diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_exp.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_exp.c | 991 |
1 files changed, 0 insertions, 991 deletions
diff --git a/src/lib/libcrypto/bn/bn_exp.c b/src/lib/libcrypto/bn/bn_exp.c deleted file mode 100644 index d9b6c737fc..0000000000 --- a/src/lib/libcrypto/bn/bn_exp.c +++ /dev/null | |||
@@ -1,991 +0,0 @@ | |||
1 | /* crypto/bn/bn_exp.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | |||
113 | #include "cryptlib.h" | ||
114 | #include "bn_lcl.h" | ||
115 | |||
116 | /* maximum precomputation table size for *variable* sliding windows */ | ||
117 | #define TABLE_SIZE 32 | ||
118 | |||
119 | /* this one works - simple but works */ | ||
120 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
121 | { | ||
122 | int i,bits,ret=0; | ||
123 | BIGNUM *v,*rr; | ||
124 | |||
125 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
126 | { | ||
127 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
128 | BNerr(BN_F_BN_EXP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
129 | return -1; | ||
130 | } | ||
131 | |||
132 | BN_CTX_start(ctx); | ||
133 | if ((r == a) || (r == p)) | ||
134 | rr = BN_CTX_get(ctx); | ||
135 | else | ||
136 | rr = r; | ||
137 | v = BN_CTX_get(ctx); | ||
138 | if (rr == NULL || v == NULL) goto err; | ||
139 | |||
140 | if (BN_copy(v,a) == NULL) goto err; | ||
141 | bits=BN_num_bits(p); | ||
142 | |||
143 | if (BN_is_odd(p)) | ||
144 | { if (BN_copy(rr,a) == NULL) goto err; } | ||
145 | else { if (!BN_one(rr)) goto err; } | ||
146 | |||
147 | for (i=1; i<bits; i++) | ||
148 | { | ||
149 | if (!BN_sqr(v,v,ctx)) goto err; | ||
150 | if (BN_is_bit_set(p,i)) | ||
151 | { | ||
152 | if (!BN_mul(rr,rr,v,ctx)) goto err; | ||
153 | } | ||
154 | } | ||
155 | ret=1; | ||
156 | err: | ||
157 | if (r != rr) BN_copy(r,rr); | ||
158 | BN_CTX_end(ctx); | ||
159 | bn_check_top(r); | ||
160 | return(ret); | ||
161 | } | ||
162 | |||
163 | |||
164 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
165 | BN_CTX *ctx) | ||
166 | { | ||
167 | int ret; | ||
168 | |||
169 | bn_check_top(a); | ||
170 | bn_check_top(p); | ||
171 | bn_check_top(m); | ||
172 | |||
173 | /* For even modulus m = 2^k*m_odd, it might make sense to compute | ||
174 | * a^p mod m_odd and a^p mod 2^k separately (with Montgomery | ||
175 | * exponentiation for the odd part), using appropriate exponent | ||
176 | * reductions, and combine the results using the CRT. | ||
177 | * | ||
178 | * For now, we use Montgomery only if the modulus is odd; otherwise, | ||
179 | * exponentiation using the reciprocal-based quick remaindering | ||
180 | * algorithm is used. | ||
181 | * | ||
182 | * (Timing obtained with expspeed.c [computations a^p mod m | ||
183 | * where a, p, m are of the same length: 256, 512, 1024, 2048, | ||
184 | * 4096, 8192 bits], compared to the running time of the | ||
185 | * standard algorithm: | ||
186 | * | ||
187 | * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] | ||
188 | * 55 .. 77 % [UltraSparc processor, but | ||
189 | * debug-solaris-sparcv8-gcc conf.] | ||
190 | * | ||
191 | * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] | ||
192 | * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] | ||
193 | * | ||
194 | * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont | ||
195 | * at 2048 and more bits, but at 512 and 1024 bits, it was | ||
196 | * slower even than the standard algorithm! | ||
197 | * | ||
198 | * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] | ||
199 | * should be obtained when the new Montgomery reduction code | ||
200 | * has been integrated into OpenSSL.) | ||
201 | */ | ||
202 | |||
203 | #define MONT_MUL_MOD | ||
204 | #define MONT_EXP_WORD | ||
205 | #define RECP_MUL_MOD | ||
206 | |||
207 | #ifdef MONT_MUL_MOD | ||
208 | /* I have finally been able to take out this pre-condition of | ||
209 | * the top bit being set. It was caused by an error in BN_div | ||
210 | * with negatives. There was also another problem when for a^b%m | ||
211 | * a >= m. eay 07-May-97 */ | ||
212 | /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ | ||
213 | |||
214 | if (BN_is_odd(m)) | ||
215 | { | ||
216 | # ifdef MONT_EXP_WORD | ||
217 | if (a->top == 1 && !a->neg && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)) | ||
218 | { | ||
219 | BN_ULONG A = a->d[0]; | ||
220 | ret=BN_mod_exp_mont_word(r,A,p,m,ctx,NULL); | ||
221 | } | ||
222 | else | ||
223 | # endif | ||
224 | ret=BN_mod_exp_mont(r,a,p,m,ctx,NULL); | ||
225 | } | ||
226 | else | ||
227 | #endif | ||
228 | #ifdef RECP_MUL_MOD | ||
229 | { ret=BN_mod_exp_recp(r,a,p,m,ctx); } | ||
230 | #else | ||
231 | { ret=BN_mod_exp_simple(r,a,p,m,ctx); } | ||
232 | #endif | ||
233 | |||
234 | bn_check_top(r); | ||
235 | return(ret); | ||
236 | } | ||
237 | |||
238 | |||
239 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
240 | const BIGNUM *m, BN_CTX *ctx) | ||
241 | { | ||
242 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
243 | int start=1; | ||
244 | BIGNUM *aa; | ||
245 | /* Table of variables obtained from 'ctx' */ | ||
246 | BIGNUM *val[TABLE_SIZE]; | ||
247 | BN_RECP_CTX recp; | ||
248 | |||
249 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
250 | { | ||
251 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
252 | BNerr(BN_F_BN_MOD_EXP_RECP,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
253 | return -1; | ||
254 | } | ||
255 | |||
256 | bits=BN_num_bits(p); | ||
257 | |||
258 | if (bits == 0) | ||
259 | { | ||
260 | ret = BN_one(r); | ||
261 | return ret; | ||
262 | } | ||
263 | |||
264 | BN_CTX_start(ctx); | ||
265 | aa = BN_CTX_get(ctx); | ||
266 | val[0] = BN_CTX_get(ctx); | ||
267 | if(!aa || !val[0]) goto err; | ||
268 | |||
269 | BN_RECP_CTX_init(&recp); | ||
270 | if (m->neg) | ||
271 | { | ||
272 | /* ignore sign of 'm' */ | ||
273 | if (!BN_copy(aa, m)) goto err; | ||
274 | aa->neg = 0; | ||
275 | if (BN_RECP_CTX_set(&recp,aa,ctx) <= 0) goto err; | ||
276 | } | ||
277 | else | ||
278 | { | ||
279 | if (BN_RECP_CTX_set(&recp,m,ctx) <= 0) goto err; | ||
280 | } | ||
281 | |||
282 | if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */ | ||
283 | if (BN_is_zero(val[0])) | ||
284 | { | ||
285 | BN_zero(r); | ||
286 | ret = 1; | ||
287 | goto err; | ||
288 | } | ||
289 | |||
290 | window = BN_window_bits_for_exponent_size(bits); | ||
291 | if (window > 1) | ||
292 | { | ||
293 | if (!BN_mod_mul_reciprocal(aa,val[0],val[0],&recp,ctx)) | ||
294 | goto err; /* 2 */ | ||
295 | j=1<<(window-1); | ||
296 | for (i=1; i<j; i++) | ||
297 | { | ||
298 | if(((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
299 | !BN_mod_mul_reciprocal(val[i],val[i-1], | ||
300 | aa,&recp,ctx)) | ||
301 | goto err; | ||
302 | } | ||
303 | } | ||
304 | |||
305 | start=1; /* This is used to avoid multiplication etc | ||
306 | * when there is only the value '1' in the | ||
307 | * buffer. */ | ||
308 | wvalue=0; /* The 'value' of the window */ | ||
309 | wstart=bits-1; /* The top bit of the window */ | ||
310 | wend=0; /* The bottom bit of the window */ | ||
311 | |||
312 | if (!BN_one(r)) goto err; | ||
313 | |||
314 | for (;;) | ||
315 | { | ||
316 | if (BN_is_bit_set(p,wstart) == 0) | ||
317 | { | ||
318 | if (!start) | ||
319 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | ||
320 | goto err; | ||
321 | if (wstart == 0) break; | ||
322 | wstart--; | ||
323 | continue; | ||
324 | } | ||
325 | /* We now have wstart on a 'set' bit, we now need to work out | ||
326 | * how bit a window to do. To do this we need to scan | ||
327 | * forward until the last set bit before the end of the | ||
328 | * window */ | ||
329 | j=wstart; | ||
330 | wvalue=1; | ||
331 | wend=0; | ||
332 | for (i=1; i<window; i++) | ||
333 | { | ||
334 | if (wstart-i < 0) break; | ||
335 | if (BN_is_bit_set(p,wstart-i)) | ||
336 | { | ||
337 | wvalue<<=(i-wend); | ||
338 | wvalue|=1; | ||
339 | wend=i; | ||
340 | } | ||
341 | } | ||
342 | |||
343 | /* wend is the size of the current window */ | ||
344 | j=wend+1; | ||
345 | /* add the 'bytes above' */ | ||
346 | if (!start) | ||
347 | for (i=0; i<j; i++) | ||
348 | { | ||
349 | if (!BN_mod_mul_reciprocal(r,r,r,&recp,ctx)) | ||
350 | goto err; | ||
351 | } | ||
352 | |||
353 | /* wvalue will be an odd number < 2^window */ | ||
354 | if (!BN_mod_mul_reciprocal(r,r,val[wvalue>>1],&recp,ctx)) | ||
355 | goto err; | ||
356 | |||
357 | /* move the 'window' down further */ | ||
358 | wstart-=wend+1; | ||
359 | wvalue=0; | ||
360 | start=0; | ||
361 | if (wstart < 0) break; | ||
362 | } | ||
363 | ret=1; | ||
364 | err: | ||
365 | BN_CTX_end(ctx); | ||
366 | BN_RECP_CTX_free(&recp); | ||
367 | bn_check_top(r); | ||
368 | return(ret); | ||
369 | } | ||
370 | |||
371 | |||
372 | int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
373 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
374 | { | ||
375 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
376 | int start=1; | ||
377 | BIGNUM *d,*r; | ||
378 | const BIGNUM *aa; | ||
379 | /* Table of variables obtained from 'ctx' */ | ||
380 | BIGNUM *val[TABLE_SIZE]; | ||
381 | BN_MONT_CTX *mont=NULL; | ||
382 | |||
383 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
384 | { | ||
385 | return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); | ||
386 | } | ||
387 | |||
388 | bn_check_top(a); | ||
389 | bn_check_top(p); | ||
390 | bn_check_top(m); | ||
391 | |||
392 | if (!BN_is_odd(m)) | ||
393 | { | ||
394 | BNerr(BN_F_BN_MOD_EXP_MONT,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
395 | return(0); | ||
396 | } | ||
397 | bits=BN_num_bits(p); | ||
398 | if (bits == 0) | ||
399 | { | ||
400 | ret = BN_one(rr); | ||
401 | return ret; | ||
402 | } | ||
403 | |||
404 | BN_CTX_start(ctx); | ||
405 | d = BN_CTX_get(ctx); | ||
406 | r = BN_CTX_get(ctx); | ||
407 | val[0] = BN_CTX_get(ctx); | ||
408 | if (!d || !r || !val[0]) goto err; | ||
409 | |||
410 | /* If this is not done, things will break in the montgomery | ||
411 | * part */ | ||
412 | |||
413 | if (in_mont != NULL) | ||
414 | mont=in_mont; | ||
415 | else | ||
416 | { | ||
417 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
418 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | ||
419 | } | ||
420 | |||
421 | if (a->neg || BN_ucmp(a,m) >= 0) | ||
422 | { | ||
423 | if (!BN_nnmod(val[0],a,m,ctx)) | ||
424 | goto err; | ||
425 | aa= val[0]; | ||
426 | } | ||
427 | else | ||
428 | aa=a; | ||
429 | if (BN_is_zero(aa)) | ||
430 | { | ||
431 | BN_zero(rr); | ||
432 | ret = 1; | ||
433 | goto err; | ||
434 | } | ||
435 | if (!BN_to_montgomery(val[0],aa,mont,ctx)) goto err; /* 1 */ | ||
436 | |||
437 | window = BN_window_bits_for_exponent_size(bits); | ||
438 | if (window > 1) | ||
439 | { | ||
440 | if (!BN_mod_mul_montgomery(d,val[0],val[0],mont,ctx)) goto err; /* 2 */ | ||
441 | j=1<<(window-1); | ||
442 | for (i=1; i<j; i++) | ||
443 | { | ||
444 | if(((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
445 | !BN_mod_mul_montgomery(val[i],val[i-1], | ||
446 | d,mont,ctx)) | ||
447 | goto err; | ||
448 | } | ||
449 | } | ||
450 | |||
451 | start=1; /* This is used to avoid multiplication etc | ||
452 | * when there is only the value '1' in the | ||
453 | * buffer. */ | ||
454 | wvalue=0; /* The 'value' of the window */ | ||
455 | wstart=bits-1; /* The top bit of the window */ | ||
456 | wend=0; /* The bottom bit of the window */ | ||
457 | |||
458 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | ||
459 | for (;;) | ||
460 | { | ||
461 | if (BN_is_bit_set(p,wstart) == 0) | ||
462 | { | ||
463 | if (!start) | ||
464 | { | ||
465 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
466 | goto err; | ||
467 | } | ||
468 | if (wstart == 0) break; | ||
469 | wstart--; | ||
470 | continue; | ||
471 | } | ||
472 | /* We now have wstart on a 'set' bit, we now need to work out | ||
473 | * how bit a window to do. To do this we need to scan | ||
474 | * forward until the last set bit before the end of the | ||
475 | * window */ | ||
476 | j=wstart; | ||
477 | wvalue=1; | ||
478 | wend=0; | ||
479 | for (i=1; i<window; i++) | ||
480 | { | ||
481 | if (wstart-i < 0) break; | ||
482 | if (BN_is_bit_set(p,wstart-i)) | ||
483 | { | ||
484 | wvalue<<=(i-wend); | ||
485 | wvalue|=1; | ||
486 | wend=i; | ||
487 | } | ||
488 | } | ||
489 | |||
490 | /* wend is the size of the current window */ | ||
491 | j=wend+1; | ||
492 | /* add the 'bytes above' */ | ||
493 | if (!start) | ||
494 | for (i=0; i<j; i++) | ||
495 | { | ||
496 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) | ||
497 | goto err; | ||
498 | } | ||
499 | |||
500 | /* wvalue will be an odd number < 2^window */ | ||
501 | if (!BN_mod_mul_montgomery(r,r,val[wvalue>>1],mont,ctx)) | ||
502 | goto err; | ||
503 | |||
504 | /* move the 'window' down further */ | ||
505 | wstart-=wend+1; | ||
506 | wvalue=0; | ||
507 | start=0; | ||
508 | if (wstart < 0) break; | ||
509 | } | ||
510 | if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; | ||
511 | ret=1; | ||
512 | err: | ||
513 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
514 | BN_CTX_end(ctx); | ||
515 | bn_check_top(rr); | ||
516 | return(ret); | ||
517 | } | ||
518 | |||
519 | |||
520 | /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout | ||
521 | * so that accessing any of these table values shows the same access pattern as far | ||
522 | * as cache lines are concerned. The following functions are used to transfer a BIGNUM | ||
523 | * from/to that table. */ | ||
524 | |||
525 | static int MOD_EXP_CTIME_COPY_TO_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width) | ||
526 | { | ||
527 | size_t i, j; | ||
528 | |||
529 | if (bn_wexpand(b, top) == NULL) | ||
530 | return 0; | ||
531 | while (b->top < top) | ||
532 | { | ||
533 | b->d[b->top++] = 0; | ||
534 | } | ||
535 | |||
536 | for (i = 0, j=idx; i < top * sizeof b->d[0]; i++, j+=width) | ||
537 | { | ||
538 | buf[j] = ((unsigned char*)b->d)[i]; | ||
539 | } | ||
540 | |||
541 | bn_correct_top(b); | ||
542 | return 1; | ||
543 | } | ||
544 | |||
545 | static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, int width) | ||
546 | { | ||
547 | size_t i, j; | ||
548 | |||
549 | if (bn_wexpand(b, top) == NULL) | ||
550 | return 0; | ||
551 | |||
552 | for (i=0, j=idx; i < top * sizeof b->d[0]; i++, j+=width) | ||
553 | { | ||
554 | ((unsigned char*)b->d)[i] = buf[j]; | ||
555 | } | ||
556 | |||
557 | b->top = top; | ||
558 | bn_correct_top(b); | ||
559 | return 1; | ||
560 | } | ||
561 | |||
562 | /* Given a pointer value, compute the next address that is a cache line multiple. */ | ||
563 | #define MOD_EXP_CTIME_ALIGN(x_) \ | ||
564 | ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((BN_ULONG)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) | ||
565 | |||
566 | /* This variant of BN_mod_exp_mont() uses fixed windows and the special | ||
567 | * precomputation memory layout to limit data-dependency to a minimum | ||
568 | * to protect secret exponents (cf. the hyper-threading timing attacks | ||
569 | * pointed out by Colin Percival, | ||
570 | * http://www.daemonology.net/hyperthreading-considered-harmful/) | ||
571 | */ | ||
572 | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
573 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
574 | { | ||
575 | int i,bits,ret=0,idx,window,wvalue; | ||
576 | int top; | ||
577 | BIGNUM *r; | ||
578 | const BIGNUM *aa; | ||
579 | BN_MONT_CTX *mont=NULL; | ||
580 | |||
581 | int numPowers; | ||
582 | unsigned char *powerbufFree=NULL; | ||
583 | int powerbufLen = 0; | ||
584 | unsigned char *powerbuf=NULL; | ||
585 | BIGNUM *computeTemp=NULL, *am=NULL; | ||
586 | |||
587 | bn_check_top(a); | ||
588 | bn_check_top(p); | ||
589 | bn_check_top(m); | ||
590 | |||
591 | top = m->top; | ||
592 | |||
593 | if (!(m->d[0] & 1)) | ||
594 | { | ||
595 | BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
596 | return(0); | ||
597 | } | ||
598 | bits=BN_num_bits(p); | ||
599 | if (bits == 0) | ||
600 | { | ||
601 | ret = BN_one(rr); | ||
602 | return ret; | ||
603 | } | ||
604 | |||
605 | /* Initialize BIGNUM context and allocate intermediate result */ | ||
606 | BN_CTX_start(ctx); | ||
607 | r = BN_CTX_get(ctx); | ||
608 | if (r == NULL) goto err; | ||
609 | |||
610 | /* Allocate a montgomery context if it was not supplied by the caller. | ||
611 | * If this is not done, things will break in the montgomery part. | ||
612 | */ | ||
613 | if (in_mont != NULL) | ||
614 | mont=in_mont; | ||
615 | else | ||
616 | { | ||
617 | if ((mont=BN_MONT_CTX_new()) == NULL) goto err; | ||
618 | if (!BN_MONT_CTX_set(mont,m,ctx)) goto err; | ||
619 | } | ||
620 | |||
621 | /* Get the window size to use with size of p. */ | ||
622 | window = BN_window_bits_for_ctime_exponent_size(bits); | ||
623 | |||
624 | /* Allocate a buffer large enough to hold all of the pre-computed | ||
625 | * powers of a. | ||
626 | */ | ||
627 | numPowers = 1 << window; | ||
628 | powerbufLen = sizeof(m->d[0])*top*numPowers; | ||
629 | if ((powerbufFree=(unsigned char*)OPENSSL_malloc(powerbufLen+MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) | ||
630 | goto err; | ||
631 | |||
632 | powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); | ||
633 | memset(powerbuf, 0, powerbufLen); | ||
634 | |||
635 | /* Initialize the intermediate result. Do this early to save double conversion, | ||
636 | * once each for a^0 and intermediate result. | ||
637 | */ | ||
638 | if (!BN_to_montgomery(r,BN_value_one(),mont,ctx)) goto err; | ||
639 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(r, top, powerbuf, 0, numPowers)) goto err; | ||
640 | |||
641 | /* Initialize computeTemp as a^1 with montgomery precalcs */ | ||
642 | computeTemp = BN_CTX_get(ctx); | ||
643 | am = BN_CTX_get(ctx); | ||
644 | if (computeTemp==NULL || am==NULL) goto err; | ||
645 | |||
646 | if (a->neg || BN_ucmp(a,m) >= 0) | ||
647 | { | ||
648 | if (!BN_mod(am,a,m,ctx)) | ||
649 | goto err; | ||
650 | aa= am; | ||
651 | } | ||
652 | else | ||
653 | aa=a; | ||
654 | if (!BN_to_montgomery(am,aa,mont,ctx)) goto err; | ||
655 | if (!BN_copy(computeTemp, am)) goto err; | ||
656 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(am, top, powerbuf, 1, numPowers)) goto err; | ||
657 | |||
658 | /* If the window size is greater than 1, then calculate | ||
659 | * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) | ||
660 | * (even powers could instead be computed as (a^(i/2))^2 | ||
661 | * to use the slight performance advantage of sqr over mul). | ||
662 | */ | ||
663 | if (window > 1) | ||
664 | { | ||
665 | for (i=2; i<numPowers; i++) | ||
666 | { | ||
667 | /* Calculate a^i = a^(i-1) * a */ | ||
668 | if (!BN_mod_mul_montgomery(computeTemp,am,computeTemp,mont,ctx)) | ||
669 | goto err; | ||
670 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(computeTemp, top, powerbuf, i, numPowers)) goto err; | ||
671 | } | ||
672 | } | ||
673 | |||
674 | /* Adjust the number of bits up to a multiple of the window size. | ||
675 | * If the exponent length is not a multiple of the window size, then | ||
676 | * this pads the most significant bits with zeros to normalize the | ||
677 | * scanning loop to there's no special cases. | ||
678 | * | ||
679 | * * NOTE: Making the window size a power of two less than the native | ||
680 | * * word size ensures that the padded bits won't go past the last | ||
681 | * * word in the internal BIGNUM structure. Going past the end will | ||
682 | * * still produce the correct result, but causes a different branch | ||
683 | * * to be taken in the BN_is_bit_set function. | ||
684 | */ | ||
685 | bits = ((bits+window-1)/window)*window; | ||
686 | idx=bits-1; /* The top bit of the window */ | ||
687 | |||
688 | /* Scan the exponent one window at a time starting from the most | ||
689 | * significant bits. | ||
690 | */ | ||
691 | while (idx >= 0) | ||
692 | { | ||
693 | wvalue=0; /* The 'value' of the window */ | ||
694 | |||
695 | /* Scan the window, squaring the result as we go */ | ||
696 | for (i=0; i<window; i++,idx--) | ||
697 | { | ||
698 | if (!BN_mod_mul_montgomery(r,r,r,mont,ctx)) goto err; | ||
699 | wvalue = (wvalue<<1)+BN_is_bit_set(p,idx); | ||
700 | } | ||
701 | |||
702 | /* Fetch the appropriate pre-computed value from the pre-buf */ | ||
703 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(computeTemp, top, powerbuf, wvalue, numPowers)) goto err; | ||
704 | |||
705 | /* Multiply the result into the intermediate result */ | ||
706 | if (!BN_mod_mul_montgomery(r,r,computeTemp,mont,ctx)) goto err; | ||
707 | } | ||
708 | |||
709 | /* Convert the final result from montgomery to standard format */ | ||
710 | if (!BN_from_montgomery(rr,r,mont,ctx)) goto err; | ||
711 | ret=1; | ||
712 | err: | ||
713 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
714 | if (powerbuf!=NULL) | ||
715 | { | ||
716 | OPENSSL_cleanse(powerbuf,powerbufLen); | ||
717 | OPENSSL_free(powerbufFree); | ||
718 | } | ||
719 | if (am!=NULL) BN_clear(am); | ||
720 | if (computeTemp!=NULL) BN_clear(computeTemp); | ||
721 | BN_CTX_end(ctx); | ||
722 | return(ret); | ||
723 | } | ||
724 | |||
725 | int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, | ||
726 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
727 | { | ||
728 | BN_MONT_CTX *mont = NULL; | ||
729 | int b, bits, ret=0; | ||
730 | int r_is_one; | ||
731 | BN_ULONG w, next_w; | ||
732 | BIGNUM *d, *r, *t; | ||
733 | BIGNUM *swap_tmp; | ||
734 | #define BN_MOD_MUL_WORD(r, w, m) \ | ||
735 | (BN_mul_word(r, (w)) && \ | ||
736 | (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ | ||
737 | (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) | ||
738 | /* BN_MOD_MUL_WORD is only used with 'w' large, | ||
739 | * so the BN_ucmp test is probably more overhead | ||
740 | * than always using BN_mod (which uses BN_copy if | ||
741 | * a similar test returns true). */ | ||
742 | /* We can use BN_mod and do not need BN_nnmod because our | ||
743 | * accumulator is never negative (the result of BN_mod does | ||
744 | * not depend on the sign of the modulus). | ||
745 | */ | ||
746 | #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ | ||
747 | (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) | ||
748 | |||
749 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
750 | { | ||
751 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
752 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
753 | return -1; | ||
754 | } | ||
755 | |||
756 | bn_check_top(p); | ||
757 | bn_check_top(m); | ||
758 | |||
759 | if (!BN_is_odd(m)) | ||
760 | { | ||
761 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD,BN_R_CALLED_WITH_EVEN_MODULUS); | ||
762 | return(0); | ||
763 | } | ||
764 | if (m->top == 1) | ||
765 | a %= m->d[0]; /* make sure that 'a' is reduced */ | ||
766 | |||
767 | bits = BN_num_bits(p); | ||
768 | if (bits == 0) | ||
769 | { | ||
770 | ret = BN_one(rr); | ||
771 | return ret; | ||
772 | } | ||
773 | if (a == 0) | ||
774 | { | ||
775 | BN_zero(rr); | ||
776 | ret = 1; | ||
777 | return ret; | ||
778 | } | ||
779 | |||
780 | BN_CTX_start(ctx); | ||
781 | d = BN_CTX_get(ctx); | ||
782 | r = BN_CTX_get(ctx); | ||
783 | t = BN_CTX_get(ctx); | ||
784 | if (d == NULL || r == NULL || t == NULL) goto err; | ||
785 | |||
786 | if (in_mont != NULL) | ||
787 | mont=in_mont; | ||
788 | else | ||
789 | { | ||
790 | if ((mont = BN_MONT_CTX_new()) == NULL) goto err; | ||
791 | if (!BN_MONT_CTX_set(mont, m, ctx)) goto err; | ||
792 | } | ||
793 | |||
794 | r_is_one = 1; /* except for Montgomery factor */ | ||
795 | |||
796 | /* bits-1 >= 0 */ | ||
797 | |||
798 | /* The result is accumulated in the product r*w. */ | ||
799 | w = a; /* bit 'bits-1' of 'p' is always set */ | ||
800 | for (b = bits-2; b >= 0; b--) | ||
801 | { | ||
802 | /* First, square r*w. */ | ||
803 | next_w = w*w; | ||
804 | if ((next_w/w) != w) /* overflow */ | ||
805 | { | ||
806 | if (r_is_one) | ||
807 | { | ||
808 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
809 | r_is_one = 0; | ||
810 | } | ||
811 | else | ||
812 | { | ||
813 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
814 | } | ||
815 | next_w = 1; | ||
816 | } | ||
817 | w = next_w; | ||
818 | if (!r_is_one) | ||
819 | { | ||
820 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) goto err; | ||
821 | } | ||
822 | |||
823 | /* Second, multiply r*w by 'a' if exponent bit is set. */ | ||
824 | if (BN_is_bit_set(p, b)) | ||
825 | { | ||
826 | next_w = w*a; | ||
827 | if ((next_w/a) != w) /* overflow */ | ||
828 | { | ||
829 | if (r_is_one) | ||
830 | { | ||
831 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
832 | r_is_one = 0; | ||
833 | } | ||
834 | else | ||
835 | { | ||
836 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
837 | } | ||
838 | next_w = a; | ||
839 | } | ||
840 | w = next_w; | ||
841 | } | ||
842 | } | ||
843 | |||
844 | /* Finally, set r:=r*w. */ | ||
845 | if (w != 1) | ||
846 | { | ||
847 | if (r_is_one) | ||
848 | { | ||
849 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) goto err; | ||
850 | r_is_one = 0; | ||
851 | } | ||
852 | else | ||
853 | { | ||
854 | if (!BN_MOD_MUL_WORD(r, w, m)) goto err; | ||
855 | } | ||
856 | } | ||
857 | |||
858 | if (r_is_one) /* can happen only if a == 1*/ | ||
859 | { | ||
860 | if (!BN_one(rr)) goto err; | ||
861 | } | ||
862 | else | ||
863 | { | ||
864 | if (!BN_from_montgomery(rr, r, mont, ctx)) goto err; | ||
865 | } | ||
866 | ret = 1; | ||
867 | err: | ||
868 | if ((in_mont == NULL) && (mont != NULL)) BN_MONT_CTX_free(mont); | ||
869 | BN_CTX_end(ctx); | ||
870 | bn_check_top(rr); | ||
871 | return(ret); | ||
872 | } | ||
873 | |||
874 | |||
875 | /* The old fallback, simple version :-) */ | ||
876 | int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, | ||
877 | const BIGNUM *m, BN_CTX *ctx) | ||
878 | { | ||
879 | int i,j,bits,ret=0,wstart,wend,window,wvalue; | ||
880 | int start=1; | ||
881 | BIGNUM *d; | ||
882 | /* Table of variables obtained from 'ctx' */ | ||
883 | BIGNUM *val[TABLE_SIZE]; | ||
884 | |||
885 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) | ||
886 | { | ||
887 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
888 | BNerr(BN_F_BN_MOD_EXP_SIMPLE,ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
889 | return -1; | ||
890 | } | ||
891 | |||
892 | bits=BN_num_bits(p); | ||
893 | |||
894 | if (bits == 0) | ||
895 | { | ||
896 | ret = BN_one(r); | ||
897 | return ret; | ||
898 | } | ||
899 | |||
900 | BN_CTX_start(ctx); | ||
901 | d = BN_CTX_get(ctx); | ||
902 | val[0] = BN_CTX_get(ctx); | ||
903 | if(!d || !val[0]) goto err; | ||
904 | |||
905 | if (!BN_nnmod(val[0],a,m,ctx)) goto err; /* 1 */ | ||
906 | if (BN_is_zero(val[0])) | ||
907 | { | ||
908 | BN_zero(r); | ||
909 | ret = 1; | ||
910 | goto err; | ||
911 | } | ||
912 | |||
913 | window = BN_window_bits_for_exponent_size(bits); | ||
914 | if (window > 1) | ||
915 | { | ||
916 | if (!BN_mod_mul(d,val[0],val[0],m,ctx)) | ||
917 | goto err; /* 2 */ | ||
918 | j=1<<(window-1); | ||
919 | for (i=1; i<j; i++) | ||
920 | { | ||
921 | if(((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
922 | !BN_mod_mul(val[i],val[i-1],d,m,ctx)) | ||
923 | goto err; | ||
924 | } | ||
925 | } | ||
926 | |||
927 | start=1; /* This is used to avoid multiplication etc | ||
928 | * when there is only the value '1' in the | ||
929 | * buffer. */ | ||
930 | wvalue=0; /* The 'value' of the window */ | ||
931 | wstart=bits-1; /* The top bit of the window */ | ||
932 | wend=0; /* The bottom bit of the window */ | ||
933 | |||
934 | if (!BN_one(r)) goto err; | ||
935 | |||
936 | for (;;) | ||
937 | { | ||
938 | if (BN_is_bit_set(p,wstart) == 0) | ||
939 | { | ||
940 | if (!start) | ||
941 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
942 | goto err; | ||
943 | if (wstart == 0) break; | ||
944 | wstart--; | ||
945 | continue; | ||
946 | } | ||
947 | /* We now have wstart on a 'set' bit, we now need to work out | ||
948 | * how bit a window to do. To do this we need to scan | ||
949 | * forward until the last set bit before the end of the | ||
950 | * window */ | ||
951 | j=wstart; | ||
952 | wvalue=1; | ||
953 | wend=0; | ||
954 | for (i=1; i<window; i++) | ||
955 | { | ||
956 | if (wstart-i < 0) break; | ||
957 | if (BN_is_bit_set(p,wstart-i)) | ||
958 | { | ||
959 | wvalue<<=(i-wend); | ||
960 | wvalue|=1; | ||
961 | wend=i; | ||
962 | } | ||
963 | } | ||
964 | |||
965 | /* wend is the size of the current window */ | ||
966 | j=wend+1; | ||
967 | /* add the 'bytes above' */ | ||
968 | if (!start) | ||
969 | for (i=0; i<j; i++) | ||
970 | { | ||
971 | if (!BN_mod_mul(r,r,r,m,ctx)) | ||
972 | goto err; | ||
973 | } | ||
974 | |||
975 | /* wvalue will be an odd number < 2^window */ | ||
976 | if (!BN_mod_mul(r,r,val[wvalue>>1],m,ctx)) | ||
977 | goto err; | ||
978 | |||
979 | /* move the 'window' down further */ | ||
980 | wstart-=wend+1; | ||
981 | wvalue=0; | ||
982 | start=0; | ||
983 | if (wstart < 0) break; | ||
984 | } | ||
985 | ret=1; | ||
986 | err: | ||
987 | BN_CTX_end(ctx); | ||
988 | bn_check_top(r); | ||
989 | return(ret); | ||
990 | } | ||
991 | |||