diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_gcd.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_gcd.c | 654 |
1 files changed, 0 insertions, 654 deletions
diff --git a/src/lib/libcrypto/bn/bn_gcd.c b/src/lib/libcrypto/bn/bn_gcd.c deleted file mode 100644 index 4a352119ba..0000000000 --- a/src/lib/libcrypto/bn/bn_gcd.c +++ /dev/null | |||
@@ -1,654 +0,0 @@ | |||
1 | /* crypto/bn/bn_gcd.c */ | ||
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) | ||
3 | * All rights reserved. | ||
4 | * | ||
5 | * This package is an SSL implementation written | ||
6 | * by Eric Young (eay@cryptsoft.com). | ||
7 | * The implementation was written so as to conform with Netscapes SSL. | ||
8 | * | ||
9 | * This library is free for commercial and non-commercial use as long as | ||
10 | * the following conditions are aheared to. The following conditions | ||
11 | * apply to all code found in this distribution, be it the RC4, RSA, | ||
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation | ||
13 | * included with this distribution is covered by the same copyright terms | ||
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). | ||
15 | * | ||
16 | * Copyright remains Eric Young's, and as such any Copyright notices in | ||
17 | * the code are not to be removed. | ||
18 | * If this package is used in a product, Eric Young should be given attribution | ||
19 | * as the author of the parts of the library used. | ||
20 | * This can be in the form of a textual message at program startup or | ||
21 | * in documentation (online or textual) provided with the package. | ||
22 | * | ||
23 | * Redistribution and use in source and binary forms, with or without | ||
24 | * modification, are permitted provided that the following conditions | ||
25 | * are met: | ||
26 | * 1. Redistributions of source code must retain the copyright | ||
27 | * notice, this list of conditions and the following disclaimer. | ||
28 | * 2. Redistributions in binary form must reproduce the above copyright | ||
29 | * notice, this list of conditions and the following disclaimer in the | ||
30 | * documentation and/or other materials provided with the distribution. | ||
31 | * 3. All advertising materials mentioning features or use of this software | ||
32 | * must display the following acknowledgement: | ||
33 | * "This product includes cryptographic software written by | ||
34 | * Eric Young (eay@cryptsoft.com)" | ||
35 | * The word 'cryptographic' can be left out if the rouines from the library | ||
36 | * being used are not cryptographic related :-). | ||
37 | * 4. If you include any Windows specific code (or a derivative thereof) from | ||
38 | * the apps directory (application code) you must include an acknowledgement: | ||
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" | ||
40 | * | ||
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND | ||
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | ||
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | ||
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | ||
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | ||
51 | * SUCH DAMAGE. | ||
52 | * | ||
53 | * The licence and distribution terms for any publically available version or | ||
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be | ||
55 | * copied and put under another distribution licence | ||
56 | * [including the GNU Public Licence.] | ||
57 | */ | ||
58 | /* ==================================================================== | ||
59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. | ||
60 | * | ||
61 | * Redistribution and use in source and binary forms, with or without | ||
62 | * modification, are permitted provided that the following conditions | ||
63 | * are met: | ||
64 | * | ||
65 | * 1. Redistributions of source code must retain the above copyright | ||
66 | * notice, this list of conditions and the following disclaimer. | ||
67 | * | ||
68 | * 2. Redistributions in binary form must reproduce the above copyright | ||
69 | * notice, this list of conditions and the following disclaimer in | ||
70 | * the documentation and/or other materials provided with the | ||
71 | * distribution. | ||
72 | * | ||
73 | * 3. All advertising materials mentioning features or use of this | ||
74 | * software must display the following acknowledgment: | ||
75 | * "This product includes software developed by the OpenSSL Project | ||
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
77 | * | ||
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
79 | * endorse or promote products derived from this software without | ||
80 | * prior written permission. For written permission, please contact | ||
81 | * openssl-core@openssl.org. | ||
82 | * | ||
83 | * 5. Products derived from this software may not be called "OpenSSL" | ||
84 | * nor may "OpenSSL" appear in their names without prior written | ||
85 | * permission of the OpenSSL Project. | ||
86 | * | ||
87 | * 6. Redistributions of any form whatsoever must retain the following | ||
88 | * acknowledgment: | ||
89 | * "This product includes software developed by the OpenSSL Project | ||
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
91 | * | ||
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
104 | * ==================================================================== | ||
105 | * | ||
106 | * This product includes cryptographic software written by Eric Young | ||
107 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
108 | * Hudson (tjh@cryptsoft.com). | ||
109 | * | ||
110 | */ | ||
111 | |||
112 | #include "cryptlib.h" | ||
113 | #include "bn_lcl.h" | ||
114 | |||
115 | static BIGNUM *euclid(BIGNUM *a, BIGNUM *b); | ||
116 | |||
117 | int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) | ||
118 | { | ||
119 | BIGNUM *a,*b,*t; | ||
120 | int ret=0; | ||
121 | |||
122 | bn_check_top(in_a); | ||
123 | bn_check_top(in_b); | ||
124 | |||
125 | BN_CTX_start(ctx); | ||
126 | a = BN_CTX_get(ctx); | ||
127 | b = BN_CTX_get(ctx); | ||
128 | if (a == NULL || b == NULL) goto err; | ||
129 | |||
130 | if (BN_copy(a,in_a) == NULL) goto err; | ||
131 | if (BN_copy(b,in_b) == NULL) goto err; | ||
132 | a->neg = 0; | ||
133 | b->neg = 0; | ||
134 | |||
135 | if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; } | ||
136 | t=euclid(a,b); | ||
137 | if (t == NULL) goto err; | ||
138 | |||
139 | if (BN_copy(r,t) == NULL) goto err; | ||
140 | ret=1; | ||
141 | err: | ||
142 | BN_CTX_end(ctx); | ||
143 | bn_check_top(r); | ||
144 | return(ret); | ||
145 | } | ||
146 | |||
147 | static BIGNUM *euclid(BIGNUM *a, BIGNUM *b) | ||
148 | { | ||
149 | BIGNUM *t; | ||
150 | int shifts=0; | ||
151 | |||
152 | bn_check_top(a); | ||
153 | bn_check_top(b); | ||
154 | |||
155 | /* 0 <= b <= a */ | ||
156 | while (!BN_is_zero(b)) | ||
157 | { | ||
158 | /* 0 < b <= a */ | ||
159 | |||
160 | if (BN_is_odd(a)) | ||
161 | { | ||
162 | if (BN_is_odd(b)) | ||
163 | { | ||
164 | if (!BN_sub(a,a,b)) goto err; | ||
165 | if (!BN_rshift1(a,a)) goto err; | ||
166 | if (BN_cmp(a,b) < 0) | ||
167 | { t=a; a=b; b=t; } | ||
168 | } | ||
169 | else /* a odd - b even */ | ||
170 | { | ||
171 | if (!BN_rshift1(b,b)) goto err; | ||
172 | if (BN_cmp(a,b) < 0) | ||
173 | { t=a; a=b; b=t; } | ||
174 | } | ||
175 | } | ||
176 | else /* a is even */ | ||
177 | { | ||
178 | if (BN_is_odd(b)) | ||
179 | { | ||
180 | if (!BN_rshift1(a,a)) goto err; | ||
181 | if (BN_cmp(a,b) < 0) | ||
182 | { t=a; a=b; b=t; } | ||
183 | } | ||
184 | else /* a even - b even */ | ||
185 | { | ||
186 | if (!BN_rshift1(a,a)) goto err; | ||
187 | if (!BN_rshift1(b,b)) goto err; | ||
188 | shifts++; | ||
189 | } | ||
190 | } | ||
191 | /* 0 <= b <= a */ | ||
192 | } | ||
193 | |||
194 | if (shifts) | ||
195 | { | ||
196 | if (!BN_lshift(a,a,shifts)) goto err; | ||
197 | } | ||
198 | bn_check_top(a); | ||
199 | return(a); | ||
200 | err: | ||
201 | return(NULL); | ||
202 | } | ||
203 | |||
204 | |||
205 | /* solves ax == 1 (mod n) */ | ||
206 | static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, | ||
207 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx); | ||
208 | BIGNUM *BN_mod_inverse(BIGNUM *in, | ||
209 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
210 | { | ||
211 | BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL; | ||
212 | BIGNUM *ret=NULL; | ||
213 | int sign; | ||
214 | |||
215 | if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) | ||
216 | { | ||
217 | return BN_mod_inverse_no_branch(in, a, n, ctx); | ||
218 | } | ||
219 | |||
220 | bn_check_top(a); | ||
221 | bn_check_top(n); | ||
222 | |||
223 | BN_CTX_start(ctx); | ||
224 | A = BN_CTX_get(ctx); | ||
225 | B = BN_CTX_get(ctx); | ||
226 | X = BN_CTX_get(ctx); | ||
227 | D = BN_CTX_get(ctx); | ||
228 | M = BN_CTX_get(ctx); | ||
229 | Y = BN_CTX_get(ctx); | ||
230 | T = BN_CTX_get(ctx); | ||
231 | if (T == NULL) goto err; | ||
232 | |||
233 | if (in == NULL) | ||
234 | R=BN_new(); | ||
235 | else | ||
236 | R=in; | ||
237 | if (R == NULL) goto err; | ||
238 | |||
239 | BN_one(X); | ||
240 | BN_zero(Y); | ||
241 | if (BN_copy(B,a) == NULL) goto err; | ||
242 | if (BN_copy(A,n) == NULL) goto err; | ||
243 | A->neg = 0; | ||
244 | if (B->neg || (BN_ucmp(B, A) >= 0)) | ||
245 | { | ||
246 | if (!BN_nnmod(B, B, A, ctx)) goto err; | ||
247 | } | ||
248 | sign = -1; | ||
249 | /* From B = a mod |n|, A = |n| it follows that | ||
250 | * | ||
251 | * 0 <= B < A, | ||
252 | * -sign*X*a == B (mod |n|), | ||
253 | * sign*Y*a == A (mod |n|). | ||
254 | */ | ||
255 | |||
256 | if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048))) | ||
257 | { | ||
258 | /* Binary inversion algorithm; requires odd modulus. | ||
259 | * This is faster than the general algorithm if the modulus | ||
260 | * is sufficiently small (about 400 .. 500 bits on 32-bit | ||
261 | * sytems, but much more on 64-bit systems) */ | ||
262 | int shift; | ||
263 | |||
264 | while (!BN_is_zero(B)) | ||
265 | { | ||
266 | /* | ||
267 | * 0 < B < |n|, | ||
268 | * 0 < A <= |n|, | ||
269 | * (1) -sign*X*a == B (mod |n|), | ||
270 | * (2) sign*Y*a == A (mod |n|) | ||
271 | */ | ||
272 | |||
273 | /* Now divide B by the maximum possible power of two in the integers, | ||
274 | * and divide X by the same value mod |n|. | ||
275 | * When we're done, (1) still holds. */ | ||
276 | shift = 0; | ||
277 | while (!BN_is_bit_set(B, shift)) /* note that 0 < B */ | ||
278 | { | ||
279 | shift++; | ||
280 | |||
281 | if (BN_is_odd(X)) | ||
282 | { | ||
283 | if (!BN_uadd(X, X, n)) goto err; | ||
284 | } | ||
285 | /* now X is even, so we can easily divide it by two */ | ||
286 | if (!BN_rshift1(X, X)) goto err; | ||
287 | } | ||
288 | if (shift > 0) | ||
289 | { | ||
290 | if (!BN_rshift(B, B, shift)) goto err; | ||
291 | } | ||
292 | |||
293 | |||
294 | /* Same for A and Y. Afterwards, (2) still holds. */ | ||
295 | shift = 0; | ||
296 | while (!BN_is_bit_set(A, shift)) /* note that 0 < A */ | ||
297 | { | ||
298 | shift++; | ||
299 | |||
300 | if (BN_is_odd(Y)) | ||
301 | { | ||
302 | if (!BN_uadd(Y, Y, n)) goto err; | ||
303 | } | ||
304 | /* now Y is even */ | ||
305 | if (!BN_rshift1(Y, Y)) goto err; | ||
306 | } | ||
307 | if (shift > 0) | ||
308 | { | ||
309 | if (!BN_rshift(A, A, shift)) goto err; | ||
310 | } | ||
311 | |||
312 | |||
313 | /* We still have (1) and (2). | ||
314 | * Both A and B are odd. | ||
315 | * The following computations ensure that | ||
316 | * | ||
317 | * 0 <= B < |n|, | ||
318 | * 0 < A < |n|, | ||
319 | * (1) -sign*X*a == B (mod |n|), | ||
320 | * (2) sign*Y*a == A (mod |n|), | ||
321 | * | ||
322 | * and that either A or B is even in the next iteration. | ||
323 | */ | ||
324 | if (BN_ucmp(B, A) >= 0) | ||
325 | { | ||
326 | /* -sign*(X + Y)*a == B - A (mod |n|) */ | ||
327 | if (!BN_uadd(X, X, Y)) goto err; | ||
328 | /* NB: we could use BN_mod_add_quick(X, X, Y, n), but that | ||
329 | * actually makes the algorithm slower */ | ||
330 | if (!BN_usub(B, B, A)) goto err; | ||
331 | } | ||
332 | else | ||
333 | { | ||
334 | /* sign*(X + Y)*a == A - B (mod |n|) */ | ||
335 | if (!BN_uadd(Y, Y, X)) goto err; | ||
336 | /* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */ | ||
337 | if (!BN_usub(A, A, B)) goto err; | ||
338 | } | ||
339 | } | ||
340 | } | ||
341 | else | ||
342 | { | ||
343 | /* general inversion algorithm */ | ||
344 | |||
345 | while (!BN_is_zero(B)) | ||
346 | { | ||
347 | BIGNUM *tmp; | ||
348 | |||
349 | /* | ||
350 | * 0 < B < A, | ||
351 | * (*) -sign*X*a == B (mod |n|), | ||
352 | * sign*Y*a == A (mod |n|) | ||
353 | */ | ||
354 | |||
355 | /* (D, M) := (A/B, A%B) ... */ | ||
356 | if (BN_num_bits(A) == BN_num_bits(B)) | ||
357 | { | ||
358 | if (!BN_one(D)) goto err; | ||
359 | if (!BN_sub(M,A,B)) goto err; | ||
360 | } | ||
361 | else if (BN_num_bits(A) == BN_num_bits(B) + 1) | ||
362 | { | ||
363 | /* A/B is 1, 2, or 3 */ | ||
364 | if (!BN_lshift1(T,B)) goto err; | ||
365 | if (BN_ucmp(A,T) < 0) | ||
366 | { | ||
367 | /* A < 2*B, so D=1 */ | ||
368 | if (!BN_one(D)) goto err; | ||
369 | if (!BN_sub(M,A,B)) goto err; | ||
370 | } | ||
371 | else | ||
372 | { | ||
373 | /* A >= 2*B, so D=2 or D=3 */ | ||
374 | if (!BN_sub(M,A,T)) goto err; | ||
375 | if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */ | ||
376 | if (BN_ucmp(A,D) < 0) | ||
377 | { | ||
378 | /* A < 3*B, so D=2 */ | ||
379 | if (!BN_set_word(D,2)) goto err; | ||
380 | /* M (= A - 2*B) already has the correct value */ | ||
381 | } | ||
382 | else | ||
383 | { | ||
384 | /* only D=3 remains */ | ||
385 | if (!BN_set_word(D,3)) goto err; | ||
386 | /* currently M = A - 2*B, but we need M = A - 3*B */ | ||
387 | if (!BN_sub(M,M,B)) goto err; | ||
388 | } | ||
389 | } | ||
390 | } | ||
391 | else | ||
392 | { | ||
393 | if (!BN_div(D,M,A,B,ctx)) goto err; | ||
394 | } | ||
395 | |||
396 | /* Now | ||
397 | * A = D*B + M; | ||
398 | * thus we have | ||
399 | * (**) sign*Y*a == D*B + M (mod |n|). | ||
400 | */ | ||
401 | |||
402 | tmp=A; /* keep the BIGNUM object, the value does not matter */ | ||
403 | |||
404 | /* (A, B) := (B, A mod B) ... */ | ||
405 | A=B; | ||
406 | B=M; | ||
407 | /* ... so we have 0 <= B < A again */ | ||
408 | |||
409 | /* Since the former M is now B and the former B is now A, | ||
410 | * (**) translates into | ||
411 | * sign*Y*a == D*A + B (mod |n|), | ||
412 | * i.e. | ||
413 | * sign*Y*a - D*A == B (mod |n|). | ||
414 | * Similarly, (*) translates into | ||
415 | * -sign*X*a == A (mod |n|). | ||
416 | * | ||
417 | * Thus, | ||
418 | * sign*Y*a + D*sign*X*a == B (mod |n|), | ||
419 | * i.e. | ||
420 | * sign*(Y + D*X)*a == B (mod |n|). | ||
421 | * | ||
422 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | ||
423 | * -sign*X*a == B (mod |n|), | ||
424 | * sign*Y*a == A (mod |n|). | ||
425 | * Note that X and Y stay non-negative all the time. | ||
426 | */ | ||
427 | |||
428 | /* most of the time D is very small, so we can optimize tmp := D*X+Y */ | ||
429 | if (BN_is_one(D)) | ||
430 | { | ||
431 | if (!BN_add(tmp,X,Y)) goto err; | ||
432 | } | ||
433 | else | ||
434 | { | ||
435 | if (BN_is_word(D,2)) | ||
436 | { | ||
437 | if (!BN_lshift1(tmp,X)) goto err; | ||
438 | } | ||
439 | else if (BN_is_word(D,4)) | ||
440 | { | ||
441 | if (!BN_lshift(tmp,X,2)) goto err; | ||
442 | } | ||
443 | else if (D->top == 1) | ||
444 | { | ||
445 | if (!BN_copy(tmp,X)) goto err; | ||
446 | if (!BN_mul_word(tmp,D->d[0])) goto err; | ||
447 | } | ||
448 | else | ||
449 | { | ||
450 | if (!BN_mul(tmp,D,X,ctx)) goto err; | ||
451 | } | ||
452 | if (!BN_add(tmp,tmp,Y)) goto err; | ||
453 | } | ||
454 | |||
455 | M=Y; /* keep the BIGNUM object, the value does not matter */ | ||
456 | Y=X; | ||
457 | X=tmp; | ||
458 | sign = -sign; | ||
459 | } | ||
460 | } | ||
461 | |||
462 | /* | ||
463 | * The while loop (Euclid's algorithm) ends when | ||
464 | * A == gcd(a,n); | ||
465 | * we have | ||
466 | * sign*Y*a == A (mod |n|), | ||
467 | * where Y is non-negative. | ||
468 | */ | ||
469 | |||
470 | if (sign < 0) | ||
471 | { | ||
472 | if (!BN_sub(Y,n,Y)) goto err; | ||
473 | } | ||
474 | /* Now Y*a == A (mod |n|). */ | ||
475 | |||
476 | |||
477 | if (BN_is_one(A)) | ||
478 | { | ||
479 | /* Y*a == 1 (mod |n|) */ | ||
480 | if (!Y->neg && BN_ucmp(Y,n) < 0) | ||
481 | { | ||
482 | if (!BN_copy(R,Y)) goto err; | ||
483 | } | ||
484 | else | ||
485 | { | ||
486 | if (!BN_nnmod(R,Y,n,ctx)) goto err; | ||
487 | } | ||
488 | } | ||
489 | else | ||
490 | { | ||
491 | BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE); | ||
492 | goto err; | ||
493 | } | ||
494 | ret=R; | ||
495 | err: | ||
496 | if ((ret == NULL) && (in == NULL)) BN_free(R); | ||
497 | BN_CTX_end(ctx); | ||
498 | bn_check_top(ret); | ||
499 | return(ret); | ||
500 | } | ||
501 | |||
502 | |||
503 | /* BN_mod_inverse_no_branch is a special version of BN_mod_inverse. | ||
504 | * It does not contain branches that may leak sensitive information. | ||
505 | */ | ||
506 | static BIGNUM *BN_mod_inverse_no_branch(BIGNUM *in, | ||
507 | const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) | ||
508 | { | ||
509 | BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL; | ||
510 | BIGNUM local_A, local_B; | ||
511 | BIGNUM *pA, *pB; | ||
512 | BIGNUM *ret=NULL; | ||
513 | int sign; | ||
514 | |||
515 | bn_check_top(a); | ||
516 | bn_check_top(n); | ||
517 | |||
518 | BN_CTX_start(ctx); | ||
519 | A = BN_CTX_get(ctx); | ||
520 | B = BN_CTX_get(ctx); | ||
521 | X = BN_CTX_get(ctx); | ||
522 | D = BN_CTX_get(ctx); | ||
523 | M = BN_CTX_get(ctx); | ||
524 | Y = BN_CTX_get(ctx); | ||
525 | T = BN_CTX_get(ctx); | ||
526 | if (T == NULL) goto err; | ||
527 | |||
528 | if (in == NULL) | ||
529 | R=BN_new(); | ||
530 | else | ||
531 | R=in; | ||
532 | if (R == NULL) goto err; | ||
533 | |||
534 | BN_one(X); | ||
535 | BN_zero(Y); | ||
536 | if (BN_copy(B,a) == NULL) goto err; | ||
537 | if (BN_copy(A,n) == NULL) goto err; | ||
538 | A->neg = 0; | ||
539 | |||
540 | if (B->neg || (BN_ucmp(B, A) >= 0)) | ||
541 | { | ||
542 | /* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | ||
543 | * BN_div_no_branch will be called eventually. | ||
544 | */ | ||
545 | pB = &local_B; | ||
546 | BN_with_flags(pB, B, BN_FLG_CONSTTIME); | ||
547 | if (!BN_nnmod(B, pB, A, ctx)) goto err; | ||
548 | } | ||
549 | sign = -1; | ||
550 | /* From B = a mod |n|, A = |n| it follows that | ||
551 | * | ||
552 | * 0 <= B < A, | ||
553 | * -sign*X*a == B (mod |n|), | ||
554 | * sign*Y*a == A (mod |n|). | ||
555 | */ | ||
556 | |||
557 | while (!BN_is_zero(B)) | ||
558 | { | ||
559 | BIGNUM *tmp; | ||
560 | |||
561 | /* | ||
562 | * 0 < B < A, | ||
563 | * (*) -sign*X*a == B (mod |n|), | ||
564 | * sign*Y*a == A (mod |n|) | ||
565 | */ | ||
566 | |||
567 | /* Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, | ||
568 | * BN_div_no_branch will be called eventually. | ||
569 | */ | ||
570 | pA = &local_A; | ||
571 | BN_with_flags(pA, A, BN_FLG_CONSTTIME); | ||
572 | |||
573 | /* (D, M) := (A/B, A%B) ... */ | ||
574 | if (!BN_div(D,M,pA,B,ctx)) goto err; | ||
575 | |||
576 | /* Now | ||
577 | * A = D*B + M; | ||
578 | * thus we have | ||
579 | * (**) sign*Y*a == D*B + M (mod |n|). | ||
580 | */ | ||
581 | |||
582 | tmp=A; /* keep the BIGNUM object, the value does not matter */ | ||
583 | |||
584 | /* (A, B) := (B, A mod B) ... */ | ||
585 | A=B; | ||
586 | B=M; | ||
587 | /* ... so we have 0 <= B < A again */ | ||
588 | |||
589 | /* Since the former M is now B and the former B is now A, | ||
590 | * (**) translates into | ||
591 | * sign*Y*a == D*A + B (mod |n|), | ||
592 | * i.e. | ||
593 | * sign*Y*a - D*A == B (mod |n|). | ||
594 | * Similarly, (*) translates into | ||
595 | * -sign*X*a == A (mod |n|). | ||
596 | * | ||
597 | * Thus, | ||
598 | * sign*Y*a + D*sign*X*a == B (mod |n|), | ||
599 | * i.e. | ||
600 | * sign*(Y + D*X)*a == B (mod |n|). | ||
601 | * | ||
602 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at | ||
603 | * -sign*X*a == B (mod |n|), | ||
604 | * sign*Y*a == A (mod |n|). | ||
605 | * Note that X and Y stay non-negative all the time. | ||
606 | */ | ||
607 | |||
608 | if (!BN_mul(tmp,D,X,ctx)) goto err; | ||
609 | if (!BN_add(tmp,tmp,Y)) goto err; | ||
610 | |||
611 | M=Y; /* keep the BIGNUM object, the value does not matter */ | ||
612 | Y=X; | ||
613 | X=tmp; | ||
614 | sign = -sign; | ||
615 | } | ||
616 | |||
617 | /* | ||
618 | * The while loop (Euclid's algorithm) ends when | ||
619 | * A == gcd(a,n); | ||
620 | * we have | ||
621 | * sign*Y*a == A (mod |n|), | ||
622 | * where Y is non-negative. | ||
623 | */ | ||
624 | |||
625 | if (sign < 0) | ||
626 | { | ||
627 | if (!BN_sub(Y,n,Y)) goto err; | ||
628 | } | ||
629 | /* Now Y*a == A (mod |n|). */ | ||
630 | |||
631 | if (BN_is_one(A)) | ||
632 | { | ||
633 | /* Y*a == 1 (mod |n|) */ | ||
634 | if (!Y->neg && BN_ucmp(Y,n) < 0) | ||
635 | { | ||
636 | if (!BN_copy(R,Y)) goto err; | ||
637 | } | ||
638 | else | ||
639 | { | ||
640 | if (!BN_nnmod(R,Y,n,ctx)) goto err; | ||
641 | } | ||
642 | } | ||
643 | else | ||
644 | { | ||
645 | BNerr(BN_F_BN_MOD_INVERSE_NO_BRANCH,BN_R_NO_INVERSE); | ||
646 | goto err; | ||
647 | } | ||
648 | ret=R; | ||
649 | err: | ||
650 | if ((ret == NULL) && (in == NULL)) BN_free(R); | ||
651 | BN_CTX_end(ctx); | ||
652 | bn_check_top(ret); | ||
653 | return(ret); | ||
654 | } | ||