diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_exp.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_exp.c | 990 |
1 files changed, 0 insertions, 990 deletions
diff --git a/src/lib/libcrypto/bn/bn_exp.c b/src/lib/libcrypto/bn/bn_exp.c deleted file mode 100644 index 70a33f0d93..0000000000 --- a/src/lib/libcrypto/bn/bn_exp.c +++ /dev/null | |||
@@ -1,990 +0,0 @@ | |||
1 | /* crypto/bn/bn_exp.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | |||
113 | #include "cryptlib.h" | ||
114 | #include "bn_lcl.h" | ||
115 | |||
116 | /* maximum precomputation table size for *variable* sliding windows */ | ||
117 | #define TABLE_SIZE 32 | ||
118 | |||
119 | /* this one works - simple but works */ | ||
120 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
121 | { | ||
122 | int i,bits,ret=0; | ||
123 | BIGNUM *v,*rr; | ||
124 | |||
125 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
126 | { | ||
127 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
128 | BNerr(BN_F_BN_EXP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
129 | return -1; | ||
130 | } | ||
131 | |||
132 | BN_CTX_start(ctx); | ||
133 | if ((r == a) || (r == p)) | ||
134 | rr = BN_CTX_get(ctx); | ||
135 | else | ||
136 | rr = r; | ||
137 | if ((v = BN_CTX_get(ctx)) == NULL) goto err; | ||
138 | |||
139 | if (BN_copy(v,a) == NULL) goto err; | ||
140 | bits=BN_num_bits(p); | ||
141 | |||
142 | if (BN_is_odd(p)) | ||
143 | { if (BN_copy(rr,a) == NULL) goto err; } | ||
144 | else { if (!BN_one(rr)) goto err; } | ||
145 | |||
146 | for (i=1; i<bits; i++) | ||
147 | { | ||
148 | if (!BN_sqr(v,v,ctx)) goto err; | ||
149 | if (BN_is_bit_set(p,i)) | ||
150 | { | ||
151 | if (!BN_mul(rr,rr,v,ctx)) goto err; | ||
152 | } | ||
153 | } | ||
154 | ret=1; | ||
155 | err: | ||
156 | if (r != rr) BN_copy(r,rr); | ||
157 | BN_CTX_end(ctx); | ||
158 | bn_check_top(r); | ||
159 | return(ret); | ||
160 | } | ||
161 | |||
162 | |||
163 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
164 | BN_CTX *ctx) | ||
165 | { | ||
166 | int ret; | ||
167 | |||
168 | bn_check_top(a); | ||
169 | bn_check_top(p); | ||
170 | bn_check_top(m); | ||
171 | |||
172 | /* For even modulus m = 2^k*m_odd, it might make sense to compute | ||
173 | * a^p mod m_odd and a^p mod 2^k separately (with Montgomery | ||
174 | * exponentiation for the odd part), using appropriate exponent | ||
175 | * reductions, and combine the results using the CRT. | ||
176 | * | ||
177 | * For now, we use Montgomery only if the modulus is odd; otherwise, | ||
178 | * exponentiation using the reciprocal-based quick remaindering | ||
179 | * algorithm is used. | ||
180 | * | ||
181 | * (Timing obtained with expspeed.c [computations a^p mod m | ||
182 | * where a, p, m are of the same length: 256, 512, 1024, 2048, | ||
183 | * 4096, 8192 bits], compared to the running time of the | ||
184 | * standard algorithm: | ||
185 | * | ||
186 | * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] | ||
187 | * 55 .. 77 % [UltraSparc processor, but | ||
188 | * debug-solaris-sparcv8-gcc conf.] | ||
189 | * | ||
190 | * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] | ||
191 | * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] | ||
192 | * | ||
193 | * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont | ||
194 | * at 2048 and more bits, but at 512 and 1024 bits, it was | ||
195 | * slower even than the standard algorithm! | ||
196 | * | ||
197 | * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] | ||
198 | * should be obtained when the new Montgomery reduction code | ||
199 | * has been integrated into OpenSSL.) | ||
200 | */ | ||
201 | |||
202 | #define MONT_MUL_MOD | ||
203 | #define MONT_EXP_WORD | ||
204 | #define RECP_MUL_MOD | ||
205 | |||
206 | #ifdef MONT_MUL_MOD | ||
207 | /* I have finally been able to take out this pre-condition of | ||
208 | * the top bit being set. It was caused by an error in BN_div | ||
209 | * with negatives. There was also another problem when for a^b%m | ||
210 | * a >= m. eay 07-May-97 */ | ||
211 | /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ | ||
212 | |||
213 | if (BN_is_odd(m)) | ||
214 | { | ||
215 | # ifdef MONT_EXP_WORD | ||
216 | if (a->top == 1 && !a->neg && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)) | ||
217 | { | ||
218 | BN_ULONG A = a->d[0]; | ||
219 | ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL); | ||
220 | } | ||
221 | else | ||
222 | # endif | ||
223 | ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL); | ||
224 | } | ||
225 | else | ||
226 | #endif | ||
227 | #ifdef RECP_MUL_MOD | ||
228 | { ret=BN_mod_exp_recp(r,a,p,m,ctx); } | ||
229 | #else | ||
230 | { ret=BN_mod_exp_simple(r,a,p,m,ctx); } | ||
231 | #endif | ||
232 | |||
233 | bn_check_top(r); | ||
234 | return(ret); | ||
235 | } | ||
236 | |||
237 | |||
238 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
239 | const BIGNUM *m, BN_CTX *ctx) | ||
240 | { | ||
241 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
242 | int start=1; | ||
243 | BIGNUM *aa; | ||
244 | /* Table of variables obtained from 'ctx' */ | ||
245 | BIGNUM *val[TABLE_SIZE]; | ||
246 | BN_RECP_CTX recp; | ||
247 | |||
248 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
249 | { | ||
250 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
251 | BNerr(BN_F_BN_MOD_EXP_RECP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
252 | return -1; | ||
253 | } | ||
254 | |||
255 | bits=BN_num_bits(p); | ||
256 | |||
257 | if (bits == 0) | ||
258 | { | ||
259 | ret = BN_one(r); | ||
260 | return ret; | ||
261 | } | ||
262 | |||
263 | BN_CTX_start(ctx); | ||
264 | aa = BN_CTX_get(ctx); | ||
265 | val[0] = BN_CTX_get(ctx); | ||
266 | if(!aa || !val[0]) goto err; | ||
267 | |||
268 | BN_RECP_CTX_init(&recp); | ||
269 | if (m->neg) | ||
270 | { | ||
271 | /* ignore sign of 'm' */ | ||
272 | if (!BN_copy(aa, m)) goto err; | ||
273 | aa->neg = 0; | ||
274 | if (BN_RECP_CTX_set(&recp,aa,ctx) <= 0) goto err; | ||
275 | } | ||
276 | else | ||
277 | { | ||
278 | if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err; | ||
279 | } | ||
280 | |||
281 | if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */ | ||
282 | if (BN_is_zero(val[0])) | ||
283 | { | ||
284 | BN_zero(r); | ||
285 | ret = 1; | ||
286 | goto err; | ||
287 | } | ||
288 | |||
289 | window = BN_window_bits_for_exponent_size(bits); | ||
290 | if (window > 1) | ||
291 | { | ||
292 | if (!BN_mod_mul_reciprocal(aa,val[0],val[0],&recp,ctx)) | ||
293 | goto err; /* 2 */ | ||
294 | j=1<<(window-1); | ||
295 | for (i=1; i<j; i++) | ||
296 | { | ||
297 | if(((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
298 | !BN_mod_mul_reciprocal(val[i],val[i-1], | ||
299 | aa,&recp,ctx)) | ||
300 | goto err; | ||
301 | } | ||
302 | } | ||
303 | |||
304 | start=1; /* This is used to avoid multiplication etc | ||
305 | * when there is only the value '1' in the | ||
306 | * buffer. */ | ||
307 | wvalue=0; /* The 'value' of the window */ | ||
308 | wstart=bits-1; /* The top bit of the window */ | ||
309 | wend=0; /* The bottom bit of the window */ | ||
310 | |||
311 | if (!BN_one(r)) goto err; | ||
312 | |||
313 | for (;;) | ||
314 | { | ||
315 | if (BN_is_bit_set(p,wstart) == 0) | ||
316 | { | ||
317 | if (!start) | ||
318 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | ||
319 | goto err; | ||
320 | if (wstart == 0) break; | ||
321 | wstart--; | ||
322 | continue; | ||
323 | } | ||
324 | /* We now have wstart on a 'set' bit, we now need to work out | ||
325 | * how bit a window to do. To do this we need to scan | ||
326 | * forward until the last set bit before the end of the | ||
327 | * window */ | ||
328 | j=wstart; | ||
329 | wvalue=1; | ||
330 | wend=0; | ||
331 | for (i=1; i<window; i++) | ||
332 | { | ||
333 | if (wstart-i < 0) break; | ||
334 | if (BN_is_bit_set(p,wstart-i)) | ||
335 | { | ||
336 | wvalue<<=(i-wend); | ||
337 | wvalue|=1; | ||
338 | wend=i; | ||
339 | } | ||
340 | } | ||
341 | |||
342 | /* wend is the size of the current window */ | ||
343 | j=wend+1; | ||
344 | /* add the 'bytes above' */ | ||
345 | if (!start) | ||
346 | for (i=0; i<j; i++) | ||
347 | { | ||
348 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | ||
349 | goto err; | ||
350 | } | ||
351 | |||
352 | /* wvalue will be an odd number < 2^window */ | ||
353 | if (!BN_mod_mul_reciprocal(r,r,val[wvalue>>1],&recp,ctx)) | ||
354 | goto err; | ||
355 | |||
356 | /* move the 'window' down further */ | ||
357 | wstart-=wend+1; | ||
358 | wvalue=0; | ||
359 | start=0; | ||
360 | if (wstart < 0) break; | ||
361 | } | ||
362 | ret=1; | ||
363 | err: | ||
364 | BN_CTX_end(ctx); | ||
365 | BN_RECP_CTX_free(&recp); | ||
366 | bn_check_top(r); | ||
367 | return(ret); | ||
368 | } | ||
369 | |||
370 | |||
371 | int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
372 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
373 | { | ||
374 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
375 | int start=1; | ||
376 | BIGNUM *d,*r; | ||
377 | const BIGNUM *aa; | ||
378 | /* Table of variables obtained from 'ctx' */ | ||
379 | BIGNUM *val[TABLE_SIZE]; | ||
380 | BN_MONT_CTX *mont=NULL; | ||
381 | |||
382 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
383 | { | ||
384 | return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); | ||
385 | } | ||
386 | |||
387 | bn_check_top(a); | ||
388 | bn_check_top(p); | ||
389 | bn_check_top(m); | ||
390 | |||
391 | if (!BN_is_odd(m)) | ||
392 | { | ||
393 | BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
394 | return(0); | ||
395 | } | ||
396 | bits=BN_num_bits(p); | ||
397 | if (bits == 0) | ||
398 | { | ||
399 | ret = BN_one(rr); | ||
400 | return ret; | ||
401 | } | ||
402 | |||
403 | BN_CTX_start(ctx); | ||
404 | d = BN_CTX_get(ctx); | ||
405 | r = BN_CTX_get(ctx); | ||
406 | val[0] = BN_CTX_get(ctx); | ||
407 | if (!d || !r || !val[0]) goto err; | ||
408 | |||
409 | /* If this is not done, things will break in the montgomery | ||
410 | * part */ | ||
411 | |||
412 | if (in_mont != NULL) | ||
413 | mont=in_mont; | ||
414 | else | ||
415 | { | ||
416 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
417 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | ||
418 | } | ||
419 | |||
420 | if (a->neg || BN_ucmp(a,m) >= 0) | ||
421 | { | ||
422 | if (!BN_nnmod(val[0],a,m,ctx)) | ||
423 | goto err; | ||
424 | aa= val[0]; | ||
425 | } | ||
426 | else | ||
427 | aa=a; | ||
428 | if (BN_is_zero(aa)) | ||
429 | { | ||
430 | BN_zero(rr); | ||
431 | ret = 1; | ||
432 | goto err; | ||
433 | } | ||
434 | if (!BN_to_montgomery(val[0],aa,mont,ctx)) goto err; /* 1 */ | ||
435 | |||
436 | window = BN_window_bits_for_exponent_size(bits); | ||
437 | if (window > 1) | ||
438 | { | ||
439 | if (!BN_mod_mul_montgomery(d,val[0],val[0],mont,ctx)) goto err; /* 2 */ | ||
440 | j=1<<(window-1); | ||
441 | for (i=1; i<j; i++) | ||
442 | { | ||
443 | if(((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
444 | !BN_mod_mul_montgomery(val[i],val[i-1], | ||
445 | d,mont,ctx)) | ||
446 | goto err; | ||
447 | } | ||
448 | } | ||
449 | |||
450 | start=1; /* This is used to avoid multiplication etc | ||
451 | * when there is only the value '1' in the | ||
452 | * buffer. */ | ||
453 | wvalue=0; /* The 'value' of the window */ | ||
454 | wstart=bits-1; /* The top bit of the window */ | ||
455 | wend=0; /* The bottom bit of the window */ | ||
456 | |||
457 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | ||
458 | for (;;) | ||
459 | { | ||
460 | if (BN_is_bit_set(p,wstart) == 0) | ||
461 | { | ||
462 | if (!start) | ||
463 | { | ||
464 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
465 | goto err; | ||
466 | } | ||
467 | if (wstart == 0) break; | ||
468 | wstart--; | ||
469 | continue; | ||
470 | } | ||
471 | /* We now have wstart on a 'set' bit, we now need to work out | ||
472 | * how bit a window to do. To do this we need to scan | ||
473 | * forward until the last set bit before the end of the | ||
474 | * window */ | ||
475 | j=wstart; | ||
476 | wvalue=1; | ||
477 | wend=0; | ||
478 | for (i=1; i<window; i++) | ||
479 | { | ||
480 | if (wstart-i < 0) break; | ||
481 | if (BN_is_bit_set(p,wstart-i)) | ||
482 | { | ||
483 | wvalue<<=(i-wend); | ||
484 | wvalue|=1; | ||
485 | wend=i; | ||
486 | } | ||
487 | } | ||
488 | |||
489 | /* wend is the size of the current window */ | ||
490 | j=wend+1; | ||
491 | /* add the 'bytes above' */ | ||
492 | if (!start) | ||
493 | for (i=0; i<j; i++) | ||
494 | { | ||
495 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
496 | goto err; | ||
497 | } | ||
498 | |||
499 | /* wvalue will be an odd number < 2^window */ | ||
500 | if (!BN_mod_mul_montgomery(r,r,val[wvalue>>1],mont,ctx)) | ||
501 | goto err; | ||
502 | |||
503 | /* move the 'window' down further */ | ||
504 | wstart-=wend+1; | ||
505 | wvalue=0; | ||
506 | start=0; | ||
507 | if (wstart < 0) break; | ||
508 | } | ||
509 | if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; | ||
510 | ret=1; | ||
511 | err: | ||
512 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
513 | BN_CTX_end(ctx); | ||
514 | bn_check_top(rr); | ||
515 | return(ret); | ||
516 | } | ||
517 | |||
518 | |||
519 | /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout | ||
520 | * so that accessing any of these table values shows the same access pattern as far | ||
521 | * as cache lines are concerned. The following functions are used to transfer a BIGNUM | ||
522 | * from/to that table. */ | ||
523 | |||
524 | static int MOD_EXP_CTIME_COPY_TO_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width) | ||
525 | { | ||
526 | size_t i, j; | ||
527 | |||
528 | if (bn_wexpand(b, top) == NULL) | ||
529 | return 0; | ||
530 | while (b->top < top) | ||
531 | { | ||
532 | b->d[b->top++] = 0; | ||
533 | } | ||
534 | |||
535 | for (i = 0, j=idx; i < top * sizeof b->d[0]; i++, j+=width) | ||
536 | { | ||
537 | buf[j] = ((unsigned char*)b->d)[i]; | ||
538 | } | ||
539 | |||
540 | bn_correct_top(b); | ||
541 | return 1; | ||
542 | } | ||
543 | |||
544 | static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width) | ||
545 | { | ||
546 | size_t i, j; | ||
547 | |||
548 | if (bn_wexpand(b, top) == NULL) | ||
549 | return 0; | ||
550 | |||
551 | for (i=0, j=idx; i < top * sizeof b->d[0]; i++, j+=width) | ||
552 | { | ||
553 | ((unsigned char*)b->d)[i] = buf[j]; | ||
554 | } | ||
555 | |||
556 | b->top = top; | ||
557 | bn_correct_top(b); | ||
558 | return 1; | ||
559 | } | ||
560 | |||
561 | /* Given a pointer value, compute the next address that is a cache line multiple. */ | ||
562 | #define MOD_EXP_CTIME_ALIGN(x_) \ | ||
563 | ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((BN_ULONG)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) | ||
564 | |||
565 | /* This variant of BN_mod_exp_mont() uses fixed windows and the special | ||
566 | * precomputation memory layout to limit data-dependency to a minimum | ||
567 | * to protect secret exponents (cf. the hyper-threading timing attacks | ||
568 | * pointed out by Colin Percival, | ||
569 | * http://www.daemonology.net/hyperthreading-considered-harmful/) | ||
570 | */ | ||
571 | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
572 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
573 | { | ||
574 | int i,bits,ret=0,idx,window,wvalue; | ||
575 | int top; | ||
576 | BIGNUM *r; | ||
577 | const BIGNUM *aa; | ||
578 | BN_MONT_CTX *mont=NULL; | ||
579 | |||
580 | int numPowers; | ||
581 | unsigned char *powerbufFree=NULL; | ||
582 | int powerbufLen = 0; | ||
583 | unsigned char *powerbuf=NULL; | ||
584 | BIGNUM *computeTemp=NULL, *am=NULL; | ||
585 | |||
586 | bn_check_top(a); | ||
587 | bn_check_top(p); | ||
588 | bn_check_top(m); | ||
589 | |||
590 | top = m->top; | ||
591 | |||
592 | if (!(m->d[0] & 1)) | ||
593 | { | ||
594 | BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
595 | return(0); | ||
596 | } | ||
597 | bits=BN_num_bits(p); | ||
598 | if (bits == 0) | ||
599 | { | ||
600 | ret = BN_one(rr); | ||
601 | return ret; | ||
602 | } | ||
603 | |||
604 | /* Initialize BIGNUM context and allocate intermediate result */ | ||
605 | BN_CTX_start(ctx); | ||
606 | r = BN_CTX_get(ctx); | ||
607 | if (r == NULL) goto err; | ||
608 | |||
609 | /* Allocate a montgomery context if it was not supplied by the caller. | ||
610 | * If this is not done, things will break in the montgomery part. | ||
611 | */ | ||
612 | if (in_mont != NULL) | ||
613 | mont=in_mont; | ||
614 | else | ||
615 | { | ||
616 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
617 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | ||
618 | } | ||
619 | |||
620 | /* Get the window size to use with size of p. */ | ||
621 | window = BN_window_bits_for_ctime_exponent_size(bits); | ||
622 | |||
623 | /* Allocate a buffer large enough to hold all of the pre-computed | ||
624 | * powers of a. | ||
625 | */ | ||
626 | numPowers = 1 << window; | ||
627 | powerbufLen = sizeof(m->d[0])*top*numPowers; | ||
628 | if ((powerbufFree=(unsigned char*)OPENSSL_malloc(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) | ||
629 | goto err; | ||
630 | |||
631 | powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); | ||
632 | memset(powerbuf, 0, powerbufLen); | ||
633 | |||
634 | /* Initialize the intermediate result. Do this early to save double conversion, | ||
635 | * once each for a^0 and intermediate result. | ||
636 | */ | ||
637 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | ||
638 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(r, top, powerbuf, 0, numPowers)) goto err; | ||
639 | |||
640 | /* Initialize computeTemp as a^1 with montgomery precalcs */ | ||
641 | computeTemp = BN_CTX_get(ctx); | ||
642 | am = BN_CTX_get(ctx); | ||
643 | if (computeTemp==NULL || am==NULL) goto err; | ||
644 | |||
645 | if (a->neg || BN_ucmp(a,m) >= 0) | ||
646 | { | ||
647 | if (!BN_mod(am,a,m,ctx)) | ||
648 | goto err; | ||
649 | aa= am; | ||
650 | } | ||
651 | else | ||
652 | aa=a; | ||
653 | if (!BN_to_montgomery(am,aa,mont,ctx)) goto err; | ||
654 | if (!BN_copy(computeTemp, am)) goto err; | ||
655 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(am, top, powerbuf, 1, numPowers)) goto err; | ||
656 | |||
657 | /* If the window size is greater than 1, then calculate | ||
658 | * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) | ||
659 | * (even powers could instead be computed as (a^(i/2))^2 | ||
660 | * to use the slight performance advantage of sqr over mul). | ||
661 | */ | ||
662 | if (window > 1) | ||
663 | { | ||
664 | for (i=2; i<numPowers; i++) | ||
665 | { | ||
666 | /* Calculate a^i = a^(i-1) * a */ | ||
667 | if (!BN_mod_mul_montgomery(computeTemp,am,computeTemp,mont,ctx)) | ||
668 | goto err; | ||
669 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(computeTemp, top, powerbuf, i, numPowers)) goto err; | ||
670 | } | ||
671 | } | ||
672 | |||
673 | /* Adjust the number of bits up to a multiple of the window size. | ||
674 | * If the exponent length is not a multiple of the window size, then | ||
675 | * this pads the most significant bits with zeros to normalize the | ||
676 | * scanning loop to there's no special cases. | ||
677 | * | ||
678 | * * NOTE: Making the window size a power of two less than the native | ||
679 | * * word size ensures that the padded bits won't go past the last | ||
680 | * * word in the internal BIGNUM structure. Going past the end will | ||
681 | * * still produce the correct result, but causes a different branch | ||
682 | * * to be taken in the BN_is_bit_set function. | ||
683 | */ | ||
684 | bits = ((bits+window-1)/window)*window; | ||
685 | idx=bits-1; /* The top bit of the window */ | ||
686 | |||
687 | /* Scan the exponent one window at a time starting from the most | ||
688 | * significant bits. | ||
689 | */ | ||
690 | while (idx >= 0) | ||
691 | { | ||
692 | wvalue=0; /* The 'value' of the window */ | ||
693 | |||
694 | /* Scan the window, squaring the result as we go */ | ||
695 | for (i=0; i<window; i++,idx--) | ||
696 | { | ||
697 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) goto err; | ||
698 | wvalue = (wvalue<<1)+BN_is_bit_set(p,idx); | ||
699 | } | ||
700 | |||
701 | /* Fetch the appropriate pre-computed value from the pre-buf */ | ||
702 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(computeTemp, top, powerbuf, wvalue, numPowers)) goto err; | ||
703 | |||
704 | /* Multiply the result into the intermediate result */ | ||
705 | if (!BN_mod_mul_montgomery(r,r,computeTemp,mont,ctx)) goto err; | ||
706 | } | ||
707 | |||
708 | /* Convert the final result from montgomery to standard format */ | ||
709 | if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; | ||
710 | ret=1; | ||
711 | err: | ||
712 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
713 | if (powerbuf!=NULL) | ||
714 | { | ||
715 | OPENSSL_cleanse(powerbuf,powerbufLen); | ||
716 | OPENSSL_free(powerbufFree); | ||
717 | } | ||
718 | if (am!=NULL) BN_clear(am); | ||
719 | if (computeTemp!=NULL) BN_clear(computeTemp); | ||
720 | BN_CTX_end(ctx); | ||
721 | return(ret); | ||
722 | } | ||
723 | |||
724 | int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, | ||
725 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
726 | { | ||
727 | BN_MONT_CTX *mont = NULL; | ||
728 | int b, bits, ret=0; | ||
729 | int r_is_one; | ||
730 | BN_ULONG w, next_w; | ||
731 | BIGNUM *d, *r, *t; | ||
732 | BIGNUM *swap_tmp; | ||
733 | #define BN_MOD_MUL_WORD(r, w, m) \ | ||
734 | (BN_mul_word(r, (w)) && \ | ||
735 | (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ | ||
736 | (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) | ||
737 | /* BN_MOD_MUL_WORD is only used with 'w' large, | ||
738 | * so the BN_ucmp test is probably more overhead | ||
739 | * than always using BN_mod (which uses BN_copy if | ||
740 | * a similar test returns true). */ | ||
741 | /* We can use BN_mod and do not need BN_nnmod because our | ||
742 | * accumulator is never negative (the result of BN_mod does | ||
743 | * not depend on the sign of the modulus). | ||
744 | */ | ||
745 | #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ | ||
746 | (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) | ||
747 | |||
748 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
749 | { | ||
750 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
751 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
752 | return -1; | ||
753 | } | ||
754 | |||
755 | bn_check_top(p); | ||
756 | bn_check_top(m); | ||
757 | |||
758 | if (!BN_is_odd(m)) | ||
759 | { | ||
760 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
761 | return(0); | ||
762 | } | ||
763 | if (m->top == 1) | ||
764 | a %= m->d[0]; /* make sure that 'a' is reduced */ | ||
765 | |||
766 | bits = BN_num_bits(p); | ||
767 | if (bits == 0) | ||
768 | { | ||
769 | ret = BN_one(rr); | ||
770 | return ret; | ||
771 | } | ||
772 | if (a == 0) | ||
773 | { | ||
774 | BN_zero(rr); | ||
775 | ret = 1; | ||
776 | return ret; | ||
777 | } | ||
778 | |||
779 | BN_CTX_start(ctx); | ||
780 | d = BN_CTX_get(ctx); | ||
781 | r = BN_CTX_get(ctx); | ||
782 | t = BN_CTX_get(ctx); | ||
783 | if (d == NULL || r == NULL || t == NULL) goto err; | ||
784 | |||
785 | if (in_mont != NULL) | ||
786 | mont=in_mont; | ||
787 | else | ||
788 | { | ||
789 | if ((mont = BN_MONT_CTX_new()) == NULL) goto err; | ||
790 | if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; | ||
791 | } | ||
792 | |||
793 | r_is_one = 1; /* except for Montgomery factor */ | ||
794 | |||
795 | /* bits-1 >= 0 */ | ||
796 | |||
797 | /* The result is accumulated in the product r*w. */ | ||
798 | w = a; /* bit 'bits-1' of 'p' is always set */ | ||
799 | for (b = bits-2; b >= 0; b--) | ||
800 | { | ||
801 | /* First, square r*w. */ | ||
802 | next_w = w*w; | ||
803 | if ((next_w/w) != w) /* overflow */ | ||
804 | { | ||
805 | if (r_is_one) | ||
806 | { | ||
807 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
808 | r_is_one = 0; | ||
809 | } | ||
810 | else | ||
811 | { | ||
812 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
813 | } | ||
814 | next_w = 1; | ||
815 | } | ||
816 | w = next_w; | ||
817 | if (!r_is_one) | ||
818 | { | ||
819 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err; | ||
820 | } | ||
821 | |||
822 | /* Second, multiply r*w by 'a' if exponent bit is set. */ | ||
823 | if (BN_is_bit_set(p, b)) | ||
824 | { | ||
825 | next_w = w*a; | ||
826 | if ((next_w/a) != w) /* overflow */ | ||
827 | { | ||
828 | if (r_is_one) | ||
829 | { | ||
830 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
831 | r_is_one = 0; | ||
832 | } | ||
833 | else | ||
834 | { | ||
835 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
836 | } | ||
837 | next_w = a; | ||
838 | } | ||
839 | w = next_w; | ||
840 | } | ||
841 | } | ||
842 | |||
843 | /* Finally, set r:=r*w. */ | ||
844 | if (w != 1) | ||
845 | { | ||
846 | if (r_is_one) | ||
847 | { | ||
848 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
849 | r_is_one = 0; | ||
850 | } | ||
851 | else | ||
852 | { | ||
853 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
854 | } | ||
855 | } | ||
856 | |||
857 | if (r_is_one) /* can happen only if a == 1*/ | ||
858 | { | ||
859 | if (!BN_one(rr)) goto err; | ||
860 | } | ||
861 | else | ||
862 | { | ||
863 | if (!BN_from_montgomery(rr, r, mont, ctx)) goto err; | ||
864 | } | ||
865 | ret = 1; | ||
866 | err: | ||
867 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
868 | BN_CTX_end(ctx); | ||
869 | bn_check_top(rr); | ||
870 | return(ret); | ||
871 | } | ||
872 | |||
873 | |||
874 | /* The old fallback, simple version :-) */ | ||
875 | int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
876 | const BIGNUM *m, BN_CTX *ctx) | ||
877 | { | ||
878 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
879 | int start=1; | ||
880 | BIGNUM *d; | ||
881 | /* Table of variables obtained from 'ctx' */ | ||
882 | BIGNUM *val[TABLE_SIZE]; | ||
883 | |||
884 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
885 | { | ||
886 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
887 | BNerr(BN_F_BN_MOD_EXP_SIMPLE,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
888 | return -1; | ||
889 | } | ||
890 | |||
891 | bits=BN_num_bits(p); | ||
892 | |||
893 | if (bits == 0) | ||
894 | { | ||
895 | ret = BN_one(r); | ||
896 | return ret; | ||
897 | } | ||
898 | |||
899 | BN_CTX_start(ctx); | ||
900 | d = BN_CTX_get(ctx); | ||
901 | val[0] = BN_CTX_get(ctx); | ||
902 | if(!d || !val[0]) goto err; | ||
903 | |||
904 | if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */ | ||
905 | if (BN_is_zero(val[0])) | ||
906 | { | ||
907 | BN_zero(r); | ||
908 | ret = 1; | ||
909 | goto err; | ||
910 | } | ||
911 | |||
912 | window = BN_window_bits_for_exponent_size(bits); | ||
913 | if (window > 1) | ||
914 | { | ||
915 | if (!BN_mod_mul(d,val[0],val[0],m,ctx)) | ||
916 | goto err; /* 2 */ | ||
917 | j=1<<(window-1); | ||
918 | for (i=1; i<j; i++) | ||
919 | { | ||
920 | if(((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
921 | !BN_mod_mul(val[i],val[i-1],d,m,ctx)) | ||
922 | goto err; | ||
923 | } | ||
924 | } | ||
925 | |||
926 | start=1; /* This is used to avoid multiplication etc | ||
927 | * when there is only the value '1' in the | ||
928 | * buffer. */ | ||
929 | wvalue=0; /* The 'value' of the window */ | ||
930 | wstart=bits-1; /* The top bit of the window */ | ||
931 | wend=0; /* The bottom bit of the window */ | ||
932 | |||
933 | if (!BN_one(r)) goto err; | ||
934 | |||
935 | for (;;) | ||
936 | { | ||
937 | if (BN_is_bit_set(p,wstart) == 0) | ||
938 | { | ||
939 | if (!start) | ||
940 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
941 | goto err; | ||
942 | if (wstart == 0) break; | ||
943 | wstart--; | ||
944 | continue; | ||
945 | } | ||
946 | /* We now have wstart on a 'set' bit, we now need to work out | ||
947 | * how bit a window to do. To do this we need to scan | ||
948 | * forward until the last set bit before the end of the | ||
949 | * window */ | ||
950 | j=wstart; | ||
951 | wvalue=1; | ||
952 | wend=0; | ||
953 | for (i=1; i<window; i++) | ||
954 | { | ||
955 | if (wstart-i < 0) break; | ||
956 | if (BN_is_bit_set(p,wstart-i)) | ||
957 | { | ||
958 | wvalue<<=(i-wend); | ||
959 | wvalue|=1; | ||
960 | wend=i; | ||
961 | } | ||
962 | } | ||
963 | |||
964 | /* wend is the size of the current window */ | ||
965 | j=wend+1; | ||
966 | /* add the 'bytes above' */ | ||
967 | if (!start) | ||
968 | for (i=0; i<j; i++) | ||
969 | { | ||
970 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
971 | goto err; | ||
972 | } | ||
973 | |||
974 | /* wvalue will be an odd number < 2^window */ | ||
975 | if (!BN_mod_mul(r,r,val[wvalue>>1],m,ctx)) | ||
976 | goto err; | ||
977 | |||
978 | /* move the 'window' down further */ | ||
979 | wstart-=wend+1; | ||
980 | wvalue=0; | ||
981 | start=0; | ||
982 | if (wstart < 0) break; | ||
983 | } | ||
984 | ret=1; | ||
985 | err: | ||
986 | BN_CTX_end(ctx); | ||
987 | bn_check_top(r); | ||
988 | return(ret); | ||
989 | } | ||
990 | |||