diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_asm.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_asm.c | 1030 |
1 files changed, 0 insertions, 1030 deletions
diff --git a/src/lib/libcrypto/bn/bn_asm.c b/src/lib/libcrypto/bn/bn_asm.c deleted file mode 100644 index c43c91cc09..0000000000 --- a/src/lib/libcrypto/bn/bn_asm.c +++ /dev/null | |||
@@ -1,1030 +0,0 @@ | |||
1 | /* crypto/bn/bn_asm.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #ifndef BN_DEBUG | ||
60 | # undef NDEBUG /* avoid conflicting definitions */ | ||
61 | # define NDEBUG | ||
62 | #endif | ||
63 | |||
64 | #include <stdio.h> | ||
65 | #include <assert.h> | ||
66 | #include "cryptlib.h" | ||
67 | #include "bn_lcl.h" | ||
68 | |||
69 | #if defined(BN_LLONG) || defined(BN_UMULT_HIGH) | ||
70 | |||
71 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
72 | { | ||
73 | BN_ULONG c1=0; | ||
74 | |||
75 | assert(num >= 0); | ||
76 | if (num <= 0) return(c1); | ||
77 | |||
78 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
79 | while (num&~3) | ||
80 | { | ||
81 | mul_add(rp[0],ap[0],w,c1); | ||
82 | mul_add(rp[1],ap[1],w,c1); | ||
83 | mul_add(rp[2],ap[2],w,c1); | ||
84 | mul_add(rp[3],ap[3],w,c1); | ||
85 | ap+=4; rp+=4; num-=4; | ||
86 | } | ||
87 | #endif | ||
88 | while (num) | ||
89 | { | ||
90 | mul_add(rp[0],ap[0],w,c1); | ||
91 | ap++; rp++; num--; | ||
92 | } | ||
93 | |||
94 | return(c1); | ||
95 | } | ||
96 | |||
97 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
98 | { | ||
99 | BN_ULONG c1=0; | ||
100 | |||
101 | assert(num >= 0); | ||
102 | if (num <= 0) return(c1); | ||
103 | |||
104 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
105 | while (num&~3) | ||
106 | { | ||
107 | mul(rp[0],ap[0],w,c1); | ||
108 | mul(rp[1],ap[1],w,c1); | ||
109 | mul(rp[2],ap[2],w,c1); | ||
110 | mul(rp[3],ap[3],w,c1); | ||
111 | ap+=4; rp+=4; num-=4; | ||
112 | } | ||
113 | #endif | ||
114 | while (num) | ||
115 | { | ||
116 | mul(rp[0],ap[0],w,c1); | ||
117 | ap++; rp++; num--; | ||
118 | } | ||
119 | return(c1); | ||
120 | } | ||
121 | |||
122 | void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) | ||
123 | { | ||
124 | assert(n >= 0); | ||
125 | if (n <= 0) return; | ||
126 | |||
127 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
128 | while (n&~3) | ||
129 | { | ||
130 | sqr(r[0],r[1],a[0]); | ||
131 | sqr(r[2],r[3],a[1]); | ||
132 | sqr(r[4],r[5],a[2]); | ||
133 | sqr(r[6],r[7],a[3]); | ||
134 | a+=4; r+=8; n-=4; | ||
135 | } | ||
136 | #endif | ||
137 | while (n) | ||
138 | { | ||
139 | sqr(r[0],r[1],a[0]); | ||
140 | a++; r+=2; n--; | ||
141 | } | ||
142 | } | ||
143 | |||
144 | #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ | ||
145 | |||
146 | BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
147 | { | ||
148 | BN_ULONG c=0; | ||
149 | BN_ULONG bl,bh; | ||
150 | |||
151 | assert(num >= 0); | ||
152 | if (num <= 0) return((BN_ULONG)0); | ||
153 | |||
154 | bl=LBITS(w); | ||
155 | bh=HBITS(w); | ||
156 | |||
157 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
158 | while (num&~3) | ||
159 | { | ||
160 | mul_add(rp[0],ap[0],bl,bh,c); | ||
161 | mul_add(rp[1],ap[1],bl,bh,c); | ||
162 | mul_add(rp[2],ap[2],bl,bh,c); | ||
163 | mul_add(rp[3],ap[3],bl,bh,c); | ||
164 | ap+=4; rp+=4; num-=4; | ||
165 | } | ||
166 | #endif | ||
167 | while (num) | ||
168 | { | ||
169 | mul_add(rp[0],ap[0],bl,bh,c); | ||
170 | ap++; rp++; num--; | ||
171 | } | ||
172 | return(c); | ||
173 | } | ||
174 | |||
175 | BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
176 | { | ||
177 | BN_ULONG carry=0; | ||
178 | BN_ULONG bl,bh; | ||
179 | |||
180 | assert(num >= 0); | ||
181 | if (num <= 0) return((BN_ULONG)0); | ||
182 | |||
183 | bl=LBITS(w); | ||
184 | bh=HBITS(w); | ||
185 | |||
186 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
187 | while (num&~3) | ||
188 | { | ||
189 | mul(rp[0],ap[0],bl,bh,carry); | ||
190 | mul(rp[1],ap[1],bl,bh,carry); | ||
191 | mul(rp[2],ap[2],bl,bh,carry); | ||
192 | mul(rp[3],ap[3],bl,bh,carry); | ||
193 | ap+=4; rp+=4; num-=4; | ||
194 | } | ||
195 | #endif | ||
196 | while (num) | ||
197 | { | ||
198 | mul(rp[0],ap[0],bl,bh,carry); | ||
199 | ap++; rp++; num--; | ||
200 | } | ||
201 | return(carry); | ||
202 | } | ||
203 | |||
204 | void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) | ||
205 | { | ||
206 | assert(n >= 0); | ||
207 | if (n <= 0) return; | ||
208 | |||
209 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
210 | while (n&~3) | ||
211 | { | ||
212 | sqr64(r[0],r[1],a[0]); | ||
213 | sqr64(r[2],r[3],a[1]); | ||
214 | sqr64(r[4],r[5],a[2]); | ||
215 | sqr64(r[6],r[7],a[3]); | ||
216 | a+=4; r+=8; n-=4; | ||
217 | } | ||
218 | #endif | ||
219 | while (n) | ||
220 | { | ||
221 | sqr64(r[0],r[1],a[0]); | ||
222 | a++; r+=2; n--; | ||
223 | } | ||
224 | } | ||
225 | |||
226 | #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ | ||
227 | |||
228 | #if defined(BN_LLONG) && defined(BN_DIV2W) | ||
229 | |||
230 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) | ||
231 | { | ||
232 | return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d)); | ||
233 | } | ||
234 | |||
235 | #else | ||
236 | |||
237 | /* Divide h,l by d and return the result. */ | ||
238 | /* I need to test this some more :-( */ | ||
239 | BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) | ||
240 | { | ||
241 | BN_ULONG dh,dl,q,ret=0,th,tl,t; | ||
242 | int i,count=2; | ||
243 | |||
244 | if (d == 0) return(BN_MASK2); | ||
245 | |||
246 | i=BN_num_bits_word(d); | ||
247 | assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i)); | ||
248 | |||
249 | i=BN_BITS2-i; | ||
250 | if (h >= d) h-=d; | ||
251 | |||
252 | if (i) | ||
253 | { | ||
254 | d<<=i; | ||
255 | h=(h<<i)|(l>>(BN_BITS2-i)); | ||
256 | l<<=i; | ||
257 | } | ||
258 | dh=(d&BN_MASK2h)>>BN_BITS4; | ||
259 | dl=(d&BN_MASK2l); | ||
260 | for (;;) | ||
261 | { | ||
262 | if ((h>>BN_BITS4) == dh) | ||
263 | q=BN_MASK2l; | ||
264 | else | ||
265 | q=h/dh; | ||
266 | |||
267 | th=q*dh; | ||
268 | tl=dl*q; | ||
269 | for (;;) | ||
270 | { | ||
271 | t=h-th; | ||
272 | if ((t&BN_MASK2h) || | ||
273 | ((tl) <= ( | ||
274 | (t<<BN_BITS4)| | ||
275 | ((l&BN_MASK2h)>>BN_BITS4)))) | ||
276 | break; | ||
277 | q--; | ||
278 | th-=dh; | ||
279 | tl-=dl; | ||
280 | } | ||
281 | t=(tl>>BN_BITS4); | ||
282 | tl=(tl<<BN_BITS4)&BN_MASK2h; | ||
283 | th+=t; | ||
284 | |||
285 | if (l < tl) th++; | ||
286 | l-=tl; | ||
287 | if (h < th) | ||
288 | { | ||
289 | h+=d; | ||
290 | q--; | ||
291 | } | ||
292 | h-=th; | ||
293 | |||
294 | if (--count == 0) break; | ||
295 | |||
296 | ret=q<<BN_BITS4; | ||
297 | h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2; | ||
298 | l=(l&BN_MASK2l)<<BN_BITS4; | ||
299 | } | ||
300 | ret|=q; | ||
301 | return(ret); | ||
302 | } | ||
303 | #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */ | ||
304 | |||
305 | #ifdef BN_LLONG | ||
306 | BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
307 | { | ||
308 | BN_ULLONG ll=0; | ||
309 | |||
310 | assert(n >= 0); | ||
311 | if (n <= 0) return((BN_ULONG)0); | ||
312 | |||
313 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
314 | while (n&~3) | ||
315 | { | ||
316 | ll+=(BN_ULLONG)a[0]+b[0]; | ||
317 | r[0]=(BN_ULONG)ll&BN_MASK2; | ||
318 | ll>>=BN_BITS2; | ||
319 | ll+=(BN_ULLONG)a[1]+b[1]; | ||
320 | r[1]=(BN_ULONG)ll&BN_MASK2; | ||
321 | ll>>=BN_BITS2; | ||
322 | ll+=(BN_ULLONG)a[2]+b[2]; | ||
323 | r[2]=(BN_ULONG)ll&BN_MASK2; | ||
324 | ll>>=BN_BITS2; | ||
325 | ll+=(BN_ULLONG)a[3]+b[3]; | ||
326 | r[3]=(BN_ULONG)ll&BN_MASK2; | ||
327 | ll>>=BN_BITS2; | ||
328 | a+=4; b+=4; r+=4; n-=4; | ||
329 | } | ||
330 | #endif | ||
331 | while (n) | ||
332 | { | ||
333 | ll+=(BN_ULLONG)a[0]+b[0]; | ||
334 | r[0]=(BN_ULONG)ll&BN_MASK2; | ||
335 | ll>>=BN_BITS2; | ||
336 | a++; b++; r++; n--; | ||
337 | } | ||
338 | return((BN_ULONG)ll); | ||
339 | } | ||
340 | #else /* !BN_LLONG */ | ||
341 | BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
342 | { | ||
343 | BN_ULONG c,l,t; | ||
344 | |||
345 | assert(n >= 0); | ||
346 | if (n <= 0) return((BN_ULONG)0); | ||
347 | |||
348 | c=0; | ||
349 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
350 | while (n&~3) | ||
351 | { | ||
352 | t=a[0]; | ||
353 | t=(t+c)&BN_MASK2; | ||
354 | c=(t < c); | ||
355 | l=(t+b[0])&BN_MASK2; | ||
356 | c+=(l < t); | ||
357 | r[0]=l; | ||
358 | t=a[1]; | ||
359 | t=(t+c)&BN_MASK2; | ||
360 | c=(t < c); | ||
361 | l=(t+b[1])&BN_MASK2; | ||
362 | c+=(l < t); | ||
363 | r[1]=l; | ||
364 | t=a[2]; | ||
365 | t=(t+c)&BN_MASK2; | ||
366 | c=(t < c); | ||
367 | l=(t+b[2])&BN_MASK2; | ||
368 | c+=(l < t); | ||
369 | r[2]=l; | ||
370 | t=a[3]; | ||
371 | t=(t+c)&BN_MASK2; | ||
372 | c=(t < c); | ||
373 | l=(t+b[3])&BN_MASK2; | ||
374 | c+=(l < t); | ||
375 | r[3]=l; | ||
376 | a+=4; b+=4; r+=4; n-=4; | ||
377 | } | ||
378 | #endif | ||
379 | while(n) | ||
380 | { | ||
381 | t=a[0]; | ||
382 | t=(t+c)&BN_MASK2; | ||
383 | c=(t < c); | ||
384 | l=(t+b[0])&BN_MASK2; | ||
385 | c+=(l < t); | ||
386 | r[0]=l; | ||
387 | a++; b++; r++; n--; | ||
388 | } | ||
389 | return((BN_ULONG)c); | ||
390 | } | ||
391 | #endif /* !BN_LLONG */ | ||
392 | |||
393 | BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
394 | { | ||
395 | BN_ULONG t1,t2; | ||
396 | int c=0; | ||
397 | |||
398 | assert(n >= 0); | ||
399 | if (n <= 0) return((BN_ULONG)0); | ||
400 | |||
401 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
402 | while (n&~3) | ||
403 | { | ||
404 | t1=a[0]; t2=b[0]; | ||
405 | r[0]=(t1-t2-c)&BN_MASK2; | ||
406 | if (t1 != t2) c=(t1 < t2); | ||
407 | t1=a[1]; t2=b[1]; | ||
408 | r[1]=(t1-t2-c)&BN_MASK2; | ||
409 | if (t1 != t2) c=(t1 < t2); | ||
410 | t1=a[2]; t2=b[2]; | ||
411 | r[2]=(t1-t2-c)&BN_MASK2; | ||
412 | if (t1 != t2) c=(t1 < t2); | ||
413 | t1=a[3]; t2=b[3]; | ||
414 | r[3]=(t1-t2-c)&BN_MASK2; | ||
415 | if (t1 != t2) c=(t1 < t2); | ||
416 | a+=4; b+=4; r+=4; n-=4; | ||
417 | } | ||
418 | #endif | ||
419 | while (n) | ||
420 | { | ||
421 | t1=a[0]; t2=b[0]; | ||
422 | r[0]=(t1-t2-c)&BN_MASK2; | ||
423 | if (t1 != t2) c=(t1 < t2); | ||
424 | a++; b++; r++; n--; | ||
425 | } | ||
426 | return(c); | ||
427 | } | ||
428 | |||
429 | #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT) | ||
430 | |||
431 | #undef bn_mul_comba8 | ||
432 | #undef bn_mul_comba4 | ||
433 | #undef bn_sqr_comba8 | ||
434 | #undef bn_sqr_comba4 | ||
435 | |||
436 | /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ | ||
437 | /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ | ||
438 | /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ | ||
439 | /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */ | ||
440 | |||
441 | #ifdef BN_LLONG | ||
442 | #define mul_add_c(a,b,c0,c1,c2) \ | ||
443 | t=(BN_ULLONG)a*b; \ | ||
444 | t1=(BN_ULONG)Lw(t); \ | ||
445 | t2=(BN_ULONG)Hw(t); \ | ||
446 | c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ | ||
447 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
448 | |||
449 | #define mul_add_c2(a,b,c0,c1,c2) \ | ||
450 | t=(BN_ULLONG)a*b; \ | ||
451 | tt=(t+t)&BN_MASK; \ | ||
452 | if (tt < t) c2++; \ | ||
453 | t1=(BN_ULONG)Lw(tt); \ | ||
454 | t2=(BN_ULONG)Hw(tt); \ | ||
455 | c0=(c0+t1)&BN_MASK2; \ | ||
456 | if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \ | ||
457 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
458 | |||
459 | #define sqr_add_c(a,i,c0,c1,c2) \ | ||
460 | t=(BN_ULLONG)a[i]*a[i]; \ | ||
461 | t1=(BN_ULONG)Lw(t); \ | ||
462 | t2=(BN_ULONG)Hw(t); \ | ||
463 | c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ | ||
464 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
465 | |||
466 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
467 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
468 | |||
469 | #elif defined(BN_UMULT_LOHI) | ||
470 | |||
471 | #define mul_add_c(a,b,c0,c1,c2) { \ | ||
472 | BN_ULONG ta=(a),tb=(b); \ | ||
473 | BN_UMULT_LOHI(t1,t2,ta,tb); \ | ||
474 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
475 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
476 | } | ||
477 | |||
478 | #define mul_add_c2(a,b,c0,c1,c2) { \ | ||
479 | BN_ULONG ta=(a),tb=(b),t0; \ | ||
480 | BN_UMULT_LOHI(t0,t1,ta,tb); \ | ||
481 | t2 = t1+t1; c2 += (t2<t1)?1:0; \ | ||
482 | t1 = t0+t0; t2 += (t1<t0)?1:0; \ | ||
483 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
484 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
485 | } | ||
486 | |||
487 | #define sqr_add_c(a,i,c0,c1,c2) { \ | ||
488 | BN_ULONG ta=(a)[i]; \ | ||
489 | BN_UMULT_LOHI(t1,t2,ta,ta); \ | ||
490 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
491 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
492 | } | ||
493 | |||
494 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
495 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
496 | |||
497 | #elif defined(BN_UMULT_HIGH) | ||
498 | |||
499 | #define mul_add_c(a,b,c0,c1,c2) { \ | ||
500 | BN_ULONG ta=(a),tb=(b); \ | ||
501 | t1 = ta * tb; \ | ||
502 | t2 = BN_UMULT_HIGH(ta,tb); \ | ||
503 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
504 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
505 | } | ||
506 | |||
507 | #define mul_add_c2(a,b,c0,c1,c2) { \ | ||
508 | BN_ULONG ta=(a),tb=(b),t0; \ | ||
509 | t1 = BN_UMULT_HIGH(ta,tb); \ | ||
510 | t0 = ta * tb; \ | ||
511 | t2 = t1+t1; c2 += (t2<t1)?1:0; \ | ||
512 | t1 = t0+t0; t2 += (t1<t0)?1:0; \ | ||
513 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
514 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
515 | } | ||
516 | |||
517 | #define sqr_add_c(a,i,c0,c1,c2) { \ | ||
518 | BN_ULONG ta=(a)[i]; \ | ||
519 | t1 = ta * ta; \ | ||
520 | t2 = BN_UMULT_HIGH(ta,ta); \ | ||
521 | c0 += t1; t2 += (c0<t1)?1:0; \ | ||
522 | c1 += t2; c2 += (c1<t2)?1:0; \ | ||
523 | } | ||
524 | |||
525 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
526 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
527 | |||
528 | #else /* !BN_LLONG */ | ||
529 | #define mul_add_c(a,b,c0,c1,c2) \ | ||
530 | t1=LBITS(a); t2=HBITS(a); \ | ||
531 | bl=LBITS(b); bh=HBITS(b); \ | ||
532 | mul64(t1,t2,bl,bh); \ | ||
533 | c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ | ||
534 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
535 | |||
536 | #define mul_add_c2(a,b,c0,c1,c2) \ | ||
537 | t1=LBITS(a); t2=HBITS(a); \ | ||
538 | bl=LBITS(b); bh=HBITS(b); \ | ||
539 | mul64(t1,t2,bl,bh); \ | ||
540 | if (t2 & BN_TBIT) c2++; \ | ||
541 | t2=(t2+t2)&BN_MASK2; \ | ||
542 | if (t1 & BN_TBIT) t2++; \ | ||
543 | t1=(t1+t1)&BN_MASK2; \ | ||
544 | c0=(c0+t1)&BN_MASK2; \ | ||
545 | if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \ | ||
546 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
547 | |||
548 | #define sqr_add_c(a,i,c0,c1,c2) \ | ||
549 | sqr64(t1,t2,(a)[i]); \ | ||
550 | c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \ | ||
551 | c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++; | ||
552 | |||
553 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
554 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
555 | #endif /* !BN_LLONG */ | ||
556 | |||
557 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
558 | { | ||
559 | #ifdef BN_LLONG | ||
560 | BN_ULLONG t; | ||
561 | #else | ||
562 | BN_ULONG bl,bh; | ||
563 | #endif | ||
564 | BN_ULONG t1,t2; | ||
565 | BN_ULONG c1,c2,c3; | ||
566 | |||
567 | c1=0; | ||
568 | c2=0; | ||
569 | c3=0; | ||
570 | mul_add_c(a[0],b[0],c1,c2,c3); | ||
571 | r[0]=c1; | ||
572 | c1=0; | ||
573 | mul_add_c(a[0],b[1],c2,c3,c1); | ||
574 | mul_add_c(a[1],b[0],c2,c3,c1); | ||
575 | r[1]=c2; | ||
576 | c2=0; | ||
577 | mul_add_c(a[2],b[0],c3,c1,c2); | ||
578 | mul_add_c(a[1],b[1],c3,c1,c2); | ||
579 | mul_add_c(a[0],b[2],c3,c1,c2); | ||
580 | r[2]=c3; | ||
581 | c3=0; | ||
582 | mul_add_c(a[0],b[3],c1,c2,c3); | ||
583 | mul_add_c(a[1],b[2],c1,c2,c3); | ||
584 | mul_add_c(a[2],b[1],c1,c2,c3); | ||
585 | mul_add_c(a[3],b[0],c1,c2,c3); | ||
586 | r[3]=c1; | ||
587 | c1=0; | ||
588 | mul_add_c(a[4],b[0],c2,c3,c1); | ||
589 | mul_add_c(a[3],b[1],c2,c3,c1); | ||
590 | mul_add_c(a[2],b[2],c2,c3,c1); | ||
591 | mul_add_c(a[1],b[3],c2,c3,c1); | ||
592 | mul_add_c(a[0],b[4],c2,c3,c1); | ||
593 | r[4]=c2; | ||
594 | c2=0; | ||
595 | mul_add_c(a[0],b[5],c3,c1,c2); | ||
596 | mul_add_c(a[1],b[4],c3,c1,c2); | ||
597 | mul_add_c(a[2],b[3],c3,c1,c2); | ||
598 | mul_add_c(a[3],b[2],c3,c1,c2); | ||
599 | mul_add_c(a[4],b[1],c3,c1,c2); | ||
600 | mul_add_c(a[5],b[0],c3,c1,c2); | ||
601 | r[5]=c3; | ||
602 | c3=0; | ||
603 | mul_add_c(a[6],b[0],c1,c2,c3); | ||
604 | mul_add_c(a[5],b[1],c1,c2,c3); | ||
605 | mul_add_c(a[4],b[2],c1,c2,c3); | ||
606 | mul_add_c(a[3],b[3],c1,c2,c3); | ||
607 | mul_add_c(a[2],b[4],c1,c2,c3); | ||
608 | mul_add_c(a[1],b[5],c1,c2,c3); | ||
609 | mul_add_c(a[0],b[6],c1,c2,c3); | ||
610 | r[6]=c1; | ||
611 | c1=0; | ||
612 | mul_add_c(a[0],b[7],c2,c3,c1); | ||
613 | mul_add_c(a[1],b[6],c2,c3,c1); | ||
614 | mul_add_c(a[2],b[5],c2,c3,c1); | ||
615 | mul_add_c(a[3],b[4],c2,c3,c1); | ||
616 | mul_add_c(a[4],b[3],c2,c3,c1); | ||
617 | mul_add_c(a[5],b[2],c2,c3,c1); | ||
618 | mul_add_c(a[6],b[1],c2,c3,c1); | ||
619 | mul_add_c(a[7],b[0],c2,c3,c1); | ||
620 | r[7]=c2; | ||
621 | c2=0; | ||
622 | mul_add_c(a[7],b[1],c3,c1,c2); | ||
623 | mul_add_c(a[6],b[2],c3,c1,c2); | ||
624 | mul_add_c(a[5],b[3],c3,c1,c2); | ||
625 | mul_add_c(a[4],b[4],c3,c1,c2); | ||
626 | mul_add_c(a[3],b[5],c3,c1,c2); | ||
627 | mul_add_c(a[2],b[6],c3,c1,c2); | ||
628 | mul_add_c(a[1],b[7],c3,c1,c2); | ||
629 | r[8]=c3; | ||
630 | c3=0; | ||
631 | mul_add_c(a[2],b[7],c1,c2,c3); | ||
632 | mul_add_c(a[3],b[6],c1,c2,c3); | ||
633 | mul_add_c(a[4],b[5],c1,c2,c3); | ||
634 | mul_add_c(a[5],b[4],c1,c2,c3); | ||
635 | mul_add_c(a[6],b[3],c1,c2,c3); | ||
636 | mul_add_c(a[7],b[2],c1,c2,c3); | ||
637 | r[9]=c1; | ||
638 | c1=0; | ||
639 | mul_add_c(a[7],b[3],c2,c3,c1); | ||
640 | mul_add_c(a[6],b[4],c2,c3,c1); | ||
641 | mul_add_c(a[5],b[5],c2,c3,c1); | ||
642 | mul_add_c(a[4],b[6],c2,c3,c1); | ||
643 | mul_add_c(a[3],b[7],c2,c3,c1); | ||
644 | r[10]=c2; | ||
645 | c2=0; | ||
646 | mul_add_c(a[4],b[7],c3,c1,c2); | ||
647 | mul_add_c(a[5],b[6],c3,c1,c2); | ||
648 | mul_add_c(a[6],b[5],c3,c1,c2); | ||
649 | mul_add_c(a[7],b[4],c3,c1,c2); | ||
650 | r[11]=c3; | ||
651 | c3=0; | ||
652 | mul_add_c(a[7],b[5],c1,c2,c3); | ||
653 | mul_add_c(a[6],b[6],c1,c2,c3); | ||
654 | mul_add_c(a[5],b[7],c1,c2,c3); | ||
655 | r[12]=c1; | ||
656 | c1=0; | ||
657 | mul_add_c(a[6],b[7],c2,c3,c1); | ||
658 | mul_add_c(a[7],b[6],c2,c3,c1); | ||
659 | r[13]=c2; | ||
660 | c2=0; | ||
661 | mul_add_c(a[7],b[7],c3,c1,c2); | ||
662 | r[14]=c3; | ||
663 | r[15]=c1; | ||
664 | } | ||
665 | |||
666 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
667 | { | ||
668 | #ifdef BN_LLONG | ||
669 | BN_ULLONG t; | ||
670 | #else | ||
671 | BN_ULONG bl,bh; | ||
672 | #endif | ||
673 | BN_ULONG t1,t2; | ||
674 | BN_ULONG c1,c2,c3; | ||
675 | |||
676 | c1=0; | ||
677 | c2=0; | ||
678 | c3=0; | ||
679 | mul_add_c(a[0],b[0],c1,c2,c3); | ||
680 | r[0]=c1; | ||
681 | c1=0; | ||
682 | mul_add_c(a[0],b[1],c2,c3,c1); | ||
683 | mul_add_c(a[1],b[0],c2,c3,c1); | ||
684 | r[1]=c2; | ||
685 | c2=0; | ||
686 | mul_add_c(a[2],b[0],c3,c1,c2); | ||
687 | mul_add_c(a[1],b[1],c3,c1,c2); | ||
688 | mul_add_c(a[0],b[2],c3,c1,c2); | ||
689 | r[2]=c3; | ||
690 | c3=0; | ||
691 | mul_add_c(a[0],b[3],c1,c2,c3); | ||
692 | mul_add_c(a[1],b[2],c1,c2,c3); | ||
693 | mul_add_c(a[2],b[1],c1,c2,c3); | ||
694 | mul_add_c(a[3],b[0],c1,c2,c3); | ||
695 | r[3]=c1; | ||
696 | c1=0; | ||
697 | mul_add_c(a[3],b[1],c2,c3,c1); | ||
698 | mul_add_c(a[2],b[2],c2,c3,c1); | ||
699 | mul_add_c(a[1],b[3],c2,c3,c1); | ||
700 | r[4]=c2; | ||
701 | c2=0; | ||
702 | mul_add_c(a[2],b[3],c3,c1,c2); | ||
703 | mul_add_c(a[3],b[2],c3,c1,c2); | ||
704 | r[5]=c3; | ||
705 | c3=0; | ||
706 | mul_add_c(a[3],b[3],c1,c2,c3); | ||
707 | r[6]=c1; | ||
708 | r[7]=c2; | ||
709 | } | ||
710 | |||
711 | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) | ||
712 | { | ||
713 | #ifdef BN_LLONG | ||
714 | BN_ULLONG t,tt; | ||
715 | #else | ||
716 | BN_ULONG bl,bh; | ||
717 | #endif | ||
718 | BN_ULONG t1,t2; | ||
719 | BN_ULONG c1,c2,c3; | ||
720 | |||
721 | c1=0; | ||
722 | c2=0; | ||
723 | c3=0; | ||
724 | sqr_add_c(a,0,c1,c2,c3); | ||
725 | r[0]=c1; | ||
726 | c1=0; | ||
727 | sqr_add_c2(a,1,0,c2,c3,c1); | ||
728 | r[1]=c2; | ||
729 | c2=0; | ||
730 | sqr_add_c(a,1,c3,c1,c2); | ||
731 | sqr_add_c2(a,2,0,c3,c1,c2); | ||
732 | r[2]=c3; | ||
733 | c3=0; | ||
734 | sqr_add_c2(a,3,0,c1,c2,c3); | ||
735 | sqr_add_c2(a,2,1,c1,c2,c3); | ||
736 | r[3]=c1; | ||
737 | c1=0; | ||
738 | sqr_add_c(a,2,c2,c3,c1); | ||
739 | sqr_add_c2(a,3,1,c2,c3,c1); | ||
740 | sqr_add_c2(a,4,0,c2,c3,c1); | ||
741 | r[4]=c2; | ||
742 | c2=0; | ||
743 | sqr_add_c2(a,5,0,c3,c1,c2); | ||
744 | sqr_add_c2(a,4,1,c3,c1,c2); | ||
745 | sqr_add_c2(a,3,2,c3,c1,c2); | ||
746 | r[5]=c3; | ||
747 | c3=0; | ||
748 | sqr_add_c(a,3,c1,c2,c3); | ||
749 | sqr_add_c2(a,4,2,c1,c2,c3); | ||
750 | sqr_add_c2(a,5,1,c1,c2,c3); | ||
751 | sqr_add_c2(a,6,0,c1,c2,c3); | ||
752 | r[6]=c1; | ||
753 | c1=0; | ||
754 | sqr_add_c2(a,7,0,c2,c3,c1); | ||
755 | sqr_add_c2(a,6,1,c2,c3,c1); | ||
756 | sqr_add_c2(a,5,2,c2,c3,c1); | ||
757 | sqr_add_c2(a,4,3,c2,c3,c1); | ||
758 | r[7]=c2; | ||
759 | c2=0; | ||
760 | sqr_add_c(a,4,c3,c1,c2); | ||
761 | sqr_add_c2(a,5,3,c3,c1,c2); | ||
762 | sqr_add_c2(a,6,2,c3,c1,c2); | ||
763 | sqr_add_c2(a,7,1,c3,c1,c2); | ||
764 | r[8]=c3; | ||
765 | c3=0; | ||
766 | sqr_add_c2(a,7,2,c1,c2,c3); | ||
767 | sqr_add_c2(a,6,3,c1,c2,c3); | ||
768 | sqr_add_c2(a,5,4,c1,c2,c3); | ||
769 | r[9]=c1; | ||
770 | c1=0; | ||
771 | sqr_add_c(a,5,c2,c3,c1); | ||
772 | sqr_add_c2(a,6,4,c2,c3,c1); | ||
773 | sqr_add_c2(a,7,3,c2,c3,c1); | ||
774 | r[10]=c2; | ||
775 | c2=0; | ||
776 | sqr_add_c2(a,7,4,c3,c1,c2); | ||
777 | sqr_add_c2(a,6,5,c3,c1,c2); | ||
778 | r[11]=c3; | ||
779 | c3=0; | ||
780 | sqr_add_c(a,6,c1,c2,c3); | ||
781 | sqr_add_c2(a,7,5,c1,c2,c3); | ||
782 | r[12]=c1; | ||
783 | c1=0; | ||
784 | sqr_add_c2(a,7,6,c2,c3,c1); | ||
785 | r[13]=c2; | ||
786 | c2=0; | ||
787 | sqr_add_c(a,7,c3,c1,c2); | ||
788 | r[14]=c3; | ||
789 | r[15]=c1; | ||
790 | } | ||
791 | |||
792 | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) | ||
793 | { | ||
794 | #ifdef BN_LLONG | ||
795 | BN_ULLONG t,tt; | ||
796 | #else | ||
797 | BN_ULONG bl,bh; | ||
798 | #endif | ||
799 | BN_ULONG t1,t2; | ||
800 | BN_ULONG c1,c2,c3; | ||
801 | |||
802 | c1=0; | ||
803 | c2=0; | ||
804 | c3=0; | ||
805 | sqr_add_c(a,0,c1,c2,c3); | ||
806 | r[0]=c1; | ||
807 | c1=0; | ||
808 | sqr_add_c2(a,1,0,c2,c3,c1); | ||
809 | r[1]=c2; | ||
810 | c2=0; | ||
811 | sqr_add_c(a,1,c3,c1,c2); | ||
812 | sqr_add_c2(a,2,0,c3,c1,c2); | ||
813 | r[2]=c3; | ||
814 | c3=0; | ||
815 | sqr_add_c2(a,3,0,c1,c2,c3); | ||
816 | sqr_add_c2(a,2,1,c1,c2,c3); | ||
817 | r[3]=c1; | ||
818 | c1=0; | ||
819 | sqr_add_c(a,2,c2,c3,c1); | ||
820 | sqr_add_c2(a,3,1,c2,c3,c1); | ||
821 | r[4]=c2; | ||
822 | c2=0; | ||
823 | sqr_add_c2(a,3,2,c3,c1,c2); | ||
824 | r[5]=c3; | ||
825 | c3=0; | ||
826 | sqr_add_c(a,3,c1,c2,c3); | ||
827 | r[6]=c1; | ||
828 | r[7]=c2; | ||
829 | } | ||
830 | |||
831 | #ifdef OPENSSL_NO_ASM | ||
832 | #ifdef OPENSSL_BN_ASM_MONT | ||
833 | #include <alloca.h> | ||
834 | /* | ||
835 | * This is essentially reference implementation, which may or may not | ||
836 | * result in performance improvement. E.g. on IA-32 this routine was | ||
837 | * observed to give 40% faster rsa1024 private key operations and 10% | ||
838 | * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only | ||
839 | * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a | ||
840 | * reference implementation, one to be used as starting point for | ||
841 | * platform-specific assembler. Mentioned numbers apply to compiler | ||
842 | * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and | ||
843 | * can vary not only from platform to platform, but even for compiler | ||
844 | * versions. Assembler vs. assembler improvement coefficients can | ||
845 | * [and are known to] differ and are to be documented elsewhere. | ||
846 | */ | ||
847 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num) | ||
848 | { | ||
849 | BN_ULONG c0,c1,ml,*tp,n0; | ||
850 | #ifdef mul64 | ||
851 | BN_ULONG mh; | ||
852 | #endif | ||
853 | volatile BN_ULONG *vp; | ||
854 | int i=0,j; | ||
855 | |||
856 | #if 0 /* template for platform-specific implementation */ | ||
857 | if (ap==bp) return bn_sqr_mont(rp,ap,np,n0p,num); | ||
858 | #endif | ||
859 | vp = tp = alloca((num+2)*sizeof(BN_ULONG)); | ||
860 | |||
861 | n0 = *n0p; | ||
862 | |||
863 | c0 = 0; | ||
864 | ml = bp[0]; | ||
865 | #ifdef mul64 | ||
866 | mh = HBITS(ml); | ||
867 | ml = LBITS(ml); | ||
868 | for (j=0;j<num;++j) | ||
869 | mul(tp[j],ap[j],ml,mh,c0); | ||
870 | #else | ||
871 | for (j=0;j<num;++j) | ||
872 | mul(tp[j],ap[j],ml,c0); | ||
873 | #endif | ||
874 | |||
875 | tp[num] = c0; | ||
876 | tp[num+1] = 0; | ||
877 | goto enter; | ||
878 | |||
879 | for(i=0;i<num;i++) | ||
880 | { | ||
881 | c0 = 0; | ||
882 | ml = bp[i]; | ||
883 | #ifdef mul64 | ||
884 | mh = HBITS(ml); | ||
885 | ml = LBITS(ml); | ||
886 | for (j=0;j<num;++j) | ||
887 | mul_add(tp[j],ap[j],ml,mh,c0); | ||
888 | #else | ||
889 | for (j=0;j<num;++j) | ||
890 | mul_add(tp[j],ap[j],ml,c0); | ||
891 | #endif | ||
892 | c1 = (tp[num] + c0)&BN_MASK2; | ||
893 | tp[num] = c1; | ||
894 | tp[num+1] = (c1<c0?1:0); | ||
895 | enter: | ||
896 | c1 = tp[0]; | ||
897 | ml = (c1*n0)&BN_MASK2; | ||
898 | c0 = 0; | ||
899 | #ifdef mul64 | ||
900 | mh = HBITS(ml); | ||
901 | ml = LBITS(ml); | ||
902 | mul_add(c1,np[0],ml,mh,c0); | ||
903 | #else | ||
904 | mul_add(c1,ml,np[0],c0); | ||
905 | #endif | ||
906 | for(j=1;j<num;j++) | ||
907 | { | ||
908 | c1 = tp[j]; | ||
909 | #ifdef mul64 | ||
910 | mul_add(c1,np[j],ml,mh,c0); | ||
911 | #else | ||
912 | mul_add(c1,ml,np[j],c0); | ||
913 | #endif | ||
914 | tp[j-1] = c1&BN_MASK2; | ||
915 | } | ||
916 | c1 = (tp[num] + c0)&BN_MASK2; | ||
917 | tp[num-1] = c1; | ||
918 | tp[num] = tp[num+1] + (c1<c0?1:0); | ||
919 | } | ||
920 | |||
921 | if (tp[num]!=0 || tp[num-1]>=np[num-1]) | ||
922 | { | ||
923 | c0 = bn_sub_words(rp,tp,np,num); | ||
924 | if (tp[num]!=0 || c0==0) | ||
925 | { | ||
926 | for(i=0;i<num+2;i++) vp[i] = 0; | ||
927 | return 1; | ||
928 | } | ||
929 | } | ||
930 | for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0; | ||
931 | vp[num] = 0; | ||
932 | vp[num+1] = 0; | ||
933 | return 1; | ||
934 | } | ||
935 | #else | ||
936 | /* | ||
937 | * Return value of 0 indicates that multiplication/convolution was not | ||
938 | * performed to signal the caller to fall down to alternative/original | ||
939 | * code-path. | ||
940 | */ | ||
941 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num) | ||
942 | { return 0; } | ||
943 | #endif /* OPENSSL_BN_ASM_MONT */ | ||
944 | #endif | ||
945 | |||
946 | #else /* !BN_MUL_COMBA */ | ||
947 | |||
948 | /* hmm... is it faster just to do a multiply? */ | ||
949 | #undef bn_sqr_comba4 | ||
950 | void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) | ||
951 | { | ||
952 | BN_ULONG t[8]; | ||
953 | bn_sqr_normal(r,a,4,t); | ||
954 | } | ||
955 | |||
956 | #undef bn_sqr_comba8 | ||
957 | void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) | ||
958 | { | ||
959 | BN_ULONG t[16]; | ||
960 | bn_sqr_normal(r,a,8,t); | ||
961 | } | ||
962 | |||
963 | void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
964 | { | ||
965 | r[4]=bn_mul_words( &(r[0]),a,4,b[0]); | ||
966 | r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]); | ||
967 | r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]); | ||
968 | r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]); | ||
969 | } | ||
970 | |||
971 | void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
972 | { | ||
973 | r[ 8]=bn_mul_words( &(r[0]),a,8,b[0]); | ||
974 | r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]); | ||
975 | r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]); | ||
976 | r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]); | ||
977 | r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]); | ||
978 | r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]); | ||
979 | r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]); | ||
980 | r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]); | ||
981 | } | ||
982 | |||
983 | #ifdef OPENSSL_NO_ASM | ||
984 | #ifdef OPENSSL_BN_ASM_MONT | ||
985 | #include <alloca.h> | ||
986 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num) | ||
987 | { | ||
988 | BN_ULONG c0,c1,*tp,n0=*n0p; | ||
989 | volatile BN_ULONG *vp; | ||
990 | int i=0,j; | ||
991 | |||
992 | vp = tp = alloca((num+2)*sizeof(BN_ULONG)); | ||
993 | |||
994 | for(i=0;i<=num;i++) tp[i]=0; | ||
995 | |||
996 | for(i=0;i<num;i++) | ||
997 | { | ||
998 | c0 = bn_mul_add_words(tp,ap,num,bp[i]); | ||
999 | c1 = (tp[num] + c0)&BN_MASK2; | ||
1000 | tp[num] = c1; | ||
1001 | tp[num+1] = (c1<c0?1:0); | ||
1002 | |||
1003 | c0 = bn_mul_add_words(tp,np,num,tp[0]*n0); | ||
1004 | c1 = (tp[num] + c0)&BN_MASK2; | ||
1005 | tp[num] = c1; | ||
1006 | tp[num+1] += (c1<c0?1:0); | ||
1007 | for(j=0;j<=num;j++) tp[j]=tp[j+1]; | ||
1008 | } | ||
1009 | |||
1010 | if (tp[num]!=0 || tp[num-1]>=np[num-1]) | ||
1011 | { | ||
1012 | c0 = bn_sub_words(rp,tp,np,num); | ||
1013 | if (tp[num]!=0 || c0==0) | ||
1014 | { | ||
1015 | for(i=0;i<num+2;i++) vp[i] = 0; | ||
1016 | return 1; | ||
1017 | } | ||
1018 | } | ||
1019 | for(i=0;i<num;i++) rp[i] = tp[i], vp[i] = 0; | ||
1020 | vp[num] = 0; | ||
1021 | vp[num+1] = 0; | ||
1022 | return 1; | ||
1023 | } | ||
1024 | #else | ||
1025 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num) | ||
1026 | { return 0; } | ||
1027 | #endif /* OPENSSL_BN_ASM_MONT */ | ||
1028 | #endif | ||
1029 | |||
1030 | #endif /* !BN_MUL_COMBA */ | ||