diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_exp.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_exp.c | 987 |
1 files changed, 0 insertions, 987 deletions
diff --git a/src/lib/libcrypto/bn/bn_exp.c b/src/lib/libcrypto/bn/bn_exp.c deleted file mode 100644 index 9e1e88abe8..0000000000 --- a/src/lib/libcrypto/bn/bn_exp.c +++ /dev/null | |||
@@ -1,987 +0,0 @@ | |||
1 | /* crypto/bn/bn_exp.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | |||
113 | #include "cryptlib.h" | ||
114 | #include "bn_lcl.h" | ||
115 | |||
116 | /* maximum precomputation table size for *variable* sliding windows */ | ||
117 | #define TABLE_SIZE 32 | ||
118 | |||
119 | /* this one works - simple but works */ | ||
120 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
121 | { | ||
122 | int i,bits,ret=0; | ||
123 | BIGNUM *v,*rr; | ||
124 | |||
125 | if (BN_get_flags(p, BN_FLG_EXP_CONSTTIME) != 0) | ||
126 | { | ||
127 | /* BN_FLG_EXP_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
128 | BNerr(BN_F_BN_EXP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
129 | return -1; | ||
130 | } | ||
131 | |||
132 | BN_CTX_start(ctx); | ||
133 | if ((r == a) || (r == p)) | ||
134 | rr = BN_CTX_get(ctx); | ||
135 | else | ||
136 | rr = r; | ||
137 | if ((v = BN_CTX_get(ctx)) == NULL) goto err; | ||
138 | |||
139 | if (BN_copy(v,a) == NULL) goto err; | ||
140 | bits=BN_num_bits(p); | ||
141 | |||
142 | if (BN_is_odd(p)) | ||
143 | { if (BN_copy(rr,a) == NULL) goto err; } | ||
144 | else { if (!BN_one(rr)) goto err; } | ||
145 | |||
146 | for (i=1; i<bits; i++) | ||
147 | { | ||
148 | if (!BN_sqr(v,v,ctx)) goto err; | ||
149 | if (BN_is_bit_set(p,i)) | ||
150 | { | ||
151 | if (!BN_mul(rr,rr,v,ctx)) goto err; | ||
152 | } | ||
153 | } | ||
154 | ret=1; | ||
155 | err: | ||
156 | if (r != rr) BN_copy(r,rr); | ||
157 | BN_CTX_end(ctx); | ||
158 | return(ret); | ||
159 | } | ||
160 | |||
161 | |||
162 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
163 | BN_CTX *ctx) | ||
164 | { | ||
165 | int ret; | ||
166 | |||
167 | bn_check_top(a); | ||
168 | bn_check_top(p); | ||
169 | bn_check_top(m); | ||
170 | |||
171 | /* For even modulus m = 2^k*m_odd, it might make sense to compute | ||
172 | * a^p mod m_odd and a^p mod 2^k separately (with Montgomery | ||
173 | * exponentiation for the odd part), using appropriate exponent | ||
174 | * reductions, and combine the results using the CRT. | ||
175 | * | ||
176 | * For now, we use Montgomery only if the modulus is odd; otherwise, | ||
177 | * exponentiation using the reciprocal-based quick remaindering | ||
178 | * algorithm is used. | ||
179 | * | ||
180 | * (Timing obtained with expspeed.c [computations a^p mod m | ||
181 | * where a, p, m are of the same length: 256, 512, 1024, 2048, | ||
182 | * 4096, 8192 bits], compared to the running time of the | ||
183 | * standard algorithm: | ||
184 | * | ||
185 | * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] | ||
186 | * 55 .. 77 % [UltraSparc processor, but | ||
187 | * debug-solaris-sparcv8-gcc conf.] | ||
188 | * | ||
189 | * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] | ||
190 | * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] | ||
191 | * | ||
192 | * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont | ||
193 | * at 2048 and more bits, but at 512 and 1024 bits, it was | ||
194 | * slower even than the standard algorithm! | ||
195 | * | ||
196 | * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] | ||
197 | * should be obtained when the new Montgomery reduction code | ||
198 | * has been integrated into OpenSSL.) | ||
199 | */ | ||
200 | |||
201 | #define MONT_MUL_MOD | ||
202 | #define MONT_EXP_WORD | ||
203 | #define RECP_MUL_MOD | ||
204 | |||
205 | #ifdef MONT_MUL_MOD | ||
206 | /* I have finally been able to take out this pre-condition of | ||
207 | * the top bit being set. It was caused by an error in BN_div | ||
208 | * with negatives. There was also another problem when for a^b%m | ||
209 | * a >= m. eay 07-May-97 */ | ||
210 | /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ | ||
211 | |||
212 | if (BN_is_odd(m)) | ||
213 | { | ||
214 | # ifdef MONT_EXP_WORD | ||
215 | if (a->top == 1 && !a->neg && (BN_get_flags(p, BN_FLG_EXP_CONSTTIME) == 0)) | ||
216 | { | ||
217 | BN_ULONG A = a->d[0]; | ||
218 | ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL); | ||
219 | } | ||
220 | else | ||
221 | # endif | ||
222 | ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL); | ||
223 | } | ||
224 | else | ||
225 | #endif | ||
226 | #ifdef RECP_MUL_MOD | ||
227 | { ret=BN_mod_exp_recp(r,a,p,m,ctx); } | ||
228 | #else | ||
229 | { ret=BN_mod_exp_simple(r,a,p,m,ctx); } | ||
230 | #endif | ||
231 | |||
232 | return(ret); | ||
233 | } | ||
234 | |||
235 | |||
236 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
237 | const BIGNUM *m, BN_CTX *ctx) | ||
238 | { | ||
239 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
240 | int start=1,ts=0; | ||
241 | BIGNUM *aa; | ||
242 | BIGNUM val[TABLE_SIZE]; | ||
243 | BN_RECP_CTX recp; | ||
244 | |||
245 | if (BN_get_flags(p, BN_FLG_EXP_CONSTTIME) != 0) | ||
246 | { | ||
247 | /* BN_FLG_EXP_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
248 | BNerr(BN_F_BN_MOD_EXP_RECP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
249 | return -1; | ||
250 | } | ||
251 | |||
252 | bits=BN_num_bits(p); | ||
253 | |||
254 | if (bits == 0) | ||
255 | { | ||
256 | ret = BN_one(r); | ||
257 | return ret; | ||
258 | } | ||
259 | |||
260 | BN_CTX_start(ctx); | ||
261 | if ((aa = BN_CTX_get(ctx)) == NULL) goto err; | ||
262 | |||
263 | BN_RECP_CTX_init(&recp); | ||
264 | if (m->neg) | ||
265 | { | ||
266 | /* ignore sign of 'm' */ | ||
267 | if (!BN_copy(aa, m)) goto err; | ||
268 | aa->neg = 0; | ||
269 | if (BN_RECP_CTX_set(&recp,aa,ctx) <= 0) goto err; | ||
270 | } | ||
271 | else | ||
272 | { | ||
273 | if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err; | ||
274 | } | ||
275 | |||
276 | BN_init(&(val[0])); | ||
277 | ts=1; | ||
278 | |||
279 | if (!BN_nnmod(&(val[0]),a,m,ctx)) goto err; /* 1 */ | ||
280 | if (BN_is_zero(&(val[0]))) | ||
281 | { | ||
282 | ret = BN_zero(r); | ||
283 | goto err; | ||
284 | } | ||
285 | |||
286 | window = BN_window_bits_for_exponent_size(bits); | ||
287 | if (window > 1) | ||
288 | { | ||
289 | if (!BN_mod_mul_reciprocal(aa,&(val[0]),&(val[0]),&recp,ctx)) | ||
290 | goto err; /* 2 */ | ||
291 | j=1<<(window-1); | ||
292 | for (i=1; i<j; i++) | ||
293 | { | ||
294 | BN_init(&val[i]); | ||
295 | if (!BN_mod_mul_reciprocal(&(val[i]),&(val[i-1]),aa,&recp,ctx)) | ||
296 | goto err; | ||
297 | } | ||
298 | ts=i; | ||
299 | } | ||
300 | |||
301 | start=1; /* This is used to avoid multiplication etc | ||
302 | * when there is only the value '1' in the | ||
303 | * buffer. */ | ||
304 | wvalue=0; /* The 'value' of the window */ | ||
305 | wstart=bits-1; /* The top bit of the window */ | ||
306 | wend=0; /* The bottom bit of the window */ | ||
307 | |||
308 | if (!BN_one(r)) goto err; | ||
309 | |||
310 | for (;;) | ||
311 | { | ||
312 | if (BN_is_bit_set(p,wstart) == 0) | ||
313 | { | ||
314 | if (!start) | ||
315 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | ||
316 | goto err; | ||
317 | if (wstart == 0) break; | ||
318 | wstart--; | ||
319 | continue; | ||
320 | } | ||
321 | /* We now have wstart on a 'set' bit, we now need to work out | ||
322 | * how bit a window to do. To do this we need to scan | ||
323 | * forward until the last set bit before the end of the | ||
324 | * window */ | ||
325 | j=wstart; | ||
326 | wvalue=1; | ||
327 | wend=0; | ||
328 | for (i=1; i<window; i++) | ||
329 | { | ||
330 | if (wstart-i < 0) break; | ||
331 | if (BN_is_bit_set(p,wstart-i)) | ||
332 | { | ||
333 | wvalue<<=(i-wend); | ||
334 | wvalue|=1; | ||
335 | wend=i; | ||
336 | } | ||
337 | } | ||
338 | |||
339 | /* wend is the size of the current window */ | ||
340 | j=wend+1; | ||
341 | /* add the 'bytes above' */ | ||
342 | if (!start) | ||
343 | for (i=0; i<j; i++) | ||
344 | { | ||
345 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | ||
346 | goto err; | ||
347 | } | ||
348 | |||
349 | /* wvalue will be an odd number < 2^window */ | ||
350 | if (!BN_mod_mul_reciprocal(r,r,&(val[wvalue>>1]),&recp,ctx)) | ||
351 | goto err; | ||
352 | |||
353 | /* move the 'window' down further */ | ||
354 | wstart-=wend+1; | ||
355 | wvalue=0; | ||
356 | start=0; | ||
357 | if (wstart < 0) break; | ||
358 | } | ||
359 | ret=1; | ||
360 | err: | ||
361 | BN_CTX_end(ctx); | ||
362 | for (i=0; i<ts; i++) | ||
363 | BN_clear_free(&(val[i])); | ||
364 | BN_RECP_CTX_free(&recp); | ||
365 | return(ret); | ||
366 | } | ||
367 | |||
368 | |||
369 | int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
370 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
371 | { | ||
372 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
373 | int start=1,ts=0; | ||
374 | BIGNUM *d,*r; | ||
375 | const BIGNUM *aa; | ||
376 | BIGNUM val[TABLE_SIZE]; | ||
377 | BN_MONT_CTX *mont=NULL; | ||
378 | |||
379 | if (BN_get_flags(p, BN_FLG_EXP_CONSTTIME) != 0) | ||
380 | { | ||
381 | return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); | ||
382 | } | ||
383 | |||
384 | bn_check_top(a); | ||
385 | bn_check_top(p); | ||
386 | bn_check_top(m); | ||
387 | |||
388 | if (!(m->d[0] & 1)) | ||
389 | { | ||
390 | BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
391 | return(0); | ||
392 | } | ||
393 | bits=BN_num_bits(p); | ||
394 | if (bits == 0) | ||
395 | { | ||
396 | ret = BN_one(rr); | ||
397 | return ret; | ||
398 | } | ||
399 | |||
400 | BN_CTX_start(ctx); | ||
401 | d = BN_CTX_get(ctx); | ||
402 | r = BN_CTX_get(ctx); | ||
403 | if (d == NULL || r == NULL) goto err; | ||
404 | |||
405 | /* If this is not done, things will break in the montgomery | ||
406 | * part */ | ||
407 | |||
408 | if (in_mont != NULL) | ||
409 | mont=in_mont; | ||
410 | else | ||
411 | { | ||
412 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
413 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | ||
414 | } | ||
415 | |||
416 | BN_init(&val[0]); | ||
417 | ts=1; | ||
418 | if (a->neg || BN_ucmp(a,m) >= 0) | ||
419 | { | ||
420 | if (!BN_nnmod(&(val[0]),a,m,ctx)) | ||
421 | goto err; | ||
422 | aa= &(val[0]); | ||
423 | } | ||
424 | else | ||
425 | aa=a; | ||
426 | if (BN_is_zero(aa)) | ||
427 | { | ||
428 | ret = BN_zero(rr); | ||
429 | goto err; | ||
430 | } | ||
431 | if (!BN_to_montgomery(&(val[0]),aa,mont,ctx)) goto err; /* 1 */ | ||
432 | |||
433 | window = BN_window_bits_for_exponent_size(bits); | ||
434 | if (window > 1) | ||
435 | { | ||
436 | if (!BN_mod_mul_montgomery(d,&(val[0]),&(val[0]),mont,ctx)) goto err; /* 2 */ | ||
437 | j=1<<(window-1); | ||
438 | for (i=1; i<j; i++) | ||
439 | { | ||
440 | BN_init(&(val[i])); | ||
441 | if (!BN_mod_mul_montgomery(&(val[i]),&(val[i-1]),d,mont,ctx)) | ||
442 | goto err; | ||
443 | } | ||
444 | ts=i; | ||
445 | } | ||
446 | |||
447 | start=1; /* This is used to avoid multiplication etc | ||
448 | * when there is only the value '1' in the | ||
449 | * buffer. */ | ||
450 | wvalue=0; /* The 'value' of the window */ | ||
451 | wstart=bits-1; /* The top bit of the window */ | ||
452 | wend=0; /* The bottom bit of the window */ | ||
453 | |||
454 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | ||
455 | for (;;) | ||
456 | { | ||
457 | if (BN_is_bit_set(p,wstart) == 0) | ||
458 | { | ||
459 | if (!start) | ||
460 | { | ||
461 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
462 | goto err; | ||
463 | } | ||
464 | if (wstart == 0) break; | ||
465 | wstart--; | ||
466 | continue; | ||
467 | } | ||
468 | /* We now have wstart on a 'set' bit, we now need to work out | ||
469 | * how bit a window to do. To do this we need to scan | ||
470 | * forward until the last set bit before the end of the | ||
471 | * window */ | ||
472 | j=wstart; | ||
473 | wvalue=1; | ||
474 | wend=0; | ||
475 | for (i=1; i<window; i++) | ||
476 | { | ||
477 | if (wstart-i < 0) break; | ||
478 | if (BN_is_bit_set(p,wstart-i)) | ||
479 | { | ||
480 | wvalue<<=(i-wend); | ||
481 | wvalue|=1; | ||
482 | wend=i; | ||
483 | } | ||
484 | } | ||
485 | |||
486 | /* wend is the size of the current window */ | ||
487 | j=wend+1; | ||
488 | /* add the 'bytes above' */ | ||
489 | if (!start) | ||
490 | for (i=0; i<j; i++) | ||
491 | { | ||
492 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
493 | goto err; | ||
494 | } | ||
495 | |||
496 | /* wvalue will be an odd number < 2^window */ | ||
497 | if (!BN_mod_mul_montgomery(r,r,&(val[wvalue>>1]),mont,ctx)) | ||
498 | goto err; | ||
499 | |||
500 | /* move the 'window' down further */ | ||
501 | wstart-=wend+1; | ||
502 | wvalue=0; | ||
503 | start=0; | ||
504 | if (wstart < 0) break; | ||
505 | } | ||
506 | if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; | ||
507 | ret=1; | ||
508 | err: | ||
509 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
510 | BN_CTX_end(ctx); | ||
511 | for (i=0; i<ts; i++) | ||
512 | BN_clear_free(&(val[i])); | ||
513 | return(ret); | ||
514 | } | ||
515 | |||
516 | |||
517 | /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout | ||
518 | * so that accessing any of these table values shows the same access pattern as far | ||
519 | * as cache lines are concerned. The following functions are used to transfer a BIGNUM | ||
520 | * from/to that table. */ | ||
521 | |||
522 | static int MOD_EXP_CTIME_COPY_TO_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width) | ||
523 | { | ||
524 | size_t i, j; | ||
525 | |||
526 | if (bn_wexpand(b, top) == NULL) | ||
527 | return 0; | ||
528 | while (b->top < top) | ||
529 | { | ||
530 | b->d[b->top++] = 0; | ||
531 | } | ||
532 | |||
533 | for (i = 0, j=idx; i < top * sizeof b->d[0]; i++, j+=width) | ||
534 | { | ||
535 | buf[j] = ((unsigned char*)b->d)[i]; | ||
536 | } | ||
537 | |||
538 | bn_fix_top(b); | ||
539 | return 1; | ||
540 | } | ||
541 | |||
542 | static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width) | ||
543 | { | ||
544 | size_t i, j; | ||
545 | |||
546 | if (bn_wexpand(b, top) == NULL) | ||
547 | return 0; | ||
548 | |||
549 | for (i=0, j=idx; i < top * sizeof b->d[0]; i++, j+=width) | ||
550 | { | ||
551 | ((unsigned char*)b->d)[i] = buf[j]; | ||
552 | } | ||
553 | |||
554 | b->top = top; | ||
555 | bn_fix_top(b); | ||
556 | return 1; | ||
557 | } | ||
558 | |||
559 | /* Given a pointer value, compute the next address that is a cache line multiple. */ | ||
560 | #define MOD_EXP_CTIME_ALIGN(x_) \ | ||
561 | ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((BN_ULONG)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) | ||
562 | |||
563 | /* This variant of BN_mod_exp_mont() uses fixed windows and the special | ||
564 | * precomputation memory layout to limit data-dependency to a minimum | ||
565 | * to protect secret exponents (cf. the hyper-threading timing attacks | ||
566 | * pointed out by Colin Percival, | ||
567 | * http://www.daemonology.net/hyperthreading-considered-harmful/) | ||
568 | */ | ||
569 | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
570 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
571 | { | ||
572 | int i,bits,ret=0,idx,window,wvalue; | ||
573 | int top; | ||
574 | BIGNUM *r; | ||
575 | const BIGNUM *aa; | ||
576 | BN_MONT_CTX *mont=NULL; | ||
577 | |||
578 | int numPowers; | ||
579 | unsigned char *powerbufFree=NULL; | ||
580 | int powerbufLen = 0; | ||
581 | unsigned char *powerbuf=NULL; | ||
582 | BIGNUM *computeTemp=NULL, *am=NULL; | ||
583 | |||
584 | bn_check_top(a); | ||
585 | bn_check_top(p); | ||
586 | bn_check_top(m); | ||
587 | |||
588 | top = m->top; | ||
589 | |||
590 | if (!(m->d[0] & 1)) | ||
591 | { | ||
592 | BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
593 | return(0); | ||
594 | } | ||
595 | bits=BN_num_bits(p); | ||
596 | if (bits == 0) | ||
597 | { | ||
598 | ret = BN_one(rr); | ||
599 | return ret; | ||
600 | } | ||
601 | |||
602 | /* Initialize BIGNUM context and allocate intermediate result */ | ||
603 | BN_CTX_start(ctx); | ||
604 | r = BN_CTX_get(ctx); | ||
605 | if (r == NULL) goto err; | ||
606 | |||
607 | /* Allocate a montgomery context if it was not supplied by the caller. | ||
608 | * If this is not done, things will break in the montgomery part. | ||
609 | */ | ||
610 | if (in_mont != NULL) | ||
611 | mont=in_mont; | ||
612 | else | ||
613 | { | ||
614 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
615 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | ||
616 | } | ||
617 | |||
618 | /* Get the window size to use with size of p. */ | ||
619 | window = BN_window_bits_for_ctime_exponent_size(bits); | ||
620 | |||
621 | /* Allocate a buffer large enough to hold all of the pre-computed | ||
622 | * powers of a. | ||
623 | */ | ||
624 | numPowers = 1 << window; | ||
625 | powerbufLen = sizeof(m->d[0])*top*numPowers; | ||
626 | if ((powerbufFree=(unsigned char*)OPENSSL_malloc(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) | ||
627 | goto err; | ||
628 | |||
629 | powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); | ||
630 | memset(powerbuf, 0, powerbufLen); | ||
631 | |||
632 | /* Initialize the intermediate result. Do this early to save double conversion, | ||
633 | * once each for a^0 and intermediate result. | ||
634 | */ | ||
635 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | ||
636 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(r, top, powerbuf, 0, numPowers)) goto err; | ||
637 | |||
638 | /* Initialize computeTemp as a^1 with montgomery precalcs */ | ||
639 | computeTemp = BN_CTX_get(ctx); | ||
640 | am = BN_CTX_get(ctx); | ||
641 | if (computeTemp==NULL || am==NULL) goto err; | ||
642 | |||
643 | if (a->neg || BN_ucmp(a,m) >= 0) | ||
644 | { | ||
645 | if (!BN_mod(am,a,m,ctx)) | ||
646 | goto err; | ||
647 | aa= am; | ||
648 | } | ||
649 | else | ||
650 | aa=a; | ||
651 | if (!BN_to_montgomery(am,aa,mont,ctx)) goto err; | ||
652 | if (!BN_copy(computeTemp, am)) goto err; | ||
653 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(am, top, powerbuf, 1, numPowers)) goto err; | ||
654 | |||
655 | /* If the window size is greater than 1, then calculate | ||
656 | * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) | ||
657 | * (even powers could instead be computed as (a^(i/2))^2 | ||
658 | * to use the slight performance advantage of sqr over mul). | ||
659 | */ | ||
660 | if (window > 1) | ||
661 | { | ||
662 | for (i=2; i<numPowers; i++) | ||
663 | { | ||
664 | /* Calculate a^i = a^(i-1) * a */ | ||
665 | if (!BN_mod_mul_montgomery(computeTemp,am,computeTemp,mont,ctx)) | ||
666 | goto err; | ||
667 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(computeTemp, top, powerbuf, i, numPowers)) goto err; | ||
668 | } | ||
669 | } | ||
670 | |||
671 | /* Adjust the number of bits up to a multiple of the window size. | ||
672 | * If the exponent length is not a multiple of the window size, then | ||
673 | * this pads the most significant bits with zeros to normalize the | ||
674 | * scanning loop to there's no special cases. | ||
675 | * | ||
676 | * * NOTE: Making the window size a power of two less than the native | ||
677 | * * word size ensures that the padded bits won't go past the last | ||
678 | * * word in the internal BIGNUM structure. Going past the end will | ||
679 | * * still produce the correct result, but causes a different branch | ||
680 | * * to be taken in the BN_is_bit_set function. | ||
681 | */ | ||
682 | bits = ((bits+window-1)/window)*window; | ||
683 | idx=bits-1; /* The top bit of the window */ | ||
684 | |||
685 | /* Scan the exponent one window at a time starting from the most | ||
686 | * significant bits. | ||
687 | */ | ||
688 | while (idx >= 0) | ||
689 | { | ||
690 | wvalue=0; /* The 'value' of the window */ | ||
691 | |||
692 | /* Scan the window, squaring the result as we go */ | ||
693 | for (i=0; i<window; i++,idx--) | ||
694 | { | ||
695 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) goto err; | ||
696 | wvalue = (wvalue<<1)+BN_is_bit_set(p,idx); | ||
697 | } | ||
698 | |||
699 | /* Fetch the appropriate pre-computed value from the pre-buf */ | ||
700 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(computeTemp, top, powerbuf, wvalue, numPowers)) goto err; | ||
701 | |||
702 | /* Multiply the result into the intermediate result */ | ||
703 | if (!BN_mod_mul_montgomery(r,r,computeTemp,mont,ctx)) goto err; | ||
704 | } | ||
705 | |||
706 | /* Convert the final result from montgomery to standard format */ | ||
707 | if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; | ||
708 | ret=1; | ||
709 | err: | ||
710 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
711 | if (powerbuf!=NULL) | ||
712 | { | ||
713 | OPENSSL_cleanse(powerbuf,powerbufLen); | ||
714 | OPENSSL_free(powerbufFree); | ||
715 | } | ||
716 | if (am!=NULL) BN_clear(am); | ||
717 | if (computeTemp!=NULL) BN_clear(computeTemp); | ||
718 | BN_CTX_end(ctx); | ||
719 | return(ret); | ||
720 | } | ||
721 | |||
722 | int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, | ||
723 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
724 | { | ||
725 | BN_MONT_CTX *mont = NULL; | ||
726 | int b, bits, ret=0; | ||
727 | int r_is_one; | ||
728 | BN_ULONG w, next_w; | ||
729 | BIGNUM *d, *r, *t; | ||
730 | BIGNUM *swap_tmp; | ||
731 | #define BN_MOD_MUL_WORD(r, w, m) \ | ||
732 | (BN_mul_word(r, (w)) && \ | ||
733 | (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ | ||
734 | (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) | ||
735 | /* BN_MOD_MUL_WORD is only used with 'w' large, | ||
736 | * so the BN_ucmp test is probably more overhead | ||
737 | * than always using BN_mod (which uses BN_copy if | ||
738 | * a similar test returns true). */ | ||
739 | /* We can use BN_mod and do not need BN_nnmod because our | ||
740 | * accumulator is never negative (the result of BN_mod does | ||
741 | * not depend on the sign of the modulus). | ||
742 | */ | ||
743 | #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ | ||
744 | (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) | ||
745 | |||
746 | if (BN_get_flags(p, BN_FLG_EXP_CONSTTIME) != 0) | ||
747 | { | ||
748 | /* BN_FLG_EXP_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
749 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
750 | return -1; | ||
751 | } | ||
752 | |||
753 | bn_check_top(p); | ||
754 | bn_check_top(m); | ||
755 | |||
756 | if (m->top == 0 || !(m->d[0] & 1)) | ||
757 | { | ||
758 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
759 | return(0); | ||
760 | } | ||
761 | if (m->top == 1) | ||
762 | a %= m->d[0]; /* make sure that 'a' is reduced */ | ||
763 | |||
764 | bits = BN_num_bits(p); | ||
765 | if (bits == 0) | ||
766 | { | ||
767 | ret = BN_one(rr); | ||
768 | return ret; | ||
769 | } | ||
770 | if (a == 0) | ||
771 | { | ||
772 | ret = BN_zero(rr); | ||
773 | return ret; | ||
774 | } | ||
775 | |||
776 | BN_CTX_start(ctx); | ||
777 | d = BN_CTX_get(ctx); | ||
778 | r = BN_CTX_get(ctx); | ||
779 | t = BN_CTX_get(ctx); | ||
780 | if (d == NULL || r == NULL || t == NULL) goto err; | ||
781 | |||
782 | if (in_mont != NULL) | ||
783 | mont=in_mont; | ||
784 | else | ||
785 | { | ||
786 | if ((mont = BN_MONT_CTX_new()) == NULL) goto err; | ||
787 | if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; | ||
788 | } | ||
789 | |||
790 | r_is_one = 1; /* except for Montgomery factor */ | ||
791 | |||
792 | /* bits-1 >= 0 */ | ||
793 | |||
794 | /* The result is accumulated in the product r*w. */ | ||
795 | w = a; /* bit 'bits-1' of 'p' is always set */ | ||
796 | for (b = bits-2; b >= 0; b--) | ||
797 | { | ||
798 | /* First, square r*w. */ | ||
799 | next_w = w*w; | ||
800 | if ((next_w/w) != w) /* overflow */ | ||
801 | { | ||
802 | if (r_is_one) | ||
803 | { | ||
804 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
805 | r_is_one = 0; | ||
806 | } | ||
807 | else | ||
808 | { | ||
809 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
810 | } | ||
811 | next_w = 1; | ||
812 | } | ||
813 | w = next_w; | ||
814 | if (!r_is_one) | ||
815 | { | ||
816 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err; | ||
817 | } | ||
818 | |||
819 | /* Second, multiply r*w by 'a' if exponent bit is set. */ | ||
820 | if (BN_is_bit_set(p, b)) | ||
821 | { | ||
822 | next_w = w*a; | ||
823 | if ((next_w/a) != w) /* overflow */ | ||
824 | { | ||
825 | if (r_is_one) | ||
826 | { | ||
827 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
828 | r_is_one = 0; | ||
829 | } | ||
830 | else | ||
831 | { | ||
832 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
833 | } | ||
834 | next_w = a; | ||
835 | } | ||
836 | w = next_w; | ||
837 | } | ||
838 | } | ||
839 | |||
840 | /* Finally, set r:=r*w. */ | ||
841 | if (w != 1) | ||
842 | { | ||
843 | if (r_is_one) | ||
844 | { | ||
845 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
846 | r_is_one = 0; | ||
847 | } | ||
848 | else | ||
849 | { | ||
850 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
851 | } | ||
852 | } | ||
853 | |||
854 | if (r_is_one) /* can happen only if a == 1*/ | ||
855 | { | ||
856 | if (!BN_one(rr)) goto err; | ||
857 | } | ||
858 | else | ||
859 | { | ||
860 | if (!BN_from_montgomery(rr, r, mont, ctx)) goto err; | ||
861 | } | ||
862 | ret = 1; | ||
863 | err: | ||
864 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
865 | BN_CTX_end(ctx); | ||
866 | return(ret); | ||
867 | } | ||
868 | |||
869 | |||
870 | /* The old fallback, simple version :-) */ | ||
871 | int BN_mod_exp_simple(BIGNUM *r, | ||
872 | const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
873 | BN_CTX *ctx) | ||
874 | { | ||
875 | int i,j,bits,ret=0,wstart,wend,window,wvalue,ts=0; | ||
876 | int start=1; | ||
877 | BIGNUM *d; | ||
878 | BIGNUM val[TABLE_SIZE]; | ||
879 | |||
880 | if (BN_get_flags(p, BN_FLG_EXP_CONSTTIME) != 0) | ||
881 | { | ||
882 | /* BN_FLG_EXP_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
883 | BNerr(BN_F_BN_MOD_EXP_SIMPLE,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
884 | return -1; | ||
885 | } | ||
886 | |||
887 | bits=BN_num_bits(p); | ||
888 | |||
889 | if (bits == 0) | ||
890 | { | ||
891 | ret = BN_one(r); | ||
892 | return ret; | ||
893 | } | ||
894 | |||
895 | BN_CTX_start(ctx); | ||
896 | if ((d = BN_CTX_get(ctx)) == NULL) goto err; | ||
897 | |||
898 | BN_init(&(val[0])); | ||
899 | ts=1; | ||
900 | if (!BN_nnmod(&(val[0]),a,m,ctx)) goto err; /* 1 */ | ||
901 | if (BN_is_zero(&(val[0]))) | ||
902 | { | ||
903 | ret = BN_zero(r); | ||
904 | goto err; | ||
905 | } | ||
906 | |||
907 | window = BN_window_bits_for_exponent_size(bits); | ||
908 | if (window > 1) | ||
909 | { | ||
910 | if (!BN_mod_mul(d,&(val[0]),&(val[0]),m,ctx)) | ||
911 | goto err; /* 2 */ | ||
912 | j=1<<(window-1); | ||
913 | for (i=1; i<j; i++) | ||
914 | { | ||
915 | BN_init(&(val[i])); | ||
916 | if (!BN_mod_mul(&(val[i]),&(val[i-1]),d,m,ctx)) | ||
917 | goto err; | ||
918 | } | ||
919 | ts=i; | ||
920 | } | ||
921 | |||
922 | start=1; /* This is used to avoid multiplication etc | ||
923 | * when there is only the value '1' in the | ||
924 | * buffer. */ | ||
925 | wvalue=0; /* The 'value' of the window */ | ||
926 | wstart=bits-1; /* The top bit of the window */ | ||
927 | wend=0; /* The bottom bit of the window */ | ||
928 | |||
929 | if (!BN_one(r)) goto err; | ||
930 | |||
931 | for (;;) | ||
932 | { | ||
933 | if (BN_is_bit_set(p,wstart) == 0) | ||
934 | { | ||
935 | if (!start) | ||
936 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
937 | goto err; | ||
938 | if (wstart == 0) break; | ||
939 | wstart--; | ||
940 | continue; | ||
941 | } | ||
942 | /* We now have wstart on a 'set' bit, we now need to work out | ||
943 | * how bit a window to do. To do this we need to scan | ||
944 | * forward until the last set bit before the end of the | ||
945 | * window */ | ||
946 | j=wstart; | ||
947 | wvalue=1; | ||
948 | wend=0; | ||
949 | for (i=1; i<window; i++) | ||
950 | { | ||
951 | if (wstart-i < 0) break; | ||
952 | if (BN_is_bit_set(p,wstart-i)) | ||
953 | { | ||
954 | wvalue<<=(i-wend); | ||
955 | wvalue|=1; | ||
956 | wend=i; | ||
957 | } | ||
958 | } | ||
959 | |||
960 | /* wend is the size of the current window */ | ||
961 | j=wend+1; | ||
962 | /* add the 'bytes above' */ | ||
963 | if (!start) | ||
964 | for (i=0; i<j; i++) | ||
965 | { | ||
966 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
967 | goto err; | ||
968 | } | ||
969 | |||
970 | /* wvalue will be an odd number < 2^window */ | ||
971 | if (!BN_mod_mul(r,r,&(val[wvalue>>1]),m,ctx)) | ||
972 | goto err; | ||
973 | |||
974 | /* move the 'window' down further */ | ||
975 | wstart-=wend+1; | ||
976 | wvalue=0; | ||
977 | start=0; | ||
978 | if (wstart < 0) break; | ||
979 | } | ||
980 | ret=1; | ||
981 | err: | ||
982 | BN_CTX_end(ctx); | ||
983 | for (i=0; i<ts; i++) | ||
984 | BN_clear_free(&(val[i])); | ||
985 | return(ret); | ||
986 | } | ||
987 | |||