diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_exp.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_exp.c | 1097 |
1 files changed, 0 insertions, 1097 deletions
diff --git a/src/lib/libcrypto/bn/bn_exp.c b/src/lib/libcrypto/bn/bn_exp.c deleted file mode 100644 index c4ca36d136..0000000000 --- a/src/lib/libcrypto/bn/bn_exp.c +++ /dev/null | |||
@@ -1,1097 +0,0 @@ | |||
1 | /* $OpenBSD: bn_exp.c,v 1.23 2015/09/10 15:56:25 jsing Exp $ */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include <stdlib.h> | ||
113 | #include <string.h> | ||
114 | |||
115 | #include <openssl/err.h> | ||
116 | |||
117 | #include "bn_lcl.h" | ||
118 | |||
119 | /* maximum precomputation table size for *variable* sliding windows */ | ||
120 | #define TABLE_SIZE 32 | ||
121 | |||
122 | /* this one works - simple but works */ | ||
123 | int | ||
124 | BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
125 | { | ||
126 | int i, bits, ret = 0; | ||
127 | BIGNUM *v, *rr; | ||
128 | |||
129 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
130 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
131 | BNerr(BN_F_BN_EXP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
132 | return -1; | ||
133 | } | ||
134 | |||
135 | BN_CTX_start(ctx); | ||
136 | if ((r == a) || (r == p)) | ||
137 | rr = BN_CTX_get(ctx); | ||
138 | else | ||
139 | rr = r; | ||
140 | v = BN_CTX_get(ctx); | ||
141 | if (rr == NULL || v == NULL) | ||
142 | goto err; | ||
143 | |||
144 | if (BN_copy(v, a) == NULL) | ||
145 | goto err; | ||
146 | bits = BN_num_bits(p); | ||
147 | |||
148 | if (BN_is_odd(p)) { | ||
149 | if (BN_copy(rr, a) == NULL) | ||
150 | goto err; | ||
151 | } else { | ||
152 | if (!BN_one(rr)) | ||
153 | goto err; | ||
154 | } | ||
155 | |||
156 | for (i = 1; i < bits; i++) { | ||
157 | if (!BN_sqr(v, v, ctx)) | ||
158 | goto err; | ||
159 | if (BN_is_bit_set(p, i)) { | ||
160 | if (!BN_mul(rr, rr, v, ctx)) | ||
161 | goto err; | ||
162 | } | ||
163 | } | ||
164 | ret = 1; | ||
165 | |||
166 | err: | ||
167 | if (r != rr && rr != NULL) | ||
168 | BN_copy(r, rr); | ||
169 | BN_CTX_end(ctx); | ||
170 | bn_check_top(r); | ||
171 | return (ret); | ||
172 | } | ||
173 | |||
174 | int | ||
175 | BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
176 | BN_CTX *ctx) | ||
177 | { | ||
178 | int ret; | ||
179 | |||
180 | bn_check_top(a); | ||
181 | bn_check_top(p); | ||
182 | bn_check_top(m); | ||
183 | |||
184 | /* For even modulus m = 2^k*m_odd, it might make sense to compute | ||
185 | * a^p mod m_odd and a^p mod 2^k separately (with Montgomery | ||
186 | * exponentiation for the odd part), using appropriate exponent | ||
187 | * reductions, and combine the results using the CRT. | ||
188 | * | ||
189 | * For now, we use Montgomery only if the modulus is odd; otherwise, | ||
190 | * exponentiation using the reciprocal-based quick remaindering | ||
191 | * algorithm is used. | ||
192 | * | ||
193 | * (Timing obtained with expspeed.c [computations a^p mod m | ||
194 | * where a, p, m are of the same length: 256, 512, 1024, 2048, | ||
195 | * 4096, 8192 bits], compared to the running time of the | ||
196 | * standard algorithm: | ||
197 | * | ||
198 | * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] | ||
199 | * 55 .. 77 % [UltraSparc processor, but | ||
200 | * debug-solaris-sparcv8-gcc conf.] | ||
201 | * | ||
202 | * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] | ||
203 | * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] | ||
204 | * | ||
205 | * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont | ||
206 | * at 2048 and more bits, but at 512 and 1024 bits, it was | ||
207 | * slower even than the standard algorithm! | ||
208 | * | ||
209 | * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] | ||
210 | * should be obtained when the new Montgomery reduction code | ||
211 | * has been integrated into OpenSSL.) | ||
212 | */ | ||
213 | |||
214 | #define MONT_MUL_MOD | ||
215 | #define MONT_EXP_WORD | ||
216 | #define RECP_MUL_MOD | ||
217 | |||
218 | #ifdef MONT_MUL_MOD | ||
219 | /* I have finally been able to take out this pre-condition of | ||
220 | * the top bit being set. It was caused by an error in BN_div | ||
221 | * with negatives. There was also another problem when for a^b%m | ||
222 | * a >= m. eay 07-May-97 */ | ||
223 | /* if ((m->d[m->top-1]&BN_TBIT) && BN_is_odd(m)) */ | ||
224 | |||
225 | if (BN_is_odd(m)) { | ||
226 | # ifdef MONT_EXP_WORD | ||
227 | if (a->top == 1 && !a->neg && | ||
228 | (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)) { | ||
229 | BN_ULONG A = a->d[0]; | ||
230 | ret = BN_mod_exp_mont_word(r, A,p, m,ctx, NULL); | ||
231 | } else | ||
232 | # endif | ||
233 | ret = BN_mod_exp_mont(r, a,p, m,ctx, NULL); | ||
234 | } else | ||
235 | #endif | ||
236 | #ifdef RECP_MUL_MOD | ||
237 | { | ||
238 | ret = BN_mod_exp_recp(r, a,p, m, ctx); | ||
239 | } | ||
240 | #else | ||
241 | { | ||
242 | ret = BN_mod_exp_simple(r, a,p, m, ctx); | ||
243 | } | ||
244 | #endif | ||
245 | |||
246 | bn_check_top(r); | ||
247 | return (ret); | ||
248 | } | ||
249 | |||
250 | int | ||
251 | BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
252 | BN_CTX *ctx) | ||
253 | { | ||
254 | int i, j, bits, ret = 0, wstart, wend, window, wvalue; | ||
255 | int start = 1; | ||
256 | BIGNUM *aa; | ||
257 | /* Table of variables obtained from 'ctx' */ | ||
258 | BIGNUM *val[TABLE_SIZE]; | ||
259 | BN_RECP_CTX recp; | ||
260 | |||
261 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
262 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
263 | BNerr(BN_F_BN_MOD_EXP_RECP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
264 | return -1; | ||
265 | } | ||
266 | |||
267 | bits = BN_num_bits(p); | ||
268 | |||
269 | if (bits == 0) { | ||
270 | ret = BN_one(r); | ||
271 | return ret; | ||
272 | } | ||
273 | |||
274 | BN_CTX_start(ctx); | ||
275 | if ((aa = BN_CTX_get(ctx)) == NULL) | ||
276 | goto err; | ||
277 | if ((val[0] = BN_CTX_get(ctx)) == NULL) | ||
278 | goto err; | ||
279 | |||
280 | BN_RECP_CTX_init(&recp); | ||
281 | if (m->neg) { | ||
282 | /* ignore sign of 'm' */ | ||
283 | if (!BN_copy(aa, m)) | ||
284 | goto err; | ||
285 | aa->neg = 0; | ||
286 | if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) | ||
287 | goto err; | ||
288 | } else { | ||
289 | if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) | ||
290 | goto err; | ||
291 | } | ||
292 | |||
293 | if (!BN_nnmod(val[0], a, m, ctx)) | ||
294 | goto err; /* 1 */ | ||
295 | if (BN_is_zero(val[0])) { | ||
296 | BN_zero(r); | ||
297 | ret = 1; | ||
298 | goto err; | ||
299 | } | ||
300 | |||
301 | window = BN_window_bits_for_exponent_size(bits); | ||
302 | if (window > 1) { | ||
303 | if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) | ||
304 | goto err; /* 2 */ | ||
305 | j = 1 << (window - 1); | ||
306 | for (i = 1; i < j; i++) { | ||
307 | if (((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
308 | !BN_mod_mul_reciprocal(val[i], val[i - 1], | ||
309 | aa, &recp, ctx)) | ||
310 | goto err; | ||
311 | } | ||
312 | } | ||
313 | |||
314 | start = 1; /* This is used to avoid multiplication etc | ||
315 | * when there is only the value '1' in the | ||
316 | * buffer. */ | ||
317 | wvalue = 0; /* The 'value' of the window */ | ||
318 | wstart = bits - 1; /* The top bit of the window */ | ||
319 | wend = 0; /* The bottom bit of the window */ | ||
320 | |||
321 | if (!BN_one(r)) | ||
322 | goto err; | ||
323 | |||
324 | for (;;) { | ||
325 | if (BN_is_bit_set(p, wstart) == 0) { | ||
326 | if (!start) | ||
327 | if (!BN_mod_mul_reciprocal(r, r,r, &recp, ctx)) | ||
328 | goto err; | ||
329 | if (wstart == 0) | ||
330 | break; | ||
331 | wstart--; | ||
332 | continue; | ||
333 | } | ||
334 | /* We now have wstart on a 'set' bit, we now need to work out | ||
335 | * how bit a window to do. To do this we need to scan | ||
336 | * forward until the last set bit before the end of the | ||
337 | * window */ | ||
338 | j = wstart; | ||
339 | wvalue = 1; | ||
340 | wend = 0; | ||
341 | for (i = 1; i < window; i++) { | ||
342 | if (wstart - i < 0) | ||
343 | break; | ||
344 | if (BN_is_bit_set(p, wstart - i)) { | ||
345 | wvalue <<= (i - wend); | ||
346 | wvalue |= 1; | ||
347 | wend = i; | ||
348 | } | ||
349 | } | ||
350 | |||
351 | /* wend is the size of the current window */ | ||
352 | j = wend + 1; | ||
353 | /* add the 'bytes above' */ | ||
354 | if (!start) | ||
355 | for (i = 0; i < j; i++) { | ||
356 | if (!BN_mod_mul_reciprocal(r, r,r, &recp, ctx)) | ||
357 | goto err; | ||
358 | } | ||
359 | |||
360 | /* wvalue will be an odd number < 2^window */ | ||
361 | if (!BN_mod_mul_reciprocal(r, r,val[wvalue >> 1], &recp, ctx)) | ||
362 | goto err; | ||
363 | |||
364 | /* move the 'window' down further */ | ||
365 | wstart -= wend + 1; | ||
366 | wvalue = 0; | ||
367 | start = 0; | ||
368 | if (wstart < 0) | ||
369 | break; | ||
370 | } | ||
371 | ret = 1; | ||
372 | |||
373 | err: | ||
374 | BN_CTX_end(ctx); | ||
375 | BN_RECP_CTX_free(&recp); | ||
376 | bn_check_top(r); | ||
377 | return (ret); | ||
378 | } | ||
379 | |||
380 | int | ||
381 | BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
382 | BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
383 | { | ||
384 | int i, j, bits, ret = 0, wstart, wend, window, wvalue; | ||
385 | int start = 1; | ||
386 | BIGNUM *d, *r; | ||
387 | const BIGNUM *aa; | ||
388 | /* Table of variables obtained from 'ctx' */ | ||
389 | BIGNUM *val[TABLE_SIZE]; | ||
390 | BN_MONT_CTX *mont = NULL; | ||
391 | |||
392 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
393 | return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); | ||
394 | } | ||
395 | |||
396 | bn_check_top(a); | ||
397 | bn_check_top(p); | ||
398 | bn_check_top(m); | ||
399 | |||
400 | if (!BN_is_odd(m)) { | ||
401 | BNerr(BN_F_BN_MOD_EXP_MONT, BN_R_CALLED_WITH_EVEN_MODULUS); | ||
402 | return (0); | ||
403 | } | ||
404 | bits = BN_num_bits(p); | ||
405 | if (bits == 0) { | ||
406 | ret = BN_one(rr); | ||
407 | return ret; | ||
408 | } | ||
409 | |||
410 | BN_CTX_start(ctx); | ||
411 | if ((d = BN_CTX_get(ctx)) == NULL) | ||
412 | goto err; | ||
413 | if ((r = BN_CTX_get(ctx)) == NULL) | ||
414 | goto err; | ||
415 | if ((val[0] = BN_CTX_get(ctx)) == NULL) | ||
416 | goto err; | ||
417 | |||
418 | /* If this is not done, things will break in the montgomery | ||
419 | * part */ | ||
420 | |||
421 | if (in_mont != NULL) | ||
422 | mont = in_mont; | ||
423 | else { | ||
424 | if ((mont = BN_MONT_CTX_new()) == NULL) | ||
425 | goto err; | ||
426 | if (!BN_MONT_CTX_set(mont, m, ctx)) | ||
427 | goto err; | ||
428 | } | ||
429 | |||
430 | if (a->neg || BN_ucmp(a, m) >= 0) { | ||
431 | if (!BN_nnmod(val[0], a,m, ctx)) | ||
432 | goto err; | ||
433 | aa = val[0]; | ||
434 | } else | ||
435 | aa = a; | ||
436 | if (BN_is_zero(aa)) { | ||
437 | BN_zero(rr); | ||
438 | ret = 1; | ||
439 | goto err; | ||
440 | } | ||
441 | if (!BN_to_montgomery(val[0], aa, mont, ctx)) | ||
442 | goto err; /* 1 */ | ||
443 | |||
444 | window = BN_window_bits_for_exponent_size(bits); | ||
445 | if (window > 1) { | ||
446 | if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) | ||
447 | goto err; /* 2 */ | ||
448 | j = 1 << (window - 1); | ||
449 | for (i = 1; i < j; i++) { | ||
450 | if (((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
451 | !BN_mod_mul_montgomery(val[i], val[i - 1], | ||
452 | d, mont, ctx)) | ||
453 | goto err; | ||
454 | } | ||
455 | } | ||
456 | |||
457 | start = 1; /* This is used to avoid multiplication etc | ||
458 | * when there is only the value '1' in the | ||
459 | * buffer. */ | ||
460 | wvalue = 0; /* The 'value' of the window */ | ||
461 | wstart = bits - 1; /* The top bit of the window */ | ||
462 | wend = 0; /* The bottom bit of the window */ | ||
463 | |||
464 | if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) | ||
465 | goto err; | ||
466 | for (;;) { | ||
467 | if (BN_is_bit_set(p, wstart) == 0) { | ||
468 | if (!start) { | ||
469 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) | ||
470 | goto err; | ||
471 | } | ||
472 | if (wstart == 0) | ||
473 | break; | ||
474 | wstart--; | ||
475 | continue; | ||
476 | } | ||
477 | /* We now have wstart on a 'set' bit, we now need to work out | ||
478 | * how bit a window to do. To do this we need to scan | ||
479 | * forward until the last set bit before the end of the | ||
480 | * window */ | ||
481 | j = wstart; | ||
482 | wvalue = 1; | ||
483 | wend = 0; | ||
484 | for (i = 1; i < window; i++) { | ||
485 | if (wstart - i < 0) | ||
486 | break; | ||
487 | if (BN_is_bit_set(p, wstart - i)) { | ||
488 | wvalue <<= (i - wend); | ||
489 | wvalue |= 1; | ||
490 | wend = i; | ||
491 | } | ||
492 | } | ||
493 | |||
494 | /* wend is the size of the current window */ | ||
495 | j = wend + 1; | ||
496 | /* add the 'bytes above' */ | ||
497 | if (!start) | ||
498 | for (i = 0; i < j; i++) { | ||
499 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) | ||
500 | goto err; | ||
501 | } | ||
502 | |||
503 | /* wvalue will be an odd number < 2^window */ | ||
504 | if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) | ||
505 | goto err; | ||
506 | |||
507 | /* move the 'window' down further */ | ||
508 | wstart -= wend + 1; | ||
509 | wvalue = 0; | ||
510 | start = 0; | ||
511 | if (wstart < 0) | ||
512 | break; | ||
513 | } | ||
514 | if (!BN_from_montgomery(rr, r,mont, ctx)) | ||
515 | goto err; | ||
516 | ret = 1; | ||
517 | |||
518 | err: | ||
519 | if ((in_mont == NULL) && (mont != NULL)) | ||
520 | BN_MONT_CTX_free(mont); | ||
521 | BN_CTX_end(ctx); | ||
522 | bn_check_top(rr); | ||
523 | return (ret); | ||
524 | } | ||
525 | |||
526 | |||
527 | /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout | ||
528 | * so that accessing any of these table values shows the same access pattern as far | ||
529 | * as cache lines are concerned. The following functions are used to transfer a BIGNUM | ||
530 | * from/to that table. */ | ||
531 | |||
532 | static int | ||
533 | MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top, unsigned char *buf, | ||
534 | int idx, int width) | ||
535 | { | ||
536 | size_t i, j; | ||
537 | |||
538 | if (top > b->top) | ||
539 | top = b->top; /* this works because 'buf' is explicitly zeroed */ | ||
540 | for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) { | ||
541 | buf[j] = ((unsigned char*)b->d)[i]; | ||
542 | } | ||
543 | |||
544 | return 1; | ||
545 | } | ||
546 | |||
547 | static int | ||
548 | MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, | ||
549 | int width) | ||
550 | { | ||
551 | size_t i, j; | ||
552 | |||
553 | if (bn_wexpand(b, top) == NULL) | ||
554 | return 0; | ||
555 | |||
556 | for (i = 0, j = idx; i < top * sizeof b->d[0]; i++, j += width) { | ||
557 | ((unsigned char*)b->d)[i] = buf[j]; | ||
558 | } | ||
559 | |||
560 | b->top = top; | ||
561 | bn_correct_top(b); | ||
562 | return 1; | ||
563 | } | ||
564 | |||
565 | /* Given a pointer value, compute the next address that is a cache line multiple. */ | ||
566 | #define MOD_EXP_CTIME_ALIGN(x_) \ | ||
567 | ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) | ||
568 | |||
569 | /* This variant of BN_mod_exp_mont() uses fixed windows and the special | ||
570 | * precomputation memory layout to limit data-dependency to a minimum | ||
571 | * to protect secret exponents (cf. the hyper-threading timing attacks | ||
572 | * pointed out by Colin Percival, | ||
573 | * http://www.daemonology.net/hyperthreading-considered-harmful/) | ||
574 | */ | ||
575 | int | ||
576 | BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | ||
577 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
578 | { | ||
579 | int i, bits, ret = 0, window, wvalue; | ||
580 | int top; | ||
581 | BN_MONT_CTX *mont = NULL; | ||
582 | int numPowers; | ||
583 | unsigned char *powerbufFree = NULL; | ||
584 | int powerbufLen = 0; | ||
585 | unsigned char *powerbuf = NULL; | ||
586 | BIGNUM tmp, am; | ||
587 | |||
588 | bn_check_top(a); | ||
589 | bn_check_top(p); | ||
590 | bn_check_top(m); | ||
591 | |||
592 | top = m->top; | ||
593 | |||
594 | if (!(m->d[0] & 1)) { | ||
595 | BNerr(BN_F_BN_MOD_EXP_MONT_CONSTTIME, | ||
596 | BN_R_CALLED_WITH_EVEN_MODULUS); | ||
597 | return (0); | ||
598 | } | ||
599 | bits = BN_num_bits(p); | ||
600 | if (bits == 0) { | ||
601 | ret = BN_one(rr); | ||
602 | return ret; | ||
603 | } | ||
604 | |||
605 | BN_CTX_start(ctx); | ||
606 | |||
607 | /* Allocate a montgomery context if it was not supplied by the caller. | ||
608 | * If this is not done, things will break in the montgomery part. | ||
609 | */ | ||
610 | if (in_mont != NULL) | ||
611 | mont = in_mont; | ||
612 | else { | ||
613 | if ((mont = BN_MONT_CTX_new()) == NULL) | ||
614 | goto err; | ||
615 | if (!BN_MONT_CTX_set(mont, m, ctx)) | ||
616 | goto err; | ||
617 | } | ||
618 | |||
619 | /* Get the window size to use with size of p. */ | ||
620 | window = BN_window_bits_for_ctime_exponent_size(bits); | ||
621 | #if defined(OPENSSL_BN_ASM_MONT5) | ||
622 | if (window == 6 && bits <= 1024) | ||
623 | window = 5; /* ~5% improvement of 2048-bit RSA sign */ | ||
624 | #endif | ||
625 | |||
626 | /* Allocate a buffer large enough to hold all of the pre-computed | ||
627 | * powers of am, am itself and tmp. | ||
628 | */ | ||
629 | numPowers = 1 << window; | ||
630 | powerbufLen = sizeof(m->d[0]) * (top * numPowers + | ||
631 | ((2*top) > numPowers ? (2*top) : numPowers)); | ||
632 | if ((powerbufFree = malloc(powerbufLen + | ||
633 | MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) | ||
634 | goto err; | ||
635 | |||
636 | powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); | ||
637 | memset(powerbuf, 0, powerbufLen); | ||
638 | |||
639 | /* lay down tmp and am right after powers table */ | ||
640 | tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers); | ||
641 | am.d = tmp.d + top; | ||
642 | tmp.top = am.top = 0; | ||
643 | tmp.dmax = am.dmax = top; | ||
644 | tmp.neg = am.neg = 0; | ||
645 | tmp.flags = am.flags = BN_FLG_STATIC_DATA; | ||
646 | |||
647 | /* prepare a^0 in Montgomery domain */ | ||
648 | #if 1 | ||
649 | if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx)) | ||
650 | goto err; | ||
651 | #else | ||
652 | tmp.d[0] = (0 - m - >d[0]) & BN_MASK2; /* 2^(top*BN_BITS2) - m */ | ||
653 | for (i = 1; i < top; i++) | ||
654 | tmp.d[i] = (~m->d[i]) & BN_MASK2; | ||
655 | tmp.top = top; | ||
656 | #endif | ||
657 | |||
658 | /* prepare a^1 in Montgomery domain */ | ||
659 | if (a->neg || BN_ucmp(a, m) >= 0) { | ||
660 | if (!BN_mod(&am, a,m, ctx)) | ||
661 | goto err; | ||
662 | if (!BN_to_montgomery(&am, &am, mont, ctx)) | ||
663 | goto err; | ||
664 | } else if (!BN_to_montgomery(&am, a,mont, ctx)) | ||
665 | goto err; | ||
666 | |||
667 | #if defined(OPENSSL_BN_ASM_MONT5) | ||
668 | /* This optimization uses ideas from http://eprint.iacr.org/2011/239, | ||
669 | * specifically optimization of cache-timing attack countermeasures | ||
670 | * and pre-computation optimization. */ | ||
671 | |||
672 | /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as | ||
673 | * 512-bit RSA is hardly relevant, we omit it to spare size... */ | ||
674 | if (window == 5 && top > 1) { | ||
675 | void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, | ||
676 | const void *table, const BN_ULONG *np, | ||
677 | const BN_ULONG *n0, int num, int power); | ||
678 | void bn_scatter5(const BN_ULONG *inp, size_t num, | ||
679 | void *table, size_t power); | ||
680 | void bn_gather5(BN_ULONG *out, size_t num, | ||
681 | void *table, size_t power); | ||
682 | |||
683 | BN_ULONG *np = mont->N.d, *n0 = mont->n0; | ||
684 | |||
685 | /* BN_to_montgomery can contaminate words above .top | ||
686 | * [in BN_DEBUG[_DEBUG] build]... */ | ||
687 | for (i = am.top; i < top; i++) | ||
688 | am.d[i] = 0; | ||
689 | for (i = tmp.top; i < top; i++) | ||
690 | tmp.d[i] = 0; | ||
691 | |||
692 | bn_scatter5(tmp.d, top, powerbuf, 0); | ||
693 | bn_scatter5(am.d, am.top, powerbuf, 1); | ||
694 | bn_mul_mont(tmp.d, am.d, am.d, np, n0, top); | ||
695 | bn_scatter5(tmp.d, top, powerbuf, 2); | ||
696 | |||
697 | #if 0 | ||
698 | for (i = 3; i < 32; i++) { | ||
699 | /* Calculate a^i = a^(i-1) * a */ | ||
700 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, | ||
701 | n0, top, i - 1); | ||
702 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
703 | } | ||
704 | #else | ||
705 | /* same as above, but uses squaring for 1/2 of operations */ | ||
706 | for (i = 4; i < 32; i*=2) { | ||
707 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
708 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
709 | } | ||
710 | for (i = 3; i < 8; i += 2) { | ||
711 | int j; | ||
712 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, | ||
713 | n0, top, i - 1); | ||
714 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
715 | for (j = 2 * i; j < 32; j *= 2) { | ||
716 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
717 | bn_scatter5(tmp.d, top, powerbuf, j); | ||
718 | } | ||
719 | } | ||
720 | for (; i < 16; i += 2) { | ||
721 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, | ||
722 | n0, top, i - 1); | ||
723 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
724 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
725 | bn_scatter5(tmp.d, top, powerbuf, 2*i); | ||
726 | } | ||
727 | for (; i < 32; i += 2) { | ||
728 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, | ||
729 | n0, top, i - 1); | ||
730 | bn_scatter5(tmp.d, top, powerbuf, i); | ||
731 | } | ||
732 | #endif | ||
733 | bits--; | ||
734 | for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) | ||
735 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | ||
736 | bn_gather5(tmp.d, top, powerbuf, wvalue); | ||
737 | |||
738 | /* Scan the exponent one window at a time starting from the most | ||
739 | * significant bits. | ||
740 | */ | ||
741 | while (bits >= 0) { | ||
742 | for (wvalue = 0, i = 0; i < 5; i++, bits--) | ||
743 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | ||
744 | |||
745 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
746 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
747 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
748 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
749 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); | ||
750 | bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); | ||
751 | } | ||
752 | |||
753 | tmp.top = top; | ||
754 | bn_correct_top(&tmp); | ||
755 | } else | ||
756 | #endif | ||
757 | { | ||
758 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, | ||
759 | numPowers)) | ||
760 | goto err; | ||
761 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, | ||
762 | numPowers)) | ||
763 | goto err; | ||
764 | |||
765 | /* If the window size is greater than 1, then calculate | ||
766 | * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) | ||
767 | * (even powers could instead be computed as (a^(i/2))^2 | ||
768 | * to use the slight performance advantage of sqr over mul). | ||
769 | */ | ||
770 | if (window > 1) { | ||
771 | if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) | ||
772 | goto err; | ||
773 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, | ||
774 | 2, numPowers)) | ||
775 | goto err; | ||
776 | for (i = 3; i < numPowers; i++) { | ||
777 | /* Calculate a^i = a^(i-1) * a */ | ||
778 | if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, | ||
779 | mont, ctx)) | ||
780 | goto err; | ||
781 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, | ||
782 | powerbuf, i, numPowers)) | ||
783 | goto err; | ||
784 | } | ||
785 | } | ||
786 | |||
787 | bits--; | ||
788 | for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) | ||
789 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | ||
790 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, | ||
791 | wvalue, numPowers)) | ||
792 | goto err; | ||
793 | |||
794 | /* Scan the exponent one window at a time starting from the most | ||
795 | * significant bits. | ||
796 | */ | ||
797 | while (bits >= 0) { | ||
798 | wvalue = 0; /* The 'value' of the window */ | ||
799 | |||
800 | /* Scan the window, squaring the result as we go */ | ||
801 | for (i = 0; i < window; i++, bits--) { | ||
802 | if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, | ||
803 | mont, ctx)) | ||
804 | goto err; | ||
805 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | ||
806 | } | ||
807 | |||
808 | /* Fetch the appropriate pre-computed value from the pre-buf */ | ||
809 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, | ||
810 | wvalue, numPowers)) | ||
811 | goto err; | ||
812 | |||
813 | /* Multiply the result into the intermediate result */ | ||
814 | if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) | ||
815 | goto err; | ||
816 | } | ||
817 | } | ||
818 | |||
819 | /* Convert the final result from montgomery to standard format */ | ||
820 | if (!BN_from_montgomery(rr, &tmp, mont, ctx)) | ||
821 | goto err; | ||
822 | ret = 1; | ||
823 | |||
824 | err: | ||
825 | if ((in_mont == NULL) && (mont != NULL)) | ||
826 | BN_MONT_CTX_free(mont); | ||
827 | if (powerbuf != NULL) { | ||
828 | explicit_bzero(powerbuf, powerbufLen); | ||
829 | free(powerbufFree); | ||
830 | } | ||
831 | BN_CTX_end(ctx); | ||
832 | return (ret); | ||
833 | } | ||
834 | |||
835 | int | ||
836 | BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, const BIGNUM *m, | ||
837 | BN_CTX *ctx, BN_MONT_CTX *in_mont) | ||
838 | { | ||
839 | BN_MONT_CTX *mont = NULL; | ||
840 | int b, bits, ret = 0; | ||
841 | int r_is_one; | ||
842 | BN_ULONG w, next_w; | ||
843 | BIGNUM *d, *r, *t; | ||
844 | BIGNUM *swap_tmp; | ||
845 | |||
846 | #define BN_MOD_MUL_WORD(r, w, m) \ | ||
847 | (BN_mul_word(r, (w)) && \ | ||
848 | (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ | ||
849 | (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) | ||
850 | /* BN_MOD_MUL_WORD is only used with 'w' large, | ||
851 | * so the BN_ucmp test is probably more overhead | ||
852 | * than always using BN_mod (which uses BN_copy if | ||
853 | * a similar test returns true). */ | ||
854 | /* We can use BN_mod and do not need BN_nnmod because our | ||
855 | * accumulator is never negative (the result of BN_mod does | ||
856 | * not depend on the sign of the modulus). | ||
857 | */ | ||
858 | #define BN_TO_MONTGOMERY_WORD(r, w, mont) \ | ||
859 | (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) | ||
860 | |||
861 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
862 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
863 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD, | ||
864 | ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
865 | return -1; | ||
866 | } | ||
867 | |||
868 | bn_check_top(p); | ||
869 | bn_check_top(m); | ||
870 | |||
871 | if (!BN_is_odd(m)) { | ||
872 | BNerr(BN_F_BN_MOD_EXP_MONT_WORD, BN_R_CALLED_WITH_EVEN_MODULUS); | ||
873 | return (0); | ||
874 | } | ||
875 | if (m->top == 1) | ||
876 | a %= m->d[0]; /* make sure that 'a' is reduced */ | ||
877 | |||
878 | bits = BN_num_bits(p); | ||
879 | if (bits == 0) { | ||
880 | ret = BN_one(rr); | ||
881 | return ret; | ||
882 | } | ||
883 | if (a == 0) { | ||
884 | BN_zero(rr); | ||
885 | ret = 1; | ||
886 | return ret; | ||
887 | } | ||
888 | |||
889 | BN_CTX_start(ctx); | ||
890 | if ((d = BN_CTX_get(ctx)) == NULL) | ||
891 | goto err; | ||
892 | if ((r = BN_CTX_get(ctx)) == NULL) | ||
893 | goto err; | ||
894 | if ((t = BN_CTX_get(ctx)) == NULL) | ||
895 | goto err; | ||
896 | |||
897 | if (in_mont != NULL) | ||
898 | mont = in_mont; | ||
899 | else { | ||
900 | if ((mont = BN_MONT_CTX_new()) == NULL) | ||
901 | goto err; | ||
902 | if (!BN_MONT_CTX_set(mont, m, ctx)) | ||
903 | goto err; | ||
904 | } | ||
905 | |||
906 | r_is_one = 1; /* except for Montgomery factor */ | ||
907 | |||
908 | /* bits-1 >= 0 */ | ||
909 | |||
910 | /* The result is accumulated in the product r*w. */ | ||
911 | w = a; /* bit 'bits-1' of 'p' is always set */ | ||
912 | for (b = bits - 2; b >= 0; b--) { | ||
913 | /* First, square r*w. */ | ||
914 | next_w = w * w; | ||
915 | if ((next_w / w) != w) /* overflow */ | ||
916 | { | ||
917 | if (r_is_one) { | ||
918 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) | ||
919 | goto err; | ||
920 | r_is_one = 0; | ||
921 | } else { | ||
922 | if (!BN_MOD_MUL_WORD(r, w, m)) | ||
923 | goto err; | ||
924 | } | ||
925 | next_w = 1; | ||
926 | } | ||
927 | w = next_w; | ||
928 | if (!r_is_one) { | ||
929 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) | ||
930 | goto err; | ||
931 | } | ||
932 | |||
933 | /* Second, multiply r*w by 'a' if exponent bit is set. */ | ||
934 | if (BN_is_bit_set(p, b)) { | ||
935 | next_w = w * a; | ||
936 | if ((next_w / a) != w) /* overflow */ | ||
937 | { | ||
938 | if (r_is_one) { | ||
939 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) | ||
940 | goto err; | ||
941 | r_is_one = 0; | ||
942 | } else { | ||
943 | if (!BN_MOD_MUL_WORD(r, w, m)) | ||
944 | goto err; | ||
945 | } | ||
946 | next_w = a; | ||
947 | } | ||
948 | w = next_w; | ||
949 | } | ||
950 | } | ||
951 | |||
952 | /* Finally, set r:=r*w. */ | ||
953 | if (w != 1) { | ||
954 | if (r_is_one) { | ||
955 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)) | ||
956 | goto err; | ||
957 | r_is_one = 0; | ||
958 | } else { | ||
959 | if (!BN_MOD_MUL_WORD(r, w, m)) | ||
960 | goto err; | ||
961 | } | ||
962 | } | ||
963 | |||
964 | if (r_is_one) /* can happen only if a == 1*/ | ||
965 | { | ||
966 | if (!BN_one(rr)) | ||
967 | goto err; | ||
968 | } else { | ||
969 | if (!BN_from_montgomery(rr, r, mont, ctx)) | ||
970 | goto err; | ||
971 | } | ||
972 | ret = 1; | ||
973 | |||
974 | err: | ||
975 | if ((in_mont == NULL) && (mont != NULL)) | ||
976 | BN_MONT_CTX_free(mont); | ||
977 | BN_CTX_end(ctx); | ||
978 | bn_check_top(rr); | ||
979 | return (ret); | ||
980 | } | ||
981 | |||
982 | |||
983 | /* The old fallback, simple version :-) */ | ||
984 | int | ||
985 | BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, | ||
986 | BN_CTX *ctx) | ||
987 | { | ||
988 | int i, j,bits, ret = 0, wstart, wend, window, wvalue; | ||
989 | int start = 1; | ||
990 | BIGNUM *d; | ||
991 | /* Table of variables obtained from 'ctx' */ | ||
992 | BIGNUM *val[TABLE_SIZE]; | ||
993 | |||
994 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0) { | ||
995 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ | ||
996 | BNerr(BN_F_BN_MOD_EXP_SIMPLE, | ||
997 | ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | ||
998 | return -1; | ||
999 | } | ||
1000 | |||
1001 | bits = BN_num_bits(p); | ||
1002 | |||
1003 | if (bits == 0) { | ||
1004 | ret = BN_one(r); | ||
1005 | return ret; | ||
1006 | } | ||
1007 | |||
1008 | BN_CTX_start(ctx); | ||
1009 | if ((d = BN_CTX_get(ctx)) == NULL) | ||
1010 | goto err; | ||
1011 | if ((val[0] = BN_CTX_get(ctx)) == NULL) | ||
1012 | goto err; | ||
1013 | |||
1014 | if (!BN_nnmod(val[0],a,m,ctx)) | ||
1015 | goto err; /* 1 */ | ||
1016 | if (BN_is_zero(val[0])) { | ||
1017 | BN_zero(r); | ||
1018 | ret = 1; | ||
1019 | goto err; | ||
1020 | } | ||
1021 | |||
1022 | window = BN_window_bits_for_exponent_size(bits); | ||
1023 | if (window > 1) { | ||
1024 | if (!BN_mod_mul(d, val[0], val[0], m, ctx)) | ||
1025 | goto err; /* 2 */ | ||
1026 | j = 1 << (window - 1); | ||
1027 | for (i = 1; i < j; i++) { | ||
1028 | if (((val[i] = BN_CTX_get(ctx)) == NULL) || | ||
1029 | !BN_mod_mul(val[i], val[i - 1], d,m, ctx)) | ||
1030 | goto err; | ||
1031 | } | ||
1032 | } | ||
1033 | |||
1034 | start = 1; /* This is used to avoid multiplication etc | ||
1035 | * when there is only the value '1' in the | ||
1036 | * buffer. */ | ||
1037 | wvalue = 0; /* The 'value' of the window */ | ||
1038 | wstart = bits - 1; /* The top bit of the window */ | ||
1039 | wend = 0; /* The bottom bit of the window */ | ||
1040 | |||
1041 | if (!BN_one(r)) | ||
1042 | goto err; | ||
1043 | |||
1044 | for (;;) { | ||
1045 | if (BN_is_bit_set(p, wstart) == 0) { | ||
1046 | if (!start) | ||
1047 | if (!BN_mod_mul(r, r, r, m, ctx)) | ||
1048 | goto err; | ||
1049 | if (wstart == 0) | ||
1050 | break; | ||
1051 | wstart--; | ||
1052 | continue; | ||
1053 | } | ||
1054 | /* We now have wstart on a 'set' bit, we now need to work out | ||
1055 | * how bit a window to do. To do this we need to scan | ||
1056 | * forward until the last set bit before the end of the | ||
1057 | * window */ | ||
1058 | j = wstart; | ||
1059 | wvalue = 1; | ||
1060 | wend = 0; | ||
1061 | for (i = 1; i < window; i++) { | ||
1062 | if (wstart - i < 0) | ||
1063 | break; | ||
1064 | if (BN_is_bit_set(p, wstart - i)) { | ||
1065 | wvalue <<= (i - wend); | ||
1066 | wvalue |= 1; | ||
1067 | wend = i; | ||
1068 | } | ||
1069 | } | ||
1070 | |||
1071 | /* wend is the size of the current window */ | ||
1072 | j = wend + 1; | ||
1073 | /* add the 'bytes above' */ | ||
1074 | if (!start) | ||
1075 | for (i = 0; i < j; i++) { | ||
1076 | if (!BN_mod_mul(r, r, r, m, ctx)) | ||
1077 | goto err; | ||
1078 | } | ||
1079 | |||
1080 | /* wvalue will be an odd number < 2^window */ | ||
1081 | if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx)) | ||
1082 | goto err; | ||
1083 | |||
1084 | /* move the 'window' down further */ | ||
1085 | wstart -= wend + 1; | ||
1086 | wvalue = 0; | ||
1087 | start = 0; | ||
1088 | if (wstart < 0) | ||
1089 | break; | ||
1090 | } | ||
1091 | ret = 1; | ||
1092 | |||
1093 | err: | ||
1094 | BN_CTX_end(ctx); | ||
1095 | bn_check_top(r); | ||
1096 | return (ret); | ||
1097 | } | ||