diff options
Diffstat (limited to 'src/lib/libcrypto/bn/bn_gf2m.c')
-rw-r--r-- | src/lib/libcrypto/bn/bn_gf2m.c | 1095 |
1 files changed, 0 insertions, 1095 deletions
diff --git a/src/lib/libcrypto/bn/bn_gf2m.c b/src/lib/libcrypto/bn/bn_gf2m.c deleted file mode 100644 index 306f029f27..0000000000 --- a/src/lib/libcrypto/bn/bn_gf2m.c +++ /dev/null | |||
@@ -1,1095 +0,0 @@ | |||
1 | /* crypto/bn/bn_gf2m.c */ | ||
2 | /* ==================================================================== | ||
3 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. | ||
4 | * | ||
5 | * The Elliptic Curve Public-Key Crypto Library (ECC Code) included | ||
6 | * herein is developed by SUN MICROSYSTEMS, INC., and is contributed | ||
7 | * to the OpenSSL project. | ||
8 | * | ||
9 | * The ECC Code is licensed pursuant to the OpenSSL open source | ||
10 | * license provided below. | ||
11 | * | ||
12 | * In addition, Sun covenants to all licensees who provide a reciprocal | ||
13 | * covenant with respect to their own patents if any, not to sue under | ||
14 | * current and future patent claims necessarily infringed by the making, | ||
15 | * using, practicing, selling, offering for sale and/or otherwise | ||
16 | * disposing of the ECC Code as delivered hereunder (or portions thereof), | ||
17 | * provided that such covenant shall not apply: | ||
18 | * 1) for code that a licensee deletes from the ECC Code; | ||
19 | * 2) separates from the ECC Code; or | ||
20 | * 3) for infringements caused by: | ||
21 | * i) the modification of the ECC Code or | ||
22 | * ii) the combination of the ECC Code with other software or | ||
23 | * devices where such combination causes the infringement. | ||
24 | * | ||
25 | * The software is originally written by Sheueling Chang Shantz and | ||
26 | * Douglas Stebila of Sun Microsystems Laboratories. | ||
27 | * | ||
28 | */ | ||
29 | |||
30 | /* NOTE: This file is licensed pursuant to the OpenSSL license below | ||
31 | * and may be modified; but after modifications, the above covenant | ||
32 | * may no longer apply! In such cases, the corresponding paragraph | ||
33 | * ["In addition, Sun covenants ... causes the infringement."] and | ||
34 | * this note can be edited out; but please keep the Sun copyright | ||
35 | * notice and attribution. */ | ||
36 | |||
37 | /* ==================================================================== | ||
38 | * Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved. | ||
39 | * | ||
40 | * Redistribution and use in source and binary forms, with or without | ||
41 | * modification, are permitted provided that the following conditions | ||
42 | * are met: | ||
43 | * | ||
44 | * 1. Redistributions of source code must retain the above copyright | ||
45 | * notice, this list of conditions and the following disclaimer. | ||
46 | * | ||
47 | * 2. Redistributions in binary form must reproduce the above copyright | ||
48 | * notice, this list of conditions and the following disclaimer in | ||
49 | * the documentation and/or other materials provided with the | ||
50 | * distribution. | ||
51 | * | ||
52 | * 3. All advertising materials mentioning features or use of this | ||
53 | * software must display the following acknowledgment: | ||
54 | * "This product includes software developed by the OpenSSL Project | ||
55 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" | ||
56 | * | ||
57 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to | ||
58 | * endorse or promote products derived from this software without | ||
59 | * prior written permission. For written permission, please contact | ||
60 | * openssl-core@openssl.org. | ||
61 | * | ||
62 | * 5. Products derived from this software may not be called "OpenSSL" | ||
63 | * nor may "OpenSSL" appear in their names without prior written | ||
64 | * permission of the OpenSSL Project. | ||
65 | * | ||
66 | * 6. Redistributions of any form whatsoever must retain the following | ||
67 | * acknowledgment: | ||
68 | * "This product includes software developed by the OpenSSL Project | ||
69 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" | ||
70 | * | ||
71 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY | ||
72 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
73 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | ||
74 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR | ||
75 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
76 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT | ||
77 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||
78 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | ||
79 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | ||
80 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
81 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | ||
82 | * OF THE POSSIBILITY OF SUCH DAMAGE. | ||
83 | * ==================================================================== | ||
84 | * | ||
85 | * This product includes cryptographic software written by Eric Young | ||
86 | * (eay@cryptsoft.com). This product includes software written by Tim | ||
87 | * Hudson (tjh@cryptsoft.com). | ||
88 | * | ||
89 | */ | ||
90 | |||
91 | #include <assert.h> | ||
92 | #include <limits.h> | ||
93 | #include <stdio.h> | ||
94 | #include "cryptlib.h" | ||
95 | #include "bn_lcl.h" | ||
96 | |||
97 | /* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */ | ||
98 | #define MAX_ITERATIONS 50 | ||
99 | |||
100 | static const BN_ULONG SQR_tb[16] = | ||
101 | { 0, 1, 4, 5, 16, 17, 20, 21, | ||
102 | 64, 65, 68, 69, 80, 81, 84, 85 }; | ||
103 | /* Platform-specific macros to accelerate squaring. */ | ||
104 | #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) | ||
105 | #define SQR1(w) \ | ||
106 | SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \ | ||
107 | SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \ | ||
108 | SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \ | ||
109 | SQR_tb[(w) >> 36 & 0xF] << 8 | SQR_tb[(w) >> 32 & 0xF] | ||
110 | #define SQR0(w) \ | ||
111 | SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \ | ||
112 | SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \ | ||
113 | SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ | ||
114 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] | ||
115 | #endif | ||
116 | #ifdef THIRTY_TWO_BIT | ||
117 | #define SQR1(w) \ | ||
118 | SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \ | ||
119 | SQR_tb[(w) >> 20 & 0xF] << 8 | SQR_tb[(w) >> 16 & 0xF] | ||
120 | #define SQR0(w) \ | ||
121 | SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >> 8 & 0xF] << 16 | \ | ||
122 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] | ||
123 | #endif | ||
124 | #ifdef SIXTEEN_BIT | ||
125 | #define SQR1(w) \ | ||
126 | SQR_tb[(w) >> 12 & 0xF] << 8 | SQR_tb[(w) >> 8 & 0xF] | ||
127 | #define SQR0(w) \ | ||
128 | SQR_tb[(w) >> 4 & 0xF] << 8 | SQR_tb[(w) & 0xF] | ||
129 | #endif | ||
130 | #ifdef EIGHT_BIT | ||
131 | #define SQR1(w) \ | ||
132 | SQR_tb[(w) >> 4 & 0xF] | ||
133 | #define SQR0(w) \ | ||
134 | SQR_tb[(w) & 15] | ||
135 | #endif | ||
136 | |||
137 | /* Product of two polynomials a, b each with degree < BN_BITS2 - 1, | ||
138 | * result is a polynomial r with degree < 2 * BN_BITS - 1 | ||
139 | * The caller MUST ensure that the variables have the right amount | ||
140 | * of space allocated. | ||
141 | */ | ||
142 | #ifdef EIGHT_BIT | ||
143 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) | ||
144 | { | ||
145 | register BN_ULONG h, l, s; | ||
146 | BN_ULONG tab[4], top1b = a >> 7; | ||
147 | register BN_ULONG a1, a2; | ||
148 | |||
149 | a1 = a & (0x7F); a2 = a1 << 1; | ||
150 | |||
151 | tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; | ||
152 | |||
153 | s = tab[b & 0x3]; l = s; | ||
154 | s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 6; | ||
155 | s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4; | ||
156 | s = tab[b >> 6 ]; l ^= s << 6; h ^= s >> 2; | ||
157 | |||
158 | /* compensate for the top bit of a */ | ||
159 | |||
160 | if (top1b & 01) { l ^= b << 7; h ^= b >> 1; } | ||
161 | |||
162 | *r1 = h; *r0 = l; | ||
163 | } | ||
164 | #endif | ||
165 | #ifdef SIXTEEN_BIT | ||
166 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) | ||
167 | { | ||
168 | register BN_ULONG h, l, s; | ||
169 | BN_ULONG tab[4], top1b = a >> 15; | ||
170 | register BN_ULONG a1, a2; | ||
171 | |||
172 | a1 = a & (0x7FFF); a2 = a1 << 1; | ||
173 | |||
174 | tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; | ||
175 | |||
176 | s = tab[b & 0x3]; l = s; | ||
177 | s = tab[b >> 2 & 0x3]; l ^= s << 2; h = s >> 14; | ||
178 | s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 12; | ||
179 | s = tab[b >> 6 & 0x3]; l ^= s << 6; h ^= s >> 10; | ||
180 | s = tab[b >> 8 & 0x3]; l ^= s << 8; h ^= s >> 8; | ||
181 | s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >> 6; | ||
182 | s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >> 4; | ||
183 | s = tab[b >>14 ]; l ^= s << 14; h ^= s >> 2; | ||
184 | |||
185 | /* compensate for the top bit of a */ | ||
186 | |||
187 | if (top1b & 01) { l ^= b << 15; h ^= b >> 1; } | ||
188 | |||
189 | *r1 = h; *r0 = l; | ||
190 | } | ||
191 | #endif | ||
192 | #ifdef THIRTY_TWO_BIT | ||
193 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) | ||
194 | { | ||
195 | register BN_ULONG h, l, s; | ||
196 | BN_ULONG tab[8], top2b = a >> 30; | ||
197 | register BN_ULONG a1, a2, a4; | ||
198 | |||
199 | a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1; | ||
200 | |||
201 | tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2; | ||
202 | tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4; | ||
203 | |||
204 | s = tab[b & 0x7]; l = s; | ||
205 | s = tab[b >> 3 & 0x7]; l ^= s << 3; h = s >> 29; | ||
206 | s = tab[b >> 6 & 0x7]; l ^= s << 6; h ^= s >> 26; | ||
207 | s = tab[b >> 9 & 0x7]; l ^= s << 9; h ^= s >> 23; | ||
208 | s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20; | ||
209 | s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17; | ||
210 | s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14; | ||
211 | s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11; | ||
212 | s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >> 8; | ||
213 | s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >> 5; | ||
214 | s = tab[b >> 30 ]; l ^= s << 30; h ^= s >> 2; | ||
215 | |||
216 | /* compensate for the top two bits of a */ | ||
217 | |||
218 | if (top2b & 01) { l ^= b << 30; h ^= b >> 2; } | ||
219 | if (top2b & 02) { l ^= b << 31; h ^= b >> 1; } | ||
220 | |||
221 | *r1 = h; *r0 = l; | ||
222 | } | ||
223 | #endif | ||
224 | #if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG) | ||
225 | static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b) | ||
226 | { | ||
227 | register BN_ULONG h, l, s; | ||
228 | BN_ULONG tab[16], top3b = a >> 61; | ||
229 | register BN_ULONG a1, a2, a4, a8; | ||
230 | |||
231 | a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1; | ||
232 | |||
233 | tab[ 0] = 0; tab[ 1] = a1; tab[ 2] = a2; tab[ 3] = a1^a2; | ||
234 | tab[ 4] = a4; tab[ 5] = a1^a4; tab[ 6] = a2^a4; tab[ 7] = a1^a2^a4; | ||
235 | tab[ 8] = a8; tab[ 9] = a1^a8; tab[10] = a2^a8; tab[11] = a1^a2^a8; | ||
236 | tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8; | ||
237 | |||
238 | s = tab[b & 0xF]; l = s; | ||
239 | s = tab[b >> 4 & 0xF]; l ^= s << 4; h = s >> 60; | ||
240 | s = tab[b >> 8 & 0xF]; l ^= s << 8; h ^= s >> 56; | ||
241 | s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52; | ||
242 | s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48; | ||
243 | s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44; | ||
244 | s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40; | ||
245 | s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36; | ||
246 | s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32; | ||
247 | s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28; | ||
248 | s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24; | ||
249 | s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20; | ||
250 | s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16; | ||
251 | s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12; | ||
252 | s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >> 8; | ||
253 | s = tab[b >> 60 ]; l ^= s << 60; h ^= s >> 4; | ||
254 | |||
255 | /* compensate for the top three bits of a */ | ||
256 | |||
257 | if (top3b & 01) { l ^= b << 61; h ^= b >> 3; } | ||
258 | if (top3b & 02) { l ^= b << 62; h ^= b >> 2; } | ||
259 | if (top3b & 04) { l ^= b << 63; h ^= b >> 1; } | ||
260 | |||
261 | *r1 = h; *r0 = l; | ||
262 | } | ||
263 | #endif | ||
264 | |||
265 | /* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1, | ||
266 | * result is a polynomial r with degree < 4 * BN_BITS2 - 1 | ||
267 | * The caller MUST ensure that the variables have the right amount | ||
268 | * of space allocated. | ||
269 | */ | ||
270 | static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0) | ||
271 | { | ||
272 | BN_ULONG m1, m0; | ||
273 | /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */ | ||
274 | bn_GF2m_mul_1x1(r+3, r+2, a1, b1); | ||
275 | bn_GF2m_mul_1x1(r+1, r, a0, b0); | ||
276 | bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1); | ||
277 | /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */ | ||
278 | r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */ | ||
279 | r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */ | ||
280 | } | ||
281 | |||
282 | |||
283 | /* Add polynomials a and b and store result in r; r could be a or b, a and b | ||
284 | * could be equal; r is the bitwise XOR of a and b. | ||
285 | */ | ||
286 | int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b) | ||
287 | { | ||
288 | int i; | ||
289 | const BIGNUM *at, *bt; | ||
290 | |||
291 | bn_check_top(a); | ||
292 | bn_check_top(b); | ||
293 | |||
294 | if (a->top < b->top) { at = b; bt = a; } | ||
295 | else { at = a; bt = b; } | ||
296 | |||
297 | bn_wexpand(r, at->top); | ||
298 | |||
299 | for (i = 0; i < bt->top; i++) | ||
300 | { | ||
301 | r->d[i] = at->d[i] ^ bt->d[i]; | ||
302 | } | ||
303 | for (; i < at->top; i++) | ||
304 | { | ||
305 | r->d[i] = at->d[i]; | ||
306 | } | ||
307 | |||
308 | r->top = at->top; | ||
309 | bn_correct_top(r); | ||
310 | |||
311 | return 1; | ||
312 | } | ||
313 | |||
314 | |||
315 | /* Some functions allow for representation of the irreducible polynomials | ||
316 | * as an int[], say p. The irreducible f(t) is then of the form: | ||
317 | * t^p[0] + t^p[1] + ... + t^p[k] | ||
318 | * where m = p[0] > p[1] > ... > p[k] = 0. | ||
319 | */ | ||
320 | |||
321 | |||
322 | /* Performs modular reduction of a and store result in r. r could be a. */ | ||
323 | int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[]) | ||
324 | { | ||
325 | int j, k; | ||
326 | int n, dN, d0, d1; | ||
327 | BN_ULONG zz, *z; | ||
328 | |||
329 | bn_check_top(a); | ||
330 | |||
331 | if (!p[0]) | ||
332 | { | ||
333 | /* reduction mod 1 => return 0 */ | ||
334 | BN_zero(r); | ||
335 | return 1; | ||
336 | } | ||
337 | |||
338 | /* Since the algorithm does reduction in the r value, if a != r, copy | ||
339 | * the contents of a into r so we can do reduction in r. | ||
340 | */ | ||
341 | if (a != r) | ||
342 | { | ||
343 | if (!bn_wexpand(r, a->top)) return 0; | ||
344 | for (j = 0; j < a->top; j++) | ||
345 | { | ||
346 | r->d[j] = a->d[j]; | ||
347 | } | ||
348 | r->top = a->top; | ||
349 | } | ||
350 | z = r->d; | ||
351 | |||
352 | /* start reduction */ | ||
353 | dN = p[0] / BN_BITS2; | ||
354 | for (j = r->top - 1; j > dN;) | ||
355 | { | ||
356 | zz = z[j]; | ||
357 | if (z[j] == 0) { j--; continue; } | ||
358 | z[j] = 0; | ||
359 | |||
360 | for (k = 1; p[k] != 0; k++) | ||
361 | { | ||
362 | /* reducing component t^p[k] */ | ||
363 | n = p[0] - p[k]; | ||
364 | d0 = n % BN_BITS2; d1 = BN_BITS2 - d0; | ||
365 | n /= BN_BITS2; | ||
366 | z[j-n] ^= (zz>>d0); | ||
367 | if (d0) z[j-n-1] ^= (zz<<d1); | ||
368 | } | ||
369 | |||
370 | /* reducing component t^0 */ | ||
371 | n = dN; | ||
372 | d0 = p[0] % BN_BITS2; | ||
373 | d1 = BN_BITS2 - d0; | ||
374 | z[j-n] ^= (zz >> d0); | ||
375 | if (d0) z[j-n-1] ^= (zz << d1); | ||
376 | } | ||
377 | |||
378 | /* final round of reduction */ | ||
379 | while (j == dN) | ||
380 | { | ||
381 | |||
382 | d0 = p[0] % BN_BITS2; | ||
383 | zz = z[dN] >> d0; | ||
384 | if (zz == 0) break; | ||
385 | d1 = BN_BITS2 - d0; | ||
386 | |||
387 | /* clear up the top d1 bits */ | ||
388 | if (d0) | ||
389 | z[dN] = (z[dN] << d1) >> d1; | ||
390 | else | ||
391 | z[dN] = 0; | ||
392 | z[0] ^= zz; /* reduction t^0 component */ | ||
393 | |||
394 | for (k = 1; p[k] != 0; k++) | ||
395 | { | ||
396 | BN_ULONG tmp_ulong; | ||
397 | |||
398 | /* reducing component t^p[k]*/ | ||
399 | n = p[k] / BN_BITS2; | ||
400 | d0 = p[k] % BN_BITS2; | ||
401 | d1 = BN_BITS2 - d0; | ||
402 | z[n] ^= (zz << d0); | ||
403 | tmp_ulong = zz >> d1; | ||
404 | if (d0 && tmp_ulong) | ||
405 | z[n+1] ^= tmp_ulong; | ||
406 | } | ||
407 | |||
408 | |||
409 | } | ||
410 | |||
411 | bn_correct_top(r); | ||
412 | return 1; | ||
413 | } | ||
414 | |||
415 | /* Performs modular reduction of a by p and store result in r. r could be a. | ||
416 | * | ||
417 | * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper | ||
418 | * function is only provided for convenience; for best performance, use the | ||
419 | * BN_GF2m_mod_arr function. | ||
420 | */ | ||
421 | int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p) | ||
422 | { | ||
423 | int ret = 0; | ||
424 | const int max = BN_num_bits(p); | ||
425 | unsigned int *arr=NULL; | ||
426 | bn_check_top(a); | ||
427 | bn_check_top(p); | ||
428 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; | ||
429 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
430 | if (!ret || ret > max) | ||
431 | { | ||
432 | BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH); | ||
433 | goto err; | ||
434 | } | ||
435 | ret = BN_GF2m_mod_arr(r, a, arr); | ||
436 | bn_check_top(r); | ||
437 | err: | ||
438 | if (arr) OPENSSL_free(arr); | ||
439 | return ret; | ||
440 | } | ||
441 | |||
442 | |||
443 | /* Compute the product of two polynomials a and b, reduce modulo p, and store | ||
444 | * the result in r. r could be a or b; a could be b. | ||
445 | */ | ||
446 | int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx) | ||
447 | { | ||
448 | int zlen, i, j, k, ret = 0; | ||
449 | BIGNUM *s; | ||
450 | BN_ULONG x1, x0, y1, y0, zz[4]; | ||
451 | |||
452 | bn_check_top(a); | ||
453 | bn_check_top(b); | ||
454 | |||
455 | if (a == b) | ||
456 | { | ||
457 | return BN_GF2m_mod_sqr_arr(r, a, p, ctx); | ||
458 | } | ||
459 | |||
460 | BN_CTX_start(ctx); | ||
461 | if ((s = BN_CTX_get(ctx)) == NULL) goto err; | ||
462 | |||
463 | zlen = a->top + b->top + 4; | ||
464 | if (!bn_wexpand(s, zlen)) goto err; | ||
465 | s->top = zlen; | ||
466 | |||
467 | for (i = 0; i < zlen; i++) s->d[i] = 0; | ||
468 | |||
469 | for (j = 0; j < b->top; j += 2) | ||
470 | { | ||
471 | y0 = b->d[j]; | ||
472 | y1 = ((j+1) == b->top) ? 0 : b->d[j+1]; | ||
473 | for (i = 0; i < a->top; i += 2) | ||
474 | { | ||
475 | x0 = a->d[i]; | ||
476 | x1 = ((i+1) == a->top) ? 0 : a->d[i+1]; | ||
477 | bn_GF2m_mul_2x2(zz, x1, x0, y1, y0); | ||
478 | for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k]; | ||
479 | } | ||
480 | } | ||
481 | |||
482 | bn_correct_top(s); | ||
483 | if (BN_GF2m_mod_arr(r, s, p)) | ||
484 | ret = 1; | ||
485 | bn_check_top(r); | ||
486 | |||
487 | err: | ||
488 | BN_CTX_end(ctx); | ||
489 | return ret; | ||
490 | } | ||
491 | |||
492 | /* Compute the product of two polynomials a and b, reduce modulo p, and store | ||
493 | * the result in r. r could be a or b; a could equal b. | ||
494 | * | ||
495 | * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper | ||
496 | * function is only provided for convenience; for best performance, use the | ||
497 | * BN_GF2m_mod_mul_arr function. | ||
498 | */ | ||
499 | int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) | ||
500 | { | ||
501 | int ret = 0; | ||
502 | const int max = BN_num_bits(p); | ||
503 | unsigned int *arr=NULL; | ||
504 | bn_check_top(a); | ||
505 | bn_check_top(b); | ||
506 | bn_check_top(p); | ||
507 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; | ||
508 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
509 | if (!ret || ret > max) | ||
510 | { | ||
511 | BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH); | ||
512 | goto err; | ||
513 | } | ||
514 | ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx); | ||
515 | bn_check_top(r); | ||
516 | err: | ||
517 | if (arr) OPENSSL_free(arr); | ||
518 | return ret; | ||
519 | } | ||
520 | |||
521 | |||
522 | /* Square a, reduce the result mod p, and store it in a. r could be a. */ | ||
523 | int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx) | ||
524 | { | ||
525 | int i, ret = 0; | ||
526 | BIGNUM *s; | ||
527 | |||
528 | bn_check_top(a); | ||
529 | BN_CTX_start(ctx); | ||
530 | if ((s = BN_CTX_get(ctx)) == NULL) return 0; | ||
531 | if (!bn_wexpand(s, 2 * a->top)) goto err; | ||
532 | |||
533 | for (i = a->top - 1; i >= 0; i--) | ||
534 | { | ||
535 | s->d[2*i+1] = SQR1(a->d[i]); | ||
536 | s->d[2*i ] = SQR0(a->d[i]); | ||
537 | } | ||
538 | |||
539 | s->top = 2 * a->top; | ||
540 | bn_correct_top(s); | ||
541 | if (!BN_GF2m_mod_arr(r, s, p)) goto err; | ||
542 | bn_check_top(r); | ||
543 | ret = 1; | ||
544 | err: | ||
545 | BN_CTX_end(ctx); | ||
546 | return ret; | ||
547 | } | ||
548 | |||
549 | /* Square a, reduce the result mod p, and store it in a. r could be a. | ||
550 | * | ||
551 | * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper | ||
552 | * function is only provided for convenience; for best performance, use the | ||
553 | * BN_GF2m_mod_sqr_arr function. | ||
554 | */ | ||
555 | int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
556 | { | ||
557 | int ret = 0; | ||
558 | const int max = BN_num_bits(p); | ||
559 | unsigned int *arr=NULL; | ||
560 | |||
561 | bn_check_top(a); | ||
562 | bn_check_top(p); | ||
563 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; | ||
564 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
565 | if (!ret || ret > max) | ||
566 | { | ||
567 | BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH); | ||
568 | goto err; | ||
569 | } | ||
570 | ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx); | ||
571 | bn_check_top(r); | ||
572 | err: | ||
573 | if (arr) OPENSSL_free(arr); | ||
574 | return ret; | ||
575 | } | ||
576 | |||
577 | |||
578 | /* Invert a, reduce modulo p, and store the result in r. r could be a. | ||
579 | * Uses Modified Almost Inverse Algorithm (Algorithm 10) from | ||
580 | * Hankerson, D., Hernandez, J.L., and Menezes, A. "Software Implementation | ||
581 | * of Elliptic Curve Cryptography Over Binary Fields". | ||
582 | */ | ||
583 | int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
584 | { | ||
585 | BIGNUM *b, *c, *u, *v, *tmp; | ||
586 | int ret = 0; | ||
587 | |||
588 | bn_check_top(a); | ||
589 | bn_check_top(p); | ||
590 | |||
591 | BN_CTX_start(ctx); | ||
592 | |||
593 | b = BN_CTX_get(ctx); | ||
594 | c = BN_CTX_get(ctx); | ||
595 | u = BN_CTX_get(ctx); | ||
596 | v = BN_CTX_get(ctx); | ||
597 | if (v == NULL) goto err; | ||
598 | |||
599 | if (!BN_one(b)) goto err; | ||
600 | if (!BN_GF2m_mod(u, a, p)) goto err; | ||
601 | if (!BN_copy(v, p)) goto err; | ||
602 | |||
603 | if (BN_is_zero(u)) goto err; | ||
604 | |||
605 | while (1) | ||
606 | { | ||
607 | while (!BN_is_odd(u)) | ||
608 | { | ||
609 | if (!BN_rshift1(u, u)) goto err; | ||
610 | if (BN_is_odd(b)) | ||
611 | { | ||
612 | if (!BN_GF2m_add(b, b, p)) goto err; | ||
613 | } | ||
614 | if (!BN_rshift1(b, b)) goto err; | ||
615 | } | ||
616 | |||
617 | if (BN_abs_is_word(u, 1)) break; | ||
618 | |||
619 | if (BN_num_bits(u) < BN_num_bits(v)) | ||
620 | { | ||
621 | tmp = u; u = v; v = tmp; | ||
622 | tmp = b; b = c; c = tmp; | ||
623 | } | ||
624 | |||
625 | if (!BN_GF2m_add(u, u, v)) goto err; | ||
626 | if (!BN_GF2m_add(b, b, c)) goto err; | ||
627 | } | ||
628 | |||
629 | |||
630 | if (!BN_copy(r, b)) goto err; | ||
631 | bn_check_top(r); | ||
632 | ret = 1; | ||
633 | |||
634 | err: | ||
635 | BN_CTX_end(ctx); | ||
636 | return ret; | ||
637 | } | ||
638 | |||
639 | /* Invert xx, reduce modulo p, and store the result in r. r could be xx. | ||
640 | * | ||
641 | * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper | ||
642 | * function is only provided for convenience; for best performance, use the | ||
643 | * BN_GF2m_mod_inv function. | ||
644 | */ | ||
645 | int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx) | ||
646 | { | ||
647 | BIGNUM *field; | ||
648 | int ret = 0; | ||
649 | |||
650 | bn_check_top(xx); | ||
651 | BN_CTX_start(ctx); | ||
652 | if ((field = BN_CTX_get(ctx)) == NULL) goto err; | ||
653 | if (!BN_GF2m_arr2poly(p, field)) goto err; | ||
654 | |||
655 | ret = BN_GF2m_mod_inv(r, xx, field, ctx); | ||
656 | bn_check_top(r); | ||
657 | |||
658 | err: | ||
659 | BN_CTX_end(ctx); | ||
660 | return ret; | ||
661 | } | ||
662 | |||
663 | |||
664 | #ifndef OPENSSL_SUN_GF2M_DIV | ||
665 | /* Divide y by x, reduce modulo p, and store the result in r. r could be x | ||
666 | * or y, x could equal y. | ||
667 | */ | ||
668 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx) | ||
669 | { | ||
670 | BIGNUM *xinv = NULL; | ||
671 | int ret = 0; | ||
672 | |||
673 | bn_check_top(y); | ||
674 | bn_check_top(x); | ||
675 | bn_check_top(p); | ||
676 | |||
677 | BN_CTX_start(ctx); | ||
678 | xinv = BN_CTX_get(ctx); | ||
679 | if (xinv == NULL) goto err; | ||
680 | |||
681 | if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err; | ||
682 | if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err; | ||
683 | bn_check_top(r); | ||
684 | ret = 1; | ||
685 | |||
686 | err: | ||
687 | BN_CTX_end(ctx); | ||
688 | return ret; | ||
689 | } | ||
690 | #else | ||
691 | /* Divide y by x, reduce modulo p, and store the result in r. r could be x | ||
692 | * or y, x could equal y. | ||
693 | * Uses algorithm Modular_Division_GF(2^m) from | ||
694 | * Chang-Shantz, S. "From Euclid's GCD to Montgomery Multiplication to | ||
695 | * the Great Divide". | ||
696 | */ | ||
697 | int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx) | ||
698 | { | ||
699 | BIGNUM *a, *b, *u, *v; | ||
700 | int ret = 0; | ||
701 | |||
702 | bn_check_top(y); | ||
703 | bn_check_top(x); | ||
704 | bn_check_top(p); | ||
705 | |||
706 | BN_CTX_start(ctx); | ||
707 | |||
708 | a = BN_CTX_get(ctx); | ||
709 | b = BN_CTX_get(ctx); | ||
710 | u = BN_CTX_get(ctx); | ||
711 | v = BN_CTX_get(ctx); | ||
712 | if (v == NULL) goto err; | ||
713 | |||
714 | /* reduce x and y mod p */ | ||
715 | if (!BN_GF2m_mod(u, y, p)) goto err; | ||
716 | if (!BN_GF2m_mod(a, x, p)) goto err; | ||
717 | if (!BN_copy(b, p)) goto err; | ||
718 | |||
719 | while (!BN_is_odd(a)) | ||
720 | { | ||
721 | if (!BN_rshift1(a, a)) goto err; | ||
722 | if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err; | ||
723 | if (!BN_rshift1(u, u)) goto err; | ||
724 | } | ||
725 | |||
726 | do | ||
727 | { | ||
728 | if (BN_GF2m_cmp(b, a) > 0) | ||
729 | { | ||
730 | if (!BN_GF2m_add(b, b, a)) goto err; | ||
731 | if (!BN_GF2m_add(v, v, u)) goto err; | ||
732 | do | ||
733 | { | ||
734 | if (!BN_rshift1(b, b)) goto err; | ||
735 | if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err; | ||
736 | if (!BN_rshift1(v, v)) goto err; | ||
737 | } while (!BN_is_odd(b)); | ||
738 | } | ||
739 | else if (BN_abs_is_word(a, 1)) | ||
740 | break; | ||
741 | else | ||
742 | { | ||
743 | if (!BN_GF2m_add(a, a, b)) goto err; | ||
744 | if (!BN_GF2m_add(u, u, v)) goto err; | ||
745 | do | ||
746 | { | ||
747 | if (!BN_rshift1(a, a)) goto err; | ||
748 | if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err; | ||
749 | if (!BN_rshift1(u, u)) goto err; | ||
750 | } while (!BN_is_odd(a)); | ||
751 | } | ||
752 | } while (1); | ||
753 | |||
754 | if (!BN_copy(r, u)) goto err; | ||
755 | bn_check_top(r); | ||
756 | ret = 1; | ||
757 | |||
758 | err: | ||
759 | BN_CTX_end(ctx); | ||
760 | return ret; | ||
761 | } | ||
762 | #endif | ||
763 | |||
764 | /* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx | ||
765 | * or yy, xx could equal yy. | ||
766 | * | ||
767 | * This function calls down to the BN_GF2m_mod_div implementation; this wrapper | ||
768 | * function is only provided for convenience; for best performance, use the | ||
769 | * BN_GF2m_mod_div function. | ||
770 | */ | ||
771 | int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx) | ||
772 | { | ||
773 | BIGNUM *field; | ||
774 | int ret = 0; | ||
775 | |||
776 | bn_check_top(yy); | ||
777 | bn_check_top(xx); | ||
778 | |||
779 | BN_CTX_start(ctx); | ||
780 | if ((field = BN_CTX_get(ctx)) == NULL) goto err; | ||
781 | if (!BN_GF2m_arr2poly(p, field)) goto err; | ||
782 | |||
783 | ret = BN_GF2m_mod_div(r, yy, xx, field, ctx); | ||
784 | bn_check_top(r); | ||
785 | |||
786 | err: | ||
787 | BN_CTX_end(ctx); | ||
788 | return ret; | ||
789 | } | ||
790 | |||
791 | |||
792 | /* Compute the bth power of a, reduce modulo p, and store | ||
793 | * the result in r. r could be a. | ||
794 | * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363. | ||
795 | */ | ||
796 | int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx) | ||
797 | { | ||
798 | int ret = 0, i, n; | ||
799 | BIGNUM *u; | ||
800 | |||
801 | bn_check_top(a); | ||
802 | bn_check_top(b); | ||
803 | |||
804 | if (BN_is_zero(b)) | ||
805 | return(BN_one(r)); | ||
806 | |||
807 | if (BN_abs_is_word(b, 1)) | ||
808 | return (BN_copy(r, a) != NULL); | ||
809 | |||
810 | BN_CTX_start(ctx); | ||
811 | if ((u = BN_CTX_get(ctx)) == NULL) goto err; | ||
812 | |||
813 | if (!BN_GF2m_mod_arr(u, a, p)) goto err; | ||
814 | |||
815 | n = BN_num_bits(b) - 1; | ||
816 | for (i = n - 1; i >= 0; i--) | ||
817 | { | ||
818 | if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err; | ||
819 | if (BN_is_bit_set(b, i)) | ||
820 | { | ||
821 | if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err; | ||
822 | } | ||
823 | } | ||
824 | if (!BN_copy(r, u)) goto err; | ||
825 | bn_check_top(r); | ||
826 | ret = 1; | ||
827 | err: | ||
828 | BN_CTX_end(ctx); | ||
829 | return ret; | ||
830 | } | ||
831 | |||
832 | /* Compute the bth power of a, reduce modulo p, and store | ||
833 | * the result in r. r could be a. | ||
834 | * | ||
835 | * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper | ||
836 | * function is only provided for convenience; for best performance, use the | ||
837 | * BN_GF2m_mod_exp_arr function. | ||
838 | */ | ||
839 | int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx) | ||
840 | { | ||
841 | int ret = 0; | ||
842 | const int max = BN_num_bits(p); | ||
843 | unsigned int *arr=NULL; | ||
844 | bn_check_top(a); | ||
845 | bn_check_top(b); | ||
846 | bn_check_top(p); | ||
847 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; | ||
848 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
849 | if (!ret || ret > max) | ||
850 | { | ||
851 | BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH); | ||
852 | goto err; | ||
853 | } | ||
854 | ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx); | ||
855 | bn_check_top(r); | ||
856 | err: | ||
857 | if (arr) OPENSSL_free(arr); | ||
858 | return ret; | ||
859 | } | ||
860 | |||
861 | /* Compute the square root of a, reduce modulo p, and store | ||
862 | * the result in r. r could be a. | ||
863 | * Uses exponentiation as in algorithm A.4.1 from IEEE P1363. | ||
864 | */ | ||
865 | int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx) | ||
866 | { | ||
867 | int ret = 0; | ||
868 | BIGNUM *u; | ||
869 | |||
870 | bn_check_top(a); | ||
871 | |||
872 | if (!p[0]) | ||
873 | { | ||
874 | /* reduction mod 1 => return 0 */ | ||
875 | BN_zero(r); | ||
876 | return 1; | ||
877 | } | ||
878 | |||
879 | BN_CTX_start(ctx); | ||
880 | if ((u = BN_CTX_get(ctx)) == NULL) goto err; | ||
881 | |||
882 | if (!BN_set_bit(u, p[0] - 1)) goto err; | ||
883 | ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx); | ||
884 | bn_check_top(r); | ||
885 | |||
886 | err: | ||
887 | BN_CTX_end(ctx); | ||
888 | return ret; | ||
889 | } | ||
890 | |||
891 | /* Compute the square root of a, reduce modulo p, and store | ||
892 | * the result in r. r could be a. | ||
893 | * | ||
894 | * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper | ||
895 | * function is only provided for convenience; for best performance, use the | ||
896 | * BN_GF2m_mod_sqrt_arr function. | ||
897 | */ | ||
898 | int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
899 | { | ||
900 | int ret = 0; | ||
901 | const int max = BN_num_bits(p); | ||
902 | unsigned int *arr=NULL; | ||
903 | bn_check_top(a); | ||
904 | bn_check_top(p); | ||
905 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err; | ||
906 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
907 | if (!ret || ret > max) | ||
908 | { | ||
909 | BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH); | ||
910 | goto err; | ||
911 | } | ||
912 | ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx); | ||
913 | bn_check_top(r); | ||
914 | err: | ||
915 | if (arr) OPENSSL_free(arr); | ||
916 | return ret; | ||
917 | } | ||
918 | |||
919 | /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. | ||
920 | * Uses algorithms A.4.7 and A.4.6 from IEEE P1363. | ||
921 | */ | ||
922 | int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx) | ||
923 | { | ||
924 | int ret = 0, count = 0; | ||
925 | unsigned int j; | ||
926 | BIGNUM *a, *z, *rho, *w, *w2, *tmp; | ||
927 | |||
928 | bn_check_top(a_); | ||
929 | |||
930 | if (!p[0]) | ||
931 | { | ||
932 | /* reduction mod 1 => return 0 */ | ||
933 | BN_zero(r); | ||
934 | return 1; | ||
935 | } | ||
936 | |||
937 | BN_CTX_start(ctx); | ||
938 | a = BN_CTX_get(ctx); | ||
939 | z = BN_CTX_get(ctx); | ||
940 | w = BN_CTX_get(ctx); | ||
941 | if (w == NULL) goto err; | ||
942 | |||
943 | if (!BN_GF2m_mod_arr(a, a_, p)) goto err; | ||
944 | |||
945 | if (BN_is_zero(a)) | ||
946 | { | ||
947 | BN_zero(r); | ||
948 | ret = 1; | ||
949 | goto err; | ||
950 | } | ||
951 | |||
952 | if (p[0] & 0x1) /* m is odd */ | ||
953 | { | ||
954 | /* compute half-trace of a */ | ||
955 | if (!BN_copy(z, a)) goto err; | ||
956 | for (j = 1; j <= (p[0] - 1) / 2; j++) | ||
957 | { | ||
958 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; | ||
959 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; | ||
960 | if (!BN_GF2m_add(z, z, a)) goto err; | ||
961 | } | ||
962 | |||
963 | } | ||
964 | else /* m is even */ | ||
965 | { | ||
966 | rho = BN_CTX_get(ctx); | ||
967 | w2 = BN_CTX_get(ctx); | ||
968 | tmp = BN_CTX_get(ctx); | ||
969 | if (tmp == NULL) goto err; | ||
970 | do | ||
971 | { | ||
972 | if (!BN_rand(rho, p[0], 0, 0)) goto err; | ||
973 | if (!BN_GF2m_mod_arr(rho, rho, p)) goto err; | ||
974 | BN_zero(z); | ||
975 | if (!BN_copy(w, rho)) goto err; | ||
976 | for (j = 1; j <= p[0] - 1; j++) | ||
977 | { | ||
978 | if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err; | ||
979 | if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err; | ||
980 | if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err; | ||
981 | if (!BN_GF2m_add(z, z, tmp)) goto err; | ||
982 | if (!BN_GF2m_add(w, w2, rho)) goto err; | ||
983 | } | ||
984 | count++; | ||
985 | } while (BN_is_zero(w) && (count < MAX_ITERATIONS)); | ||
986 | if (BN_is_zero(w)) | ||
987 | { | ||
988 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS); | ||
989 | goto err; | ||
990 | } | ||
991 | } | ||
992 | |||
993 | if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err; | ||
994 | if (!BN_GF2m_add(w, z, w)) goto err; | ||
995 | if (BN_GF2m_cmp(w, a)) | ||
996 | { | ||
997 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION); | ||
998 | goto err; | ||
999 | } | ||
1000 | |||
1001 | if (!BN_copy(r, z)) goto err; | ||
1002 | bn_check_top(r); | ||
1003 | |||
1004 | ret = 1; | ||
1005 | |||
1006 | err: | ||
1007 | BN_CTX_end(ctx); | ||
1008 | return ret; | ||
1009 | } | ||
1010 | |||
1011 | /* Find r such that r^2 + r = a mod p. r could be a. If no r exists returns 0. | ||
1012 | * | ||
1013 | * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper | ||
1014 | * function is only provided for convenience; for best performance, use the | ||
1015 | * BN_GF2m_mod_solve_quad_arr function. | ||
1016 | */ | ||
1017 | int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) | ||
1018 | { | ||
1019 | int ret = 0; | ||
1020 | const int max = BN_num_bits(p); | ||
1021 | unsigned int *arr=NULL; | ||
1022 | bn_check_top(a); | ||
1023 | bn_check_top(p); | ||
1024 | if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * | ||
1025 | max)) == NULL) goto err; | ||
1026 | ret = BN_GF2m_poly2arr(p, arr, max); | ||
1027 | if (!ret || ret > max) | ||
1028 | { | ||
1029 | BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH); | ||
1030 | goto err; | ||
1031 | } | ||
1032 | ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx); | ||
1033 | bn_check_top(r); | ||
1034 | err: | ||
1035 | if (arr) OPENSSL_free(arr); | ||
1036 | return ret; | ||
1037 | } | ||
1038 | |||
1039 | /* Convert the bit-string representation of a polynomial | ||
1040 | * ( \sum_{i=0}^n a_i * x^i , where a_0 is *not* zero) into an array | ||
1041 | * of integers corresponding to the bits with non-zero coefficient. | ||
1042 | * Up to max elements of the array will be filled. Return value is total | ||
1043 | * number of coefficients that would be extracted if array was large enough. | ||
1044 | */ | ||
1045 | int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max) | ||
1046 | { | ||
1047 | int i, j, k = 0; | ||
1048 | BN_ULONG mask; | ||
1049 | |||
1050 | if (BN_is_zero(a) || !BN_is_bit_set(a, 0)) | ||
1051 | /* a_0 == 0 => return error (the unsigned int array | ||
1052 | * must be terminated by 0) | ||
1053 | */ | ||
1054 | return 0; | ||
1055 | |||
1056 | for (i = a->top - 1; i >= 0; i--) | ||
1057 | { | ||
1058 | if (!a->d[i]) | ||
1059 | /* skip word if a->d[i] == 0 */ | ||
1060 | continue; | ||
1061 | mask = BN_TBIT; | ||
1062 | for (j = BN_BITS2 - 1; j >= 0; j--) | ||
1063 | { | ||
1064 | if (a->d[i] & mask) | ||
1065 | { | ||
1066 | if (k < max) p[k] = BN_BITS2 * i + j; | ||
1067 | k++; | ||
1068 | } | ||
1069 | mask >>= 1; | ||
1070 | } | ||
1071 | } | ||
1072 | |||
1073 | return k; | ||
1074 | } | ||
1075 | |||
1076 | /* Convert the coefficient array representation of a polynomial to a | ||
1077 | * bit-string. The array must be terminated by 0. | ||
1078 | */ | ||
1079 | int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a) | ||
1080 | { | ||
1081 | int i; | ||
1082 | |||
1083 | bn_check_top(a); | ||
1084 | BN_zero(a); | ||
1085 | for (i = 0; p[i] != 0; i++) | ||
1086 | { | ||
1087 | if (BN_set_bit(a, p[i]) == 0) | ||
1088 | return 0; | ||
1089 | } | ||
1090 | BN_set_bit(a, 0); | ||
1091 | bn_check_top(a); | ||
1092 | |||
1093 | return 1; | ||
1094 | } | ||
1095 | |||