diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_asm.c')
| -rw-r--r-- | src/lib/libcrypto/bn/bn_asm.c | 1098 |
1 files changed, 0 insertions, 1098 deletions
diff --git a/src/lib/libcrypto/bn/bn_asm.c b/src/lib/libcrypto/bn/bn_asm.c deleted file mode 100644 index 49f0ba5d7b..0000000000 --- a/src/lib/libcrypto/bn/bn_asm.c +++ /dev/null | |||
| @@ -1,1098 +0,0 @@ | |||
| 1 | /* $OpenBSD: bn_asm.c,v 1.14 2015/02/25 15:39:49 bcook Exp $ */ | ||
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
| 3 | * All rights reserved. | ||
| 4 | * | ||
| 5 | * This package is an SSL implementation written | ||
| 6 | * by Eric Young (eay@cryptsoft.com). | ||
| 7 | * The implementation was written so as to conform with Netscapes SSL. | ||
| 8 | * | ||
| 9 | * This library is free for commercial and non-commercial use as long as | ||
| 10 | * the following conditions are aheared to. The following conditions | ||
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
| 13 | * included with this distribution is covered by the same copyright terms | ||
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
| 15 | * | ||
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
| 17 | * the code are not to be removed. | ||
| 18 | * If this package is used in a product, Eric Young should be given attribution | ||
| 19 | * as the author of the parts of the library used. | ||
| 20 | * This can be in the form of a textual message at program startup or | ||
| 21 | * in documentation (online or textual) provided with the package. | ||
| 22 | * | ||
| 23 | * Redistribution and use in source and binary forms, with or without | ||
| 24 | * modification, are permitted provided that the following conditions | ||
| 25 | * are met: | ||
| 26 | * 1. Redistributions of source code must retain the copyright | ||
| 27 | * notice, this list of conditions and the following disclaimer. | ||
| 28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
| 29 | * notice, this list of conditions and the following disclaimer in the | ||
| 30 | * documentation and/or other materials provided with the distribution. | ||
| 31 | * 3. All advertising materials mentioning features or use of this software | ||
| 32 | * must display the following acknowledgement: | ||
| 33 | * "This product includes cryptographic software written by | ||
| 34 | * Eric Young (eay@cryptsoft.com)" | ||
| 35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
| 36 | * being used are not cryptographic related :-). | ||
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
| 38 | * the apps directory (application code) you must include an acknowledgement: | ||
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
| 40 | * | ||
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
| 51 | * SUCH DAMAGE. | ||
| 52 | * | ||
| 53 | * The licence and distribution terms for any publically available version or | ||
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
| 55 | * copied and put under another distribution licence | ||
| 56 | * [including the GNU Public Licence.] | ||
| 57 | */ | ||
| 58 | |||
| 59 | #ifndef BN_DEBUG | ||
| 60 | # undef NDEBUG /* avoid conflicting definitions */ | ||
| 61 | # define NDEBUG | ||
| 62 | #endif | ||
| 63 | |||
| 64 | #include <assert.h> | ||
| 65 | #include <stdio.h> | ||
| 66 | |||
| 67 | #include <openssl/opensslconf.h> | ||
| 68 | |||
| 69 | #include "bn_lcl.h" | ||
| 70 | |||
| 71 | #if defined(BN_LLONG) || defined(BN_UMULT_HIGH) | ||
| 72 | |||
| 73 | BN_ULONG | ||
| 74 | bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
| 75 | { | ||
| 76 | BN_ULONG c1 = 0; | ||
| 77 | |||
| 78 | assert(num >= 0); | ||
| 79 | if (num <= 0) | ||
| 80 | return (c1); | ||
| 81 | |||
| 82 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 83 | while (num & ~3) { | ||
| 84 | mul_add(rp[0], ap[0], w, c1); | ||
| 85 | mul_add(rp[1], ap[1], w, c1); | ||
| 86 | mul_add(rp[2], ap[2], w, c1); | ||
| 87 | mul_add(rp[3], ap[3], w, c1); | ||
| 88 | ap += 4; | ||
| 89 | rp += 4; | ||
| 90 | num -= 4; | ||
| 91 | } | ||
| 92 | #endif | ||
| 93 | while (num) { | ||
| 94 | mul_add(rp[0], ap[0], w, c1); | ||
| 95 | ap++; | ||
| 96 | rp++; | ||
| 97 | num--; | ||
| 98 | } | ||
| 99 | |||
| 100 | return (c1); | ||
| 101 | } | ||
| 102 | |||
| 103 | BN_ULONG | ||
| 104 | bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
| 105 | { | ||
| 106 | BN_ULONG c1 = 0; | ||
| 107 | |||
| 108 | assert(num >= 0); | ||
| 109 | if (num <= 0) | ||
| 110 | return (c1); | ||
| 111 | |||
| 112 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 113 | while (num & ~3) { | ||
| 114 | mul(rp[0], ap[0], w, c1); | ||
| 115 | mul(rp[1], ap[1], w, c1); | ||
| 116 | mul(rp[2], ap[2], w, c1); | ||
| 117 | mul(rp[3], ap[3], w, c1); | ||
| 118 | ap += 4; | ||
| 119 | rp += 4; | ||
| 120 | num -= 4; | ||
| 121 | } | ||
| 122 | #endif | ||
| 123 | while (num) { | ||
| 124 | mul(rp[0], ap[0], w, c1); | ||
| 125 | ap++; | ||
| 126 | rp++; | ||
| 127 | num--; | ||
| 128 | } | ||
| 129 | return (c1); | ||
| 130 | } | ||
| 131 | |||
| 132 | void | ||
| 133 | bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) | ||
| 134 | { | ||
| 135 | assert(n >= 0); | ||
| 136 | if (n <= 0) | ||
| 137 | return; | ||
| 138 | |||
| 139 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 140 | while (n & ~3) { | ||
| 141 | sqr(r[0], r[1], a[0]); | ||
| 142 | sqr(r[2], r[3], a[1]); | ||
| 143 | sqr(r[4], r[5], a[2]); | ||
| 144 | sqr(r[6], r[7], a[3]); | ||
| 145 | a += 4; | ||
| 146 | r += 8; | ||
| 147 | n -= 4; | ||
| 148 | } | ||
| 149 | #endif | ||
| 150 | while (n) { | ||
| 151 | sqr(r[0], r[1], a[0]); | ||
| 152 | a++; | ||
| 153 | r += 2; | ||
| 154 | n--; | ||
| 155 | } | ||
| 156 | } | ||
| 157 | |||
| 158 | #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ | ||
| 159 | |||
| 160 | BN_ULONG | ||
| 161 | bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
| 162 | { | ||
| 163 | BN_ULONG c = 0; | ||
| 164 | BN_ULONG bl, bh; | ||
| 165 | |||
| 166 | assert(num >= 0); | ||
| 167 | if (num <= 0) | ||
| 168 | return ((BN_ULONG)0); | ||
| 169 | |||
| 170 | bl = LBITS(w); | ||
| 171 | bh = HBITS(w); | ||
| 172 | |||
| 173 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 174 | while (num & ~3) { | ||
| 175 | mul_add(rp[0], ap[0], bl, bh, c); | ||
| 176 | mul_add(rp[1], ap[1], bl, bh, c); | ||
| 177 | mul_add(rp[2], ap[2], bl, bh, c); | ||
| 178 | mul_add(rp[3], ap[3], bl, bh, c); | ||
| 179 | ap += 4; | ||
| 180 | rp += 4; | ||
| 181 | num -= 4; | ||
| 182 | } | ||
| 183 | #endif | ||
| 184 | while (num) { | ||
| 185 | mul_add(rp[0], ap[0], bl, bh, c); | ||
| 186 | ap++; | ||
| 187 | rp++; | ||
| 188 | num--; | ||
| 189 | } | ||
| 190 | return (c); | ||
| 191 | } | ||
| 192 | |||
| 193 | BN_ULONG | ||
| 194 | bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w) | ||
| 195 | { | ||
| 196 | BN_ULONG carry = 0; | ||
| 197 | BN_ULONG bl, bh; | ||
| 198 | |||
| 199 | assert(num >= 0); | ||
| 200 | if (num <= 0) | ||
| 201 | return ((BN_ULONG)0); | ||
| 202 | |||
| 203 | bl = LBITS(w); | ||
| 204 | bh = HBITS(w); | ||
| 205 | |||
| 206 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 207 | while (num & ~3) { | ||
| 208 | mul(rp[0], ap[0], bl, bh, carry); | ||
| 209 | mul(rp[1], ap[1], bl, bh, carry); | ||
| 210 | mul(rp[2], ap[2], bl, bh, carry); | ||
| 211 | mul(rp[3], ap[3], bl, bh, carry); | ||
| 212 | ap += 4; | ||
| 213 | rp += 4; | ||
| 214 | num -= 4; | ||
| 215 | } | ||
| 216 | #endif | ||
| 217 | while (num) { | ||
| 218 | mul(rp[0], ap[0], bl, bh, carry); | ||
| 219 | ap++; | ||
| 220 | rp++; | ||
| 221 | num--; | ||
| 222 | } | ||
| 223 | return (carry); | ||
| 224 | } | ||
| 225 | |||
| 226 | void | ||
| 227 | bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n) | ||
| 228 | { | ||
| 229 | assert(n >= 0); | ||
| 230 | if (n <= 0) | ||
| 231 | return; | ||
| 232 | |||
| 233 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 234 | while (n & ~3) { | ||
| 235 | sqr64(r[0], r[1], a[0]); | ||
| 236 | sqr64(r[2], r[3], a[1]); | ||
| 237 | sqr64(r[4], r[5], a[2]); | ||
| 238 | sqr64(r[6], r[7], a[3]); | ||
| 239 | a += 4; | ||
| 240 | r += 8; | ||
| 241 | n -= 4; | ||
| 242 | } | ||
| 243 | #endif | ||
| 244 | while (n) { | ||
| 245 | sqr64(r[0], r[1], a[0]); | ||
| 246 | a++; | ||
| 247 | r += 2; | ||
| 248 | n--; | ||
| 249 | } | ||
| 250 | } | ||
| 251 | |||
| 252 | #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */ | ||
| 253 | |||
| 254 | #if defined(BN_LLONG) && defined(BN_DIV2W) | ||
| 255 | |||
| 256 | BN_ULONG | ||
| 257 | bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) | ||
| 258 | { | ||
| 259 | return ((BN_ULONG)(((((BN_ULLONG)h) << BN_BITS2)|l)/(BN_ULLONG)d)); | ||
| 260 | } | ||
| 261 | |||
| 262 | #else | ||
| 263 | |||
| 264 | /* Divide h,l by d and return the result. */ | ||
| 265 | /* I need to test this some more :-( */ | ||
| 266 | BN_ULONG | ||
| 267 | bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) | ||
| 268 | { | ||
| 269 | BN_ULONG dh, dl, q,ret = 0, th, tl, t; | ||
| 270 | int i, count = 2; | ||
| 271 | |||
| 272 | if (d == 0) | ||
| 273 | return (BN_MASK2); | ||
| 274 | |||
| 275 | i = BN_num_bits_word(d); | ||
| 276 | assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i)); | ||
| 277 | |||
| 278 | i = BN_BITS2 - i; | ||
| 279 | if (h >= d) | ||
| 280 | h -= d; | ||
| 281 | |||
| 282 | if (i) { | ||
| 283 | d <<= i; | ||
| 284 | h = (h << i) | (l >> (BN_BITS2 - i)); | ||
| 285 | l <<= i; | ||
| 286 | } | ||
| 287 | dh = (d & BN_MASK2h) >> BN_BITS4; | ||
| 288 | dl = (d & BN_MASK2l); | ||
| 289 | for (;;) { | ||
| 290 | if ((h >> BN_BITS4) == dh) | ||
| 291 | q = BN_MASK2l; | ||
| 292 | else | ||
| 293 | q = h / dh; | ||
| 294 | |||
| 295 | th = q * dh; | ||
| 296 | tl = dl * q; | ||
| 297 | for (;;) { | ||
| 298 | t = h - th; | ||
| 299 | if ((t & BN_MASK2h) || | ||
| 300 | ((tl) <= ( | ||
| 301 | (t << BN_BITS4) | | ||
| 302 | ((l & BN_MASK2h) >> BN_BITS4)))) | ||
| 303 | break; | ||
| 304 | q--; | ||
| 305 | th -= dh; | ||
| 306 | tl -= dl; | ||
| 307 | } | ||
| 308 | t = (tl >> BN_BITS4); | ||
| 309 | tl = (tl << BN_BITS4) & BN_MASK2h; | ||
| 310 | th += t; | ||
| 311 | |||
| 312 | if (l < tl) | ||
| 313 | th++; | ||
| 314 | l -= tl; | ||
| 315 | if (h < th) { | ||
| 316 | h += d; | ||
| 317 | q--; | ||
| 318 | } | ||
| 319 | h -= th; | ||
| 320 | |||
| 321 | if (--count == 0) | ||
| 322 | break; | ||
| 323 | |||
| 324 | ret = q << BN_BITS4; | ||
| 325 | h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2; | ||
| 326 | l = (l & BN_MASK2l) << BN_BITS4; | ||
| 327 | } | ||
| 328 | ret |= q; | ||
| 329 | return (ret); | ||
| 330 | } | ||
| 331 | #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */ | ||
| 332 | |||
| 333 | #ifdef BN_LLONG | ||
| 334 | BN_ULONG | ||
| 335 | bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
| 336 | { | ||
| 337 | BN_ULLONG ll = 0; | ||
| 338 | |||
| 339 | assert(n >= 0); | ||
| 340 | if (n <= 0) | ||
| 341 | return ((BN_ULONG)0); | ||
| 342 | |||
| 343 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 344 | while (n & ~3) { | ||
| 345 | ll += (BN_ULLONG)a[0] + b[0]; | ||
| 346 | r[0] = (BN_ULONG)ll & BN_MASK2; | ||
| 347 | ll >>= BN_BITS2; | ||
| 348 | ll += (BN_ULLONG)a[1] + b[1]; | ||
| 349 | r[1] = (BN_ULONG)ll & BN_MASK2; | ||
| 350 | ll >>= BN_BITS2; | ||
| 351 | ll += (BN_ULLONG)a[2] + b[2]; | ||
| 352 | r[2] = (BN_ULONG)ll & BN_MASK2; | ||
| 353 | ll >>= BN_BITS2; | ||
| 354 | ll += (BN_ULLONG)a[3] + b[3]; | ||
| 355 | r[3] = (BN_ULONG)ll & BN_MASK2; | ||
| 356 | ll >>= BN_BITS2; | ||
| 357 | a += 4; | ||
| 358 | b += 4; | ||
| 359 | r += 4; | ||
| 360 | n -= 4; | ||
| 361 | } | ||
| 362 | #endif | ||
| 363 | while (n) { | ||
| 364 | ll += (BN_ULLONG)a[0] + b[0]; | ||
| 365 | r[0] = (BN_ULONG)ll & BN_MASK2; | ||
| 366 | ll >>= BN_BITS2; | ||
| 367 | a++; | ||
| 368 | b++; | ||
| 369 | r++; | ||
| 370 | n--; | ||
| 371 | } | ||
| 372 | return ((BN_ULONG)ll); | ||
| 373 | } | ||
| 374 | #else /* !BN_LLONG */ | ||
| 375 | BN_ULONG | ||
| 376 | bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
| 377 | { | ||
| 378 | BN_ULONG c, l, t; | ||
| 379 | |||
| 380 | assert(n >= 0); | ||
| 381 | if (n <= 0) | ||
| 382 | return ((BN_ULONG)0); | ||
| 383 | |||
| 384 | c = 0; | ||
| 385 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 386 | while (n & ~3) { | ||
| 387 | t = a[0]; | ||
| 388 | t = (t + c) & BN_MASK2; | ||
| 389 | c = (t < c); | ||
| 390 | l = (t + b[0]) & BN_MASK2; | ||
| 391 | c += (l < t); | ||
| 392 | r[0] = l; | ||
| 393 | t = a[1]; | ||
| 394 | t = (t + c) & BN_MASK2; | ||
| 395 | c = (t < c); | ||
| 396 | l = (t + b[1]) & BN_MASK2; | ||
| 397 | c += (l < t); | ||
| 398 | r[1] = l; | ||
| 399 | t = a[2]; | ||
| 400 | t = (t + c) & BN_MASK2; | ||
| 401 | c = (t < c); | ||
| 402 | l = (t + b[2]) & BN_MASK2; | ||
| 403 | c += (l < t); | ||
| 404 | r[2] = l; | ||
| 405 | t = a[3]; | ||
| 406 | t = (t + c) & BN_MASK2; | ||
| 407 | c = (t < c); | ||
| 408 | l = (t + b[3]) & BN_MASK2; | ||
| 409 | c += (l < t); | ||
| 410 | r[3] = l; | ||
| 411 | a += 4; | ||
| 412 | b += 4; | ||
| 413 | r += 4; | ||
| 414 | n -= 4; | ||
| 415 | } | ||
| 416 | #endif | ||
| 417 | while (n) { | ||
| 418 | t = a[0]; | ||
| 419 | t = (t + c) & BN_MASK2; | ||
| 420 | c = (t < c); | ||
| 421 | l = (t + b[0]) & BN_MASK2; | ||
| 422 | c += (l < t); | ||
| 423 | r[0] = l; | ||
| 424 | a++; | ||
| 425 | b++; | ||
| 426 | r++; | ||
| 427 | n--; | ||
| 428 | } | ||
| 429 | return ((BN_ULONG)c); | ||
| 430 | } | ||
| 431 | #endif /* !BN_LLONG */ | ||
| 432 | |||
| 433 | BN_ULONG | ||
| 434 | bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n) | ||
| 435 | { | ||
| 436 | BN_ULONG t1, t2; | ||
| 437 | int c = 0; | ||
| 438 | |||
| 439 | assert(n >= 0); | ||
| 440 | if (n <= 0) | ||
| 441 | return ((BN_ULONG)0); | ||
| 442 | |||
| 443 | #ifndef OPENSSL_SMALL_FOOTPRINT | ||
| 444 | while (n&~3) { | ||
| 445 | t1 = a[0]; | ||
| 446 | t2 = b[0]; | ||
| 447 | r[0] = (t1 - t2 - c) & BN_MASK2; | ||
| 448 | if (t1 != t2) | ||
| 449 | c = (t1 < t2); | ||
| 450 | t1 = a[1]; | ||
| 451 | t2 = b[1]; | ||
| 452 | r[1] = (t1 - t2 - c) & BN_MASK2; | ||
| 453 | if (t1 != t2) | ||
| 454 | c = (t1 < t2); | ||
| 455 | t1 = a[2]; | ||
| 456 | t2 = b[2]; | ||
| 457 | r[2] = (t1 - t2 - c) & BN_MASK2; | ||
| 458 | if (t1 != t2) | ||
| 459 | c = (t1 < t2); | ||
| 460 | t1 = a[3]; | ||
| 461 | t2 = b[3]; | ||
| 462 | r[3] = (t1 - t2 - c) & BN_MASK2; | ||
| 463 | if (t1 != t2) | ||
| 464 | c = (t1 < t2); | ||
| 465 | a += 4; | ||
| 466 | b += 4; | ||
| 467 | r += 4; | ||
| 468 | n -= 4; | ||
| 469 | } | ||
| 470 | #endif | ||
| 471 | while (n) { | ||
| 472 | t1 = a[0]; | ||
| 473 | t2 = b[0]; | ||
| 474 | r[0] = (t1 - t2 - c) & BN_MASK2; | ||
| 475 | if (t1 != t2) | ||
| 476 | c = (t1 < t2); | ||
| 477 | a++; | ||
| 478 | b++; | ||
| 479 | r++; | ||
| 480 | n--; | ||
| 481 | } | ||
| 482 | return (c); | ||
| 483 | } | ||
| 484 | |||
| 485 | #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT) | ||
| 486 | |||
| 487 | #undef bn_mul_comba8 | ||
| 488 | #undef bn_mul_comba4 | ||
| 489 | #undef bn_sqr_comba8 | ||
| 490 | #undef bn_sqr_comba4 | ||
| 491 | |||
| 492 | /* mul_add_c(a,b,c0,c1,c2) -- c+=a*b for three word number c=(c2,c1,c0) */ | ||
| 493 | /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */ | ||
| 494 | /* sqr_add_c(a,i,c0,c1,c2) -- c+=a[i]^2 for three word number c=(c2,c1,c0) */ | ||
| 495 | /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */ | ||
| 496 | |||
| 497 | #ifdef BN_LLONG | ||
| 498 | /* | ||
| 499 | * Keep in mind that additions to multiplication result can not | ||
| 500 | * overflow, because its high half cannot be all-ones. | ||
| 501 | */ | ||
| 502 | #define mul_add_c(a,b,c0,c1,c2) do { \ | ||
| 503 | BN_ULONG hi; \ | ||
| 504 | BN_ULLONG t = (BN_ULLONG)(a)*(b); \ | ||
| 505 | t += c0; /* no carry */ \ | ||
| 506 | c0 = (BN_ULONG)Lw(t); \ | ||
| 507 | hi = (BN_ULONG)Hw(t); \ | ||
| 508 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ | ||
| 509 | } while(0) | ||
| 510 | |||
| 511 | #define mul_add_c2(a,b,c0,c1,c2) do { \ | ||
| 512 | BN_ULONG hi; \ | ||
| 513 | BN_ULLONG t = (BN_ULLONG)(a)*(b); \ | ||
| 514 | BN_ULLONG tt = t+c0; /* no carry */ \ | ||
| 515 | c0 = (BN_ULONG)Lw(tt); \ | ||
| 516 | hi = (BN_ULONG)Hw(tt); \ | ||
| 517 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ | ||
| 518 | t += c0; /* no carry */ \ | ||
| 519 | c0 = (BN_ULONG)Lw(t); \ | ||
| 520 | hi = (BN_ULONG)Hw(t); \ | ||
| 521 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ | ||
| 522 | } while(0) | ||
| 523 | |||
| 524 | #define sqr_add_c(a,i,c0,c1,c2) do { \ | ||
| 525 | BN_ULONG hi; \ | ||
| 526 | BN_ULLONG t = (BN_ULLONG)a[i]*a[i]; \ | ||
| 527 | t += c0; /* no carry */ \ | ||
| 528 | c0 = (BN_ULONG)Lw(t); \ | ||
| 529 | hi = (BN_ULONG)Hw(t); \ | ||
| 530 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ | ||
| 531 | } while(0) | ||
| 532 | |||
| 533 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
| 534 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
| 535 | |||
| 536 | #elif defined(BN_UMULT_LOHI) | ||
| 537 | /* | ||
| 538 | * Keep in mind that additions to hi can not overflow, because | ||
| 539 | * the high word of a multiplication result cannot be all-ones. | ||
| 540 | */ | ||
| 541 | #define mul_add_c(a,b,c0,c1,c2) do { \ | ||
| 542 | BN_ULONG ta = (a), tb = (b); \ | ||
| 543 | BN_ULONG lo, hi; \ | ||
| 544 | BN_UMULT_LOHI(lo,hi,ta,tb); \ | ||
| 545 | c0 += lo; hi += (c0<lo)?1:0; \ | ||
| 546 | c1 += hi; c2 += (c1<hi)?1:0; \ | ||
| 547 | } while(0) | ||
| 548 | |||
| 549 | #define mul_add_c2(a,b,c0,c1,c2) do { \ | ||
| 550 | BN_ULONG ta = (a), tb = (b); \ | ||
| 551 | BN_ULONG lo, hi, tt; \ | ||
| 552 | BN_UMULT_LOHI(lo,hi,ta,tb); \ | ||
| 553 | c0 += lo; tt = hi+((c0<lo)?1:0); \ | ||
| 554 | c1 += tt; c2 += (c1<tt)?1:0; \ | ||
| 555 | c0 += lo; hi += (c0<lo)?1:0; \ | ||
| 556 | c1 += hi; c2 += (c1<hi)?1:0; \ | ||
| 557 | } while(0) | ||
| 558 | |||
| 559 | #define sqr_add_c(a,i,c0,c1,c2) do { \ | ||
| 560 | BN_ULONG ta = (a)[i]; \ | ||
| 561 | BN_ULONG lo, hi; \ | ||
| 562 | BN_UMULT_LOHI(lo,hi,ta,ta); \ | ||
| 563 | c0 += lo; hi += (c0<lo)?1:0; \ | ||
| 564 | c1 += hi; c2 += (c1<hi)?1:0; \ | ||
| 565 | } while(0) | ||
| 566 | |||
| 567 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
| 568 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
| 569 | |||
| 570 | #elif defined(BN_UMULT_HIGH) | ||
| 571 | /* | ||
| 572 | * Keep in mind that additions to hi can not overflow, because | ||
| 573 | * the high word of a multiplication result cannot be all-ones. | ||
| 574 | */ | ||
| 575 | #define mul_add_c(a,b,c0,c1,c2) do { \ | ||
| 576 | BN_ULONG ta = (a), tb = (b); \ | ||
| 577 | BN_ULONG lo = ta * tb; \ | ||
| 578 | BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \ | ||
| 579 | c0 += lo; hi += (c0<lo)?1:0; \ | ||
| 580 | c1 += hi; c2 += (c1<hi)?1:0; \ | ||
| 581 | } while(0) | ||
| 582 | |||
| 583 | #define mul_add_c2(a,b,c0,c1,c2) do { \ | ||
| 584 | BN_ULONG ta = (a), tb = (b), tt; \ | ||
| 585 | BN_ULONG lo = ta * tb; \ | ||
| 586 | BN_ULONG hi = BN_UMULT_HIGH(ta,tb); \ | ||
| 587 | c0 += lo; tt = hi + ((c0<lo)?1:0); \ | ||
| 588 | c1 += tt; c2 += (c1<tt)?1:0; \ | ||
| 589 | c0 += lo; hi += (c0<lo)?1:0; \ | ||
| 590 | c1 += hi; c2 += (c1<hi)?1:0; \ | ||
| 591 | } while(0) | ||
| 592 | |||
| 593 | #define sqr_add_c(a,i,c0,c1,c2) do { \ | ||
| 594 | BN_ULONG ta = (a)[i]; \ | ||
| 595 | BN_ULONG lo = ta * ta; \ | ||
| 596 | BN_ULONG hi = BN_UMULT_HIGH(ta,ta); \ | ||
| 597 | c0 += lo; hi += (c0<lo)?1:0; \ | ||
| 598 | c1 += hi; c2 += (c1<hi)?1:0; \ | ||
| 599 | } while(0) | ||
| 600 | |||
| 601 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
| 602 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
| 603 | |||
| 604 | #else /* !BN_LLONG */ | ||
| 605 | /* | ||
| 606 | * Keep in mind that additions to hi can not overflow, because | ||
| 607 | * the high word of a multiplication result cannot be all-ones. | ||
| 608 | */ | ||
| 609 | #define mul_add_c(a,b,c0,c1,c2) do { \ | ||
| 610 | BN_ULONG lo = LBITS(a), hi = HBITS(a); \ | ||
| 611 | BN_ULONG bl = LBITS(b), bh = HBITS(b); \ | ||
| 612 | mul64(lo,hi,bl,bh); \ | ||
| 613 | c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \ | ||
| 614 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ | ||
| 615 | } while(0) | ||
| 616 | |||
| 617 | #define mul_add_c2(a,b,c0,c1,c2) do { \ | ||
| 618 | BN_ULONG tt; \ | ||
| 619 | BN_ULONG lo = LBITS(a), hi = HBITS(a); \ | ||
| 620 | BN_ULONG bl = LBITS(b), bh = HBITS(b); \ | ||
| 621 | mul64(lo,hi,bl,bh); \ | ||
| 622 | tt = hi; \ | ||
| 623 | c0 = (c0+lo)&BN_MASK2; if (c0<lo) tt++; \ | ||
| 624 | c1 = (c1+tt)&BN_MASK2; if (c1<tt) c2++; \ | ||
| 625 | c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \ | ||
| 626 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ | ||
| 627 | } while(0) | ||
| 628 | |||
| 629 | #define sqr_add_c(a,i,c0,c1,c2) do { \ | ||
| 630 | BN_ULONG lo, hi; \ | ||
| 631 | sqr64(lo,hi,(a)[i]); \ | ||
| 632 | c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \ | ||
| 633 | c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \ | ||
| 634 | } while(0) | ||
| 635 | |||
| 636 | #define sqr_add_c2(a,i,j,c0,c1,c2) \ | ||
| 637 | mul_add_c2((a)[i],(a)[j],c0,c1,c2) | ||
| 638 | #endif /* !BN_LLONG */ | ||
| 639 | |||
| 640 | void | ||
| 641 | bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
| 642 | { | ||
| 643 | BN_ULONG c1, c2, c3; | ||
| 644 | |||
| 645 | c1 = 0; | ||
| 646 | c2 = 0; | ||
| 647 | c3 = 0; | ||
| 648 | mul_add_c(a[0], b[0], c1, c2, c3); | ||
| 649 | r[0] = c1; | ||
| 650 | c1 = 0; | ||
| 651 | mul_add_c(a[0], b[1], c2, c3, c1); | ||
| 652 | mul_add_c(a[1], b[0], c2, c3, c1); | ||
| 653 | r[1] = c2; | ||
| 654 | c2 = 0; | ||
| 655 | mul_add_c(a[2], b[0], c3, c1, c2); | ||
| 656 | mul_add_c(a[1], b[1], c3, c1, c2); | ||
| 657 | mul_add_c(a[0], b[2], c3, c1, c2); | ||
| 658 | r[2] = c3; | ||
| 659 | c3 = 0; | ||
| 660 | mul_add_c(a[0], b[3], c1, c2, c3); | ||
| 661 | mul_add_c(a[1], b[2], c1, c2, c3); | ||
| 662 | mul_add_c(a[2], b[1], c1, c2, c3); | ||
| 663 | mul_add_c(a[3], b[0], c1, c2, c3); | ||
| 664 | r[3] = c1; | ||
| 665 | c1 = 0; | ||
| 666 | mul_add_c(a[4], b[0], c2, c3, c1); | ||
| 667 | mul_add_c(a[3], b[1], c2, c3, c1); | ||
| 668 | mul_add_c(a[2], b[2], c2, c3, c1); | ||
| 669 | mul_add_c(a[1], b[3], c2, c3, c1); | ||
| 670 | mul_add_c(a[0], b[4], c2, c3, c1); | ||
| 671 | r[4] = c2; | ||
| 672 | c2 = 0; | ||
| 673 | mul_add_c(a[0], b[5], c3, c1, c2); | ||
| 674 | mul_add_c(a[1], b[4], c3, c1, c2); | ||
| 675 | mul_add_c(a[2], b[3], c3, c1, c2); | ||
| 676 | mul_add_c(a[3], b[2], c3, c1, c2); | ||
| 677 | mul_add_c(a[4], b[1], c3, c1, c2); | ||
| 678 | mul_add_c(a[5], b[0], c3, c1, c2); | ||
| 679 | r[5] = c3; | ||
| 680 | c3 = 0; | ||
| 681 | mul_add_c(a[6], b[0], c1, c2, c3); | ||
| 682 | mul_add_c(a[5], b[1], c1, c2, c3); | ||
| 683 | mul_add_c(a[4], b[2], c1, c2, c3); | ||
| 684 | mul_add_c(a[3], b[3], c1, c2, c3); | ||
| 685 | mul_add_c(a[2], b[4], c1, c2, c3); | ||
| 686 | mul_add_c(a[1], b[5], c1, c2, c3); | ||
| 687 | mul_add_c(a[0], b[6], c1, c2, c3); | ||
| 688 | r[6] = c1; | ||
| 689 | c1 = 0; | ||
| 690 | mul_add_c(a[0], b[7], c2, c3, c1); | ||
| 691 | mul_add_c(a[1], b[6], c2, c3, c1); | ||
| 692 | mul_add_c(a[2], b[5], c2, c3, c1); | ||
| 693 | mul_add_c(a[3], b[4], c2, c3, c1); | ||
| 694 | mul_add_c(a[4], b[3], c2, c3, c1); | ||
| 695 | mul_add_c(a[5], b[2], c2, c3, c1); | ||
| 696 | mul_add_c(a[6], b[1], c2, c3, c1); | ||
| 697 | mul_add_c(a[7], b[0], c2, c3, c1); | ||
| 698 | r[7] = c2; | ||
| 699 | c2 = 0; | ||
| 700 | mul_add_c(a[7], b[1], c3, c1, c2); | ||
| 701 | mul_add_c(a[6], b[2], c3, c1, c2); | ||
| 702 | mul_add_c(a[5], b[3], c3, c1, c2); | ||
| 703 | mul_add_c(a[4], b[4], c3, c1, c2); | ||
| 704 | mul_add_c(a[3], b[5], c3, c1, c2); | ||
| 705 | mul_add_c(a[2], b[6], c3, c1, c2); | ||
| 706 | mul_add_c(a[1], b[7], c3, c1, c2); | ||
| 707 | r[8] = c3; | ||
| 708 | c3 = 0; | ||
| 709 | mul_add_c(a[2], b[7], c1, c2, c3); | ||
| 710 | mul_add_c(a[3], b[6], c1, c2, c3); | ||
| 711 | mul_add_c(a[4], b[5], c1, c2, c3); | ||
| 712 | mul_add_c(a[5], b[4], c1, c2, c3); | ||
| 713 | mul_add_c(a[6], b[3], c1, c2, c3); | ||
| 714 | mul_add_c(a[7], b[2], c1, c2, c3); | ||
| 715 | r[9] = c1; | ||
| 716 | c1 = 0; | ||
| 717 | mul_add_c(a[7], b[3], c2, c3, c1); | ||
| 718 | mul_add_c(a[6], b[4], c2, c3, c1); | ||
| 719 | mul_add_c(a[5], b[5], c2, c3, c1); | ||
| 720 | mul_add_c(a[4], b[6], c2, c3, c1); | ||
| 721 | mul_add_c(a[3], b[7], c2, c3, c1); | ||
| 722 | r[10] = c2; | ||
| 723 | c2 = 0; | ||
| 724 | mul_add_c(a[4], b[7], c3, c1, c2); | ||
| 725 | mul_add_c(a[5], b[6], c3, c1, c2); | ||
| 726 | mul_add_c(a[6], b[5], c3, c1, c2); | ||
| 727 | mul_add_c(a[7], b[4], c3, c1, c2); | ||
| 728 | r[11] = c3; | ||
| 729 | c3 = 0; | ||
| 730 | mul_add_c(a[7], b[5], c1, c2, c3); | ||
| 731 | mul_add_c(a[6], b[6], c1, c2, c3); | ||
| 732 | mul_add_c(a[5], b[7], c1, c2, c3); | ||
| 733 | r[12] = c1; | ||
| 734 | c1 = 0; | ||
| 735 | mul_add_c(a[6], b[7], c2, c3, c1); | ||
| 736 | mul_add_c(a[7], b[6], c2, c3, c1); | ||
| 737 | r[13] = c2; | ||
| 738 | c2 = 0; | ||
| 739 | mul_add_c(a[7], b[7], c3, c1, c2); | ||
| 740 | r[14] = c3; | ||
| 741 | r[15] = c1; | ||
| 742 | } | ||
| 743 | |||
| 744 | void | ||
| 745 | bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
| 746 | { | ||
| 747 | BN_ULONG c1, c2, c3; | ||
| 748 | |||
| 749 | c1 = 0; | ||
| 750 | c2 = 0; | ||
| 751 | c3 = 0; | ||
| 752 | mul_add_c(a[0], b[0], c1, c2, c3); | ||
| 753 | r[0] = c1; | ||
| 754 | c1 = 0; | ||
| 755 | mul_add_c(a[0], b[1], c2, c3, c1); | ||
| 756 | mul_add_c(a[1], b[0], c2, c3, c1); | ||
| 757 | r[1] = c2; | ||
| 758 | c2 = 0; | ||
| 759 | mul_add_c(a[2], b[0], c3, c1, c2); | ||
| 760 | mul_add_c(a[1], b[1], c3, c1, c2); | ||
| 761 | mul_add_c(a[0], b[2], c3, c1, c2); | ||
| 762 | r[2] = c3; | ||
| 763 | c3 = 0; | ||
| 764 | mul_add_c(a[0], b[3], c1, c2, c3); | ||
| 765 | mul_add_c(a[1], b[2], c1, c2, c3); | ||
| 766 | mul_add_c(a[2], b[1], c1, c2, c3); | ||
| 767 | mul_add_c(a[3], b[0], c1, c2, c3); | ||
| 768 | r[3] = c1; | ||
| 769 | c1 = 0; | ||
| 770 | mul_add_c(a[3], b[1], c2, c3, c1); | ||
| 771 | mul_add_c(a[2], b[2], c2, c3, c1); | ||
| 772 | mul_add_c(a[1], b[3], c2, c3, c1); | ||
| 773 | r[4] = c2; | ||
| 774 | c2 = 0; | ||
| 775 | mul_add_c(a[2], b[3], c3, c1, c2); | ||
| 776 | mul_add_c(a[3], b[2], c3, c1, c2); | ||
| 777 | r[5] = c3; | ||
| 778 | c3 = 0; | ||
| 779 | mul_add_c(a[3], b[3], c1, c2, c3); | ||
| 780 | r[6] = c1; | ||
| 781 | r[7] = c2; | ||
| 782 | } | ||
| 783 | |||
| 784 | void | ||
| 785 | bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) | ||
| 786 | { | ||
| 787 | BN_ULONG c1, c2, c3; | ||
| 788 | |||
| 789 | c1 = 0; | ||
| 790 | c2 = 0; | ||
| 791 | c3 = 0; | ||
| 792 | sqr_add_c(a, 0, c1, c2, c3); | ||
| 793 | r[0] = c1; | ||
| 794 | c1 = 0; | ||
| 795 | sqr_add_c2(a, 1, 0, c2, c3, c1); | ||
| 796 | r[1] = c2; | ||
| 797 | c2 = 0; | ||
| 798 | sqr_add_c(a, 1, c3, c1, c2); | ||
| 799 | sqr_add_c2(a, 2, 0, c3, c1, c2); | ||
| 800 | r[2] = c3; | ||
| 801 | c3 = 0; | ||
| 802 | sqr_add_c2(a, 3, 0, c1, c2, c3); | ||
| 803 | sqr_add_c2(a, 2, 1, c1, c2, c3); | ||
| 804 | r[3] = c1; | ||
| 805 | c1 = 0; | ||
| 806 | sqr_add_c(a, 2, c2, c3, c1); | ||
| 807 | sqr_add_c2(a, 3, 1, c2, c3, c1); | ||
| 808 | sqr_add_c2(a, 4, 0, c2, c3, c1); | ||
| 809 | r[4] = c2; | ||
| 810 | c2 = 0; | ||
| 811 | sqr_add_c2(a, 5, 0, c3, c1, c2); | ||
| 812 | sqr_add_c2(a, 4, 1, c3, c1, c2); | ||
| 813 | sqr_add_c2(a, 3, 2, c3, c1, c2); | ||
| 814 | r[5] = c3; | ||
| 815 | c3 = 0; | ||
| 816 | sqr_add_c(a, 3, c1, c2, c3); | ||
| 817 | sqr_add_c2(a, 4, 2, c1, c2, c3); | ||
| 818 | sqr_add_c2(a, 5, 1, c1, c2, c3); | ||
| 819 | sqr_add_c2(a, 6, 0, c1, c2, c3); | ||
| 820 | r[6] = c1; | ||
| 821 | c1 = 0; | ||
| 822 | sqr_add_c2(a, 7, 0, c2, c3, c1); | ||
| 823 | sqr_add_c2(a, 6, 1, c2, c3, c1); | ||
| 824 | sqr_add_c2(a, 5, 2, c2, c3, c1); | ||
| 825 | sqr_add_c2(a, 4, 3, c2, c3, c1); | ||
| 826 | r[7] = c2; | ||
| 827 | c2 = 0; | ||
| 828 | sqr_add_c(a, 4, c3, c1, c2); | ||
| 829 | sqr_add_c2(a, 5, 3, c3, c1, c2); | ||
| 830 | sqr_add_c2(a, 6, 2, c3, c1, c2); | ||
| 831 | sqr_add_c2(a, 7, 1, c3, c1, c2); | ||
| 832 | r[8] = c3; | ||
| 833 | c3 = 0; | ||
| 834 | sqr_add_c2(a, 7, 2, c1, c2, c3); | ||
| 835 | sqr_add_c2(a, 6, 3, c1, c2, c3); | ||
| 836 | sqr_add_c2(a, 5, 4, c1, c2, c3); | ||
| 837 | r[9] = c1; | ||
| 838 | c1 = 0; | ||
| 839 | sqr_add_c(a, 5, c2, c3, c1); | ||
| 840 | sqr_add_c2(a, 6, 4, c2, c3, c1); | ||
| 841 | sqr_add_c2(a, 7, 3, c2, c3, c1); | ||
| 842 | r[10] = c2; | ||
| 843 | c2 = 0; | ||
| 844 | sqr_add_c2(a, 7, 4, c3, c1, c2); | ||
| 845 | sqr_add_c2(a, 6, 5, c3, c1, c2); | ||
| 846 | r[11] = c3; | ||
| 847 | c3 = 0; | ||
| 848 | sqr_add_c(a, 6, c1, c2, c3); | ||
| 849 | sqr_add_c2(a, 7, 5, c1, c2, c3); | ||
| 850 | r[12] = c1; | ||
| 851 | c1 = 0; | ||
| 852 | sqr_add_c2(a, 7, 6, c2, c3, c1); | ||
| 853 | r[13] = c2; | ||
| 854 | c2 = 0; | ||
| 855 | sqr_add_c(a, 7, c3, c1, c2); | ||
| 856 | r[14] = c3; | ||
| 857 | r[15] = c1; | ||
| 858 | } | ||
| 859 | |||
| 860 | void | ||
| 861 | bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) | ||
| 862 | { | ||
| 863 | BN_ULONG c1, c2, c3; | ||
| 864 | |||
| 865 | c1 = 0; | ||
| 866 | c2 = 0; | ||
| 867 | c3 = 0; | ||
| 868 | sqr_add_c(a, 0, c1, c2, c3); | ||
| 869 | r[0] = c1; | ||
| 870 | c1 = 0; | ||
| 871 | sqr_add_c2(a, 1, 0, c2, c3, c1); | ||
| 872 | r[1] = c2; | ||
| 873 | c2 = 0; | ||
| 874 | sqr_add_c(a, 1, c3, c1, c2); | ||
| 875 | sqr_add_c2(a, 2, 0, c3, c1, c2); | ||
| 876 | r[2] = c3; | ||
| 877 | c3 = 0; | ||
| 878 | sqr_add_c2(a, 3, 0, c1, c2, c3); | ||
| 879 | sqr_add_c2(a, 2, 1, c1, c2, c3); | ||
| 880 | r[3] = c1; | ||
| 881 | c1 = 0; | ||
| 882 | sqr_add_c(a, 2, c2, c3, c1); | ||
| 883 | sqr_add_c2(a, 3, 1, c2, c3, c1); | ||
| 884 | r[4] = c2; | ||
| 885 | c2 = 0; | ||
| 886 | sqr_add_c2(a, 3, 2, c3, c1, c2); | ||
| 887 | r[5] = c3; | ||
| 888 | c3 = 0; | ||
| 889 | sqr_add_c(a, 3, c1, c2, c3); | ||
| 890 | r[6] = c1; | ||
| 891 | r[7] = c2; | ||
| 892 | } | ||
| 893 | |||
| 894 | #ifdef OPENSSL_NO_ASM | ||
| 895 | #ifdef OPENSSL_BN_ASM_MONT | ||
| 896 | /* | ||
| 897 | * This is essentially reference implementation, which may or may not | ||
| 898 | * result in performance improvement. E.g. on IA-32 this routine was | ||
| 899 | * observed to give 40% faster rsa1024 private key operations and 10% | ||
| 900 | * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only | ||
| 901 | * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a | ||
| 902 | * reference implementation, one to be used as starting point for | ||
| 903 | * platform-specific assembler. Mentioned numbers apply to compiler | ||
| 904 | * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and | ||
| 905 | * can vary not only from platform to platform, but even for compiler | ||
| 906 | * versions. Assembler vs. assembler improvement coefficients can | ||
| 907 | * [and are known to] differ and are to be documented elsewhere. | ||
| 908 | */ | ||
| 909 | int | ||
| 910 | bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0p, int num) | ||
| 911 | { | ||
| 912 | BN_ULONG c0, c1, ml, *tp, n0; | ||
| 913 | #ifdef mul64 | ||
| 914 | BN_ULONG mh; | ||
| 915 | #endif | ||
| 916 | int i = 0, j; | ||
| 917 | |||
| 918 | #if 0 /* template for platform-specific implementation */ | ||
| 919 | if (ap == bp) | ||
| 920 | return bn_sqr_mont(rp, ap, np, n0p, num); | ||
| 921 | #endif | ||
| 922 | tp = reallocarray(NULL, num + 2, sizeof(BN_ULONG)); | ||
| 923 | if (tp == NULL) | ||
| 924 | return 0; | ||
| 925 | |||
| 926 | n0 = *n0p; | ||
| 927 | |||
| 928 | c0 = 0; | ||
| 929 | ml = bp[0]; | ||
| 930 | #ifdef mul64 | ||
| 931 | mh = HBITS(ml); | ||
| 932 | ml = LBITS(ml); | ||
| 933 | for (j = 0; j < num; ++j) | ||
| 934 | mul(tp[j], ap[j], ml, mh, c0); | ||
| 935 | #else | ||
| 936 | for (j = 0; j < num; ++j) | ||
| 937 | mul(tp[j], ap[j], ml, c0); | ||
| 938 | #endif | ||
| 939 | |||
| 940 | tp[num] = c0; | ||
| 941 | tp[num + 1] = 0; | ||
| 942 | goto enter; | ||
| 943 | |||
| 944 | for (i = 0; i < num; i++) { | ||
| 945 | c0 = 0; | ||
| 946 | ml = bp[i]; | ||
| 947 | #ifdef mul64 | ||
| 948 | mh = HBITS(ml); | ||
| 949 | ml = LBITS(ml); | ||
| 950 | for (j = 0; j < num; ++j) | ||
| 951 | mul_add(tp[j], ap[j], ml, mh, c0); | ||
| 952 | #else | ||
| 953 | for (j = 0; j < num; ++j) | ||
| 954 | mul_add(tp[j], ap[j], ml, c0); | ||
| 955 | #endif | ||
| 956 | c1 = (tp[num] + c0) & BN_MASK2; | ||
| 957 | tp[num] = c1; | ||
| 958 | tp[num + 1] = (c1 < c0 ? 1 : 0); | ||
| 959 | enter: | ||
| 960 | c1 = tp[0]; | ||
| 961 | ml = (c1 * n0) & BN_MASK2; | ||
| 962 | c0 = 0; | ||
| 963 | #ifdef mul64 | ||
| 964 | mh = HBITS(ml); | ||
| 965 | ml = LBITS(ml); | ||
| 966 | mul_add(c1, np[0], ml, mh, c0); | ||
| 967 | #else | ||
| 968 | mul_add(c1, ml, np[0], c0); | ||
| 969 | #endif | ||
| 970 | for (j = 1; j < num; j++) { | ||
| 971 | c1 = tp[j]; | ||
| 972 | #ifdef mul64 | ||
| 973 | mul_add(c1, np[j], ml, mh, c0); | ||
| 974 | #else | ||
| 975 | mul_add(c1, ml, np[j], c0); | ||
| 976 | #endif | ||
| 977 | tp[j - 1] = c1 & BN_MASK2; | ||
| 978 | } | ||
| 979 | c1 = (tp[num] + c0) & BN_MASK2; | ||
| 980 | tp[num - 1] = c1; | ||
| 981 | tp[num] = tp[num + 1] + (c1 < c0 ? 1 : 0); | ||
| 982 | } | ||
| 983 | |||
| 984 | if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) { | ||
| 985 | c0 = bn_sub_words(rp, tp, np, num); | ||
| 986 | if (tp[num] != 0 || c0 == 0) { | ||
| 987 | goto out; | ||
| 988 | } | ||
| 989 | } | ||
| 990 | memcpy(rp, tp, num * sizeof(BN_ULONG)); | ||
| 991 | out: | ||
| 992 | explicit_bzero(tp, (num + 2) * sizeof(BN_ULONG)); | ||
| 993 | free(tp); | ||
| 994 | return 1; | ||
| 995 | } | ||
| 996 | #else | ||
| 997 | /* | ||
| 998 | * Return value of 0 indicates that multiplication/convolution was not | ||
| 999 | * performed to signal the caller to fall down to alternative/original | ||
| 1000 | * code-path. | ||
| 1001 | */ | ||
| 1002 | int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np, const BN_ULONG *n0, int num) | ||
| 1003 | { return 0; | ||
| 1004 | } | ||
| 1005 | #endif /* OPENSSL_BN_ASM_MONT */ | ||
| 1006 | #endif | ||
| 1007 | |||
| 1008 | #else /* !BN_MUL_COMBA */ | ||
| 1009 | |||
| 1010 | /* hmm... is it faster just to do a multiply? */ | ||
| 1011 | #undef bn_sqr_comba4 | ||
| 1012 | void | ||
| 1013 | bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a) | ||
| 1014 | { | ||
| 1015 | BN_ULONG t[8]; | ||
| 1016 | bn_sqr_normal(r, a, 4, t); | ||
| 1017 | } | ||
| 1018 | |||
| 1019 | #undef bn_sqr_comba8 | ||
| 1020 | void | ||
| 1021 | bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a) | ||
| 1022 | { | ||
| 1023 | BN_ULONG t[16]; | ||
| 1024 | bn_sqr_normal(r, a, 8, t); | ||
| 1025 | } | ||
| 1026 | |||
| 1027 | void | ||
| 1028 | bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
| 1029 | { | ||
| 1030 | r[4] = bn_mul_words(&(r[0]), a, 4, b[0]); | ||
| 1031 | r[5] = bn_mul_add_words(&(r[1]), a, 4, b[1]); | ||
| 1032 | r[6] = bn_mul_add_words(&(r[2]), a, 4, b[2]); | ||
| 1033 | r[7] = bn_mul_add_words(&(r[3]), a, 4, b[3]); | ||
| 1034 | } | ||
| 1035 | |||
| 1036 | void | ||
| 1037 | bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b) | ||
| 1038 | { | ||
| 1039 | r[8] = bn_mul_words(&(r[0]), a, 8, b[0]); | ||
| 1040 | r[9] = bn_mul_add_words(&(r[1]), a, 8, b[1]); | ||
| 1041 | r[10] = bn_mul_add_words(&(r[2]), a, 8, b[2]); | ||
| 1042 | r[11] = bn_mul_add_words(&(r[3]), a, 8, b[3]); | ||
| 1043 | r[12] = bn_mul_add_words(&(r[4]), a, 8, b[4]); | ||
| 1044 | r[13] = bn_mul_add_words(&(r[5]), a, 8, b[5]); | ||
| 1045 | r[14] = bn_mul_add_words(&(r[6]), a, 8, b[6]); | ||
| 1046 | r[15] = bn_mul_add_words(&(r[7]), a, 8, b[7]); | ||
| 1047 | } | ||
| 1048 | |||
| 1049 | #ifdef OPENSSL_NO_ASM | ||
| 1050 | #ifdef OPENSSL_BN_ASM_MONT | ||
| 1051 | int | ||
| 1052 | bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, | ||
| 1053 | const BN_ULONG *np, const BN_ULONG *n0p, int num) | ||
| 1054 | { | ||
| 1055 | BN_ULONG c0, c1, *tp, n0 = *n0p; | ||
| 1056 | int i = 0, j; | ||
| 1057 | |||
| 1058 | tp = calloc(NULL, num + 2, sizeof(BN_ULONG)); | ||
| 1059 | if (tp == NULL) | ||
| 1060 | return 0; | ||
| 1061 | |||
| 1062 | for (i = 0; i < num; i++) { | ||
| 1063 | c0 = bn_mul_add_words(tp, ap, num, bp[i]); | ||
| 1064 | c1 = (tp[num] + c0) & BN_MASK2; | ||
| 1065 | tp[num] = c1; | ||
| 1066 | tp[num + 1] = (c1 < c0 ? 1 : 0); | ||
| 1067 | |||
| 1068 | c0 = bn_mul_add_words(tp, np, num, tp[0] * n0); | ||
| 1069 | c1 = (tp[num] + c0) & BN_MASK2; | ||
| 1070 | tp[num] = c1; | ||
| 1071 | tp[num + 1] += (c1 < c0 ? 1 : 0); | ||
| 1072 | for (j = 0; j <= num; j++) | ||
| 1073 | tp[j] = tp[j + 1]; | ||
| 1074 | } | ||
| 1075 | |||
| 1076 | if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) { | ||
| 1077 | c0 = bn_sub_words(rp, tp, np, num); | ||
| 1078 | if (tp[num] != 0 || c0 == 0) { | ||
| 1079 | goto out; | ||
| 1080 | } | ||
| 1081 | } | ||
| 1082 | memcpy(rp, tp, num * sizeof(BN_ULONG)); | ||
| 1083 | out: | ||
| 1084 | explicit_bzero(tp, (num + 2) * sizeof(BN_ULONG)); | ||
| 1085 | free(tp); | ||
| 1086 | return 1; | ||
| 1087 | } | ||
| 1088 | #else | ||
| 1089 | int | ||
| 1090 | bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, | ||
| 1091 | const BN_ULONG *np, const BN_ULONG *n0, int num) | ||
| 1092 | { | ||
| 1093 | return 0; | ||
| 1094 | } | ||
| 1095 | #endif /* OPENSSL_BN_ASM_MONT */ | ||
| 1096 | #endif | ||
| 1097 | |||
| 1098 | #endif /* !BN_MUL_COMBA */ | ||
