, i; | ||
| 791 | int ret = 0; | ||
| 792 | |||
| 793 | /* XXX - need constant time and blinding. */ | ||
| 794 | |||
| 795 | if ((rr = EC_POINT_new(group)) == NULL) | ||
| 796 | goto err; | ||
| 797 | |||
| 798 | bits = BN_num_bits(scalar); | ||
| 799 | |||
| 800 | EC_POINT_copy(rr, point); | ||
| 801 | |||
| 802 | for (i = bits - 2; i >= 0; i--) { | ||
| 803 | if (!EC_POINT_dbl(group, rr, rr, ctx)) | ||
| 804 | goto err; | ||
| 805 | if (BN_is_bit_set(scalar, i)) { | ||
| 806 | if (!EC_POINT_add(group, rr, rr, point, ctx)) | ||
| 807 | goto err; | ||
| 808 | } | ||
| 809 | } | ||
| 810 | |||
| 811 | EC_POINT_copy(r, rr); | ||
| 812 | |||
| 813 | ret = 1; | ||
| 814 | |||
| 815 | err: | ||
| 816 | EC_POINT_free(rr); | ||
| 817 | |||
| 818 | return ret; | ||
| 819 | } | ||
| 820 | |||
| 821 | static int | ||
| 822 | ec_mul_single_ct(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, | ||
| 823 | const EC_POINT *point, BN_CTX *ctx) | ||
| 824 | { | ||
| 825 | return ec_mul(group, r, scalar, point, ctx); | ||
| 826 | } | ||
| 827 | |||
| 828 | static int | ||
| 829 | ec_mul_double_nonct(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar1, | ||
| 830 | const EC_POINT *point1, const BIGNUM *scalar2, const EC_POINT *point2, | ||
| 831 | BN_CTX *ctx) | ||
| 832 | { | ||
| 833 | return ec_wnaf_mul(group, r, scalar1, point1, scalar2, point2, ctx); | ||
| 834 | } | ||
| 835 | |||
| 836 | static const EC_METHOD ec_GFp_homogeneous_projective_method = { | ||
| 837 | .group_set_curve = ec_group_set_curve, | ||
| 838 | .group_get_curve = ec_group_get_curve, | ||
| 839 | .point_set_to_infinity = ec_point_set_to_infinity, | ||
| 840 | .point_is_at_infinity = ec_point_is_at_infinity, | ||
| 841 | .point_set_affine_coordinates = ec_point_set_affine_coordinates, | ||
| 842 | .point_get_affine_coordinates = ec_point_get_affine_coordinates, | ||
| 843 | .add = ec_point_add, | ||
| 844 | .dbl = ec_point_dbl, | ||
| 845 | .invert = ec_point_invert, | ||
| 846 | .point_is_on_curve = ec_point_is_on_curve, | ||
| 847 | .point_cmp = ec_point_cmp, | ||
| 848 | .points_make_affine = ec_points_make_affine, | ||
| 849 | .mul_single_ct = ec_mul_single_ct, | ||
| 850 | .mul_double_nonct = ec_mul_double_nonct, | ||
| 851 | }; | ||
| 852 | |||
| 853 | const EC_METHOD * | ||
| 854 | EC_GFp_homogeneous_projective_method(void) | ||
| 855 | { | ||
| 856 | return &ec_GFp_homogeneous_projective_method; | ||
| 857 | } | ||
| 858 | LCRYPTO_ALIAS(EC_GFp_simple_method); | ||
