diff options
Diffstat (limited to 'src/lib/libcrypto/bn/asm/via-mont.pl')
| -rw-r--r-- | src/lib/libcrypto/bn/asm/via-mont.pl | 242 |
1 files changed, 0 insertions, 242 deletions
diff --git a/src/lib/libcrypto/bn/asm/via-mont.pl b/src/lib/libcrypto/bn/asm/via-mont.pl deleted file mode 100644 index c046a514c8..0000000000 --- a/src/lib/libcrypto/bn/asm/via-mont.pl +++ /dev/null | |||
| @@ -1,242 +0,0 @@ | |||
| 1 | #!/usr/bin/env perl | ||
| 2 | # | ||
| 3 | # ==================================================================== | ||
| 4 | # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL | ||
| 5 | # project. The module is, however, dual licensed under OpenSSL and | ||
| 6 | # CRYPTOGAMS licenses depending on where you obtain it. For further | ||
| 7 | # details see http://www.openssl.org/~appro/cryptogams/. | ||
| 8 | # ==================================================================== | ||
| 9 | # | ||
| 10 | # Wrapper around 'rep montmul', VIA-specific instruction accessing | ||
| 11 | # PadLock Montgomery Multiplier. The wrapper is designed as drop-in | ||
| 12 | # replacement for OpenSSL bn_mul_mont [first implemented in 0.9.9]. | ||
| 13 | # | ||
| 14 | # Below are interleaved outputs from 'openssl speed rsa dsa' for 4 | ||
| 15 | # different software configurations on 1.5GHz VIA Esther processor. | ||
| 16 | # Lines marked with "software integer" denote performance of hand- | ||
| 17 | # coded integer-only assembler found in OpenSSL 0.9.7. "Software SSE2" | ||
| 18 | # refers to hand-coded SSE2 Montgomery multiplication procedure found | ||
| 19 | # OpenSSL 0.9.9. "Hardware VIA SDK" refers to padlock_pmm routine from | ||
| 20 | # Padlock SDK 2.0.1 available for download from VIA, which naturally | ||
| 21 | # utilizes the magic 'repz montmul' instruction. And finally "hardware | ||
| 22 | # this" refers to *this* implementation which also uses 'repz montmul' | ||
| 23 | # | ||
| 24 | # sign verify sign/s verify/s | ||
| 25 | # rsa 512 bits 0.001720s 0.000140s 581.4 7149.7 software integer | ||
| 26 | # rsa 512 bits 0.000690s 0.000086s 1450.3 11606.0 software SSE2 | ||
| 27 | # rsa 512 bits 0.006136s 0.000201s 163.0 4974.5 hardware VIA SDK | ||
| 28 | # rsa 512 bits 0.000712s 0.000050s 1404.9 19858.5 hardware this | ||
| 29 | # | ||
| 30 | # rsa 1024 bits 0.008518s 0.000413s 117.4 2420.8 software integer | ||
| 31 | # rsa 1024 bits 0.004275s 0.000277s 233.9 3609.7 software SSE2 | ||
| 32 | # rsa 1024 bits 0.012136s 0.000260s 82.4 3844.5 hardware VIA SDK | ||
| 33 | # rsa 1024 bits 0.002522s 0.000116s 396.5 8650.9 hardware this | ||
| 34 | # | ||
| 35 | # rsa 2048 bits 0.050101s 0.001371s 20.0 729.6 software integer | ||
| 36 | # rsa 2048 bits 0.030273s 0.001008s 33.0 991.9 software SSE2 | ||
| 37 | # rsa 2048 bits 0.030833s 0.000976s 32.4 1025.1 hardware VIA SDK | ||
| 38 | # rsa 2048 bits 0.011879s 0.000342s 84.2 2921.7 hardware this | ||
| 39 | # | ||
| 40 | # rsa 4096 bits 0.327097s 0.004859s 3.1 205.8 software integer | ||
| 41 | # rsa 4096 bits 0.229318s 0.003859s 4.4 259.2 software SSE2 | ||
| 42 | # rsa 4096 bits 0.233953s 0.003274s 4.3 305.4 hardware VIA SDK | ||
| 43 | # rsa 4096 bits 0.070493s 0.001166s 14.2 857.6 hardware this | ||
| 44 | # | ||
| 45 | # dsa 512 bits 0.001342s 0.001651s 745.2 605.7 software integer | ||
| 46 | # dsa 512 bits 0.000844s 0.000987s 1185.3 1013.1 software SSE2 | ||
| 47 | # dsa 512 bits 0.001902s 0.002247s 525.6 444.9 hardware VIA SDK | ||
| 48 | # dsa 512 bits 0.000458s 0.000524s 2182.2 1909.1 hardware this | ||
| 49 | # | ||
| 50 | # dsa 1024 bits 0.003964s 0.004926s 252.3 203.0 software integer | ||
| 51 | # dsa 1024 bits 0.002686s 0.003166s 372.3 315.8 software SSE2 | ||
| 52 | # dsa 1024 bits 0.002397s 0.002823s 417.1 354.3 hardware VIA SDK | ||
| 53 | # dsa 1024 bits 0.000978s 0.001170s 1022.2 855.0 hardware this | ||
| 54 | # | ||
| 55 | # dsa 2048 bits 0.013280s 0.016518s 75.3 60.5 software integer | ||
| 56 | # dsa 2048 bits 0.009911s 0.011522s 100.9 86.8 software SSE2 | ||
| 57 | # dsa 2048 bits 0.009542s 0.011763s 104.8 85.0 hardware VIA SDK | ||
| 58 | # dsa 2048 bits 0.002884s 0.003352s 346.8 298.3 hardware this | ||
| 59 | # | ||
| 60 | # To give you some other reference point here is output for 2.4GHz P4 | ||
| 61 | # running hand-coded SSE2 bn_mul_mont found in 0.9.9, i.e. "software | ||
| 62 | # SSE2" in above terms. | ||
| 63 | # | ||
| 64 | # rsa 512 bits 0.000407s 0.000047s 2454.2 21137.0 | ||
| 65 | # rsa 1024 bits 0.002426s 0.000141s 412.1 7100.0 | ||
| 66 | # rsa 2048 bits 0.015046s 0.000491s 66.5 2034.9 | ||
| 67 | # rsa 4096 bits 0.109770s 0.002379s 9.1 420.3 | ||
| 68 | # dsa 512 bits 0.000438s 0.000525s 2281.1 1904.1 | ||
| 69 | # dsa 1024 bits 0.001346s 0.001595s 742.7 627.0 | ||
| 70 | # dsa 2048 bits 0.004745s 0.005582s 210.7 179.1 | ||
| 71 | # | ||
| 72 | # Conclusions: | ||
| 73 | # - VIA SDK leaves a *lot* of room for improvement (which this | ||
| 74 | # implementation successfully fills:-); | ||
| 75 | # - 'rep montmul' gives up to >3x performance improvement depending on | ||
| 76 | # key length; | ||
| 77 | # - in terms of absolute performance it delivers approximately as much | ||
| 78 | # as modern out-of-order 32-bit cores [again, for longer keys]. | ||
| 79 | |||
| 80 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; | ||
| 81 | push(@INC,"${dir}","${dir}../../perlasm"); | ||
| 82 | require "x86asm.pl"; | ||
| 83 | |||
| 84 | &asm_init($ARGV[0],"via-mont.pl"); | ||
| 85 | |||
| 86 | # int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num); | ||
| 87 | $func="bn_mul_mont_padlock"; | ||
| 88 | |||
| 89 | $pad=16*1; # amount of reserved bytes on top of every vector | ||
| 90 | |||
| 91 | # stack layout | ||
| 92 | $mZeroPrime=&DWP(0,"esp"); # these are specified by VIA | ||
| 93 | $A=&DWP(4,"esp"); | ||
| 94 | $B=&DWP(8,"esp"); | ||
| 95 | $T=&DWP(12,"esp"); | ||
| 96 | $M=&DWP(16,"esp"); | ||
| 97 | $scratch=&DWP(20,"esp"); | ||
| 98 | $rp=&DWP(24,"esp"); # these are mine | ||
| 99 | $sp=&DWP(28,"esp"); | ||
| 100 | # &DWP(32,"esp") # 32 byte scratch area | ||
| 101 | # &DWP(64+(4*$num+$pad)*0,"esp") # padded tp[num] | ||
| 102 | # &DWP(64+(4*$num+$pad)*1,"esp") # padded copy of ap[num] | ||
| 103 | # &DWP(64+(4*$num+$pad)*2,"esp") # padded copy of bp[num] | ||
| 104 | # &DWP(64+(4*$num+$pad)*3,"esp") # padded copy of np[num] | ||
| 105 | # Note that SDK suggests to unconditionally allocate 2K per vector. This | ||
| 106 | # has quite an impact on performance. It naturally depends on key length, | ||
| 107 | # but to give an example 1024 bit private RSA key operations suffer >30% | ||
| 108 | # penalty. I allocate only as much as actually required... | ||
| 109 | |||
| 110 | &function_begin($func); | ||
| 111 | &xor ("eax","eax"); | ||
| 112 | &mov ("ecx",&wparam(5)); # num | ||
| 113 | # meet VIA's limitations for num [note that the specification | ||
| 114 | # expresses them in bits, while we work with amount of 32-bit words] | ||
| 115 | &test ("ecx",3); | ||
| 116 | &jnz (&label("leave")); # num % 4 != 0 | ||
| 117 | &cmp ("ecx",8); | ||
| 118 | &jb (&label("leave")); # num < 8 | ||
| 119 | &cmp ("ecx",1024); | ||
| 120 | &ja (&label("leave")); # num > 1024 | ||
| 121 | |||
| 122 | &pushf (); | ||
| 123 | &cld (); | ||
| 124 | |||
| 125 | &mov ("edi",&wparam(0)); # rp | ||
| 126 | &mov ("eax",&wparam(1)); # ap | ||
| 127 | &mov ("ebx",&wparam(2)); # bp | ||
| 128 | &mov ("edx",&wparam(3)); # np | ||
| 129 | &mov ("esi",&wparam(4)); # n0 | ||
| 130 | &mov ("esi",&DWP(0,"esi")); # *n0 | ||
| 131 | |||
| 132 | &lea ("ecx",&DWP($pad,"","ecx",4)); # ecx becomes vector size in bytes | ||
| 133 | &lea ("ebp",&DWP(64,"","ecx",4)); # allocate 4 vectors + 64 bytes | ||
| 134 | &neg ("ebp"); | ||
| 135 | &add ("ebp","esp"); | ||
| 136 | &and ("ebp",-64); # align to cache-line | ||
| 137 | &xchg ("ebp","esp"); # alloca | ||
| 138 | |||
| 139 | &mov ($rp,"edi"); # save rp | ||
| 140 | &mov ($sp,"ebp"); # save esp | ||
| 141 | |||
| 142 | &mov ($mZeroPrime,"esi"); | ||
| 143 | &lea ("esi",&DWP(64,"esp")); # tp | ||
| 144 | &mov ($T,"esi"); | ||
| 145 | &lea ("edi",&DWP(32,"esp")); # scratch area | ||
| 146 | &mov ($scratch,"edi"); | ||
| 147 | &mov ("esi","eax"); | ||
| 148 | |||
| 149 | &lea ("ebp",&DWP(-$pad,"ecx")); | ||
| 150 | &shr ("ebp",2); # restore original num value in ebp | ||
| 151 | |||
| 152 | &xor ("eax","eax"); | ||
| 153 | |||
| 154 | &mov ("ecx","ebp"); | ||
| 155 | &lea ("ecx",&DWP((32+$pad)/4,"ecx"));# padded tp + scratch | ||
| 156 | &data_byte(0xf3,0xab); # rep stosl, bzero | ||
| 157 | |||
| 158 | &mov ("ecx","ebp"); | ||
| 159 | &lea ("edi",&DWP(64+$pad,"esp","ecx",4));# pointer to ap copy | ||
| 160 | &mov ($A,"edi"); | ||
| 161 | &data_byte(0xf3,0xa5); # rep movsl, memcpy | ||
| 162 | &mov ("ecx",$pad/4); | ||
| 163 | &data_byte(0xf3,0xab); # rep stosl, bzero pad | ||
| 164 | # edi points at the end of padded ap copy... | ||
| 165 | |||
| 166 | &mov ("ecx","ebp"); | ||
| 167 | &mov ("esi","ebx"); | ||
| 168 | &mov ($B,"edi"); | ||
| 169 | &data_byte(0xf3,0xa5); # rep movsl, memcpy | ||
| 170 | &mov ("ecx",$pad/4); | ||
| 171 | &data_byte(0xf3,0xab); # rep stosl, bzero pad | ||
| 172 | # edi points at the end of padded bp copy... | ||
| 173 | |||
| 174 | &mov ("ecx","ebp"); | ||
| 175 | &mov ("esi","edx"); | ||
| 176 | &mov ($M,"edi"); | ||
| 177 | &data_byte(0xf3,0xa5); # rep movsl, memcpy | ||
| 178 | &mov ("ecx",$pad/4); | ||
| 179 | &data_byte(0xf3,0xab); # rep stosl, bzero pad | ||
| 180 | # edi points at the end of padded np copy... | ||
| 181 | |||
| 182 | # let magic happen... | ||
| 183 | &mov ("ecx","ebp"); | ||
| 184 | &mov ("esi","esp"); | ||
| 185 | &shl ("ecx",5); # convert word counter to bit counter | ||
| 186 | &align (4); | ||
| 187 | &data_byte(0xf3,0x0f,0xa6,0xc0);# rep montmul | ||
| 188 | |||
| 189 | &mov ("ecx","ebp"); | ||
| 190 | &lea ("esi",&DWP(64,"esp")); # tp | ||
| 191 | # edi still points at the end of padded np copy... | ||
| 192 | &neg ("ebp"); | ||
| 193 | &lea ("ebp",&DWP(-$pad,"edi","ebp",4)); # so just "rewind" | ||
| 194 | &mov ("edi",$rp); # restore rp | ||
| 195 | &xor ("edx","edx"); # i=0 and clear CF | ||
| 196 | |||
| 197 | &set_label("sub",8); | ||
| 198 | &mov ("eax",&DWP(0,"esi","edx",4)); | ||
| 199 | &sbb ("eax",&DWP(0,"ebp","edx",4)); | ||
| 200 | &mov (&DWP(0,"edi","edx",4),"eax"); # rp[i]=tp[i]-np[i] | ||
| 201 | &lea ("edx",&DWP(1,"edx")); # i++ | ||
| 202 | &loop (&label("sub")); # doesn't affect CF! | ||
| 203 | |||
| 204 | &mov ("eax",&DWP(0,"esi","edx",4)); # upmost overflow bit | ||
| 205 | &sbb ("eax",0); | ||
| 206 | &and ("esi","eax"); | ||
| 207 | ¬ ("eax"); | ||
| 208 | &mov ("ebp","edi"); | ||
| 209 | &and ("ebp","eax"); | ||
| 210 | &or ("esi","ebp"); # tp=carry?tp:rp | ||
| 211 | |||
| 212 | &mov ("ecx","edx"); # num | ||
| 213 | &xor ("edx","edx"); # i=0 | ||
| 214 | |||
| 215 | &set_label("copy",8); | ||
| 216 | &mov ("eax",&DWP(0,"esi","edx",4)); | ||
| 217 | &mov (&DWP(64,"esp","edx",4),"ecx"); # zap tp | ||
| 218 | &mov (&DWP(0,"edi","edx",4),"eax"); | ||
| 219 | &lea ("edx",&DWP(1,"edx")); # i++ | ||
| 220 | &loop (&label("copy")); | ||
| 221 | |||
| 222 | &mov ("ebp",$sp); | ||
| 223 | &xor ("eax","eax"); | ||
| 224 | |||
| 225 | &mov ("ecx",64/4); | ||
| 226 | &mov ("edi","esp"); # zap frame including scratch area | ||
| 227 | &data_byte(0xf3,0xab); # rep stosl, bzero | ||
| 228 | |||
| 229 | # zap copies of ap, bp and np | ||
| 230 | &lea ("edi",&DWP(64+$pad,"esp","edx",4));# pointer to ap | ||
| 231 | &lea ("ecx",&DWP(3*$pad/4,"edx","edx",2)); | ||
| 232 | &data_byte(0xf3,0xab); # rep stosl, bzero | ||
| 233 | |||
| 234 | &mov ("esp","ebp"); | ||
| 235 | &inc ("eax"); # signal "done" | ||
| 236 | &popf (); | ||
| 237 | &set_label("leave"); | ||
| 238 | &function_end($func); | ||
| 239 | |||
| 240 | &asciz("Padlock Montgomery Multiplication, CRYPTOGAMS by <appro\@openssl.org>"); | ||
| 241 | |||
| 242 | &asm_finish(); | ||
