diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_exp.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_exp.c | 749 |
1 files changed, 0 insertions, 749 deletions
diff --git a/src/lib/libcrypto/bn/bn_exp.c b/src/lib/libcrypto/bn/bn_exp.c deleted file mode 100644 index 0c11601675..0000000000 --- a/src/lib/libcrypto/bn/bn_exp.c +++ /dev/null | |||
@@ -1,749 +0,0 @@ | |||
1 | /* crypto/bn/bn_exp.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | |||
59 | #include <stdio.h> | ||
60 | #include "cryptlib.h" | ||
61 | #include "bn_lcl.h" | ||
62 | #ifdef ATALLA | ||
63 | # include <alloca.h> | ||
64 | # include <atasi.h> | ||
65 | # include <assert.h> | ||
66 | # include <dlfcn.h> | ||
67 | #endif | ||
68 | |||
69 | #define TABLE_SIZE 16 | ||
70 | |||
71 | /* slow but works */ | ||
72 | int BN_mod_mul(BIGNUM *ret, BIGNUM *a, BIGNUM *b, const BIGNUM *m, BN_CTX *ctx) | ||
73 | { | ||
74 | BIGNUM *t; | ||
75 | int r=0; | ||
76 | |||
77 | bn_check_top(a); | ||
78 | bn_check_top(b); | ||
79 | bn_check_top(m); | ||
80 | |||
81 | BN_CTX_start(ctx); | ||
82 | if ((t = BN_CTX_get(ctx)) == NULL) goto err; | ||
83 | if (a == b) | ||
84 | { if (!BN_sqr(t,a,ctx)) goto err; } | ||
85 | else | ||
86 | { if (!BN_mul(t,a,b,ctx)) goto err; } | ||
87 | if (!BN_mod(ret,t,m,ctx)) goto err; | ||
88 | r=1; | ||
89 | err: | ||
90 | BN_CTX_end(ctx); | ||
91 | return(r); | ||
92 | } | ||
93 | |||
94 | #if 0 | ||
95 | /* this one works - simple but works */ | ||
96 | int BN_mod_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BIGNUM *m, BN_CTX *ctx) | ||
97 | { | ||
98 | int i,bits,ret=0; | ||
99 | BIGNUM *v,*tmp; | ||
100 | |||
101 | BN_CTX_start(ctx); | ||
102 | v = BN_CTX_get(ctx); | ||
103 | tmp = BN_CTX_get(ctx); | ||
104 | if (v == NULL || tmp == NULL) goto err; | ||
105 | |||
106 | if (BN_copy(v,a) == NULL) goto err; | ||
107 | bits=BN_num_bits(p); | ||
108 | |||
109 | if (BN_is_odd(p)) | ||
110 | { if (BN_copy(r,a) == NULL) goto err; } | ||
111 | else { if (!BN_one(r)) goto err; } | ||
112 | |||
113 | for (i=1; i<bits; i++) | ||
114 | { | ||
115 | if (!BN_sqr(tmp,v,ctx)) goto err; | ||
116 | if (!BN_mod(v,tmp,m,ctx)) goto err; | ||
117 | if (BN_is_bit_set(p,i)) | ||
118 | { | ||
119 | if (!BN_mul(tmp,r,v,ctx)) goto err; | ||
120 | if (!BN_mod(r,tmp,m,ctx)) goto err; | ||
121 | } | ||
122 | } | ||
123 | ret=1; | ||
124 | err: | ||
125 | BN_CTX_end(ctx); | ||
126 | return(ret); | ||
127 | } | ||
128 | |||
129 | #endif | ||
130 | |||
131 | /* this one works - simple but works */ | ||
132 | int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx) | ||
133 | { | ||
134 | int i,bits,ret=0; | ||
135 | BIGNUM *v,*rr; | ||
136 | |||
137 | BN_CTX_start(ctx); | ||
138 | if ((r == a) || (r == p)) | ||
139 | rr = BN_CTX_get(ctx); | ||
140 | else | ||
141 | rr = r; | ||
142 | if ((v = BN_CTX_get(ctx)) == NULL) goto err; | ||
143 | |||
144 | if (BN_copy(v,a) == NULL) goto err; | ||
145 | bits=BN_num_bits(p); | ||
146 | |||
147 | if (BN_is_odd(p)) | ||
148 | { if (BN_copy(rr,a) == NULL) goto err; } | ||
149 | else { if (!BN_one(rr)) goto err; } | ||
150 | |||
151 | for (i=1; i<bits; i++) | ||
152 | { | ||
153 | if (!BN_sqr(v,v,ctx)) goto err; | ||
154 | if (BN_is_bit_set(p,i)) | ||
155 | { | ||
156 | if (!BN_mul(rr,rr,v,ctx)) goto err; | ||
157 | } | ||
158 | } | ||
159 | ret=1; | ||
160 | err: | ||
161 | if (r != rr) BN_copy(r,rr); | ||
162 | BN_CTX_end(ctx); | ||
163 | return(ret); | ||
164 | } | ||
165 | |||
166 | #ifdef ATALLA | ||
167 | |||
168 | /* | ||
169 | * This routine will dynamically check for the existance of an Atalla AXL-200 | ||
170 | * SSL accelerator module. If one is found, the variable | ||
171 | * asi_accelerator_present is set to 1 and the function pointers | ||
172 | * ptr_ASI_xxxxxx above will be initialized to corresponding ASI API calls. | ||
173 | */ | ||
174 | typedef int tfnASI_GetPerformanceStatistics(int reset_flag, | ||
175 | unsigned int *ret_buf); | ||
176 | typedef int tfnASI_GetHardwareConfig(long card_num, unsigned int *ret_buf); | ||
177 | typedef int tfnASI_RSAPrivateKeyOpFn(RSAPrivateKey * rsaKey, | ||
178 | unsigned char *output, | ||
179 | unsigned char *input, | ||
180 | unsigned int modulus_len); | ||
181 | |||
182 | static tfnASI_GetHardwareConfig *ptr_ASI_GetHardwareConfig; | ||
183 | static tfnASI_RSAPrivateKeyOpFn *ptr_ASI_RSAPrivateKeyOpFn; | ||
184 | static tfnASI_GetPerformanceStatistics *ptr_ASI_GetPerformanceStatistics; | ||
185 | static int asi_accelerator_present; | ||
186 | static int tried_atalla; | ||
187 | |||
188 | void atalla_initialize_accelerator_handle(void) | ||
189 | { | ||
190 | void *dl_handle; | ||
191 | int status; | ||
192 | unsigned int config_buf[1024]; | ||
193 | static int tested; | ||
194 | |||
195 | if(tested) | ||
196 | return; | ||
197 | |||
198 | tested=1; | ||
199 | |||
200 | bzero((void *)config_buf, 1024); | ||
201 | |||
202 | /* | ||
203 | * Check to see if the library is present on the system | ||
204 | */ | ||
205 | dl_handle = dlopen("atasi.so", RTLD_NOW); | ||
206 | if (dl_handle == (void *) NULL) | ||
207 | { | ||
208 | /* printf("atasi.so library is not present on the system\n"); | ||
209 | printf("No HW acceleration available\n");*/ | ||
210 | return; | ||
211 | } | ||
212 | |||
213 | /* | ||
214 | * The library is present. Now we'll check to insure that the | ||
215 | * LDM is up and running. First we'll get the address of the | ||
216 | * function in the atasi library that we need to see if the | ||
217 | * LDM is operating. | ||
218 | */ | ||
219 | |||
220 | ptr_ASI_GetHardwareConfig = | ||
221 | (tfnASI_GetHardwareConfig *)dlsym(dl_handle,"ASI_GetHardwareConfig"); | ||
222 | |||
223 | if (ptr_ASI_GetHardwareConfig) | ||
224 | { | ||
225 | /* | ||
226 | * We found the call, now we'll get our config | ||
227 | * status. If we get a non 0 result, the LDM is not | ||
228 | * running and we cannot use the Atalla ASI * | ||
229 | * library. | ||
230 | */ | ||
231 | status = (*ptr_ASI_GetHardwareConfig)(0L, config_buf); | ||
232 | if (status != 0) | ||
233 | { | ||
234 | printf("atasi.so library is present but not initialized\n"); | ||
235 | printf("No HW acceleration available\n"); | ||
236 | return; | ||
237 | } | ||
238 | } | ||
239 | else | ||
240 | { | ||
241 | /* printf("We found the library, but not the function. Very Strange!\n");*/ | ||
242 | return ; | ||
243 | } | ||
244 | |||
245 | /* | ||
246 | * It looks like we have acceleration capabilities. Load up the | ||
247 | * pointers to our ASI API calls. | ||
248 | */ | ||
249 | ptr_ASI_RSAPrivateKeyOpFn= | ||
250 | (tfnASI_RSAPrivateKeyOpFn *)dlsym(dl_handle, "ASI_RSAPrivateKeyOpFn"); | ||
251 | if (ptr_ASI_RSAPrivateKeyOpFn == NULL) | ||
252 | { | ||
253 | /* printf("We found the library, but no RSA function. Very Strange!\n");*/ | ||
254 | return; | ||
255 | } | ||
256 | |||
257 | ptr_ASI_GetPerformanceStatistics = | ||
258 | (tfnASI_GetPerformanceStatistics *)dlsym(dl_handle, "ASI_GetPerformanceStatistics"); | ||
259 | if (ptr_ASI_GetPerformanceStatistics == NULL) | ||
260 | { | ||
261 | /* printf("We found the library, but no stat function. Very Strange!\n");*/ | ||
262 | return; | ||
263 | } | ||
264 | |||
265 | /* | ||
266 | * Indicate that acceleration is available | ||
267 | */ | ||
268 | asi_accelerator_present = 1; | ||
269 | |||
270 | /* printf("This system has acceleration!\n");*/ | ||
271 | |||
272 | return; | ||
273 | } | ||
274 | |||
275 | /* make sure this only gets called once when bn_mod_exp calls bn_mod_exp_mont */ | ||
276 | int BN_mod_exp_atalla(BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m) | ||
277 | { | ||
278 | unsigned char *abin; | ||
279 | unsigned char *pbin; | ||
280 | unsigned char *mbin; | ||
281 | unsigned char *rbin; | ||
282 | int an,pn,mn,ret; | ||
283 | RSAPrivateKey keydata; | ||
284 | |||
285 | atalla_initialize_accelerator_handle(); | ||
286 | if(!asi_accelerator_present) | ||
287 | return 0; | ||
288 | |||
289 | |||
290 | /* We should be able to run without size testing */ | ||
291 | # define ASIZE 128 | ||
292 | an=BN_num_bytes(a); | ||
293 | pn=BN_num_bytes(p); | ||
294 | mn=BN_num_bytes(m); | ||
295 | |||
296 | if(an <= ASIZE && pn <= ASIZE && mn <= ASIZE) | ||
297 | { | ||
298 | int size=mn; | ||
299 | |||
300 | assert(an <= mn); | ||
301 | abin=alloca(size); | ||
302 | memset(abin,'\0',mn); | ||
303 | BN_bn2bin(a,abin+size-an); | ||
304 | |||
305 | pbin=alloca(pn); | ||
306 | BN_bn2bin(p,pbin); | ||
307 | |||
308 | mbin=alloca(size); | ||
309 | memset(mbin,'\0',mn); | ||
310 | BN_bn2bin(m,mbin+size-mn); | ||
311 | |||
312 | rbin=alloca(size); | ||
313 | |||
314 | memset(&keydata,'\0',sizeof keydata); | ||
315 | keydata.privateExponent.data=pbin; | ||
316 | keydata.privateExponent.len=pn; | ||
317 | keydata.modulus.data=mbin; | ||
318 | keydata.modulus.len=size; | ||
319 | |||
320 | ret=(*ptr_ASI_RSAPrivateKeyOpFn)(&keydata,rbin,abin,keydata.modulus.len); | ||
321 | /*fprintf(stderr,"!%s\n",BN_bn2hex(a));*/ | ||
322 | if(!ret) | ||
323 | { | ||
324 | BN_bin2bn(rbin,keydata.modulus.len,r); | ||
325 | /*fprintf(stderr,"?%s\n",BN_bn2hex(r));*/ | ||
326 | return 1; | ||
327 | } | ||
328 | } | ||
329 | return 0; | ||
330 | } | ||
331 | #endif /* def ATALLA */ | ||
332 | |||
333 | int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
334 | BN_CTX *ctx) | ||
335 | { | ||
336 | int ret; | ||
337 | |||
338 | bn_check_top(a); | ||
339 | bn_check_top(p); | ||
340 | bn_check_top(m); | ||
341 | |||
342 | #ifdef ATALLA | ||
343 | if(BN_mod_exp_atalla(r,a,p,m)) | ||
344 | return 1; | ||
345 | /* If it fails, try the other methods (but don't try atalla again) */ | ||
346 | tried_atalla=1; | ||
347 | #endif | ||
348 | |||
349 | #ifdef MONT_MUL_MOD | ||
350 | /* I have finally been able to take out this pre-condition of | ||
351 | * the top bit being set. It was caused by an error in BN_div | ||
352 | * with negatives. There was also another problem when for a^b%m | ||
353 | * a >= m. eay 07-May-97 */ | ||
354 | /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ | ||
355 | |||
356 | if (BN_is_odd(m)) | ||
357 | { ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL); } | ||
358 | else | ||
359 | #endif | ||
360 | #ifdef RECP_MUL_MOD | ||
361 | { ret=BN_mod_exp_recp(r,a,p,m,ctx); } | ||
362 | #else | ||
363 | { ret=BN_mod_exp_simple(r,a,p,m,ctx); } | ||
364 | #endif | ||
365 | |||
366 | #ifdef ATALLA | ||
367 | tried_atalla=0; | ||
368 | #endif | ||
369 | |||
370 | return(ret); | ||
371 | } | ||
372 | |||
373 | /* #ifdef RECP_MUL_MOD */ | ||
374 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
375 | const BIGNUM *m, BN_CTX *ctx) | ||
376 | { | ||
377 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
378 | int start=1,ts=0; | ||
379 | BIGNUM *aa; | ||
380 | BIGNUM val[TABLE_SIZE]; | ||
381 | BN_RECP_CTX recp; | ||
382 | |||
383 | bits=BN_num_bits(p); | ||
384 | |||
385 | if (bits == 0) | ||
386 | { | ||
387 | BN_one(r); | ||
388 | return(1); | ||
389 | } | ||
390 | |||
391 | BN_CTX_start(ctx); | ||
392 | if ((aa = BN_CTX_get(ctx)) == NULL) goto err; | ||
393 | |||
394 | BN_RECP_CTX_init(&recp); | ||
395 | if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err; | ||
396 | |||
397 | BN_init(&(val[0])); | ||
398 | ts=1; | ||
399 | |||
400 | if (!BN_mod(&(val[0]),a,m,ctx)) goto err; /* 1 */ | ||
401 | if (!BN_mod_mul_reciprocal(aa,&(val[0]),&(val[0]),&recp,ctx)) | ||
402 | goto err; /* 2 */ | ||
403 | |||
404 | if (bits <= 17) /* This is probably 3 or 0x10001, so just do singles */ | ||
405 | window=1; | ||
406 | else if (bits >= 256) | ||
407 | window=5; /* max size of window */ | ||
408 | else if (bits >= 128) | ||
409 | window=4; | ||
410 | else | ||
411 | window=3; | ||
412 | |||
413 | j=1<<(window-1); | ||
414 | for (i=1; i<j; i++) | ||
415 | { | ||
416 | BN_init(&val[i]); | ||
417 | if (!BN_mod_mul_reciprocal(&(val[i]),&(val[i-1]),aa,&recp,ctx)) | ||
418 | goto err; | ||
419 | } | ||
420 | ts=i; | ||
421 | |||
422 | start=1; /* This is used to avoid multiplication etc | ||
423 | * when there is only the value '1' in the | ||
424 | * buffer. */ | ||
425 | wvalue=0; /* The 'value' of the window */ | ||
426 | wstart=bits-1; /* The top bit of the window */ | ||
427 | wend=0; /* The bottom bit of the window */ | ||
428 | |||
429 | if (!BN_one(r)) goto err; | ||
430 | |||
431 | for (;;) | ||
432 | { | ||
433 | if (BN_is_bit_set(p,wstart) == 0) | ||
434 | { | ||
435 | if (!start) | ||
436 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | ||
437 | goto err; | ||
438 | if (wstart == 0) break; | ||
439 | wstart--; | ||
440 | continue; | ||
441 | } | ||
442 | /* We now have wstart on a 'set' bit, we now need to work out | ||
443 | * how bit a window to do. To do this we need to scan | ||
444 | * forward until the last set bit before the end of the | ||
445 | * window */ | ||
446 | j=wstart; | ||
447 | wvalue=1; | ||
448 | wend=0; | ||
449 | for (i=1; i<window; i++) | ||
450 | { | ||
451 | if (wstart-i < 0) break; | ||
452 | if (BN_is_bit_set(p,wstart-i)) | ||
453 | { | ||
454 | wvalue<<=(i-wend); | ||
455 | wvalue|=1; | ||
456 | wend=i; | ||
457 | } | ||
458 | } | ||
459 | |||
460 | /* wend is the size of the current window */ | ||
461 | j=wend+1; | ||
462 | /* add the 'bytes above' */ | ||
463 | if (!start) | ||
464 | for (i=0; i<j; i++) | ||
465 | { | ||
466 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | ||
467 | goto err; | ||
468 | } | ||
469 | |||
470 | /* wvalue will be an odd number < 2^window */ | ||
471 | if (!BN_mod_mul_reciprocal(r,r,&(val[wvalue>>1]),&recp,ctx)) | ||
472 | goto err; | ||
473 | |||
474 | /* move the 'window' down further */ | ||
475 | wstart-=wend+1; | ||
476 | wvalue=0; | ||
477 | start=0; | ||
478 | if (wstart < 0) break; | ||
479 | } | ||
480 | ret=1; | ||
481 | err: | ||
482 | BN_CTX_end(ctx); | ||
483 | for (i=0; i<ts; i++) | ||
484 | BN_clear_free(&(val[i])); | ||
485 | BN_RECP_CTX_free(&recp); | ||
486 | return(ret); | ||
487 | } | ||
488 | /* #endif */ | ||
489 | |||
490 | /* #ifdef MONT_MUL_MOD */ | ||
491 | int BN_mod_exp_mont(BIGNUM *rr, BIGNUM *a, const BIGNUM *p, | ||
492 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
493 | { | ||
494 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
495 | int start=1,ts=0; | ||
496 | BIGNUM *d,*r; | ||
497 | BIGNUM *aa; | ||
498 | BIGNUM val[TABLE_SIZE]; | ||
499 | BN_MONT_CTX *mont=NULL; | ||
500 | |||
501 | bn_check_top(a); | ||
502 | bn_check_top(p); | ||
503 | bn_check_top(m); | ||
504 | |||
505 | #ifdef ATALLA | ||
506 | if(!tried_atalla && BN_mod_exp_atalla(rr,a,p,m)) | ||
507 | return 1; | ||
508 | /* If it fails, try the other methods */ | ||
509 | #endif | ||
510 | |||
511 | if (!(m->d[0] & 1)) | ||
512 | { | ||
513 | BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
514 | return(0); | ||
515 | } | ||
516 | bits=BN_num_bits(p); | ||
517 | if (bits == 0) | ||
518 | { | ||
519 | BN_one(rr); | ||
520 | return(1); | ||
521 | } | ||
522 | BN_CTX_start(ctx); | ||
523 | d = BN_CTX_get(ctx); | ||
524 | r = BN_CTX_get(ctx); | ||
525 | if (d == NULL || r == NULL) goto err; | ||
526 | |||
527 | /* If this is not done, things will break in the montgomery | ||
528 | * part */ | ||
529 | |||
530 | #if 1 | ||
531 | if (in_mont != NULL) | ||
532 | mont=in_mont; | ||
533 | else | ||
534 | #endif | ||
535 | { | ||
536 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
537 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | ||
538 | } | ||
539 | |||
540 | BN_init(&val[0]); | ||
541 | ts=1; | ||
542 | if (BN_ucmp(a,m) >= 0) | ||
543 | { | ||
544 | BN_mod(&(val[0]),a,m,ctx); | ||
545 | aa= &(val[0]); | ||
546 | } | ||
547 | else | ||
548 | aa=a; | ||
549 | if (!BN_to_montgomery(&(val[0]),aa,mont,ctx)) goto err; /* 1 */ | ||
550 | if (!BN_mod_mul_montgomery(d,&(val[0]),&(val[0]),mont,ctx)) goto err; /* 2 */ | ||
551 | |||
552 | if (bits <= 20) /* This is probably 3 or 0x10001, so just do singles */ | ||
553 | window=1; | ||
554 | else if (bits >= 256) | ||
555 | window=5; /* max size of window */ | ||
556 | else if (bits >= 128) | ||
557 | window=4; | ||
558 | else | ||
559 | window=3; | ||
560 | |||
561 | j=1<<(window-1); | ||
562 | for (i=1; i<j; i++) | ||
563 | { | ||
564 | BN_init(&(val[i])); | ||
565 | if (!BN_mod_mul_montgomery(&(val[i]),&(val[i-1]),d,mont,ctx)) | ||
566 | goto err; | ||
567 | } | ||
568 | ts=i; | ||
569 | |||
570 | start=1; /* This is used to avoid multiplication etc | ||
571 | * when there is only the value '1' in the | ||
572 | * buffer. */ | ||
573 | wvalue=0; /* The 'value' of the window */ | ||
574 | wstart=bits-1; /* The top bit of the window */ | ||
575 | wend=0; /* The bottom bit of the window */ | ||
576 | |||
577 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | ||
578 | for (;;) | ||
579 | { | ||
580 | if (BN_is_bit_set(p,wstart) == 0) | ||
581 | { | ||
582 | if (!start) | ||
583 | { | ||
584 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
585 | goto err; | ||
586 | } | ||
587 | if (wstart == 0) break; | ||
588 | wstart--; | ||
589 | continue; | ||
590 | } | ||
591 | /* We now have wstart on a 'set' bit, we now need to work out | ||
592 | * how bit a window to do. To do this we need to scan | ||
593 | * forward until the last set bit before the end of the | ||
594 | * window */ | ||
595 | j=wstart; | ||
596 | wvalue=1; | ||
597 | wend=0; | ||
598 | for (i=1; i<window; i++) | ||
599 | { | ||
600 | if (wstart-i < 0) break; | ||
601 | if (BN_is_bit_set(p,wstart-i)) | ||
602 | { | ||
603 | wvalue<<=(i-wend); | ||
604 | wvalue|=1; | ||
605 | wend=i; | ||
606 | } | ||
607 | } | ||
608 | |||
609 | /* wend is the size of the current window */ | ||
610 | j=wend+1; | ||
611 | /* add the 'bytes above' */ | ||
612 | if (!start) | ||
613 | for (i=0; i<j; i++) | ||
614 | { | ||
615 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
616 | goto err; | ||
617 | } | ||
618 | |||
619 | /* wvalue will be an odd number < 2^window */ | ||
620 | if (!BN_mod_mul_montgomery(r,r,&(val[wvalue>>1]),mont,ctx)) | ||
621 | goto err; | ||
622 | |||
623 | /* move the 'window' down further */ | ||
624 | wstart-=wend+1; | ||
625 | wvalue=0; | ||
626 | start=0; | ||
627 | if (wstart < 0) break; | ||
628 | } | ||
629 | BN_from_montgomery(rr,r,mont,ctx); | ||
630 | ret=1; | ||
631 | err: | ||
632 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
633 | BN_CTX_end(ctx); | ||
634 | for (i=0; i<ts; i++) | ||
635 | BN_clear_free(&(val[i])); | ||
636 | return(ret); | ||
637 | } | ||
638 | /* #endif */ | ||
639 | |||
640 | /* The old fallback, simple version :-) */ | ||
641 | int BN_mod_exp_simple(BIGNUM *r, BIGNUM *a, BIGNUM *p, BIGNUM *m, | ||
642 | BN_CTX *ctx) | ||
643 | { | ||
644 | int i,j,bits,ret=0,wstart,wend,window,wvalue,ts=0; | ||
645 | int start=1; | ||
646 | BIGNUM *d; | ||
647 | BIGNUM val[TABLE_SIZE]; | ||
648 | |||
649 | bits=BN_num_bits(p); | ||
650 | |||
651 | if (bits == 0) | ||
652 | { | ||
653 | BN_one(r); | ||
654 | return(1); | ||
655 | } | ||
656 | |||
657 | BN_CTX_start(ctx); | ||
658 | if ((d = BN_CTX_get(ctx)) == NULL) goto err; | ||
659 | |||
660 | BN_init(&(val[0])); | ||
661 | ts=1; | ||
662 | if (!BN_mod(&(val[0]),a,m,ctx)) goto err; /* 1 */ | ||
663 | if (!BN_mod_mul(d,&(val[0]),&(val[0]),m,ctx)) | ||
664 | goto err; /* 2 */ | ||
665 | |||
666 | if (bits <= 17) /* This is probably 3 or 0x10001, so just do singles */ | ||
667 | window=1; | ||
668 | else if (bits >= 256) | ||
669 | window=5; /* max size of window */ | ||
670 | else if (bits >= 128) | ||
671 | window=4; | ||
672 | else | ||
673 | window=3; | ||
674 | |||
675 | j=1<<(window-1); | ||
676 | for (i=1; i<j; i++) | ||
677 | { | ||
678 | BN_init(&(val[i])); | ||
679 | if (!BN_mod_mul(&(val[i]),&(val[i-1]),d,m,ctx)) | ||
680 | goto err; | ||
681 | } | ||
682 | ts=i; | ||
683 | |||
684 | start=1; /* This is used to avoid multiplication etc | ||
685 | * when there is only the value '1' in the | ||
686 | * buffer. */ | ||
687 | wvalue=0; /* The 'value' of the window */ | ||
688 | wstart=bits-1; /* The top bit of the window */ | ||
689 | wend=0; /* The bottom bit of the window */ | ||
690 | |||
691 | if (!BN_one(r)) goto err; | ||
692 | |||
693 | for (;;) | ||
694 | { | ||
695 | if (BN_is_bit_set(p,wstart) == 0) | ||
696 | { | ||
697 | if (!start) | ||
698 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
699 | goto err; | ||
700 | if (wstart == 0) break; | ||
701 | wstart--; | ||
702 | continue; | ||
703 | } | ||
704 | /* We now have wstart on a 'set' bit, we now need to work out | ||
705 | * how bit a window to do. To do this we need to scan | ||
706 | * forward until the last set bit before the end of the | ||
707 | * window */ | ||
708 | j=wstart; | ||
709 | wvalue=1; | ||
710 | wend=0; | ||
711 | for (i=1; i<window; i++) | ||
712 | { | ||
713 | if (wstart-i < 0) break; | ||
714 | if (BN_is_bit_set(p,wstart-i)) | ||
715 | { | ||
716 | wvalue<<=(i-wend); | ||
717 | wvalue|=1; | ||
718 | wend=i; | ||
719 | } | ||
720 | } | ||
721 | |||
722 | /* wend is the size of the current window */ | ||
723 | j=wend+1; | ||
724 | /* add the 'bytes above' */ | ||
725 | if (!start) | ||
726 | for (i=0; i<j; i++) | ||
727 | { | ||
728 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
729 | goto err; | ||
730 | } | ||
731 | |||
732 | /* wvalue will be an odd number < 2^window */ | ||
733 | if (!BN_mod_mul(r,r,&(val[wvalue>>1]),m,ctx)) | ||
734 | goto err; | ||
735 | |||
736 | /* move the 'window' down further */ | ||
737 | wstart-=wend+1; | ||
738 | wvalue=0; | ||
739 | start=0; | ||
740 | if (wstart < 0) break; | ||
741 | } | ||
742 | ret=1; | ||
743 | err: | ||
744 | BN_CTX_end(ctx); | ||
745 | for (i=0; i<ts; i++) | ||
746 | BN_clear_free(&(val[i])); | ||
747 | return(ret); | ||
748 | } | ||
749 | |||